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• We extend the alternating-offer bargaining model.
• At the start of each bargaining round, each party may commit to a share of the pie.
• When commitment costs are small but increasing, there is a second mover advantage.
• This reverses the sharing of Rubinstein (1982).
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a b s t r a c t

We extend the Ståhl–Rubinstein alternating-offer bargaining procedure to allow players to simultane-
ously and visibly commit to some share of the pie prior to, and for the duration of, each bargaining round.
If commitment costs are small but increasing in the committed share, then the unique subgame perfect
equilibrium outcome exhibits a second mover advantage. In particular, as the horizon approaches infin-
ity, and commitment costs approach zero, the unique bargaining outcome corresponds to the reversed
Rubinstein outcome (δ/(1 + δ), 1/(1 + δ)), where δ is the common discount factor.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

‘‘. . . it has not been uncommon for union officials to stir up
excitement and determination on the part of the membership during
or prior to a wage negotiation. If the union is going to insist on $2 and
expects the management to counter with $1.60, an effort is made to
persuade themembership not only that themanagement could pay $2
but even perhaps that the negotiators themselves are incompetent if
they fail to obtain close to $2. The purpose . . . is to make clear to the
management that the negotiators could not accept less than $2 even if
theywished to because they no longer control themembers or because
they would lose their own positions if they tried’’ .

In this quotation from his classic book, Schelling (1960) vividly
illustrates that strategic commitment is often an essential feature
of bargaining tactics. Parties of negotiations often have access to
actions that commit them to some strategically chosen bargaining
position. The present paper builds on formal game theoretic anal-
ysis inspired by Schelling’s work (Crawford, 1982; Muthoo, 1992,
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1996; Li, 2011; Ellingsen and Miettinen, 2008, 2014). We analyze
the effect of commitment strategies in a dynamic complete in-
formation bargaining framework. We limit attention to the finite
horizon alternating offer game (Ståhl, 1972; Rubinstein, 1982) al-
though we do study the infinite horizon limit. We model parties
who can, simultaneously prior to each offer-response stage, com-
mit not to agree on any share smaller than specified in the commit-
ment. Strategic commitment is assumed to incur small costs. These
costs are increasing in the share to which the party commits. This
reflects the idea that more resources must be invested to build a
credible commitment when the opportunity cost of turning down
a deal is larger. After each round of bargaining, any prior commit-
ments are relaxed and players may again choose a commitment
to any share they wish. Such short-term commitments are con-
ceivable in delegated bargaining, for instance, where each princi-
pal sets limits to acceptable deals for the delegates taking part in
the upcoming negotiation round; after a failure to agree the par-
ties leave the negotiation table and receive new guidelines from
the principal.1

1 Maskin and Tirole (1988) study short-run commitments in an alternating-move
Cournot-duopoly setting; Vickers (1985) analyzes the role of delegation and vertical
structures on commitment.
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Ourworkbuilds heavily upon thework of Rubinstein (1982) and
Ellingsen and Miettinen (2008). The main insight of Rubinstein’s
pioneering work on bargaining is that, under complete informa-
tion, equilibrium strategies are determined by the relative impa-
tience of the bargaining parties. In equilibrium, the proposermakes
an offer so that the responder is indifferent between accepting the
offer and rejecting it, given the cost of waiting; and the responder
accepts the offer. Thus there is an efficient immediate agreement
with a first-mover advantage. Ellingsen andMiettinen (2008) illus-
trated how mutual attempts of aggressive incompatible commit-
ment may be unavoidable in bilateral bargaining, if commitments
are irreversible and can only be attempted prior to the negotia-
tions, if the costs of committing are relatively small, and if the at-
tempts to commit are not certain to succeed.

In the present context of reversible commitments we show
that, in line with Rubinstein (1982) and contrary to Ellingsen and
Miettinen (2008), the deal is always stroke immediately. However,
contrary to Rubinstein’s outcome, there is a second-mover
advantage rather than a first-mover advantage even if both parties
commit simultaneously at the beginning of every round and there
are no exogenous asymmetries in the commitment technology.
The intuition for the result is the following: commitments are
short-lasting and there is no uncertainty about who has the
initiative (pre-determined alternating offers structure). Thus, the
first one to propose does not need to commit before her proposal;
whatever share the second-mover commits to, it is best for the
first-mover to avoid any costs by refraining from committing. In
equilibrium she proposes the second-mover the share this latter
commits to and takes the residual share herself, provided that
the residual makes her better off than waiting for the follow-
up round. Knowing this, the second-mover will commit up to
the share that makes the first-mover indifferent between having
the residual share and waiting. Thus, the presence of symmetric
commitment opportunities reverses the bargaining power of the
parties. In the limit, where the cost of commitment approaches
zero and the number of rounds approaches infinity, the outcome
approaches the reversed Rubinstein (1982) outcome, (δ/(1 +

δ), 1/(1+δ)), where δ is the commondiscount factor. It is crucial in
the analysis that commitments are short-lasting and thus current
commitments do not impact the expected future sharing, only the
sunk commitment costs. If commitments were expected to bind
also in the future rounds, as in Ellingsen and Miettinen (2008,
2014), inefficiencies would result.

Our analysis contributes to the agenda, initiated by Schelling
(1956), of carefully analyzing and understanding commitment in-
stitutions and mechanisms and their implications on the bargain-
ing outcomes. Among the related works, Crawford (1982) and
Muthoo (1992, 1996) have studied the effects of revocable com-
mitments; in our model in contrast, commitments automatically
vanish but parties can make a costly recommitment to any share
they like after each round. Ellingsen and Miettinen (2008, 2014)
analyze costly and long-lasting precommitment to offers and thus
they cannot be freely adjusted after each round. Also, unlike in
Ellingsen and Miettinen (2008, 2014), players do not commit di-
rectly to proposals in our model, but rather to veto any deal where
their share is smaller than their commitment. In this respect the
model resembles those of Muthoo (1992, 1996) and the endoge-
nous commitment models analyzed in Fershtman and Seidmann
(1993), Li (2007), and Miettinen (2010), in which yet, the small-
est acceptable shares are determined by the bargaining history in
some exogenously determined way rather than freely chosen by
players. Related evolutionary analyses of bargaining by Ellingsen
(1997), Huck andOechssler (1999) andHuck et al. (2005) show that
exogenous commitment to reject small offers improves evolution-
ary fitness.

Schelling also mentions reputation as an important means
of pre-commitment. Myerson (1991), Kambe (1999), Abreu and
Gul (2000) and Wolitzky (2012) analyze reputation contexts
where one party has incomplete information about the opponent’s
stubbornness not to accept anything less than an exogenously
given share of the pie. The opponent can then use commitment
tactics that exploit this incomplete information and strategically
mimic stubbornness in order to force concessions from the other
party. This induces delay and influences the final sharing.

Outside options bear a close relation to the current complete
information alternating offer bargaining model. Compte and Jehiel
(2002) show that exogenous outside options may altogether
eliminate the strategic effects of reputation for stubbornness. It
has also been shown that, when a party, by opting out, gets a
payoff that is inferior to the equilibrium payoff he would obtain
in the game without outside options, then these latter have no
effect on the equilibrium outcomes (Binmore et al., 1989). In
our setting deliberately chosen commitment strategies influence
bargaining outcomes exactly because they are chosen so as to
force concessions superior to those in the Rubinstein outcome.
Ponsati and Sákovics (1998) have shown that if each bargaining
party can impose a commonly known inefficient outside option
outcomewhen a deal is rejected, then there are multiple equilibria
in the alternating offers game and inefficiencies are possible.
Their contribution can be seen as part of the literature studying
the robustness of the Rubinstein (unique) outcome to plausible
variants of the initial alternating offer game (see Avery and
Zemsky, 1994, for a non-exhaustive but inspiring synthesis).

Outside the realm of bargaining, the work of Schelling has in-
spired a literature analyzing commitment in games in general
(Bagwell, 1995; Romano and Yildirim, 2005; Bade et al., 2009;
Renou, 2009). In industrial organization, excess capacity provides
commitment power in amanner somewhat similar to our bargain-
ing model (Spence, 1977, 1979). Excess investments have a more
irreversible nature than the short term bargaining commitments
in the present model. Dixit’s (1980) extension of the Spence–Dixit
excess capacity model shows that an incumbent firm, who never-
theless is presumed to play the role of the follower, can use the
commitment, provided by an excess capacity investment, in seiz-
ing limited initiative back from the entrant. Ellingsen (1995) shows
in a Cournot duopoly setting that, if one of the firms alone can
choose to pile up investment later, that firm will endogenously
end up in the Stackelberg follower position, whereas the firm who
can only invest at present will become the leader.2 Hamilton and
Slutsky (1990) show how Stackelberg outcomes arise by endoge-
nous timing in duopoly games. Whether commitments are short-
or long-lasting plays a key role also in infinite horizon settings
(Fudenberg andTirole, 1983;Maskin andTirole, 1987, 1988).While
in capacity commitment models, apart from fixed costs, flow pay-
offs are typically continuous in capacities, bargaining models ex-
hibit payoff-discontinuities in commitments since just compatible
commitments result in an agreement while even small incompat-
ibilities result in delay or disagreement.3

The paper is organized as follows. In Section 2 we set up the
model and the bargaining procedure. In Section 3 we analyze
the model with one round of bargaining. We will use it as a
benchmark for our analysis of more than one round in Section 4.
We also investigate the limit behavior of this outcome, when the
commitment costs go to zero and the number of rounds goes to
infinity. We conclude in Section 5.

2 These are the only strategies surviving iterated elimination of weakly
dominated strategies.
3 Notice that marginal profits with respect to production-stage outputs are

discontinuous in Dixit (1980) and so are the slopes of the output reaction curves,
but the profits exhibit no discontinuities in capacity commitments apart from
the potential fixed cost of building capacity. In bargaining models payoffs are
discontinuous in commitmentswhen the commitments are just-compatible.
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2. The bargaining procedure

There are two players, 1 and 2, who must reach an agreement
about the division of one unit of some good. Let X := [0, 1]. Hence,
the set of possible divisions is given by

D := {(x1, x2) : x1, x2 ∈ X and x1 + x2 ≤ 1}.

Players 1 and 2 use the following bargaining procedure, which can
last for at most N rounds.

Round 1: At the beginning, both players simultaneously choose
commitment levels c1, c2 ∈ X . The commitment levels become
known to both players, and player 1 proposes a division (x1, x2) ∈

D with x1 ≥ c1. Subsequently, player 2 decides whether to accept
or reject the proposal under the condition that he can only accept
offers with x2 ≥ c2. If he accepts, (x1, x2) is the final outcome. If he
rejects, the game moves to round 2.

Round 2: At the beginning, both players simultaneously choose
newcommitment levels c1, c2 ∈ X . Afterwards, player 2 proposes a
division (x1, x2) ∈ D with x2 ≥ c2. Subsequently, player 1 decides
whether to accept or reject (x1, x2), under the condition that he
can only accept offers with x1 ≥ c1. If he accepts, (x1, x2) is the
final outcome. If he rejects, the game moves to round 3.

Round 3: This is a repetition of round 1. And so on.
This bargaining procedure goes on until an agreement is

reached, or the process enters round N +1. In round N +1, a given
division (y1, y2) ∈ D is realized.

We assume that both players incur a cost for commitment,
and that this cost is increasing in the amount to which the player
commits. The reason for the latter is that the higher the amount to
which the player commits, the more difficult it will be to stick to
this commitment. More precisely, if player i commits to an amount
ci, this will cost him λci, where λ is some small positive number.
For convenience, we assume that λ is the same for both players.
We finally assume that both players discount future payoffs by a
common discount factor δ.

So, in view of all the above, the players’ utilities are as follows:
If the players reach an agreement on division (x1, x2) in round n,
then the utility for player i is

δn−1xi − λ

c1i + δc2i + · · · + δn−1cni


,

where cki is the commitment level chosen at round k. If the game
reaches round N + 1, his utility would be

δNyi − λ

c1i + δc2i + · · · + δN−1cNi


.

Throughout the paper, we will assume that λ < 1 − δ. That is,
themarginal cost of commitment is sufficiently small.Weneed this
assumption in order to establish our main results in Theorems 1
and 2.

Within our bargaining procedure above, the interpretation of
the commitment levels is thus that the proposer commits to never
offer less than his commitment level for himself, whereas the
responder commits to reject any offer that would give him less
than his commitment level. With this interpretation in mind, it
makes intuitive sense that the cost of commitment is assumed
to be increasing in the commitment level. A higher commitment
level, namely, more heavily restricts the subsequent choice set
of the player, and for higher commitment levels, makes it more
tempting for this player to break his commitment. The higher cost
of commitment for larger shares should in this way reflect the
larger opportunity cost.
3. The case of one round

Wenow analyze the bargaining procedure by using the concept
of subgame perfect equilibrium (Selten, 1965), where we restrict
to pure strategies only. The following tie-breaking rule will be
adopted: if a player is indifferent between accepting and rejecting
an offer, he is assumed to accept. We start with the easiest case,
namely when there is only one round of bargaining. For this case,
we already encounter a surprising result: In the unique subgame
perfect equilibrium outcome, the proposer faces a first-mover
disadvantage,rather than a first-mover advantage. Actually, we can
say a little more, namely the proposer gets exactly what he would
obtain as a responder in the procedure without commitment.
So, introducing the possibility to commit reverses the outcome
completely.

Theorem 1 (Case of One Round). Consider the procedure with only
one round of bargaining. Then, there is a unique subgame perfect
equilibrium outcome, where player 1 chooses commitment level 0,
player 2 chooses commitment level 1 − δy1, player 1 proposes
(δy1, 1 − δy1) and player 2 accepts.

Before presenting the proof, let us briefly discuss the result
above, and relate it to the traditional setting without commitment.
Remember that (y1, y2) is the outcome if the proposal is rejected.
So, player 1, the proposer, gets the minimal amount he would still
accept, whereas player 2, the responder, gets all the surplus. Notice
that in the classical bargaining procedure without commitment,
this would be exactly the outcome when player 2 would be
the proposer and player 1 the responder. In other words, the
introduction of commitment ‘‘reverses’’ the traditional outcome
between the proposer and the responder — the proposer in the
model with commitment gets what he would have obtained as a
responder in the setting without commitment, and vice versa. In
particular, the proposer in the model with commitment now faces
a first-mover disadvantage instead of a first-mover advantage.

The intuition for this ‘‘outcome reversal’’ is that in a settingwith
commitment, the best that the proposer can do when proposing
is to offer player 2 the minimum amount that this latter would
still accept — taking into account the commitment level chosen by
player 2, and the division (y1, y2) in case of a rejection. Suppose
this leads to a division (x1, x2) that player 2 would accept. But
if player 1 can offer this division after having chosen a strictly
positive commitment level c1 > 0, he could also have offered the
same division (x1, x2) after having chosen a commitment level of
0, save the commitment cost, and still be sure that player 2 will
accept the offer. Hence, the best that player 1 can do is to choose
a commitment level of 0. But then, if player 2 knows this, he will
choose his commitment level equal to the maximum amount that
player 1 is still willing to offer to player 2 — which is 1 − δy1.
Indeed, player 1 can guarantee an outcome of δy1 by having his
proposal rejected, and hence the minimum amount he wishes to
keep for himself is δy1. Hence, in the setting with commitment,
the responder can extract all the surplus from the proposer by
choosing his commitment level equal to 1− δy1, knowing that the
proposer will choose a commitment level of 0.

Observe also that in the setting with commitment, the outcome
is not efficient as player 2 faces a strictly positive commitment cost
λ(1 − δy1). On the other hand, no part of the good gets wasted as
eventually the full good is divided between players 1 and 2.

Proof. For every pair (c1, c2) of commitment levels, the subgame
that starts after (c1, c2) is a game with perfect information. After
every (c1, c2), the unique subgame perfect equilibrium outcome is
as follows:
1. If c1 + c2 > 1, or c1 > 1 − δy2, then player 2 will reject any

proposal by player 1. Hence, the outcome will be (y1, y2), with
utility δy1 − λc1 for player 1, and utility δy2 − λc2 for player 2.
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Fig. 1. The case of one round: Subgame perfect equilibriumutilities after every pair
(c1, c2).

2. If c2 > 1 − δy1, then player 1 does not want to make any offer
that player 2would accept. Hence, the outcomewill be (y1, y2),
with utility δy1−λc1 for player 1, and utility δy2−λc2 for player
2.

3. Suppose that c1 + c2 ≤ 1 and δy2 < c2 ≤ 1 − δy1. Then, the
best that player 1 can do is to offer player 2 precisely c2, which
player 2 would accept. So, the outcome would be (1 − c2, c2),
with utility 1 − c2 − λc1 for player 1, and utility c2 − λc2 for
player 2.

4. Suppose that c1 ≤ 1 − δy2 and c2 ≤ δy2. Then, the best that
player 1 can do is to offer player 2 exactly δy2, which player 2
would accept (by the tie-breaking rule). So, the outcome would
be (1 − δy2, δy2), with utility 1 − δy2 − λc1 for player 1, and
utility δy2 − λc2 for player 2.

It can easily be seen that this covers all possible cases. In Fig. 1 we
have depicted the unique subgame perfect equilibrium utilities for
both players after every possible pair (c1, c2).

Let us now turn to the beginning of the game, where players 1
and 2 must simultaneously choose the commitment levels c1 and
c2. From player 1’s utilities in Fig. 1 it may first be verified that, for
every c2, player 1’s utility is strictly decreasing in his commitment
level c1.

To see this, consider first the case where c2 ≤ δy2. Then, player
1’s utility is given by v1(c1) := 1 − δy2 − λc1 when c1 ≤ 1 − δy2,
and is given by v̂1(c1) := δy1 − λc1 when c1 > 1 − δy2. So,
clearly, player 1’s utility is strictly decreasing in c1 for c1 ≤ 1− δy2
and for c1 > 1 − δy2. To show that it is strictly decreasing in c1
overall, we must verify that v1(1 − δy2) ≥ v̂1(1 − δy2). Since
v1(1−δy2) = 1−δy2−λ(1−δy2) and v̂1(1−δy2) = δy1−λ(1−δy2)
it suffices to show that 1 − δy2 ≥ δy1. But this is true, since
δy1 + δy2 ≤ y1 + y2 ≤ 1. So, we may conclude that player 1’s
utility is strictly decreasing in c1 when c2 ≤ δy2.

Consider next the case where c2 > δy2 and c2 ≤ 1 − δy1.
Then, player 1’s utility is equal to v1(c1) := 1 − c2 − λc1 when
c1 ≤ 1 − c2, and player 1’s utility is equal to v̂1(c1) := δy1 − λc1
when c1 > 1−c2. So, clearly, player 1’s utility is strictly decreasing
in c1 for c1 ≤ 1 − c2 and for c1 > 1 − c2. To show that it is strictly
decreasing in c1 overall, wemust show that v1(1−c2) ≥ v̂1(1−c2).
By definition, v1(1 − c2) = 1 − c2 − λ(1 − c2) and v̂1(1 − c2) =

δy1 − λ(1 − c2). So, it suffices to show that 1 − c2 ≥ δy1. This,
however, is true because c2 ≤ 1 − δy1 by assumption. Hence,
we conclude that player 1’s utility is strictly decreasing in c1 when
c2 > δy2 and c2 ≤ 1 − δy1.

Consider finally the case where c2 > 1 − δy1. Then, player 1’s
utility is given by δy1 − λc1, which is clearly strictly decreasing in
c1.
So, we conclude that, for every c2, player 1’s utility is strictly
decreasing in his commitment level c1.

This means, however, that c1 = 0 is the unique optimal choice
for player 1 at the beginning of the game. But then, it may be
verified that player 2’s best choice is c2 = 1 − δy1.

To see this, note that player 2’s utility when c1 = 0 is given by
v2(c2) := δy2 − λc2 when c2 ≤ δy2, is given by v̂2(c2) := c2 − λc2
when c2 > δy2 and c2 ≤ 1−δy1, and is given by ṽ2(c2) := δy2−λc2
when c2 > 1 − δy1. So, it is clear that player 2’s utility is strictly
decreasing in c2 for c2 ≤ δy2, is strictly increasing in c2 when
c2 > δy2 and c2 ≤ 1 − δy1, and is strictly decreasing in c2 when
c2 > 1 − δy1. Hence, the only candidates for an optimal c2 are
c2 = 0 and c2 = 1 − δy1. We will show that v̂2(1 − δy1) > v2(0).
Note that v̂2(1 − δy1) = (1 − λ)(1 − δy1) and that v2(0) = δy2.
Hence, we must show that (1 − λ)(1 − δy1) > δy2.

We have that

δy2 < δy2 + 1 − δ − λ

≤ δ(1 − y1) + 1 − δ − λ

= 1 − δy1 − λ

≤ 1 − δy1 − λ(1 − δy1)
= (1 − λ)(1 − δy1),

as we had to show. Here, the second inequality follows from the
assumption that λ < 1 − δ, whereas the third inequality follows
from the fact that y1 + y2 ≤ 1, and hence y2 ≤ 1 − y1.

So, we may conclude that, indeed, v̂2(1 − δy1) > v2(0). Hence,
the best commitment level for player 2, when c1 = 0, is c2 =

1 − δy1.
Aswe have seen above, the best that player 1 can do in this case

is to propose (δy1, 1 − δy1), which player 2 would accept. So, in
the unique subgameperfect equilibriumoutcome, player 1 chooses
commitment level c1 = 0, player 2 chooses c2 = 1 − δy1, player
1 proposes (δy1, 1− δy1) and player 2 accepts. This completes the
proof. �

Theorem 1 illustrates two points. First, by setting y1 = y2 = 0,
one can see that in a single round ultimatum bargaining game, the
second mover will reap the entire pie. Second, by setting y1 =

δ/(1 + δ) and y2 = 1/(1 + δ), we would effectively add a simul-
taneous move commitment stage to the alternating-offer protocol
such that precommitments are valid only in the first round of bar-
gaining. Our result shows that this would in fact put the recipient
of the first offer in an evenmore advantageous position thanwhere
the proposer in the gamewithout commitments is: the recipient of
the first proposal commits to 1 − δ2/(1 + δ) =

1+δ−δ2

1+δ
and leaves

only δ2/(1 + δ) to the first mover.
The model is inspired by the model of Ellingsen and Miettinen

(2008) and thus the differences are worth discussing. While in the
present model we consider short-run commitments that last only
for one negotiation round, the commitments are longer-lasting
in Ellingsen and Miettinen (2008): when player j commits to a
larger share than 1 − yi in the long-run commitment model, it is
assumed that player j cannot agree to 1 − yi even at time 2 if the
negotiationswill have broken down. This is contrary to the present
model where failing to agree now results in the payoffs y1 and y2 at
time 2. Thus with long-run commitments, if player i does not give
in and does not agree on conceding cj > 1 − yi to player j, both
players’ payoffswill be zero. The long-termcommitment thus gives
player j more strategic leverage than a short term commitment.
This explainswhy in Ellingsen andMiettinen the unique iteratively
undominated commitment strategy is to commit to accept no
less than the entire pie. Notice that in the present model, this
is precisely the optimal commitment of player 2 when y1 = 0,
i.e. when player 1’s continuation payoff is zero (as is assumed in
Ellingsen and Miettinen, 2008). Another point worth noting is that
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if there were any chance that player 2 might be the proposer in
the current negotiation round, then even player 1 would have an
incentive to commit to force concessions in the event that player 2
is the proposer.

Binmore et al. (1989) discuss the differences between impasse
payoffs (the payoffs y1 and y2 at time 2 in case of a breakdown)
and outside options that are implied when a player unilaterally
chooses to opt out during the course of negotiations. Clearly, in
the one-round case we analyzed in this section, it does not matter
whether payoffs y1 and y2 are considered as outside option payoffs
or breakdown payoffs as long as the outside options are available
whether or not commitments have been made. When choosing
their commitments, players must ensure that one’s commitment
leaves the opponent weakly better off than the opponent’s outside
option. If our model had both outside options and breakdown
payoffs, then the responder’s optimal commitment would equal
the maximum of the proposer’s impasse and outside option
payoffs.

4. The case of more rounds

We now turn to the case of more than one round. Also in
this case, the subgame perfect equilibrium leads to a unique out-
come, where the proposer at round 1 faces a first-mover disad-
vantage,rather than a first-mover advantage. Actually, when the
commitment cost λ tends to zero, then the first proposer gets ex-
actly what he would obtain as the first responder in the proce-
dure without commitment, and vice versa. So, again, introducing
the possibility to commit completely reverses the outcome as λ
tends to zero.

Theorem 2 (Case of More Than One Round). Suppose that the bar-
gaining procedure consists of N potential rounds. We define the pro-
posals (xN,k

1 , xN,k
2 ) with k ∈ {1, . . . ,N} as follows:

If N is odd, then xN,N
1 := δy1 and xN,N

2 := 1 − δy1.

If N is even, then xN,N
1 := 1 − δy2 and xN,N

2 := δy2.

For every k ∈ {1, . . . ,N −1}, let the proposal (xN,k
1 , xN,k

2 ) be given by
the following recursive formula:

If k is odd, then xN,k
1 := δ(1 − λ)xN,k+1

1 and

xN,k
2 := 1 − δ(1 − λ)xN,k+1

1 .

If k is even, then xN,k
1 := 1 − δ(1 − λ)xN,k+1

2 and

xN,k
2 := δ(1 − λ)xN,k+1

2 .

Then, there is a unique subgame perfect equilibrium, where at every
odd round k player 1 commits to c1 = 0, player 2 commits to c2 =

xN,k
2 , player 1 proposes (xN,k

1 , xN,k
2 ) and player 2 accepts, and where at

every even round k player 2 commits to c2 = 0, player 1 commits to
c1 = xN,k

1 , player 2 proposes (xN,k
1 , xN,k

2 ) and player 1 accepts. In par-
ticular, the unique subgame perfect equilibrium outcome is such that
in round 1 player 1 commits to c1 = 0, player 2 commits to c2 = xN,1

2 ,
player 1 proposes (xN,1

1 , xN,1
2 ) and player 2 accepts.

Proof. Suppose the bargaining procedure consists of N potential
rounds.Weprove the statement by induction on the round k, start-
ing from the last round N and then working our way backwards.

We first analyze the subgame perfect equilibrium behavior in
the last round — round N . Let us first assume that N is odd. Hence,
player 1 is the proposer at roundN . Note that the subgame starting
at round N consists only of one round, and that the commitment
costs incurred before roundN are all sunk costs. Therefore, the sub-
game that starts at roundN is essentially identical to the one round
bargaining procedure which we analyzed in the previous section.
Fig. 2. Subgame perfect equilibrium utilities after every pair (c1, c2) in round k.

By Theorem 1 it then follows that at round N player 1 commits to
c1 = 0, player 2 commits to c2 = 1−δy1 = xN,N

2 , player 1 proposes
(δy1, 1 − δy1) = (xN,N

1 , xN,N
2 ) and player 2 accepts. A similar proof

can be given for the case where N is even.
Consider now an earlier round k, and assume that the statement

in the theorem holds for the next round k + 1. Let us first assume
that k is odd. Hence, player 1 is the proposer at round k. Suppose
that player 1’s proposal at round kwould be rejected. Then, by the
induction assumption, at round k + 1 player 2 would commit to
c2 = 0, player 1 would commit to c1 = xN,k+1

1 , player 2 would pro-
pose (xN,k+1

1 , xN,k+1
2 ) and player 1would accept. The corresponding

utilities would be xN,k+1
1 −λxN,k+1

1 = (1−λ)xN,k+1
1 for player 1 and

xN,k+1
2 for player 2. Hence, if we are in round k, then the discounted
utilities resulting from a rejected proposal would be δ(1−λ)xN,k+1

1
for player 1, and δxN,k+1

2 for player 2.
By a similar argument as in the proof of Theorem 1, we can then

conclude that the subgame perfect equilibrium utilities after every
pair (c1, c2) of commitment levels in round k are as given by Fig. 2.
The only change compared to the proof in Theorem 1 is that we
substitute (1 − λ)xN,k+1

1 for y1, and substitute xN,k+1
2 for y2.

In a similar way as in the previous section (the case of one
round), it can be shown that for every value of c2, player 1’s utility
is strictly decreasing in his commitment level c1. Hence, player 1
will choose c1 = 0. But then, in a similar way as in the previous
section, it can be shown that player 2’s best choice is c2 = 1 −

δ(1−λ)xN,k+1
1 = xN,k

2 . So, the unique subgame perfect equilibrium
behavior at round k is such that player 1 commits to c1 = 0,
player 2 commits to c2 = 1 − δ(1 − λ)xN,k+1

1 = xN,k
2 , player

1 proposes δ(1 − λ)xN,k+1
1 = xN,k

1 for himself, player 1 proposes
1−δ(1−λ)xN,k+1

1 = xN,k
2 for player 2, and player 2 accepts. Hence,

the statement of the theorem follows for round k when k is odd. A
similar proof can be designed for the case where k is even. By in-
duction on k, the statement holds for every round k, and hence the
proof is complete. �

We will now discuss the result of Theorem 2. In particular, we
will compare the unique subgame perfect equilibrium outcome in
our setting to that in a setting without commitment.

Contrary to the outcome in the setting without commitment,
the outcome in our model is not efficient since player 2 – the
responder in round 1 – incurs some costs λxN,1

2 due to the strictly
positive commitment level xN,1

2 he chooses. But there is no delay —
an agreement is reached immediately, and the full good is divided
between the two players. Hence, the only source for inefficiency is
the commitment cost incurred by player 2.
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Interestingly, if we let themarginal commitment costs λ tend to
zero, then the recursive equations above would exactly yield the
outcomes for the players in the procedure without commitment,
but with the roles of the proposer and responder reversed. That is,
what player 1 gets in the model with commitment is exactly what
he would have gotten as player 2 – the responder in round 1 – in
the model without commitment, and vice versa.

Let us now see what happens if the potential number N of
rounds becomes very large. If N is odd, then it may be verified that
the agreed upon amounts xN,1

1 and xN,1
2 in round 1 are equal to

xN,1
1 =

δ(1 − λ) + (−1)NδN(1 − λ)N

1 + δ(1 − λ)
+ (−1)N−1δN(1 − λ)N−1y1

and

xN,1
2 =

1 − (−1)NδN(1 − λ)N

1 + δ(1 − λ)
− (−1)N−1δN(1 − λ)N−1y1.

If the number of rounds N becomes very large, then

xN,1
1 ≈

δ(1 − λ)

1 + δ(1 − λ)
and xN,1

2 ≈
1

1 + δ(1 − λ)

which shows that there is a clear first-mover disadvantage. The
same actually holds when N is large and even.

The intuition for this first-mover disadvantage is very similar to
that given in the previous section for the case of one round. In every
round, the proposer does not really benefit from his possibility of
choosing a commitment level, as every offer that will be accepted
by the responder could also have been made after having chosen a
commitment level of 0. In view of this, the best the proposer can do
in every round is to choose a commitment level of 0. The responder,
anticipating on this, will be able to extract the full surplus from the
proposer by choosing the maximum possible commitment level
that the proposer is still willing tomeet. As such, it is the responder
that has a comparative advantage in every round, and not the
proposer. Overall, player 1 — who is the proposer in round 1 – will
face a disadvantage compared to player 2.

If N is large, and in addition the marginal commitment costs λ
would tend to zero, then in the limit we would obtain the reversed
Rubinstein outcome

xN,1
1 ≈

δ

1 + δ
and xN,1

2 ≈
1

1 + δ
.

Hence, player 1 – the first mover – gets exactly what he would
have gotten as the secondmover in the original Rubinstein setting,
and player 2 gets precisely what he would have gotten as the first
mover in the original Rubinstein setting.

A similar argument as in the end of Section 3 leads to the conclu-
sion that it would be fairly easy to incorporate outside options into
the analysis. As shown by Binmore et al. (1989), a player’s outside
option influences the equilibrium payoffs in a complete informa-
tion setup if and only if the option yields higher payoff to the player
than the deal resulting in the model without outside options (see
also Compte and Jehiel, 2002). When choosing their commitments
in our game, players must ensure that one’s commitment leaves
the opponent weakly better off than the opponent’s outside op-
tion and weakly better off than the current round impasse payoff
(induction assumption). If there were both outside options and
breakdown payoffs in our model, then the responder’s optimal
commitmentwould equal themaximumof the proposer’s current-
round impasse payoff (continuation payoff) and outside option
payoff.

Let us then discuss the relation to endogenous commitment
models by Fershtman and Seidmann (1993) and Li (2007) (See
also Compte and Jehiel, 2007). In those models, commitments
are endogenous as in our model but cannot be freely chosen. In
those models, there is a positive association between a proposed
share to the opponent at the current round and the opponent’s
commitment in future rounds. Proposals must not be overly
generous since rejecting an overly generous proposal improves the
opponent’s bargaining position in future rounds to an extent that
it allows the opponent to reap an even higher share of the pie than
the one currently proposed. In the present model both proposals
and commitments are short-lived and do not exhibit such history-
dependencies.

Recently, Ellingsen and Miettinen (2014) studied a dynamic
version of their negotiations model with strong commitments
(Ellingsen and Miettinen, 2008). In the dynamic model the
successful commitments have a more irreversible nature than
in our paper. The commitments have a stochastic duration and
decay of commitments follows a Poisson process.4 When two
uncommitted negotiators meet in their model, the proposer is
randomly drawn. In the present model, the proposer in each round
is pre-specified and commonly known. Moreover, commitments
decay with probability one after each negotiation round. In
contrast to the present model, Miettinen and Ellingsen show
that both players have an incentive to attempt commitments to
force concessions from the opponent. The resulting commitment
positions are incompatible and the game turns into a variant of
a complete information war of attrition with delay in reaching
agreements. The first player whose commitment fails accepts the
offer that her opponent is committed to. In our model only the
responder at a given round commits and sets the least acceptable
offer precisely equal to what the proposer is willing to accept. The
first mover has no incentive to commit, since being a first mover
already provides commitment power and a capacity to tailor the
take-it-or-leave-it offer to precisely match with the responder’s
commitment. This has the advantage of saving the commitment
cost and not risking an impasse and thus a delayed agreement.
The differences between our results and those of Ellingsen and
Miettinen (2014) are on the one hand due to stronger leverage
that the term irreversibility of the commitment provides in forcing
greater concessions from an uncommitted opponent. On the other
hand, the differences are also due to the fact that in their model
both players have an incentive to attempt commitments in order to
turn the position of an uncommitted weak responder to a position
of a credibly committed proposer.

5. Concluding remarks

5.1. Commitment costs

In our model we have assumed that the commitment costs for
both players are given by λc , where c is the amount committed to,
and λ is some fixed number. In fact, we do not really need this spe-
cific functional form for the commitment costs. Instead, we could
assume that the commitment costs are given by a more general
function γ (c), where γ (0) = 0, the function γ is non-decreasing
in the commitment level c, γ (c) > 0 for c > 0 and γ (1) ≤ 1 − δ.
The reader may verify that under these assumptions, there would
also be a unique subgame perfect equilibrium outcome in which
the proposer at round 1 faces a first-mover disadvantage. The out-
come can be computed by a recursive formula similar to the one
used in Theorem 2. Also under these assumptions we would ob-
tain the reversed Rubinstein outcome (δ/(1 + δ), 1/(1 + δ)) if we
let the number of rounds go to infinity, and let the commitment
costs go to zero. However, in the paper we have chosen the spe-
cific functional form λc for the commitment costs as to keep the
presentation and the analysis as simple as possible.

4 See Maskin and Tirole (1988) for a related model of dynamic capacity
commitment in a duopoly model. In the capacity competition case, inefficiently
large capacity does not result in zero flow-payoff like in the bargaining model of
Ellingsen and Miettinen, so efficiency losses are in that sense smaller.
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5.2. Asymmetric players

In our analysis we have assumed that both players are symmet-
ricin the sense that they share the same discount factor δ and the
same marginal cost for commitment λ. The same analysis could
have been carried out for the asymmetric case, in which both play-
ers hold different discount factors δ1 and δ2, and differentmarginal
costs of commitment λ1 and λ2. We stuck to the symmetric case
just for the sake of simplicity.

5.3. Alternative to subgame perfect equilibrium

In this paper we have used the concept of subgame perfect
equilibrium to analyze the bargaining game. In the working paper
version of this paper, Miettinen and Perea (2014), we use the
weaker notion of common belief in future rationality (Perea, 2014)
to establish the same results. In fact, subgame perfect equilibrium
is a strict refinement of common belief in future rationality (see
Perea and Predtetchinski, 2014 for a formal proof), and in the
working paper version we show that in the bargaining game with
commitment there is a unique outcome that is possible under
common belief in future rationality, and this outcome is the same
as the unique subgame perfect equilibrium outcome we find in
this paper. So, the results in the paper do not change if we use the
weaker notion of common belief in future rationality rather than
subgame perfect equilibrium.
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