
Chapter 2

Decision Problems

In this chapter we will discuss one-person decision problems. We start with decision problems under
certainty, where the decision maker perfectly knows the consequence of each of his possible decisions.
We investigate under which circumstances the decision maker’s preferences over his decisions allow for
an optimal choice, and when his preferences can be represented by a utility function.

Afterwards, we turn to decision problems under uncertainty, where the consequences of some
decisions depend on events that are beyond the decision maker’s control, and about which the decision
maker is thus uncertain. In this case, the decision maker’s preferences over the possible decisions will
depend on how likely he deems each of these uncertain events. When taken together, these subjective
likelihoods constitute the decision maker’s probabilistic belief. A conditional preference relation then
specifies the decision maker’s preferences over the decisions for every possible belief that he could have.
Throughout this book we will focus on a special class of conditional preference relations: those that
have an expected utility representation. We explain what we mean by an expected utility representation,
and how it can be computed for a given conditional preference relation. At the end of the chapter we
characterize, in a convenient way, those choices that are optimal for some belief.

In Chapter 2 of the online appendix to this book, we investigate which conditions must be imposed
on a conditional preference relation such that it allows for an expected utility representation. In that
same chapter we also discuss some economic applications of the theory we present here.

2.1 Decision Making under Certainty

As announced above, we will start with decision problems under certainty, where the decision maker
(DM from now on) can fully predict the consequence of each of the choices he can possibly make.
The main ingredient of such decision problems will be the preference relation that the DM has over
the available choices. In particular, we will discuss when such a preference relation allows for optimal
choices, and when it can be represented by a utility function.
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2.1.1 Preference Relations
Decision making is an important part of our life. Both at a professional level and in our everyday life
we must constantly make choices: Big choices with important consequences, but also many smaller
choices with a lower impact. It is fair to say that an important part of our life is shaped by the
decisions we make. In this book we focus mostly on decision problems from everyday life which, we
hope, most readers will be able to identify with. The leading example for this chapter is “The birthday
party”, and the story is as follows.

It is Saturday morning, the sun is shining, and later today you will celebrate your birthday. The
problem is: Where will you celebrate the party? In your house, in the garden, or in a tent that can be
placed in front of your house? From the weather forecast it is clear that it will remain sunny today.
Suppose your preferences over the three possible choices are given by

garden � house, tent � house, garden � tent. (2.1.1)

This should be read as follows: You prefer to have the party in the garden rather than having it in
the house, you prefer to have the party in a tent rather than having it in your house, and you prefer
to have the party in the garden rather than having it in a tent. Or, equivalently, if you were given
the choice between a party in the garden and a party in the house, you would definitely choose the
garden, and similarly for the other two pairwise comparisons. Such pairwise comparisions, when taken
together, constitute a preference relation.

Definition 2.1.1 (Preference relation) Let C be a finite set of choices for the DM. A preference
relation % on C specifies for every pair of choices a, b in C whether (a) the DM prefers a to b, written
as a � b, (b) the DM prefers b to a, written as b � a, or (c) the DM is indifferent between a and b,
written as a ∼ b.

Moreover, exactly one of these three cases must hold for every pair of choices a, b. That is, we
assume that the DM can evaluate every pair of choices unambiguously in terms of preference or
indifference. For instance, if the DM prefers a to b, than he cannot at the same time prefer b to a, or
be indifferent between a and b. The DM would be indifferent between a and b if he does not prefer
any of the two options over the other.

We write a % b if the DM either prefers a to b (that is, a � b), or is indifferent between a and b
(that is, a ∼ b). In this case, we say that the DM weakly prefers a to b.

In the example above, you would be the DM and your set of choices would be C = {house, garden,
tent}. It may be verified that the pairwise comparisons as stated above constitute a preference relation
% .

2.1.2 Optimal Choices
Let us return to the example “The birthday party”, with the preference relation as stated above.
Given these preferences, which choice would you make? Clearly, your optimal choice would be to
organize the party in your garden, as you prefer garden to the other two options. In general, a choice
is called optimal if you weakly prefer that choice to any other available choice.

Definition 2.1.2 (Optimal choice) A choice a is optimal if a % b for every other choice b.

Note that an optimal choice need not be (strictly) preferred to every other option —weakly preferred
is enough. In other words, you may deem an optimal choice equally good as some other choice. This
will become clear from the following question.
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Question 2.1.1 Suppose that in the example “The birthday party”your preference relation would be
as follows: garden � house, garden ∼ tent, and tent � house. What would be your optimal choice(s)?

A natural question is: Does every preference relation allow for an optimal choice? The answer is
“no”. To see this, consider again “The birthday party” example, and assume that your preference
relation has changed to

garden � house, house � tent, tent � garden.

Then, there is no optimal choice for you. Indeed, for every choice there is another choice that is
preferred to it.

There is something strange about this preference relation, however. If you prefer garden to house
and house to tent then it seems natural that you also prefer garden to tent. Your preference relation,
on the other hand, indicates that you prefer tent to garden, which seems contradictory. In formal
terms, the preference relation above violates the principle of transitivity.

Definition 2.1.3 (Transitivity) A preference relation % is transitive if for every three choices a, b
and c where a % b and b % c, it holds that a % c.

The following question collects some important properties that follow from transitivity.

Question 2.1.2 Consider a transitive preference relation % . Show that the following properties hold:
(a) if a � b and b � c then a � c;
(b) if a � b and b ∼ c then a � c;
(c) if a ∼ b and b � c then a � c;
(d) if a ∼ b and b ∼ c then a ∼ c.

It can be shown that under transitivity, an optimal choice will always exist.

Theorem 2.1.1 (Existence of optimal choice) For every transitive preference relation on a finite
set of choices there is at least one optimal choice.

Here is a proof: Take a finite set C of choices, and a preference relation % on C which is transitive.
Suppose, contrary to what we want to show, that there is no optimal choice in C. Then, for every
choice c ∈ C there must be some choice b(c) ∈ C such that b(c) � c. Start from an arbitrary choice
c1, and let c2 := b(c1), let c3 := b(c2), and so on. This way we create an infinite sequence of choices
(c1, c2, c3, ...) with the property that ck+1 � ck for every k. As there are only finitely many choices in
C, there must be a choice that occurs at least twice in this sequence. Let c∗ be such a choice, and let
k be the first number for which c∗ = ck. As c∗ occurs at least twice, there must be some m ≥ 1 with
c∗ = ck+m. We thus see that

c∗ = ck+m � ck+m−1 � ck+m−2 � ... � ck+1 � ck = c∗.

As c∗ = ck+m � ck+m−1 � ck+m−2, it follows from transitivity and property (a) in Question 2.1.2 that
c∗ � ck+m−2. As c∗ � ck+m−2 � ck+m−3 it follows in a similar way that c∗ � ck+m−3. By continuing in
this fashion we eventually conclude that c∗ � ck+1 � ck = c∗. Hence, c∗ � ck+1 and ck+1 � c∗, which
is a contradiction. Thus, there must be an optimal choice. This completes the proof. �

In the light of Theorem 2.1.1, one may wonder whether every preference relation that admits an
optimal choice must be transitive. The following question reveals that the answer is “no”: There are
intransitive preference relations that still allow for optimal choices.
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Question 2.1.3 Consider the set C = {a, b, c, d} of choices, and the preference relation % given by

b ∼ a, a ∼ c, d � a, b � c, b � d, c � d.

(a) Show that there is an optimal choice.
(b) Explain why % is not transitive.

2.1.3 Utility Representations
Consider the example “The birthday party”with the preference relation given by (2.1.1). That is, you
prefer garden to tent and tent to house, and hence, by transitivity, you also prefer garden to house.
Such preferences may be represented by the following utilities:

u(garden) = 3, u(tent) = 2, u(house) = 1. (2.1.2)

This should be read as follows: Having the party in the garden gives you a utility of 3, having the
party in a tent gives you a utility of 2, and having the party in your house gives you a utility of 1.
These utilities indicate how good or desirable you deem each of the three options, relative to the other
options.

The preferences in (2.1.1) can, in fact, be derived from the utility function in (2.1.2): If we compare
garden and tent then we see that garden has the higher utility, and hence you prefer garden to tent.
By analyzing the other two pairs of choices, we similarly see that in (2.1.1) you always prefer the
choice that yields the higher utility in (2.1.2). In that sense, the utility function in (2.1.2) represents
the preference relation in (2.1.1).

Definition 2.1.4 (Utility representation) Consider a set of choices C. A utility function u as-
signs to every choice c ∈ C some number u(c). The utility function u represents a preference relation
% if for every pair of choices a, b we have that

a % b if and only if u(a) ≥ u(b).

There are many other utility representations for the preference relation in (2.1.1). For instance,
the utility functions v and w given by

v(garden) = 8, v(tent) = 7, v(house) = 0 and

w(garden) = 5, w(tent) = 0, w(house) = −1

also represent this preference relation. Hence, the utilities, when viewed in isolation, have no intrinsic
meaning. When we say that the utility of having the party in the tent is 7, then this does not tell
us how desirable you find this option. Only the utilities in comparision with the other utilities have
a meaning: When comparing two choices, you always prefer the choice that yields the higher utility
among these two.

Note that in the utility function v above, the utility difference between garden and tent is 1,
whereas the utility difference between tent and house is 7. This might suggest that the intensity
by which you prefer tent to house is higher than the intensity by which you prefer garden to tent.
This is not necessarily the case, however. Look at the utility function w above. There, the utility
difference between garden and tent is 5, whereas the utility difference between tent and house is 1,
but it represents exactly the same preference relation. Hence, also the relative utility differences do
not have an intrinsic meaning here. This will be different in the following sections when we investigate
decision making under uncertainty. As we will see, the relative utility differences in those settings will
typically reflect the DM’s preference intensity.
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Question 2.1.4 Consider the set of choices C = {a, b, c, d}, and the utility function u where u(a) = 2,
u(b) = 5, u(c) = 7, u(d) = 5. Describe the preference relation that is represented by the utility function
u.

A practical advantage of a utility representation is that it is much more compact than describing
the preference relation in the original way, by means of pairwise rankings. The difference is especially
large when there are many choices present. Suppose there are 10 choices. Then, a preference relation
must specify 45 pairwise rankings between choices, whereas a utility function only needs to specify
10 numbers. Which of the two representations do you prefer? Moreover, once we have a utility
representation it becomes very easy to identify the optimal choices: These are precisely the choices
that yield the highest utility.

In this light, it is important to know when a preference relation has a utility representation. The
answer is surprisingly simple: Precisely when the preference relation is transitive.

Theorem 2.1.2 (When a utility representation exists) Consider a finite set of choices C. A
preference relation % on C has a utility representation, if and only if, % is transitive.

Once we rely on Theorem 2.1.1, the proof is not so diffi cult. We need to prove two directions here.
Let us first assume that % has a utility representation, that is, % is represented by a utility function
u.

Question 2.1.5 Show that % is transitive.

To show the other direction, assume that % is transitive. We will show that % can be represented
by a utility function u. By Theorem 2.1.1 we know that there is at least one optimal choice. Let C1

be the set of optimal choices.

Question 2.1.6 (a) Show that a ∼ b for all a, b ∈ C1.
(b) Show that a � b for all a ∈ C1 and for all b /∈ C1.

Now, focus on the set of choices C\C1, that is, all choices that are not in C1. Consider the
restriction of the preference relation % to choices in C\C1. Then, this restricted preference relation
is again transitive. By Theorem 2.1.1 we know that there is at least one optimal choice in C\C1 for
the restricted preference relation. Let C2 be the set of optimal choices within C\C1 for the restricted
preference relation. In a similar way as in Question 2.1.6 it can then be shown that a ∼ b for all
a, b ∈ C2, and a � b for all choices a ∈ C2 and all choices b that are not in C1 ∪C2. If we continue in
this fashion, we finally arrive at sets of choices C1, C2, ..., CK where

a ∼ b for all a, b in the same set Ck, and (2.1.3)

a � b whenever a ∈ Ck and b ∈ Ck+1 ∪ ... ∪ CK . (2.1.4)

We are now ready to define the utility function u. Choose numbers u1 > u2 > ... > uK , and set
u(a) := uk whenever a ∈ Ck. Then, in the light of (2.1.3) and (2.1.4), the utility function u represents
the preference relation % . This completes the proof. �

Question 2.1.7 Consider the set of choices C = {a, b, c, d}, and the preference relation % given by
b � a, c � a, a � d, b ∼ c, b � d, and c � d. Show that % is transitive, and find a utility representation
for % .

In the remainder of this book we will solely focus on preference relations that are transitive.
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rainy stormy calm

house
guests are happy
to be inside

guests are happy
to be inside

guests regret
being inside

garden
guests become
wet and angry

guests have diffi culty
standing upright

guests enjoy the
lovely weather at
the fullest

tent

guests remain dry,
but are annoyed
by the rain
ticking on the tent

complete disaster, as
the tent will blow away

guests somewhat
enjoy the sunny
weather, but would
rather be outside

Table 2.2.1 Consequences of your decisions, contingent on the weather

2.2 Decision Making under Uncertainty

In the previous section we assumed that the DM was certain about the consequences of each of his
decisions. For that reason, we refer to such situations as decision making under certainty. From this
section onwards we focus on situations where the DM is uncertain about the consequences of some
of his choices, because the consequence may depend on events that are beyond his control, like the
state of the weather, the outcome of some boxing match, or the decisions made by other people. We
will see that such uncertainty about the consequences may be modelled by the introduction of states,
and the assumption that the DM holds a probabilistic belief about the states. In this scenario, the
DM’s preference relation over the choices will be contingent on the belief he holds about the states,
and such situations are called decision problems under uncertainty. The object that summarizes the
DM’s contingent preferences for every possible belief about the states is called a conditional preference
relation. In the remainder of this chapter, we will be interested in those conditional preference relations
that can be represented by a utility matrix, assigning a utility to every possible choice and state. In
this case we say that the conditional preference relation has an expected utility representation.

2.2.1 States
Consider the example “The birthday party” from the previous section. So far we assumed that you
could perfectly predict the consequences of each of the three possible choices: garden, tent and house.
This amounts to saying that you were certain about the weather for that day. If, for instance, you
are certain that it will remain sunny and dry during the whole day, then the consequence of having
the party in the garden will be that the guests will be enjoying the lovely wheather outside, whereas
having the party in the house would disappoint the guests, because they will be wondering why they
cannot have their drink outside with such splendid weather.

Let us now assume that the weather forecasts for today are highly uncertain. There is a chance
that the weather will be calm and sunny, but it could also start to rain, and there is even a chance that
it will be stormy today. Clearly, the consequences of each of the possible decisions will crucially depend
on which of these three weather scenarios will be realized. And, as a consequence, your preferences
over the choices will depend on the weather scenario as well. Table 2.2.1 gives a possible description
of the consequences of each of the three decisions, contingent on the state of the weather.
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As a result, your preferences over the three choices, contingent on the state of the weather, would
be given by

house �[r] tent �[r] garden,
house �[s] garden �[s] tent, (2.2.1)

garden �[c] tent �[c] house.

Here, %[r],%[s] and %[c] denote your preference relations if the weather is rainy, stormy, or calm,
respectively. Moreover, we assume that these preference relations are all transitive. Thus, when we
write house �[r]tent �[r]garden, we mean that house �[r]tent, that tent �[r]garden, and therefore, by
transitivity, house �[r]garden.

The three possible weather conditions, rainy, stormy and calm, are called states. In general, a
state represents an event that influences the consequence of one or more decisions, and which is beyond
the DM’s control. As such, the state will also determine how the DM’s preferences over his choices
will look like. This is clearly shown by (2.2.1), where your preferences over the three possible party
locations depends on the state (of the weather). A general requirement is that the states represent
events that are mutually exclusive and exhaustive, that is, at all times exactly one of these events
must be the true event.

2.2.2 Beliefs
The question is now: Which of the three party locations would you choose in the birthday example?
The only correct answer is: “It depends”. Indeed, it depends on what you expect the weather to be in
the afternoon and evening. If you expect the weather to be rainy, or expect the weather to be stormy,
the optimal location would be your house. If instead you expect the weather to be calm, then it would
be optimal to have the party in the garden.

Does this mean that it will never be optimal for you to have the party in the tent? Well, not
necessarily. So far, we have only considered beliefs about the weather where you assign probability
one to one of the three states. When we said above that “you expect that the weather will be rainy”,
what we are really saying is that you assign probability 1 to the event that it will rain. Or, in other
words, you are 100% sure that it will rain.

But typically our beliefs are more modest than this. If you are truly uncertain about the weather,
then it is reasonable to assign a substantial probability to each of the three states. For instance, you
could assign probability 0.3 to the weather being rainy, probability 0.1 to the weather being stormy,
and probability 0.6 to the weather being calm. This reflects a state of mind in which you deem each
of the three weather scenarios possible, but where you deem the state calm twice as likely as the state
rainy, and deem the state rainy three times as likely as the state stormy. This is called a probabilistic
belief, or simply a belief.

Definition 2.2.1 (Probability distribution and belief) Consider a finite set X. A probability
distribution on X is a function p that assigns to every x ∈ X a number p(x), such that p(x) ≥ 0 for
all x ∈ X, and

∑
x∈X p(x) = 1. The set of all probability distributions on X is called ∆(X).

Consider a finite set of states S. A belief on S is a probability distribution p ∈ ∆(S) on S.

If we consider a belief p on S then, for a given state s, the number p(s) reflects how likely the DM
deems this particular state, compared to the other states.
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Figure 2.2.1 Visualization of beliefs with three states

2.2.3 Conditional Preference Relations
If we allow for such probabilistic beliefs over states, then it is natural to assume that your preferences
over the three party locations will depend not only on the three possible weather scenarios, but on
your belief about these weather scenarios. For instance, if you assign probability 0.3 to the weather
being rainy, probability 0.1 to the weather being stormy, and probability 0.6 to the weather being
calm, as above, then your preferences over the three party locations may be different than when you
would assign probability 0.5 to rainy, probability 0.2 to stormy, and probability 0.3 to calm. And
these two preference relations may, in turn, be different from a scenario where you assign probability
0 to rainy, probability 0.6 to stormy, and probability 0.4 to calm. The object that summarizes the
DM’s preferences for every possible belief is called a conditional preference relation.

Definition 2.2.2 (Conditional preference relation) Consider a set of choices C and a set of
states S. A conditional preference relation % assigns to every belief p ∈ ∆(S) a preference relation
%p over the choices in C.

If we put together the set of choices, the set of states, and the conditional preference relation, we
obtain a decision problem under uncertainty.

Definition 2.2.3 (Decision problem under uncertainty) A decision problem under uncer-
tainty is a triple (C, S,%), where C is the set of choices, S is the set of states, and % is a conditional
preference relation.

In the remainder of this book we will refer to such objects simply as decision problems, as we
will always focus on situations with uncertainty. The main ingredient of a decision problem is thus
the conditional preference relation, assigning to every possible belief a preference relation over the
possible choices. If there are two, three or four states, then such conditional preference relations can
be represented graphically, as we will see in this chapter.

Consider again the example “The birthday party”, where the set of states is S = {rainy, stormy,
calm}. Then, every belief p ∈ ∆(S) can be identified with a point in a triangle, as depicted in
Figure 2.2.1. The three cornerpoints of the triangle correspond to the three beliefs where you assign
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Figure 2.2.2 Conditional preference relation for “The birthday party”

probability 1 to rainy, probability 1 to stormy, and probability 1 to calm, respectively. On the edge
between rainy and calm we have denoted the probability that the belief assigns to rainy. Consider, for
instance, the probability 0.7 on this edge. Then, the grey line that starts at 0.7 represents all beliefs
that assign probability 0.7 to rainy. Similarly for the other grey lines that start at a probability on
this edge. In the same fashion, the probabilities at the edge between stormy and calm denote the
probability that the belief assigns to stormy. The grey line that starts at probability 0.2 on this edge
represents all beliefs that assign probability 0.2 to stormy, and similarly for the other grey lines that
start at a probability on this edge.

Now, consider the belief p in Figure 2.2.1. By looking at the two grey lines that pass through
p, it may be verified that p assigns probability 0.3 to rainy and probability 0.5 to stormy. As the
sum of the probabilities must be 1, the belief p must assign probability 0.2 to calm. We will write
p = (0.3, 0.5, 0.2), where these three numbers represent the probabilities assigned to the first state
(rainy), the second state (stormy) and the third state (calm), respectively. Alternatively, the belief p
can also be written as p = (0.3)· rainy + (0.5)· stormy + (0.2)· calm. We use both types of notation,
depending on what is most convenient.

Question 2.2.1 (a) Describe the belief q in Figure 2.2.1.
(b) Locate the belief r = (0.6, 0.3, 0.1) in the triangle of Figure 2.2.1.

Now that we know how your beliefs can be identified with points in a triangle, we can can ac-
cordingly visualize a conditional preference relation. Consider, for instance, the conditional preference
relation depicted in Figure 2.2.2. As you can see, the set of all possible beliefs is divided into six
different main areas, and for each of the main areas we have specified the preferences over choices you
would have there. For instance, at the belief p your preferences would be

house �p tent �p garden,

whereas at the belief q your preferences would be given by

garden �q tent �q house.
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Then, there are also the three lines where you would be indifferent between two of the choices. For
instance, the line indicated by g ∼ t represents the beliefs where you would be indifferent between
garden and tent. At the belief m, depicted in the figure on this line, your preferences would thus be
given by

house �m garden ∼m tent.

Note that this conditional preference relation is consistent with the preferences contingent on the
three states in (2.2.1). Indeed, at the three cornerpoints of the triangle, the preferences are given by

house �[r] tent �[r] garden,
house �[s] garden �[s] tent,
garden �[c] tent �[c] house,

where [r], [s] and [c] are the three beliefs that assign probability 1 to rainy, stormy and calm, respec-
tively. At these beliefs, where you are 100% certain about the weather condition, it is never optimal
to have the party in a tent.

At the time, it can be seen from Figure 2.2.2 that choosing the tent would be optimal for beliefs
that assign positive probability to both rainy and calm. That is, if you are truly uncertain about
whether it will rain or not, it may be optimal to go for the tent. This also makes intuitive sense:
Although tent is not optimal at the states rainy and calm, it provides a good second-best option
for both states. Moreover, organizing the party in the house or in the garden is more risky, as both
options could lead to really bad consequences in one of these two states. Hence, there is something to
say for the “safe”option tent if you are highly uncertain about the chances of a rain shower. As the
choice tent is optimal for at least one belief, we call tent a rational choice.

Definition 2.2.4 (Rational choice) A choice c ∈ C is rational if there is a belief p ∈ ∆(S) such
that c is optimal for the preference relation %p .

Given the preferences at the three states as specified in (2.2.1) it is not guaranteed, however, that
tent is a rational choice. To see this, consider the alternative conditional preference relation in Figure
2.2.3. This conditional preference relation still induces the same preference relations at the three
states, as given by (2.2.1). However, compared to the conditional preference relation from Figure
2.2.2, your preference intensity for the choice tent has gone down. This can be seen from the fact that
the set of beliefs for which you prefer tent to house, and the set of beliefs for which you prefer tent
to garden, have both shrunk relative to Figure 2.2.2. It could be that you suddenly remember the
terrible camping experience you had last summer, decreasing the appeal of a tent.

2.2.4 Dominance and Preference Reversals
Consider a conditional preference relation %, and two choices a and b. The following definition reveals
what it means that choices a and b are equivalent, that a strictly dominates b, that a weakly dominates
b, and that there are preference reversals between a and b.

Definition 2.2.5 (Equivalence, dominance, and preference reversals) Consider a conditional
preference relation % and two choices a and b.
(a) Choices a and b are equivalent if a ∼p b for all beliefs p.

(b) Choice a strictly dominates choice b if a �p b for all beliefs p.



2.2. DECISION MAKING UNDER UNCERTAINTY 23

Figure 2.2.3 Alternative conditional preference relation for “The birthday party”

Figure 2.2.4 Illustration of weak dominance

(c) Choice a weakly dominates choice b if a %p b for all beliefs p, and a �q b for some belief q.

(d) There are preference reversals between a and b if there is a belief p with a �p b and some other
belief q with b �q a.

Note that for every two choices a and b, we must either have that (i) a and b are equivalent, or
(ii) a weakly dominates b, or (iii) b weakly dominates a, or (iv) there are preference reversals between
a and b.

As an illustration, consider the conditional preference relation in Figure 2.2.4. Here, [x] denotes
the belief that assigns probability 1 to state x. Similarly for [y] and [z]. Since the DM is indifferent
between choices a and b for all beliefs on the line segment between [x] and [z], but strictly prefers a
to b for all other beliefs, we conclude that choice a weakly dominates choice b, but a does not strictly
dominate b.
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Figure 2.3.1 Conditional preference relation for “The birthday party”

rainy stormy calm
house 10 17 0
garden 0 7 10
tent 3 0 3

Table 2.3.1 Expected utility representation for the conditional preference relation in Figure 2.3.1

2.3 Expected Utility Representation

In this section we will see what it means that a conditional preference relation is represented by a
matrix of utilities. We refer to such a matrix as an expected utility representation. Afterwards, we will
explore how unique the expected utility representation is. Finally, we will interpret the differences in
expected utility from two choices a and b as the intensity by which the DM prefers a to b.

2.3.1 Expected Utility
Consider the conditional preference relation in Figure 2.3.1. This is the same conditional preference
relation as in Figure 2.2.3, but now supplemented with some precise numbers. As we will see, the
conditional preference relation is represented by the utility matrix in Table 2.3.1. This utility matrix
thus specifies a utility for every choice and every state. For instance, if you have the party in the
garden and the weather is stormy, then the resulting utility would be 7.

Consider some belief p, say p = (0.3)· rainy + (0.5)· stormy + (0.2)· calm. Under this belief, your
expected utility from choosing house would be

u(house, p) = (0.3) · 10 + (0.5) · 17 + (0.2) · 0 = 11.5.

The logic behind this expression is that you multiply each of the possible utilities that the choice
house can induce by the probability you expect this utility to occur, and you sum these terms up. For
instance, you expect the weather to be rainy with probability 0.3, in which case your utility would be
10. Similarly for the other two terms above.
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In the same way we can derive the expected utility of choosing garden and tent under this belief
p, yielding

u(garden, p) = (0.3) · 0 + (0.5) · 7 + (0.2) · 10 = 5.5, and

u(tent, p) = (0.3) · 3 + (0.5) · 0 + (0.2) · 3 = 1.5.

In particular, we see that the expected utility of house is higher than that of garden, which in turn
is higher than that of tent. This matches precisely your preferences at the belief p which, based on
Figure 2.3.1, are house �p garden �p tent. That is, at the belief p you always prefer, among any pair
of choices, the choice that yields the higher expected utility.

Question 2.3.1 Compute the expected utility of the three choices under the belief q = (0.3, 0.1, 0.6),
and verify that this matches your preferences at q.

Now, consider the belief r = (0.3)· rainy + (0.7)· calm, which assigns probability 0 to stormy.
Then, the expected utilities of the three choices are

u(house, r) = (0.3) · 10 + 0 · 17 + (0.7) · 0 = 3,

u(garden, r) = (0.3) · 0 + 0 · 7 + (0.7) · 10 = 7,

u(tent, r) = (0.3) · 3 + 0 · 0 + (0.7) · 3 = 3.

Hence, the expected utility of garden is higher than that of the other two choices, whereas house and
tent yield the same expected utility. This matches exactly your preferences at the belief r which, on
the basis of Figure 2.3.1, are given by garden �r house ∼r tent.

It may be verified that, at every belief p, the expected utilities of the three choices always match
precisely the preferences you have at p. As an additional exercise, it may be useful to try a few beliefs,
to compute the expected utilities of the three choices at these beliefs, and to verify that the induced
rankings coincide precisely with your preferences at these beliefs. In this case, we say that the utility
matrix represents the conditional preference relation.

Definition 2.3.1 (Expected utility representation) Consider a decision problem (C, S,%).

(a) A utility function u assigns to every choice c ∈ C and state s ∈ S a number u(c, s). This number
is called a utility.

(b) At a given belief p ∈ ∆(S), and for a given choice c, the expected utility of choice c under the
belief p is

u(c, p) :=
∑
s∈S

p(s) · u(c, s).

(c) The utility function u represents the conditional preference relation % if for every belief p ∈ ∆(S),
and every two choices a, b,

a %p b if and only if u(a, p) ≥ u(b, p).

In this case, u is called an expected utility representation of the conditional preference relation
% .

If the conditional preference relation is represented by a utility function u, we often write the
decision problem as (C, S, u), replacing the conditional preference relation by a utility function that
represents it.
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Figure 2.3.2 When there is no expected utility representation

Above we have seen that the conditional preference relation in Figure 2.3.1 has an expected utility
representation. But is this is true for every conditional preference relation? The answer is “no”. As
an illustration, consider the conditional preference relation % between the choices house and tent in
Figure 2.3.2. It may be verified that % has no expected utility representation. To see this, suppose
that there would be an expected utility representation u for % . Then, at the beliefs p1 and p2 the
expected utility of tent should be equal to the expected utility of house. This would imply that the
expected utilities of tent and house are equal for every belief on the line between p1 and p2. Hence,
you would be indifferent between tent and house for every belief on the line between p1 and p2. This,
however, contradicts the data from Figure 2.3.2. We thus conclude that there is no expected utility
representation for % .

This raises the question: What conditions must we impose on a conditional preference relation
such that it will have an expected utility representation? This question will be addressed in Chapter
2 of the online appendix to this book. The interested reader is referred to the online appendix for
more details. Our general approach there is that we consider three different scenarios: the case of
two choices only, the case where there are preference reversals between every two choices, and the
general case. For every scenario we present conditions —also called axioms —on conditional preference
relations that are both necessary and suffi cient for allowing an expected utility representation. From
Chapter 3 onwards, we will always assume that the conditional preference relations have an expected
utility representation.

2.3.2 How Unique is Expected Utility Representation?
Clearly, a utility function u always induces a unique conditional preference relation: The conditional
preference relation % where for every belief p and every two choices a and b, the DM always prefers
the choice that yields the higher expected utility. But does every such conditional preference relation
have a unique expected utility representation?

The answer is “no”. Consider the expected utility representation u in Table 2.3.1, and add 1
utility unit for all choices at the state rainy, add 5 utility units for all choices at the state stormy,
and substract 3 utility units for all choices at the state calm. This results in the utility function v as
depicted in Table 2.3.2.
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rainy stormy calm
house 11 22 −3
garden 1 12 7
tent 4 5 0

Table 2.3.2 Alternative expected utility representation for the conditional preference relation in Figure
2.3.1

rainy stormy calm
house 40 68 0
garden 0 28 40
tent 12 0 12

Table 2.3.3 Alternative expected utility representation for the conditional preference relation in Figure
2.3.1

Note that at every state, the utility differences between the three choices are exactly the same as
in Table 2.3.1. Consequently, the expected utility differences between the three choices at every belief
will also be the same as in Table 2.3.1. But then, also the new utility function v from Table 2.3.2
will represent the conditional preference relation % from Figure 2.3.1. Indeed, for every belief the DM
prefers a choice a to a choice b precisely when the expected utility difference between a and b given
the utility function u (and therefore also given the utility function v) is larger than 0.

We can also multiply all utilities in Table 2.3.1 by the same positive number, say 4. This would
result in the utility function w as depicted in Table 2.3.3. With the new utility function w, the utility
differences at every state are exactly 4 times as large as in Table 2.3.1, and hence the same applies to
the expected utility differences at every belief. Therefore, the new utility function w will also represent
the conditional preference relation % from Figure 2.3.1. The argument is similar as above: For every
belief the DM prefers a choice a to a choice b precisely when the expected utility difference between
a and b given the utility function u (and therefore also given the utility function w) is larger than 0.

We thus see that, if we take an expected utility representation u, and multiply all utilities by the
same positive number α > 0, or add for every state s a constant number vs (possibly negative) to the
utilities u(c, s) of the different choices, then the new utility function will still be an expected utility
representation. In particular, the expected utility representation is far from being unique.

But we can say a little more: By the argument above there are at least |S|+ 1 degrees of freedom
for choosing the expected utility representation, provided the DM is not always indifferent between
all of his choices. Here, |S| denotes the number of states. One degree of freedom arises because we
can choose any α > 0, whereas the choices of the numbers vs above, for every state s ∈ S, results in
|S| additional degrees of freedom.

For the conditional preference relation in Figure 2.3.1 we would thus have at least 4 degrees of
freedom for the expected utility differences, as there are three states. In fact, one can prove that there
are exactly 4 degrees of freedom here, no more and no less. This will follow from Theorem 2.5.1 in
this chapter.

Question 2.3.2 Consider the conditional preference relation from Figure 2.3.1. Find the unique
expected utility representation u where u(house, rainy) = 0, u(house, stormy) = 0, u(house, calm) = 0
and u(garden, calm) = 1.
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2.3.3 Expected Utility Differences as Preference Intensities
Above we have argued that for the conditional preference relation in Figure 2.3.1 there are precisely 4
degrees of freedom when choosing an expected utility representation: One because we can multiply all
utilities in Table 2.3.1 by the same positive number α > 0, and three more because for every state s in
Table 2.3.1 we can add the same number vs to all utilities in the column that belongs to s. But then,
the utility differences between the three choices at the three states will be unique up to the positive
multiplicative constant α, and the same is true for the expected utility differences at the various beliefs.

In other words, the relative expected utility differences are unique at every belief. These relative
expected utility differences at the various beliefs have a very natural interpretation, as they may be
viewed as the relative intensities by which the DM prefers one choice to another at these beliefs. As an
illustration, consider the expected utility representation in Table 2.3.1, and take the belief p = (0.3)·
rainy + (0.5)· stormy + (0.2)· calm. As we have seen above, the associated expected utilities are

u(house, p) = 11.5, u(garden, p) = 5.5 and u(tent, p) = 1.5.

Thus, the expected utility difference between house and garden is 6, whereas the expected utility
difference between garden and tent is 4. This indicates that the intensity by which the DM prefers
house to garden is 6/4 times as high as the intensity by which he prefers garden to tent. In other
words, at the belief p the DM’s preference of house over garden is 1.5 times stronger than his preference
of garden over tent.

Or consider the belief q that assigns probability 1 to the state rainy, where the (expected) utilities
are given by

u(house, q) = 10, u(garden, q) = 0 and u(tent, q) = 3.

This reflects a state of mind in which the intensity by which the DM prefers house to tent is 7/3 times
as high as the intensity by which he prefers tent to garden.

We can even compare preference intensities across different beliefs. By comparing the expected
utility differences at the two beliefs p and q, we can say that the intensity by which the DM prefers
house to garden at the belief q is 10/6 times higher than at the belief p. Similarly, the intensity by
which the DM prefers house to garden at the belief q is 10/4 times higher than the intensity by which
the DM prefers garden to tent at the belief p.

Not only does an expected utility representation allow us to derive the DM’s preference intensities
at the various beliefs, which is important conceptually, it also has a big practical advantage: Instead
of having to specify the DM’s preferences over choices for each of the (infinitely many) beliefs, the only
thing we need to do is to write down a few utilities, one for every choice-state pair. Especially when
there are more than four states, in which case drawing the conditional preference relation becomes
either very diffi cult or impossible, such an expected utility representation would still enable us to
summarize the conditional preference relation in a compact way, by means of a matrix with finitely
many utilities.

2.4 Utility Design Procedure

Suppose we consider a conditional preference relation that has an expected utility representation. How
can we compute such an expected utility representation then? This is the question we will address in
this section. Indeed, we will develop a utility design procedure that allows us to compute an expected
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Figure 2.4.1 Utility design procedure for two choices

utility representation in an effi cient manner. Since we would like to build up the complexity step by
step, we consider three different scenarios with increasing degrees of diffi culty: (1) the case of two
choices with preference reversals, (2) the case of more than two choices with preference reversals, and
(3) the general case.

2.4.1 Two Choices with Preference Reversals
Let us return to the example “The birthday party”. Suppose the DM holds the conditional preference
relation in Figure 2.3.1. If we focus only on the choices house and tent we obtain the conditional
preference relation in Figure 2.4.1. It turns out that this conditional preference relation has an
expected utility representation. But how can we find such an expected utility representation in a
systematic way?

Since only the utility differences matter, we can choose the utilities for one of the choices freely,
say for tent. To make things easy for us, we can choose all utilities for tent equal to 0, that is,

u(tent, rainy) = 0, u(tent, stormy) = 0 and u(tent, calm) = 0.

In Section 2.3.2 we have seen that if we start from an expected utility representation, we can also
multiply all utilities by the same positive number and still be sure that we have an expected utility
representation at the end. As such, the utility for house at state rainy can be chosen arbitrarily, as
long as it is larger than 0, since you prefer house to tent at this state. Let us choose

u(house, rainy) = 1.

Now, consider the state calm. What should the utility for house at this state be? To answer this
question, concentrate on the line segment of beliefs that only assign positive probability to the states
rainy and calm. This line segment goes from the state rainy to the state calm. Note that the belief
p1 = (0.3, 0, 0.7) is on this line segment, and that you are indifferent between house and tent at this
belief. That is, at the belief p1, the expected utility difference between house and tent must be 0.

The expected utility difference between house and tent, when viewed as a function of the belief p
on the line segment between rain and calm, can be vizualized by Figure 2.4.2. From the picture it can
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Figure 2.4.2 Expected utility difference on a line of beliefs

be seen that
u(house, rainy)− u(tent, rainy)

u(tent, calm)− u(house, calm)
=
A

B
, (2.4.1)

where A is the distance between rainy and p1, and B is the distance between calm and p1. Since
the probability of calm at the state rainy is 0, the distance A is p1(calm) − 0 = p1(calm). Similarly,
the probability of rainy at the state calm is 0, and thus the distance B is p1(rainy)− 0 = p1(rainy).
Together with (2.4.1) we can therefore conclude that

u(house, rainy)− u(tent, rainy)

u(tent, calm)− u(house, calm)
=
A

B
=
p1(calm)

p1(rainy)
. (2.4.2)

This formula enables us to compute u(house, calm), since we already know u(tent, rainy), u(tent,
calm) and u(house, rainy). Indeed, since u(tent, rainy) = u(tent, calm) = 0 and u(house, rainy) = 1,
it follows from (2.4.2) that

1

−u(house, calm)
=
p1(calm)

p1(rainy)
=

0.7

0.3
=

7

3
,

which yields
u(house, calm) = −3/7.

In fact, the formula (2.4.2) above can be generalized for any two states, any two choices, and any
belief on the line between the two states where the DM is indifferent between the two choices. We call
this the utility difference property.

Utility difference property. Consider a conditional preference relation % with an expected utility
representation u. Take two choices a, b and two states x, y such that the DM prefers a to b at x and
prefers b to a at y. Suppose that the DM is indifferent between a and b at the belief p on the line
segment between [x] and [y]. Then,

u(a, x)− u(b, x)

u(b, y)− u(a, y)
=
p(y)

p(x)
.

We can use the utility difference property to finally compute the utility for house at the state
stormy. Let [s] be the belief that assigns probability 1 to state stormy. Consider the line segment
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u rainy stormy calm
tent 0 0 0
house 1 17/7 −3/7

v rainy stormy calm
tent 3 0 3
house 10 17 0

Table 2.4.1 Two expected utility representations for the conditional preference relation in Figure 2.4.1

of beliefs between [s] and [c], and the belief p2 = (0, 0.15, 0.85) on this line segment where you are
indifferent between house and tent. Then, it follows by the utility difference property that

u(house, stormy)− u(tent, stormy)

u(tent, calm)− u(house, calm)
=

p2(calm)

p2(stormy)
.

Since u(tent, stormy) = 0, u(tent, calm) = 0, u(house, calm) = −3/7, p2(calm) = 0.85 and
p2(stormy) = 0.15, we obtain

u(house, stormy)

3/7
=

0.85

0.15
=

17

3
.

Thus,
u(house, stormy) = 17/7.

Hence, we obtain the utility function u in the left-hand panel of Table 2.4.1.
It may be verified that this utility function represents the conditional preference relation from

Figure 2.4.1. To see this, consider the utility function v in the right-hand panel of Table 2.4.1, which
is based on the utility function from Table 2.3.1. We have already seen in the previous section that v
represents the conditional preference relation from Figure 2.4.1.

Note that at each of the three states, the utility difference in v is exactly 7 times as large as in u.
Consequently, at every belief the expected utility difference induced by v is exactly 7 times as large
compared to u. In particular, both utility functions will induce the same preferences between tent and
house at each of the beliefs. Since we have already seen that v represents the conditional preference
relation in Figure 2.4.1, the same holds for utility function u.

Question 2.4.1 Consider the conditional preference relation in Figure 2.3.1, and concentrate on the
preferences between garden and tent. In a similar way as above, derive the unique utility function u
that represents this conditional preference relation between garden and tent, such that the utilities for
tent are always 0, and u(garden, calm) = 1.

The method we used above to calculate an expected utility representation for the conditional
preference relation in Figure 2.4.1 can be generalized. The resulting procedure, called utility design
procedure for two choices with reversals, can be applied to conditional preference relations on two
choices, a and b, where there are preference reversals between a and b. Recall from Definition 2.2.5
that there are preference reversals between a and b if there is some belief p with a �p b and some belief
q with b �q a. If, in addition, there is an expected utility representation for the conditional preference
relation, then it can be shown that there must be a state x with a �[x] b and another state y with
b �[y] a. Here, [x] denotes the belief that assigns probability 1 to the state x, and similarly for [y].

Definition 2.4.1 (Utility design for two choices with reversals) Consider a conditional pref-
erence relation % with two choices, a and b, such that there are preference reversals between a and b.
To start, define u(a, s) arbitrarily for every state s, select two states, x and y, such that a �[x] b and
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b �[y] a, and set u(b, y) = α for some arbitrary number α > u(a, y).

Select a belief p on the line between [x] and [y] with a ∼p b, and determine u(b, x) by the utility
difference property

u(a, x)− u(b, x)

u(b, y)− u(a, y)
=
p(y)

p(x)
.

For every state s 6= x, y with b �[s] a, select a belief p on the line between [x] and [s] with a ∼p b, and
determine u(b, s) by the utility difference property

u(b, s)− u(a, s)

u(a, x)− u(b, x)
=
p(x)

p(s)
.

For every state s 6= x, y with a �[s] b, select a belief p on the line between [y] and [s] with a ∼p b, and
determine u(b, s) by the utility difference property

u(a, s)− u(b, s)

u(b, y)− u(a, y)
=
p(y)

p(s)
.

For every state s 6= x, y with a ∼[s] b, set u(b, s) := u(a, s).

The procedure not only enables us to compute an expected utility representation if there is some,
but also helps to determine whether the conditional preference relation has an expected utility rep-
resentation at all. Indeed, suppose that we start from a conditional preference relation %, use the
procedure above and get stuck because there is no belief p on the line between [x] and [y] with a ∼p b.
Then, we can conclude that there is no expected utility representation. The intuition is clear: If there
would be an expected utility representation u, then u(a, x) > u(b, x) and u(b, y) > u(a, y), and hence
there would be a belief p on the line between [x] and [y] with u(a, p) = u(b, p), which would imply that
a ∼p b. Similarly, if at some of the further steps we conclude that there is no belief on the line between
[x] and [s], or on the line between [y] and [s], with a ∼p b, then this means there is no expected utility
representation.

Or suppose we are able to run the procedure until the end, find a utility function u, but conclude
that u does not represent the conditional preference relation % . Also in this case we may safely
conclude that there is no expected utility representation at all. As an illustration, consider the
conditional preference relation % in Figure 2.4.3 for the “Birthday party”with choices tent and house.

It is easily seen that this conditional preference relation can have no expected utility representation.
Indeed, suppose it would have an expected utility representation u. Then, u(house, p1) = u(tent, p1)
and u(house, p2) = u(tent, p2), which would imply that also u(house, p) = u(tent, p) for all the beliefs
p on the line between p1 and p2. That is, you should be indifferent between house and tent for all
beliefs on the line between p1 and p2. However, from the figure it is clear that you prefer tent to house
for all beliefs on the line between p1 and p2, except for the beliefs p1 and p2 themselves. This means
there can be no expected utility representation.

Now suppose you would run the utility design procedure to compute a utility function u. As
the procedure is completely based on the beliefs p1 and p2 this would lead to the utility function
u we computed above, represented in the left-hand panel of Table 2.4.1. Consider the belief p =
(0.15, 0.075, 0.775) exactly halfway between p1 and p2. Then, it may be verified that u(house, p) =
u(tent, p), whereas the conditional preference relation indicates that t �p h. As such, the utility
function u so computed does not represent the conditional preference relation % . Based on this, we
conclude that % has no expected utility representation at all.



2.4. UTILITY DESIGN PROCEDURE 33

Figure 2.4.3 When there is no expected utility representation

To conclude, we illustrate the utility design procedure by an example with four states. The story
is as follows: Last year you had a terrible camping experience, and for that reason you have discarded
the tent as a possible location for your birthday party. Hence, you must decide between having the
party in your house and having it in the garden. You realized that the category calm was a bit too
vague to describe the weather, because calm weather could mean sunny or cloudy, and this may make
a difference for your optimal choice. You therefore replace the state calm by two more descriptive
states, sunny and cloudy.

Suppose that your conditional preference relation between house and garden is given by Figure
2.4.4. This is a three-dimensional picture. The four corner points of the pyramid represent the
probability 1 beliefs, where you assign probability 1 to rainy, probability 1 to cloudy, probability 1
to stormy, and probability 1 to sunny, respectively. Similarly as for three states, every belief can
be identified with a point in the pyramid. The closer a belief is to a certain cornerpoint, the higher
the probability that the belief assigns to the state at that cornerpoint. For instance, the higher the
probability that is being assigned to rainy, the closer the belief will be to the cornerpoint rainy. The
six edges of the pyramid represent beliefs that assign positive probability to at most two states. As
an example, the edge between rainy and sunny represents all beliefs that assign positive probability
only to rainy and sunny, and assign probability 0 to the other two states.

The set of beliefs where you are different between house and garden is represented by the grey
plane inside the pyramid, with four cornerpoints, including p1, p2 and p3. For all beliefs above the
plane you prefer garden whereas you prefer house for all beliefs below the plane. In particular, there
are preference reversals between house and garden. We will now use the utility design procedure to
find a utility function that represents this conditional preference relation.

We start by setting all utilities for house equal to 0, by fixing the states x = rainy and y = sunny,
and by setting u(garden, sunny) = 1. Then, we calculate u(garden, rainy) by the utility difference
property with respect to the belief p1 = 0.5 rainy +0.5 sunny. That is,

u(house, rainy)− u(garden, rainy)

u(garden, sunny)− u(house, sunny)
=
p1(sunny)

p1(rainy)
=

0.5

0.5
= 1.
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Figure 2.4.4 A conditional preference relation for four states of weather

Since u(house, rainy) = u(house, sunny) = 0 and u(garden, sunny) = 1, we get

−u(garden, rainy)

1
= 1

and hence
u(garden, rainy) = −1.

Next, we compute u(garden, stormy) by the utility difference property with respect to the belief
p2 = 0.4 stormy +0.6 sunny. That is,

u(house, stormy)− u(garden, stormy)

u(garden, sunny)− u(house, sunny)
=

p2(sunny)

p2(stormy)
=

0.6

0.4
= 1.5.

As u(house, stormy) = u(house, sunny) = 0 and u(garden, sunny) = 1, we get

−u(garden, stormy)

1
= 1.5,

which yields
u(garden, stormy) = −1.5.

Finally, we obtain u(garden, cloudy) by the utility difference property with respect to the belief
p3 = 2/3 cloudy +1/3 rainy. That is,

u(garden, cloudy)− u(house, cloudy)

u(house, rainy)− u(garden, rainy)
=

p3(rainy)

p3(cloudy)
=

1/3

2/3
= 0.5.
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u sunny rainy stormy cloudy
house 0 0 0 0
garden 1 −1 −1.5 0.5

Table 2.4.2 An expected utility representations for the conditional preference relation in Figure 2.4.4

Figure 2.4.5 Utility design procedure for three choices

As u(house, cloudy) = u(house, rainy) = 0 and u(garden, rainy) = −1, we get

u(garden, cloudy)

1
= 0.5,

which yields
u(garden, cloudy) = 0.5.

We thus obtain the utility function in Table 2.4.2. It may be verified that this utility function represents
the conditional preference relation in Figure 2.4.4.

2.4.2 More Than Two Choices with Preference Reversals
We now move from two choices to three choices or more, but assume that there are preference reversals
between every two choices. Similarly to what we have done for the case of two choices, we will present
a utility design procedure for this case. To illustrate how the procedure works, let us return to the
conditional preference relation in Figure 2.3.1, which we have reproduced in Figure 2.4.5. We have
seen in Section 2.3 that it has an expected utility representation. But how would we compute these
utilities, based on the data in Figure 2.4.5?

In the previous section we have already computed some utilities that represent the conditional
preferences between house and tent. This was done based on the utility design procedure for two
choices, and the resulting utilities have been reproduced in Table 2.4.3.

We next turn to the utilities for garden. How can these be derived? Note that the belief p1 is on
the line segment between rainy and calm, that the DM prefers garden to tent at the state calm and
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u rainy stormy calm
tent 0 0 0
house 1 17/7 −3/7

Table 2.4.3 Expected utility representation for the conditional preferences between house and garden

prefers tent to garden at the state rainy. By applying the utility difference property to the belief p1
and the choices garden and tent we obtain

u(garden, calm)− u(tent, calm)

u(tent, rainy)− u(garden, rainy)
=
p1(rainy)

p1(calm)
.

By substituting p1(rainy) = 0.7, p1(calm) = 0.3, u(tent, calm) = 0 and u(tent, rainy) = 0, it follows
that

u(garden, calm)

−u(garden, rainy)
=

0.7

0.3
=

7

3
.

By cross-multiplying we get

u(garden, calm) = −7

3
· u(garden, rainy). (2.4.3)

Next, applying the utility difference property to the belief p2 and the choices garden and house
yields

u(garden, calm)− u(house, calm)

u(house, rainy)− u(garden, rainy)
=
p2(rainy)

p2(calm)
.

By substituting p2(rainy) = 0.5, p2(calm) = 0.5, u(house, calm) = −3/7 and u(house, rainy) = 1, we
get

u(garden, calm) + 3/7

1− u(garden, rainy)
= 1.

Thus,
u(garden, calm) = 4/7− u(garden, rainy). (2.4.4)

By combining (2.4.4) and (2.4.3) we obtain

−7

3
· u(garden, rainy) = 4/7− u(garden, rainy),

which yields
4

3
· u(garden, rainy) = −4

7
,

and hence
u(garden, rainy) = −3/7.

If we substitute this into (2.4.4) we get

u(garden, calm) = 1.

Finally, if we apply the utility difference property to the belief p3 and the choices garden and
house, we obtain

u(garden, calm)− u(house, calm)

u(house, stormy)− u(garden, stormy)
=
p3(stormy)

p3(calm)
.
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rainy stormy calm
house 1 17/7 −3/7
garden −3/7 1 1
tent 0 0 0

rainy stormy calm
house 10 17 0
garden 0 7 10
tent 3 0 3

Table 2.4.4 Expected utility representations for the conditional preference relation in Figure 2.4.5

Since p3(stormy) = 0.5, p3(calm) = 0.5, u(garden, calm) = 1, u(house, calm) = −3/7 and u(house,
stormy) = 17/7, it follows that

10/7

17/7− u(garden, stormy)
= 1.

This implies
u(garden, stormy) = 1.

We thus obtain the utilities in the left-hand panel of Table 2.4.4.
It may be verified that these utilities represent the conditional preference relation at hand. The

easiest way to see this is to compare these utilities to the ones in the right-hand panel of Table 2.4.4.
We have seen in Section 2.3 that the right-hand utilities represent the conditional preference relation.
Note that the right-hand utilities can be obtained from the left-hand utilities if we first multiply all
of these utilities by 7, then add 3 to all utilities at the state rainy, and finally add 3 to all utilities at
the state calm. As these transformation do not change the relative expected utility differences at any
belief, it follows that the left-hand utilities, which we have obtained through the procedure above, will
also represent the conditional preference relation.

The procedure we have used above can be generalized, and leads to the utility design procedure.
It can be applied to any conditional preference relation with three or more choices where there are
preference reversals for every pair of choices, and such that there is a belief where the DM is indifferent
between some, but not all, choices. In the description of the procedure we denote, for every two choices
a and b, by Pa∼b the set of beliefs where the DM is indifferent between a and b.

Definition 2.4.2 (Utility design for more than two choices with reversals) Consider a con-
ditional preference relation with more than two choices such that (i) there are preference reversals for
every pair of choices, and (ii) there is a belief where the DM is indifferent between some, but not all,
choices.

Start by selecting three choices a, b, c such that the indifference sets Pa∼c and Pb∼c are different. Con-
centrate on the conditional preferences between a and b, and use the utility design procedure for two
choices to find utilities for a and b.

To find the utilities for c, select first a belief p1 where the DM is indifferent between c and a, but not
between c and b.
If there are n states in total, number the states s1, s2, ..., sn such that c �s1 b and b �s2 c, and find a
belief p2 on the line segment between [s1] and [s2] where c ∼p2 b.
For every state sk with k ≥ 3 and c �sk b, find a belief pk on the line between [s2] and [sk] where
c ∼pk b.
For every state sk with k ≥ 3 and b �sk c, find a belief pk on the line between [s1] and [sk] where
c ∼pk b.
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Figure 2.4.6 When there is no expected utility representation

For every state sk with k ≥ 3 and c ∼sk b, set pk = [sk].
Then, by applying the utility difference property to the belief p1 and the choices c and a, and by apply-
ing the utility difference property to the beliefs p2, ..., pn and the choices c and b, we obtain a system
with n equations and n variables, u(c, s1), ..., u(c, sn). Find the unique values for u(c, s1), ..., u(c, sn)
that solve this system of equations. This yields the utilities for choice c

For every choice d different from a, b, c, there are two possible cases:

(a) if Pa∼d is different from Pb∼d, then find the utilities for d as above, but now applied to the choices
a, b and d instead of a, b and c;

(b) if Pa∼d is different from Pc∼d, then find the utilities for d as above, but now applied to the choices
a, c and d instead of a, b and c.

This procedure may seem a bit overwhelming, but things will become clear once we apply the
procedure to some concrete examples. Let us first return to the procedure we have applied for the
conditional preference relation in Figure 2.4.5. In terms of the utility design procedure above, we have
set a = tent, b = house and c = garden. Moreover, to compute the utilities for c = garden, we have
numbered the states by s1 = calm, s2 = rainy and s3 = stormy. Finally, we have chosen the beliefs
p1, p2 and p3 as indicated in Figure 2.4.5.

Similarly to what we have seen for two choices, also now the procedure can be used to verify
whether the conditional preference relation at hand has an expected utility representation at all. It
may happen, for instance, that we get stuck in the procedure because at some step we cannot find a
belief p on the line between [s1] and [sk], or between [s2] and [sk], where c ∼p b. In this case we may
safely conclude that there is no expected utility representation for the conditional preference relation.

But it may also happen that we are able to fully implement the procedure, yet find out that the
utility function u we obtain does not represent the conditional preference relation % . Also in that
case, we must conclude that % has no expected utility representation.

To illustrate this, consider the conditional preference relation % in Figure 2.4.6, for “The birthday
party”. Note that this conditional preference relation is almost the same as in Figure 2.4.5. However,
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Figure 2.4.7 The birthday party with two states and four choices

the belief on the line between rainy and stormy where you are indifferent between garden and tent is
now (0.5, 0.5, 0) instead of (0.7, 0.3, 0).

It turns out that this new conditional preference relation has no expected utility representation.
To see this, suppose that there would be an expected utility representation u. Then, the expected
utility for garden would be equal to the expected utility of tent for all beliefs on the line through
(0.7, 0, 0.3) and (0.5, 0, 5, 0). We could even look at “signed”beliefs outside the belief triangle, where
some “probabilities”may be negative, and conclude that at the signed belief q, which lies on the line
through (0.7, 0, 0.3) and (0.5, 0, 5, 0), the “expected utility”for garden and tent must be the same.

Similarly, the expected utility for garden would be equal to the expected utility of house for all
beliefs on the line through the beliefs (0.5, 0, 0.5) and (0, 0, 5, 0.5). Since the signed belief q lies on
the line through (0.5, 0, 0.5) and (0, 0.5, 0.5), the “expected utility” for garden and house must be
the same at q. As we have already seen that the “expected utility” for garden and tent must be the
same at q, it follows that the “expected utility”of tent and house must be the same at q. However,
q does not lie on the line through the beliefs (0.3, 0, 0.7) and (0, 0.15, 0.85) where the expected utility
of tent and house are the same, which yields a contradiction. We thus conclude that the conditional
preference relation does not have an expected utility representation.

This conclusion will also be reached if we run the utility design procedure above. If in the procedure
we set a = tent, b = house and c = garden, and number the states by s1 = calm, s2 = rainy and s3 =
stormy, then the procedure will only depend on the beliefs where you are indifferent between tent and
house, and the beliefs p1, p2 and p3. Since all these beliefs are the same as in Figure 2.4.5, we find the
same utility function u that we found for Figure 2.4.5, which is represented in the left-hand panel of
Table 2.4.4. However, for this utility function you would not be indifferent between garden and tent
at the belief (0.5, 0.5, 0), and hence this utility function does not represent the conditional preference
relation in Figure 2.4.6. On the basis of this insight, we may conclude that the conditional preference
relation in Figure 2.4.6 does not have an expected utility representation.

To illustrate the procedure for the case of more than three choices, suppose that in the example
“The birthday party”you replace the states stormy and calm by the “summary”state dry. Hence, for
your decision where to organize the party you only distinguish between two states of weather, rainy
and dry. At the same time, you thought about another possible location for your party, which is a
nice square close to your house. Assume that your conditional preference relation is given by Figure
2.4.7.

This picture should be read as follows: The leftmost point represents the belief where you assign
probability 1 to it being dry, whereas the rightmost point is the other extreme belief that assigns
probability 1 to it being rainy today. Every belief can thus be identified with a point on the line
between dry and rainy. The closer the point is to rainy, the higher the probability you assign to
rainy. The six beliefs on the line, pth, phg, ..., pgs, represent the (unique) beliefs where you are indifferent
between two of the choices. For instance, at the belief pth you are indifferent between tent and house,
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and at the belief pgs you are indifferent between garden and square. The numbers below these beliefs
pth, phg, ..., pgs indicate the probability assigned by that belief to the state rainy. Hence, the belief pth
assigns probability 0.05 to it being rainy, and therefore probability 0.95 to it being dry. Similarly for
the other five beliefs.

These six beliefs partition the set of beliefs into seven different areas, and for each of these areas
we have indicated your preference over the four choices by a vertical ranking. For instance, in the first
area, where you assign a very high probability to dry weather, you prefer square to garden, garden
to tent, and tent to house. In contrast, in the last area, where you assign a very high probability to
rainy weather, your preference over the choices is reversed.

It turns out that this conditional preference relation has an expected utility representation. More-
over, there are preference reversals for all pairs of choices, and there is a belief where you are indifferent
between some, but not all, choices. How would we compute an expected utility representation here,
following the procedure above?

For the choices a, b and c we choose

a = tent, b = house and c = garden.

We start by finding utilities for tent and house, using the utility design procedure for two choices.
We may set all utilities for tent equal to 0, and choose u(house, rainy) = 1. By applying the utility
difference property to the belief pth = (0.05, 0.95), where the first number denotes the probability
assigned to rainy, in combination with the choices tent and house, we get

u(house, rainy)− u(tent, rainy)

u(tent, dry)− u(house, dry)
=

pth(dry)

pth(rainy)
.

If we subtitute pth(dry) = 0.95, pth(rainy) = 0.05, u(house, rainy) = 1, u(tent, rainy) = 0 and u(tent,
dry) = 0, we get

1− 0

0− u(house, dry)
=

0.95

0.05
= 19,

and hence
u(house, dry) = −1/19.

To compute the utilities for choice c = garden, we use the beliefs p1 = ptg = (0.4, 0.6) and
p2 = phg = (0.12, 0.88). If we apply the utility difference property to the belief p1 for the choices
garden and tent, we obtain

u(tent, rainy)− u(garden, rainy)

u(garden, dry)− u(tent, dry)
=

ptg(dry)

ptg(rainy)
.

By filling in ptg(dry) = 0.6, ptg(rainy) = 0.4, u(tent, rainy) = 0 and u(tent, dry) = 0, we get

0− u(garden, rainy)

u(garden, dry)− 0
=

0.6

0.4
=

3

2
.

Cross-multiplication then yields

u(garden, rainy) = −3/2 · u(garden, dry). (2.4.5)

Applying the utility difference property to the belief p2 for the choices garden and house yields

u(house, rainy)− u(garden, rainy)

u(garden, dry)− u(house, dry)
=

phg(dry)

phg(rainy)
.
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Substituting phg(dry) = 0.88, phg(rainy) = 0.12, u(house, rainy) = 1 and u(house, dry) = −1/19 then
leads to

1− u(garden, rainy)

u(garden, dry) + 1/19
=

0.88

0.12
=

22

3
.

By cross-multiplication, we get

3− 3 · u(garden, rainy) = 22 · u(garden, dry) + 22/19

which yields
u(garden, rainy) = 35/57− 22/3 · u(garden, dry).

If we substitute this into (2.4.5), we get

35/57− 22/3 · u(garden, dry) = −3/2 · u(garden, dry).

Solving for u(garden, dry) then yields

u(garden, dry) = 2/19.

By (2.4.5) we then get
u(garden, rainy) = −3/19.

Finally, for computing the utilities of square we use the beliefs p1 = pts = (0.8, 0.2) and p2 = phs =
(0.5, 0.5). If we apply the utility difference property to the belief p1 and the choices square and tent,
we get

u(tent, rainy)− u(square, rainy)

u(square, dry)− u(tent, dry)
=

pts(dry)

pts(rainy)
.

If we substitute pts(dry) = 0.2, pts(rainy) = 0.8, u(tent, rainy) = 0 and u(tent, dry) = 0, we obtain

0− u(square, rainy)

u(square, dry)− 0
=

0.2

0.8
=

1

4
.

Cross-multiplication then leads to

u(square, dry) = −4 · u(square, rainy). (2.4.6)

By applying the utility difference property to the belief p2 and the choices square and house, we
get

u(house, rainy)− u(square, rainy)

u(square, dry)− u(house, dry)
=

phs(dry)

phs(rainy)
.

If we substitute phs(dry) = 0.5, phs(rainy) = 0.5, u(house, rainy) = 1 and u(house, dry) = −1/19, we
obtain

1− u(square, rainy)

u(square, dry) + 1/19
=

0.5

0.5
= 1.

Hence,
u(square, dry) = 18/19− u(square, rainy).

If we substitute this into (2.4.6), we get

18/19− u(square, rainy) = −4 · u(square, rainy),
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dry rainy
tent 0 0
house −1/19 1
garden 2/19 −3/19
square 24/19 −6/19

dry rainy
tent 0 0
house −1 19
garden 2 −3
square 24 −6

Table 2.4.5 Expected utility representations for the conditional preference relation in Figure 2.4.7

which yields
u(square, rainy) = −6/19.

Together with (2.4.6), we can conclude that

u(square, dry) = 24/19.

We thus obtain the utility matrix in the left-hand panel of Table 2.4.5. It may be verified that this
utility matrix indeed represents the conditional preference relation at hand. If we multiply each of the
utilities by 19, we obtain the “easier”utility representation in the right-hand panel of Table 2.4.5.

Suppose now that we slightly change the conditional preference relation in Figure 2.4.7, by changing
pgs = (0.88, 0.12) into p′gs = (0.9, 0.1), while leaving everything else unchanged. We will see that the
new conditional preference relation does not have an expected utility representation. To show this,
we can run the utility design procedure for the new conditional preference relation, using the same
steps as we did for the “original”conditional preference relation in Figure 2.4.7. Note that the steps
in the procedure only depend on the beliefs pth, phg, ptg, phs and pts, which are the same as before. For
that reason, we obtain the same utility function u as for the “original”conditional preference relation,
depicted in the left-hand panel of Table 2.4.5. However, for this utility function you would not be
indifferent between garden and square at the belief p′gs = (0.9, 0.1), and therefore the utility function
we constructed does not represent the conditional preference relation. As such, we conclude that the
new conditional preference relation does not have an expected utility representation.

2.4.3 *General Case
We finally turn to the general case, where there may be no preference reversals for some pairs of choices.
It will be shown, by means of an example, how we can compute an expected utility representation for
such cases.

Let us return to the birthday example which we know so well by now. Suppose you consider
four possible locations for your party: house, garden, tent and square. Assume that you alway prefer
house to tent, since you had a terrible camping experience last year. That is, your choice house strictly
dominates your choice tent. Moreover, as the square is really far from your house, you always prefer
garden to square. In other words, garden strictly dominates square. Indeed, both locations are in
the open air, but the garden is much closer. Suppose that the corresponding conditional preference
relation is given by Figure 2.4.8.

Let us first focus on the conditional preference relation %, which is given by the objects inside the
belief triangle. For the sake of clarity of the picture, we have only explicitly specified the preference
relation over the four choices for one of the areas in the triangle. Otherwise, the picture would become
too crowded. The preference relations for each of the other areas can be logically deduced from this
single preference relation, by using the sets of indifference beliefs. For instance, in the upper area of
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Figure 2.4.8 Utility design procedure when there are strictly dominated choices

the triangle we would have g � s � h � t. The reason is that if we start from the lower right area,
where we know that h � g � s � t, and move to the upper area, then we cross the indifference set
between h and g, and the indifference set between h and s. Thus, we first reverse the preferences
between h and g, and afterwards reverse the preferences between h and s, which results in the ranking
g � s � h � t.

Note that inside the belief triangle, there are no beliefs where you are indifferent between house and
tent, or between garden and square. As such, the preferences between house and tent, and between
garden and square, never get reversed in the belief triangle. We thus conclude that you will always
prefer house to tent, and garden to square, for every belief. Or, in other words, your choice house
strictly dominates tent, and your choice garden strictly dominates square, as already specified by the
story above.

We now move to the objects outside the belief triangle. A point outside the belief triangle is called
a signed belief, since some of the entries may be negative. For instance, the point (2,−1, 0) in the
picture is a signed belief that assigns value 2 to state rainy, negative value −1 to state stormy, and
value 0 to state calm. Note that these values cannot be interpreted as probabilities, since some may
be negative, or larger than 1. However, the sum of the values is still 1, like in a belief.

Definition 2.4.3 (Signed belief) For a given set of states S, a signed belief q assigns to every
state s a (possibly negative) number q(s) such that

∑
s∈S q(s) = 1.

Other signed beliefs in the picture are, for instance, q1, q2 and q3. Note that every belief is a signed
belief, but not vice versa. Recall that a conditional preference relation % specifies for every belief p
a preference relation %p over the choices. Similarly, we may define a signed conditional preference
relation as an object that specifies a preference relation over choices for every signed belief.
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Definition 2.4.4 (Signed conditional preference relation) A signed conditional preference
relation %∗ assigns to every signed belief q a preference relation %∗q over the choices.

Every conditional preference relation % can be extended to a signed conditional preference relation
%∗ by additionally specifying a preference relation over choices for every signed belief that is not a
belief. In Figure 2.4.8 we have depicted, by means of the dashed lines, a signed conditional preference
relation %∗ that extends % .We have only specified the sets of signed beliefs where you are “indifferent”
between a pair of choices, but by the same argument as above you can deduce the preference relation
over the four locations for every area of signed beliefs.

Instead of computing an expected utility representation for the conditional preference relation %,
we will construct an expected utility representation u for the signed conditional preference relation
%∗ that extends it. By this, we mean that for every signed belief q, and every two choices a and b, we
have that a %∗q b precisely when u(a, q) ≥ u(b, q). Here,

u(a, q) :=
∑
s∈S

q(s) · u(a, s)

denotes the “expected utility”induced by the choice a at the signed belief q, and similarly for u(b, q).
To compute an expected utility representation u for the signed conditional preference relation %∗

in Figure 2.4.8 we will use the same techniques as in Section 2.4.2, which applied to scenarios with
preference reversals. We start by assigning some arbitrary utilities to the choice house. For instance,
u(house, rainy) = 6, u(house, stormy) = 6 and u(house, calm) = 6.

We now move to the utilities for garden. At the state rainy, we choose some arbitrary utility smaller
than 6, because you prefer house to garden when it is rainy. For instance, u(garden, rainy) = 2.

To compute u(garden, calm), we use the utility difference property at the belief p1 = (1/2, 0, 1/2),
where you are indifferent between garden and house. We obtain

u(garden, calm)− u(house, calm)

u(house, rainy)− u(garden, rainy)
=
p1(rainy)

p1(calm)
=

1/2

1/2
= 1.

As u(house, calm) = 6, u(house, rainy) = 6 and u(garden, rainy) = 2, we conclude that u(garden,
calm) = 10.

We then apply the utility difference property at the belief p2 = (0, 4/7, 3/7), where you are indif-
ferent between garden and house, to compute u(garden, stormy). This yields

u(garden, calm)− u(house, calm)

u(house, stormy)− u(garden, stormy)
=
p2(stormy)

p2(calm)
=

4/7

3/7
= 4/3.

Since u(garden, calm) = 10, u(house, calm) = 6 and u(house, stormy) = 6, it follows that u(garden,
stormy) = 3.

We next move to the utilities for tent. Note that the signed belief (2,−1, 0) lies on the line through
rainy and stormy. By applying the utility difference property to the signed beliefs r1 = (2,−1, 0),
where you are “indifferent”between tent and house, we get

u(house, rainy)− u(tent, rainy)

u(tent, stormy)− u(house, stormy)
=
r1(stormy)

r1(rainy)
=
−1

2
= −1/2.

As u(house, rainy) = 6 and u(house, stormy) = 6, we conclude that

u(tent, stormy) = 2 · u(tent, rainy)− 6. (2.4.7)
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By applying the utility difference property to the belief p3 = (3/4, 1/4, 0), where you are indifferent
between tent and garden, we get

u(garden, rainy)− u(tent, rainy)

u(tent, stormy)− u(garden, stormy)
=
p3(stormy)

p3(rainy)
=

1/4

3/4
=

1

3
.

Since u(garden, rainy) = 2 and u(garden, stormy) = 3, this leads to

u(tent, stormy) = 9− 3 · u(tent, rainy). (2.4.8)

By combining (2.4.7) and (2.4.8) we obtain

2 · u(tent, rainy)− 6 = 9− 3 · u(tent, rainy)

and hence u(tent, rainy) = 3. From (2.4.7) it then follows that u(tent, stormy) = 0.

Note that the signed belief (0,−1/2, 3/2) is on the line through stormy and calm. To compute
u(tent, calm), we apply the utility difference property to the signed belief r2 = (0,−1/2, 3/2), where
you are “indifferent”between tent and house. This yields

u(house, stormy)− u(tent, stormy)

u(tent, calm)− u(house, calm)
=

r2(calm)

r2(stormy)
=

3/2

−1/2
= −3.

As u(house, stormy) = 6, u(tent, stormy) = 0 and u(house, calm) = 6, it follows that u(tent,
calm) = 4.

We finally compute the utilities for square. Note that the signed belief r3 = (−1, 2, 0) is on the line
through rainy and stormy. If we apply the utility difference property to the signed belief r3, where
you are “indifferent”between square and garden, we obtain

u(garden, rainy)− u(square, rainy)

u(square, stormy)− u(garden, stormy)
=
r3(stormy)

r3(rainy)
=

2

−1
= −2.

Since u(garden, rainy) = 2 and u(garden, stormy) = 3, it follows that

u(square, rainy) = 2 · u(square, stormy)− 4. (2.4.9)

If we apply the utility difference property to the belief p7 = (2/5, 3/5, 0), where you are indifferent
between square and tent, we get

u(tent, rainy)− u(square, rainy)

u(square, stormy)− u(tent, stormy)
=
p7(stormy)

p7(rainy)
=

3/5

2/5
= 3/2.

As u(tent, rainy) = 3 and u(tent, stormy) = 0, we conclude that

u(square, rainy) = 3− (3/2) · u(square, stormy). (2.4.10)

By combining (2.4.9) and (2.4.10) we obtain

2 · u(square, stormy)− 4 = 3− (3/2) · u(square, stormy),

and hence u(square, stormy) = 2. By substituting this into (2.4.9) we get that u(square, rainy) = 0.
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rainy stormy calm
house 6 6 6
garden 2 3 10
tent 3 0 4

square 0 2 7

Table 2.4.6 Expected utility representation for the conditional preference relation in Figure 2.4.8

Finally, to compute u(square, calm) we apply the utility difference property to the belief p1 =
(1/2, 0, 1/2), where you are indifferent between square and tent. This yields

u(tent, rainy)− u(square, rainy)

u(square, calm)− u(tent, calm)
=
p1(calm)

p1(rainy)
=

1/2

1/2
= 1.

Since u(tent, rainy) = 3, u(square, rainy) = 0 and u(tent, calm) = 4, it follows that u(square,
calm) = 7.

We have thus computed all utilities. The resulting utility function is summarized by Table 2.4.6.
It may be verified that this utility function indeed represents the signed conditional preference relation
%∗ in Figure 2.4.8. In particular, it represents the conditional preference relation % .

2.5 Unique Relative Preference Intensities

Consider a conditional preference relation % that has an expected utility representation. In Section
2.3.2 we have seen that, if the DM is not always indifferent between each of his choices, then there
are at least |S| + 1 degrees of freedom for selecting an expected utility representation, where |S| is
the number of states. One degree of freedom arises because we can multiply all utilities in the matrix
by the same positive number α > 0 and still obtain an expected utility representation. The other |S|
degrees of freedom arise because for every state s, we can always add the same number vs to all the
utilities at state s, and be sure that we will still have an expected utility representation.

Suppose now that there are preference reversals for every pair of choices, and that there is a belief
where the DM is indifferent between some, but not all, choices (provided there are more than two
choices). In that case, there will be exactly |S| + 1 degrees of freedom, and not more. The reason is
as follows.

Note under the conditions above we can apply the utility design procedure for two choices, or more
than two choices, with preference reversals to find an expected utility representation. In fact, every
expected utility representation can be obtained through this utility design procedure. But how many
degrees of freedom do we have in the procedure? First, we can choose the utilities for a at the |S|
different states freely, which gives us |S| degrees of freedom already. Secondly, for one state s∗ where
u(b, s∗) > u(a, s∗), we can choose the utility u(b, s∗) freely, as long as u(b, s∗) > u(a, s∗). This gives us
the |S|+ 1-th degree of freedom.

However, in the remainder of the procedure, where we find the utilities for b at all states other than
s∗, and find the utilities for all other choices at every state, each of these remaining utilities will be
unique determined. As such, the utility design procedure gives us exactly |S|+ 1 degrees of freedom,
and not more.
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Since every expected utility representation can be found through this procedure, we conclude
that there are precisely |S| + 1 degrees of freedom for choosing the expected utility representation,
assuming that the prerequisites for applying the procedure are met. That is, if we fix an expected
utility representation u, then every other expected utility representation v can be found if we first
multiply all utilities in u by a fixed number α > 0, and subsequently add for every state s a fixed
number vs to all the utilities at state s.

But then, for all states, the utility differences between any pair of choices will be the same under
the representations u and v, up to a positive multiplicative constant. Indeed, suppose that

v(a, s) = α · u(a, s) + vs

for every choice a and every state s, where α > 0. That is, we first multiply all utilities in u by α, and
then add for every state s the number vs to all utilities at s. Then, for every state s, and every two
choices a and b, we have that

v(a, s)− v(b, s) = (α · u(a, s) + vs)− (α · u(b, s) + vs) = α · (u(a, s)− u(b, s)).

Thus, at every state the utility differences under u and v will be the same, up to a positive multiplicative
constant α. In other words, the relative utility differences are unique at every state.

Recall from Section 2.3.3 that the relative utility differences at a given belief represent the relative
preference intensities between the various choices at that belief. The insight above thus tells us that
under the prerequisites mentioned above, the relative preference intensities between the choices will
be unique. This is summarized by the following result.

Theorem 2.5.1 (Unique relative preference intensities) Consider a conditional preference re-
lation such that (i) it has an expected utility representation, (ii) there are preference reversals for
all pairs of choices, and (iii) if there are more than two choices, there is a belief where the DM is
indifferent between some, but not all, choices.

Then, for every two expected utility representations u and v there is a positive number α > 0 such
that

v(a, s)− v(b, s) = α · (u(a, s)− u(b, s))

for every two choices a and b, and for every state s.

Consider, for instance, the two expected utility representations in Table 2.4.5 and call them u and
v. Then, the utility differences in v are always 19 times as high as the utility differences in u. That is,
α = 19 in this case.

But what happens if the prerequisites in Theorem 2.5.1 are not satisfied? In this case, as we will
see, there may be more than |S| + 1 degrees of freedom for the expected utility representation, and
the relative preference intensities may no longer be unique.

Consider, for instance, the conditional preference relation in Figure 2.5.1, with three choices a, b
and c, and two states x and y. Note that the prerequisites for Theorem 2.5.1 are not met, since there
is no belief where the DM is indifferent between some, but not all, beliefs. Indeed, the only belief
where the DM is indifferent between two choices is 0.5[x] + 0.5[y], and at this belief he is indifferent
between all three choices.

It may be verified that the two utility functions u and v in Table 2.5.1 both represent this con-
ditional preference relation. Note that under the utility function u, the expected utility difference
between a and b at state x is 1 whereas the expected utility difference between b and c at this state
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Figure 2.5.1 When relative preference intensities are not unique

u x y

a 0 0
b −1 1
c −3 3

v x y

a 0 0
b −2 2
c −3 3

Table 2.5.1 Expected utility representations for the conditional preference relation in Figure 2.5.1

is 2. In terms of preference intensities, it means that the intensity by which the DM prefers b to c at
x is twice the intensity by which he prefers a to b at x.

Now turn to the utility function v, which also represents the conditional preference relation. At
state x, the expected utility difference between a and b is 2, whereas the expected utility difference
between b and c is 1. That is, under the utility function v, the intensity by which the DM prefers a to
b at x is twice the intensity by which he prefers b to c at x.

By comparing, we thus see that the relative preference intensities under u are different from
those under v. Or, equivalently, the expected utility differences under u differ by more than just a
multiplicative constant from those under v.

Another conditional preference relation where the relative preference intensities are not unique is
given in Figure 2.5.2.

Question 2.5.1 Consider the conditional preference relation from Figure 2.5.2.

(a) Which of the prerequisites in Theorem 2.5.1 is violated?

(b) Give two expected utility representations that induce different relative preference intensities.

Figure 2.5.2 When relative preference intensities are not unique
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rainy stormy calm
house 10 17 0
garden 0 7 10
tent 3 0 3

Table 2.6.1 Expected utility representation for the conditional preference relation in Figure 2.3.1

These two examples show that the relative preference intensities may no longer be unique if some
of the conditions in Theorem 2.5.1 are violated.

2.6 Strict Dominance

Recall from Definition 3.3.1 that a choice is called rational if it is optimal for at least one belief.
Thus, a choice is irrational if it is never optimal for any belief. In this section we will characterize the
irrational choices as those that are either strictly dominated by another choice, or strictly dominated
by a randomized choice. Here, a randomized choice represents a probabilistic mechanism that selects
each of your choices with a given probability. A randomized choice is said to strictly dominate a choice
a if the expected intensity by which it is preferred to a is always strictly positive, no matter which
belief you hold.

Reconsider the conditional preference relation from Figure 2.3.1. An associated expected utility
representation is given by the utility function in Table 2.6.1, which is a copy of Table 2.3.1. As can
be seen from Figure 2.3.1, there is no belief for which the choice tent is optimal. As such, the choice
tent is irrational. At the same time, your choice tent is not strictly dominated by your choice garden,
as there are beliefs where you prefer tent to garden. Similarly, your choice tent is also not strictly
dominated by your choice house.

But consider now the situation where you toss a coin to decide whether you will organize the
party in the garden or in your house. This is called a randomized choice, that selects your choices
garden and house with probability 0.5.We will see that by using this randomized choice, the expected
intensity by which you prefer the selected choice to tent will always be greater than zero, no matter
which belief you hold.

To see this, suppose first that it will be rainy. At this state, the utility difference between house
and tent is

u(house, rainy)− u(tent, rainy) = 10− 3 = 7,

whereas the utility difference between garden and tent is

u(garden, rainy)− u(tent, rainy) = 0− 3 = −3.

Recall that these utility differences may be viewed as the intensities by which you prefer the choice
house or garden to tent. The intensity by which you prefer garden to tent at the state rainy is
negative, which indicates that you prefer tent to garden when it rains.

As the randomized choice selects both choices house and garden with probability 0.5, the expected
intensity by which you prefer the selected choice to tent at the state rainy is

(0.5) · 7 + (0.5) · (−3) = 2 > 0.
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Similarly, the expected intensity by which you prefer the selected choice to tent at the state stormy is

(0.5) · (17− 0) + (0.5) · (7− 0) = 12 > 0,

whereas the expected intensity by which you prefer the selected choice to tent at the state calm is

(0.5) · (0− 3) + (0.5) · (10− 3) = 2 > 0.

Please verify this.
That is, independent of the state of weather, the expected intensity by which you prefer the selected

choice to the choice tent will alway be greater than zero. This implies, in turn, that for every possible
belief the expected intensity by which you prefer the selected choice to the choice tent will be greater
than zero as well. In this case, we say that the randomized choice strictly dominates the choice tent.
In general, strict domination by a randomized choice can be defined as follows.

Definition 2.6.1 (Strict domination by a randomized choice) A randomized choice is a prob-
ability distribution r ∈ ∆(C), which assigns to every choice c ∈ C some probability r(c).

Consider a conditional preference relation % with an expected utility representation u. A choice a is
strictly dominated by a randomized choice r under the expected utility representation u if∑

c∈C
r(c) · (u(c, s)− u(a, s)) > 0

for every state s.

Here, u(c, s) − u(a, s) reflects the intensity by which the DM prefers the selected choice c to the
choice a at the state s. As such, the sum represents the expected intensity by which the DM prefers
the selected choice to the choice a at the state s if he uses the randomized choice r. If this expected
intensity is always greater than zero for every state, then we say that the randomized choice r strictly
dominates the choice a.

Let us go back to the conditional preference relation in Figure 2.3.1, with the associated expected
utility representation in Table 2.6.1. We have seen that the irrational choice tent is strictly dominated
by the randomized choice that selects house and garden with probability 0.5. Moreover, it can be
verified that the rational choices house and garden are not strictly dominated by another choice, nor
by a randomized choice. Thus, in this example, the irrational choices are precisely the choices that
are strictly dominated by a randomized choice, or by another choice.

The following result shows that this property holds in general: For every conditional preference
relation with an expected utility representation, the irrational choices are precisely those that are
strictly dominated by a randomized choice, or by another choice. Morover, for every irrational choice
a we can always find a randomized choice, or another choice, that strictly dominates a irrespective
of the specific expected utility representation. In other words, with respect to every expected utility
representation, the expected intensity by which the DM prefers the selected choice to the choice a will
always be greater than zero.

Theorem 2.6.1 (Strict dominance) Consider a conditional preference relation % with an expected
utility representation u.

(a) A choice a is irrational, if and only if, it is strictly dominated by another choice, or strictly
dominated by a randomized choice, under u.

(b) If choice a is strictly dominated by a randomized choice under u, then there is a randomized choice
r that strictly dominates choice a under every expected utility representation.
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rainy stormy calm
house 10 17 0
garden 0 7 10
tent 3 0 3

square −1 −1 −1

Table 2.6.2 When the specific utility representation matters for strict dominance

An immediate consequence of this theorem is that for every choice a we can either find (i) a belief
for which a is optimal, or (ii) another choice that strictly dominates a, or (iii) a randomized choice
that strictly dominates a. Case (i) applies when a is rational, whereas cases (ii) and (iii) apply when
a is irrational. As we will see later in this book, Theorem 2.6.1 will play a very important role when
studying games.

To illustrate part (b) in Theorem 2.6.1, let us go back to the conditional preference relation % given
by Table 2.6.1. We saw that for this specific expected utility representation u, the irrational choice
tent is strictly dominated by the randomized choice that selects house and garden with probability
0.5. But we can say even more: The choice tent is strictly dominated by this randomized choice for
every utility function that represents % .

To see this, observe from Figure 2.3.1 that there are preference reversals between every pair of
choices, and that there are beliefs where you are indifferent between some, but not all, choices. There-
fore, we know by Theorem 2.5.1 that the utility differences are unique up to a positive multiplicative
constant. In other words, for every other utility function v that represents %, there is a positive
number α > 0 such that

v(a, s)− v(b, s) = α · (u(a, s)− u(b, s))

for every state s and every two choices a and b. Here, u is the utility function from Table 2.6.1.
Consequently, if tent is strictly dominated by the randomized choice above for the utility function u
from Table 2.6.1, then this will still be the case for every other expected utility representation v as
well. Please verify this.

But there are situations where a choice a is strictly dominated by a given randomized choice r for
some expected utility representation u, but not for some other expected utility representation v. As
an illustration, consider the conditional preference relation % given by the utility function u in Table
2.6.2. That is, you consider a fourth possible location, square, for your birthday party, but you always
prefer every other location over square, no matter what belief you hold.

Then, your choice tent is strictly dominated by the randomized choice r that selects house, garden
and square with probabilities 0.4, 0.4 and 0.2, respectively. Please verify this.

Question 2.6.1 Find an alternative expected utility representation v such that your choice tent is
not strictly dominated by this randomized choice r under v.

At the same time, there is a randomized choice that strictly dominates the irrational choice tent
for every expected utility representation. Consider, for instance, the randomized choice r′ that selects
house and garden with probability 0.5. Then, no matter which expected utility representation v we
choose, your choice tent will always be strictly dominated by r′.

The reason is that the conditional preference relation %, when restricted to the choices house,
garden and tent, has preference reversals for every pair of choices, and there are beliefs where you are
indifferent between some, but not all, of these three choices Therefore, we can conclude by Theorem
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2.5.1 that for every other expected utility representation v, the utility differences for the choices house,
garden and tent will only differ from those under u by a positive multiplicative constant α > 0. But
then, under every such alternative expected utility representation v, the choice tent will still be strictly
dominated by the randomized choice r′.
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2.7 Proofs

2.7.1 Elements of Linear Algebra and Analysis
In many of the proofs that we will present, we use concepts and results from linear algebra and analysis.
In this subsection we give an overview of the elements we use.

2.7.1.1 Linear Spaces

For a number n ∈ N, we denote by Rn the set of all n-tuples v = (v1, v2, ..., vn), where v1, ..., vn ∈ R.
Such an n-tuple v is called a vector. For two vectors v = (v1, ..., vn) and w = (w1, ..., wn) in Rn, the
sum of the two vectors is given by v+w = (v1 +w1, ..., vn +wn), which is again a vector in Rn. For a
vector v = (v1, ..., vn) and a number λ ∈ R, the scalar product λ · v is given by λ · v = (λ · v1, ..., λ · vn),
which is again a vector in Rn.

Now consider a finite set X. By RX we denote the set of all functions v : X → R. Such a function
v is again called a vector. If X = {x1, ..., xn}, then we can identify the vector v ∈ RX with the vector
(v1, ..., vn) in Rn, where v1 = v(x1), ..., vn = v(xn). For instance, if X = {x1, x2, x3}, and v is the
vector in RX with v(x1) = 2, v(x2) = 5 and v(x3) = −1, then v can be identified with the vector
(2, 5,−1) in R3.

Note that a probability distribution p on X, as given by Definition 2.2.1, is a special vector in RX

where p(x) ≥ 0 for every x ∈ X, and
∑

x∈X p(x) = 1.
For two vectors v, w in RX , the sum v+w of the two vectors is given by (v+w)(x) = v(x) +w(x)

for all x ∈ X, which is again a vector in RX . For a vector v in RX and a number λ in R, the scalar
product λ · v is given by (λ · v)(x) = λ · v(x) for all x ∈ X, which is again a vector in RX . The set RX

together with these two operations, sum and scalar product, constitutes a linear space.
By 0 we denote the vector in RX where 0(x) = 0 for all x ∈ X. This vector thus corresponds to

the zero-vector (0, ..., 0) in Rn.

2.7.1.2 Linear Combinations and Subspaces

Take vectors v1, ..., vm in RX , and numbers λ1, ..., λm in R. Then, the vector

λ1 · v1 + λ2 · v2 + ...+ λm · vm

is called a linear combination of the vectors v1, ..., vm.
Now, consider a subset V ⊆ RX . By span(V ) we denote the set of all linear combinations that we

can make of vectors in V. More precisely,

span(V ) := {λ1 · v1 + ...+ λm · vm | m ∈ N, v1, ..., vm ∈ V and λ1, ..., λm ∈ R}.

We call span(V ) the span of V. The subset V ⊆ RX is called a linear subspace of RX if span(V ) ⊆ V.
That is, if every linear combination of vectors in V is again in V. In this case, we have in fact that
V = span(V ).

2.7.1.3 Linear Independence, Basis and Dimension

Consider some vectors v1, ..., vm in RX . We say that v1, ..., vm are linearly independent if none of the
vectors is a linear combination of the other vectors. That is, v1 cannot be written as

v1 = λ2 · v2 + ...+ λm · vm
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for some λ2, ..., λm ∈ R, and the same holds for v2, ..., vm.
Consider a linear subspace V of RX , and vectors v1, ..., vm ∈ V. The set of vectors {v1, ..., vm} is a

basis for V if v1, ..., vm are linearly independent, and span({v1, ..., vm}) = V. That is, every vector in
V can be written as a linear combination of the vectors v1, ..., vm.

Every basis for V has the same number of vectors, and this number is called the dimension of V,
denoted by dim(V ). If V = {0}, then we set dim(V ) = 0.

2.7.1.4 Convex Combinations

Take vectors v1, ..., vm inRX , and numbers λ1, ..., λm inR such that λ1, ..., λm ≥ 0 and λ1+...+λm = 1.
Then, the vector

λ1 · v1 + λ2 · v2 + ...+ λm · vm
is called a convex combination of the vectors v1, ..., vm. For a subset V ⊆ RX , we denote by conv(V )
the set of all convex combinations we can make of vectors in V. That is,

conv(V ) := {λ1 · v1 + ...+ λm · vm | m ∈ N, v1, ..., vm ∈ V and λ1, ..., λm ∈ R
with λ1, ..., λm ≥ 0 and λ1 + ...+ λm = 1}.

We call conv(V ) the convex hull of V. The set V is called convex if conv(V ) ⊆ V.

2.7.1.5 Vector Product and Hyperplanes

Consider two vectors v, w inRX . The vector product v·w is the number given by v·w :=
∑

x∈X v(x)w(x).

A hyperplane is a set of the form H = {v ∈ RX | v · w = c}, where w is a vector in RX not
equal to the zero-vector 0, and c is a number in R. If c = 0 then H is a linear subspace of dimension
|X| − 1, where |X| denotes the number of elements in X. Two hyperplanes H and H ′ are parallel if
there is some vector w in RX not equal to the zero-vector 0, and two numbers c, c′ in R, such that
H = {v ∈ RX | v · w = c} and H ′ = {v ∈ RX | v · w = c′}.

2.7.2 Proof for Section 2.5
To prove Theorem 2.5.1 we need two preparatory results. In the first result, we denote by Pa∼b the
set of beliefs p where a ∼p b.

Lemma 2.7.1 (Span of an indifference set) Consider a conditional preference relation% that has
an expected utility representation, and two choices a and b. Then, Pa∼b is a convex set, and

span(Pa∼b) = {λ1 · p1 + λ2 · p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.

Proof. Suppose that % has expected utility representation u.We first show that Pa∼b is a convex set.
To that purpose, take p1, ..., pm ∈ Pa∼b and numbers λ1, ..., λm with λk ≥ 0 for all k and

∑m
k=1 λk = 1.

We show that p :=
∑m

k=1 λk · pk ∈ Pa∼b. Note that u(a, pk) = u(b, pk) for all k, and hence

u(a, p) =
m∑
k=1

λk · u(a, pk) =
m∑
k=1

λk · u(b, pk) = u(b, p).

This means that p ∈ Pa∼b. Thus, Pa∼b is a convex set.
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Let
A := {λ1 · p1 + λ2 · p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.

We will show that span(Pa∼b) = A. Clearly, A ⊆ span(Pa∼b). Hence, it remains to show that
span(Pa∼b) ⊆ A.

Take some p ∈ span(Pa∼b). Then, there are some beliefs p1, ..., pk, pk+1, ..., pk+m ∈ Pa∼b and
numbers λ1, ..., λk, λk+1, ..., λk+m > 0 such that

p = λ1p1 + ...+ λkpk − λk+1pk+1 − ...− λk+mpk+m. (2.7.1)

Let α1 := λ1 + ...+ λk and α2 := λk+1 + ...+ λk+m. If α1 > 0 and α2 > 0, then define the vectors

q1 :=
λ1
α1
p1 + ...+

λk
α1
pk and q2 :=

λk+1
α2

pk+1 + ...+
λk+m
α2

pk+m.

It may be verified that q1 and q2 are convex combinations of beliefs in Pa∼b. Since Pa∼b is a convex
set, it follows that q1, q2 ∈ Pa∼b. By (2.7.1) we have that

p = α1q1 − α2q2,

and thus p ∈ A.
If α1 > 0 and α2 = 0, then we must have that λk+1 = ... = λk+m = 0. We can define q1 ∈ Pa∼b as

above, and get p = α1q1. Thus, p = α1q1 + 0 · q1, which is in A. The case when α1 = 0 and α2 > 0 is
similar. Finally, when α1 = 0 and α2 = 0, then λ1 = ... = λk+m = 0, which means that p = 0. Thus,
p = 0 · p1 + 0 · p2 for two arbitrary beliefs p1, p2 ∈ Pa∼b, and hence p ∈ A.

In general, we thus see that every p ∈ span(Pa∼b) is also in A, and thus span(Pa∼b) ⊆ A. Together
with the observation above that A ⊆ span(Pa∼b), we conclude that span(Pa∼b) = A. This completes
the proof. �

The second preparatory result contains some further properties of the set of beliefs where the DM
is indifferent between a and b, gathered in Lemma 2.7.2. In this lemma, we denote by Sa∼b the set of
states s where a ∼[s] b. From now on, we often write a ∼s b instead of a ∼[s] b.

Lemma 2.7.2 (Linear structure of indifference sets) Suppose there are two choices, a and b,
and n states. Consider a conditional preference relation % that has an expected utility representation.
Then, the following properties hold:

(a) Pa∼b = span(Pa∼b) ∩∆(S);

(b) if % has preference reversals between a and b, then span(Pa∼b) is a hyperplane with dimension
n− 1.

Proof. (a) Clearly, Pa∼b ⊆ span(Pa∼b) ∩∆(S). It remains to show that span(Pa∼b) ∩∆(S) ⊆ Pa∼b.
Take some p ∈ span(Pa∼b) ∩ ∆(S). Then, by Lemma 2.7.1, there are beliefs p1, p2 ∈ Pa∼b and

numbers λ1, λ2 such that
p = λ1p1 + λ2p2. (2.7.2)

Since p ∈ ∆(S), we must have that
∑

s∈S p(s) = 1. Moreover, as p1, p2 are beliefs, it holds that∑
s∈S p1(s) =

∑
s∈S p2(s) = 1. In view of (2.7.2),

1 =
∑
s∈S

p(s) =
∑
s∈S

(λ1p1(s) + λ2p2(s)) = λ1

(∑
s∈S

p1(s)

)
+ λ2

(∑
s∈S

p2(s)

)
= λ1 + λ2.
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Suppose first that λ1 = 0. Then, λ2 = 1, and hence p = λ2p2 = p2, which is in Pa∼b. The case
where λ2 = 0 is similar.

Assume next that λ1, λ2 > 0. As λ1+λ2 = 1, it follows from (2.7.2) that p is a convex combination
of p1 and p2, which are both in Pa∼b. Since Pa∼b is a convex set by Lemma 2.7.1 , it follows that
p ∈ Pa∼b.

Suppose now that λ1 > 0 and λ2 < 0. Since λ1 + λ2 = 1, it must be that λ1 > 1. Then, it follows
from (2.7.2) that

p1 =
1

λ1
p− λ2

λ1
p2 =

1

λ1
p+ (1− 1

λ1
)p2 (2.7.3)

since λ2 = 1− λ1. As λ1 > 1, it follows that p1 is a convex combination of p and p2, where p1 and p2
are both in Pa∼b.

We will show that p must be in Pa∼b. Suppose, on the contrary, that p /∈ Pa∼b. Assume, without
loss of generality, that p ∈ Pa�b, where Pa�b is the set of beliefs q where a �q b. If % is represented by
the utility function u, then we have that u(a, p) > u(b, p) and u(a, p2) = u(b, p2). By (2.7.3) it then
follows that u(a, p1) > u(b, p1), which means that p1 ∈ Pa�b. This, however, is a contradiction since
p1 ∈ Pa∼b. Hence, we conclude that p ∈ Pa∼b.

The case where λ1 < 0 and λ2 > 0 is similar. In general, we conclude that every p ∈ span(Pa∼b)∩
∆(S) is also in Pa∼b. Hence, span(Pa∼b) ∩ ∆(S) ⊆ Pa∼b. As we have already seen that Pa∼b ⊆
span(Pa∼b) ∩∆(S), we have that Pa∼b = span(Pa∼b) ∩∆(S).

(b) Suppose that % has preference reversals on {a, b}. Since there is an expected utility representation
for %, there must be a state x where a �[x] b, and another state y where b �[y] a. Moreover, there is
a unique belief p2 = (1− λ2)[x] + λ2[y] on the line segment between [x] and [y] where a ∼p2 b.

Now, let the remaining states be numbered s3, ..., sn such that

a �[sk] b for all k ∈ {3, ...,m},
b �[sk] a for all k ∈ {m+ 1, ...,m+ l}, and
a ∼[sk] b for all k ∈ {m+ l + 1, ..., n}.

Following the utility design procedure of Section 2.4.1, we choose (i) for every k ∈ {3, ...,m} the
unique belief pk = (1 − λk)[sk] + λk[y] on the line segment between [sk] and [y] with a ∼pk b, (ii) for
every k ∈ {m + 1, ...,m + l} the unique belief pk = (1 − λk)[sk] + λk[x] on the line segment between
[sk] and [x] with a ∼pk b, and (iii) for every k ∈ {m+ l + 1, ..., n} the belief pk = [sk} with a ∼pk b.

We will now show that p2, ..., pn are linearly independent. Take some numbers α2, ..., αn such that

n∑
k=2

αk · pk = 0.
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By construction, this sum is equal to

α2((1− λ2)[x] + λ2[y]) +
m∑
k=3

αk((1− λk)[sk] + λk[y])+

+

m+l∑
k=m+1

αk((1− λk)[sk] + λk[x]) +

n∑
k=m+l+1

αk[sk]

=

(
α2(1− λ2) +

m+l∑
k=m+1

αkλk

)
[x] +

(
α2λ2 +

m∑
k=3

αkλk

)
[y]

+
m+l∑
k=3

αk(1− λk)[sk] +
n∑

k=m+l+1

αk[sk] = 0.

As the vectors [x], [y], [s3], ..., [sn] are linearly independent, and 0 < λk < 1 for all k ∈ {2, ...,m+ l}, it
follows that αk = 0 for all k ∈ {3, ..., n}. This, in turn, implies that also α2 = 0. Hence, the indifference
beliefs p2, ..., pn ∈ Pa∼b are linearly independent.

As a consequence, the dimension of span(Pa∼b) is at least n − 1. The dimension of span(Pa∼b)
cannot be n, since otherwise we would have that span(Pa∼b) = RS , and hence, by (a), Pa∼b =
RS ∩∆(S) = ∆(S). This would contradict the assumption that there are preference reversals between
a and b.We thus conclude that the dimension of span(Pa∼b) must be n− 1, and therefore span(Pa∼b)
is a hyperplane. This completes the proof. �

Proof of Theorem 2.5.1. Let u, v be two different utility representations for % . To prove the
statement, we distinguish three cases: (1) there are two choices, (2) there are three choices, and (3)
there are at least four choices.

Case 1. Suppose there are two choices, a and b. Since there are preference reversals on {a, b}, there
is some p∗ ∈ Pa�b. Define

α :=
v(a, p∗)− v(b, p∗)

u(a, p∗)− u(b, p∗)
. (2.7.4)

We show that
v(a, p)− v(b, p) = α · (u(a, p)− u(b, p)) for all beliefs p ∈ ∆(S). (2.7.5)

As there are preference reversals on {a, b}, it follows by Lemma 2.7.2 (b) that there are n−1 linearly
independent beliefs p1, ..., pn−1 in Pa∼b. Moreover, p∗ /∈ span(Pa∼b), as Pa∼b = span(Pa∼b) ∩∆(S) by
Lemma 2.7.2 (a). Hence, {p1, ..., pn−1, p∗} are linearly independent, and thus form a basis for RS .
As, by construction, v(a, pk)− v(b, pk) = 0 = α · (u(a, pk)− u(b, pk)) for all k ∈ {1, ..., n− 1} and, by
(2.7.4), v(a, p∗)− v(b, p∗) = α · (u(a, p∗)−u(b, p∗)), it follows that (2.7.5) holds for every p in the basis
{p1, ..., pn−1, p∗}. Now, take some arbitrary belief p ∈ ∆(S). Then, p = λ1p1 + ... + λn−1pn−1 + λnp

∗

for some numbers λ1, ..., λn. Thus,

v(a, p)− v(b, p) =
n−1∑
k=1

λk · (v(a, pk)− v(b, pk)) + λn · (v(a, p∗)− v(b, p∗))

= α ·
(
n−1∑
k=1

λk · (u(a, pk)− u(b, pk)) + λn · (u(a, p∗)− u(b, p∗))

)
= α · (u(a, p)− u(b, p)),
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which establishes (2.7.5).

Case 2. Suppose there are three choices, a, b and c. Then, by assumption, there is a belief where the
DM is indifferent between two, but not all three, choices. Say, there is a belief p where the DM is
indifferent between c and b but not between c and a. Then, Pc∼a 6= Pc∼b. Let the number α be given
by (2.7.4). We show, for every two choices d, e ∈ {a, b, c}, that

v(d, p)− v(e, p) = α · (u(d, p)− u(e, p)) for all beliefs p ∈ ∆(S). (2.7.6)

By the proof of Case 1, we know that (2.7.6) holds for the choices a and b. We now show that
(2.7.6) holds for the choices c and a. Let p1, ..., pn−1 ∈ ∆(S) be a basis for span(Pc∼a). Then,

v(c, pk)− v(a, pk) = 0 = α · (u(c, pk)− u(a, pk)) for all k ∈ {1, ..., n− 1}. (2.7.7)

Since Pc∼a 6= Pc∼b, there is a belief pn ∈ Pc∼b\Pc∼a. By Lemma 2.7.2 (a) we must then have that
pn /∈ span(Pc∼a), and hence {p1, ..., pn−1, pn} is a basis for RS . As pn ∈ Pc∼b, it must be that

v(c, pn)− v(b, pn) = 0 = α · (u(c, pn)− u(b, pn)). (2.7.8)

Moreover, we know from Case 1 that

v(b, pn)− v(a, pn) = α · (u(b, pn)− u(a, pn)). (2.7.9)

If we combine (2.7.8) and (2.7.9), we get

v(c, pn)− v(a, pn) = (v(c, pn)− v(b, pn)) + (v(b, pn)− v(a, pn))

= α · (u(c, pn)− u(b, pn)) + α · (u(b, pn)− u(a, pn))

= α · (u(c, pn)− u(a, pn)). (2.7.10)

From (2.7.7) and (2.7.10) we conclude, in a similar way as in the proof of Case 1, that

v(c, p)− v(a, p) = α · (u(c, p)− u(a, p)) for all beliefs p.

In a similar fashion we can show (2.7.6) for the choices c and b.

Case 3. Suppose there are at least four choices. By assumption, there are three choices a, b and c
with Pc∼a 6= Pc∼b. Let the number α be given by (2.7.4). Then, we know by Case 2 that (2.7.6) holds
for every d, e ∈ {a, b, c}.

We now show (2.7.6) for choices d and a, where d is some arbitrary choice not in {a, b, c}. To
that purpose, we first prove that either Pd∼a 6= Pd∼b or Pd∼a 6= Pd∼c. To see this, suppose on the
contrary that Pd∼a = Pd∼b = Pd∼c. Define A := Pd∼a = Pd∼b = Pd∼c. Since Pd∼a ∩ Pd∼b ⊆ Pa∼b and
Pd∼b∩Pd∼c ⊆ Pb∼c, it follows that A ⊆ Pa∼b and A ⊆ Pb∼c. As a consequence, span(A) ⊆ span(Pa∼b)
and span(A) ⊆ span(Pb∼c).

By Lemma 2.7.2 (b) we know that span(A), span(Pa∼b) and span(Pb∼c) all have dimension n− 1,
and hence it must be that span(A) = span(Pa∼b) and span(A) = span(Pb∼c). By Lemma 2.7.2 (a) it
then follows that A = Pa∼b = Pb∼c.

Note that A = Pa∼b ∩ Pb∼c ⊆ Pa∼c. In a similar way as above, it can be shown that, in fact, A =
Pa∼c. We thus conclude that Pa∼b = Pb∼c = Pa∼c. This is a contradiction to our assumption that
Pa∼c 6= Pb∼c. Hence, either Pd∼a 6= Pd∼b or Pd∼a 6= Pd∼c.

Assume, without loss of generality, that Pd∼a 6= Pd∼b. Then, it can be shown in a similar way as
for Case 2 that (2.7.6) holds for the choices d and a.
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Now, take some choice d /∈ {a, b, c}, and some arbitrary choice e /∈ {a, d}. Since we know that
(2.7.6) holds for the choices d and a, and for the choices e and a, it follows that

v(d, p)− v(a, p) = α · (u(d, p)− u(a, p)) for all beliefs p

and
v(a, p)− v(e, p) = α · (u(a, p)− u(e, p)) for all beliefs p.

This implies that

v(d, p)− v(e, p) = (v(d, p)− v(a, p)) + (v(a, p)− v(e, p))

= α · (u(d, p)− u(a, p)) + α · (u(a, p)− u(e, p))

α · (u(d, p)− u(e, p)) for all beliefs p.

Hence, (2.7.6) holds for every two choices d, e. This completes the proof. �

2.7.3 Proof for Section 2.6
To prove Theorem 2.6.1 we rely on a well-known result in mathematics, called the separating hyperplane
theorem. To formally state this result we need some additional definitions. For every two vectors
v, w ∈ RX we denote by

d(v, w) :=

√∑
x∈X

(v(x)− w(x))2

the Euclidean distance between v and w. For some vector v ∈ RX and number r > 0, we denote by

Br(v) := {w ∈ RX | d(v, w) < r}

the open ball with radius r around the vector v. A subset A ⊆ RX is called open if for every vector
v ∈ A there is some number r > 0 such that Br(v) ⊆ A. A subset A ⊆ RX is called closed if its
complement RX\A is open. Intuitively, this means that the boundary of A is included in A itself.
The set A is called bounded if there is some vector v ∈ RX and some r > 0 such that A ⊆ Br(v).
Finally, two sets A,B are disjoint if the set A ∩B is empty.

The separating hyperplane theorem states that under certain conditions, two disjoints sets in RX

can be separated by a hyperplane.

Theorem 2.7.1 (Separating hyperplane theorem) Let X be a finite set, and let A and B be
two disjoint, closed and convex sets in RX , where A is bounded. Then, there is a vector w ∈ RX\{0}
and a number α such that

a · w > α for all a ∈ A and b · w < α for all b ∈ B.

Recall that the set H := {v ∈ RX | v ·w = α} is a hyperplane. Hence, under the conditions above,
the sets A and B are on different sides of the hyperplane H, and are thus separated by the hyperplane
H.

We are now ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. (a) Suppose first that a choice a is strictly dominated by another choice.
Then, clearly, a is irrational. Assume next that a is strictly dominated by a randomized choice r under
the expected utility representation u. We show that a must be irrational.
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To see this, note that for every state s we have that∑
c∈C

r(c) · (u(c, s)− u(a, s)) > 0.

This implies that for every belief p,∑
c∈C

r(c) · (u(c, p)− u(a, p)) > 0.

Consequently, for every belief p there is some choice c with r(c) > 0 such that u(c, p) > u(a, p). In
particular, the choice a cannot be optimal for any belief, and thus a is irrational.

Next, suppose that choice a is irrational. We will show that a is either strictly dominated by another
choice, or strictly dominated by a randomized choice under the expected utility representation u.

Let the set of choices be C = {c1, ..., cm}. For every belief p, consider the utility difference vector
d[p] in RC where

d[p](c) := u(c, p)− u(a, p) for every c ∈ C.

Thus, d[p] specifies for every choice c the intensity by which the DM prefers the choice c to the fixed
choice a. Let A be the subset of RC given by

A := {d[p] | p ∈ ∆(S)}.

That is, A contains all utility difference vectors with respect to choice a.
Moreover, define the set

B = {v ∈ RC | v(c) ≤ 0 for all c ∈ C}.

We will now show that the sets A and B satisfy the conditions in Theorem 2.7.1.
We first show that A and B are disjoint. To see this, take an arbitrary vector d[p] in A. As a

is irrational, we know that a is not optimal for the belief p, and hence there is some choice c with
d[p](c) = u(c, p)− u(a, p) > 0. Thus, d(p) is not in B. Therefore, A and B are disjoint.

It may easily be verified that A is closed and bounded, and that B is closed and convex. It remains
to show that A is convex. Take some vectors d[p], d[q] in A and some number λ ∈ [0, 1]. We will show
that (1− λ) · d[p] + λ · d[q] is in A. For every choice c we have that

((1− λ) · d[p] + λ · d[q])(c) = (1− λ) · (u(c, p)− u(a, p)) + λ · (u(c, q)− u(a, q))

= u(c, (1− λ)p+ λq)− u(a, (1− λ)p+ λq) = d[(1− λ)p+ λq](c).

As (1− λ)p+ λq is again a belief, we conclude that (1− λ) · d[p] + λ · d[q] is in A. Thus, A is convex.
By Theorem 2.7.1 we thus conclude that there is some vector w ∈ RC\{0} and a number α such

that
a · w > α for all a ∈ A and b · w < α for all b ∈ B. (2.7.11)

As 0 ∈ B, it follows that α > 0 · w = 0, and hence a · w > 0 for all a ∈ A.
We next show that w(c) ≥ 0 for every c ∈ C. Suppose, contrary to what we want to show, that

w(c∗) < 0 for some choice c∗. Then, the vector b ∈ RC with b(c∗) = α
w(c∗) < 0 and b(c) = 0 for all

c 6= c∗ is in B. Moreover, b · w = b(c∗) · w(c∗) = α, which is a contradiction since b · w < α for all
b ∈ B. Thus, w(c) ≥ 0 for all c ∈ C.
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We now show that w(c) > 0 for some choice c. Suppose, on the contrary, that w(c) = 0 for all
c ∈ C. Then, a · w = 0 < α for all a ∈ A, which would be a contradiction to (2.7.11).

Summarizing, we see that w(c) ≥ 0 for all choices c, and w(c) > 0 for some choice c. Now, define
the randomized choice r by

r(c) :=
w(c)∑
d∈C w(d)

for all c ∈ C.

As w(c) ≥ 0 for all choices c, and w(c) > 0 for some choice c, it follows that r(c) ≥ 0 for every c ∈ C,
and

∑
c∈C r(c) = 1. That is, r is a well-defined randomized choice.

For every belief p we then have that∑
c∈C

r(c) · (u(c, p)− u(a, p)) =
1∑

d∈C w(d)
·
∑
c∈C

w(c) · (u(c, p)− u(a, p))

=
1∑

d∈C w(d)
· (w · d[p]) > 0.

Here, the inequality follows from the insight in (2.7.11) that w · a > 0 for all a ∈ A, and the fact that
d[p] ∈ A. Hence, we conclude that∑

c∈C
r(c) · (u(c, p)− u(a, p)) > 0 for all beliefs p,

which means that the choice a is strictly dominated by the randomized choice r under u. This completes
the proof for part (a).

(b) Suppose now that a is strictly dominated by a randomized choice r′ under u. We will show that
there is a randomized choice r that strictly dominates a under every utility function v that represents
% .

We start by assuming that there are no equivalent choices. At the end of the proof, we show how
to prove the statement if there are equivalent choices.

Let D be the set of choices that are not weakly dominated by any other choice. We first show that
D contains at least one choice. Suppose not. Then, every choice c in C would be weakly dominated
by some other choice f(c) in C. Start from some arbitrary choice c. Then, c is weakly dominated by
f(c), f(c) is weakly dominated by f(f(c)), and so on, without end. This induces an infinite sequence
of choices

c1 → c2 → c3 → ...

where c1 = c, c2 = f(c1), c3 = f(c2), and so on. As there are only finitely many choices, there must be
a choice that occurs at least twice in this sequence. That is, there must be some k,m ≥ 1 such that

ck → ck+1 → ...→ ck+m = ck. (2.7.12)

Hence, ck weakly dominates ck+m−1, which in turn weakly dominates ck+m−2, and so on, until ck+1

which weakly dominates ck. However, if a choice b weakly dominates c, and c weakly dominates d,
then it follows that b weakly dominates d. Please verify this. If we apply this insight repeatedly to
(2.7.12), then we conclude that ck weakly dominates ck. This, however, cannot be. Please verify this.
Thus, the assumption above that D contains no choice cannot be true. That is, D must contain at
least one choice.

We next show that every choice not in D must be weakly dominated by some choice in D. To see
this, consider a choice c1 /∈ D. Then, there is a choice c2 that weakly dominates c1. If c2 ∈ D we are
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done. If c2 /∈ D, then there is some choice c3 that weakly dominates c2, and so on. We thus obtain a
sequence of choices

c1 → c2 → ...

This sequence, however, cannot be infinite, since in that case we would conclude that some choice is
weakly dominated by itself, like above. Thus, there must be some ck where the sequence terminates,
and hence we obtain

c1 → c2 → ...→ ck.

As ck is not weakly dominated by any other choice, ck must be in D. By the same argument as above,
it can then be concluded that ck weakly dominates c1. Thus, every choice c1 /∈ D is weakly dominated
by some choice ck ∈ D.

We now show that for every belief p there is a choice in D that is optimal for p. To see this, consider
a belief p and a choice c that is optimal for p. If c is in D, then we are done. If c is not in D, then we
know from above that there is some d ∈ D that weakly dominates c. Since u(d, p) ≥ u(c, p) and c is
optimal for the belief p, it follows that d is optimal for the belief p as well.

Recall our assumption above that a is strictly dominated by some randomized choice under u.
Hence, by part (a) of Theorem 2.6.1 we know that a is irrational under % . That is, a is not optimal
for any belief p. Since we have seen above that for every belief p there is a choice in D that is optimal
for p, it follows that there is no belief p such that a is optimal among all choices in D∪{a}. Therefore,
a is irrational if we restrict to choices in D ∪ {a} only.

We will now show that there is a randomized choice r that only assigns positive probability to
choices in D\{a}, and that strictly dominates a under every utility function v that represents % .

We distinguish two cases: (1) a is in D, and (2) a is not in D.

Case 1. Suppose that a is in D. Then, no choice in D ∪ {a} weakly dominates another choice in
D ∪ {a}. Since we assume that there are no equivalent choices, it follows that there are preference
reversals between every two choices in D ∪ {a}.

Note that D ∪ {a} must contain at least three choices. To see this, assume that D ∪ {a} would
contain only one choice, which would be a. This would be a contradiction, as a is irrational in D∪{a}.
If D∪{a} would contain two choices, say a and b, then b would strictly dominate a, since a is irrational
in D ∪ {a}. This would also be a contradiction, as a is in D, and hence a is not weakly dominated by
any other choice. Therefore, D ∪ {a} must contain at least three choices.

We next show that there are choices b, c, d ∈ D with Pb∼d 6= Pc∼d. Suppose not. Then, in particular,
Pa∼b = Pa∼c for every b, c ∈ D\{a}. Take some choice b ∈ D\{a} and some belief p ∈ Pa∼b. Then,
p ∈ Pa∼c for every c ∈ D\{a}. In particular, a would be optimal for the belief p among the choices in
D ∪ {a}. This would be a contradiction, as a is irrational among the choices in D ∪ {a}. Thus, there
are choices b, c, d ∈ D with Pb∼d 6= Pc∼d. Hence, there are beliefs where the DM is indifferent between
some, but not all, choices in D ∪ {a}.

Since we also know that there are preference reversals between any two choices in D∪{a}, it follows
from Theorem 2.5.1 that for every other expected utility representation v there is some number α > 0
with

v(c, s)− v(a, s) = α · (u(c, s)− u(a, s)) (2.7.13)

for all choices c ∈ D\{a} and all states s.
Recall that choice a is irrational among choices in D ∪ {a}. By part (a) of this theorem we know

that there is a randomized choice r that only assigns positive probability to choices in D\{a}, and
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that strictly dominates a under u. As such,∑
c∈C

r(c) · (u(c, s)− u(a, s)) > 0 for all states s. (2.7.14)

By combining (2.7.13) and (2.7.14), and using the fact that the randomized choice r only assigns
positive probability to choices in D\{a}, it follows for every state s that∑

c∈C
r(c) · (v(c, s)− v(a, s)) = α ·

∑
c∈C

r(c) · (u(c, s)− u(a, s)) > 0.

Thus, r strictly dominates a for every utility function v that represents % . This completes the proof
of Case 1.

Case 2. Suppose that a is not in D. Let E be the set of choices in D that weakly dominate a, and
let F be the set of choices in D that do not weakly dominate a. Since a is not in D, we know that a
is weakly dominated by some other choice. Hence, from one of our arguments above it follows that
there must be some d ∈ D that weakly dominates a, and thus E is non-empty. We distinguish two
subcases: (2.1) for every state s there is some e ∈ E with e �[s] a, and (2.2) there is some state s such
that e ∼[s] a for every choice e ∈ E.

Case 2.1. Suppose that for every state s there is some choice e(s) ∈ E with e �[s] a. Let r be a
randomized choice that assigns positive probability to all choices in E, and probability zero to all
other choices. We show that r strictly dominates a under every utility function v that represents % .

Let v be some arbitrary utility function that represents % . Then, v(e(s), s) > v(a, s) for every
state s, and v(e, s) ≥ v(a, s) for every state s and every choice e ∈ E. The last inequality holds because
a is weakly dominated by every choice in E. But then, for every state s,∑

e∈E
r(e) · (v(e, s)− v(a, s)) > 0

because r assigns positive probability to all choices in E. Thus, r strictly dominates a under every
utility function v that represents % . This completes the proof of Case 2.1.

Case 2.2. Suppose there is some state s∗ with e ∼[s∗] a for every choice e ∈ E. As a is irrational
among choices in D ∪ {a}, we know there must be some f ∈ D with f �[s∗] a. Hence, necessarily, f
must be in F. In particular, F is non-empty.

Since a is irrational among choices in D∪{a}, we know from part (a) of this theorem that there is
a randomized choice r that strictly dominates a under u, and that only assigns positive probability to
choices in D. We show that r strictly dominates a under every utility function v that represents % .

We distinguish two subcases: (2.2.1) either D contains at most two choices or there are choices
b, c, d ∈ D with Pb∼c 6= Pb∼d, and (2.2.2) D contains more than two choices and Pb∼c = Pb∼d for all
choices b, c, d ∈ D.

Case 2.2.1. Suppose that either D contains at most two choices, or there are beliefs where the DM is
indifferent between some, but not all, choices in D. By construction, no choice in D weakly dominates
another choice in D, and hence there are preference reversals between all choices in D. As such, we
can conclude from Theorem 2.5.1 that for every other expected utility representation v there is some
α > 0 with

v(b, s)− v(c, s) = α · (u(b, s)− u(c, s)) for all choices b, c ∈ D (2.7.15)
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and all states s.
Take some arbitrary utility function v that represents % . Consider the state s∗ above, and the

choice f ∈ F with f �[s∗] a. As, by definition of F, we have that f does not weakly dominate a, and
since a does not weakly dominate f, we know that there are preference reversals between a and f. By
Lemma 2.7.2 (b), span(Pa∼f ) has dimension n− 1, where n is the number of states. Consider a basis
{p1, ..., pn−1} for span(Pa∼f ), consisting of beliefs. Moreover, since [s∗] /∈ Pa∼f we know from Lemma
2.7.2 (a) that [s∗] /∈ span(Pa∼f ), and therefore {p1, ..., pn−1, [s∗]} is a basis for RS .

Since p1, ..., pn−1 ∈ Pa∼f we must have that

v(a, pk) = v(f, pk) for all k ∈ {1, ..., n− 1}.

Take some e ∈ E. As [s∗] ∈ Pa∼e, it must be that

v(a, s∗) = v(e, s∗).

Since u(a, pk) = u(f, pk) for all k ∈ {1, ..., n − 1}, and u(a, s∗) = u(e, s∗), we know in particular
that

v(a, pk)− v(f, pk) = 0 = α · (u(a, pk)− u(f, pk)) for all k ∈ {1, ..., n− 1} (2.7.16)

and
v(a, s∗)− v(e, s∗) = 0 = α · (u(a, s∗)− u(e, s∗)). (2.7.17)

Now, take some arbitrary choice c ∈ D and some arbitrary belief p. Recall that {p1, ..., pn−1, [s∗]}
is a basis for RS , and hence there are numbers λ1, ..., λn with p = λ1p1 + ... + λn−1pn−1 + λn[s∗]. In
view of (2.7.15), (2.7.16) and (2.7.17) we then conclude that

v(a, p)− v(c, p) =
n−1∑
k=1

λk · (v(a, pk)− v(c, pk)) + λn · (v(a, s∗)− v(c, s∗))

=
n−1∑
k=1

λk · (v(a, pk)− v(f, pk) + v(f, pk)− v(c, pk)) +

+λn · (v(a, s∗)− v(e, s∗) + v(e, s∗)− v(c, s∗))

= α ·
n−1∑
k=1

λk · (u(a, pk)− u(f, pk) + u(f, pk)− u(c, pk)) +

+α · λn · (u(a, s∗)− u(e, s∗) + u(e, s∗)− u(c, s∗))

= α · (u(a, p)− u(c, p)). (2.7.18)

Recall that the randomized choice r strictly dominates a under u. Hence, for every state s we have
that ∑

c∈C
r(c) · (u(c, s)− u(a, s)) > 0.

Together with (2.7.18) we conclude, for every state s, that∑
c∈C

r(c) · (v(c, s)− v(a, s)) = α ·
∑
c∈C

r(c) · (u(c, s)− u(a, s)) > 0.

Thus, r strictly dominates a under v. This completes the proof of Case 2.2.1.
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Case 2.2.2. Suppose that D contains more than two choices and there are no beliefs where the DM
is indifferent between some, but not all, choices in D. Then, Pb∼c = Pd∼e for all pairs of choices {b, c}
and {d, e} in D. Define P := Pb∼c for some b, c ∈ D.

Now, consider some choice f ∈ F. As f does not weakly dominate a and a does not weakly
dominate f, we know that Pa∼f is non-empty. We show that no p ∈ Pa∼f can be in P. Suppose, on
the contrary, that p ∈ Pa∼f would also be in P. Then, for every choice c ∈ D\{f}, we would have that
p ∈ Pa∼f ∩ Pf∼c. Hence, by transitivity, it would follow that p ∈ Pa∼c for every c ∈ D. But then, a
would be optimal for the belief p among choices in D ∪ {a}, which is a contradiction, since we have
seen that a is irrational among choices in D ∪ {a}. We thus conclude that no p ∈ Pa∼f is in P. In
particular, Pa∼f 6= P.

By construction of the set F, no choice in F ∪ {a} weakly dominates another choice in F ∪ {a}.
Thus, there are preference reversals between every two choices in F ∪ {a}. Moreover, since Pa∼f 6= P,
we know that either F only has the choice f , or for every choice c ∈ F\{f} we have that Pa∼f 6= Pc∼f .
Thus, we conclude by Theorem 2.5.1 that for every other expected utility representation v there is
some α > 0 with

v(b, s)− v(c, s) = α · (u(b, s)− u(c, s)) for all choices b, c ∈ F ∪ {a} (2.7.19)

and all states s.

Take some arbitrary utility function v that represents % . We show that the randomized choice r
strictly dominates a under v.

Consider some arbitrary choice e ∈ E. Since e, f ∈ D, we know that e does not weakly dominate
f, and f does not weakly dominate e, and therefore there are preference reversals between e and f. By
Lemma 2.7.2 (b), we then know that span(P ) = span(Pe∼f ) has dimension n − 1. Let {p1, ..., pn−1}
be a basis for span(P ) consisting of beliefs in P.

Consider now some pn ∈ Pa∼e. In the same way as above, it can be shown that pn is not in P.
Hence, by Lemma 2.7.2 (a) we know that pn /∈ span(P ). As such, {p1, ..., pn−1, pn} is a basis for RS .

Since p1, ..., pn−1 are in P = Pe∼f , we must have that

v(e, pk) = v(f, pk) for all k ∈ {1, ..., n− 1}.

Moreover, as pn ∈ Pa∼e, it must be that

v(e, pn) = v(a, pn).

As u(e, pk) = u(f, pk) for all pk ∈ {1, .., , n− 1} and u(e, pn) = u(a, pn), we know that

v(e, pk)− v(f, pk) = 0 = α · (u(e, pk)− u(f, pk)) for all k ∈ {1, .., , n− 1}, (2.7.20)

and

v(e, pn)− v(a, pn) = 0 = α · (u(e, pn)− u(a, pn)). (2.7.21)

Take some e ∈ E and some belief p. Since {p1, ..., pn} is a basis for RS , there are numbers λ1, ..., λn



66 CHAPTER 2. DECISION PROBLEMS

such that p = λ1p1 + ...+ λnpn. In view of (2.7.19), (2.7.20) and (2.7.21), we conclude that

v(e, p)− v(a, p) =
n−1∑
k=1

λk · (v(e, pk)− v(a, pk)) + λn · (v(e, pn)− v(a, pn))

=

n−1∑
k=1

λk · (v(e, pk)− v(f, pk) + v(f, pk)− v(a, pk))

+λn · (v(e, pn)− v(a, pn))

= α ·
n−1∑
k=1

λk · (u(e, pk)− u(f, pk) + u(f, pk)− u(a, pk))

+α · λn · (u(e, pn)− u(a, pn))

= α · (u(e, p)− u(a, p)).

As this holds for every e ∈ E, it follows together with (2.7.19) that

v(c, p)− v(a, p) = α · (u(c, p)− u(a, p)) for all c ∈ D. (2.7.22)

Since the randomized choice r strictly dominates a under u we know, for every state s, that∑
c∈D

r(c) · (u(c, s)− u(a, s)) > 0.

Together with (2.7.22) it follows that∑
c∈D

r(c) · (v(c, s)− v(a, s)) = α ·
∑
c∈D

r(c) · (u(c, s)− u(a, s)) > 0.

Thus, the randomized choice r strictly dominates a under v. This completes the proof of Case 2.2.2.
Since we have exhausted all the cases, we have shown, in the absence of equivalent choices, that

there is a randomized choice r that strictly dominates a under every utility function v that represents
% .

Suppose now that some choices would be equivalent to other choices. We can first reduce C to a
subset C∗ of choices that does not contain equivalent choices by eliminating, for every set of equivalent
choices, all choices but one. Let %∗ be the restriction of the conditional preference relation % to choices
in C∗. We can do the eliminations in such a way that the irrational choice a we started from is still in
C∗.

Clearly, a will still be irrational for %∗ . By the proof above, we know that there is a randomized
choice r on C∗ that strictly dominates a for every utility function v∗ that represents %∗ . But then,
the same randomized choice r will then strictly dominate a for every utility function v that represents
% . This completes the proof. �
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Solutions to In-Chapter Questions

Question 2.1.1. The choices garden and tent are optimal. To see this, note that garden is weakly
preferred to the other two choices, and tent is weakly preferred to the other two choices.

Question 2.1.2. (a) Suppose that a � b and b � c. By transitivity, it follows that a % c. Suppose,
contrary to what we want to show, that a ∼ c. Then, c ∼ a and a � b, and hence by transitivity it
would follow that c % b, which is a contradiction. Thus, a � c.
(b) Suppose that a � b and b ∼ c. By transitivity, it follows that a % c. Suppose, contrary to what
we want to show, that a ∼ c. Then, as b ∼ c and c ∼ a, it would follow by transitivity that b % a,
which is a contradiction. Thus, a � c.
(c) Suppose that a ∼ b and b � c. By transitivity, it follows that a % c. Suppose, contrary to what we
want to show, that a ∼ c. Then, as c ∼ a and a ∼ b, it would follow by transitivity that c % b, which
is a contradiction. Thus, a � c.
(d) Suppose that a ∼ b and b ∼ c. Then, by transitivity, it follows that a % c. Moreover, as c ∼ b and
b ∼ a, it follows by transitivity that also c % a. But then, it must be that a ∼ c.
Question 2.1.3. (a) The choice b is optimal, because it is weakly preferred to all other choices.

(b) Note that c � d and d � a but c ∼ a. This violates property (a) in Question 2.1.2, and thus % is
not transitive.

Question 2.1.4. The preference relation % induced by the utility function u is given by b � a, c � a,
d � a, c � b, b ∼ d and c � d.
Question 2.1.5. Take choices a, b, c where a % b and b % c. Then, u(a) ≥ u(b) and u(b) ≥ u(c),
which implies that u(a) ≥ u(c). Hence, a % c. Therefore, % is transitive.
Question 2.1.6. (a) Take a, b ∈ C1. As both a and b are optimal, we must have that a % b and
b % a, which implies that a ∼ b.
(b) Take a ∈ C1 and b /∈ C1. As a is optimal we must have that a % b. Assume, contrary to what we
want to show, that a ∼ b. As a is optimal, we know that a is weakly preferred to every other choice.
Since a ∼ b, it would follow from Question 2.1.2 that also b is weakly preferred to all other choices,
and hence also b would be optimal. This is a contradiction. Hence, we conclude that a � b.
Question 2.1.7. It may be verified that for all choices e, f, g with e % f and f % g it holds that
e % g. Hence, % is transitive.

To find a utility representation we follow the procedure in the proof of Theorem 2.1.2. The set of
optimal choices in C is C1 = {b, c}. Thus, C\C1 = {a, d}. Within C\C1, the set of optimal choices
is C2 = {a}. Hence, C3 = {d}. Choose u1 > u2 > u3, and set u(b) = u(c) := u1, u(a) := u2 and
u(d) := u3.

Question 2.2.1. (a) The belief q assigns probability 0.4 to rainy, probability 0 to stormy, and
probability 0.6 to calm. Thus, q = (0.4, 0, 0.6).

(b) The location of belief r = (0.6, 0.3, 0.1) can be found in Figure 2.7.1.

Question 2.3.1. The expected utility of the three choices are given by

u(house, q) = (0.3) · 10 + (0.1) · 17 + (0.6) · 0 = 4.7,

u(garden, q) = (0.3) · 0 + (0.1) · 7 + (0.6) · 10 = 6.7,

u(tent, q) = (0.3) · 3 + (0.1) · 0 + (0.6) · 3 = 2.7.
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Figure 2.7.1 Question 2.2.1

This matches your preferences at the belief q, which are given by garden �q house �q tent.

Question 2.3.2. Take the expected utility representation from Table 2.3.1 as a starting point.
Currently, the utility difference between garden and house at the state calm is 10, but it should
become 1. To make this possible, we multiply all utilities in Table 2.3.1 by 1/10, and get

rainy stormy calm
house 1 1.7 0
garden 0 0.7 1
tent 0.3 0 0.3

.

To make the three utilities in the first row 0, we substract 1 from all entries in the first column, and
substract 1.7 from all entries in the second column, to get

rainy stormy calm
house 0 0 0
garden −1 −1 1
tent −0.7 −1.7 0.3

.

Question 2.4.1. The conditional preference relation between garden and tent is depicted in Figure
2.7.2. As requested, we choose the utilities for tent at the three states equal to 0, that is, u(tent,
rainy) = 0, u(tent, stormy) = 0 and u(tent, calm) = 0. Also, we choose u(garden, calm) = 1. Consider
the belief p1 = (0.7, 0, 0.3) in Figure 2.7.2 on the line segment between rainy and calm. By the utility
difference property,

u(tent, rainy)− u(garden, rainy)

u(garden, calm)− u(tent, calm)
=
p1(calm)

p1(rainy)
=

0.3

0.7
=

3

7
.

Since u(tent, rainy) = u(tent, calm) = 0 and u(garden, calm) = 1, we have that

−u(garden, rainy)

1
=

3

7
,
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Figure 2.7.2 Question 2.4.1

which means that u(garden, rainy) = −3/7.
Next, consider the belief p2 = (0.7, 0.3, 0) in Figure 2.7.2 on the line segment between rainy and

stormy. By the utility difference property,

u(tent, rainy)− u(garden, rainy)

u(garden, stormy)− u(tent, stormy)
=
p2(stormy)

p2(rainy)
=

0.3

0.7
=

3

7
.

As u(tent, rainy) = u(tent, stormy) = 0 and u(garden, rainy) = −3/7, we have that

3/7

u(garden, stormy)
=

3

7
,

which means that u(garden, stormy) = 1. The utility function we obtain is thus given by

u rainy stormy calm
tent 0 0 0

garden −3/7 1 1

.

It may be verified that this utility function represents the conditional preference relation from Figure
2.7.2.

Question 2.5.1. (a) There are no preference reversals between a and b, nor between a and c. Indeed,
a strictly dominates b and c.

(b) The two utility functions below both represent the conditional preference relation at hand:

u x y

a 2 2
b 1 0
c 0 1

v x y

a 3 3
b 1 0
c 0 1

.

Note that under the utility function u, the intensity by which the DM prefers a to b at x is the same
as the intensity by which he prefers b to c at x. However, under the utility function v, the intensity
by which the DM prefers a to b at x is twice the intensity by which he prefers b to c at x.
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Question 2.6.1. Consider the utility function v given by

rainy stormy calm
house 10 17 0
garden 0 7 10
tent 3 0 3

square −10 −10 −10

.

Then, it may be verified that also this utility function represents % . However, your choice tent is
no longer strictly dominated by the randomized choice r under v. To see this, note that for the state
rainy, the expected intensity by which you prefer the choice selected by r to the choice tent is now
given by

(0.4) · (10− 3) + (0.4) · (0− 3) + (0.2) · (−10− 3) = −1 < 0.
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Figure 2.7.3 Conditional preference relation for Problem 2.1

Problems

Problem 2.1: The breakfast problem.

You are staying at a nice hotel with a beautiful view. It is now 8 pm in the evening, and according
to the rules of the hotel you already have to order which type of breakfast you want to have for the
day after. There is the choice between a huge English breakfast with plenty of saucages, eggs, bacon,
and beans in tomato sauce, a medium sized German breakfast with some delicious German rolls, or a
lovely but very light French breakfast with freshly baked croissants.

The problem is that you do not know how hungry you will be in the morning. But you are a
hungry person in general, and hence you know that you will either be starving, very hungry, or just
hungry in the morning. Of course, which type of breakfast you prefer will depend on how hungry you
are: The huge English breakfast will be favorite if you are suffi ciently hungry, but with a moderate
appetite you would rather go for the small French breakfast, because you love croissants. On the other
hand, you are not so fond of the German rolls.

More precisely, your preferences over the three breakfast types, for every possible belief over your
appetite, are given by the conditional preference relation in Figure 2.7.3.

Here, the vector (3/8, 0, 5/8) represents the belief where you think you will be hungry with prob-
ability 3/8, you think you will be very hungry with probability 0, and you think you will be starving
with probability 5/8. Similarly for the other vectors.

(a) Use the utility design procedure to compute the unique expected utility representation u where
all your utilities for the English breakfast are 10, and your utility for the German breakfast is 13 if
you are just hungry.

(b) Explain, on the basis of Theorem 2.5.1, why the relative preference intensities are unique for this
conditional preference relation.

(c) Consider the intensity by which you prefer the French breakfast to the German breakfast when
(i) you are just hungry, and (ii) when you believe to be very hungry or starving with probability 0.5
each. What can you say about the relative proportion of these two preference intensities?
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Figure 2.7.4 New conditional preference relation for Problem 2.1

(d) Suppose you believe to be very hungry or starving with probability 0.5 each. Consider the
intensities by which you (i) prefer the English breakfast to the French breakfast, and (ii) prefer the
French breakfast to the German breakfast. What can you say about the relative proportion of these
two preference intensities?

(e)Which breakfast choices for you are rational and which are irrational? For every irrational breakfast
choice, find another choice, or randomized choice, that strictly dominates it under the utility function
u found in (c). Explain why it strictly dominates the irrational choice under every expected utility
representation.

It is now one year later, and you come back to the same hotel, facing the same decision problem.
Suppose that, due to a small change in your tastes, your conditional preference relation has changed.
Your new conditional preference relation is given by Figure 2.7.4.

(f) Explain, without making any calculations, why this conditional preference relation does not have
an expected utility representation.

Problem 2.2: Visiting Barbara.

This afternoon you will be visiting your friend Barbara, who lives at the other side of town. The
problem is which type of transport to use. The possible options are going by car, by bus, by taxi or
by metro. If there is no traffi c jam in the city center, then you would prefer the car to the bus, the bus
to the taxi, and the taxi to the metro. The reason is that you like driving, the taxi is very expensive,
and you were robbed in the metro last year. However, if there is a traffi c jam in the city center, then
driving yourself would be a disaster, the bus would be somewhat faster because it can use the special
bus tracks, the taxi driver would be even faster because he would know the quickest detours, whereas
the metro would certainly get you at Barbara’s place in time. Since you hate being late, you would
prefer the metro to the taxi, the taxi to the bus, and the bus to the car in case there would be a traffi c
jam in the city center.

However, you do not know whether there will be a traffi c jam in the city center or not. Your
conditional preference relation can be described on the basis of the following information:
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- your prefer the car to the bus precisely when you deem the probability of a traffi c jam lower
than 1/3;

- your prefer the car to the taxi precisely when you deem the probability of a traffi c jam lower
than 4/7;

- your prefer the car to the metro precisely when you deem the probability of a traffi c jam lower
than 1/2;

- your prefer the bus to the taxi precisely when you deem the probability of a traffi c jam lower
than 3/4;

- your prefer the bus to the metro precisely when you deem the probability of a traffi c jam lower
than 4/7;

- your prefer the taxi to the metro precisely when you deem the probability of a traffi c jam lower
than 1/3.

(a) Give a graphical representation of this conditional preference relation, similar to the one in Figure
2.4.7.

(b) Use the utility design procedure to compute the unique expected utility representation where all
utilities for car are 5, and the utility for bus is 4 if there is no traffi c jam.

(c) Explain, on the basis of Theorem 2.5.1, why the relative preference intensities are unique for this
conditional preference relation.

(d) Consider the belief where you deem the probability of a traffi c jam equal to 40%. What is the
induced ranking of your choices for this belief? What are the relative intensities by which you prefer
the number 1 choice to the number 2 choice, the number 2 choice to the number 3 choice, and the
number 3 choice to the number 4 choice?

(e) Which choices are rational and which choices are not? For every irrational choice, find another
choice, or a randomized choice, that strictly dominates it under the utility function found in (b).
Explain why it strictly dominates the irrational choice under every utility function that represents the
conditional preference relation.

It is one month later, and you again would like to visit Barbara, this time for her birthday. Since
the metro ride of last month was not as bad as you thought, your preferences between taxi and metro
have changed: Your prefer the taxi to the metro precisely when you deem the probability of a traffi c
jam lower than 1/5. All other aspects of your conditional preference relation remain unchanged.

(f) Does your new conditional preference relation have an expected utility representation? Explain
your answer.

*Problem 2.3: The surprise trip.

Remember from this chapter that you celebrated your birthday with a party. You enjoyed it tremen-
dously, but the next day you wake up with a terrible hangover. During breakfast, Barbara tells you
that she has planned a surprise trip for you, in honour of your birthday, and that you have to leave
within one hour. The only thing she tells you is that you will either be flying to Moscow, to Paris
or to Athens. You checked the weather, and tomorrow it will be -20 degrees Celcius in Moscow, 5
degrees in Paris and 15 degrees in Athens.

There is, however, one problem: You can only take handluggage with you, which means there is
only room for one outfit. Moreover, most of your clothes still have to be washed, but there is no time
for this until you leave. When you stand in front of your wardrobe, there are only four outfits that
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Figure 2.7.5 Conditional preference relation for Problem 2.3

you can take: a polar suit, a Gucci suit, a pair of shorts with Hawaï shirt, and a horse riding costume.
Suppose that your conditional preference relation over these four outfits is given by Figure 2.7.5. The
question is: Which outfit will you take?

(a) Are there outfits that are strictly dominated by other outfits? If so, which ones?

(b) We will see in (c) that there is an expected utility representation for the conditional preference
relation. Explain why the relative preference intensities between polar suit, shorts and horse riding
costume are unique. Can the same be guaranteed for the relative preference intensities between all
four outfits? Explain why or why not.

Consider the signed conditional preference relation in Figure 2.7.6, which extends the conditional
preference relation from Figure 2.7.5.

(c) Find the unique expected utility representation for this signed conditional preference relation
where all utilities for polar suit are 100, and the utility for shorts at Paris is 30.
(Hint: Compute first the utilities for polar suit, shorts and horse riding costume. Afterwards, find
the utilities for the gucci suit.)

Consider now the alternative signed conditional preference relation in Figure 2.7.7, which also
extends the conditional preference relation from Figure 2.7.5. Note that the conditional preferences
between polar suit, shorts and horse riding costume are the same as before, as well as the conditional
preference between polar suit and gucci suit.

(d) Compute the unique utility function that represents this signed conditional preference relation
where all utilities of polar suit are 100, and the utility for shorts at Paris is 30.
(Hint: Since the conditional preferences between polar suit, shorts and horse riding costume are the
same as before, the utilities for these three outfits will also be the same as before.)

(e) Does the conditional preference relation from Figure 2.7.5 induce unique relative preference in-
tensities? Explain your answer.
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Figure 2.7.6 Signed conditional preference relation for Problem 2.3

Figure 2.7.7 Alternative signed conditional preference relation for Problem 2.3
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Literature

Early foundations of expected utility. Savage (1954) proposed a model of decision making under
uncertainty that has become the cornerstone to modern decision theory. The primitive notions in
this model are a set of states, representing the events about which the DM is uncertain, and a set
of consequences (or outcomes), representing the possible consequences of his choices at the various
states. An act is a mapping that assigns to every state a consequence, and Savage assumes that the
DM has a preference relation over all possible acts.

Savage then imposes some axioms on this preference relation over acts, and shows that these
axioms are both necessary and suffi cient for an expected utility representation. Here, we say that the
preference relation % over acts has an expected utility representation if there is a belief p over the
states, and a utility function u, assigning to every outcome o some utility u(o), such that the DM
prefers act a to act b precisely when the expected utility of act a under the belief p and utility function
u is larger than that of b. Moreover, Savage shows that under his axioms, the belief p over states
will be unique, whereas the utility function u is unique up to an additive constant and a positive
multiplicative constant.

Some years earlier, von Neumann and Morgenstern (1947) presented a different framework, where
the DM has preferences over lotteries with objective probabilities. That is, the DM still has uncer-
tainty about which outcome will result, but the probilities by which these outcomes will realize are
objectively given. One could think, for instance, of lottery tickets, where the probability of winning a
given price is known. Like Savage, also von Neumann and Morgenstern impose axioms on the DM’s
preference relation, and show that these axioms are both necessary and suffi cient for an expected
utility representation. Here, an expected utility representation means that there is a utility function
u, assigning to every outcome o some utility u(o), such that the DM prefers lottery a to lottery b
precisely when the expected utility of a under the utility function u is larger than that of b. Also here,
the utility function is unique up to an additive constant and a positive multiplicative constant.

Anscombe and Aumann (1963) proposed a model which is essentially a combination of the two
models above. The difference with Savage lies in the definition of an act: In Anscombe and Aumann
(1963), an act assigns to every state a lottery over consequences à la von Neumann and Morgenstern.
Like Savage, also Anscome and Aumann assume that the DM has preferences over all possible acts.
They impose axioms on this preference relation, and show that these axioms are necessary and suffi cient
for the preference relation to be representable by expected utility.

Problems with these foundations. In my view, there are at least two problems with the founda-
tions proposed above. First, the models by Savage and Anscome-Aumann assume that the DM holds
preferences over all possible acts —that is, over all possible mappings that assign a consequence (or
lottery over consequences) to every state. Typically, however, many of these mappings will not be
relevant for the decision problem at hand. Suppose, for instance, that the DM has to decide whether
to take the car or the bike to work, and that he has uncertainty about whether there will be a traffi c
jam or not. Assume there are three possible outcomes: The DM can either arrive early, just in time, or
late at work. Suppose moreover that the acts corresponding to car and bike are given by the following
table:

jam no jam
car late early
bike just in time just in time

According to the models in Savage and Anscombe-Aumann, the DM should also consider, in his
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preference relation, the act a that would make him arrive early if there is a traffi c jam, and arrive late
if there is no traffi c jam. Such acts, however, seem entirely artificial, and not relevant for the decision
problem at hand. The same applies to the model by von Neumann and Morgenstern: Typically,
there will be many lotteries over outcomes that are merely artificial mathematical constructs, and not
relevant for the decision problem at hand.

The second problem is that the axioms imposed by Savage and Anscombe-Aumann lead to a
unique belief for the DM over states. However, in many decision problems and —as we will see in
later chapters —in many games, the belief of the DM may vary for several reasons. For instance, the
DM may adjust his belief during his reasoning process. Or the DM may receive some new information
about the states, inducing him to revise his belief. In the context of games, which will be explored in
the chapters that follow, the DM must reason about the decision problems of other decision makers,
and the DM will typically be uncertain about the belief that the other decision makers may hold.
Given all this, it seems natural not to pin down the DM’s belief, but to keep it as a variable in the
model. This is precisely what we have done in this chapter, by using conditional preference relations.

Conditional preference relations. The main ingredient of our model in this chapter was the DM’s
conditional preference relation, which assigns a preference relation over choices for every possible
belief that the DM may have. It differs in various dimensions from the foundations described above.
First, unlike Savage and Anscombe-Aumann, we do not fix the DM’s belief, but keep the belief as a
variable, for the reasons explored above. Thus, the model in this chapter does not suffer from the
second problem above. Moreover, the primitive notions in our model are the DM’s set of choices,
representing the options between which he must choose, and the set of states, representing the events
about which he is uncertain, and that are relevant for the eventual consequence. By requiring that
the DM, for every belief, only holds preferences over his actual choices, we make sure that the DM
will never have to consider acts that are not part of the decision problem. Hence, we overcome the
first problem outlined above.

Conditional preference relations were first introduced by Gilboa and Schmeidler (2003), although
they did not call it this way. The term conditional preference relation comes from Perea (2020, 2023).

Axioms. In Chapter 2 of the online appendix to this book, we provide an axiomatic characterization
for expected utility in the context of conditional preference relations. That is, we impose a list of
conditions on conditional preference relations that is both necessary and suffi cient for the conditional
preference relation having an expected utility representation. This axiomatic characterization builds
on Perea (2023). The key axioms in the characterization are the regularity axioms, three choice linear
preference intensity and four choice linear preference intensity.

The regularity axioms closely resemble some of the axioms used by Gilboa and Schmeidler (2003).
The axioms of constant preference intensity and transitive preference sensitivity in Jagau (2022) are
similar to the axioms of three choice linear preference intensity and four choice linear preference
intensity, respectively.

Similar foundations of expected utility. In Chapter 2 of the online appendix to this book we
have given axiomatic characterizations of expected utility for three different scenarios: For the case
of two choices, for the case where there are preference reversals for all pairs of choices, and for the
general case. For the first scenario we have used the regularity axioms only, whereas for the second
scenario we have supplemented these by three choice linear preference intensity and four choice linear
preference intensity. For the general case we have extended the foregoing axioms to signed conditional
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preference relations, and added the axioms of transitive constant preference intensity and four choice
linear preference intensity with constant preference intensity.

In the literature there are related axiomatic foundations for expected utility in the framework of
conditional preference relations. These include the foundations provided by Gilboa and Schmeidler
(2003), Perea (2020) and Jagau (2022).

In Gilboa and Schmeidler (2003) it is shown that if a conditional preference relation satisfies the
regularity axioms together with their diversity axiom, then it will have an expected utility represen-
tation. The diversity axiom states that for every strict ordering of four choices or less, there must be
a belief at which the DM holds precisely this ordering. However, the diversity axioms rules out many
situations of interest, such as all scenarios where a choice is weakly dominated by another choice, all
cases with two states and more than two choices, and all cases with three states and more than three
choices. Moreover, the Gilboa-Schmeidler axioms are suffi cient, but not necessary, for an expected
utility representation. But, as Gilboa and Schmeidler show, their axioms are suffi cient and necessary
for a representation by a diversified utility matrix, where no row is weakly dominated by, or equivalent
to, the affi ne combination of at most three other rows.

Perea (2020) proves that the regularity axioms, together with the axiom existence of a uniform
preference increase, are both necessary and suffi cient for an expected utility representation. The
existence of a uniform preference increase states that from the conditional preference relation at hand,
one should be able to increase the preference intensity between a fixed choice a and each of the other
choices by a uniform amount.

In Jagau (2022) it is shown that the regularity axioms, together with the axioms of constant
preference intensity and transitive preference sensitivity, are necessary and suffi cient for an expected
utility representation if there are preference reversals between all pairs of choices. As stated above,
constant preference intensity and transitive preference sensitivity closely correspond to our axioms of
three choice linear preference intensity and four choice linear preference intensity, respectively.

Unique relative preference intensities. In Theorem 2.5.1 we have shown that under certain
conditions the relative preference intensities for the DM are unique. This implies that there are |S|+1
degrees of freedom for choosing the expected utility representation, where |S| is the number of states.
This result comes from Perea (2023). In contrast, Savage (1954) has shown that in his framework,
the expected utility representation is unique up to an additive constant and a positive multiplicative
constant. That is, there are two degrees of freedom here.

Strict dominance. Pearce (1984) shows that in two-player static games, a choice for a player is not
optimal for any probabilistic belief, precisely when it is either strictly dominated by another choice,
or strictly dominated by a randomized choice. In later chapters we will see that from the viewpoint
of a single player, a game corresponds to a (one-person) decision problem. In that light, our Theorem
2.6.1 can thus be viewed as an extension of Pearce’s result to general decision problems. In the same
theorem it is shown that if a choice is strictly dominated by a randomized choice, then the randomized
choice can be chosen such that it will strictly dominate the choice for every possible expected utility
representation. This part of the theorem is due to Perea (2023).


