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a b s t r a c t

This paper substitutes the standard rationality assumption with approximate rationality in normal form
games. We assume that players believe that their opponents might be ε-rational, i.e. willing to settle for a
suboptimal choice, and so give up an amount ε of expected utility, in response to the belief they hold. For
every player i and every opponents’ degree of rationality ε, we require player i to attach at least probability
Fi(ε) to his opponent being ε-rational, where the functions Fi are assumed to be common knowledge
amongst the players. We refer to this event as belief in F-rationality. The notion of Common Belief in
F-Rationality (CBFR) is then introduced as an approximate rationality counterpart of the established
Common Belief in Rationality. Finally, a corresponding recursive procedure is designed that characterizes
those beliefs players can hold under CBFR.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rationality of players in situations of strategic interaction has
been a crucial axiom upon which the vast majority of game theo-
retic concepts are based. A player is rational if he only plays optimal
choices, which are those that maximize his expected utility given
his beliefs about opponents’ choices. Specifying the set of choices
any rational player can make in a normal form game has therefore
been the central question many existing solution concepts at-
tempted to answer. Rationalizability, epistemically characterized
by rationality and Common Belief in Rationality (CBR) (Pearce,
1984; Bernheim, 1984; Brandenburger and Dekel, 1987; Tan and
Werlang, 1988), is a crucial one of such concepts. Under rationality
and CBR, all players are rational, believe in their opponents’ ratio-
nality, and so on. Choices that can be made under CBR are those
that survive Iterated Elimination of Strictly Dominated Choices
(IESDC).
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E-mail addresses: a.mounir@maastrichtuniversity.nl (A. Mounir),

a.perea@maastrichtuniversity.nl (A. Perea), e.tsakas@maastrichtuniversity.nl
(E. Tsakas).

Despite its solid epistemic foundations, experimental findings
in certain well-known games came at odds with rationality and
CBR. Examples of such games include the Traveler’s Dilemma and
Guess 2/3 of the Average (Nagel, 1995; Becker et al., 2005). This
discrepancy between experimental outcomes and theoretical ones
triggered the need to develop new theoretical models of reasoning
that provide better theoretical foundations for observed exper-
imental behavior in these games. One such aspect highlighted
in experiments is that players may err and/or believe that their
opponents might make mistakes.

Oneway to introduce suchmistakes is by replacing the standard
notion of rationality with ε-rationality, originally introduced by
Radner (1980). The basic underlying idea is that players may settle
for suboptimal choices, as long as the utility induced by these
choices is sufficiently close to the utility induced by the optimal
ones. Formally, a choice is ε-rational given a belief about the
opponents’ choices, whenever the expected utility of this choice
(given the belief) is at most ε away from the optimal expected
utility (given the same belief). This idea initially attracted a lot
of attention, as it allowed us to explain cooperation in finitely
repeated prisoner’s dilemma or in finitely repeated principal–
agent games (e.g., see Radner, 1981), which is not possible
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using more standard solution concepts such as Nash equilibrium
or Common Belief in Rationality. Still the behavioral foundations
of ε-rationality remained in the background.

The recent surge of behavioral economics, as well as work in
other disciplines, has provided basis for assuming that players
may sometimes be ε-rational. For instance, in their seminal work,
March and Simon (1958) introduced the notion of ‘‘satisficing’’
which replaced the usual concept of ‘‘optimizing’’. In our context,
this would mean that players may settle for suboptimal choices as
long as these are sufficiently close to the optimal one, thus making
them satisfactory. Another example is the well-known Weber–
Fechner–Stevens set of laws from psychophysics, according to
which people may fail to perceive (small) differences when they
compare two choices, thus implying that the size of ε represents
the player’s cognitive constraints. In either case, Baye and Morgan
(2004) provide empirical evidence supporting ε-rationality when
compared to standard rationality.

The notion of ε-rationality originally appeared in the definition
of Radner’s ε-equilibrium concept, while more recently, Dekel et
al. (2006) introduced the concept of ε-interim correlated ratio-
nalizability. Both ε-equilibrium and ε-interim correlated rational-
izability assume the value of each player’s ε to be transparent
with players having common belief therein. This is relaxed in our
model, aswe assume players to be ε-rationalwith the value of each
player’s ε being his private information. Thus players in our model
not only account for the possibility of potential mistakes on their
opponents’ part, but also perceive the exact margin of error their
opponentsmight have as uncertain. Therefore, players form beliefs
about the extent of their opponents’ potential errors. In an attempt
to restrict such uncertainty, players adopt a certain lower bound to
the beliefs they could form about their opponents’ error margins.
Such lower bound is captured by the commonly believed weakly
increasing functions Fi : [0, ∞) → [0, 1]. For every player i, the
function Fi assigns aminimumbound to the probability that player
i would assign to each potential level of the opponents’ ε.

Thus the function Fi does not specify the exact belief player i
assigns to each of his opponents’ possible extents of rationality,
but serves only as a lower bound for such beliefs. The lower the
extent of irrationality ε, the lower the minimum bound on proba-
bility Fi(ε) each player must assign to the event of his opponents
having a margin of error of at most ε. For every possible extent
of irrationality ε of player i, there is a set of choices that could be
ε-rationally made by player i given some belief about his oppo-
nents’ choices. The uncertainty about the opponents’ extent of
irrationality can be translated into restrictions on the probabili-
ties that could be assigned to different sets of opponents’ choice
combinations. This translation of uncertainty into restrictions on
probabilities assigned to sets of opponents’ choice combinations
plays a crucial role throughout the paper.

For every given level ε of the opponents’ error margin, a lower
bound of Fi means player i assigns at least probability Fi(ε) to the
event of his opponents’ willingness to give up an amount of ε or
less in terms of expected utility. We refer to this event as belief
in F-rationality. Establishing common belief among all players in
that event, this paper introduces Common Belief in F-Rationality.
Notably, this framework captures the intuitive uncertainty players
might have about the extent to which their opponents might devi-
ate from their optimal choices. Moreover, adopting F-rationality
offers a generalization to some of the existing concepts in the
literature such as ε rationality and, of course, common belief in
rationality. It also helps linking some existing concepts in the
literature such as Common Belief in ε Rationality and Common
p-Belief in Rationality.

Models and concepts in the literature that are in the same
spirit as ours, include Rosenthal’s t-Solution (Rosenthal, 1989),
Quantal Response Equilibria (McKelvey and Palfrey, 1995) and

Utility Proportional Beliefs (Bach and Perea, 2014). All of these
models recognize that players might assign positive probabilities
to opponents’ suboptimal choices, none however explicitly defines
the underlying reason to be the presence of a potential error mar-
gin. CBFR, just like all of the three aforementioned models, allows
players to assign positive probabilities to suboptimal choices of
their opponents’. However, CBFR differs in that positive probabil-
ities need not be assigned to all opponents’ choices. Moreover, in
all three of the models mentioned, better choices receive higher
probabilities, and in case of utility proportional beliefs and Rosen-
thal’s t-Solution these probabilities are proportional to the utility
generated by these choices1 . In our case, restrictions are imposed
on the probabilities assigned to groups of choices rather than on
the probabilities assigned to each individual choice. Furthermore,
unlike CBFR, both Rosenthal’s t-Solution and Quantal Response
Equilibria are equilibrium concepts.

After the concept is introduced, the recursive procedure of
Iterated Elimination of F-Dominated Beliefs (IEFB) is developed,
which characterizes exactly those first-order beliefs that can be
held under common belief in F-rationality. Furthermore, a fixed
point characterization of the concept of CBFR is provided. The
paper also considers two special cases. One case is that in which
a specific value of ε for each player is given full probability, or
Common Belief in ε-rationality. The second special case is where
there is common belief that each player assigns at least p to
the event of his opponent being 0-rational, or Common Belief in
p-Belief in Rationality. Finally, the model is applied to the n-price
Traveler’s Dilemma game to demonstrate the potential behav-
ioral implications of our epistemic solution concept. The paper
is divided into six sections. Section 3 defines Common Belief in
F-Rationality. Section 3 presents the recursive procedure of Iter-
ated Elimination of F-Dominated Beliefs. Section 4 covers the two
special cases. Section 5 uses a 3-price Traveler’s Dilemma game to
illustrate how the recursive procedureworks and then summarizes
some general results for the n-price game. Section 6 is a discussion
and conclusion of the paper.

2. Common belief in F -rationality

Consider an n-player finite normal form game Γ = (I, C,U),
where I = {1, . . . , n} is the finite set of players, C = {C1, . . . , Cn}

is an n-tuple of finite sets of choices and U = {U1, . . . ,Un}

where ui : Ci × C−i → ℜ is the utility function of player i. Let
bi ∈ △(C−i) be a belief player i holds about his opponents’ choice
combinations, where △(C−i) is the set of probability distributions
on (C1 × · · · Ci−1 × Ci+1 × · · · Cn). Expected utility2 ui(ci, bi) of the
choice ci ∈ Ci is then the utility of that choice given the belief bi
player i holds about his opponents’ choices, i.e.,

ui(ci, bi) :=

∑
c−i∈C−i

bi(c−i) × ui(ci, c−i).

We assume every player to have a margin of error ε of zero
or more. Moreover, we assume these error margins to be every
player’s private information. Let Fi be a weakly increasing function
Fi : [0, ∞) → [0, 1] held by player i and F = (F1, . . . , Fn). For every
player i, Fi characterizes a lower bound for the belief that player
can hold about each of his opponents’ potential values of ε. For
every given level ε of the opponents’ error margin, a lower bound
of Fi means player i assigns at least probability Fi(ε) to the event

1 More precisely, in both utility proportional beliefs and Rosenthal’s t-Solution,
the differences in probabilities assigned to opponents’ choices are proportional to
the differences in utilities generated by these choices.
2 Note that we are using the same notation ui to refer to both the utility of player

i and the expected utility of choice ci of player i given belief bi . The former has the
form ui : Ci × C−i → ℜ, while the latter is written as ui(ci, bi).
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of his opponents’ willingness to give up an amount of ε or less in
terms of expected utility. Respecting this lower bound, the player
is said to believe in his opponents’ F-rationality. Common Belief in
F-Rationality implies that every player i believes in his opponents’
F-rationality, believes his opponents believe in i’s F-rationality,
and so on. A formal characterization of CBFR, therefore, requires
the use of infinite belief hierarchies, which can be intelligently
defined within an epistemic model. Let M be a finite epistemic
model assigning to every player i a finite set of types Ti. Every type
ti ∈ Ti holds a belief bi(ti) ∈ △(C−i × T−i) which is a probability
distribution over the opponents’ choice-type combinations.

As usual, each ti ∈ Ti induces an infinite belief hierarchy,
with b1i (ti) ∈ △(C−i) being the first-order belief held by ti (see
for instance Heifetz and Samet, 1998 for more details on how an
epistemic type induces a belief hierarchy). Moreover, let ui(ci, ti)
be the expected utility of choice ci given the first-order belief held
by type ti, i.e., ui(ci, ti) := ui(ci, b1i (ti)). A choice-type pair (ci, ti) is
then ε-rational if ci is ε-optimal given b1i (ti).

Definition 1. Let ε ≥ 0. A choice-type pair (ci, ti) of player i is
ε-rational, if for all c ′

i ∈ Ci,

ui(ci, b1i (ti)) ≥ ui(c ′

i , b
1
i (ti)) − ε.

A type ti believes in the opponents’ F-rationality if for ev-
ery ε ≥ 0 it assigns at least probability Fi(ε) to opponents’
ε-rational choice-type combinations (c−i, t−i). Note that player
i’s opponents’ choice-type combination (c−i, t−i) =

(
(c1, t1), . . .

(ci−1, ti−1), (ci+1, ti+1), . . . , (cn, tn)
)
is said to be ε-rational, if ev-

ery individual opponent’s choice combination (cj, tj) is ε-rational
where j ̸= i. To formally define belief in opponents’ F-rationality,
let Rε

−i := {(c−i, t−i) ∈ (C−i × T−i) | c−i is ε-optimal for b1
−i(t−i)}.

Definition 2. A type ti believes in the opponents’ F-rationality if
for every ε ≥ 0,

b(ti)(Rε
−i) ≥ Fi(ε).

The above definition illustrates how the function Fi serves as
a lower bound of the actual belief player i can hold about his
opponents’ extent of rationality. The distribution over players—i’s
extent of rationality induced by the belief held by ti must assign
to each of the opponents’ possible ε a probability of at least Fi(ε).
For the purpose of defining types expressing k-fold, as well as
common belief in F-rationality, let FRk

i be the set of player i’s types
expressing k-fold belief in F-rationality, where k ≥ 1. A type ti
believing in the opponents’ F-rationality is said to express 1-fold
belief in F-rationality, i.e., ti ∈ FR1

i . Moreover, for any k ≥ 2 type ti
is said to express k-fold belief in F-rationality, written as ti ∈ FRk

i ,
if it only assigns positive probability to opponents’ type combina-
tions t−i ∈ FRk−1

−i expressing (k − 1)-fold belief in F-rationality.
Finally, type ti expresses common belief in F-rationality, denoted
by ti ∈ CBFRi, if it expresses k-fold belief in F-rationality for all
k ≥ 1.3

Definition 3. Sets of types expressing k-fold belief in F-rationality
and common belief in F-rationality can be defined recursively by
the following sequence:

FR1
i := {ti ∈ Ti|bi(ti)(Rε

−i) ≥ Fi(ε), ∀ ε ≥ 0};

FRk
i := {ti ∈ Ti|bi(ti)(C−i × FRk−1

−i ) = 1};

3 Note that throughout the paper, for notation simplicity and without loss of
generality, we consider finite epistemic models. Still, notice that our construction
can be generalized to a complete epistemic model, i.e. an epistemic model that
induces all belief hierarchies (Friedenberg, 2010). The details of such extension are
not presented in this paper, but can nevertheless be provided upon request.

and

CBFRi :=

∞⋂
k=1

FRk
i .

Note that Common Belief in Rationality (CBR) is a special case of
CBFR, with F = F∗ where F∗(ε) = 1 for every ε ≥ 0.4 Furthermore,
it is worth noting that our model might bear some similarity to the
established △-rationalizability of Battigalli and Siniscalchi (2003).
One main aspect of similarity is that both impose exogenous re-
strictions onbeliefs and establish commonbelief therein. However,
one crucial difference is that the exogenous restrictions in case
of △-rationalizability are imposed on first-order beliefs, while in
our model the restriction is imposed on second-order beliefs. The
main restriction in our model is outlined in Definition 2. For a
type ti to believe in the opponents’ F-rationality, it has to assign
at least Fi(ε) in probability to the event R−i(ε) for every ε ≥ 0. Thus
our main restriction is imposed on the probability player i assigns
to his opponents’ choice-type combinations. For any (c−i, t−i) ∈

R−i(ε), it must be that c−i is ε-optimal for the respective first-order
beliefs held by t−i. Hence the restriction imposed by Definition 2
is on the probability player i assigns to sets of combinations of
his opponents’ choices and first-order beliefs. This core difference
between ourmodel and△-rationalizability implies that the former
cannot be a special case of the latter.

3. Iterated elimination of F -Dominated Beliefs

Now that Common Belief in F-Rationality has been defined, this
section develops the recursive procedure of ‘‘Iterated Elimination
of F-Dominated Beliefs (IEFB)’’, to characterize those first-order
beliefs that can be held by epistemic types expressing common
belief in F-rationality. IEFB does so by translating the basic uncer-
tainty each player has about his opponents’ rationality, bounded
by (Fi)i∈I , into restrictions on the set of potential beliefs about op-
ponents’ choices. Thus, IEFB eliminates beliefs rather than choices,
with every round k of the procedure resulting in a new restricted
feasible belief set Bk

i for each player i and where B0
i = △(C−i).

Notably, IEFB differs from Common Belief in Rationality (CBR)
in that the former eliminates beliefs which may or may not result
in the elimination of some choice-combinations, while the latter
proceeds directly to eliminating choice-combinations with the
elimination of the belief implied. So for some choice-combination
c−i ∈ C−i, IEFB could result in eliminating b1i (c−i) > a as a
potential first-order belief, whilemaintaining b1i (c−i) ≤ a as a valid
one, where 0 ≤ a ≤ 1. For Correlated Rationalizability, on the
other hand, assigning positive probability to a choice-combination
is either kept feasible for any a or eliminated for all a, i.e., a ∈ {0, 1}.

4 Notice that for every sequence {Fk}∞k=1 that satisfies Fk(ε) ↑ 1 for all ε ≥ 0,
it is the case that

⋂
∞

k=1FkR
1
i = F∗Ri , i.e., the sequence of sets of i’s types that

satisfy one fold belief in Fk-rationality converges to the set of i’s beliefs that satisfy
one-fold belief in F∗-rationality. This follows from the definition of the set of types
expressing one-fold belief in F-rationality formalized in Definitions 2 and 3. Then,
we can inductively prove that

⋂
∞

k=1FkR
m
i = F∗Rm

i for everym ≥ 1. Indeed, formally,
observe that
∞⋂
k=1

FkR2
i =

∞⋂
k=1

{ti ∈ Ti|bi(ti)(C−i × FkR1
−i) = 1}

= {ti ∈ Ti|bi(ti)(C−i ×

∞⋂
k=1

FkR1
−i) = 1}

= {ti ∈ Ti|bi(ti)(C−i × F∗R1
−i) = 1}

= F∗R2
i ,

and likewise form > 2. Hence,
⋂

∞

k=1CBFkR = CBF∗R = CBR, thus implying that the
sequence of beliefs in {CBF kR}∞k=1 converges to the beliefs in CBR.
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IEFB can therefore be thought of as a generalization of Correlated
Rationalizability, as Theorem 2 shows. Note that Correlated Ratio-
nalizability in turn is equivalent to Iterated Elimination of Strictly
Dominated Choices (IESDC).

This section is divided into two subsections. Section 3.1 for-
mally introduces the recursive procedure and links it to IESDC.
Section 3.2 then considers some practical implementation matters
of the procedure.

3.1. The recursive procedure

Before we proceed to describing the steps of the recursive pro-
cedure, we define Γ k

= (C, Bk
; u) to be the belief restricted game

resulting from round k of the procedure, i.e. it is the belief restricted
game round k+1 of the procedure starts fromwhere C and u are as
defined above and Bk

= {Bk
1, . . . , B

k
n}. Recall that B

k
i ⊆ △(C−i) is the

feasible set of player i after k rounds of the recursive procedure and
that B0

i = △(C−i).Moreover, note thatΓ 0
= (C, B0

; u) is simply the
original game Γ as every B0

i = △(C−i) by definition. Recall that for
player i to believe in his opponents’ F-rationality, he must assign a
probability of at least Fi(ε) to the event of his opponents’ having a
margin of error of at most ε. This can be translated into probability
distributions over opponents’ choice combinations, by assigning at
least Fi(ε) to opponents’ choice combinations c−i that are ε-optimal
for some belief. Define the set

Cε
i (Γ

k) = {ci ∈ Ci | ∃ bi ∈ Bk
i s.t. ui(ci, bi) ≥ ui(c ′

i , bi)
− ε ∀c ′

i ∈ Ci}.

The first step of the recursive procedure states that player imust
assign a probability of at least Fi(ε) to the set of choice combina-
tions Cε

−i(Γ
0), for every ε ≥ 0. Beliefs satisfying the conditions

bi(Cε
−i(Γ

0)) ≥ Fi(ε) for all ε ≥ 0 constitute the feasible belief set
B1
i ⊆ △(C−i). The set B1

i contains those first-order beliefs player i
can hold while believing in his opponents’ F-rationality. Applying
this for all players i concludes the first round of the procedure of
Iterated Elimination of F-Dominated Beliefs. Under up to 2-fold
belief in F-rationality, player i not only believes in his opponents’
F-rationality, but also believes that his opponents −i believe in
i’s F-rationality, making the relevant belief restricted game Γ 1

=

(C, B1
; u). Consequently, the sets (Cε

i (Γ
0))i∈I require an update, as

the feasible belief sets of some players are now potentially smaller.
In general, Cε

i (Γ
1) ⊆ Cε

i (Γ
0) for every player i ∈ I.

The new set Cε
−i(Γ

1) in turn implies new restrictions on the
feasible belief setB1

i of player iof the form bi(Cε
−i(Γ

1)) ≥ Fi(ε) for all
ε ≥ 0. These restrictions then characterize the new set B2

i of first-
order beliefs player i can feasibly hold under up to 2-fold belief in
F-rationality. The new restricted belief sets B2

j of each player j ̸=

i can be obtained in a similar manner. The recursive procedure
proceeds by iteratively eliminating beliefs and stops when Bk

i =

Bk−1
i for every player i, which may or may not happen after finitely

many steps. In the latter case feasible belief sets only stabilize in the
limit. The steps of round k of Iterated Elimination of F-Dominated
Beliefs are summarized below.

Procedure 1. Iterated elimination of F-dominated beliefs:

• Initial step: Define Γ 0
= (C, B0

; u)
• Inductive step: Assume that Γ k−1

= (C, Bk−1
; u) has been

defined. Then Γ k
= (C, Bk

; u) is the game where for each
player i

Bk
i := {bi ∈ △(C−i) | bi(Cε

−i(Γ
k−1)) ≥ Fi(ε) ∀ε ≥ 0}.

Theorem 1 shows that the recursive procedure characterizes
exactly those first-order beliefs that can be held by a type express-
ing common belief in F-rationality.

Theorem 1. A belief bi ∈ △(C−i) can be held by a type ti ∈ Ti
expressing common belief in F-rationality iff it survives all rounds
of the recursive procedure of Iterated Elimination of F-Dominated
Beliefs.

It isworth noting that even though the recursive proceduremay
not stop after finitely many rounds, the resulting sets of feasible
beliefs B∞

i = ∩
k≥0

Bk
i surviving all rounds of the procedures are

always nonempty. This is shown in Corollary 1, which is based on
Theorem 2 linking our recursive procedure to Correlated Rational-
izability. Let Ck

i be the choices of player i surviving k rounds of the
procedure of iterated elimination of never-best replies character-
izing Correlated Rationalizability.

Theorem 2. For every k ≥ 0 and every player i ∈ I, the following
holds:

△ (Ck
−i) ⊆ Bk

i .

Note that for any finite static game, there must be some k ≥

0 for which △(Ck
−i) = △(Ck−1

−i ). This in turn implies the non-
emptiness of the limit set of first-order beliefs surviving the proce-
dure (Corollary 1).

Corollary 1. The limit of the feasible belief sets B∞

i for every player i
is always nonempty.

Theorem 3 provides a fixed point characterization of the limit
sets (B∞

i )i∈I of the procedure. Let Φi ⊆ △(C−i) be a closed and
convex set of first-order beliefs of player i. Moreover, let Cε

i (Φi) =

{ci ∈ Ci|∃ϕi ∈ Φi s.t. ui(ci, ϕi) ≥ ui(c ′

i , ϕi) − ε ∀c ′

i ∈ Ci}. Note
that by definition, if Φi = Bk

i for some round k of the procedure,
then Cε

i (Φi) = Cε
i (Γ

k). We say that the collection (Φi)i∈I is a best-
response set if for every player i,

Φi ⊆ {ϕi ∈ △(C−i)|ϕi(Cε
−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0}.

Theorem 3 shows that the limit sets (B∞

i )i∈I of first-order beliefs
formed by the procedure constitute a best-response set.

Theorem 3. Let (B∞

i )i∈I be the limit set of first-order beliefs resulting
from the procedure of Iterated Elimination of F-Dominated Beliefs,
then (B∞

i )i∈I is a best response set.

Furthermore, Theorem4 shows that the limit set (B∞

i )i∈I result-
ing from the procedure is also themaximal best-response set. Thus
for any best response (Φi)i∈I , with Φi as defined above for every i,
we have Φi ⊆ B∞

i for all i.

Theorem 4. Let (Φi)i∈I be a best response set, then Φi ⊆ B∞

i for
every i.

3.2. Practical implementation matters

The definition of Bk
i appearing in the inductive step of the

recursive procedure involves an infinite number of restrictions.
However, these can be reduced to a finite number of restrictions
by defining what we call ‘‘the critical’’ ε of choice ci. Since the
choice set of every player is finite, it is possible to characterize
for every choice ci ∈ Ci within the decision problem Γ k a critical
value εci (Γ k), where εci (Γ k) is the minimum value of ε that makes
that choice ε-optimal for some belief bi ∈ Bk

i . Player i believing in
his opponents’ F-rationality, then should assign at least probability
Fi(ε′) to the set of choice combinations c−i that have a critical ε of
at most ε′, for every ε′

≥ 0. These restrictions compose the new
restricted belief sets Bk+1

i for every player i.
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Definition 4. The critical ε of choice ci in decision problem Γ k,
denoted by εci (Γ k), is defined as

εci (Γ k) = Min{ε |ε ≥ 0, ∃ bi ∈ Bk
i with ui(ci, bi)

≥ ui(c ′

i , bi) − ε ∀c ′

i ∈ Ci}.

Lemma 1 shows that the critical epsilon εci (Γ k) can be equiv-
alently defined as the highest ε such that choice ci is ε-strictly
dominated. We say that a choice ci is ε-strictly dominated if there
is an ri ∈ △(Ci) such that ui(ri, c−i) ≥ ui(ci, c−i)+ε for all c−i ∈ C−i,
where ri is a randomization assigning probability ri(ci) ≥ 0 to every
choice ci ∈ Ci.

Lemma 1. The critical εci (Γ k) of choice ci in decision problem Γ k is
defined as

εci (Γ k) = Max{ε |ε ≥ 0, ∃ ri with ui(ri, bi)
≥ ui(ci, bi) + ε ∀bi ∈ Bk

i }.

Lemma 2 shows how the notion of critical ε can be used to
reduce the infinite set of inequalities characterizing each Bk

i to a
finite number of inequalities. Central to such simplification is an
ascending ranking {ε1

−i, . . . , ε
M
−i} = {εc−i (Γ k) | c−i ∈ C−i}of critical

epsilons of the set of choice combinations C−i, where M =| C−i |,
ε1
−i = 0 and ε1

−i ≤ · · · ≤ εM
−i.

Lemma 2. The infinite set of inequalities bi(Cε
−i(Γ

k)) ≥ Fi(ε) for all
ε ≥ 0 is equivalent to the finite set of inequalities of the form

bi(Cεm

−i (Γ
k)) ≥ Lim

ε↑εm+1
−i

Fi(ε) ∀m ∈ {1, . . . ,M − 1}.

Because CεM

−i = C−i, it follows that bi(CεM

−i ) = 1.

4. Special cases

In this section two special cases are considered, Common Belief
in ε-Rationality and Common Belief in p-Belief in Rationality. The
former is when one specific value of ε receives full probability,
while the latter refers to the case in which the only requirement
imposed by functions Fi is that a minimum probability of p must
be assigned to the event of the opponent being 0-rational.

4.1. Common belief in ε-rationality

Suppose that there exists for each player −i some ε∗

−i such that

Fi(ε) =

{
0 if ε < ε∗

−i
1 if ε ≥ ε∗

−i.

F-rationality in this case reduces to Radner (1980)’s
ε-rationality, with ε = ε∗

i for every i. It therefore becomes possible
for each player i to classify his opponents’ choices C−i into ε∗

−i-
rational and ε∗

−i-irrational choices, and so allowing for both the
model and the recursive procedure to be simplified. The concept
of Common Belief in F-Rationality also reduces to Common Belief
in ε-Rationality. An epistemic type ti ∈ Ti believes in players −i’s
ε-rationality, ti ∈ εR1

i , if it only assigns positive probability to
choice-type combinations (c−i, t−i) where c−i is ε∗

−i-optimal for t−i.
Types expressing k ≥ 2 fold belief in ε-rationality, ti ∈ εRk

i , can be
defined in a manner analogous to the general case introduced in
Definition 3.

Definition 5. Formally, k-fold belief in ε-rationality and common
belief in ε-rationality can be defined recursively by the following
sequence:

εR1
i := {ti ∈ Ti : bi(ti)(c−i, t−i) > 0 implies c−i

is ε∗

−i − optimal for t−i};

εRk
i := {ti ∈ Ti : bi(ti)(C−i × εRk−1

−i ) = 1}

and

CBεRi :=

∞⋂
k=1

εRk
i .

The above specification of Fi reduces the inequalities character-
izing the feasible belief set in round k of the recursive procedure to
one single equality for each round (by Lemma 2), i.e.,

bi(C
ε∗
−i

−i (Γ
k−1)) = 1.

The recursive procedure can therefore be simplified into one in
which for every round choices ci of every player i that possess a
critical epsilon strictly greater than ε∗

i are eliminated. Notably, the
recursive procedure now proceeds by eliminating choices rather
than beliefs. Since the set of choices for each player is finite, the
proceduremust stop after a finite number of rounds. Recursive Pro-
cedure 2 lists the steps of the now simplified procedure. Corollary 2
then shows the procedure works.

Procedure 2. Iterated elimination of ε-dominated choices:

• Initial step: Define Γ 0
= (C0

; u), where C0
= {C1, . . . , Cn} and

therefore Γ 0
= Γ .

• Inductive step: Assume that Γ k−1
= (Ck−1

i , Ck−1
−i ; ui, u−i) has

been defined. Then Γ k
= (Ck

i , C
k
−i; ui, u−i) where for each

player i

Ck
i = {ci ∈ Ci | εci (Γ k−1) ≤ ε∗

i }.

Corollary 2. A choice ci ∈ Ci can rationally be made under common
belief in ε-rationality if and only if it survives all rounds of the
recursive procedure of iterated elimination of ε-dominated choices

4.2. Common belief in p-belief in rationality

Another special case is that in which F takes the form Fi(ε) = p
for all ε ≥ 0 and for all players i. This is the case where each player
assigns a probability of at least p to the event of his opponents
being 0-rational, while the remaining probability 1 − p can be
assigned to any other degree(s) of rationality. Doing so, the player
is said to believe in his opponents’ p-rationality, as he assigns at
least probability p to his opponents choosing rationally (or being
0-rational). In this respect, a link should be made to an established
concept in the literature, namely Common p-Belief in Rationality
(Moderer and Samet, 1989; Hu, 2007). Common belief in p-belief
in rationality refers to the case where there is common belief in
the event that every player p-believes in the opponents’ rationality.
Common p-Belief in Rationality, on the other hand, refers to the
case where player i assigns probability at least p to the event of his
opponents being 0-rational, player i assigns probability at least p to
the event of every player −i assigning probability at least p to the
event of i being 0-rational, and so on. Common Belief in p-Belief
in Rationality can thus be considered a strengthening, or a special
case, of Common p-Belief in Rationality. Types expressing k fold
belief in p-belief in rationality, written as pRk

i , are defined below.

Definition 6. Formally, k-fold belief in p-belief in rationality and
common belief in p-belief in rationality can be defined recursively
by the following sequence:

pR1
i := {ti ∈ Ti : bi(ti)(R0

−i) ≥ p};

pRk
i := {ti ∈ Ti : bi(ti)(C−i × pRk−1

−i ) = 1}
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CBpRi :=

∞⋂
k=1

pRk
i .

Note that the only restriction implied by Fi here is that Fi(0) = p.
Each player i’s choices can therefore be classified into two sets,
C0,k
i and C¬0,k

i . The former includes those ci ∈ Ci that are 0-
rational given the belief restricted gameΓ k facing player i in round
k of the recursive procedure, while the latter groups all choices
that are not 0-rational given Γ k

i . Restriction on the belief set then
becomes bi(C

0,k
−i ) ≥ p. Note that Ck

i = Ci for all k ≥ 0 and for
all i, where Ck

i = C0,k
i ∪ C¬0,k

i . So the recursive procedure never
eliminates any choices, it only redistributes choices between the
two above defined sets. Steps of the recursive procedure below are
simultaneously applied to each player and repeated until C0,k

i =

C0,k−1
i and so Bk

i = Bk−1
i for all i.

Procedure 3. Iterated elimination of p-dominated choices:

• Initial Step: Define Γ 0
= (C0,0, C¬0,0, B0

; u).
• Inductive Step: Assume that Γ k−1

= (C0,k−1, C¬0,k−1, Bk−1
; u)

has been defined. Then Γ k
= (C0,k, C¬0,k, Bk

; u)where for each
player i

C0,k
i = {ci ∈ Ci | εci (Γ k) = 0}

C¬0,k
i = {ci ∈ Ci | εci (Γ k) > 0}

Bk
i := {bi ∈ △(C−i) : bi(C

0,k
−i ) ≥ p}.

5. An example: the Traveler’s Dilemma

This section uses the Traveler’s dilemma of Basu (1994) both
to illustrate the recursive procedure and to show how our model
could help bring theoretical predictions closer to experimental
findings. Section 5.1 uses a three price Traveler’s Dilemma game
to illustrate the steps of the procedure for two different functions
Fi. Section 5.2 then presents some general results for the n-price
Traveler’s Dilemma under CBFR.

5.1. Illustrating examples of the recursive procedure

To show how the recursive procedure works, we use a 3-price
Traveler’s Dilemma (TD) game due to (Basu, 1994), in which both
reward and penalty are set equal to 2. We examine the resulting
B∞

j under two slightly different forms of Fj;

Case I Fj(ε) =

{
ε if ε ≤ 1
1 if ε > 1

Case II Fj(ε) =

{ ε

2
if ε ≤ 2

1 if ε > 2.

Case I:
Let TD = {P1, P2; u1, u2}, where Pi = {1, 2, 3} and

ui(pi, pj) =

{pi + 2 if pi < pj
pi if pi = pj
pj − 2 if pi > pj.

Table 1 shows our TD game in normal form
Let Fj be defined for both players as in Case I above. Start round

1 of the recursive procedure. The relevant belief restricted game is
TD0

= TD or TD0
= {P1, P2, B0

1, B
0
2; u1, u2}. The critical values of

epsilon εpi (TD0) for each of player i’s potential choices are 0, 0 and
2
3 for pi = 1, pi = 2 and pi = 3, respectively. Note that these critical

Fig. 1. Feasible belief set B1
j .

Table 1
Three price Traveler’s Dilemma (TD)

p2 = 1 p2 = 2 p2 = 3

p1 = 1 1,1 3,−1 3,−1
p1 = 2 −1,3 2,2 4,0
p1 = 3 −1,3 0,4 3,3

Table 2
Belief restricted game TD1 .

pj = 1 pj = 2 b∗

j b∗∗

j

pi = 1 1 3 5
3 3

pi = 2 −1 2 2
3

8
3

pi = 3 −1 0 1
3 1

values are the same for both players due to the symmetric nature
of the game. So Cε

i = {1, 2} for all ε < 2
3 and Cε

i = {1, 2, 3} for
all ε ≥

2
3 . From Lemma 2, this implies one restriction on player j’s

belief set

bj({1, 2}) ≥
2
3

or bj({3}) ≤
1
3
.

This restriction then defines B1
j to be the convex hull of four

different points; namely, B1
j = conv({(1, 0, 0), (0, 1, 0), b∗

j , b
∗∗

j }).
Note that B1

j is also identical for both players due to the symmetry
of the game. Fig. 1 is a graphical representation of the feasible belief
set B1

j after round 1 of the procedure.
Start round 2, with the belief restricted game TD1

=

{P1, P2, B1
1, B

1
2; u1, u2}. Table 2 presents TD1, where b∗

j =
1
3 (pi =

3) +
2
3 (pi = 1) and b∗∗

j =
1
3 (pi = 3) +

2
3 (pi = 2) from Fig. 1. Note

that utilities listed in Table 2 are those of player i under TD1.
The critical values of epsilon for each of both player i’s choices

under TD1 become ε
pi=1
i (TD1) = 0, ε

pi=2
i (TD1) =

1
3 and

ε
pi=3
i (TD1) =

4
3 . This implies thatCε

i = {1} for all ε < 1
3 ,C

ε
i = {1, 2}

for all 1
3 ≤ ε < 4

3 and Cε
i = {1, 2, 3} for all ε > 4

3 . Given Fj,
restrictions on player j’s feasible belief set become

bj({1, 2}) ≥ 1 or bj({3}) = 0

bj({1}) ≥ (
1
3
) or bj({2}) ≤ (

2
3
).

The solid line in Fig. 2 represents B2
j = conv({(1, 0, 0), b∗

j }), or
equivalently B2

i , with b∗

j =
1
3 (pi = 1) +

2
3 (pi = 2).

Round 3 of the recursive procedure then starts with the be-
lief restricted game TD2

= {P1, P2, B2
1, B

2
2; u1, u2} (Table 3). The

critical values of epsilon become the following: ε
pi=1
i (TD2) = 0

and ε
pi=2
i (TD2) =

4
3 , implying that pi = 2 receives no positive

probability similarly to pi = 3 in round 2. The feasible belief set B3
j
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Table 3
Belief restricted game TD2 .

pj = 1 b∗

j

pi = 1 1 7/3
pi = 2 −1 1

Fig. 2. Feasible belief set B2
j .

Fig. 3. Feasible belief set B1
j .

thus collapses to one point assigning probability 1 to the opponent
i playing price 1. The procedure stops after 3 rounds and feasible
belief sets stabilize to B3

j = B∞

j = {bj(pi = 1) = 1} for both players.

Case II:
Let the game TD be as previously defined, and consider the

slightly modified form of the Fj function corresponding to Case II.
Rounds of the recursive procedure then proceed as follows: Round
1 starts with the same TD0 as above with the critical epsilons being
ε
pi=1
i (TD0) = ε

pi=2
i (TD0) = 0 and ε

pi=3
i (TD0) =

2
3 for both players.

The current function Fj(ε), however, implies different restrictions
on the feasible belief set B1

j , which take the form

bj({1, 2}) ≥ (
1
3
) or bj({3}) ≤ (

2
3
).

Fig. 3 represents the feasible belief set B1
j after round 1 of the

procedure.
Round 2 starts with the belief restricted game TD1

=

{P1, P2, B1
1, B

1
2; u1, u2}. Table 4 presents TD1, where b∗

j = ( 23 )(pi =

3) + ( 13 )(pi = 1) and b∗∗

j = ( 23 )(pi = 3) + ( 13 )(pi = 2) from Fig. 3.
From Table 4, it is evident that the critical epsilons of all

three choices remain unchanged. Consequently, the restrictions on
player j’s feasible belief set, and so the belief set B2

j itself remain
unchanged as well. By symmetry of the game, the same holds for

Table 4
Belief restricted game TD1 .

pj = 1 pj = 2 b∗

j b∗∗

j

pi = 1 1 3 7
3 3

pi = 2 −1 2 7
3

10
3

pi = 3 −1 0 5
3 2

player i. The recursive procedure stops after two rounds as B2
j = B1

j
for both players. The set of first-order beliefs that can be held by
a type expressing common belief in F-rationality in the 3-price
TD game at hand, thus contains an infinite set of beliefs assigning
positive probabilities to both the second and third price.

5.2. CBFR in the Traveler’s Dilemma

As indicated earlier, the model we introduce along with the
characterizing procedure is purely concerned with players’ beliefs
and does not by itself say anything about the actual choices players
would make in a given game, as the actual ε of each player is
his/ her private information. Take for example the case II in the
previous section. Although the feasible belief set of each player i
contains beliefs assigning probability up to 2

3 to the opponent’s
highest price, player i can still react to such a belief by playing a
0-optimal choice. The main message of this section is to show that
our model can account for some of the experimental observations
in the Traveler’s Dilemma even with very little deviation from
rationality and common belief in rationality. This is achieved by al-
lowing each player to account for the possibility that his opponent
may make a mistake with some probability.

Consider an n-price Traveler’s Dilemma where each player i
chooses pi ∈ {1, . . . , n}. The critical epsilon εn(TD0) of the highest
price n is at most 2

n while that of any pi ̸= n is 0. To show that
εn(TD0) =

2
n , note that for an n-price game with reward and

punishment set equal to 2, the following holds:

ui(pi, 1) =

{
1 for pi = 1
−1 otherwise,

and

ui(pi, n) =

{
pi + 2 for pi < n
n for pi = n.

Consider the belief bi of player i assigning probability 2
n to the

opponent’s choice pj = n and 1−
2
n to pj = 1. The expected utilities

of player i’s choices given such belief are as follows: ui(1, bi) =

1 +
4
n , ui(n, bi) = 1 +

2
n and ui(pi, bi) =

2
n (pi + 3) − 1 for prices

1 < pi < n. Note that the highest ui(pi, bi) for 1 < pi < n is
that of price n − 1. It is easy to see that ui(n, bi) is exactly 2

n lower
than the expected utility of the best response choice. Thus there
exists a belief bi for which n is 2

n -optimal, thereby proving that 2
n

is at least and upper bound on εn(TD0). Note that the upper bound
on the critical epsilon is a decreasing function in the number of
prices. Thus the higher the number of prices the smaller the loss in
expected utility a player has to (be believed to) tolerate to choose
a higher price. Now assume Fi is defined for players i = {1, 2} as
follows:

Fi(ε) =

⎧⎪⎨⎪⎩
n − 2
2

ε if ε ≤
2

n − 2

1 if ε >
2

n − 2
.

Since 2
n constitutes an upper limit on the critical epsilon εn(TD0)

of price pj = n, then the restriction imposed on player i’s feasible
belief set in round 1 of the procedure based on the actual εn(TD0)
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must satisfy bi(n) ≤
2
n . Given this restriction, one of the extreme

points in the belief restricted game TD1 defined in round 1 for
player i becomes b1ni =

2
n (n)+(1−

2
n )(1). In TD1, choice n of player i

is 2
n -optimal for b1ni as shown above. The critical εn(TD1) ≤

2
n . This

implies that no further restrictions will be imposed on player i’s
belief set in round 2 of the procedure.

Assume player i = {1, 2} is 0-rational and holds the belief
b1ni ∈ B∞

i about his opponent’s choices. Player i’s best response
is then to choose n− 1 under CBFR. Thus even if each player is still
0-rational, assigning positive probability to the opponent making
mistakes of no more than 2

n−2 in expected utility in an n-price
game, might lead the player to choose for amuch higher price than
predicted by CBR. Note that the maximum extent of irrationality
2

n−2 that must be deemed possible is also a decreasing function
in n.

6. Discussion and conclusion

By allowing players to be boundedly rational and introducing
uncertainty about opponents’ extent of rationality/irrationality,
this paper develops the concept of Common Belief in F-Rationality.
A recursive procedure is also designed to characterize exactly those
first-order beliefs that can be held by an epistemic type expressing
common belief in F-rationality. The recursive procedure of Iterated
Elimination of F-Dominated Beliefs restricts each player’s belief set
by eliminating those beliefs that are inconsistent with the event of
believing in the opponents’ F-rationality. Finally, we also consider
two special cases of the function F , which correspond to Common
Belief in ε-Rationality and Common Belief in p-Belief in Rationality.
Both the model and the recursive procedure are illustrated for
these special cases.

The model presented in this paper is, however, not free of
limitations. One crucial limitation is the common knowledge of
functions (Fi)i∈I . Although greatly simplifying the analysis, it is
hard to imagine these functions being common knowledge in an
actual setting. One could imagine that opponents of a player i could
perceive certain forms of the Fi function as more plausible than
others, rather than them actually knowing which Fi player i holds.
An investigation of such functions requires careful experimental
design and could benefit greatly from progress made in the exper-
imental literature on belief elicitation. However, the design of such
experiment is beyond the scope of this paper. One other aspect that
merits some attention regarding the common knowledge assump-
tion of functions (Fi)i∈I , is what the consequences in a theoretical
context of a relaxation of such assumption would be.

Should the common knowledge assumption of functions Fi be
relaxed, the game becomes one of incomplete information where
players’ error margins are private information, i.e. where players’
utility functions are private information. Consequently, the model
would need to be extended to account for each player i’s beliefs
about their opponents’ functions (Fj)j̸=i. One framework thatwould
qualify as a starting point for such extension of our model is that of
Bach and Perea (2016). In their model, they provide an incomplete
information counterpart of commonbelief in rationality alongwith
an algorithmic characterization thereof. Players’ utility functions
in that model are private information and the model considers a
finite set of possible utility functions for each player. Dropping
the common knowledge assumption of (Fi)i∈I would give rise to
important questions about the conceptual meaning of functions
(Fi)i∈I in such an incomplete information setting. Should these
functions be explicitly modeled or should the focus shift from the
(Fi)i∈I functions to the actual error margins since both would then
be private information?

Another potential limitation of the model is the underlying
assumption that every player i uses the same function Fi to define
his/her lower bound of probability for every opponent. Addressing

this limitation is more straight forward than the previous one.
Although not examined in this paper, we expect the same con-
clusions to be preserved if every player i is allowed to assign a
different lower bound Fi,j for each player j. It is worth noting that
although for every choice ci in any given game there exists some
εci ≥ 0 making that choice εci-optimal for some belief, it is not the
case that CBFR allows for any behavior to be justified. The range of
beliefs (choices) that players can be reasonably expected to hold
(make) under CBFR depends on the domains and shapes of the
functions (Fi)i∈I as well as on the structure of the game at hand.

While the role of the domains and shapes of the functions (Fi)i∈I
are obvious, the implications of the structure of the game might
require some clarification. Take for example an n-price Traveler’s
dilemma. As shown earlier, there are functions (Fi)i∈I such that
some beliefs assigning positive probability to any choice of the
opponent up to and including the nth price could be reasonably
held by players under CBFR. However, it is not possible to find an Fi
such that some reasonable first-order beliefs of player iunder CBFR
would assign positive probability to any choice of the opponent
up to and including the second highest price while no reasonable
belief would assign any positive probability to the opponents’ nth
price. This is due to the fact that the critical epsilon of any price in
the Traveler’s dilemma is a decreasing function of the number of
prices.

Furthermore, it is important to stress that our model remains
silent about the way players actually act upon their beliefs. More
precisely, our model does not require players to be ε-best re-
sponders. In fact, players may actually make perfectly rational
choices in response to the beliefs they hold under commonbelief in
F-rationality. Thus the model only assumes that players believe
that their opponents might make errors causing them to devi-
ate from their optimal choices. This has been made evident in
the Traveler’s Dilemma section where players assigning positive
probability to the event of their opponent making mistakes up
to a certain extent has led even 0-rational players to plausibly
choosing prices up to the second highest. This example serves as an
indication that some of the observed experimental results, at least
in the Traveler’s Dilemma game, may be explained by relatively
small deviations from standard rationality.

Our model attempted to capture the possibility that a player
would make mistakes or believe his opponents’ to do so, taking
into account that the extent of these mistakes is at best private
information. The uncertainty about opponents’ potential mistakes
is regulated bymeans of the F-functions assigning to each potential
margin of error a maximum level of probability. The game con-
sidered was one of complete information. We believe restrictions
on beliefs similar to the ones characterized by our model could
be obtained had we considered games of incomplete information
in which the utility functions of the players are not transpar-
ent. Instead of a margin of error, ε would be redefined as the
maximum distance between different possible utility functions of
the opponent and his true utility function in a manner similar to
that of Perea and Roy (2014). The minimum bound on probability
Fi(ε) would then also be reinterpreted accordingly. The set up of
the model and procedure of the incomplete information case is
expected to bear many similarities to the model presented in this
paper. However, the extent of such similarities is beyond the scope
of this paper and is a question for further research.
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Appendix

A.1. Theorem 1

Proving Theorem 1 requires proving two statements. First, it
must be shown that any first-order belief b1i (ti) held by an epis-
temic type expressing common belief in F-rationality, i.e. ti ∈

CBFRi, must be in the set B∞

i of first-order beliefs that survive the
iterative procedure (part A). Second, it must be proven that any
first-order belief b1i (ti) ∈ B∞

i surviving the iterative procedure can
be held by a type expressing common belief in F-rationality (part
B). More formally, proving Theorem 1 requires showing that
(A) Any bi(ti) with ti ∈ CBFRi has b1i (ti) ∈ B∞

i
(B) Any b1i (ti) ∈ B∞

i can be held by a type ti ∈ CBFRi.

Proof of part A: We prove by induction on k that b1i (ti) ∈ Bk
i for all

k, whenever ti ∈ CBFRi. Let k = 0. Take some ti ∈ CBFRi, then
b1i (ti) ∈ B0

i , where B0
i = △(C−i). Let k ≥ 1. Assume for every

ti ∈ CBFRi, b1i (ti) ∈ Bk−1
i for both players i, where Bk−1

i = {bi ∈

△(C−i) | bi(Cε
−i(Γ

k−2)) ≥ ε for all ε ≥ 0}.
Take some ti ∈ CBFRi, then

(i) bi(ti)(Rε
−i) ≥ Fi(ε) as ti ∈ FR1

i for all ε ≥ 0
(ii) bi(ti)(c−i, t−i) > 0 implies that t−i ∈ CBFR−i.

From the induction assumption above, it follows that b1
−i(t−i) ∈

Bk−1
−i whenever t−i ∈ CBFR−i. Let R

ε,k−1
−i := {(c−i, t−i) ∈ Rε

−i(Γ
k−1) |

b1
−i(t−i) ∈ Bk−1

−i }, where Rε
−i := {(c−i, t−i) | c−i is ε-optimal for

b1
−i(t−i)}.
Then (i) and (ii) imply, bi(ti)(R

ε,k−1
−i ) ≥ Fi(ε) for all ε ≥ 0. So

bi(ti)(ProjC−iR
ε,k−1
−i × T−i) ≥ Fi(ε) for all ε ≥ 0, which means

b1i (ti)(ProjC−iR
ε,k−1
−i ) ≥ Fi(ε) for all ε ≥ 0. Since ProjC−iR

ε,k−1
−i =

Cε
−i(Γ

k−1), it follows that b1i (ti)(C
ε
−i(Γ

k−1)) ≥ Fi(ε) for all ε ≥ 0,
and therefore b1i (ti) ∈ Bk

i .

Proof of part B: Proving this part starts by selecting some subset of
the set B∞

i of beliefs surviving the iterative procedure. An epistemic
model is then defined such that for every selected first-order belief
bi of some player i there is an epistemic type ti such that the
first-order belief of ti is exactly bi. We then proceed to show that
each one of these constructed types expresses common belief in
F-rationality.

The set of beliefs we select for the purpose of this proof consists
of two components:

1. For every choice ci of player i we select a belief bcii ∈ B∞

i ,
where ci is exactly εci (Γ ∞)-optimal for bcii . Thus from Defi-
nition 1 belief bcii is such that,

ui(ci, b
ci
i ) ≥ ui(c ′

i , b
ci
i ) − εci (Γ ∞), for all c ′

i ∈ Ci and

ui(ci, b
ci
i ) = ui(c ′

i , b
ci
i ) − εci (Γ ∞), for at least some

c ′

i ∈ Ci,

and where εci (Γ ∞) is the critical ε of choice ci in decision
problem Γ ∞

i defined by set B∞

i (Definition 4).
Note that by Theorem 2 B∞

i is always non-empty. Charac-
terized by a finite number of linear inequalities (Lemma 2)
imposed on the convex, closed and bounded set B0

i , it is easy
to see that set B∞

i is also convex, closed and bounded. A
belief bcii ∈ B∞

i as defined above therefore always exists.
2. Since we would like to show that the theorem holds for any

arbitrary first-order belief surviving the iterative procedure,
we also take one arbitrary first-order belief b∗

i ∈ B∞

i .

Now that the beliefs have been constructed, the epistemic
model can be defined. Consider a finite epistemic model M with
a finite set of types Ti for every player i. The set of types Ti is also
constructed in two steps:

1. The set of types T Ci
i = {tcii | ci ∈ Ci} where every tcii ∈ T Ci

i is
such that

bi(t
ci
i )(c−i, t−i) =

{
bcii (c−i) if t−i = tc−i

−i
0 Otherwise. (A.1)

2. Define the finite set of types Ti = T Ci
i ∪ {t∗i } where t∗i is such

that

bi(t∗i )(c−i, t−i) =

{
b∗

i (c−i) if t−i = tc−i
−i

0 Otherwise (A.2)

and where bcii and b∗

i are as defined above.

The proof of this part then proceeds in two steps. First we show
that any type tcii ∈ T Ci

i expresses common belief in F-rationality.
Once that is established, type t∗i ∈ Ti is shown to express common
belief in F-rationality completing our proof.

Step 1: Take some tcii ∈ T Ci
i . Since b1i (t

ci
i ) = bcii and bcii ∈ B∞

i by
belief and type construction above, it follows that

b1i (t
ci
i )(C

ε
−i(Γ

∞)) = bcii (C
ε
−i(Γ

∞)) ≥ Fi(ε) for all
ε ≥ 0

Recall that

Cε
j (Γ

k) = {cj ∈ Cj | ∃ bj ∈ Bk
j s.t. uj(cj, bj)

≥ uj(c ′

j , bj) − ε ∀c ′

j ∈ Cj}.

Take some c−i ∈ Cε
−i(Γ

∞), then by definition of Cε
j (Γ

k) it must
be that εcj (Γ ∞) ≤ ε for every such cj with j ̸= i. Since every cj in
such c−i is εcj (Γ ∞)-optimal for the respective t

cj
j by definition of t

cj
j ,

it is also ε-optimal for t
cj
j for any ε ≥ εcj (Γ ∞). So (c−i, t

c−i
−i ) ∈ Rε

−i,
where Rε

−i := {(c−i, t−i) ∈ (C−i × T−i) | cj is ε-optimal for
b1j (tj) for every j ̸= i}.

Hence

bi(t
ci
i )(R

ε
−i) ≥ b1i (t

ci
i )(C

ε
−i(Γ

∞)) ≥ Fi(ε) for all ε ≥ 0.

So tcii ∈ FR1
i by Definition 1. Since type tcii by definition only as-

signs positive probability to types t
cj
j for every j ̸= i, each of which

in turn only assign positive probability to type-combinations t
c−j
−j

and since tcii ∈ FR1
i for every player i, it follows that tcii ∈ CBFRi.

Step 2: Consider t∗i ∈ Ti. Since t
ci
i ∈ CBFRi for every player i (Step

1), the definition of type t∗i implies that it only assigns positive
probability to (c−i, t−i) where t−i ∈ CBFR−i. It therefore suffices
to show that t∗i ∈ FR1

i to prove t∗i ∈ CBFRi.
Since b∗

i ∈ B∞

i ,

b1i (t
∗

i )(C
ε
−i(Γ

∞)) ≥ Fi(ε) for all ε ≥ 0.

Since type t∗i by construction only assigns positive probability
to (c−i, t−i) where t−i = tc−i

−i , the same steps undertaken in Step
1 above can be followed from this point onward leading to the
conclusion that t∗i ∈ FR1

i . Therefore, t
∗

i ∈ CBFRi

A.2. Theorem 2

This requires proving that for every k ≥ 0 and every player

i ∈ I, the following holds B
Ck
−i

i ⊆ Bk
i , where B

Ck
−i

i = △(Ck
−i) and

where Ck
i is the set of choices of player i surviving k rounds of the
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procedure of iterated elimination of never-best replies character-
izing Correlated Rationalizability. This will be proven by induction.

Induction start: Take some bi ∈ △(C0
−i) then it is also the case that

bi ∈ △(C−i). By definition of B0
i , it follows that bi ∈ B0

i .

Induction assumption: For any bi ∈ △(Ck−1
−i ) it is also the case that

bi ∈ Bk−1
i .

Induction step: Take some bi ∈ △(Ck
−i). Since Ck

−i ⊆ Ck−1
−i by

definition of Ck
−i. Then it follows that bi ∈ Bk−1

i . Recall that
Cε
i (Γ

k−1) = {ci ∈ Ci|ci is ε − optimal for some bi ∈ Bk−1
i }.

Moreover, any ci ∈ Ck
i is 0-optimal for some bi ∈ △(Ck−1

−i ). From
the induction assumption, the latter can be rewritten as follows:
any ci ∈ Ck

i is 0-optimal for some bi ∈ Bk−1
i . So Ck

−i ∈ C0
−i(Γ

k−1).
Since any bi ∈ △(Ck

−i) is also such that bi(Ck
−i) = 1, and since

Ck
−i ∈ C0

−i(Γ
k−1), it follows that bi(C0

−i(Γ
k−1)) = 1. So bi ∈ Bk

i .

A.3. Theorem 3

Let the collection (B∞

i )i∈I be the limit sets of first-order beliefs
surviving the procedure of IEFB. Let (Φi)i∈I be a best-response set
where for every player i,

Φi ⊆ {ϕi ∈ △(C−i)|ϕi(Cε
−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0}

and

Cε
i (Φi) = {ci ∈ Ci|∃ϕi ∈ Φi s.t. ui(ci, ϕi)

≥ ui(c ′

i , ϕi) − ε ∀c ′

i ∈ Ci}.

Take some bi ∈ B∞

i . Then by definition of Bk
i , bi(C

ε
−i(Γ

∞)) ≥

Fi(ε) for all ε ≥ 0. By definition, Cε
j (Γ

∞) = Cε
j (B

∞

j ) for any j. Since
bi ∈ B∞

i , it follows that

bi(Cε
−i(B

∞

−i)) ≥ Fi(ε) ∀ε ≥ 0 (∗).

Note that condition (*) is identical to that defining best-response
sets (Φi)i∈I . Since condition (*) holds for any bi ∈ B∞

i and for every
player i, it follows that (B∞

i )i∈I is a best-response set.

A.4. Theorem 4

Consider some best response set (Φi)i∈I where for every
player i,

Φi ⊆ {ϕi ∈ △(C−i)|ϕi(Cε
−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0}

and

Cε
i (Φi) = {ci ∈ Ci|∃ϕi ∈ Φi s.t. ui(ci, ϕi)

≥ ui(c ′

i , ϕi) − ε ∀c ′

i ∈ Ci}.

For every round k ≥ 1 of the procedure, we prove by induction
on k that for any best response set (Φi)i∈I , Φi ⊆ Bk

i holds for every
i. First take k = 1 and show that Φi ⊆ B1

i for every i. Then by
induction on k we show that Φi ⊆ Bk

i for any k and every i. Recall
that

B1
i = {bi ∈ △(C−i)|bi(Cε

−i(Γ
0)) ≥ Fi(ε) ∀ε ≥ 0}.

By definitions of Γ 0 and Φi, it follows for every player j that
Cε
j (Φj) ⊆ Cε

j (B
0
j ) = Cε

j (Γ
0) for every ε ≥ 0 and for any Φj. Take

some ϕi ∈ Φi, then by definition

ϕi(Cε
−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0.

Hence,

ϕi(Cε
−i(B

0
−i)) ≥ ϕi(Cε

−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0.

Thus, Φi ⊆ B1
i . Assume that Φi ⊆ Bk−1

i for all i. Let k ≥ 2 and
show that Φi ⊆ Bk

i for all i and for any k. Proving that requires
showing that every ϕi ∈ Φi is such that

ϕi(Cε
−i(Γ

k−1)) ≥ Fi(ε) ∀ε ≥ 0.

Since Φj ⊆ Bk−1
j for all j by the induction assumption, then for

every player j

Cε
j (Φj) ⊆ Cε

j (B
k−1
j ) = Cε

j (Γ
k−1) ∀ε ≥ 0.

Hence,

ϕi(Cε
−i(B

k−1
−i )) ≥ ϕi(Cε

−i(Φ−i)) ≥ Fi(ε) ∀ε ≥ 0.

Thus, Φi ⊆ Bk
i for any k ≥ 2 for every i. Since this holds for

every k, then by definition of B∞

i , it follows that Φi ⊆ B∞

i for every
player i.

A.5. Lemma 1

Let Cε
i (Γ

k) = {ci ∈ Ci : εci (Γ k) ≤ ε}, and let Bk
i := {bi ∈

△(C−i) | bi(Cε
−i(Γ

k−1)) ≥ Fi(ε) ∀ε ≥ 0}. Since Bk
i can be defined

by finitely many linear inequalities (Lemma 2), it is possible to
define the set EBk

i := {bi ∈ Bk
i | bi is an extreme point of Bk

i }.
Note that since B0

i = △(C−i), EB0
i := {bi ∈ △(C−i) | bi(c−i) =

1 for some c−i ∈ C−i}. Lemma 1 then requires proving:
(A) For every c∗

i ̸∈ Cε
i (Γ

k) for some ε ≥ 0, there exists ri ∈

△(Ci \ {c∗

i }) such that ui(ri, bi) > ui(c∗

i , bi) + ε for all bi ∈ Bk
i .

(B) For every c∗

i for which there exists ri ∈ △(Ci \ {c∗

i }) such that
ui(ri, bi) > ui(c∗

i , bi) + ε for all bi ∈ Bk
i , it is also the case that

c∗

i ̸∈ Cε
i (Γ

k).
(C) For c∗

i ∈ Ci and for some given k, the critical epsilon εc∗i (Γ k) is
defined by

εc∗i (Γ k) = Max{ε |ε ≥ 0, ∃ ri with ui(ri, bi)
≥ ui(c∗

i , bi) + ε ∀bi ∈ Bk
i }.

Proof of part A: Let c∗

i ̸∈ Cε
i for some ε ≥ 0, then for every bi ∈ Bk

i ,
there is some ci such that

ui(ci, bi) > ui(c∗

i , bi) + ε

Let Γ k
ε be a modified game of Γ k with transformed utilities as

follows:
For c∗

i ∈ Ci uε
i (c

∗

i , bi) = u(c∗

i , bi) + ε ∀bi ∈ Bk
i

For every ci ∈ Ci \ {c∗

i } uε
i (ci, bi) = ui(ci, bi) ∀bi ∈ Bk

i .

So for every bi ∈ Bk
i , there exists some ci such that

uε
i (ci, bi) > uε

i (c
∗

i , bi).

Lemma 3 in Pearce (1984) then implies, there exists ri ∈ △(Ci \

{c∗

i }) such that

uε
i (ri, bi) > uε

i (c
∗

i , bi) ∀bi ∈ EBk
i .

Or equivalently,

ui(ri, bi) > ui(c∗

i , bi) + ε ∀bi ∈ EBk
i .

By the convexity of Bk
i , it follows there is some ri ∈ △(Ci \ {c∗

i })
such that

ui(ri, bi) > ui(c∗

i , bi) + ε ∀bi ∈ Bk
i .

Proof of part B: Consider some c∗

i for which there exists ri ∈ △(Ci)
such that

ui(ri, bi) > ui(c∗

i , bi) + ε for all bi ∈ Bk
i .

Since EBk
i ⊂ Bk

i , c
∗

i is also such that there is some ri ∈ △(Ci) with

ui(ri, bi) > ui(c∗

i , bi) + ε for all bi ∈ EBk
i .
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In Γ k
ε this becomes,

uε
i (ri, bi) > uε

i (c
∗

i , bi) for all bi ∈ EBk
i .

Lemma 3 in Pearce (1984) then implies for every bi ∈ Bk
i there

exists ci ∈ Ci \ {c∗

i } such that

uε
i (ci, bi) > uε

i (c
∗

i , bi).

Or equivalently,

ui(ci, bi) > ui(c∗

i , bi) + ε.

Thus c∗

i ̸∈ Cε
i (Γ

k).

Proof of part C: Consider some c∗

i and let ε∗
= Max{ε |ε ≥

0, ∃ ri with ui(ri, bi) ≥ ui(c∗

i , bi) + ε ∀bi ∈ Bk
i }. Then Show:

1. εc∗i (Γ k) ≤ ε∗.
Assume εc∗i (Γ k) > ε∗ and so c∗

i ̸∈ Cε∗

i (Γ k). Then part A
implies that there is some ri ∈ △(Ci \ {c∗

i }) such that

ui(ri, bi) > ui(c∗

i , bi) + ε∗ for all bi ∈ Bk
i

This leads to a contradiction by definition of ε∗.
2. εc∗i (Γ k) ≥ ε∗.

Assume εc∗i (Γ k) < ε∗. So by definition of ε∗ and for some
ri ∈ △(Ci \ {c∗

i }),

ui(ri, bi) ≥ ui(c∗

i , bi) + ε∗ for all bi ∈ Bk
i .

So in particular,

ui(ri, bi) > ui(c∗

i , bi) + εc∗i (Γ k) for all bi ∈ Bk
i .

From part b, the latter implies that c∗

i ̸∈ Cε
c∗i

i (Γ k) which
creates a contradiction by definition of Cε

i (Γ
k). Combining

parts 1 and 2 proves that εc∗i (Γ k) = ε∗.

A.6. Lemma 2

Let {ε1
−i, . . . , ε

M
−i} be an ascending ranking of critical epsilons of

the set of choices C−i, where M =| C−i |. Lemma 2 then requires
proving two parts:
(A) Any bi ∈ △(C−i) satisfying the finite set of inequalities
bi(Cεm

−i (Γ
k)) ≥ Lim

ε↑εm+1
−i

Fi(ε) for all m ∈ {1, . . . ,M − 1}, also
satisfies the infinite set of inequalities of the form bi(Cε

−i(Γ
k)) ≥

Fi(ε) for all ε ≥ 0.
(B) Any bi ∈ △(C−i) satisfying the infinite set of inequalities of
the form bi(Cε

−i(Γ
k)) ≥ Fi(ε) for all ε ≥ 0, also satisfies the

finite set of inequalities bi(Cεm

−i (Γ
k)) ≥ Lim

ε↑εm+1
−i

Fi(ε) for all m ∈

{1, . . . ,M − 1}.

Proof of part A: Let bi ∈ △(C−i) be some arbitrary belief satisfying
bi(Cεm

−i (Γ
k)) ≥ Lim

ε↑εm+1
−i

Fi(ε) for all m ∈ {1, . . . ,M − 1}. Consider
a subset of the infinite set of inequalities bi(Cε

−i(Γ
k)) ≥ Fi(ε) for all

ε ≥ 0 with ε ∈ [εm, εm+1) for somem ∈ {1, . . . ,M − 1}.
By definition of Cε

−i(Γ
k) and since Γ k is finite for any k ≥ 0,

Cε
−i(Γ

k) = Cεm

−i (Γ
k) for all ε ∈ [εm, εm+1).

So

bi(Cε
−i(Γ

k)) ≥ Fi(ε) for all ε ∈ [εm, εm+1)

implies,

bi(Cεm

−i (Γ
k)) ≥ Fi(ε) for all ε ∈ [εm, εm+1).

Since Fi(ε) is weakly increasing in ε, it follows that bi(Cεm

−i (Γ
k))

≥ Limε↑εm+1Fi(ε) implies bi(Cεm

−i (Γ
k)) ≥ Fi(ε) for all ε ∈

[εm, εm+1), and so also implies bi(Cε
−i(Γ

k)) ≥ Fi(ε) for all ε ∈

[εm, εm+1).

Proof of part B: Proving part B is trivial since the finite set of
inequalities is by definition of Cε

−i(Γ
k) a subset of the infinite

set of inequalities. So satisfying the latter automatically implies
satisfying the former.

References

Bach, C., Perea, A., 2014. Utility proportional beliefs. Internat. J. Game Theory 43,
881–902.

Bach, C., Perea, A., 2016. Incomplete information and common belief in rationality,
EPICENTER Working Paper No. 7, Maastricht University.

Basu, K., 1994. The traveler’s dilemma: Paradoxes of rationality in game theory.
Amer. Econ. Rev. 84 (2), 391–394.

Battigalli, P., Siniscalchi, M., 2003. Rationalization and incomplete information. Adv.
Theor. Econ. 3 (1), 1–46.

Baye, M.R., Morgan, J., 2004. Price dispersion in the lab and on the Internet: theory
and evidence. Rand J. Econ. 35, 449–466.

Becker, T., Carter, M., Naeve, J., 2005. Experts playing the traveler’s dilemma, De-
partment of EconomicsWorking Paper Nr. 252/2005, University of Hohenheim.

Bernheim, D., 1984. Rationalizable strategic behaviour. Econometrica 52 (4),
1007–1028.

Brandenburger, A., Dekel, E., 1987. Rationalizability and correlated equilibria.
Econometrica 55 (6), 1391–1402.

Dekel, E., Fudenberg, D., Morris, S., 2006. Topologies on types. Theor. Econ. 1,
275–309.

Friedenberg, A., 2010. When do type structures contain all hierarchies of beliefs?
Games Econom. Behav. 68, 108–129.

Heifetz, A., Samet, D., 1998. Topology - free typology of beliefs. J. Econom. Theory
82, 324–341.

Hu, T., 2007. On p-rationalizability and approximate common certainty of rational-
ity. J. Econom. Theory 136, 379–391.

March, J.H., Simon, H., 1958. Organizations. John Wiley and Sons.
McKelvey, R., Palfrey, T., 1995. Quantal response equilibria for normal form games.

Games Econom. Behav. 10, 6–38.
Moderer, D., Samet, D., 1989. Approximating common knowledge with common

beliefs. Games Econom. Behav. 1, 170–190.
Nagel, R., 1995. Unravelling in guessing games: An experimental study. Amer. Econ.

Rev. 85, 1313–1326.
Pearce, D., 1984. Rationalizable strategic behaviour and the problem of perfection.

Econometrica 52 (4), 1029–1050.
Perea, A., Roy, S., 2014. A New Epistemic Characterization of Proper Rationalizabil-

ity. Mimeo.
Radner, R., 1980. Collusive behaviour in non-cooperative epsilon equilibria of

oligopolies with long but finite lives. J. Econom. Theory 22, 121–157.
Radner, R., 1981. Monitoring cooperative agreements in a repeated principal-agent

relationship. Econometrica 49 (5), 1127–1148.
Rosenthal, R., 1989. A bounded-rationality approach to the study of noncooperative

games. Internat. J. Game Theory 18, 273–292.
Tan, T., Werlang, S., 1988. The bayesian foundations of solution concepts of games.

J. Econom. Theory 45, 370–391.

http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb1
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb3
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb4
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb5
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb7
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb8
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb9
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb10
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb11
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb12
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb13
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb14
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb15
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb16
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb17
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb18
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb19
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb20
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb21
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22
http://refhub.elsevier.com/S0165-4896(17)30131-2/sb22

	Common belief in approximate rationality
	Introduction
	Common belief in F-rationality
	Iterated elimination of F-Dominated Beliefs
	The recursive procedure
	Practical implementation matters

	Special cases
	Common belief in Ε-rationality
	Common belief in p-belief in rationality

	An example: the Traveler's Dilemma
	Illustrating examples of the recursive procedure
	CBFR in the Traveler's Dilemma

	Discussion and conclusion
	Acknowledgments
	Appendix
	Theorem 1
	Theorem 2
	Theorem 3
	Theorem 4
	Lemma 1
	Lemma 2

	References


