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Abstract

For dynamic games we consider the idea that a player, at every stage of the game,
believes that his opponents will choose rationally in the future. Not only this, we also
assume that players, throughout the game, believe that their opponents always believe that
their opponents will choose rationally in the future, and so on. This leads to the concept
of common belief in future rationality, which we formalize within an epistemic model. Our
main contribution is to present an iterative elimination procedure, backward dominance,
that selects exactly those strategies that can rationally be chosen under common belief in
future rationality. The algorithm proceeds by successively eliminating strategies at every
information set of the game. More speci�cally, in round k of the procedure we eliminate at
a given information set h those strategies for player i that are strictly dominated at some
player i information set h0 weakly following h, given the opponents� strategies that have
survived at h0 until round k.
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1. Introduction

The goal of epistemic game theory is to describe plausible ways in which a player may reason
about his opponents before he makes a decision in a game. In static games, the epistemic program
is largely based upon the idea of common belief in rationality (Tan and Werlang (1988)), which
states that a player believes that his opponents choose rationally, believes that every opponent
believes that each of his opponents chooses rationally, and so on.

Extending this idea to dynamic games, however, does not come without problems. One
major di¢ culty is that in dynamic games it may be impossible to require that a player always
believes that his opponents have chosen rationally in the past. Consider, for instance, a two-
player game where player 1, at the beginning of the game, can choose between stopping the game
and entering a subgame with player 2. If player 1 stops the game he would receive a utility of 10,
whereas entering the subgame would always give him a lower utility. If player 2 observes that
player 1 has entered the subgame, he cannot believe that player 1 has chosen rationally in the
past.1 In particular, it will not be possible in this game to require that player 2 always believes
that player 1 chooses rationally at all points in time. In dynamic games, we are therefore forced
to weaken the notion of belief in the opponent�s rationality. But how?

In this paper we present one such way. We require that a player, under all circumstances,
believes that his opponents will choose rationally now and in the future. So, even if a player
observes that an opponent has chosen irrationally in the past, this should not be a reason to
drop his belief in this opponent�s present and future rationality. In order to keep our terminology
short, we refer to this condition as belief in the opponent�s future rationality, so we omit belief
in present rationality in this phrase. The reader should be bear in mind, however, that we
always assume belief in the opponent�s present rationality as well. A �rst observation is that
belief in the opponents�future rationality is always possible: Even if an opponent has behaved
irrationally in the past, it is always possible to believe that he will choose optimally now and at
all future instances.

Belief in the opponents� future rationality is certainly not the only reasonable condition
one can impose on a player�s beliefs in a dynamic game, but we think it provides a natural
and plausible way of reasoning about the opponents. In a sense, it assumes that the player is
completely forward looking �he only reasons about the opponents�behavior in the future of
the game, and takes the opponents�past choices for granted without drawing any conclusions
from these. A possible explanation the player could give for unexpected past choices is that his
opponents were making mistakes, or misjudging the situation at hand, but this should, according
to the concept of belief in the opponents�future rationality, not be a reason to give up the belief
that these opponents will choose rationally in the future. This condition can thus be viewed as a
typical backward induction condition, as opposed to forward induction reasoning which assumes
that the player, at every stage of the game, tries to interpret the opponents�past choices as

1At least, if we stick to a framework with complete information in which the players� utility functions are
transparent to everyone, as we assume in this paper.
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being part of some rational plan. There is something to say for both lines of reasoning, but in
this paper we focus on the �rst one.

In this paper, we do not only impose that a player always believes in his opponents�future
rationality, we also require that a player always believes that every opponent always believes
in his opponents� future rationality, and that he always believes that every opponent always
believes that every other player always believes in his opponents�future rationality, and so on.
This leads to the concept of common belief in future rationality, which is the central idea in this
paper.

As a �rst step, we lay out a formal epistemic model for �nite dynamic games with complete
information, and formalize the notion of common belief in future rationality within this model.
This enables us to de�ne precisely which strategies can be chosen by every player under common
belief in future rationality.

Our main contribution is that we deliver an algorithm, called backward dominance, which
generates for every player exactly those strategies he can rationally choose under common belief
in future rationality. The algorithm proceeds by successively eliminating, at every information
set, some strategies for the players. In the �rst round we eliminate, at every information set,
those strategies for player i that are strictly dominated at a present or future information set
for player i: In every further round k we eliminate, at every information set, those strategies
for player i that are strictly dominated at a present or future information set h for player i;
given the opponents�strategies that have survived until round k at that information set h: We
continue until we cannot eliminate anything more. The strategies that eventually survive at the
beginning of the game are those that survive the algorithm. The main result in this paper shows
that the strategies that survive the backward dominance procedure are exactly the strategies
that can rationally be chosen under common belief in future rationality.

Some important properties of the algorithm are that it always stops after �nitely many steps,
that it always delivers a nonempty set of strategies for every player, and that the order and speed
in which we eliminate strategies from the game does not matter for the eventual result. The
second of these properties, together with our main theorem, implies that common belief in future
rationality is always possible in every game, that is, it never leads to logical contradictions.

If we apply the backward dominance procedure to games with perfect information, then
we obtain precisely the well-known backward induction procedure. As a consequence, apply-
ing common belief in future rationality to games with perfect information leads to backward
induction.

The idea of (common) belief in the opponents� future rationality is not entirely new. For
games with perfect information, some variants of it have served as an epistemic foundation
for backward induction. See, for instance, Asheim (2002), Baltag, Smets and Zvesper (2009),
Feinberg (2005) and Samet (1996). In fact, the condition of �stable belief in dynamic rationality�
in Baltag, Smets and Zvesper (2009) matches exactly our de�nition of belief in the opponents�
future rationality, although they restrict to a non-probabilistic framework. The reader may
consult Perea (2007) for a detailed overview of the various epistemic foundations that have been
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o¤ered for backward induction in the literature.
For general dynamic games, belief in the opponents�future rationality is implicitly present

in �backward induction concepts� such as sequential equilibrium (Kreps and Wilson (1982))
and sequential rationalizability (Dekel, Fudenberg and Levine (1999, 2002) and Asheim and
Perea (2005)). In fact, we show in Section 6 that sequential equilibrium and sequential ratio-
nalizability are both more restrictive than common belief in future rationality. Moreover, the
di¤erence with sequential rationalizability only lies in the fact that the latter assumes (common
belief in) Kreps-Wilson consistency of beliefs, and independent beliefs about the opponents�
future choices, whereas common belief in future rationality does not. Independently from our
paper, Penta (2009) has developed a procedure, backwards rationalizability, which is similar to
our backward dominance procedure. A di¤erence with our procedure is that backwards ratio-
nalizability requires (common belief in) Bayesian updating, whereas we do not. Also, Penta�s
procedure works by successively eliminating conditional belief vectors and strategies from the
game, whereas our procedure only works on strategies.

Now, why should we be interested in common belief in future rationality as a concept if it is
already implied by sequential equilibrium and sequential rationalizability? We believe there are
several important reasons.

First, the concept of common belief in future rationality is based upon very elementary
decision theoretic and epistemic conditions, namely that players should always believe that their
opponents will choose rationally in the remainder of the game, and that there is common belief
throughout the game in this event. No other conditions are imposed. In particular, we impose
no equilibrium conditions as in sequential equilibrium. Also, we do not require players to use
Bayesian updating when forming their conditional beliefs throughout the game. The reason is
that we want to develop a concept that is completely forward looking, whereas Bayesian updating
would require a player to think about his previous beliefs when forming his conditional belief at a
certain stage in the game. So, in this sense, common belief in future rationality constitutes a very
basic concept. Compared to sequential rationalizability, the concept of common belief in future
rationality is very explicit about the epistemic assumptions being made. In the formulation of
sequential rationalizability, the epistemic conditions imposed are somewhat more hidden in the
various ingredients of its de�nition.

Second, the concept of sequential equilibrium may rule out reasonable choices in some games,
precisely because it imposes equilibrium conditions which are hard to justify if the game is played
only once, and the players cannot communicate before the game. See Bernheim (1984) for an
early and similar critique to Nash equilibrium. We will provide an example for this phenomenon
in Section 4.2, and discuss this issue in more detail there.

Finally, we provide an algorithm that supports the concept of common belief in future ratio-
nality, making the concept attractive also from a practical point of view. In general, sequential
equilibrium strategies are much harder to compute.

In Section 6 we also compare our notion with the concept of extensive form rationalizability
(Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi (2002)) and �nd that, in terms of
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strategy choices, there is no general logical relationship between the two. In fact, there are
games where both notions provide a unique, but di¤erent, strategy choice for a player. However,
in terms of outcomes that can be reached, extensive form rationalizability is more restrictive
than common belief in future rationality. Namely, every outcome that can be reached under
extensive form rationalizability can also be reached under common belief in future rationality,
but not vice versa. The reader is referred to Chapter 9 in Perea (2011) for a formal statement
and proof of this result. Moreover, in Section 6 we compare our backward dominance procedure
with the iterated conditional dominance procedure (Shimoji and Watson (1998)), which leads
to extensive form rationalizability. Both algorithms are similar in spirit, as they proceed by
successively eliminating strategies at every information set in the game. However, the criteria
that are used to eliminate a strategy at a given information set are di¤erent in both procedures.
In Section 6 we precisely describe the di¤erences and similarities between the two procedures.

The outline of this paper is as follows. In Section 2 we give some basic de�nitions and
introduce an epistemic model for dynamic games. In Section 3 we formalize the idea of common
belief in future rationality within this epistemic model. In Section 4 we introduce the backward
dominance algorithm, illustrate it by means of an example, and present the main theorem stating
that the algorithm selects exactly those strategies that can rationally be chosen under common
belief in future rationality. In Section 5 we discuss some important properties of the algorithm,
and use these to derive some additional insights about the concept of common belief in future
rationality. In Section 6 we explore the relation between common belief in future rationality, and
other concepts for dynamic games such as sequential rationalizability, backwards rationalizability
and extensive form rationalizability. In Section 7 we discuss possible lines for future research.
Section 8 contains all the proofs.

2. Model

In this section we formally present the class of dynamic games we consider, and explain how to
build an epistemic model for such dynamic games.

2.1. Dynamic Games

In this paper we restrict attention to dynamic games with complete information, in which the
players�utility functions are transparent to everyone. By I we denote the set of players, by X
the set of non-terminal histories (or nodes) and by Z the set of terminal histories. By ; we
denote the beginning (or root) of the game. For every player i; we denote by Hi the collection of
information sets for that player. Every information set h 2 Hi consists of a set of non-terminal
histories. At every information set h 2 Hi ; we denote by Ci(h) the set of choices (or actions) for
player i at h:We assume that all sets mentioned above are �nite, and hence we restrict to �nite
dynamic games in this paper. Finally, for every terminal history z and player i; we denote by
ui(z) the utility for player i at z: As usual, we assume that there is perfect recall, meaning that a
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player never forgets what he previously did, and what he previously knew about the opponents�
past choices.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for non-
terminal histories at which several players make a choice. Formally, this means that for some
non-terminal histories x there may be di¤erent players i and j; and information sets hi 2 Hi
and hj 2 Hj ; such that x 2 hi and x 2 hj : In this case, we say that the information sets hi
and hj are simultaneous. Explicitly allowing for simultaneous moves is important in this paper,
especially for describing the concept of common belief in future rationality. We will come back
to the issue of simultaneous moves in Section 3, when we formally introduce common belief in
future rationality.

Say that an information set h follows some other information set h0 if there are histories
x 2 h and y 2 h0 such that y is on the unique path from the root to x: Finally, we say that
information set h weakly follows h0 if either h follows h0; or h and h0 are simultaneous. We
assume, throughout this paper, that there is an unambiguous ordering of the information sets
in the game. That is, if information set h follows information set h0; then h0 does not follow h:
Or, equivalently, there cannot be histories x; y 2 h; and histories x0; y0 2 h0 such that x is on the
path from the root to x0; and y0 is on the path from the root to y: This will be important for
the concept of common belief in future rationality that we will develop.

2.2. Strategies

A strategy for player i is a complete choice plan, prescribing a choice at each of his information
sets that can possibly be reached by this choice plan. Formally, for every h; h0 2 Hi such that
h precedes h0; let ci(h; h0) be the choice at h for player i that leads to h0: Note that ci(h; h0) is
unique by perfect recall. Consider a subset Ĥi � Hi; not necessarily containing all information
sets for player i, and a function si that assigns to every h 2 Ĥi some choice si(h) 2 Ci(h): We
say that si possibly reaches an information set h if at every h0 2 Ĥi preceding h we have that
si(h

0) = ci(h0; h): By Hi(si) we denote the collection of player i information sets that si possibly
reaches. A strategy for player i is a function si; assigning to every h 2 Ĥi � Hi some choice
si(h) 2 Ci(h); such that Ĥi = Hi(si):

Note that this de�nition slightly di¤ers from the standard de�nition of a strategy in the liter-
ature. Usually, a strategy for player i is de�ned as a mapping that assigns to every information
set h 2 Hi some available choice �also to those information sets h that cannot be reached by si:
The de�nition of a strategy we use corresponds to what Rubinstein (1991) calls a plan of action.
One can also interpret it as the equivalence class of strategies (in the classical sense) that are
outcome-equivalent. Hence, taking for every player the set of strategies as we use it corresponds
to considering the pure strategy reduced normal form. However, for the concepts and results in
this paper it does not make any di¤erence which notion of strategy we use.

For a given information set h; denote by Si(h) the set of strategies for player i that possibly
reach h: By S�i(h) we denote the strategy pro�les for i�s opponents that possibly reach h; that
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is, s�i 2 S�i(h) if there is some si 2 Si(h) such that (si; s�i) reaches some history in h: By S(h)
we denote the set of strategy pro�les (si)i2I that reach some history in h: By perfect recall we
have that S(h) = Si(h)� S�i(h) for every player i and every information set h 2 Hi:

2.3. Epistemic Model

We now wish to model the players�beliefs in the game. At every information set h 2 Hi; player
i holds a belief about (a) the opponents� strategy choices, (b) the beliefs that the opponents
have, at their information sets, about the other players� strategy choices, (c) the beliefs that
the opponents have, at their information sets, about the beliefs their opponents have, at their
information sets, about the other players�strategy choices, and so on. A possible way to represent
such conditional belief hierarchies is as follows.

De�nition 2.1. (Epistemic model) Consider a dynamic game �. An epistemic model for � is
a tuple M = (Ti; bi)i2I where
(a) Ti is the �nite set of types for player i;
(b) bi is a function that assigns to every type ti 2 Ti; and every information set h 2 Hi; a
probability distribution bi(ti; h) 2 �(S�i(h)� T�i):

Recall that S�i(h) represents the set of opponents�strategy combinations that possibly reach
h: By T�i :=

Q
j 6=i Tj we denote the set of opponents�type combinations. For every �nite set

X; we denote by �(X) the set of probability distributions on X:
So, at every information set h 2 Hi type ti holds a conditional probabilistic belief bi(ti; h)

about the opponents�strategies and types. In particular, type ti holds conditional beliefs about
the opponents�strategies. As every opponent�s type holds conditional beliefs about the other
players� strategies, every type ti holds at every h 2 Hi also a conditional belief about the
opponents� conditional beliefs about the other players� strategy choices. And so on. Since a
type may hold di¤erent beliefs at di¤erent histories, a type may, during the game, revise his
belief about the opponents�strategies, but also about the opponents�conditional beliefs.

The reader may wonder why we restrict attention to epistemic models with �nitely many
types for every player. The reason is that this is su¢ cient for the purpose of this paper. In
principle, we could allow for in�nitely many types for every player �or even require a complete or
universal type space �and de�ne common belief in future rationality for such in�nite epistemic
models. But it can be shown that in a �nite game, every strategy that can rationally be chosen
under common belief in future rationality, can be supported by a type expressing common belief
in future rationality within a �nite epistemic model. So, we do not �overlook� any strategies
by concentrating on �nite type spaces only. As working with �nite sets of types makes things
easier, we have decided to solely concentrate on �nite epistemic models in this paper.
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3. Belief in the Opponents�Future Rationality

We now present the main idea in this paper, namely that a player always believes that his
opponents will choose rationally now and in the future. We �rst de�ne what it means for a
strategy si to be optimal for a type ti at a given information set h: Consider a type ti; a strategy
si and an information set h 2 Hi(si) that is possibly reached by si: By ui(si; ti j h) we denote
the expected utility from choosing si under the conditional belief that ti holds at h about the
opponents�strategy choices.

De�nition 3.1. (Optimality at a given information set) Consider a type ti; a strategy si and
a history h 2 Hi(si): Strategy si is optimal for type ti at h if ui(si; ti j h) � ui(s0i; ti j h) for all
s0i 2 Si(h):

Remember that Si(h) is the set of player i strategies that possibly reach h: We can now
de�ne belief in the opponents�future rationality.

De�nition 3.2. (Belief in the opponents�future rationality) Consider a type ti, an information
set h 2 Hi; and an opponent j 6= i: Type ti believes at h in j�s future rationality if bi(ti; h) only
assigns positive probability to j�s strategy-type pairs (sj ; tj) where sj is optimal for tj at every
h0 2 Hj(sj) that weakly follows h: Type ti believes in the opponents� future rationality if at
every h 2 Hi; type ti believes in every opponent�s future rationality.

So, to be precise, a type that believes in the opponents�future rationality believes that every
opponent chooses rationally now (if the opponent makes a choice at a simultaneous information
set), and at every information set that follows. As such, the correct terminology would be �belief
in the opponents�present and future rationality�, but we stick to �belief in the opponents�future
rationality�as to keep the name short.

Next, we formalize the requirement that a player not only believes in the opponents� fu-
ture rationality, but also always believes that every opponent believes in his opponents�future
rationality, and so on.

De�nition 3.3. (Common belief in future rationality) Type ti expresses common belief in fu-
ture rationality if (a) ti believes in the opponents� future rationality, (b) ti assigns, at every
information set, only positive probability to opponents�types that believe in their opponents�
future rationality, (c) ti assigns, at every information set, only positive probability to opponents�
types that, at every information set, only assign positive probability to opponents�types that
believe in the opponents�future rationality, and so on.

Finally, we de�ne those strategies that can rationally be chosen under common belief in
future rationality. Before doing so, we �rst state what it means for a strategy to be rational for
a type.
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De�nition 3.4. (Rational strategy) A strategy si is rational for a type ti if si is optimal for ti
at every h 2 Hi(si):

In the literature, this is often called sequential rationality. A strategy should thus be optimal
at every information set that can possibly be reached by this strategy, given the conditional belief
that is held at that information set.

De�nition 3.5. (Rational strategy under common belief in future rationality) A strategy si
can rationally be chosen under common belief in future rationality if there is some epistemic
model M = (Ti; bi)i2I ; and some type ti 2 Ti; such that ti expresses common belief in future
rationality, and si is rational for ti:

In other words, a strategy can rationally be chosen under common belief in future rationality
if there is some belief hierarchy expressing common belief in future rationality that supports this
strategy choice.

Note that in the concept of common belief in future rationality we do not require Bayesian
updating �a condition that is typically assumed in dynamic games. We do so because we want
to build a concept that is completely forward looking. That is, players only reason about the
game that lies ahead, and not about past choices or beliefs. Bayesian updating, in contrast,
would require a player to consider his own past beliefs when he forms a new belief at a certain
stage of the game.

In Section 6.1 we will see that the strategies possible under common belief in future ratio-
nalility would really change if we would assume Bayesian updating in addition, so the choice not
to include Bayesian updating is not without consequences. This is in contrast with the concept
of extensive form rationalizability (Pearce (1984), Battigalli (1997), Battigalli and Siniscalchi
(2002)), where Bayesian updating can be dropped without changing its behavioral implications
(see Shimoji and Watson (1998)).

The concept of common belief in future rationality is also very sensitive to the way in which
we model the chronological order of moves in the game! Consider, for instance, the three games
in Figure 1. In game �1 player 1 moves before player 2, in game �2 player 2 moves before player
1, and in game �3 both players choose simultaneously. In �1 and �2; the second mover does not
know which choice has been made by the �rst mover. So, all three games represent a situation in
which both players choose in complete ignorance of the opponent�s choice. Since the utilities in
the games are identical, one can argue that these three games are in some sense �equivalent�. In
fact, the three games above only di¤er by applying the transformation of interchange of decision
nodes2, as de�ned by Thompson (1952). However, for the concept of common belief in future
rationality it crucially matters which of the three representations �1;�2 or �3 we choose.

2For a formal description of this transformation, the reader may consult Thompson (1952), Elmes and Reny
(1994) or Perea (2001).
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In the game �1; common belief in future rationality does not restrict player 2�s belief at all,
as player 1 moves before him. So, player 2 can rationally choose d and e under common belief
in future rationality here. On the other hand, player 1 may believe that player 2 chooses d or e
under common belief in future rationality, and hence player 1 himself may rationally choose a
or b under common belief in future rationality.

In the game �2; common belief in future rationality does not restrict player 1�s beliefs as he
moves after player 2. Hence, player 1 may rationally choose a or b under common belief in future
rationality. Player 2 must therefore believe that player 1 will either choose a or b in the future,
and hence player 2 can only rationally choose d under common belief in future rationality.

In the game �3; �nally, player 1 can only rationally choose a; and player 2 can only rationally
choose d under common belief in future rationality. Namely, if player 2 believes in player 1�s
(present and) future rationality, then player 2 believes that player 1 does not choose c; since
player 1 moves at the same time as player 2. Therefore, player 2 can only rationally choose d
under common belief in future rationality. If player 1 believes in player 2�s (present and) future
rationality, and believes that player 2 believes in player 1�s (present and) future rationality, then
player 1 believes that player 2 chooses d; and therefore player 1 can only rationally choose a
under common belief in future rationality.

Hence, the precise order of moves is very important for the concept of common belief in
future rationality! In particular, this concept is not invariant with respect to Thompson�s
(1952) transformation of interchange of decision nodes.

4. Algorithm

In this section we present a procedure, called backward dominance, that iteratedly eliminates
strategies from the game. We prove that this procedure generates exactly those strategies that
can rationally be chosen under common belief in future rationality.

4.1. Description of the Algorithm

In order to formally state our algorithm we need the following de�nitions. Consider an infor-
mation set h 2 Hi for player i; a subset Di � Si(h) of strategies for player i that possibly reach
h; and a subset D�i � S�i(h) of strategy combinations for i�s opponents possibly reaching h:
Then, (Di; D�i) is called a decision problem for player i at h; and we say that player i is active
at this decision problem. Note that several players may be active at the same decision problem,
since several players may make a simultaneous move at the associated information set. Within
a decision problem (Di; D�i) for player i, a strategy si 2 Di is called strictly dominated if there
is some randomized strategy �i 2 �(Di) such that ui(�i; s�i) > ui(si; s�i) for all s�i 2 D�i:
A decision problem at h is said to weakly follow an information set h0 if h weakly follows h0:
For a given information set h 2 Hi; the full decision problem at h is the decision problem
(Si(h); S�i(h)) where no strategies have been eliminated yet.
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Algorithm 4.1. (Backward dominance procedure)

Initial step. For every information set h; let �0(h) be the full decision problem at h:

Inductive step. Let k � 1; and suppose that the decision problems �k�1(h) have been de�ned
for every information set h: Then, at every information set h delete from the decision problem
�k�1(h) those strategies si for player i that are strictly dominated within some decision problem
�k�1(h0) for player i that weakly follows h: This yields the new decision problems �k(h): Continue
this procedure until no further strategies can be eliminated in this way.

Suppose that h is an information set for player j; and that we have the decision problem
�k�1(h) = (Dj ; D�j) for player j there. If we say that we delete from �k�1(h) those strategies
si for player i that are strictly dominated within some decision problem �k�1(h0) for player i
that weakly follows h; we formally mean the following: If i = j; then we delete from Dj those
strategies sj for player j that are strictly dominated within some decision problem �k�1(h0) for
player j that weakly follows h: If i 6= j; then we delete from D�j those strategy combinations s�j
that involve a strategy si for player i that is strictly dominated within some decision problem
�k�1(h0) for player i that weakly follows h:

Since we only have �nitely many strategies in the game, and the decision problems can
only become smaller at every step, this procedure must converge after �nitely many steps.
An important question though is whether this procedure always delivers a nonempty set of
strategies for every player at every information set. Or is it possible that at a given information
set we delete all strategies for a player? We will see that the algorithm will never eliminate
all strategies for a player at an information set. Here, we say that a strategy si survives the
backward dominance procedure at some information set h if si is part of the decision problem
�k(h) for all k:

Theorem 4.2. (Algorithm delivers nonempty output) For every information set h; and every
player i; there is at least one strategy si 2 Si(h) that survives the backward dominance procedure
at h:

The formal proof for this result can be found in Section 8.

4.2. Illustration of the Algorithm

In this section we will illustrate our backward dominance procedure by means of an example.
Consider the game in Figure 2. So, at the beginning of the game, ;; only player 1 is active. He
can choose between a and b: If he chooses b; the game ends and the utilities are 4 and 0 for
the players. If he chooses a; then we reach information set h1 at which players 1 and 2 choose
simultaneously. At h1; player 1 is the row player, and player 2 the column player.

At the beginning of the procedure we start with two decision problems, namely the full
decision problem �0(;) at ; where only player 1 is active, and the full decision problem �0(h1)
at h1 where both players are active. These decision problems can be found in Table 1.
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Figure 2: Illustration of the backward dominance procedure

Player 1 active

�0(;) f g h

(a; c) 2; 3 5; 1 2; 0
(a; d) 3; 1 2; 3 2; 0
(a; e) 1; 4 1; 3 6; 0

b 4; 0 4; 0 4; 0

Players 1 and 2 active

�0(h1) f g h

(a; c) 2; 3 5; 1 2; 0
(a; d) 3; 1 2; 3 2; 0
(a; e) 1; 4 1; 3 6; 0

Table 1: Full decision problems in backward dominance procedure
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Player 1 active

�1(;) f g

(a; c) 2; 3 5; 1
(a; e) 1; 4 1; 3

b 4; 0 4; 0

Pl. 1 and 2 active

�1(h1) f g

(a; c) 2; 3 5; 1
(a; d) 3; 1 2; 3
(a; e) 1; 4 1; 3

Table 2: Step 1 of backward dominance procedure

Player 1 active

�2(;) f g

(a; c) 2; 3 5; 1
b 4; 0 4; 0

Pl. 1 and 2 active

�2(h1) f g

(a; c) 2; 3 5; 1
(a; d) 3; 1 2; 3

Table 3: Step 2 of backward dominance procedure

Step 1. At �0(;) we delete strategy (a; d) for player 1 since it is strictly dominated at �0(;) by
b: At �0(;) we also delete strategy h for player 2 since it is strictly dominated by f and g at the
future decision problem �0(h1) at which player 2 is active. Finally, at �0(h1) we delete strategy
h for player 2 as it is strictly dominated by f and g at �0(h1): This leads to the new decision
problems �1(;) and �1(h1) which can be found in Table 2.

Step 2. At �1(;) we delete strategy (a; e) for player 1 since it is strictly dominated at �1(;)
by (a; c) and b. At �1(h1) we delete strategy (a; e) for player 1 since it is strictly dominated by
(a; c) and (a; d) at �1(h1): This leads to the new decision problems �2(;) and �2(h1) presented
in Table 3.

After this step no more strategies can be eliminated. So, the algorithm stops here. Note
that at the beginning of the game, the strategies (a; c) and b have survived for player 1, and
the strategies f and g have survived for player 2. Our Theorem 4.3 below states that these are
exactly the strategies that can rationally be chosen under common belief in future rationality.

Note that the concept of sequential equilibrium singles out the strategy b for player 1. Namely,
in the subgame at h1 the only Nash equilibrium is (12c +

1
2d;

3
4f +

1
4g): Hence, in a sequential

equilibrium, player 1 must believe that, with probability 3
4 ; player 2 will choose f and with

probability 1
4 he will choose g: As such, player 1�s expected utility from choosing a at the

beginning will be 11=4 < 4; and therefore player 1 must choose b:
But why should player 1 exactly attribute the probabilities 34 and

1
4 to the strategies f and
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g? The fact that player 1 may assign a positive probability to g indicates that apparently g is a
reasonable choice for player 2. But why could player 1 then not assign probability 1 to g; and
choose (a; c) as a best response to that?

Common belief in future rationality allows player 1 to choose strategy (a; c_); because under
this concept he may indeed believe that player 2 will choose g with probability 1. So, in this
example sequential equilibrium is really more restrictive than common belief in future rationality.
In fact, we believe that sequential equilibrium is too restrictive in this example.

4.3. Main Result

We now show that the backward dominance procedure generates exactly those strategies that
can rationally be chosen under common belief in future rationality. We say that a strategy si
survives the backward dominance procedure if si is in �k(;) for every k:

Theorem 4.3. (Algorithm characterizes strategy choices under common belief in future ratio-
nality) A strategy si can rationally be chosen under common belief in future rationality if and
only if si survives the backward dominance procedure.

The proof can be found in Section 8. In particular, our theorem shows that common belief in
future rationality is always possible for every player: Take, namely, an arbitrary player i in the
game. Then, we know from Theorem 4.2 that there is at least one strategy si for this player that
survives backward dominance. Theorem 4.3 then guarantees that for this strategy si we can �nd
an epistemic model, and a type ti for player i within it, such that ti expresses common belief in
future rationality, and such that si is rational for ti: In particular, we can always construct for
every player some type that expresses common belief in future rationality.

5. Discussion of the Algorithm

In this section we will discuss some important properties of the backward dominance procedure,
and use these to derive some new insights about common belief in future rationality.

5.1. Order Independence

As we de�ned it, the backward dominance algorithm eliminates, at every step and every infor-
mation set h; all strategies for player i that are strictly dominated at some decision problem
for player i weakly following h: Suppose we would, at every step, only eliminate some of these
strategies, but not all. Would it matter for the eventual result? The answer is �no�: The
order and speed in which we eliminate strategies in the backward dominance procedure has no
in�uence on the �nal output. Here is an argument.

Let us compare two procedures, Procedure 1 and Procedure 2, where Procedure 1 eliminates,
at every step, all strategies that can possibly be eliminated, whereas Procedure 2 eliminates at

15



every step only some strategies that can be eliminated. Then, Procedure 1 will, at every step
and every information set h; have eliminated at least as much strategies as Procedure 2. Namely,
at Step 1 this is true by construction. Consider now Step 2. Suppose that in Procedure 2 we
would eliminate strategy si at h because it is strictly dominated at the future decision problem
~�1(h0) for player i: Here, ~�1(h0) is the decision problem at h0 after Step 1 of Procedure 2. Now,
let �1(h0) be the decision problem at h0 after Step 1 of Procedure 1. Then, �1(h0) contains at
most as much strategies for i�s opponents as ~�1(h0): Hence, if si was strictly dominated at ~�1(h0);
it will certainly be strictly dominated at �1(h0); and so in Procedure 1 we will also eliminate
strategy si at h: We thus see that in Step 2, every strategy that is eliminated in Procedure 2
will also be eliminated in Procedure 1. Of course we can iterate this argument and conclude
that at every step, Procedure 1 will have deleted as least as much strategies as Procedure 2.

We now show that the converse is also true, namely every strategy that is eliminated in
Procedure 1 will also eventually be eliminated in Procedure 2. Suppose this would not be true.
Then, let k be the last step such that every strategy eliminated by Procedure 1 before Step k is
also eventually eliminated by Procedure 2. Take then a strategy si that is eliminated at some
information set h in Step k of Procedure 1, but which is never eliminated in Procedure 2. The
reason for eliminating si at h in Procedure 1 is that si is strictly dominated at some decision
problem �k�1(h0) for player i weakly following h: By assumption, in Procedure 2 there is some
step m � k � 1 such that the associated decision problem ~�m(h0) is a �subset� of �k�1(h0);
which means that the strategy sets in ~�m(h0) are contained in the strategy sets of �k�1(h0):
But then, if si is strictly dominated at �k�1(h0); it is certainly strictly dominated in ~�m(h0): As
such, Procedure 2 must eliminate si sooner or later at information set h: This contradicts our
assumption above. We may thus conclude that every strategy that is eliminated in Procedure 1
will also eventually be eliminated in Procedure 2.

Altogether, we see that Procedure 1 and Procedure 2 must eventually yield the same set of
strategies at every information set. So, the order and speed in which we delete strategies from
the game does not matter for the output of the backward dominance procedure. The intuitive
reason is that the algorithm ismonotonic in the following sense: If we make the decision problems
smaller, then it becomes easier for a strategy to become strictly dominated, and hence we will
eliminate more, which in turn leads to smaller decision problems, and so on.

This result also has some important practical implications. In some games it may be easier
not to eliminate strategies at all information sets simultaneously, but rather to start with the
decision problems at the end of the game, apply the procedure there until we can eliminate
nothing more, then turn to decision problems that come just before, apply the procedure there
until we can eliminate nothing more, and so on. That is, to use a backward induction approach
to eliminate the strategies. Such an order of elimination will be convenient especially for large
dynamic games, with many consecutive information sets.
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5.2. Games with Perfect Information

In this section we explore what common belief in future rationality does for games with perfect
information. A dynamic game is said to be with perfect information if at every information set
exactly one player is active, and this player knows exactly which choices have been made until
then. Formally, this means that at every information set h there is exactly one player i with
h 2 Hi; and the information set h consists of a single history x:

Say that a game with perfect information is generic if for every player i; and every information
set h 2 Hi; two di¤erent choices at h will always lead to two di¤erent utilities for player i: That
is, for every two terminal histories z; z0 following h 2 Hi which contain di¤erent choices at h;
we have that ui(z) 6= ui(z0): It is easily seen that every generic game with perfect information
yields a unique backward induction strategy for every player.

Consider now an arbitrary generic game with perfect information. We know that the back-
ward dominance procedure delivers exactly the strategies that can rationally be made under
common belief in future rationality. In the previous subsection we have seen that the order
of elimination does not matter, so we may as well use the backward induction order described
above. So, we �rst consider all decision problems at the end of the game, and apply the back-
ward dominance procedure there. This, however, amounts to deleting all suboptimal choices at
each of the information sets at the end of the game. That is, we uniquely select the backward
induction choices at all information sets at the end of the game.

Next, we turn to the decision problems just before these, and apply our backward dominance
procedure there. This means that at these information sets we �rst delete the strategies that
were already deleted at the previous round. In this case, we would thus delete all strategies that
would not prescribe the backward induction choice at the last information sets in the game. So,
we would keep only those strategies that do prescribe the backward induction choices at the
last information sets in the game. Then, we would delete those strategies that are not optimal
against the surviving strategies, that is, we remove strategies that are not optimal against the
backward induction choices at the end of the game. Hence, we keep only those strategies that
prescribe choices that are optimal against the backward induction choices at the end of the
game. So, we select the backward induction choices also at information sets just before the last
information sets in the game.

By iterating this argument, we see that applying the backward dominance procedure in
the backward induction fashion would yield exactly the backward induction choice at every
information set. Consequently, we obtain the unique backward induction strategy for every
player. Since the order of elimination does not matter, as we have seen, we conclude that
applying the backward dominance procedure to a generic game with perfect information would
yield precisely the backward induction strategies for the players.

Together with Theorem 4.3 we thus see that in every generic game with perfect information,
common belief in future rationality leads to backward induction.
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Theorem 5.1. (Common belief in future rationality leads to backward induction) Consider a
generic dynamic game with perfect information. Then, every player has exactly one strategy he
can rationally choose under common belief in future rationality, namely his backward induction
strategy.

So we see that the order independence of the backward dominance procedure can also be
used to provide relationships between common belief in future rationality and other concepts in
the literature.

5.3. Best-Response Characterization

We will �nally use the algorithm to provide a characterization of common belief in future ratio-
nality in terms of �best responses�. For every information set h; let S1i (h) be the set of strategies
for player i that survive the backward dominance procedure at h: By construction of the algo-
rithm, these sets S1i (h) have the following property: If si 2 S1i (h); then at every h0 2 Hi(si)
weakly following h strategy si is not strictly dominated on S1�i(h

0):Here, S1�i(h
0) :=

Q
j 6=i S

1
j (h

0):
By Lemma 3 in Pearce (1984) we know that si is not strictly dominated on S1�i(h

0) if and
only if si is optimal at h0 for some belief bi(h0) 2 �(S1�i(h0)): So, if si 2 S1i (h); then at every
h0 2 Hi(si) weakly following h there is some belief bi(h0) 2 �(S1�i(h0)) for which si is optimal at
h0. We say that the collection (S1i (h))h2H;i2I of strategy sets is �closed under belief in future
rationality�. Here, H denotes the collection of all information sets.

De�nition 5.2. (Closed under belief in future rationality) For every information set h; and
every player i; let Di(h) � Si(h) be some subset of strategies. The collection (Di(h))h2H;i2I of
strategy subsets is closed under belief in future rationality if for every si 2 Di(h), and every
h0 2 Hi(si) weakly following h; there is some belief bi(h0) 2 �(D�i(h0)) for which si is optimal.

We now show that the strategies that can rationally be chosen under common belief in
rationality are exactly those that correspond to some collection of strategy subsets which is
closed under belief in future rationality.

Theorem 5.3. (Best-response characterization of common belief in future rationality) A strat-
egy si can rationally be chosen under common belief in future rationality, if and only if, there is
a collection (Di(h))h2H;i2I of strategy subsets which is closed under belief in future rationality,
and in which si 2 Di(;):

The proof can be found in Section 8. In fact, the proof tells us a little bit more, namely that
the collection (S1i (h))h2H;i2I of strategy subsets surviving the backward dominance procedure
is the largest collection that is closed under belief in future rationality. In general, there may
be other, smaller collections which are also closed under belief in future rationality.
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6. Relation to Other Concepts

In this section we will investigate the relation that common belief in future rationality bears with
other epistemic concepts for dynamic games, in particular sequential rationalizability, backwards
rationalizability and extensive form rationalizability.

6.1. Sequential Rationalizability

The concept of sequential rationalizability has been proposed independently by Dekel, Fudenberg
and Levine (1999, 2002) (DFL from now on) and Asheim and Perea (2005), although they di¤er
considerably in their formulation. Here we will use the formulation by DFL as it makes it easier
to compare the concept to our notion of common belief in future rationality. The key ingredients
in DFL�s model are

(a) behavioral strategies �i; which assign to every information set h for player i a probability
distribution over i�s choices at h: A behavioral strategy �i represents i�s strategy choice;

(b) assessments ai; which assign to every information set h for player i a probability dis-
tribution over the histories in h: An assessment ai represents i�s conditional beliefs about the
opponents�past behavior; and

(c) pro�les �i�i of behavioral strategies for i�s opponents. A pro�le �
i
�i represents i�s condi-

tional beliefs about the opponents�future behavior.
Note that the last ingredient implies that player i�s belief about opponent j�s future behavior

should be independent from his belief about opponent k�s future behavior. A conditional belief
pair (ai; �i�i) is called Kreps-Wilson consistent (Kreps and Wilson (1982)) if there is a sequence
(ani ; �

i;n
�i )n2N converging to (ai; �

i
�i) in which �

i;n
�i assigns positive probability to all choices, and

ani is obtained from �i;n�i by Bayesian updating.
For every player i; consider a set Vi of strategy-belief triples (�i; ai; �i�i): The collection

V = (Vi)i2I of sets of strategy-belief triples is called sequentially rationalizable if for every
(�i; ai; �

i
�i) 2 Vi;

(a) (ai; �i�i) is Kreps-Wilson consistent,
(b) strategy �i is optimal at every information set h 2 Hi under the belief (ai; �i�i); and
(c) the belief �i�i about the opponents�future behavior only assigns positive probability to

opponents�strategies �j which are part of some triple in V:3

The last two conditions together thus state that a player, at every information set, should
only assign positive probability to opponents�strategies that, at every future information set,
are optimal for some belief in V: Finally, a strategy �i is called sequentially rationalizable if there
is some sequentially rationalizable collection (Vi)i2I of sets of strategy-belief triples, such that
�i is part of some triple in Vi:

3For a precise statement of this condition, see De�nition 2.2 in Dekel, Fudenberg and Levine (2002).
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Let us now try to translate this concept in terms of conditional beliefs as we use them in this
paper. The conditional belief pair (ai; �i�i) in DFL corresponds to a conditional belief vector
(bi(h))h2Hi in our setup, where bi(h) is a probability distribution over S�i(h) for every h 2 Hi:
This conditional belief vector (bi(h))h2Hi should be such, however, that i�s conditional belief at
h about the opponents� future behavior is independent across opponents. For every player i;
consider a set ~Vi of conditional belief vectors (bi(h))h2Hi : Then, the collection ~V = (~Vi)i2I is
sequentially rationalizable if for every (bi(h))h2Hi 2 ~Vi;

(d) at every h; the conditional belief about the opponents�future behavior is independent
across opponents,

(e) the conditional belief vector (bi(h))h2Hi is Kreps-Wilson consistent,
(f) at every h 2 Hi; the conditional belief bi(h) only assigns positive probability to opponents�

strategies sj which, at every h0 2 Hj(sj) weakly following h; are optimal for some conditional
belief vector in ~Vj :

Here, condition (f) follows from our insight above that in DFL�s de�nition, a player should,
at every information set, only assign positive probability to opponents�strategies that, at every
future information set, are optimal for some belief in Vj : So, a strategy si is sequentially ratio-
nalizable, if and only if, there is some sequentially rationalizable collection ( ~Vi)i2I of conditional
belief vectors, and some conditional belief vector in ~Vi; for which si is optimal at every informa-
tion set.

Now, take a sequentially rational collection ( ~Vi)i2I of conditional belief vectors. For every
player i, every information set h 2 Hi; and every opponent j; let Dj(h) � Sj(h) be the set
of strategies that receive positive probability at h under some conditional belief in ~Vi: At an
information set h 2 Hi; let Di(h) � Si(h) be the set of strategies in Si(h) that, at every h0 2 Hi
weakly following h; are optimal for some belief in �(D�i(h0)): By condition (f) above, we know
that the collection (Di(h))i2I;h2H of strategy subsets has the following property: If si 2 Di(h);
then at every h0 2 Hi(si) weakly following h there is some bi(h0) 2 �(D�i(h0)) for which si
is optimal. That is, the collection (Di(h))i2I;h2H is closed under belief in future rationality,
conform our De�nition 5.2. We have thus shown that every sequentially rational collection
( ~Vi)i2I of conditional belief vectors induces, in a natural way, a collection (Di(h))i2I;h2H of
strategy subsets that is closed under belief in future rationality. But then, it immediately
follows from our Theorem 5.3 that every sequentially rationalizable strategy can rationally be
chosen under common belief in future rationality. We have thus established the following result.

Theorem 6.1. (Relation to sequential rationalizability) Every sequentially rationalizable strat-
egy can rationally be chosen under common belief in future rationality.

It can be shown that the converse is not true: Not every strategy that can rationally be
chosen under common belief in future rationality is sequentially rationalizable. Consider, for
instance, the game in Figure 3. At the beginning of the game, ;; player 1 chooses between a and
b; and player 2 simultaneously chooses between c and d: If player 1 chooses b; the game ends,

20



A
A
A
AAK

�
�
�
���

;

h1 h2

a

b

c d

e

f

g h

e

f

i j

'

&

$

%

h3

2; 2 2; 0

1; 2 1; 1

0; 1 0; 2

0; 0 0; 0

1; 0 1; 0

Figure 3: Common belief in future rationality does not imply sequential rationalizability

and the utilities are as depicted. If he chooses a; then the game moves to information set h1 or
information set h2; depending on whether player 2 has chosen c or d: Player 1, however, does
not know whether player 2 has chosen c or d; so player 1 faces information set h3 after choosing
a: Hence, h1 and h2 are information sets for player 2, whereas h3 is an information set for player
1.

By using the backward dominance procedure, it may be veri�ed that player 2 can choose
strategies (c; g) and (c; h) under common belief in future rationality. Namely, the only strategies
that can be eliminated in this procedure are strategies (a; e); (a; f); (d; i) and (d; j) at �0(;);
after which the procedure stops.

Under sequential rationalizability, however, player 2 can only choose strategy (c; g): Namely,
at the beginning of the game, player 1 can only assign positive probability to strategies (c; g) and
(c; h) since he believes in player 2�s future rationality at ;: Sequential rationalizability, however,
requires that player 1�s conditional beliefs are Kreps-Wilson consistent, and hence should satisfy
Bayesian updating. As such, player 1 should at h3 assign probability zero to player 2�s strategies
(d; i) and (d; j); and therefore player 1 should choose e at h3: Under sequential rationalizability,
player 2 should therefore believe at h1 that player 1 chooses e; and hence player 2 should choose
g at h1; and not h: Hence, under sequential rationalizability player 2 can only rationally choose
(c; g):

The reason for the di¤erence in this example is that sequential rationalizability imposes
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(common belief in) Bayesian updating, whereas common belief in future rationality does not.
Hence, imposing Bayesian updating would really change the concept of common belief in future
rationality. This is in contrast with �ndings in Shimoji and Watson (1998), who have shown that
for the concept of extensive form rationalizability it is inessential whether one imposes (common
belief in) Bayesian updating or not �the set of strategies selected will remain the same.

In fact, from the conditions (d), (e) and (f) above it is clear that (common belief in) Kreps-
Wilson consistency, together with independent beliefs about the opponents�future behavior, is
the only di¤erence between common belief in future rationality and sequential rationalizability.

6.2. Backwards Rationalizability

Independently from this paper, Penta (2009) has developed a procedure, backwards rational-
izability, which is tightly related to the backward dominance procedure. Penta�s procedure
restricts at every round the possible strategies and conditional belief vectors for the players, and
can be described as follows.

Algorithm 6.2. (Backwards rationalizability)

Initial step. For every player i; let B0i be the set of all conditional belief vectors satisfying
Bayesian updating, and at every information set h 2 H; let S0i := Si(h) be the set of all
strategies that possibly reach h:

Inductive step. Let k � 1; and suppose that Bk�1i and Sk�1i (h) have been de�ned for all
players i; and all h 2 H: Then, Bki contains those conditional belief vectors (bi(h))h2Hi in Bk�1i

such that bi(h) 2 �(Sk�1�i (h)) for all h 2 Hi: At every information set h 2 H; the set Ski (h)
contains those strategies si 2 Sk�1i (h) that are optimal, for some conditional belief vector in Bki ;
at every h0 2 Hi(si) weakly following h:

Let S1i (h) := \kSki (h) be the set of strategies for player i that survive the procedure at
information set h. A strategy si is called backwards rationalizable if si 2 S1i (;):

By construction, the sets (S1i (h))i2I;h2H have the following property: A strategy si 2
Si(h) is in S1i (h) if and only if there is a conditional belief vector (bi(h

0))h02Hi such that (a)
bi(h

0) 2 �(S1�i(h0)) for all h0 2 Hi; (b) (bi(h0))h02Hi satis�es Bayesian updating, and (c) at every
h0 2 Hi(si) weakly following h; strategy si is optimal for bi(h0):

In particular it follows that the collection (S1i (h))i2I;h2H of strategy subsets is closed under
belief in future rationality. Hence, by our Theorem 5.3 we may conclude that every strategy
which is backwards rationalizable can also rationally be chosen under common belief in future
rationality. In fact, the only di¤erence between the two concepts is that backwards rationalizabil-
ity requires (common belief in) Bayesian updating, whereas common belief in future rationality
does not. Namely, if we would drop the Bayesian updating condition (b) above, then we would
obtain precisely the de�nition of a collection of strategy subsets that is closed under belief in

22



future rationality. So, backwards rationalizability is weaker than sequential rationalizability, but
stronger than common belief in future rationality, in terms of strategies being selected.

6.3. Extensive Form Rationalizability

The concept of extensive form rationalizability has originally been proposed in Pearce (1984) by
means of an iterated reduction procedure. Later, Battigalli (1997) has simpli�ed this procedure
and has shown that it delivers the same output as Pearce�s procedure. Both procedures re�ne
at every round the sets of strategies and conditional beliefs of the players, and work as follows.

We start with the set of all strategies and conditional beliefs for each player. At every further
round k we look at those information sets that can be reached by strategy pro�les that have
survived the previous round k � 1. At every such information set, we restrict to conditional
beliefs that assign positive probability only to opponents�strategies that have survived round
k � 1. If an information set cannot be reached by strategy pro�les that have survived so far,
then we impose no further restrictions on the conditional beliefs there. At round k; we then
restrict to strategies that are optimal, at every information set, for conditional beliefs that have
survived this round k: And so on. The strategies that survive at the end are called extensive
form rationalizable.

Call a strategy rational if it is optimal, at every information set, for some conditional belief.
The main idea in extensive form rationalizability can then be expressed as follows: At every
information set the corresponding player �rst asks whether this information set can be reached
by rational strategies. If so, then at that information set he must only assign positive probability
to rational opponents�strategies. In that case, he then asks: Can this information set also be
reached by opponents�strategies that are rational if the opponents believe, whenever possible,
that their opponents choose rationally? If so, then at that information set he must only assign
positive probability to such opponents�strategies. And so on. So, in a sense, at every information
set the associated player looks for the highest degree of mutual belief in rationality that makes
reaching this information set possible, and his beliefs at that information set should re�ect
this highest degree. Battigalli and Siniscalchi (2002) have formalized this argument within an
epistemic model, and show that it leads precisely to the set of extensive form rationalizable
strategies in every game.

In this section we wish to compare our notion of common belief in future rationality to the
concept of extensive form rationalizability. To do so we will use yet another procedure leading to
extensive form rationalizability, namely the iterated conditional dominance procedure developed
by Shimoji and Watson (1998). The reason is that this procedure is closer to our backward
dominance algorithm, and therefore easier to compare.

Shimoji and Watson�s procedure is similar in spirit to our backward dominance procedure, as
it iteratedly removes strategies from decision problems. However, their criterion for removing a
strategy in a particular decision problem is di¤erent. Remember that in the backward dominance
procedure we remove a strategy for player i in the decision problem at h whenever it is strictly
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dominated in some decision problem for player i that weakly follows h. In Shimoji and Watson�s
procedure we remove a strategy for player i at the decision problem at h if there is some decision
problem for player i; not necessarily weakly following h; at which it is strictly dominated. So, in
Shimoji and Watson�s procedure we would remove strategy si at h also if it is strictly dominated
at some decision problem for player i which comes before h: Formally, their procedure can be
formulated as follows.

Algorithm 6.3. (Shimoji and Watson�s iterated conditional dominance procedure)

Initial step. For every information set h; let �0(h) be the full decision problem at h:

Inductive step. Let k � 1; and suppose that the decision problems �k�1(h) have been de�ned
for every information set h: Then, at every information set h delete from the decision problem
�k�1(h) those strategies for player i that are strictly dominated within some decision problem
�k�1(h0) for player i; not necessarily weakly following h: This yields the new decision
problems �k(h): Continue this procedure until no further strategies can be eliminated in this
way.

A strategy si is said to survive this procedure if si 2 �k(;) for all k: Shimoji and Watson
(1998) have shown that this procedure delivers exactly the set of extensive form rationalizable
strategies. Note that in the iterated conditional dominance procedure, it is possible that at
a given decision problem �k�1(h) all strategies of a player i will be eliminated in step k �
something that can never happen in the backward dominance procedure. Consider, namely,
some information set h 2 Hi; and some information set h0 following h: Then, it is possible that
within the decision problem �k�1(h); all strategies for player i in �k�1(h0) are strictly dominated.
In that case, we would eliminate in �k�1(h0) all remaining strategies for player i! Whenever this
occurs, it is understood that at every further step nothing can be eliminated from the decision
problem at h0 anymore.

To illustrate this important aspect, let us consider the game from Figure 2, and replace the
utilities 4; 0 after choice b by 7; 0: Then, in the �rst step of the iterated conditional dominance
procedure we would eliminate strategies (a; c); (a; d) and (a; e) for player 1 at h1, as they are all
strictly dominated by b at ;. So, after step 1 we have no strategies for player 1 left at h1; and
hence we cannot eliminate any more strategies for player 2 at h1 after step 1.

Now, what can we say about the relationship between common belief in future rationality
and extensive form rationalizability? To answer this question, we compare the outputs of the
backward dominance procedure and the iterated conditional dominance procedure. It turns out
that in terms of strategies, there is no logical relationship between the two concepts. Consider,
to that purpose, the game in Figure 4. The full decision problems at ; and h1 are represented
in Table 4.

The backward dominance procedure does the following: In the �rst round, we eliminate from
�0(;) strategy (a; c) as it is strictly dominated by b at player 1�s decision problem �0(;); and
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Figure 4: There is no logical relationship, in terms of strategies, between common belief in
future rationality and extensive form rationalizability

Player 1 active

�0(;) e f g

(a; c) 2; 2 2; 1 0; 0
(a; d) 1; 1 1; 2 4; 0

b 3; 0 3; 0 3; 0

Players 1 and 2 active

�0(h1) e f g

(a; c) 2; 2 2; 1 0; 0
(a; d) 1; 1 1; 2 4; 0

Table 4: The full decision problems in Figure 4
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we eliminate from �0(;) and �0(h1) strategy g as it is strictly dominated by e and f at player
2�s decision problem �0(h1): In the second round, we eliminate from �1(;) strategy (a; d) as
it strictly dominated by b at �1(;); and we eliminate strategy (a; d) also from �1(h1) as it is
strictly dominated by (a; c) at �1(h1): In the third round, �nally, we eliminate from �2(;) and
�2(h1) strategy f; as it is strictly dominated by e in �2(h1): So, only strategies b and e remain
at ;: Hence, only strategies b and e can rationally be chosen under common belief in future
rationality.

The iterated conditional dominance procedure works di¤erently here: In the �rst round,
we eliminate strategy (a; c) from �0(;) and �0(h1) as it is strictly dominated by b at player
1�s decision problem �0(;); and we eliminate from �0(;) and �0(h1) strategy g as it is strictly
dominated by e and f at player 2�s decision problem �0(h1): In the second round, we eliminate
(a; d) from �1(;) and �1(h1) as it is strictly dominated by b at �1(;); and we eliminate e from
�1(;) and �1(h1) as it is strictly dominated by f in �1(h1): This only leaves strategies b and f
at ;; and hence only strategies b and f can be chosen under extensive form rationalizability.

In particular, we see that common belief in future rationality uniquely selects strategy e for
player 2, whereas extensive form rationalizability singles out strategy f for player 2. The crucial
di¤erence lies in how player 2 at h1 explains the surprise that player 1 has not chosen b: Under
common belief in future rationality, player 2 believes at h1 that player 1 has simply made a
mistake, but he still believes that player 1 will choose rationally at h1; and he still believes that
player 1 believes that he will not choose g at h1: So, player 2 believes at h1 that player 1 will
choose (a; c); and therefore player 2 will choose e at h1: Under extensive form rationalizability,
player 2 believes at h1 that player 1�s decision not to choose b was a rational decision, but this is
only possible if player 2 believes at h1 that player 1 believes that player 2 will irrationally choose
g at h1: In that case, player 2 will believe at h1 that player 1 will go for (a; d); and therefore
player 2 will choose f at h1:

Note that the �rst argument is basically a backward induction argument, and that the second
argument is a forward induction argument, leading to opposite choices for player 2. In fact, the
backward induction and forward induction �avor of both concepts is nicely illustrated by their
associated algorithms: In the backward dominance algorithm, whenever we �nd a strategy that
is strictly dominated at some information set h; we will eliminate it at all previous information
sets as well. This procedure thus works backwards. In the iterated conditional dominance
procedure, on the other hand, we would then eliminate this strategy at all other information
sets, so also at future information sets. This procedure thus works backwards and forward.

The game in Figure 4 thus shows that, in terms of strategies, common belief in future
rationality and extensive form rationalizability may yield unique but opposite predictions for
a certain player. Note, however, that in this game both concepts lead to the same outcome,
namely b:

This leads to the following question: Is it possible to �nd games where both concepts would
also yield unique but di¤erent outcomes? The answer is �no�. In Chapter 9 of Perea (2011) it is
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At inf. set h; eliminate a strategy si from �k�1(h) if ...

Backward dominance
si is strictly dominated at some decision problem
�k�1(h0) for player i that weakly follows h:

Iterated conditional dominance
si is strictly dominated at some decision problem
�k�1(h0) for player i; not necessarily weakly

following h:

Table 5: Comparison between the two procedures

shown, namely, that every outcome which can be realized under extensive form rationalizability,
can also be realized under common belief in future rationality. This result also follows from Chen
and Micali (2011) and Robles (2006). They show, namely, that changing the order of elimination
in the iterated conditional dominance procedure does not change the outcomes that are selected
by the procedure �although it may change the strategies selected. Now, it can be veri�ed that
the backward dominance procedure corresponds to the �rst few steps in the iterated conditional
dominance procedure �by choosing a very speci�c, di¤erent order of elimination �but without
necessarily completing the procedure after these �rst few steps! By combining these two facts,
we thus conclude that the outcomes selected by the backward dominance procedure will always
contain the outcomes selected by the iterated conditional dominance procedure.

That is, in terms of outcomes the concept of extensive form rationalizability is more restrictive
than common belief in future rationality. In particular, there cannot be any game in which the
two concepts yield unique but di¤erent outcomes.

In Table 5 we summarize the backward dominance procedure and the iterated conditional
dominance procedure, clearly showing the di¤erences and similarities between the two algo-
rithms.

7. Future Research

A possibly interesting application of the idea of common belief in future rationality would be
to investigate its behavioral implications for �nitely and in�nitely repeated games. Although
in�nitely repeated games fall outside the class of games considered in this paper, the concept
of common belief in future rationality could be de�ned for such games as well. A question
that could be addressed is: Can we �nd an easy algorithm that computes, for every stage of
the repeated game, the set of choices a player can make there under common belief in future
rationality? As a next step, one could also explore the idea of common belief in future rationality
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in discounted stochastic games, which include �nitely and in�nitely repeated games as special
cases. An interesting question, similar to the one above, would be: Is there an algorithm that
computes, for every state, the set of choices a player can make there under common belief in
future rationality?

Another problem that can be investigated is what happens to the concept of common belief
in future rationality if we would require, in addition, (common belief in) Bayesian updating. We
have seen in Section 6.1 that this would change the set of strategies the players can rationally
choose. A natural question is whether we can still design a simple algorithm that characterizes
the strategies that can rationally be chosen under the new concept? We leave all of these
questions for future research.

8. Proofs

In this section we will deliver formal proofs for the theorems in this paper. Before doing so, we
�rst present some preparatory results that will play a crucial role in some of these proofs.

8.1. Some Preparatory Results

For a given player i; let (D�i(h))h2Hi be a collection of nonempty strategy subsets D�i(h) �
S�i(h). Say that (bi(h))h2Hi is a conditional belief vector on (D�i(h))h2Hi if bi(h) 2 �(D�i(h))
for every h 2 Hi: Fix some information set h� 2 Hi; and some conditional belief bi(h�) 2
�(D�i(h�)_): The question is: Can we extend bi(h�) to a conditional belief vector (bi(h))h2Hi on
(D�i(h))h2Hi such that there exists a strategy si 2 Si(h�) which is optimal, at every h 2 Hi
weakly following h�; for the belief bi(h)? We provide a su¢ cient condition under which this is
indeed possible.

De�nition 8.1. (Forward inclusion property) The collection (D�i(h))h2Hi of strategy subsets
D�i(h) � S�i(h) satis�es the forward inclusion property if for every h; h0 2 Hi where h0 follows
h; it holds that D�i(h) \ S�i(h0) � D�i(h0):

Lemma 8.2. (Existence of sequentially optimal strategies) For a given player i; consider a
collection (D�i(h))h2Hi of strategy subsets satisfying the forward inclusion property. At a given
information set h� 2 Hi �x some conditional belief bi(h�) 2 �(D�i(h�)): Then, bi(h�) can be
extended to a conditional belief vector (bi(h))h2Hi on (D�i(h))h2Hi ; such that there is some
strategy si 2 Si(h�) which is optimal at every h 2 Hi weakly following h� for the belief bi(h):

Proof. Fix some information set h� 2 Hi; and some conditional belief bi(h�) 2 �(D�i(h�)):We
will extend bi(h�) to some conditional belief vector (bi(h))h2Hi on (D�i(h))h2Hi ; and construct
some strategy si 2 Si(h�); such that si is optimal at every h 2 Hi weakly following h� for the
belief bi(h):
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Let Hi(h�) be the collection of player i information sets that follow h�: Let H+
i (h

�) be
those information sets h 2 Hi(h

�) with bi(h�)(S�i(h)) > 0; where bi(h�)(S�i(h)) is a short
way to write

X
s�i2S�i(h)

bi(h
�)(s�i): For every h 2 H+

i (h
�) we de�ne the conditional belief

bi(h) 2 �(D�i(h)) by

bi(h)(s�i) :=
bi(h

�)(s�i)

bi(h�)(S�i(h))

for every s�i 2 S�i(h): So, bi(h) is obtained from bi(h
�) by Bayesian updating. To see that

bi(h) 2 �(D�i(h)); note that bi(h) only assigns positive probability to s�i 2 S�i(h) that received
positive probability under bi(h�): Since, by construction, bi(h�) 2 �(D�i(h�)); it follows that
bi(h) only assigns positive probability to s�i 2 D�i(h�) \ S�i(h): However, by the forward
inclusion property, D�i(h�) \ S�i(h) � D�i(h), and hence bi(h) 2 �(D�i(h)):

Now, consider an information set h 2 Hi(h�)nH+
i (h

�) which is not preceded by any h0 2
Hi(h

�)nH+
i (h

�): That is, bi(h�)(S�i(h)) = 0; but bi(h�)(S�i(h0)) > 0 for every h0 2 Hi between
h� and h: For every such h; choose some arbitrary conditional belief bi(h) 2 �(D�i(h)):

Let H+
i (h) be those information sets h

0 2 Hi weakly following h with bi(h)(S�i(h0)) > 0: For
every h0 2 H+

i (h); de�ne the conditional belief bi(h
0) as above, so bi(h0) is obtained from bi(h) by

Bayesian updating. By the same argument as above, it can be shown that bi(h0) 2 �(D�i(h0))
for every h0 2 H+

i (h):

By continuing in this fashion, we will �nally de�ne for every h 2 Hi following h� some condi-
tional belief bi(h) 2 �(D�i(h)); such that these conditional beliefs, together with bi(h�); satisfy
Bayesian updating where possible. For every information set h 2 Hi not weakly following h�; de-
�ne bi(h) 2 �(D�i(h)) arbitrarily. So, (bi(h))h2Hi is a conditional belief vector on (D�i(h))h2Hi
which extends bi(h�); and it satis�es Bayesian updating at information sets weakly following h�:

We will now construct a strategy si 2 Si(h�) that, at every h 2 Hi weakly following h�;
is optimal for the belief bi(h): By �backward induction�, we choose at every h 2 Hi weakly
following h� a choice ci(h) 2 Ci(h) that is optimal at h for the belief bi(h); given player i�s
own choices at future histories. More precisely, we start with information sets h 2 Hi weakly
following h� which are not followed by any other player i information set: At those h; we specify
a choice ci(h) 2 Ci(h) with

ui(ci(h); bi(h)) � ui(c0i; bi(h)) for all c0i 2 Ci(h):

Now, suppose that h 2 Hi weakly follows h�, and that ci(h0) has been de�ned for all h0 2 Hi
following h. Then, we specify a choice ci(h) 2 Ci(h) with

ui((ci(h); (ci(h
0))h02Hi(h)); bi(h)) � ui((c

0
i; (ci(h

0))h02Hi(h)); bi(h)) (8.1)

for all c0i 2 Ci(h): Here, Hi(h) denotes the collection of information sets in Hi that follow h: In
this way, we specify at every h 2 Hi weakly following h� a choice ci(h) that satis�es (8.1).
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Now, let si be the strategy that
(a) at every h 2 Hi(si) weakly following h�; prescribes the optimal choice ci(h) as in (8.1);
(b) at every h 2 Hi(si) preceding h�; prescribes the unique choice ci(h) that leads to h�; and
(c) at every other h 2 Hi(si) speci�es an arbitrary choice.
By construction the strategy si is in Si(h�); as it prescribes all choices that lead to h�: As

the conditional belief vector (bi(h))h2Hi satis�es Bayesian updating at information sets weakly
following h�, it follows from Theorem 3.1 in Perea (2002) that this pro�le of beliefs satis�es the
one-deviation property at information sets weakly following h�. That is, every strategy si for
which the choices ci(h) are optimal in the sense of (8.1), is optimal as a strategy at every h 2 Hi
weakly following h�: Hence, we may conclude that the strategy si so constructed is optimal at
every h 2 Hi(si) weakly following h� for the belief bi(h). Since si is in Si(h�); and (bi(h))h2Hi
is a conditional belief vector on (D�i(h))h2Hi which extends bi(h

�); the proof is complete. �

The lemma above implies in particular that, whenever the collection (D�i(h))h2Hi satis�es
the forward inclusion property, then it allows for a conditional belief vector (bi(h))h2Hi and a
strategy si; such that si is optimal at every h 2 Hi(si) for the belief bi(h): In other words,
collections (D�i(h))h2Hi that satisfy the forward inclusion property allow for strategies that
are sequentially optimal. We believe this an interesting result which may be useful for other
applications as well.

Our second result shows that the sets of strategies surviving a particular round of the back-
ward dominance procedure satisfy the forward inclusion property. This result thus guarantees
that we can apply Lemma 8.2 to every round of the backward dominance procedure �something
that will be important for proving some of our theorems in the paper.

Lemma 8.3. (Backwards dominance procedure satis�es forward inclusion property) For every
information set h and player i; let Ski (h) be the set of player i strategies in �

k(h) �the decision
problem at h produced in round k of the backward dominance procedure. Then, the collection
(Sk�i(h))h2Hi of strategy subsets satis�es the forward inclusion property.

Proof. For k = 0 the statement is trivial since S0�i(h) = S�i(h) for all h. So, take some
k � 1: Suppose that h; h0 2 Hi and that h0 follows h: Take some opponent�s strategy sj in
Sk�i(h) \ S�i(h0); that is, sj 2 Skj (h) \ Sj(h0): Then, since sj 2 Skj (h); we have that sj is not
strictly dominated in any decision problem �k�1(h00) where h00 2 Hj(sj) weakly follows h: As h0
follows h; it holds in particular that sj is not strictly dominated in any decision problem �k�1(h00)
where h00 2 Hj(sj) weakly follows h0: Together with the fact that sj 2 Sj(h0); this implies that
sj 2 Skj (h0): So, Sk�i(h) \ S�i(h0) � Sk�i(h0), and hence the forward inclusion property holds. �

Our third lemma shows an important optimality property of our backward dominance pro-
cedure. Recall that in the backward dominance procedure, �k(h) denotes the decision problem
at h produced at the end of round k: For every player i; let us denote by Ski (h) the set of player
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i strategies in �k(h): By construction of the algorithm, Ski (h) contains exactly those strategies
in Sk�1i (h) that, at every h0 2 Hi(si) weakly following h; are not strictly dominated in �k�1(h0):
By Lemma 3 in Pearce (1984), we know that si is not strictly dominated in �k�1(h0) if and only
if there is some belief bi(h0) 2 �(Sk�1�i (h

0)) such that si is optimal for bi(h0) among all strategies
in Sk�1i (h0): That is,

ui(si; bi(h
0)) � ui(s0i; bi(h0)) for all s0i 2 Sk�1i (h0):

However, we can show a little more about si: Not only is si optimal for the belief bi(h0) among
all strategies in Sk�1i (h0); it is even optimal among all strategies in Si(h0): That is, at every
h0 2 Hi(si) weakly following h we even have that

ui(si; bi(h
0)) � ui(s0i; bi(h0)) for all s0i 2 Si(h0):

We call this the optimality principle for the backward dominance procedure, and it will play a
crucial role in proving some of the results in our paper.

Lemma 8.4. (Optimality principle for backward dominance procedure) Let Ski (h) denote the
set of player i strategies in the decision problem �k(h) produced in round k of the backward
dominance procedure. Then, si 2 Ski (h) if and only if for every h0 2 Hi(si) weakly following h
there is some belief bi(h0) 2 �(Sk�1�i (h

0)) such that si is optimal for bi(h0
0
) among all strategies

in Si(h0):

Proof. The �if�direction follows immediately, so we only have to prove the �only if�direction.
Fix some information set h; some player i; some strategy si 2 Ski (h); and some h0 2 Hi(si) weakly
following h: Then we know from our argument above that there is some bi(h0) 2 �(Sk�1�i (h

0))
such that

ui(si; bi(h
0)) � ui(s0i; bi(h0)) for all s0i 2 Sk�1i (h0): (8.2)

We will prove that, in fact,

ui(si; bi(h
0)) � ui(s0i; bi(h0)) for all s0i 2 Si(h0):

Suppose, on the contrary, that there would be some s0i 2 Si(h0) such that

ui(si; bi(h
0)) < ui(s

0
i; bi(h

0)): (8.3)

We show that in this case there would be some s�i 2 Sk�1i (h0) with ui(s0i; bi(h
0)) � ui(s�i ; bi(h0));

which together with (8.3) would contradict (8.2).
From Lemma 8.3 we know that the collection (Sk�1�i (h

00))h002Hi satis�es the forward inclu-
sion property. Hence, by Lemma 8.2, we can extend bi(h0) to some conditional belief vec-
tor (bi(h00))h002Hi with bi(h

00) 2 �(Sk�1�i (h
00)) for all h00 2 Hi; and we can �nd some strategy

s�i 2 Si(h0) which is optimal, at every h00 2 Hi(s�i ) weakly following h0; for the belief bi(h00): But
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then, it follows that s�i 2 Ski (h0); and hence in particular s�i 2 Sk�1i (h0): Moreover, s�i is optimal
at h0 for the belief bi(h0): And hence, we have by (8.3) that

ui(si; bi(h
0)) < ui(s

0
i; bi(h

0)) � ui(s�i ; bi(h0)) for some s�i 2 Sk�1i (h0):

This, however, contradicts (8.2). So, (8.3) must be incorrect, and hence si is optimal at h0 for
the belief bi(h0) among all strategies in Si(h0): �

8.2. Backward Dominance Procedure Delivers Nonempty Output

We now prove Theorem 4.2, which states that the backward dominance procedure delivers at
every information set a decision problem with nonempty strategy sets. Recall that Ski (h) denotes
the set of player i strategies in the decision problem �k(h) produced by round k of the backward
dominance procedure. We show, by induction on k; that Ski (h) is always nonempty.

For k = 0 it is true since S0i (h) = Si(h); which is nonempty.
Suppose now that k � 1; and that Sk�1i (h) is nonempty for every information set h and player

i: Fix some information set h� and player i: We show that Ski (h
�) is nonempty. By Lemma 8.3

we know that the collection (Sk�1�i (h))h2Hi satis�es the forward inclusion property. Hence, by
Lemma 8.2, we can �nd a conditional belief vector (bi(h))h2Hi with bi(h) 2 �(Sk�1�i (h)) for all
h 2 Hi; and a strategy si 2 Si(h�); such that si is optimal at every h 2 Hi weakly following h�
for the belief bi(h): But then, we know from Lemma 8.4 that si 2 Ski (h�); and hence Ski (h�) is
nonempty. By induction on k; the proof is complete. �

8.3. Backward Dominance Procedure Characterizes Strategy Choices under Com-
mon Belief in Future Rationality

We now prove our main result, Theorem 4.3, which states that the backward dominance proce-
dure yields exactly those strategies that can rationally be chosen under common belief in future
rationality. We thus must prove two directions: First, that every strategy that can rationally be
chosen under common belief in future rationality survives the backward dominance procedure,
and second that every strategy surviving the procedure can rationally be chosen under common
belief in future rationality.

(a) Every strategy that can rationally be chosen under common belief in future
rationality survives the backward dominance procedure.

For every player i and every information set h 2 Hi; let

Bi(h) : = fbi(h) 2 �(S�i(h)) : there is a type ti expressing common belief in
future rationality such that the marginal of bi(ti; h) on S�i(h) is bi(h)g:

32



So, Bi(h) contains those conditional beliefs at h about the opponents� strategy choices that
are possible under common belief in future rationality. Recall that Sk�i(h) denotes the set
of opponents� strategies in the decision problem �k(h) produced in round k of the backward
dominance procedure. We prove the following claim.

Claim. Bi(h) � �(Sk�i(h)) for every k:
Proof of the claim . We prove the claim by induction on k: For k = 0 the statement is true since
S0�i(h) = S�i(h):

Now, take some k � 1; and assume that Bi(h) � �(Sk�1�i (h)) for every player i and every
h 2 Hi: Fix some player i and some information set h 2 Hi: We show that Bi(h) � �(Sk�i(h)):

Take some bi(h) 2 Bi(h): Then, there is some epistemic model M = (Ti; bi)i2I , and some
type ti 2 Ti expressing common belief in future rationality, such that the marginal of bi(ti; h) on
S�i(h) is equal to bi(h): So, ti�s belief at h about the opponents�strategies and types, which is
bi(ti; h); only assigns positive probability to opponents�types tj that express common belief in
future rationality. Since, by our induction assumption, Bj(h0) � �(Sk�1�j (h

0)) for all opponents
j; and all h0 2 Hj ; it follows that bi(ti; h) only assigns positive probability to opponents�types
tj whose belief at every h0 2 Hj about the other players�strategy choices is in �(Sk�1�j (h

0)):
As ti expresses common belief in future rationality, bi(ti; h) only assigns positive probability

to opponents�strategy-type pairs (sj ; tj) where sj is optimal for tj at every h0 2 Hj(sj) weakly
following h: Together with the fact that bi(ti; h) only assigns positive probability to opponents�
types tj whose belief at such h0 about the other players� strategy choices is in �(Sk�1�j (h

0));
this implies that bi(ti; h) only assigns positive probability to opponents�strategies sj that are
optimal, at every h0 2 Hj(sj) weakly following h; for some belief in �(Sk�1�j (h

0)): However, by
Lemma 8.4, these latter strategies sj are exactly the strategies in Skj (h): Hence, bi(ti; h) only
assigns positive probability to opponents�strategies in Skj (h); which means that the marginal of
bi(ti; h) on S�i(h) is in �(Sk�i(h)): By de�nition, the marginal of bi(ti; h) on S�i(h) was bi(h);
so bi(h) 2 �(Sk�i(h)):

Since this holds for every bi(h) 2 Bi(h); we may conclude that Bi(h) � �(Sk�i(h)): By
induction on k; the proof of the claim is complete.

We are now ready to prove part (a). Take some strategy si that can rationally be chosen
under common belief in future rationality. Then, there is some epistemic model M = (Ti; bi)i2I ,
and some type ti 2 Ti expressing common belief in future rationality, such that si is rational
for ti: So, si must be optimal at every h 2 Hi(si) for the belief bi(ti; h): By the claim above we
know that bi(ti; h) 2 �(S1�i(h)) ; where S1�i(h) := \kSk�i(h): So, at every h 2 Hi(si) strategy
si is optimal for some belief in �(S1�i(h)): By Lemma 8.4 this implies that si 2 S1i (;); where
S1i (;) := \kSki (;): This means, however, that si survives the backward dominance procedure,
and hence the proof of part (a) is complete.

(b) Every strategy that survives the backward dominance procedure can rationally
be chosen under common belief in future rationality.
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For every information set h and every player i; let S1i (h) be the set of player i strategies that are
left at h at the end of the backward dominance procedure. So, S1i (h) := \kSki (h): Remember
that S1i (;) contains exactly those player i strategies that survive the backward dominance
procedure.

The idea for proving (b) is as follows: We construct an epistemic model M = (Ti; bi)i2I in
which every type expresses common belief in future rationality. Moreover, for every si 2 S1i (;)
there will be some type ti 2 Ti for which si is rational. But then, every si 2 S1i (;) can be chosen
rationally by a type that expresses common belief in future rationality, which would prove part
(b).

For every player i; we de�ne the set of types

Ti := ftsii : si 2 Sig:

For every strategy si; let H�
i (si) be the (possibly empty) collection of information sets h 2 Hi

for which si 2 S1i (h): So, by Lemma 8.4, we can �nd for every si 2 Si some conditional belief
vector (bi(si; h))h2Hi such that (a) bi(si; h) 2 �(S1�i(h)) for every h 2 Hi; and (b) si is optimal
at every h 2 H�

i (si) for the belief bi(si; h):
We will now de�ne the conditional beliefs of the types. Take a type tsii in Ti; and an

information set h 2 Hi: For every opponents� strategy pro�le (sj)j 6=i; let bi(si; h)((sj)j 6=i) be
the probability that bi(si; h) assigns to (sj)j 6=i: Let bi(t

si
i ; h) be the conditional belief about the

opponents�strategy-type pairs given by

bi(t
si
i ; h)((sj ; tj)j 6=i) :=

�
bi(si; h)((sj)j 6=i); if tj = t

sj
j for every j 6= i

0; otherwise.

So, at every h 2 Hi; type tsii holds the same belief about the opponents� strategy choices as
bi(si; h): Moreover, at every information set h 2 Hi; type tsii assigns only positive probability to
strategy-type pairs (sj ; tj) where sj 2 S1j (h) and tj = t

sj
j :

We now prove that every type in this epistemic model believes in the opponents� future
rationality. Take some type tsii 2 Ti and an information set h 2 Hi: Then, by construction,
bi(t

si
i ; h) only assigns positive probability to opponents�strategy-type pairs (sj ; t

sj
j ) where sj 2

S1j (h):
Take an opponent�s strategy sj 2 S1j (h): By construction of our algorithm, we have that

sj 2 S1j (h0) for every h0 2 Hj(sj) weakly following h: In other words, if sj 2 S1j (h); then every
h0 2 Hj(sj) weakly following h is in H�

j (sj):

By construction, at every h0 2 H�
j (sj) type t

sj
j holds the same belief about the opponents�

strategy choices as bj(sj ; h0): Moreover, at every h0 2 H�
j (sj); strategy sj is optimal under the

belief bj(sj ; h0): So, at every h0 2 H�
j (sj); strategy sj is optimal for type t

sj
j : Since we have seen

that every h0 2 Hj(sj) weakly following h is in H�
j (sj); it follows that sj is optimal for type t

sj
j

at every h0 2 Hj(sj) that weakly follows h:

34



So, we have shown for every sj 2 S1j (h) that sj is optimal for type t
sj
j at every h0 2 Hj(sj)

weakly following h: Since bi(t
si
i ; h) only assigns positive probability to opponents�strategy-type

pairs (sj ; t
sj
j ) where sj 2 S1j (h); we may conclude the following: Type t

si
i assigns at h only

positive probability to opponents�strategy-type pairs (sj ; t
sj
j ) where sj is optimal for type t

sj
j

at every h0 2 Hj(sj) weakly following h: In other words, type tsii believes at h in the opponents�
future rationality. As this applies to every h; we may conclude that type tsii believes in the
opponents�future rationality. So, every type tsii in the epistemic model believes in the opponents�
future rationality.

From this fact, it immediately follows that every type in the epistemic model expresses
common belief in future rationality.

Now, take a strategy si that survives the backward dominance procedure, that is, si 2 S1i (;):
Consider the associated type tsii : Above, we have seen that every h 2 Hi(si) weakly following ;
is in H�

i (si): Since, as we have seen above, si is optimal for t
si
i at every h 2 H�

i (si); it follows
that si is optimal for t

si
i at every h 2 Hi(si) weakly following ;: However, this means that si

is rational for type tsii : Since, as we have shown above, t
si
i expresses common belief in future

rationality, it follows that si can rationally be chosen under common belief in future rationality.
This completes the proof of part (b). �

8.4. Best-Response Characterization

We �nally prove Theorem 5.3, which provides a best-response characterization of common belief
in future rationality. More precisely, we must show that a strategy si can rationally be chosen
under common belief in future rationality, if and only if, there is a collection (Di(h))h2H;i2I of
strategy subsets which is closed under belief in future rationality and where si 2 Di(;): So, we
must prove two directions.

Suppose �rst that si can rationally be chosen under common belief in future rationality.
Recall that S1i (h) denotes the set of player i strategies that are part of the decision problem
at h at the end of the backward dominance procedure. Then, from Lemma 8.4 it immediately
follows that the collection of strategy subsets (S1i (h))h2H;i2I is closed under belief in future
rationality. Since si can rationally be chosen under common belief in future rationality, we know
from our Theorem 4.3 that si survives the backward dominance procedure, so si 2 S1i (;): Hence,
the collection (S1i (h))h2H;i2I of strategy subsets is closed under belief in future rationality and
si 2 S1i (;); which completes the proof of the �rst direction.

Suppose next that (Di(h))h2H;i2I is a collection of strategy subsets which is closed under
belief in future rationality, and take some si 2 Di(;): We must show that si can rationally be
chosen under common belief in future rationality. To show this we prove the following claim.
Recall that Ski (h) denotes the set of player i strategies in the decision problem �k(h) produced
in round k of the backward dominance procedure.
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Claim. Di(h) � Ski (h) for every k:

Proof of the claim. We proceed by induction on k: For k = 0 the statement is true since
S0i (h) = Si(h):

Take now some k � 1; and suppose that Di(h) � Sk�1i (h) for every player i and information
set h: Fix some player i and some information set h: We will show that Di(h) � Ski (h):

Choose some arbitrary si 2 Di(h): As the collection (Di(h))h2H;i2I is closed under belief in
future rationality, there must for every h0 2 Hi(si) weakly following h be some belief bi(h0) 2
�(D�i(h0)) for which si is optimal. As, by induction assumption, D�i(h0) � Sk�1�i (h

0); there is
for every h0 2 Hi(si) weakly following h some belief bi(h0) 2 �(Sk�1�i (h

0)) for which si is optimal.
But then, by our Lemma 8.4, si 2 Ski (h): We thus conclude that Di(h) � Ski (h); and the proof
of the claim is complete by induction on k:

From the claim, it immediately follows that Di(h) � S1i (h) for every information set h and
player i: Take some strategy si 2 Di(;): As Di(;) � S1i (;); it follows that si 2 S1i (;); which
means that si survives the backward dominance procedure. But then, by Theorem 4.3, we know
that si can rationally be chosen under common belief in future rationality. This completes the
proof of Theorem 5.3. �
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