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Abstract

Proper rationalizability (Schuhmacher (1999), Asheim (2001)) is a concept in epistemic
game theory that is based on two assumptions: (1) every player is cautious, i.e., does not
exclude any opponent�s choice from consideration, and (2) every player respects the oppo-
nent�s preferences, i.e., deems one opponent�s choice to be in�nitely more likely than another
whenever he believes the opponent to prefer the one to the other. In this paper we provide
a new foundation for proper rationalizability, by assuming that players have incomplete in-
formation about the opponent�s utilities. We show that, if the uncertainty of each player
about the opponent�s utilities vanishes gradually in some regular manner, then the choices
he can rationally make under common belief in rationality are all properly rationalizable in
the original game with no uncertainty about the opponent�s utilities.
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a 0; 2 1; 1 1; 0
b 1; 2 0; 1 1; 0
c 1; 2 1; 1 0; 0

Figure 1: An example for proper rationalizability

1 Introduction

Epistemic game theory deals with the ways the players may reason about their opponents before
making a decision. More precisely, in epistemic game theory players base their choices on the
beliefs about the opponents�behavior, which in turn depend on their beliefs about the opponents�
beliefs about others�behavior, and so on. A major goal of epistemic game theory is to study
such in�nite belief hierarchies, to impose reasonable conditions on these, and to investigate their
behavioral implications.

A central idea in epistemic game theory is common belief in rationality (Tan and Werlang
(1988)), stating that a player believes that his opponents choose rationally, believes that his
opponents believe that their opponents choose rationally, and so on. In our view, one of its
most natural re�nements is the concept of proper rationalizability (Schuhmacher (1999) and
Asheim (2001)), which is based on Myerson�s (1978) notion of proper equilibrium, but without
imposing any equilibrium assumption. Proper rationalizability is based on the following two
conditions: The �rst states that players are cautious, meaning that they do not exclude any
opponents� choice from consideration. The second condition is an extension of Myerson�s �-
proper trembling condition, which states that whenever you believe that a choice a is better
than another choice b for your opponent, then the probability you assign to b must be at most �
times the probability you assign to a. Under �-proper rationalizibility there is common belief in
the event that every player is cautious and satis�es the �-proper trembling condition. A choice is
called properly rationalizable if it can be chosen under �-proper rationalizability for every � > 0:

We will now explain this concept by means of an example. Consider the game in Figure 1,
where player 1 chooses between a, b and c and player 2 chooses between d; e and f . Note that
for player 2; choice d is better than choice e, and choice e is better than choice f . Hence, under
proper rationalizability player 1 deems d for player 2 much more likely than e, and e much more
likely than f . Consequently, only choice c will be optimal for player 1. So, if � > 0 is small
enough, then only choices c and d can rationally be made under �-proper rationalizability. As
such, only the choices c for player 1 and d for player 2 are properly rationalizable.

The usual interpretation of proper rationalizability is that you assume that your opponent
makes mistakes, but that you deem more costly mistakes much less likely than less costly mis-
takes. In this paper we o¤er a rather di¤erent foundation for proper rationalizability. Instead

2



of assuming that you believe your opponent to make mistakes, we rather suppose that you have
uncertainty about his utility function, while believing that he chooses rationally. We thus con-
sider a game with incomplete information. Our main result states that, if we let the uncertainty
about the opponent�s utility go to zero in some regular manner, then every choice that can ra-
tionally be made under common belief in rationality in the game with incomplete information,
will be properly rationalizable in the original game, in which there is no uncertainty about the
opponent�s utilities.

In the game with incomplete information, we impose some regularity conditions on the
players� beliefs about the opponent�s utility functions which can be summarized as follows:
First, for every outcome in the game, the belief that player i has about player j�s utility from
this outcome, is always normally distributed with its mean at the �original�utility in the original
game. As a consequence, player i deems any utility function possible for player j; and hence
every choice for player j can be optimal for some utility function deemed possible by i: Together
with the condition that i believes in j�s rationality, this actually makes sure that player i deems
every choice possible for player j, thus mimicking the cautiousness condition described above.
Secondly, i�s belief about j�s utility function should be independent from his belief about j�s
belief hierarchy. This makes intuitive sense since j�s belief hierarchy is an epistemic property
of this player, whereas his utility function is not. So there is no obvious reason to expect any
correlation between these two characteristics. Thirdly, i�s belief about j�s utilities from di¤erent
outcomes in the game should be independent from each other. Possibly some of these conditions
can be relaxed for the proof of our main result, but we leave this issue for future research.

Our game with incomplete information is related to the one used in Dekel and Fudenberg
(1990). They also consider games with incomplete information where the player�s uncertainty
about the opponent�s utilities goes to zero. An important di¤erence with our approach is that
Dekel and Fudenberg apply the concept of iterated elimination of weakly dominated choices to
the games with incomplete information. They show that if the uncertainty about the opponent�s
utilities vanishes, then we obtain one round of deletion of weakly dominated strategies, followed
by iterated deletion of strongly dominated strategies, in the original game. The latter procedure
is also called the Dekel-Fudenberg procedure in the literature. In contrast, we apply common
belief in rationality to our games with incomplete information. We then show that if the un-
certainty about the opponent�s utilities vanishes, we obtain a subselection (that is some, but in
general not all) of the properly rationalizable choices in the original game, which is fundamen-
tally di¤erent from the Dekel-Fudenberg procedure. Another fundamental di¤erence between
our paper and Dekel and Fudenberg lies in the way the uncertainty about the opponent�s utilities
is modeled. Their model assumes that players only deem possible �nitely many utility functions
for the opponent, and that a large probability must be assigned to the opponent�s �original�
utility function. In contrast, we assume that the uncertainty about the opponent�s utilities is
given by a normal distribution. In particular, players deem every utility function possible for
the opponent.

The paper is organized as follows: In Section 2 we introduce our epistemic model for games
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with incomplete information, we formalize the idea of common belief in rationality for these
games, and show that common belief in rationality is always possible. In Section 3 we introduce
our epistemic model for games with complete information, and present the concept of proper
rationalizability for these games. In Section 4 we state our main result, establishing the con-
nection between common belief in rationality in the game with incomplete information (in the
presence of small uncertainty about the opponent�s utility function), and proper rationalizability
in the original game. In Section 5 we provide some concluding remarks. All proofs are collected
in Section 6.

2 Rationalizability in Games with Incomplete Information

2.1 Epistemic Model

Throughout this paper we restrict attention to games with two players. Let � = (Ci; ui)i2I
be a �nite, static game where I = f1; 2g is the set of players, Ci is the �nite set of choices of
player i; and ui is player i �s utility function. The function ui assigns to every pair of choices
(c1;c2) 2 C1 � C2 a utility ui (c1; c2) 2 R:

In a game with incomplete information players do not only have uncertainty about the
opponent�s choices, they also have uncertainty about the opponent�s utility function. Hence a
belief hierarchy should not only specify what the player believes about the opponent�s choice
but also what he believes about the opponent�s utility function. Not only this, it should also
specify what the player believes about the opponent�s belief about his own choice and utility
function, and so on. A possible way of modeling such belief hierarchies is by means of the
following de�nition.

De�nition 2.1 (Epistemic model) An epistemic model for � with incomplete information
is a tuple M = (Ti; bi; vi)i2I where (1) Ti is the set of types for player i; (2) bi : Ti �!
4 (Cj � Tj) is the belief assignment taking only �nitely many di¤erent probability distributions
on 4 (Cj � Tj), and (3) vi is the utility assignment that assigns to every ti 2 Ti a utility function
vi (ti) : C1 � C2 �! R:

By 4 (X) we denote the set of probability distributions on X: So, in an epistemic model,
each type ti has a belief about player j�s choice-type combinations. And hence, in particular, it
has a belief about j�s choice. But, as player j�s type also speci�es his utility function and his
belief about player i�s choice, player i also has some belief about player j�s utility function, and
about player j�s belief about his own choice, and so on. In this way one can derive a complete
belief hierarchy for every given type.

Note that each type ti can be indenti�ed with a pair (vi(ti); bi(ti)) where vi(ti) is its utility
function and bi(ti) is its belief hierarchy. Since we required the belief assignment to take only
�nitely many di¤erent probability distributions, the epistemic model contains only �nitely many
di¤erent belief hierarchies.
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2.2 Restrictions on the Epistemic Model

Our goal will be to model the situation where the players have uncertainty about the opponent�s
utility function, but where this uncertainty �vanishes in the limit�. In order to formalise this
we need to impose additional restrictions on the epistemic model.

Recall that every type ti can be identi�ed with a pair (vi (ti) ; bi (ti)), where vi (ti) is ti�s
utility function and bi (ti) is its belief hierarchy. Denote by Vi the set of all possible utility
functions, and by Bi the set of all belief hierarchies in the epistemic model M = (Ti; vi; bi)i2I .
The �rst condition we impose is that Ti = Vi � Bi, that is, for every possible utility function
we can think of, and every belief hierarchy in the model, there exists a type in the model with
exactly this combination of utility function and belief hierarchy. So in a sense we assume that
the type space is rich enough.

Secondly we assume that ti�s belief about j�s utility from (c1; c2) is statistically independent
from its belief about j�s utility from (c01; c

0
2) whenever (c1; c2) 6= (c01; c02), and that this belief is

also statistically independent from its belief about j�s belief hierarchy.
Finally we assume that ti�s beliefs about j�s utilities from the various outcomes in the game

are all induced by a unique normal distribution. More formally, ti�s belief about j�s utility from
(c1; c2) is given by a normal distribution with its mean at uj (c1; c2) �the �true�utility of player
j in the original game. So, all these beliefs are distributed identically around the mean. By
collecting all these conditions we arrive at the following de�nition.

De�nition 2.2 (�-regular epistemic model) Let P be the normal distribution on R with
mean 0 and variance �2 > 0: Then an epistemic model M = (Ti; bi; vi)i2I is �-regular if for both
players i; (1) Ti = Vi � Bi, (2) for every type ti 2 Ti, his belief about j�s utility from (c1; c2)
is statistically independent from his belief about j�s utility from (c01; c

0
2) whenever (c1; c2) 6=

(c01; c
0
2), and his belief about j�s utilities is statistically independent from his belief about j�s belief

hierarchy, and (3) for every type ti 2 Ti, and every choice-pair (c1; c2); the belief of ti about j�s
utility from (c1; c2) is given by P , up to a shift of the mean to uj (c1; c2).

2.3 �-Rationalizability

In this subsection we will de�ne common belief in rationality inside an epistemic model with
incomplete information. In addition, if we require the epistemic model to be �-regular for
a given normal distribution with mean 0 and variance �2, then we obtain the concept of �-
rationalizability.

We �rst need some more notation. For given type ti and choice ci, let vi (ti) (ci) be the
expected utility for type ti from choosing ci, given his belief bi (ti) about the opponent�s choice,
and given his utility function vi(ti).

De�nition 2.3 (Rational choice) A choice ci is rational for ti if vi (ti) (ci) � vi (ti) (c
0
i) for

all c0i 2 Ci:
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We will now de�ne common belief in rationality. In words it says that a player believes
that his opponent makes rational choices, and believes that his opponent believes that he makes
rational choices, and so on.

Formally, for every eTi � Ti, let�
Ci � eTi�rat = f(ci; ti) 2 Ci � eTi : ci is rational for tig:

De�nition 2.4 (Common belief in rationality) For both players i we de�ne subsets of types
T 1i ; T

2
i ; ::: in a recursive way as follows:

T 1i : = fti 2 Ti : bi (ti) [(Cj � Tj)rat] = 1g;
T 2i : = fti 2 Ti : bi (ti) [(Cj � T 1j )rat] = 1g;

...

T li : = fti 2 Ti : bi (ti) [(Cj � T l�1j )rat] = 1g;
...

Type ti expresses common belief in rationality if ti 2 \l2NT li :

A type ti is �-rationalizable if it expresses common belief in rationality within a �-regular
epistemic model.

De�nition 2.5 (�-rationalizable type) LetM = (Ti; bi; vi)i2I be a �-regular epistemic model.
Every type ti 2 Ti that expresses common belief in rationality is called �-rationalizable.

Now we show that �-rationalizable types always exist.

Theorem 2.1 (�-rationalizable types always exist) Consider a �nite static game � = (Ci; ui)i2I ;
and some � > 0: Then there is a �-regular epistemic model M = (Ti; bi; vi)i2I for � where all
types are �-rationalizable.

The proof can be found in Section 6.

2.4 Limit Rationalizability

In this subsection we focus on those choices which can rationally be made under common belief
in rationality when the uncertainty about the opponent�s utility vanishes. This will lead to the
concept of limit rationalizability. We �rst need an additional de�nition.

6



De�nition 2.6 (Constant type spaces and utility assignments) A sequence of epistemic
models ((Tni ; b

n
i ; v

n
i )i2I)n2N has constant type spaces and utility assignments if T

n
i = Tmi and

vni = v
m
i for all n and m, and for both players i.

We are now ready to de�ne the concept of limit rationalizable choice.

De�nition 2.7 (Limit rationalizable choice) Consider a �nite static game � = (Ci; ui)i2I
with two players. A choice ci is limit rationalizable if there is a sequence (�n)n2N ! 0; and a
sequence (Mn)n2N of �n-regular epistemic models with constant type spaces and utility assign-
ments, such that in every Mn there is a �n-rationalizable type tni with utility function ui; for
which choice ci is optimal.

3 Proper Rationalizability in Games with Complete Informa-
tion

3.1 Epistemic Model

Let � = (Ci; ui)i2I be a �nite, static game with two players. In a game with complete informa-
tion players do not have uncertainty about the opponent�s utility function. Therefore a belief
hierarchy only needs to specify what a player believes about the opponent�s choice, what he
believes about the opponent�s belief about his own choice, and so on. Therefore the epistemic
model will be simpler compared to the case of incomplete information.

De�nition 3.1 (Epistemic model) An epistemic model for � with complete information is a
tuple M = (�i; �i)i2I where (1) �i is the �nite set of types for player i; and (2) �i : �i �!
4 (Cj ��j) is the belief assignment.

So, in an epistemic model, each type �i has a belief about player j�s choice-type combinations.
And hence, in particular, it has a belief about j�s choice. But, as player j�s type also speci�es
his belief about player i�s choice, player i also has some belief about player j�s belief about his
own choice, and so on. In this way one can derive a complete belief hierarchy for every given
type.

For given type �i and choice ci we de�ne ui(ci; �i) as the expected utility for type �i from
choosing ci given his belief �i (�i) about his opponent�s choice (and given his ��xed� utility
function ui). Type �i is said to prefer choice ci to choice c0i when ui(ci; �i) > ui(c

0
i; �i). We say

that a type �i considers possible some opponent�s type �j if �i(�i)(cj ; �j) > 0 for some cj 2 Cj :
Now we introduce the key condition in proper rationalizability, which is the �-proper trembling
condition. Intuitively it says that (1) a player should deem possible all opponent�s choices, and
(2) if a player believes choice a is better than choice b for the other player, then he should deem
choice a much more likely than choice b.
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De�nition 3.2 (�-proper trembling condition) Let � > 0. A type �i sati�es the �-proper
trembling condition if
(1) for each �j that �i deems possible, �i (�i) (cj ; �j) > 0 for all cj 2 Cj ; and
(2) for every �j that �i deems possible, whenever �j prefers cj to c0j ; then �i (�i)

�
c0j ; �j

�
�

� � �i (�i) (cj ; �j) :

So, the �rst condition says that whenever �i deems some type �j possible, �i also assumes
every choice is possible for �j .

Proper rationalizability is based on the event that the types should not only satisfy the �-
proper trembling condition themselves, but also express common belief in the event that types
satisfy the �-proper trembling condition.

De�nition 3.3 (�-properly rationalizable type) A type �i is �-properly rationalizable if:
�i satis�es the �-proper trembling condition,
�i only deems possible opponent�s types �j which satisfy the �-proper trembling condition,
�i only deems possible opponent�s types �j which only deem possible player i�s types �0i which
satisfy the �-proper trembling condition, and so on.

Properly rationalizable choices are those choices which can rationally be made by �-properly
rationalizable types, for all �:

De�nition 3.4 (Properly rationalizable choice) A choice ci is �-properly rationalizable if
there is an epistemic model and an �-properly rationalizable type �i within it for which ci is
optimal. A choice ci is properly rationalizable if it is �-properly rationalizable for all � > 0:

3.2 Example

Consider again the game in Figure 1. Let the type sets of player 1 and player 2 be �1 = f�1; �01g
and �2 = f�2; �02g: For � > 0 (small), let the beliefs for the types be given by

�1 (�1) =
�
1� �2 � �3

�
(d; �2) + �

2 (e; �2) + �
3 (f; �2) ;

�1
�
�01
�
=

1

6
(d; �2) +

1

6
(e; �2) +

1

6
(f; �2) +

1

6

�
d; �02

�
+
1

6

�
e; �02

�
+
1

6

�
f; �02

�
;

�2 (�2) =
�
1� �2 � �3

�
(c; �1) + �

2 (b; �1) + �
3 (a; �1) ; and

�2
�
�02
�
=

1

6
(a; �1) +

1

6
(b; �1) +

1

6
(c; �1) +

1

6

�
a; �01

�
+
1

6

�
b; �01

�
+
1

6

�
c; �01

�
:

It may be veri�ed that the types �1 and �2 both satisfy the �-proper trembling condition.
Also, type �1 only deems possible the opponent�s type �2, and �2 only deems possible the
opponent�s type �1. This implies that both �1 and �2 are �-properly rationalizable. So, choice c
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for player 1, and d for player 2 are �-properly rationalizable for any � > 0 small enough. Hence,
choice c for player 1, and d for player 2 are properly rationalizable.

On the other hand, we see that the type �01 of player 1 believes that the choices d; e and f
are equally likely to be taken by type �2 of player 2 while for type �2, d is better than e, and
e is better than f . So, type �01 of player 1 does not satisfy the �-proper trembling condition.
Similarly, type �02 also does not satis�es the �-proper trembling condition.

4 Main Result

4.1 Statement of the Main Result

For a static game we analysed two contexts, one with incomplete information and another
with complete information. In the context with incomplete information, where players have
uncertainty about the opponent�s utility, we introduced the concept of a limit rationalizable
choice. In the context with complete information, where players have no uncertainty about the
opponent�s utility, we discussed the concept of a properly rationalizable choice. In our main
result we connect these two concepts.

Theorem 4.1 (Limit rationalizability implies proper rationalizability ) Consider a �-
nite static game with two players. Every limit rationalizable choice for the context with incom-
plete information is a properly rationalizable choice for the context with complete information.

4.2 Illustration of the Main Result

By means of an example we provide some intuition for our main result. More precisely we show
how a �-rationalizable type in the context of incomplete information can be transformed into an
�-properly rationalizable type in the context of complete information. Also we show that when
� goes to zero then � goes to zero as well.

Consider again the game from Figure 1. Let us start with the context of incomplete infor-
mation. Let P be the normal distribution with mean 0 and variance �2. From the proof of
Theorem 2.1 we know that there exists a �-regular epistemic model M = (Ti; bi; vi)i2I where
every type is �-rationalizable and all the types have the same belief hierarchy. So, types only
di¤er by their utility function. For each of the types t1 of player 1 we denote by �1 the belief
about player 2�s choice, and for each type t2 let �2 be the belief about player 1�s choice. As we
assume that all the types have the same belief hierarchy, �1 and �2 are unique.

For both players i let Qi be the probability distribution on player i�s utility functions gener-
ated by P . Since the epistemic model is �-regular every type tj has the belief Qi about i�s utility
function. Let Vi (ci; �i) be the set of utility functions for player i such that choice ci is optimal
under the belief �i about the opponent�s choice. Since every type ti expresses common belief
in rationality, the probability it assigns to an opponent�s choice cj is exactly the probability it
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assigns to the event that j�s utility function is in Vj
�
cj ; �j

�
, which is Qj

�
Vj
�
cj ; �j

��
. So, we

can derive the following six equations:

�1 (d) = Q2 (V2(d; �2))

�1 (e) = Q2 (V2(e; �2))

�1 (f) = Q2 (V2(f; �2))

�2 (a) = Q1 (V1(a; �1))

�2 (b) = Q1 (V1(b; �1))

�2 (c) = Q1 (V1(c; �1)) :

Since P has full support on R, it follows that all these probabilities are positive.
Now we turn to the context of complete information. We construct an epistemic model with

a single type �1 for player 1 and a single type �2 for player 2. Let the belief of �1 about player
2�s choice be given by the �1 constructed above, and similarly for the belief of �2. So, the
belief about the opponent�s choice has not changed by moving from the context with incomplete
information to the context with complete information.

Since in the original game d is better than e and e is better than f for player 2, for small � we
will have that Q2 (V2(d; �2)) is much bigger than Q2 (V2(e; �2)), and Q2 (V2(e; �2)) is much bigger
than Q2 (V2(f; �2)). So, by our equations above we have that �1 (d) is much bigger than �1 (e),
and �1 (e) is much bigger than �1 (f). Given such a �1, in the original game c will be better
than b and b will be better than a. So, similarly, for small � we will have that Q1 (V1(c; �1))
is much bigger than Q1 (V1(b; �1)), and Q1 (V1(b; �1)) is much bigger than Q1 (V1(a; �1)). And
hence, from the equations above, we have that �2 (c) is much bigger than �2 (b), and �2 (b) is
much bigger than �2 (a). Now de�ne

� = maxf�2 (a)
�2 (b)

;
�2 (b)

�2 (c)
;
�1 (e)

�1 (d)
;
�1 (f)

�1 (e)
g:

Then, by construction, �1 and �2 are �-properly rationalizable. Moreover, if � goes to zero then
the associated � would go to zero as well.

If the variance of P is small then choice c is optimal for the �-rationalizable type t1 in
the model with incomplete information that has the original utility function. Similarly, d is
optimal for the �-rationalizable type t2 that has the original utility function in the model with
incomplete information. As a consequence, c and d are limit rationalizable in the context with
incomplete information. On the other hand, in the associated epistemic model with complete
information c is optimal for the �-properly rationalizable type �1 and d is optimal for the �-
properly rationalizable type �2. As � goes to zero when � goes to zero, we conclude that c and d
are properly rationalizable. So, in this example the limit rationalizable choices are also properly
rationalizable.
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5 Concluding remarks

We believe that proper rationalizability is a very natural concept in game theory, but it has
not yet received the attention it deserves. In this paper we have established a new foundation
for proper rationalizability from the viewpoint of games with incomplete information. In games
with incomplete information we de�ne a choice as limit rationalizable if it can rationally be made
under common belief of rationality when the uncertainty vanishes gradually in some regular way.
We show the existence of such choices. We then prove that each limit rationalizable choice in
the game with incomplete information is properly rationalizable for the context with complete
information.

Throughout this paper it is assumed that the players� uncertainty about the opponent�s
utilities are described by a normal distribution. We have used the normal distribution as it is
a very natural candidate to describe the uncertainty. We believe, however, that we can extend
our framework to wider classes of probability distributions here, as long as this class is closed
under taking convex combinations, and Lemma 6.4 is satis�ed.

In this paper we restricted our attention to two players for the sake of simplicity. However,
we believe our result can be extended to more than two players in a natural way.

6 Proofs

6.1 Existence of �-Rationalizable Types

We prove Theorem 2.1, which guarantees the existence of �-rationalizable types. Consider a
�nite static game � = (Ci; ui)i2I ; and some � > 0: Let P be the normal distribution with mean
0 and variance �2: In fact we will construct a �-regular epistemic model where all types of
player 1 have the same belief �2 about player 2�s choice and all types of player 2 have the same
belief �1 about player 1�s choice. We construct �1 and �2 by means of the �xed point of some
correspondence.

For every belief �j 2 �(Cj) and every utility function wi, we de�ne

Ci
�
�j ; wi

�
:= fci 2 Ci : wi(ci; �j) � wi(c0i; �j) for all c0ig:

We also de�ne Qi as the probability distribution on the set of utility functions of player i induced
by P . For every �j 2 �(Cj) we de�ne

Fi(�j) : = f�i 2 �(Ci) : �i =
Z
wi2Vi

i (wi) dQi ,

where i (wi) 2 �(Ci
�
�j ; wi

�
) for every wi 2 Vig:

Here Vi denotes the set of all possible utility functions for player i. So every �i 2 Fi(�j) is
obtained by taking for every utility function wi a randomization over optimal choices against �j
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and then taking the expected randomization with respect to Qi. Now we de�ne a correspondence
F from �(C1)��(C2) to �(C1)��(C2) by

F (�1; �2) := F1 (�2)� F2(�1):

Now we use Kakutani�s �xed point theorem to prove that F has a �xed point. Clearly F is
upper hemi-continuous and compact valued. We show that F is convex valued. For this it is
su¢ cient to show that F1 and F2 are convex valued. For a given �2; take �

0
1, �

00
1 in F1 (�2). We

show that ��01 + (1� �)�
00
1 is also in F1 (�2). By de�nition

�01 =

Z
w1

01 (w1) dQ1 and �
00
1 =

Z
w1


00
1 (w1) dQ1

where 01 (w1) ; 
00
1 (w1) 2 �(C1 (�2; w1)) for every w1. So we have

��01 + (1� �)�
00
1 =

Z
w1

(�01 (w1) + (1� �)
00
1 (w1))dQ1

where �01 (w1) + (1� �)
00
1 (w1) 2 �(C1 (�2; w1)) for every w1. Hence by de�nition ��01 + (1�

�)�
00
1 2 F1 (�2). This implies that F1 is convex valued. The same applies to F2 and hence we

can conclude that F is convex valued. Now using Kakutani�s �xed point theorem F has a �xed

point
�
�
�
1; �

�
2

�
.

Since �
�
1 2 F1

�
�
�
2

�
it follows that

��1 =

Z
w1

�1 (w1) dQ1

where �1 (w1) 2 �(C1 (��2; w1)) for every w1. Similarly

��2 =

Z
w2

�2 (w2) dQ2

where �2 (w2) 2 �(C2 (��1; w2)) for every w2.
We will now construct an epistemic model M = (Ti; bi; vi)i2I : For both players i; de�ne

Ti = ftwii : wi 2 Vig:

Let the utility assignment vi be given by

vi (t
wi
i ) = wi

for every twii 2 Ti: In order to de�ne the belief assignment bi we �rst de�ne for every type twii a
density function ~bi (t

wi
i ) on Cj � Tj as follows:

~bi (t
wi
i )
�
cj ; t

wj
j

�
:= �j (wj) (cj) ;

12



where �j (wj) (cj) is the probability that probability distribution 
�
j (wj) assigns to cj . For every

type twii let bi (t
wi
i ) 2 �(Cj � Tj) be the probability distribution induced by density function

~bi (t
wi
i )
�
cj ; t

wj
j

�
and the probability distribution Qj on Vj . That is, for every set of types E � Tj

given by
E := ftwjj : wj 2 Fg

we have that

bi (t
wi
i ) (fcjg � E) :=

Z
wj2F

~bi (t
wi
i )
�
cj ; t

wj
j

�
dQj :

It follows that the belief of type twii about player j�s choice is given by ��j : Namely, the probability
that type twii assigns to choice cj is equal to

bi (t
wi
i ) (fcjg � Vj) =

Z
wj2Vj

~bi (t
wi
i )
�
cj ; t

wj
j

�
dQj

=

Z
wj2Vj

�j (wj) (cj) dQj

= ��j (cj) .

So all types of player i have the same belief ��j about player j�s choice. This completes the
construction of the epistemic model. It follows directly from the construction that the epistemic
model is �-regular.

We now show that every type in this model expresses common belief in rationality. For this
it is su¢ cient to show that every type twii believes in the opponent�s rationality. So, we must
show for both players i and every twii 2 Ti that bi (twii ) [(Cj � Tj)rat] = 1. In order to prove so
we show that ~bi (t

wi
i )
�
cj ; t

wj
j

�
> 0 only if cj is rational for t

wj
j .

Suppose that ~bi (t
wi
i )
�
cj ; t

wj
j

�
> 0. Since ~bi (t

wi
i )
�
cj ; t

wj
j

�
:= �j (wj) (cj) ; it follows that

�j (wj) (cj) > 0. As by de�nition �j (wj) 2 �(Cj (�
�
i ; wj)) it follows that cj 2 Cj (�

�
i ; wj).

Remember that the belief of type twjj about player i�s choice is exactly ��i . Since cj 2 Cj (��i ; wj)
it follows that cj is rational for type t

wj
j . So we have shown that ~bi (t

wi
i )
�
cj ; t

wj
j

�
> 0 only if cj

is rational for twjj . This implies that type t
wi
i believes in the opponent�s rationality. Since this

holds for every type in the model it follows that every type in the epistemic model expresses
common belief in rationality. So every type in the model is �-rationalizable because the model
is �-regular. This completes the proof. �

6.2 Some Technical Lemmas

In this subsection we state some technical lemmas which we need for the proof of the main
result.
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Lemma 6.1 If X;Y and Z are real valued, independent random variables then Pr (X � maxfY; Zg) �
Pr (X � Y ) � Pr (X � Z) :

Proof. Let fY and fZ be the probability density functions of the random variables Y and Z:
Now,

Pr (X � maxfY; Zg)

=

Z
y

Z
z
Pr (X � max fy; zg) dfY (y) dfZ (z)

�
Z
y

Z
z
Pr (X � max fy; zg) � Pr(X � min fy; zg)dfY (y) dfZ (z)

=

Z
y

Z
z
Pr (X � y) � Pr (X � z) dfY (y) dfZ (z)

=

Z
y
Pr (X � y) dfY (y) �

Z
z
Pr (X � z) dfZ (z)

= Pr (X � Y ) � Pr (X � Z) :

Note that the �rst and third equality follow from the fact that Y and Z are independent, and
the inequality holds because Pr(X � min fy; zg) � 1. �

We now state the well-known Chebyshev�s inequality, which we use in the proof of Lemma
6.3.

Lemma 6.2 (Chebyshev�s inequality) Let X be a random variable with E (X) = �. Then
for any number k > 0,

Pr (jX � �j � k) � V ar (X)

k2
:

Lemma 6.3 For every n 2 N, let X1
n; X

2
n; :::; X

m
n be independent random variables with E

�
Xi
n

�
=

�i for all n and i, �1 > �2 > ::: > �m, and limn!1 V ar
�
Xi
n

�
= 0 for all i. Then,

lim
n!1

Pr
�
X1
n � X2

n � ::: � Xm
n

�
= 1:

Proof. For a given n,

Pr
�
X1
n � X2

n � ::: � Xm
n

�
� 1� Pr

�
Xi
n < X

j
n for some i < j

�
:
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For �xed i < j we have,

Pr
�
Xi
n < X

j
n

�
= Pr

�
Xj
n �Xi

n > 0
�
= Pr

��
Xj
n �Xi

n

�
�
�
�j � �i

�
> �i � �j

�
� Pr

����Xj
n �Xi

n

�
�
�
�j � �i

��� > �i � �j�
�

V ar
�
Xj
n �Xi

n

�
(�i � �j)2

=
V ar

�
Xj
n

�
+ V ar

�
Xi
n

�
(�i � �j)2

:

Here, the inequality comes from Chebyshev�s inequality and the last equality follows from the fact

thatXj
n andXi

n are independent. Now, note that limn!1 V ar
�
Xi
n

�
= 0 and limn!1 V ar

�
Xj
n

�
=

0, which implies limn!1 Pr
�
Xi
n < X

j
n

�
= 0. Then, from above it follows that

lim
n!1

Pr
�
X1
n � X2

n � ::: � Xm
n

�
= 1: �

Consider a sequence (Pn)n2N of normal distributions with mean 0 and variance �
2
n such that

�n ! 0 as n!1. The density function fn of Pn is given by

fn (x) =
1

�n
p
2�
e
� x2

2�2n for all x:

We show that for large n the right tail of Pn becomes arbitrarily steep everywhere.

Lemma 6.4 Consider a sequence (Pn)n2N of normal distributions with mean 0 and variance
�2n; such that �n ! 0 as n ! 1. Let fn be the density functions of these distributions. Then
for all c > 0 and � > 0 there is N 2 N such that fn(x+c)fn(x)

� � for all n � N and all x > 0.

Proof. Take c > 0 and � > 0. Then

fn(x+ c)

fn(x)
=
e
� (x+c)2

2�2n

e
� x2

2�2n

= e
� 1

2�2n
((x+c)2�x2)

= e
� 1

2�2n
(2cx+c2) � e�

c2

2�2n :

Now as c > 0 is �xed and �n ! 0 as n ! 1, we can �nd N large enough such that e
� c2

2�2n � �
for n � N . �
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Lemma 6.5 Consider a sequence (Xn)n2N of normally distributed random variables such that
E (Xn) = 0 for all n, and var (Xn) ! 0 as n ! 1. Let fn be the density functions of these
random variables. Then, for every 0 < x < y it holds that

lim
n!1

Pr (Xn � y)
Pr (Xn � x)

= 0:

Proof. Fix 0 < x < y, and �x an � > 0: Then, by Lemma 6.4 there is an N such that
fn(z+(y�x))

fn(z)
� � for all n � N and all z > 0: Take some n � N: Then,

Pr (Xn � y) =
Z 1

y
fn (z) dz =

Z 1

x
fn (z + (y � x)) dz

� � �
Z 1

x
fn (z) dz = � � Pr(Xn � x):

This implies that limn!1
Pr(Xn�y)
Pr(Xn�x) = 0: �

6.3 Proof of the Main Result

We �nally prove or main theorem, which is Theorem 4.1. We proceed by three steps.
In step 1, we show how a �-regular epistemic model M with incomplete information can be

transformed into an epistemic model M̂ with complete information. More precisely, we transform
every type ti inM into a type �i (ti) in M̂ which has the same belief about the opponent�s choice
as ti.

In step 2, we take a choice c�i that is limit rationalizable. So we can �nd a sequence (Pn)n2N
of normal distributions with mean 0 and variance �2n; with �

2
n ! 0 as n ! 1, and a sequence

(Mn)n2N of �n-regular epistemic models with constant type spaces and utility assignments, such
that in every Mn there is a �n-rationalizable type tni with utility function ui for which choice
c�i is optimal. We show that the type t

n
i is transformed into a type �i (t

n
i ) which is �n-properly

rationalizable for some �n. Since, for all n, c�i is rational for t
n
i , and �i (t

n
i ) has the same belief

about the opponent�s choice and the same utility function as tni ; it follows that c
�
i is rational

for �i (tni ) for all n. As �i (t
n
i ) is �n-properly rationalizable for every n, it follows that c

�
i is

�n-properly rationalizable for all n.
In step 3, we prove that limn!1 �n = 0. Hence, c�i is �-properly rationalizable for every � > 0

and therefore properly rationalizable.

Step 1. Take some � > 0: Let M = (Ti; bi; vi)i2I be a �-regular epistemic model for � with
incomplete information. Now we transform this epistemic model M into an epistemic model
M̂ = (�i; �i)i2I with complete information. Using the fact that M is �-regular we can write

Ti = Vi �Bi;
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where Vi is the set of all possible utility functions and Bi is the �nite set of belief hierarchies in
Ti. Then, for ti 2 Ti;

bi (ti) 2 4 (Cj � Vj �Bj) :

Now take �i = Bi and �j = Bj . Clearly, �i and �j are �nite sets as Bi and Bj are �nite. For
every ti 2 Ti de�ne the type �i (ti) 2 �i by

�i (�i (ti)) := margCj�Bjbi (ti) :

So,

�i (�i (ti)) (cj ; bj) = bi (ti) (Vj � f(cj ; bj)g)

for all (cj ; bj) 2 Cj �Bj . Hence,

�i (�i (ti)) 2 4 (Cj �Bj) = 4 (Cj ��j) :

By construction �i (ti) has the same belief about j�s choice as ti. This completes the construction
of the epistemic model M̂ = (�i; �i)i2I .

Step 2. Take a choice c�i that is limit rationalizable. Hence, there exists a sequence (Pn)n2N
of normal distributions with mean 0 and variance �2n; with �

2
n ! 0 as n ! 1, and a sequence

(Mn)n2N of �n-regular epistemic models with constant type spaces and utility assignments, such
that in every Mn there is a �n-rationalizable type tni with utility function ui for which choice
c�i is optimal. Let the constant type spaces in the sequence (M

n)n2N of epistemic models be Ti
and Tj , and the constant utility assignments be vi and vj .

Fix an n. Then, within the epistemic model Mn = (Ti; b
n
i ; vi)i2I there is a �n-rationalizable

type tni 2 Ti with utility function ui for which c�i is optimal. Since type tni only deems possible j�s
types which are �n-rationalizable, and only deems possible j�s types which only deem possible
i�s types which are �n-rationalizable, and so on, we may assume without loss of generality that
all the types inMn are �n-rationalizable. Let M̂n = (�ni ; �

n
i )i2I be the corresponding epistemic

model with complete information, as constructed in step 1.
For every �i 2 �ni , we de�ne a number �n (�i) as follows: Let Poss(�i) be the set of types in

�j that �i deems possible. For a given type �j 2 Poss(�i), suppose that �j prefers choice c1j to
c2j , c

2
j to c

3
j , and so on. So, we obtain an ordering

�
c1j ; c

2
j ; c

3
j ; :::; c

m
j

�
of j�s choices. Then de�ne

�n (�i; �j) = max
k2f2;3;:::;mg

�ni (�i)
�
ckj ; �j

�
�ni (�i)

�
ck�1j ; �j

� :
Next we de�ne

�i;n = max
�i2�ni ,�j2 Poss(�i)

�n (�i; �j) :
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Finally let
�n = maxf�i;n, �j;ng:

Note that by construction every type in M̂n satis�es the �n-proper trembling condition, hence
every type in M̂n is �n-properly rationalizable. In particular �i (tni ) is �n-properly rationalizable.

Step 3. Now we show that limn!1 �n = 0. It is su¢ cient to show that

lim
n!1

�ni (�i)
�
ckj ; �j

�
�ni (�i)

�
ck�1j ; �j

� = 0 (1)

for every �i 2 �ni ; and every �j 2 Poss(�i) and every k. As before, player j�s choices are ordered
c1j ; :::; c

m
j such that �j prefers choice c

1
j to c

2
j , c

2
j to c

3
j , and so on. We assume, without loss of

generality, that all preferences are strict.
Fix some �i 2 �ni and �j 2 Poss(�i): Suppose that �i = �i(ti) for some ti 2 Ti; and that

�j = �j(tj) for some tj 2 Tj : Let j 2 �(Ci) be �j�s belief about i�s choice. As before, let Vj be
the set of utility functions for player j: For every k 2 f1; :::;mg; let Xk : Vj ! R be given by

Xk(vj) := vj(c
k
j ; j) =

X
ci2Ci

j(ci) � vj(ckj ; ci)

for every vj 2 Vj : So, Xk(vj) denotes the expected utility for player j induced by choice ckj ; under
the belief j and the utility function vj : Note that X

k is a random variable, as player i holds a
probability distribution on Vj ; induced by Pn: The probability distribution of Xk depends on n;
and is denoted by 'nk(Xk): Note that Xk has a normal distribution with mean

E(Xk) = uj(c
k
j ; j);

and variance
V arn(Xk) =

X
ci2Ci

(j(ci))
2 � �2n: (2)

In particular, it follows that limn!1 V arn(Xk) = 0; as limn!1 �2n = 0: Since, by assumption,
�j strictly prefers c1j to c

2
j ; strictly prefers c

2
j to c

3
j ; and so on, we have that E(X

1) > E(X2) >
::: > E(Xm):

Let 'n be the probability distribution of the random vector (X1; :::; Xm): Recall that all
types in Mn are �n-rationalizable, which implies that all types in Mn express common belief in
rationality. As such, type ti 2 Ti (which generates �i) expresses common belief in rationality. In
particular, ti only assigns positive probability to those choice-type combinations (cj ; tj) where
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cj is optimal for tj . Now, as �i = �i(ti) and �j = �j(tj); we have that �ni (�i)
�
ckj ; �j

�
is the

probability that ckj is optimal for tj , and that is '
n(Xk � X l for all l). Then,

�ni (�i)
�
ckj ; �j

�
�ni (�i)

�
ck�1j ; �j

� = 'n(Xk � X l for all l)
'n(Xk�1 � X l for all l)

: (3)

Hence, in order to prove (1), we must show that

lim
n!1

'n(Xk � X l for all l)
'n(Xk�1 � X l for all l)

= 0

for all k 2 f2; :::;mg: We distinguish two cases.
Case 1. First we consider the case where k = 2: Then we have,

'n(Xk � X l for all l)
'n(Xk�1 � X l for all l)

� 'n(X2 � X1)

'n (X1 � X2 � X3 � ::: � Xm)
:

Recall that E(X1) > E(X2) > ::: > E(Xm): But then, by Lemma 6.3, 'n(X2 � X1)! 0; and
'n
�
X1 � X2 � X3 � ::: � Xm

�
! 1; and hence

'n(X2 � X1)

'n (X1 � X2 � X3 � ::: � Xm)
! 0;

which implies that
'n(Xk � X l for all l)
'n(Xk�1 � X l for all l)

! 0

as n!1:
Case 2. Now we consider the case where k > 2: Let Xmax be the random variable given by
Xmax := maxj 6=k;k�1Xj : We have

'n(Xk � X l for all l)
'n(Xk�1 � X l for all l)

=
'n(

�
Xk � Xk�1� and �Xk � Xmax

�
)

'n((Xk�1 � Xk) and (Xk�1 � Xmax))

�
'n
�
Xk � Xmax

�
'n((Xk�1 � Xk) and (Xk�1 � Xmax))

� (by Lemma 6.1)
'n
�
Xk � Xmax

�
'n (Xk�1 � Xk) � 'n (Xk�1 � Xmax)

=
'n
�
Xk � Xmax

�
'n (Xk�1 � Xmax)

� 1

'n (Xk�1 � Xk)

=
'n
�
Xk � Xmax

�
'n (Xk � Xmax � (E(Xk�1)� E(Xk))

� 1

'n (Xk�1 � Xk)
;
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where the last equality follows from the observation that Xk�1 � E(Xk�1) and Xk � E(Xk)
have the same distribution.

Now, from Lemma 6.3 it follows that 'n
�
Xk�1 � Xk

�
! 1 as n!1: We show that

'n
�
Xk � Xmax

�
'n (Xk � Xmax � (E(Xk�1)� E(Xk))

! 0

as n!1:
Let us de�ne c := E(Xk�1)� E(Xk): So, we have to show that

'n
�
Xk � Xmax

�
'n (Xk � Xmax � c) ! 0 (4)

as n!1: Note that 'n
�
Xk � Xmax

�
� 'n

�
Xk � X1

�
. We �rst show that there exists N 2 N

such that for all n � N;

'n
�
Xk � Xmax � c

�
� 'n

�
Xk � X1 � c=2

�
: (5)

Now,

'n
�
Xk � Xmax � c

�
= 'n

�
Xk � Xmax � c j Xmax = X1

�
� 'n

�
Xmax = X1

�
+'n

�
Xk � Xmax � c j Xmax 6= X1

�
� 'n

�
Xmax 6= X1

�
� 'n

�
Xk � Xmax � c j Xmax = X1

�
� 'n

�
Xmax = X1

�
= 'n

�
Xk � X1 � c

�
� 'n

�
Xmax = X1

�
:

So, to show (5) it is su¢ cient to show that there exists N 2 N such that for all n � N;

'n
�
Xk � X1 � c

�
� 'n

�
Xmax = X1

�
� 'n

�
Xk � X1 � c=2

�
: (6)

Using Lemma 6.3, 'n
�
Xmax = X1

�
! 1 as n!1. We have,

'n
�
Xk � X1 � c=2

�
'n (Xk � X1 � c)

=
'n
��
Xk �X1

�
�
�
E
�
Xk
�
� E

�
X1
��
� �c=2�

�
E
�
Xk
�
� E

�
X1
���

'n ((Xk �X1)� (E (Xk)� E (X1)) � �c� (E (Xk)� E (X1)))
:
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Note that 'n
��
Xk �X1

�
�
�
E
�
Xk
�
� E

�
X1
���

has a normal distribution with mean 0; and
where the variance of 'n

�
Xk �X1

�
tends to 0 as n!1. Moreover, �c�

�
E
�
Xk
�
� E

�
X1
��
>

0 as E
�
Xk
�
� E

�
X1
�
< E

�
Xk
�
� E

�
Xk�1� = �c. Hence, using Lemma 6.5,

'n
��
Xk �X1

�
�
�
E
�
Xk
�
� E

�
X1
��
� �c=2�

�
E
�
Xk
�
� E

�
X1
���

'n ((Xk �X1)� (E (Xk)� E (X1)) � �c� (E (Xk)� E (X1)))
! 0

as n!1. Then, we have,
'n
�
Xk � X1 � c=2

�
'n (Xk � X1 � c) ! 0:

So, there exists N 2 N such that for all n � N;

'n
�
Xmax = X1

�
�
'n
�
Xk � X1 � c=2

�
'n (Xk � X1 � c) :

This proves (6), which, as we have shown, implies (5).
Now, by (5) we have

'n
�
Xk � Xmax

�
'n (Xk � Xmax � c)

�
'n
�
Xk � X1

�
'n (Xk � X1 � c=2)

=
'n
��
Xk �X1

�
�
�
E
�
Xk
�
� E

�
X1
��
� �

�
E
�
Xk
�
� E

�
X1
���

'n ((Xk �X1)� (E (Xk)� E (X1)) � �c=2� (E (Xk)� E (X1)))

=
'n
��
Xk �X1

�
�
�
E
�
Xk
�
� E

�
X1
��
�
�
E
�
X1
�
� E

�
Xk
���

'n ((Xk �X1)� (E (Xk)� E (X1)) � (E (X1)� E (Xk))� c=2)
! 0

as n goes to in�nity. Here the convergence follows from Lemma 6.5 as
�
E
�
X1
�
� E

�
Xk
��
�c=2 >

0. So, we have shown (4), which completes case 2. Hence, we have shown that (1) holds for all
k: Therefore, limn!1 �n = 0 and hence the proof is complete. �
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