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Battigalli (1997) has shown that in dynamic games with perfect information and without 
relevant ties, the forward induction concept of extensive-form rationalizability yields the 
backward induction outcome. In this paper we provide a new proof for this remarkable 
result, based on four steps. We first show that extensive-form rationalizability can be 
characterized by the iterated application of a special reduction operator, the strong 
belief reduction operator. We next prove that this operator satisfies a mild version of 
monotonicity, which we call monotonicity on reachable histories. This property is used 
to show that for this operator, every possible order of elimination leads to the same set of 
outcomes. We finally show that backward induction yields a possible order of elimination 
for the strong belief reduction operator. These four properties together imply Battigalli’s 
theorem.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Extensive-form rationalizability (Pearce, 1984; Battigalli, 1997) is a natural forward induction concept, based on the idea 
that a player, whenever possible, must rationalize the opponents’ past choices. Backward induction reasoning is different 
in that a player need no longer reason about past choices. Instead, a player must believe that his opponents will choose 
rationally in the future, regardless of what these opponents have done in the past.

Despite this difference, Battigalli (1997) shows in his Theorem 4 that both lines of reasoning lead to exactly the same 
outcome in dynamic games with perfect information and without relevant ties. This remarkable and surprising result is 
important for the foundations of game theory, as backward induction and forward induction both play a prominent role in 
the theory of dynamic games. It therefore seems relevant to not only know that Battigalli’s theorem holds, but also why
it holds. The purpose of this paper is to make a step forward in that direction, by delivering a new proof for Battigalli’s 
theorem which we hope leads to an even better understanding of why it holds.

Our proof is based on the following four steps. We first introduce a special reduction operator, the strong belief reduction 
operator, which eliminates strategies from any given set of strategy profiles in the game, and show that the extensive-form 
rationalizable strategies can be characterized by the iterated application of this strong belief reduction operator to the 
full set of strategy profiles. For any given set D of strategy profiles, the strong belief reduction operator only keeps those 
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strategies from D that are optimal, at every history reachable under D , for a conditional belief that assigns full probability 
to opponents’ strategies in D .

In the next step we show that this reduction operator satisfies a mild version of monotonicity that we call monotonicity 
on reachable histories. To explain what this monotonicity condition entails, consider sets of strategy profiles D and E where 
E can be reached by some order of elimination, and where D is equivalent, in terms of behavior on histories reachable 
under D , to some partial reduction of E . Here, by a partial reduction of E we mean the result of eliminating some, but not 
necessarily all, strategies that can be eliminated from E . Monotonicity on reachable histories then states that for any two 
such sets D and E , the full reduction of D , when restricted to histories reachable under D , must be contained in the full 
reduction of E , when restricted to these same histories.

In the third step we show that every reduction operator that is monotone on reachable histories will be order independent 
with respect to outcomes. That is, every order of elimination that is possible for this reduction operator eventually yields the 
same set of induced outcomes. Together with the second step, this implies that the strong belief reduction operator is order 
independent with respect to outcomes.

In the final step, we prove that backward induction yields a possible order of elimination for the strong belief reduction 
operator. This result, together with the other steps, implies Battigalli’s theorem.

The outline of this paper is as follows. In Section 2 we introduce dynamic games with observable past choices, define the 
concept of extensive-form rationalizability, present the strong belief reduction operator, and show that the extensive-form 
rationalizable strategies are obtained by the iterated application of this operator. In Section 3 we introduce the notion of 
monotonicity on reachable histories, show that the strong belief reduction operator satisfies this mild form of monotonicity, 
and prove that every reduction operator that is monotone on reachable histories will also be order independent with respect 
to outcomes. Together with the previous result it then follows that the strong belief reduction operator is order independent 
with respect to outcomes. In Section 4 we prove that backward induction yields a possible order of elimination for the 
strong belief reduction operator, which finally enables us to prove Battigalli’s theorem. The main body of the paper ends in 
Section 5 with some concluding remarks. Section 6, finally, contains all the proofs, except the very last one where we prove 
Battigalli’s theorem, relying on all the results outlined above. This short proof is presented in the main body, in Section 4.

Although Battigalli’s theorem only applies to dynamic games with perfect information, our Sections 2 and 3 apply to the 
more general class of games with observable past choices which allow for simultaneous moves. Only Section 4 restricts to 
games with perfect information.

2. Strong belief reduction operator

In this section we start by formally introducing the class of dynamic games with observable past choices, and present 
the extensive-form rationalizability procedure for this class. Subsequently, we define the strong belief reduction operator 
and show that its repeated application yields the set of extensive-form rationalizable strategies.

2.1. Dynamic games with observable past choices

In Sections 2 and 3 of this paper we will focus on finite dynamic games with observable past choices. Such games allow 
for simultaneous moves, but at every stage of the game every active player knows exactly which choices have been made 
by the opponents in the past. Formally, a finite dynamic game with observable past choices is a tuple

G = (I, H, Z , (Hi)i∈I , (Ci(h))i∈I,h∈Hi , (ui)i∈I )

where
(a) I = {1, 2, ..., n} is the finite set of players;
(b) H is the finite set of histories, consisting of non-terminal and terminal histories. At every non-terminal history, one or 

more players must make a choice, whereas at every terminal history the game ends. By ∅ we denote the root of the game, 
which is the non-terminal history where the game starts;

(c) Z ⊆ H is the set of terminal histories;
(d) Hi ⊆ H is the set of non-terminal histories where player i must make a choice. For a given non-terminal history h, 

we denote by I(h) := {i ∈ I | h ∈ Hi} the set of active players at h. We allow I(h) to contain more than one player, that is, 
we allow for simultaneous moves. At the same time, we require I(h) to be non-empty for every non-terminal history h;

(e) Ci(h) is the finite set of choices available to player i at a history h ∈ Hi ; and
(f) ui : Z →R is player i’s utility function, assigning to every terminal history z ∈ Z some utility ui(z).

For every non-terminal history h and choice combination (ci)i∈I(h) in ×i∈I(h)Ci(h), we denote by h′ = (h, (ci)i∈I(h)) the 
(terminal or non-terminal) history that immediately follows this choice combination at h. In this case, we say that h′
immediately follows h. We say that a history h follows a non-terminal history h′ if there is a sequence of histories h1, ..., hK

such that h1 = h′ , hK = h, and hk+1 immediately follows hk for all k ∈ {1, ..., K − 1}. A history h is said to weakly follow h′ if 
either h follows h′ or h = h′ . In the obvious way, we can then also define what it means for h to (weakly) precede another 
history h′ .
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We view a strategy for player i as a plan of action (Rubinstein, 1991), assigning choices only to those histories h ∈ Hi
that are not precluded by previous choices. Formally, consider a set of non-terminal histories Ĥi ⊆ Hi , and a mapping 
si : Ĥi → ∪h∈Ĥi

Ci(h) assigning to every history h ∈ Ĥi some available choice si(h) ∈ Ci(h). We say that a history h ∈ H is 
reachable under si if at every history h′ ∈ Ĥi preceding h, the choice si(h′) is the unique choice that leads to h. The mapping 
si : Ĥi → ∪h∈Ĥi

Ci(h) is called a strategy if Ĥi contains exactly those histories in Hi that are reachable under si .
By Si we denote the set of strategies for player i. For every history h ∈ H and player i, we denote by Si(h) the set of 

strategies for player i under which h is reachable. Similarly, for a given strategy si we denote by Hi(si) the set of histories 
in Hi that are reachable under si .

Finally, we say that the game is with perfect information if at every non-terminal history there is only one active player. 
This is the class of games we will focus on in Section 4.

2.2. Extensive-form rationalizability

We now introduce the extensive-form rationalizability procedure (Pearce, 1984; Battigalli, 1997) which recursively elim-
inates, at every round, some strategies and conditional belief vectors for the players. Our definition is closest to Battigalli’s 
(1997) Definition 2, which is an equivalent adjustment of Pearce’s (1984) original definition of extensive-form rationalizabil-
ity. To formally state extensive-form rationalizability, we need some additional definitions.

For a finite set X , we denote by �(X) the set of probability distributions on X . For a player i and history h ∈ Hi , let 
S−i(h) := × j �=i S j(h) be the set of opponents’ strategy combinations under which h is reachable.

A conditional belief vector for player i is tuple bi = (bi(h))h∈Hi where bi(h) ∈ �(S−i(h)) for every h ∈ Hi . Here, bi(h)

represents the conditional probabilistic belief that i holds at h about the opponents’ strategy choices. We say that the 
conditional belief vector bi satisfies Bayesian updating if for every h, h′ ∈ Hi where h′ follows h and bi(h)(S−i(h′)) > 0, it 
holds that

bi(h
′)(s−i) = bi(h)(s−i)

bi(h)(S−i(h′))
for all s−i ∈ S−i(h

′).

By Bi we denote the set of conditional belief vectors for player i that satisfy Bayesian updating.
For a given conditional belief vector bi , a set E ⊆ S−i of opponents’ strategy combinations, and a history h ∈ Hi , we say 

that bi(h) strongly believes E if bi(h)(E) = 1 whenever S−i(h) ∩ E �= ∅. That is, bi(h) assigns full probability to E whenever E
is logically consistent with the event that h has been reached. We say that bi strongly believes E if bi(h) strongly believes E
at every h ∈ Hi .

For a strategy combination s = (si)i∈I we denote by z(s) the induced terminal history. For a history h ∈ Hi , a strategy 
si ∈ Si(h), and a conditional belief bi(h) ∈ �(S−i(h)), we denote by

ui(si,bi(h)) :=
∑

s−i∈S−i(h)

bi(h)(s−i) · ui(z(si, s−i))

the induced expected utility at h. We say that strategy si is rational at h for the conditional belief vector bi if ui(si, bi(h)) ≥
ui(s′

i, bi(h)) for all s′
i ∈ Si(h). That is, strategy si yields the highest possible expected utility at h under the belief bi(h).

For a given strategy si and a collection Ĥ ⊆ H of histories, we say that strategy si is rational at Ĥ for bi if si is rational 
at every h ∈ Ĥ ∩ Hi(si) for bi . Finally, we say that strategy si is rational for the conditional belief vector bi if si is rational at 
H for bi .

The extensive-form rationalizability procedure iteratively eliminates strategies and conditional belief vectors, as follows.

Definition 2.1 (Extensive-Form Rationalizability). Consider a finite dynamic game G with observable past choices.

(Induction start) Set S0
i := Si and B0

i := Bi for all players i.

(Induction step) Let k ≥ 1, and assume that Sk−1
i and Bk−1

i have already been defined for all players i. Then, define for all 
players i

Sk
i : = {si ∈ Sk−1

i | si rational for some bi ∈ Bk−1
i },

Bk
i : = {bi ∈ Bk−1

i | bi strongly believes Sk
−i}.

A strategy si ∈ Si is called extensive-form rationalizable if si ∈ Sk
i for all k ≥ 0.

Here, by Sk
−i we denote the set × j �=i Sk

j . Since there are only finitely many strategies in the game, there must be some 

K ≥ 0 such that S K+1
i = S K

i for every player i. That is, the procedure will terminate after K steps. By Sef r
i := S K

i we denote 
the set of extensive-form rationalizable strategies for player i.
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Fig. 1. Reny’s game.

As an illustration, consider the game G in Fig. 1, which is based on Fig. 3 in Reny (1992). It may be verified that

S1
1 = {a, (b, f )} and S1

2 = {c, (d, g)}.
Note that the strategies (b, e) and (d, h) can never be rational for any conditional belief vector. By construction, we then 
have that

B1
1 = {b1 ∈ B1 | b1(∅)({c, (d, g)}) = 1 and b1(h2)({(d, g)}) = 1}

and

B1
2 = {b2 ∈ B2 | b2(h1)({(b, f )}) = b2(h3)({(b, f )}) = 1}.

Note that a is the only strategy for player 1 that is rational for a conditional belief vector in B1
1. Similarly, (d, g) is the 

only strategy for player 2 that is rational for the unique conditional belief vector in B1
2. Hence,

S2
1 = {a} and S2

2 = {(d, g)},
which implies that

B2
1 = {b1 ∈ B1 | b1(∅)({(d, g)}) = b1(h2)({(d, g)}) = 1} and B2

2 = B1
2.

After this round the procedure terminates, as S3
1 = S2

1 and S3
2 = S2

2. Hence, the extensive-form rationalizable strategies are 
a for player 1 and (d, g) for player 2, which implies that the unique extensive-form rationalizable outcome is the terminal 
history a. We thus conclude that the unique extensive-form rationalizable outcome is the same as the backward induction 
outcome in this game G . Note, however, that the extensive-form rationalizable strategy (d, g) for player 2 is different from 
his backward induction strategy c.

2.3. Strong belief reduction operator

We next show that the extensive-form rationalizable strategies can be obtained by the iterated application of a certain 
reduction operator, which we call the strong belief reduction operator. Before doing so, we first define what we mean by a 
reduction operator in general.

A product of strategy sets is a Cartesian product D = ×i∈I Di , where Di ⊆ Si is a subset of strategies for every player i. 
A reduction operator is a mapping r that assigns to every product of strategy sets D a product of strategy sets r(D) ⊆ D
that is contained in it. Hence, whenever r(D) �= D then r(D) is obtained from D by eliminating some strategies. For two 
products of strategy sets D and E we say that D is a partial reduction of E if r(E) ⊆ D ⊆ E . That is, D is obtained from E
by eliminating some, but not necessarily all, strategies that can be eliminated according to r. Hence, the notion of partial 
reduction is always defined relative to a specific reduction operator r. The set D = r(E) is called the full reduction of E . For 
every k ≥ 1, we denote by

rk(D) := (r ◦ ... ◦ r)︸ ︷︷ ︸
k times

(D)

the k-fold application of r to the product of strategy sets D , and we set r0(D) := D .
For a given product of strategy sets D , let H(D) ⊆ H be the set of histories that are reached by strategy combinations 

in D .

Definition 2.2 (Strong belief reduction operator). The strong belief reduction operator sb assigns to every product of strategy 
sets D = ×i∈I Di the set ×i∈I sbi(D), where for every i

sbi(D) := {si ∈ Di | si is rational at H(D) for some bi ∈ Bi that strongly believes D−i}.



124 A. Perea / Games and Economic Behavior 110 (2018) 120–138
Note that sb(D) ⊆ D by definition, and that the additional restrictions imposed by sbi(D) are rationality conditions at 
histories reachable under D . In that sense, it is similar to Chen and Micali’s (2013) notion of distinguishable dominance,
where dominance is only required at histories that are reachable under D . In the following subsection we will show that 
the extensive-form rationalizable strategies are obtained by the iterated application of the strong belief reduction operator 
to the full set of strategies.

2.4. Characterization of extensive-form rationalizable strategies

Remember from Definition 2.1 that Sk
i denotes the set of strategies for player i that survives round k of the extensive-

form rationalizability procedure. In the following theorem we show that Sk
i is obtained by the k-fold application of the 

strong belief reduction operator to the product of full strategy sets. In particular, the extensive-form rationalizable strategies 
are exactly those that survive the iterated application of this reduction operator.

Theorem 2.1 (Characterization of EFR strategies). For every k ≥ 0, let Sk
i be the set of strategies for player i that survive round k of the 

extensive-form rationalizability procedure, and let Sk := ×i∈I Sk
i be the induced product of strategy sets. Then, for every k ≥ 0 we have 

that

Sk = (sb)k(S)

where S := ×i∈I Si .

As we already mentioned, the procedure (Sk)k≥0 as we present it in this paper is close to Battigalli’s (1997) formulation 
of extensive-form rationalizability in his Definition 2. In turn, the procedure ((sb)k(S))k≥0 is very similar to Pearce’s original 
definition of extensive-form rationalizability, which also appears – with a slight but inessential change – as the procedure 
(Pc(k))k≥0 in Battigalli (1997)’s Definition 3. Like ((sb)k(S))k≥0, also Pearce’s procedure (Pc(k))k≥0 imposes at every round k
only optimality restrictions at histories that are reachable by Pc(k − 1). This is in contrast to (Sk)k≥0, where at every round 
k optimality restrictions are imposed at all histories.

Battigalli (1997) has shown in Theorem 1 that his formulation of extensive-form rationalizability is equivalent to Pearce’s 
original definition (Pc(k))k≥0. In that sense, our Theorem 2.1 is very similar to Battigalli’s Theorem 1. This similarity also 
applies to the proof techniques being used. Indeed, in both Battigalli’s proof and our proof, the key observation is the 
following: The restrictions that (Sk)k≥0 imposes on the conditional belief vectors at histories that are not reachable under 
the strategies from the previous round, are already captured by the restrictions of the preceding rounds. Hence, at every 
round k it suffices to impose new restrictions only at histories that are reachable under the strategies from the previous 
round, which is exactly what ((sb)k(S))k≥0 and (Pc(k))k≥0 do.

3. Monotonicity on reachable histories

In this section we present a mild version of monotonicity for reduction operators, that we call monotonicity on reachable 
histories. We then show that the strong belief reduction operator, characterizing extensive-form rationalizability, satisfies 
this type of monotonicity. We finally prove that every reduction operator satisfying monotonicity on reachable histories is 
guaranteed to be order independent with respect to outcomes. That is, every possible order of elimination will yield the same 
set of induced outcomes. In particular, we conclude that the strong belief reduction operator is order independent with 
respect to outcomes.

3.1. Definition of monotonicity on reachable histories

To formally state monotonicity on reachable histories, we first define the restriction of strategies and strategy sets to 
subcollections of histories. For a given strategy si ∈ Si and a collection of histories Ĥ ⊆ H , let

si |Ĥ := (si(h))h∈Hi(si)∩Ĥ

be its restriction to histories in Ĥ . For a set of strategies Di ⊆ Si , we denote by Di |Ĥ := {si |Ĥ | si ∈ Di} the restriction of the 
set Di to histories in Ĥ . Moreover, for a product of strategy sets D = ×i∈I Di , we define D|Ĥ := ×i∈I Di |Ĥ .

For a given reduction operator r, an elimination order for r is a finite sequence of successive partial reductions, and can 
be formalized as follows.

Definition 3.1 (Elimination order for r). An elimination order for a reduction operator r is a finite sequence (D0, D1, ..., D K )

of products of strategy sets where (a) D0 = S , (b) r(Dk) ⊆ Dk+1 ⊆ Dk for every k ∈ {0, ..., K − 1}, and (c) r(D K ) = D K .



A. Perea / Games and Economic Behavior 110 (2018) 120–138 125
Condition (b) thus states that Dk+1 is a partial reduction of Dk , whereas condition (c) guarantees that r allows no further 
eliminations after round K . We say that a product of strategy sets E is possible in an elimination order for r if there is an 
elimination order (D0, D1, ..., D K ) for r such that E = Dk for some k ∈ {0, ..., K }. We are now fully equipped to define 
monotonicity on reachable histories.

Definition 3.2 (Monotonicity on reachable histories). A reduction operator r is monotone on reachable histories if for every 
two products of strategy sets D and E where E is possible in an elimination order for r and

r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D),

it holds that

r(D)|H(D) ⊆ r(E)|H(D).

If in the above definition we would replace H(D) by H , then we obtain exactly the condition of 1-monotonicity∗ in Luo 
et al. (2016), which is shown to imply order independence with respect to strategies. The latter is more restrictive than order 
independence with respect to outcomes, as it states that all possible orders of elimination yield the same sets of strategies, 
and not only the same sets of induced outcomes.

Note, however, that 1-monotonicity∗ does not automatically imply monotonicity on reachable histories. The reason is 
that 1-monotonicity∗ restricts to sets D and E with r(E) ⊆ D ⊆ E , whereas our restrictions on the sets D and E are milder.

It can be shown that r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D) if and only if there is a partial reduction D ′ of E with D ′|H(D) =
D|H(D) . To see this, suppose first that there is a partial reduction D ′ of E with D ′|H(D) = D|H(D) . Since r(E) ⊆ D ′ ⊆ E and 
D ′|H(D) = D|H(D) , it immediately follows that r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D) . Assume next that r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D). 
Since D|H(D) ⊆ E|H(D) there is a mapping f : D → E with f (s)|H(D) = s|H(D) for every s ∈ D . Then, it may be verified that 
D ′ := f (D) ∪ r(E) is a partial reduction of E with D ′|H(D) = D|H(D) .

Hence, monotonicity on reachable histories states that, whenever E is possible in an elimination order for r, and D is 
equivalent, in terms of behavior on H(D), to a partial reduction of E , then the full reduction of D , when restricted to 
behavior on H(D), is contained in the full reduction of E , when restricted to behavior on H(D).

3.2. Strong belief reduction operator is monotone on reachable histories

The main step, but also the most difficult step, in our proof of Battigalli’s theorem is to show that the strong belief 
reduction operator satisfies monotonicity on reachable histories.

Theorem 3.1 (Monotonicity theorem). The strong belief reduction operator sb is monotone on reachable histories.

Suppose we would remove the restriction in Definition 3.2 that E must be possible in an elimination order for r. Then, 
the strong belief reduction operator sb would no longer satisfy this stronger version of monotonicity. To see this, consider 
the game in Fig. 1 and take the sets D = {a} × {c} and E = {a, (b, f )} × {c}. Then, it may be verified that sb(D) = D and 
sb(E) = ∅. As a consequence, sb(D)|H(D) � sb(E)|H(D) despite the fact that sb(E)|H(D) ⊆ D|H(D) ⊆ E|H(D).

The reason for this failure is that E is not possible in any elimination order for sb. Indeed, take any elimination order 
(D0, ..., D K ) for sb and suppose that E = Dk for some k ∈ {1, ..., K }. Then, sb(Dk−1) ⊆ E ⊆ Dk−1. Since E = Dk does not 
contain strategy (d, g) for player 2, there must be some m ≤ k − 1 such that (d, g) ∈ Dm

2 but (d, g) /∈ Dm+1
2 . On the other 

hand, since E ⊆ Dk−1 ⊆ Dm , it must be that Dm
1 contains strategy (b, f ) for player 1. As (d, g) ∈ Dm

2 , and (d, g) is rational 
at H(Dm) for the conditional belief vector b2 with b2(h1) = b2(h3) = (b, f ), which strongly believes Dm

1 , it follows that 
(d, g) ∈ Dm+1

2 . This, however, is a contradiction. Therefore, we conclude that E is not possible in any elimination order for 
sb. We thus see that in the definition of monotonicity on reachable histories we need to restrict to sets E that are possible 
in an elimination order for r, otherwise Theorem 3.1 would no longer hold.

3.3. Order independence with respect to outcomes

We next show that every reduction operator r that is monotone on reachable histories, will automatically be order 
independent with respect to outcomes. That is, every order of elimination allowed by r yields the same set of induced outcomes 
at the end. To define this formally, we denote by Z(D) := Z ∩ H(D) the set of terminal histories that are reachable under a 
product of strategy sets D .

Definition 3.3 (Order independence with respect to outcomes). A reduction operator r is order independent with respect to 
outcomes if for every two elimination orders (D0, ..., D K ) and (E0, ..., E L) for r we have that Z(D K ) = Z(E L).

We show that monotonicity on reachable histories implies order independence with respect to outcomes.
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Theorem 3.2 (Sufficient condition for order independence with respect to outcomes). Every reduction operator r that is monotone on 
reachable histories is order independent with respect to outcomes.

This result is analogous to Luo et al. (2016) who show that their notion of 1-monotonicity∗ implies order independence 
with respect to strategies. That is, every elimination order for r not only induces the same set of induced outcomes, but also 
the same set of strategies.

Since we have seen in Theorem 3.1 that the strong belief reduction operator is indeed monotone on reachable histories, 
we immediately obtain the following result.

Corollary 3.1 (Order independence theorem). The strong belief reduction operator is order independent with respect to outcomes.

As we will see, this corollary plays a crucial role in establishing the proof of Battigalli’s theorem in the following section.

4. Proof of Battigalli’s theorem

With Theorem 2.1 and Corollary 3.1 at hand we are finally able to prove Battigalli’s theorem. Note that so far we have 
considered general dynamic games with observable past choices, and all results obtained up to this point hold for that 
general class. In this section we turn to the more special class of games with perfect information and without relevant ties – 
the class of games to which Battigalli’s theorem applies.

In this section we proceed as follows. We first define this more special class of games, and give a formal statement of 
Battigalli’s theorem. Next, we show that in every perfect information game without relevant ties, backward induction yields 
an elimination order for the strong belief reduction operator. We finally use this result, together with Theorem 2.1 and 
Corollary 3.1, to prove Battigalli’s theorem.

4.1. Statement of Battigalli’s theorem

Consider a finite dynamic game G with perfect information. That is, at every non-terminal history there is exactly one 
active player. Following Battigalli (1997), we say that G is without relevant ties if for every player i, every h ∈ Hi , every 
two different choices ci, c′

i ∈ Ci(h), every terminal history z weakly following (h, ci), and every terminal history z′ weakly 
following (h, c′

i), we have that ui(z) �= ui(z′). It is easily verified that every such game has a unique backward induction 
outcome zbi ∈ Z .

Theorem 4.1 (Battigalli’s theorem). Let G be a finite dynamic game with perfect information and without relevant ties. Let zbi be the 
unique backward induction outcome, let Sef r

i be the set of extensive-form rationalizable strategies for every player i, and let Sef r :=
×i∈I Sef r

i . Then, Z(Sef r) = {zbi}.

That is, the backward induction outcome is the unique outcome induced by extensive-form rationalizability.

4.2. Backward induction yields elimination order for sb

We define the backward induction sequence (Dbi,0, Dbi,1, ..., Dbi,K ) as follows. Let K be the maximal number of consecutive 
choices between the root and a terminal history in the game. For every k ∈ {1, ..., K }, let Hk be the collection of non-terminal 
histories h such that for every terminal history z following h there are at most k consecutive choices between h and z.

We define the products of strategy sets Dbi,0, ..., Dbi,K inductively by setting Dbi,0
i := Si for every player i, and

Dbi,k
i := {si ∈ Si | si(h) is the backward induction choice at h for all h ∈ Hi(si) ∩ Hk}

for every player i and every k ∈ {1, ..., K }.
Hence, Dbi,K

i contains only one strategy for player i, which is his unique backward induction strategy. In particular, it 
follows that Z(Dbi,K ) = {zbi}.

In order to show Battigalli’s theorem it is therefore sufficient, in view of Theorem 2.1 and Corollary 3.1, to prove that the 
backward induction sequence above is an elimination order for sb.

Lemma 4.1 (Backward induction yields elimination order for sb). Let G be a finite dynamic game with perfect information and without 
relevant ties. Then, the backward induction sequence (Dbi,0, ..., Dbi,K ) defined above is an elimination order for sb.

With Lemma 4.1, Theorem 2.1 and Corollary 3.1 at hand, we are finally able to prove Battigalli’s theorem.
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4.3. Proof of Battigalli’s theorem

Take the backward induction sequence (Dbi,0, Dbi,1, ..., Dbi,K ) defined above. Then we know, by Lemma 4.1, that this is 
an elimination order for sb. Moreover, the elimination order (E0, E1, ..., E L) obtained by the iterated application of sb “at 
full speed” clearly yields another elimination order for sb. But then, by Corollary 3.1 we conclude that Z(E L) = Z(Dbi,K ). 
As Z(Dbi,K ) = {zbi} and, by Theorem 2.1, Z(E L) = Z(Sef r), it follows that Z(Sef r) = {zbi}, which completes the proof of 
Battigalli’s theorem. �
5. Concluding remarks

5.1. Literature on backward and forward induction reasoning

Backward induction and forward induction are two fundamentally different lines of reasoning in dynamic games. In 
backward induction, a player believes throughout the game that his opponents will choose rationally in the future, regardless 
of what these opponents have done in the past. This principle is the basis for the well-known backward induction procedure 
in dynamic games with perfect information, and for the concept of common belief in future rationality (Perea (2014), see 
also Penta (2015) and Baltag et al. (2009) for related lines of reasoning) for general dynamic games. The backward induction 
principle is also implicitly present in equilibrium concepts like subgame perfect equilibrium (Selten, 1965) and sequential 
equilibrium (Kreps and Wilson, 1982). A common feature of all these backward induction concepts is thus that players are 
not required to reason about the opponents’ past choices, but instead are required to believe that the opponents will act 
rationally in the future independent of what these opponents have done in the past.

Forward induction, on the other hand, does require the players to actively reason about the opponents’ past choices. 
Although there is no unique definition of forward induction in the literature, the main idea is that a player, whenever 
possible, tries to interpret the opponent’s past moves as being part of a rational strategy, and that he bases his belief about 
the opponent’s future moves on this hypothesis. Extensive-form rationalizability (Pearce, 1984; Battigalli, 1997) is a very basic 
and natural forward induction concept, based on the idea that a player, whenever possible, must believe that his opponents 
are implementing rational strategies. This idea can be formalized by the epistemic condition of strong belief in the opponents’ 
rationality (Battigalli and Siniscalchi, 2002), which provides the basis for common strong belief in rationality – a concept that 
characterizes extensive-form rationalizability on an epistemic level.

5.2. Other proofs of Battigalli’s theorem

This paper is not the first to prove Battigalli’s theorem. Much credit should of course go to Battigalli (1997), who was the 
first to prove this result by relying on certain properties of fully stable sets (Kohlberg and Mertens, 1986). Battigalli’s proof, 
in turn, was inspired by Reny (1992)1 who used a similar proof technique to show that a different forward induction concept 
– explicable equilibrium – also leads to the backward induction outcome in the class of games we consider. Battigalli’s 
theorem also follows from Chen and Micali (2013), who show that the iterated elimination of distinguishably dominated 
strategies is order independent with respect to outcomes, and that performing this procedure “at full speed” is equivalent 
to the iterated conditional dominance procedure (Shimoji and Watson, 1998). Since Shimoji and Watson (1998) show that 
the iterated conditional dominance procedure characterizes the extensive-form rationalizable strategies, and the backward 
induction outcome can be obtained by a specific order of elimination of distinguishably dominated strategies, Battigalli’s 
theorem follows. Luo et al. (2016) provide an alternative proof for the fact that the iterated elimination of distinguishably 
dominated strategies is order independent with respect to outcomes. Heifetz and Perea (2015) prove Battigalli’s theorem 
via a different route. The main step in their proof is to show that the extensive-form rationalizable outcomes of a game 
do not change if we truncate the game, by eliminating the suboptimal choices at every last non-terminal history. Catonini
(2017) studies the concept of strong �-rationalizability, which combines the logic of extensive-form rationalizability with a 
set � of restrictions on first-order beliefs. He shows that, if � corresponds to “strong belief in a certain path of play”, then 
the set of outcomes induced by strong �-rationalizability is smaller than under extensive-form rationalizability. Catonini
(2017) then uses this result to prove Battigalli’s theorem. Arieli and Aumann (2015) prove Battigalli’s theorem for the 
special case where every player is only active at one history in the game. The key step in their proof is to show that 
the extensive-form rationalizable outcomes in such games can be characterized by their pruning process – a procedure that 
iteratively eliminates histories from the game. Features that distinguish our approach from the papers above are our use of 
the strong belief reduction operator, and our focus on monotonicity on reachable histories as a tool to prove order independence 
with respect to outcomes.

5.3. Monotonicity on reachable histories

The new notion of monotonicity on reachable histories plays a crucial role in our proof of Battigalli’s theorem. This con-
dition enters the proof at two different stages: We first show, in Theorem 3.1, that the strong belief reduction operator is 

1 See Battigalli (1997), footnote 13.
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monotone on reachable histories, whereas Theorem 3.2 guarantees that monotonicity on reachable histories implies order 
independence with respect to outcomes. These two steps are our key to proving Battigalli’s theorem.

We believe that Theorem 3.2 may also be of interest outside the specific setting of this paper, since it provides an easy to 
verify sufficient condition for order independence with respect to outcomes. Indeed, suppose we consider a game-theoretic 
concept for dynamic games that can be characterized by the iterated application of a certain reduction operator r. If we 
wish to prove that this concept is order independent with respect to outcomes, then, by Theorem 3.2, it would be sufficient 
to show that the reduction operator r is monotone on reachable histories.

5.4. Reny’s theorem

Proposition 3 in Reny (1992) is, in terms of content and proof, very similar to Battigalli’s theorem. It shows that in every 
dynamic game with perfect information and without relevant ties, the forward induction concept of explicable equilibrium
yields a unique outcome: the backward induction outcome. Like Battigalli (1997), also Reny (1992) proves this result by us-
ing properties of fully stable sets (Kohlberg and Mertens, 1986). It would be interesting to see whether the proof techniques 
in this paper can be used to develop an alternative proof for Reny’s theorem.

5.5. Games with imperfect information

Common belief in future rationality (Perea, 2014) represents a backward induction concept that is also applicable to 
dynamic games with imperfect information. We believe that a similar proof as the one in this paper can be used to show 
that in such games, the set of outcomes induced by extensive-form rationalizability is always smaller than (or equal to) the 
set of outcomes induced by common belief in future rationality.

6. Proofs

6.1. Proof of Theorem 2.1

We prove the statement by induction on k. For k = 0 the statement trivially holds as S0 = (sb)0(S) = S .
Consider now some k ≥ 1, and assume that Sk−1 = (sb)k−1(S). In order to show that Sk = (sb)k(S), we first prove that 

(a) Sk ⊆ (sb)k(S), and then show that (b) (sb)k(S) ⊆ Sk.

(a) We first show that Sk ⊆ (sb)k(S). Take some player i and some si ∈ Sk
i . We must show that si ∈ sbi((sb)k−1(S)). As, by 

the induction assumption, (sb)k−1(S) = Sk−1, it suffices to show that si ∈ sbi(Sk−1).
Since si ∈ Sk

i we know, by definition of Sk
i , that si ∈ Sk−1

i , and that si is rational for some conditional belief vector 
bi ∈ Bk−1

i . Here, Bk−1
i is the set of conditional belief vectors that survive round k − 1 of the extensive-form rationalizability 

procedure. By definition of Bk−1
i , it follows that bi ∈ Bi and that bi strongly believes Sk−1

−i . Hence, si ∈ Sk−1
i and si is rational 

for some bi ∈ Bi that strongly believes Sk−1
−i . In particular, si is rational at H(Sk−1) for bi . As such, si ∈ sbi(Sk−1). Together 

with the induction assumption that Sk−1 = (sb)k−1(S), we conclude that si ∈ sbi((sb)k−1(S)). This holds for every player i
and every si ∈ Sk

i , and hence Sk ⊆ (sb)k(S).

(b) We next show that (sb)k(S) ⊆ Sk , which amounts to proving that sbi((sb)k−1(S)) ⊆ Sk
i for every player i. Consider 

some player i and some si ∈ sbi((sb)k−1(S)). By the induction assumption we know that (sb)k−1(S) = Sk−1, from which 
we conclude that si ∈ sbi(Sk−1). Hence, si ∈ Sk−1

i and si is rational at H(Sk−1) for a conditional belief vector bi ∈ Bi that 
strongly believes Sk−1

−i . As si ∈ Sk−1
i we know that si is rational (at H) for a conditional belief vector bk−2

i ∈ Bk−2
i which, by 

definition, strongly believes each of the sets S0
−i, S

1
−i, ..., S

k−2
−i .

We now construct a new conditional belief vector bk−1
i , from bi and bk−2

i , as follows. For every h ∈ Hi , let

bk−1
i (h) :=

{
bi(h), if Sk−1

−i ∩ S−i(h) �= ∅
bk−2

i (h), otherwise
.

We will show that bk−1
i ∈ Bk−1

i , and that si is rational for bk−1
i .

In order to prove that bk−1
i ∈ Bk−1

i we must show that bk−1
i satisfies Bayesian updating, and that bk−1

i strongly believes 
each of the sets S0

−i, S
1
−i, ..., S

k−1
−i .

We start by proving Bayesian updating. Consider some h, h′ ∈ Hi where h′ follows h and bk−1
i (h)(S−i(h′)) > 0. We distin-

guish two cases: (i) that Sk−1
−i ∩ S−i(h) �= ∅, and (ii) that Sk−1

−i ∩ S−i(h) = ∅.

(i) Suppose first that Sk−1
−i ∩ S−i(h) �= ∅. Then, bk−1

i (h) = bi(h). We know, by assumption, that bi strongly believes Sk−1
−i , 

and hence bi(h)(Sk−1
−i ) = 1. We are also assuming that bk−1

i (h)(S−i(h′)) > 0, which implies that bi(h)(S−i(h′)) > 0. By com-

bining the insights that bi(h)(Sk−1) = 1 and bi(h)(S−i(h′)) > 0, we obtain that Sk−1 ∩ S−i(h′) �= ∅. This means, in turn, that 
−i −i
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bk−1
i (h′) = bi(h′). We thus see that bk−1

i (h) = bi(h) and bk−1
i (h′) = bi(h′). As we assume that bi satisfies Bayesian updating, 

we conclude that bk−1
i will satisfy Bayesian updating if the game moves from h to h′ .

(ii) Suppose next that Sk−1
−i ∩ S−i(h) = ∅. Since h′ follows h, we know that Sk−1

−i ∩ S−i(h′) = ∅ as well. Therefore, by 
definition, bk−1

i (h) = bk−2
i (h) and bk−1

i (h′) = bk−2
i (h′). As bk−2

i ∈ Bk−2
i , we know that bk−2

i satisfies Bayesian updating, and 
therefore bk−1

i will satisfy Bayesian updating as well if the game moves from h to h′ . By combining the cases (i) and (ii) we 
conclude that bk−1

i satisfies Bayesian updating.

We next show that bk−1
i strongly believes each of the sets S0

−i, S
1
−i, ..., S

k−1
−i . Consider some arbitrary history h ∈ Hi . We 

again consider two cases: (i) that Sk−1
−i ∩ S−i(h) �= ∅, and (ii) that Sk−1

−i ∩ S−i(h) = ∅.

(i) If Sk−1
−i ∩ S−i(h) �= ∅, then bk−1

i (h) = bi(h). Since bi strongly believes Sk−1
−i , we conclude that bk−1

i (h)(Sk−1
−i ) =

bi(h)(Sk−1
−i ) = 1. As S0

−i, ..., S
k−2
−i are supersets of Sk−1

−i , it follows that bk−1
i (h)(S0

−i) = ... = bk−1
i (h)(Sk−2

−i ) = 1 as well. There-

fore, bk−1
i (h) strongly believes each of the sets S0

−i, ..., S
k−1
−i .

(ii) If Sk−1
−i ∩ S−i(h) = ∅, then bk−1

i (h) automatically strongly believes Sk−1
−i . By definition, we have that bk−1

i (h) = bk−2
i (h). 

As, by assumption, bk−2
i (h) strongly believes the sets S0

−i, ..., S
k−2
−i , we conclude that bk−1

i (h) strongly believes each of the 
sets S0

−i, ..., S
k−1
−i . By combining the cases (i) and (ii) we obtain that bk−1

i strongly believes the sets S0
−i, ..., S

k−1
−i . Together 

with the insight above that bk−1
i satisfies Bayesian updating, we conclude that bk−1

i ∈ Bk−1
i .

We finally show that si is rational for bk−1
i . Consider some arbitrary history h ∈ Hi(si). We again consider the same two 

cases: (i) that Sk−1
−i ∩ S−i(h) �= ∅, and (ii) that Sk−1

−i ∩ S−i(h) = ∅.

(i) If Sk−1
−i ∩ S−i(h) �= ∅, then bk−1

i (h) = bi(h). Moreover, as h is reachable under si and si ∈ Sk−1
i , it follows that h ∈

H(Sk−1). Since, by assumption, si is rational at H(Sk−1) for bi , we conclude that si is rational for bk−1
i at h.

(ii) If Sk−1
−i ∩ S−i(h) = ∅, then bk−1

i (h) = bk−2
i (h). By assumption, si is rational for bk−2

i , and hence we see that si is 
rational for bk−1

i at h. By combining the cases (i) and (ii) we may conclude that si is rational for bk−1
i .

Altogether, we see that si is rational for a conditional belief vector bk−1
i ∈ Bk−1

i , and hence si ∈ Sk
i . As this holds for 

every si ∈ sbi((sb)k−1(S)), we conclude that sbi((sb)k−1(S)) ⊆ Sk
i . This applies to every player i, and hence we see that 

(sb)k(S) ⊆ Sk.

By combining parts (a) and (b) we conclude that Sk = (sb)k(S). By induction, this holds for every k, and hence the proof 
is complete. �
6.2. Proof of Theorem 3.1

We prove the theorem by a series of eight preparatory results, of which only the last three concern the strong belief 
reduction operator. The first result compares two products of strategy sets D and E . The lemma states that, if the behavior 
in D is more restrictive than the behavior in E , when restricted to histories that are reachable under D , then all histories 
that are reachable under D are also reachable under E . The same holds if we restrict to histories that are reachable under E . 
Both the result, and the proof, are rather intuitive.

Lemma 6.1 (From choice monotonicity to outcome monotonicity). Consider two products of strategy sets D and E such that D|H(D) ⊆
E|H(D) or D|H(E) ⊆ E|H(E) . Then, H(D) ⊆ H(E).

Proof. Assume first that D|H(D) ⊆ E|H(D). Take some h ∈ H(D). Then, there is some strategy combination s in D that 
reaches h. As D|H(D) ⊆ E|H(D) there is some strategy combination s′ in E with s|H(D) = s′|H(D) . Since every history preceding 
h is also in H(D), it follows that s′ and s coincide at all histories preceding h. But then, also s′ reaches h. Since s′ ∈ E , it 
follows that h ∈ H(E). We thus conclude that H(D) ⊆ H(E).

Suppose next that D|H(E) ⊆ E|H(E). For every k ≥ 0, let Hk be the set of histories that are preceded by k other histories. 
We show, by induction on k, that H(D) ∩ Hk ⊆ H(E) for every k ≥ 0.

For k = 0, the statement is trivial as H0 only contains the beginning of the game ∅, which clearly is in H(E). Now, 
consider some k ≥ 1, and suppose that H(D) ∩ Hk−1 ⊆ H(E). Take some h ∈ H(D) ∩ Hk , and let h′ be the history immediately 
preceding h. Then, h′ ∈ H(D) ∩ Hk−1, and hence by the induction assumption we know that h′ ∈ H(E). This implies that all 
histories preceding h are in H(E). Since h ∈ H(D), there is some strategy combination s in D that reaches h. As D|H(E) ⊆
E|H(E), there is some strategy combination s′ in E with s|H(E) = s′|H(E) . In particular, s and s′ coincide at all histories 
preceding h, as we have seen that all these histories are in H(E). But then, also s′ reaches h, which implies that h ∈ H(E). 
It thus follows that H(D) ∩ Hk ⊆ H(E). By induction on k we conclude that H(D) ⊆ H(E). This completes the proof. �

For the next result we consider a product of strategy sets D , a conditional belief bi(h) for player i at a history h ∈ H(D)

that strongly believes D−i , and a strategy si for player i in Di . Now suppose we replace bi(h) by a new belief b′(h) that 
i
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preserves the probabilities on the induced opponents’ behavior at histories in H(D), and replace si by a new strategy s′
i

that preserves the induced behavior for player i at histories in H(D). Then, we show that the expected utility of si under 
the belief bi(h) is the same as the expected utility of s′

i under b′
i(h).

Lemma 6.2 (Only behavior on reachable histories matters). Consider a product of strategy sets D = ×i∈I Di , a player i, and a mapping 
f−i : D−i → S−i with f−i(s−i)|H(D) = s−i |H(D) for every s−i ∈ D−i . Consider for player i a history h ∈ Hi ∩ H(D), a conditional belief 
bi(h) ∈ �(S−i(h) ∩ D−i), and a conditional belief b′

i(h) ∈ �(S−i(h)) such that

b′
i(h)(s−i) = bi(h)( f −1

−i (s−i)) for every s−i ∈ S−i(h).

Then, for every si ∈ Di ∩ Si(h) and every s′
i ∈ Si with si|H(D) = s′

i |H(D) , we have

ui(si,bi(h)) = ui(s′
i,b′

i(h)).

Proof. By definition,

ui(s′
i,b′

i(h)) =
∑

s′−i∈S−i

b′
i(h)(s′

−i) · ui(z(s′
i, s′

−i)) =
∑

s′−i∈S−i

bi(h)( f −1
−i (s′

−i)) · ui(z(s′
i, s′

−i))

=
∑

s−i∈D−i

bi(h)(s−i) · ui(z(s′
i, f−i(s−i))), (6.1)

where the second equality follows from the definition of b′
i(h), and the third equality follows from the fact that f −1

−i (S−i) =
D−i . Consider now some s−i ∈ D−i and the induced terminal history z(s′

i, f−i(s−i)). By assumption, s′
i |H(D) = si |H(D) with 

si ∈ Di , and f−i(s−i)|H(D) = s−i |H(D) with s−i ∈ D−i . As z(si, s−i) is only preceded by non-terminal histories in H(D), and 
(s′

i, f−i(s−i)) coincides with (si, s−i) at all these histories, it follows that z(s′
i , f−i(s−i)) = z(si, s−i).

Since this holds for every s−i ∈ D−i , it follows with (6.1) that

ui(s′
i,b′

i(h)) =
∑

s−i∈D−i

bi(h)(s−i) · ui(z(s′
i, f−i(s−i))) =

∑
s−i∈D−i

bi(h)(s−i) · ui(z(si, s−i))

= ui(si,bi(h)),

where the last equality follows from the fact that bi(h) ∈ �(S−i(h) ∩ D−i). This completes the proof. �
The following result is well-known in the literature on dynamic games. It states that a strategy which is rational for a 

conditional belief vector at h will remain rational at a later history h′ if the conditional belief at h′ is obtained from the 
conditional belief at h through Bayesian updating. A formal proof for this result can be found, for instance, in Perea (2012, 
Proof of Lemma 8.14.9).

Lemma 6.3 (Bayesian updating preserves optimality). Consider a player i, a strategy si, a conditional belief vector bi ∈ Bi , and two 
histories h, h′ ∈ Hi(si) such that h′ follows h and bi(h)(S−i(h′)) > 0. If si is rational for bi at h, then si is also rational for bi at h′ .

We next show that under Bayesian updating we can always construct a strategy that is rational at all histories. We even 
show a little more than this: for every history h∗ we can always construct a strategy that makes h∗ reachable and that is 
rational at all histories weakly following h∗ . The reader will notice in the proof that we construct the strategy by a forward 
procedure, in which we first define it at early stages of the game, after which we extend it to later stages. In the literature, 
the construction of such strategies typically proceeds by a backward procedure, in which the strategy is first defined at the 
final stages of the game, after which it is inductively defined at earlier stages.

Lemma 6.4 (Existence of rational strategies). Consider a player i, a conditional belief vector bi ∈ Bi and a non-terminal history h∗ ∈ H. 
Then, there is a strategy si ∈ Si(h∗) that is rational for bi at all h ∈ Hi(si) that weakly follow h∗.

Proof. We inductively define collections of histories H1
i , H1+

i , H2
i , H2+

i ... as follows. Let

H1
i : = {h ∈ Hi | h weakly follows h∗, and there is no h′ ∈ Hi

that weakly follows h∗ and precedes h}, and

H1+ : = {h ∈ Hi | there is some h′ ∈ H1 preceding h with bi(h
′)(S−i(h)) > 0}.
i i
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For a given k ≥ 2, assume that Hk−1+
i has already been defined. Then, let

Hk
i : = {h ∈ Hi | h follows some h′ ∈ Hk−1

i ∪ Hk−1+
i , and there is no h′′ ∈ Hi

that follows h′ and precedes h}, and

Hk+
i : = {h ∈ Hi | there is some h′ ∈ Hk

i preceding h with bi(h
′)(S−i(h)) > 0}.

For every k ≥ 1 and every h ∈ Hk
i , let sh

i be a strategy in Si(h) that is rational for bi at h. For every h ∈ Hk
i ∪ Hk+

i , let 
hk

i [h] be the unique history in Hk
i that weakly precedes h. Finally, let si be a strategy in Si(h∗) such that for every k ≥ 1

and every h ∈ Hi(si) ∩ (Hk
i ∪ Hk+

i ),

si(h) := s
hk

i [h]
i (h). (6.2)

We now show that si is rational for bi at all h ∈ Hi(si) that weakly follow h∗ . Take an arbitrary h ∈ Hi(si) that weakly 
follows h∗ , and let k ≥ 1 be such that h ∈ Hk

i ∪ Hk+
i . We distinguish two cases: (i) h ∈ Hk

i , and (ii) h ∈ Hk+
i .

(i) Consider some h ∈ Hk
i . By construction of Hk+

i , every s−i with bi(h)(s−i) > 0 is such that (si, s−i) only reaches player 
i histories weakly following h which are in Hk

i ∪ Hk+
i . Note that hk

i [h] = h, because h ∈ Hk
i . Therefore, by (6.2), si and sh

i

coincide on all these histories in Hk
i ∪ Hk+

i weakly following h, and hence ui(si, bi(h)) = ui(sh
i , bi(h)). Since sh

i is rational for 
bi at h, we conclude that si is rational for bi at h as well.

(ii) Assume next that h ∈ Hk+
i . Then, there is some h′ ∈ Hk

i preceding h with bi(h′)(S−i(h)) > 0. Since we know from (i) 
that si is rational for bi at h′ , it follows from Lemma 6.3 that si is rational for bi at h as well.

From (i) and (ii) we conclude that si is rational for bi at all h ∈ Hi(si) ∩ (Hk
i ∪ Hk+

i ). As this holds for every k ≥ 1, we 
obtain that si is rational for bi at all h ∈ Hi(si) weakly following h∗ . This completes the proof. �

The next result shows that for checking the optimality of a strategy with respect to a conditional belief vector, it is 
sufficient to compare the strategy to alternative strategies that are rational for that belief vector at all histories.

Lemma 6.5 (Comparison to optimal strategies suffices). Consider a player i, a strategy si , a conditional belief vector bi ∈ Bi and a 
history h∗ ∈ Hi(si) such that si is not rational for bi at h∗ . Then, there is a history h∗∗ ∈ Hi weakly preceding h∗ and a strategy 
s̃i ∈ Si(h∗∗) that is rational for bi such that ui(si, bi(h∗∗)) < ui(s̃i, bi(h∗∗)).

Proof. Let h∗∗ be the first history in Hi weakly preceding h∗ at which si is not rational for bi . Note that h∗∗ can be equal 
to h∗ itself. Let H pre

i be the set of histories in Hi preceding h∗∗ , and let

H+
i := {h ∈ Hi\H pre

i | there is h′ ∈ H pre
i preceding h with bi(h

′)(S−i(h)) > 0}.
Note that H pre

i and H+
i can be empty if h∗∗ is not preceded by any history in Hi . Finally, let H0

i be the collection of histories 
h in Hi\(H pre

i ∪ H+
i ) such that h is not preceded by any other h′ ∈ Hi\(H pre

i ∪ H+
i ). For every h ∈ Hi\(H pre

i ∪ H+
i ), let h0

i [h]
be the unique history in H0

i that weakly precedes h.
We know by Lemma 6.4 that for every h ∈ H0

i there is a strategy sh
i ∈ Si(h) that is rational for bi at all histories in Hi(sh

i )

weakly following h. We define the strategy s̃i by

s̃i(h) :=
{

si(h), if h ∈ H pre
i ∪ H+

i

s
h0

i [h]
i (h), if h ∈ Hi\(H pre

i ∪ H+
i )

for every h ∈ Hi(s̃i).

We first show that s̃i is rational for bi . That is, we must show that s̃i is rational for bi at every h ∈ Hi(s̃i). We distinguish 
three cases: (i) h ∈ H pre

i , (ii) h ∈ H+
i , and (iii) h ∈ Hi\(H pre

i ∪ H+
i ).

(i) Take first some h ∈ H pre
i . Then, h precedes h∗∗ and hence, by the choice of h∗∗ , strategy si is rational for bi at h. 

By construction, every opponents’ strategy combination s−i ∈ S−i(h) with bi(h)(s−i) > 0 has the property that (s̃i, s−i) only 
reaches player i histories in H pre

i ∪ H+
i . As s̃i and si coincide on H pre

i ∪ H+
i , it follows that ui(s̃i, bi(h)) = ui(si, bi(h)). Since 

si is rational for bi at h, strategy s̃i is rational for bi at h as well.
(ii) Consider next some h ∈ H+

i . Then, there is some h′ ∈ H pre
i preceding h with bi(h′)(S−i(h)) > 0. Since we have seen 

in (i) that s̃i is rational for bi at h′ , we know from Lemma 6.3 that s̃i is rational for bi at h.
(iii) Suppose finally that h ∈ Hi\(H pre

i ∪ H+
i ). Let h0

i [h] be the unique history in H0
i that weakly precedes h. Since s̃i

coincides with s
h0

i [h]
i at all player i histories weakly following h0

i [h], and s
h0

i [h]
i is rational for bi at all histories in Hi(s

h0
i [h]

i )

weakly following h0
i [h], it follows that s̃i is rational for bi at h.

By (i), (ii) and (iii) it follows that s̃i is rational for bi .
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We next show that s̃i ∈ Si(h∗∗). Since si ∈ Si(h∗) and h∗∗ weakly precedes h∗ it follows immediately that si ∈ Si(h∗∗). By 
definition, all player i histories preceding h∗∗ are in H pre

i . As s̃i and si coincide on H pre
i , they coincide in particular on the 

player i histories preceding h∗∗ . From the fact that si ∈ Si(h∗∗) it then follows that s̃i ∈ Si(h∗∗) as well.

Summarizing, we see that s̃i is in Si(h∗∗), and that s̃i is rational for bi . In particular, s̃i is rational for bi at h∗∗ . Since si
is not rational for bi at h∗∗ we conclude that ui(si, bi(h∗∗)) < ui(s̃i, bi(h∗∗)), which completes the proof. �

In order to state the last three results we need to introduce a new operator sb∗ , as follows. For a product of strategy sets 
D = ×i∈I Di , we define for every player i the set

sb∗
i (D) := {si ∈ Si | si is rational at H(D) for some bi ∈ Bi that strongly believes D−i}

and set

sb∗(D) := ×i∈I sb∗
i (D).

The difference with the operator sb is thus that sbi(D) only considers strategies si inside Di , whereas sb∗
i (D) also considers 

strategies outside Di . As a consequence, sb∗
i (D) is not necessarily a subset of Di , in contrast to sbi(D).

The objective of the last three results is to show that for every product of strategy sets D that is possible in an elimi-
nation order for sb, we have that sb(D)|H(D) = sb∗(D)|H(D) . That is, for the induced behavior on H(D) it does not matter 
whether we apply the operator sb or the weaker operator sb∗ above. We prove this result in two steps. The first lemma 
below shows, for any product of strategy sets D , that sb(D)|H(D) = sb∗(D)|H(D) whenever sb∗(D)|H(D) ⊆ D|H(D) . In the sec-
ond lemma below we prove that every set D that is possible in an elimination order for sb satisfies the latter property that 
sb∗(D)|H(D) ⊆ D|H(D) . In combination with the first lemma, it thus follows that sb(D)|H(D) = sb∗(D)|H(D) for every set D
that is possible in an elimination order for sb, which is what we want to show.

Lemma 6.6 (Consequence of being closed under rational behavior). For every product of strategy sets D with sb∗(D)|H(D) ⊆ D|H(D) , 
it holds that sb∗(D)|H(D) = sb(D)|H(D) .

Here, the sufficient condition sb∗(D)|H(D) ⊆ D|H(D) reduces to Basu and Weibull’s (1991) notion of being closed under 
rational behavior if the game G is a static game, with ∅ as the only non-terminal history. For that reason, we will say that 
D is closed under rational behavior whenever sb∗(D)|H(D) ⊆ D|H(D) .

Proof. By definition we have that sb(D)|H(D) ⊆ sb∗(D)|H(D) . It therefore only remains to show that sb∗(D)|H(D) ⊆
sb(D)|H(D) . To that purpose, we show that for every player i, and every strategy si ∈ sb∗

i (D), there is some s′
i ∈ sbi(D)

with si |H(D) = s′
i |H(D) .

Take some player i and some si ∈ sb∗
i (D). Then, si is rational at H(D) for some bi ∈ Bi that strongly believes D−i . As 

sb∗
i (D)|H(D) ⊆ Di |H(D) , there is some s′

i ∈ Di with si |H(D) = s′
i |H(D) .

We show that s′
i is rational at H(D) for bi . Take some history h ∈ Hi(s′

i) ∩ H(D). As h ∈ H(D) and si |H(D) = s′
i |H(D) , we 

conclude that h ∈ Hi(si) ∩ H(D) as well. By assumption, si is rational at H(D) for bi , which implies in particular that si is 
rational at h for bi . That is,

ui(si,bi(h)) ≥ ui(s′′
i ,bi(h)) for all s′′

i ∈ Si(h). (6.3)

Since h ∈ H(D) and bi strongly believes D−i , we conclude that

bi(h)(D−i) = 1. (6.4)

Let Z(D) be the set of terminal histories that are reachable by strategy combinations in D . As s′
i ∈ Di , we have that 

z(s′
i, s−i) ∈ Z(D) for all s−i ∈ D−i . Moreover, as si|H(D) = s′

i |H(D) , it follows that

z(si, s−i) = z(s′
i, s−i) for all s−i ∈ D−i . (6.5)

By combining (6.3), (6.4) and (6.5), we conclude that

ui(s′
i,bi(h)) =

∑
s−i∈D−i

bi(h)(s−i) · ui(z(s′
i, s−i))

=
∑

s−i∈D−i

bi(h)(s−i) · ui(z(si, s−i))

= ui(si,bi(h)) ≥ ui(s′′,bi(h)) for all s′′ ∈ Si(h).
i i
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Here, the first and third equality follow from (6.4), the second equality follows from (6.5), and the inequality follows from 
(6.3). We thus see that s′

i is rational at h for bi . Since this holds for every h ∈ Hi(s′
i) ∩ H(D), it follows that s′

i is rational at 
H(D) for bi . Together with the facts that s′

i ∈ Di and that bi strongly believes D−i , this implies that s′
i ∈ sbi(D).

Remember that si |H(D) = s′
i |H(D) . We thus have shown that for every si ∈ sb∗

i (D) there is some s′
i ∈ sbi(D) with si |H(D) =

s′
i |H(D) . As this holds for every player i, we conclude that sb∗(D)|H(D) ⊆ sb(D)|H(D) , which was to show. �

Using the result above, we can show that every product of strategy sets D that is possible in an elimination order for sb
is closed under rational behavior.

Lemma 6.7 (sb leads to sets closed under rational behavior). Every product of strategy sets D that is possible in an elimination order 
for sb satisfies sb∗(D)|H(D) ⊆ D|H(D) .

Proof. Take an arbitrary elimination order (D0, ..., D K ) for sb. We prove, by induction on k, that sb∗(Dk)|H(Dk) ⊆ Dk|H(Dk)

for every k ∈ {0, ..., K }. For k = 0 this statement is trivial since D0 = S . Consider now some k ≥ 1 and assume that 
sb∗(Dk−1)|H(Dk−1) ⊆ Dk−1|H(Dk−1) . We show that sb∗(Dk)|H(Dk) ⊆ Dk|H(Dk) .

Define D := Dk and E := Dk−1. Then, sb(E) ⊆ D ⊆ E , and sb∗(E)|H(E) ⊆ E|H(E) . We will show that

sb∗(D)|H(D) ⊆ D|H(D). (6.6)

As sb∗(E)|H(E) ⊆ E|H(E), it follows from Lemma 6.6 that sb∗(E)|H(E) = sb(E)|H(E) . Hence, we conclude that sb∗(E)|H(D) =
sb(E)|H(D) since H(D) ⊆ H(E). Since sb∗(E)|H(D) = sb(E)|H(D) and sb(E) ⊆ D , it thus suffices to prove that

sb∗(D)|H(D) ⊆ sb∗(E)|H(D) (6.7)

in order to show (6.6).
To prove (6.7), take some player i and some sD

i ∈ sb∗
i (D). We show that there is some sE

i ∈ sb∗
i (E) with sD

i |H(D) = sE
i |H(D) . 

Since sD
i ∈ sb∗

i (D), there is some conditional belief vector bD
i ∈ Bi that strongly believes D−i such that sD

i is rational for bD
i

at H(D). We proceed in two steps: In step 1 we transform bD
i into a conditional belief vector bE

i that strongly believes E−i . 
In step 2 we finally construct a strategy sE

i that is rational for bE
i and coincides with sD

i on H(D). Consequently, sE
i will be 

in sb∗
i (E) and sD

i |H(D) = sE
i |H(D) , as was to show.

Step 1. We first transform bD
i into a new conditional belief vector bE

i ∈ Bi that strongly believes E−i , as follows.
(i) For all histories h ∈ Hi(D) := Hi ∩ H(D), let

bE
i (h) := bD

i (h). (6.8)

(ii) Define H+
i := {h ∈ Hi\Hi(D) | bE

i (h′)(S−i(h)) > 0 for some h′ ∈ Hi(D) that precedes h}. For all histories h ∈ H+
i , let

bE
i (h)(s−i) := bE

i (h′)(s−i)

bE
i (h′)(S−i(h))

for all s−i ∈ S−i(h), (6.9)

where h′ is the last history in Hi(D) that precedes h.
(iii) Define H0

i := Hi\(Hi(D) ∪ H+
i ). For every history h ∈ H0

i , define

bE
i (h) := bi(h) (6.10)

where bi is an arbitrary conditional belief vector in Bi that strongly believes E−i .
The reader may easily verify that bE

i satisfies Bayesian updating.

We next show that bE
i strongly believes E−i . That is, we must show that for every h ∈ Hi with S−i(h) ∩ E−i �= ∅, it holds 

that bE
i (h)(E−i) = 1. We distinguish three cases: (i) h ∈ Hi(D), (ii) h ∈ H+

i , and (iii) h ∈ H0
i .

(i) Consider first some h ∈ Hi(D). Then, by (6.8), bE
i (h)(E−i) = bD

i (h)(E−i). Since bD
i strongly believes D−i and h ∈

Hi(D), we know that bD
i (h)(D−i) = 1. This implies that bD

i (h)(E−i) = 1, as D−i ⊆ E−i . We thus conclude that bE
i (h)(E−i) =

bD
i (h)(E−i) = 1.

(ii) Consider next some h ∈ H+
i , and let h′ be the last history in Hi(D) that precedes h. Suppose that bE

i (h)(s−i) > 0. 
Then, by (6.9), bE

i (h′)(s−i) > 0. Since we have shown in (i) that bE
i (h′)(E−i) = 1, it must hold that s−i ∈ E−i . We thus see 

that bE
i (h)(s−i) > 0 only if s−i ∈ E−i , which guarantees that bE

i (h)(E−i) = 1.
(iii) Consider finally some h ∈ H0

i with S−i(h) ∩ E−i �= ∅. Then, by (6.10), bE
i (h)(E−i) = bi(h)(E−i) = 1 since bi strongly 

believes E−i .
By combining the cases (i), (ii) and (iii) we conclude that bE strongly believes E−i .
i
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Step 2. We now construct a strategy sE
i that is rational for bE

i and coincides with sD
i on H(D). For every h ∈ H0

i , let h0[h]
be the first history in H0

i that weakly precedes h. As bE
i satisfies Bayesian updating, we know by Lemma 6.4 that for every 

first history h ∈ H0
i there is some strategy sh

i ∈ Si(h) that is rational for bE
i at every h′ ∈ Hi(sh

i ) that weakly follows h.
Let the strategy sE

i be such that

sE
i (h) :=

{
sD

i (h), if h ∈ Hi(D) ∪ H+
i

sh0[h]
i (h), if h ∈ H0

i

(6.11)

for all h ∈ Hi(sE
i ). Then, it immediately follows that sD

i |H(D) = sE
i |H(D).

We now show that sE
i is rational for bE

i . That is, we must show that sE
i is rational for bE

i at every h ∈ Hi(sE
i ). We 

distinguish three cases: (i) h ∈ Hi(D), (ii) h ∈ H+
i , and (iii) h ∈ H0

i .
(i) Assume first that h ∈ Hi(D). Since bE

i (h) = bD
i (h), it follows by definition of H+

i that every s−i ∈ S−i(h) with 
bE

i (h)(s−i) > 0 is such that (sE
i , s−i) only reaches player i histories weakly following h that are in Hi(D) ∪ H+

i . Since, 
by (6.11), sE

i and sD
i coincide on Hi(D) ∪ H+

i , it follows that ui(sE
i , bE

i (h)) = ui(sD
i , bE

i (h)). As, by (6.8), bE
i (h) = bD

i (h), and 
sD

i is rational for bD
i at H(D), it follows that sE

i is rational for bE
i at h.

(ii) Assume next that h ∈ H+
i . Let h′ be the last history in Hi(D) that precedes h. Then, by (6.9), bE

i (h) is obtained 
through Bayesian updating from bE

i (h′). Since we have seen in (i) that sE
i is rational for bE

i at h′ , it follows from Lemma 6.3
that sE

i is rational for bE
i at h as well.

(iii) Assume finally that h ∈ H0
i . As, by assumption, sh0[h]

i is rational for bE
i at all histories in Hi(sh0[h]

i ) weakly following 

h0[h], it follows in particular that sh0[h]
i is rational for bE

i at h. But then, by (6.11), sE
i is rational at h for bE

i .
Altogether, we see that for all h ∈ Hi(sE

i ), strategy sE
i is rational at h for bE

i . That is, sE
i is rational for bE

i .
Since bE

i ∈ Bi and bE
i strongly believes E−i , we conclude that sE

i ∈ sb∗
i (E). We know from above that sD

i |H(D) = sE
i |H(D).

Hence, there is some sE
i ∈ sb∗

i (E) with sD
i |H(D) = sE

i |H(D) . As this holds for every player i and every sD
i ∈ sb∗

i (D), we con-
clude that sb∗(D)|H(D) ⊆ sb∗(E)|H(D), which establishes (6.7). As we saw above, this implies that sb∗(D)|H(D) ⊆ D|H(D) , 
that is, sb∗(Dk)|H(Dk) ⊆ Dk|H(Dk) . By induction, this holds for every k ∈ {0, ..., K }. As this applies to every elimination order 
(D0, ..., D K ), we conclude that every product of strategy sets D that is possible in an elimination order for sb satisfies 
sb∗(D)|H(D) ⊆ D|H(D) . This completes the proof. �

An immediate consequence of the two lemmas above is that every set D that is possible in an elimination order for sb
satisfies sb∗(D)|H(D) = sb(D)|H(D) .

Corollary 6.1 (Property of sets in elimination order). For every product of strategy sets D that is possible in an elimination order for sb
it holds that sb∗(D)|H(D) = sb(D)|H(D) .

With these preparatory results at hand we are now fully equipped to prove Theorem 3.1.

Proof of Theorem 3.1. Consider some products of strategy sets D and E where E is possible in an elimination order for sb
and sb(E)|H(D) ⊆ D|H(D) ⊆ E|H(D). We must show, for every player i, that sbi(D)|H(D) ⊆ sbi(E)|H(D) .

Consider some player i. As D|H(D) ⊆ E|H(D) we have, in particular, that D−i |H(D) ⊆ E−i |H(D) . Hence, there is some func-
tion f−i : D−i → S−i such that f−i(D−i) ⊆ E−i and

s−i|H(D) = f−i(s−i)|H(D) for every s−i ∈ D−i . (6.12)

Take some strategy sD
i ∈ sbi(D). We will prove that there is some sE

i ∈ sbi(E) with sD
i |H(D) = sE

i |H(D) . By definition, sD
i ∈ Di

and sD
i is rational at H(D) for some conditional belief vector bD

i ∈ Bi that strongly believes D−i . We proceed in three steps: 
In step 1 we transform bD

i into a conditional belief vector bE
i in Bi that strongly believes E−i . In step 2 we construct a 

strategy s̃E
i that is rational for bE

i and for which s̃E
i |H(D) = sD

i |H(D) . In step 3 we transform s̃E
i into a strategy sE

i ∈ sbi(E)

with sE
i |H(D) = sD

i |H(D).

Step 1. We transform bD
i into a conditional belief vector bE

i in Bi that strongly believes E−i , as follows.
(i) For all histories h ∈ Hi(D) := Hi ∩ H(D), let

bE
i (h)(s−i) := bD

i (h)( f −1
−i (s−i)) for all s−i ∈ S−i . (6.13)

(ii) Define H+
i := {h ∈ Hi\Hi(D) | bE

i (h′)(S−i(h)) > 0 for some h′ ∈ Hi(D) preceding h}. For all histories h ∈ H+
i , let

bE
i (h)(s−i) := bE

i (h′)(s−i)

bE(h′)(S (h))
for all s−i ∈ S−i(h), (6.14)
i −i
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where h′ is the last history in Hi(D) that precedes h.
(iii) Define H0

i := Hi\(Hi(D) ∪ H+
i ). For every history h ∈ H0

i , define

bE
i (h) := b̂E

i (h) (6.15)

where b̂E
i is an arbitrary conditional belief vector in Bi that strongly believes E−i .

We first show that bE
i is a well-defined conditional belief vector. That is, for every h ∈ Hi we must show that bE

i (h)(s−i) >
0 only if s−i ∈ S−i(h), and that 

∑
s−i∈S−i

bE
i (h)(s−i) = 1. We consider three cases: (i) h ∈ Hi(D), (ii) h ∈ H+

i , and (iii) h ∈ H0
i .

(i) Consider first some h ∈ Hi(D). Suppose that bE
i (h)(s−i) > 0. Then, by (6.13), there is some s′

−i ∈ D−i with f−i(s′
−i) =

s−i and bD
i (h)(s′

−i) > 0. Since bD
i is a well-defined conditional belief vector, we must have that s′

−i ∈ S−i(h). By (6.12) we 
know that s′

−i |H(D) = f−i(s′
−i)|H(D) = s−i |H(D) . Since h ∈ Hi(D), all histories preceding h will also be in H(D). Hence, s′

−i and 
s−i coincide at all histories preceding h. As s′

−i ∈ S−i(h), it follows that s−i ∈ S−i(h) as well. We thus see that bE
i (h)(s−i) > 0

only if s−i ∈ S−i(h).
Moreover, by (6.13),∑

s−i∈S−i

bE
i (h)(s−i) =

∑
s−i∈S−i

bD
i (h)( f −1

−i (s−i)) =
∑

s′−i∈D−i

bD
i (h)(s′

−i) = 1.

The latter equality follows from the facts that h ∈ Hi(D) and that bD
i strongly believes D−i .

For cases (ii) and (iii), these properties follow automatically from (6.14) and (6.15).

We next show that bE
i satisfies Bayesian updating. Consider two histories h, h′ ∈ Hi such that h′ follows h, and 

bE
i (h)(S−i(h′)) > 0. We must show that

bE
i (h′)(s−i) = bE

i (h)(s−i)

bE
i (h)(S−i(h′))

for all s−i ∈ S−i(h
′). (6.16)

The only problematic case is where h, h′ ∈ Hi(D). For the cases where at least one of these two histories is in H+
i or H0

i , 
(6.16) follows rather immediately from (6.14) or (6.15), and we leave these cases to the reader.

Let us therefore assume that h, h′ ∈ Hi(D). For every s−i ∈ D−i we have by (6.12) that f−i(s−i)|H(D) = s−i |H(D) . As 
h′ ∈ H(D), all histories preceding h′ are also in H(D). It thus follows that s−i ∈ D−i ∩ S−i(h′) if and only if f−i(s−i) ∈ S−i(h′). 
Consequently,

f −1
−i (S−i(h

′)) = D−i ∩ S−i(h
′). (6.17)

By (6.13) we then have for every s−i ∈ S−i(h′) that

bE
i (h)(s−i)

bE
i (h)(S−i(h′))

= bD
i (h)( f −1

−i (s−i))

bD
i (h)( f −1

−i (S−i(h′)))
= bD

i (h)( f −1
−i (s−i))

bD
i (h)(D−i ∩ S−i(h′))

= bD
i (h)( f −1

−i (s−i))

bD
i (h)(S−i(h′))

= bD
i (h′)( f −1

−i (s−i)) = bE
i (h′)(s−i),

where the first equality follows from (6.13), the second equality from (6.17), the third equality from the facts that h ∈ Hi(D)

and that bD
i strongly believes D−i , the fourth equality from the fact that bD

i satisfies Bayesian updating, and the last equality 
from (6.13). Hence, (6.16) holds, which was to show.

We finally show that bE
i strongly believes E−i . That is, we must show that bE

i (h)(E−i) = 1 whenever S−i(h) ∩ E−i �= ∅. 
Consider now an arbitrary h ∈ Hi with S−i(h) ∩ E−i �= ∅. We distinguish three cases: (i) h ∈ Hi(D), (ii) h ∈ H+

i , and (iii) 
h ∈ H0

i .
(i) Suppose first that h ∈ Hi(D). Consider some s−i ∈ S−i(h) with bE

i (h)(s−i) > 0. By (6.13), it then follows that there 
is some s′

−i ∈ D−i with f−i(s′
−i) = s−i . Hence, s−i ∈ E−i . We thus see that bE

i (h)(s−i) > 0 only if s−i ∈ E−i , that is, 
bE

i (h)(E−i) = 1.
(ii) Suppose next that h ∈ H+

i . Consider some s−i ∈ S−i(h) with bE
i (h)(s−i) > 0. By (6.14) it then follows that 

bE
i (h′)(s−i) > 0, where h′ is the last history in Hi(D) that precedes h. Since S−i(h) ∩ E−i �= ∅ and h′ precedes h, we know 

that S−i(h′) ∩ E−i �= ∅ also. As bE
i (h′)(s−i) > 0, we know by (i) above that s−i ∈ E−i . We thus see that bE

i (h)(s−i) > 0 only if 
s−i ∈ E−i , that is, bE

i (h)(E−i) = 1.

(iii) Suppose finally that h ∈ H0
i . Then, by (6.15), bE

i (h)(E−i) = b̂E
i (h)(E−i) = 1, since b̂E

i strongly believes E−i .
Overall, we conclude that bE strongly believes E−i .
i
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Summarizing, we have shown that bE
i is a well-defined conditional belief vector that satisfies Bayesian updating and that 

strongly believes E−i . That is, bE
i ∈ Bi and bE

i strongly believes E−i .

Step 2. We next construct a strategy s̃E
i that is rational for bE

i and coincides with sD
i on H(D). For every h ∈ H0

i , let h0[h] be 
the first history in H0

i that weakly precedes h. Since bE
i satisfies Bayesian updating, we know by Lemma 6.4 that for every 

first history h in H0
i there is some strategy sh

i ∈ Si(h) that is rational for bE
i at all histories in Hi(sh

i ) that weakly follow h. 
Let s̃E

i be the strategy given by

s̃E
i (h) :=

{
sD

i (h), if h ∈ Hi(D) ∪ H+
i

sh0[h]
i (h), if h ∈ H0

i

(6.18)

for all h ∈ Hi(s̃E
i ). Then, it immediately follows that sD

i |H(D) = s̃E
i |H(D) .

We will now show that strategy s̃E
i is rational for bE

i . That is, we must show that, for all h ∈ Hi(s̃E
i ), strategy s̃E

i is rational 
at h for bE

i . We again consider three cases: (i) h ∈ Hi(D), (ii) h ∈ H+
i , and (iii) h ∈ H0

i .
(i) Assume first that h ∈ Hi(D). Suppose, contrary to what we want to show, that s̃E

i is not rational at h for bE
i . Since bE

i
satisfies Bayesian updating there is, by Lemma 6.5, a history h′ ∈ Hi weakly preceding h and a strategy s′′

i ∈ Si(h′) such that 
s′′

i is rational for bE
i and

ui(s̃E
i ,bE

i (h′)) < ui(s′′
i ,bE

i (h′)). (6.19)

As h ∈ Hi(D) and h′ precedes h we know that h′ ∈ Hi(D) as well. Hence, bD
i (h′) ∈ �(S−i(h′) ∩ D−i) since bD

i strongly 
believes D−i . Moreover, bE

i (h′) is given by (6.13) above where, by (6.12), s−i |H(D) = f−i(s−i)|H(D) for every s−i ∈ D−i . Since 
sD

i |H(D) = s̃E
i |H(D) and sD

i ∈ Di , it follows by Lemma 6.2 that

ui(s̃E
i ,bE

i (h′)) = ui(sD
i ,bD

i (h′)). (6.20)

Recall from (6.19) that ui(s̃E
i , bE

i (h′)) < ui(s′′
i , bE

i (h′)) for some s′′
i ∈ Si(h′) that is rational for bE

i . As bE
i strongly be-

lieves E−i , it follows that s′′
i ∈ sb∗

i (E). Since E is possible in an elimination order for sb, we know from Corollary 6.1 that 
sb∗

i (E)|H(E) = sbi(E)|H(E) . As, by the assumptions in the theorem, D|H(D) ⊆ E|H(D), we know from Lemma 6.1 that H(D) ⊆
H(E), and hence sb∗

i (E)|H(D) = sbi(E)|H(D). Moreover, from the other assumption in the theorem, sbi(E)|H(D) ⊆ Di |H(D) . By 
combining these two insights we obtain that sb∗

i (E)|H(D) ⊆ Di |H(D) . As s′′
i ∈ sb∗

i (E), we conclude that there is some ŝD
i ∈ Di

with s′′
i |H(D) = ŝD

i |H(D) . But then it follows, in the same way as above, from Lemma 6.2 that

ui(s′′
i ,bE

i (h′)) = ui(ŝD
i ,bD

i (h′)). (6.21)

By combining (6.19), (6.20) and (6.21) it then follows that ui(sD
i , bD

i (h′)) < ui(ŝD
i , bD

i (h′)), which contradicts our assumption 
that sD

i is rational for bD
i at H(D). We therefore conclude that s̃E

i is rational at h for bE
i .

(ii) Assume next that h ∈ H+
i . Let h′ be the last history in Hi(D) that precedes h. Since we have shown in (i) that s̃E

i is 
rational at h′ for bE

i , it follows from (6.14) and Lemma 6.3 that s̃E
i is rational at h for bE

i as well.
(iii) Assume finally that h ∈ H0

i . Then, by (6.18) we know that

s̃E
i (h′) = sh0[h]

i (h′) for all h′ ∈ Hi(s̃E
i ) weakly following h. (6.22)

As, by assumption, sh0[h]
i is rational for bE

i at all histories in Hi(sh0[h]
i ) weakly following h0[h], it follows in particular that 

sh0[h]
i is rational for bE

i at h. But then, by (6.22), also s̃E
i is rational at h for bE

i , which was to show.
Altogether, we see that for all h ∈ Hi(s̃E

i ), strategy s̃E
i is rational at h for bE

i . That is, s̃E
i is rational for bE

i .

Step 3. We finally transform s̃E
i into a strategy sE

i ∈ sbi(E) that coincides with sD
i on H(D). Since we know from above that 

s̃E
i is rational for bE

i , that bE
i ∈ Bi and that bE

i strongly believes E−i , we conclude that s̃E
i ∈ sb∗

i (E). Since we have seen above 
that sb∗

i (E)|H(D) = sbi(E)|H(D) , there is some sE
i ∈ sbi(E) with sE

i |H(D) = s̃E
i |H(D) . As, by Step 2, s̃E

i |H(D) = sD
i |H(D) , it follows 

that sE
i |H(D) = sD

i |H(D) . Since sD
i ∈ sbi(D) was chosen arbitrarily, we see that for every sD

i ∈ sbi(D) there is some sE
i ∈ sbi(E)

with sD
i |H(D) = sE

i |H(D) . That is, sbi(D)|H(D) ⊆ sbi(E)|H(D) , which completes the proof. �
6.3. Proof of Theorem 3.2

Before we can prove this theorem, we will first discuss a preparatory result that is needed. Consider a reduction operator 
r that is monotone on reachable histories, an elimination order (D0, ..., D K ) for r, and two subsequent sets F and G in 
this elimination order. The lemma shows that if we iteratively apply the reduction operator r “at full speed” to F and G
respectively, then the induced elimination orders will be nested at every round in terms of behavior on reachable histories. 
As a consequence, both elimination orders will eventually yield the same set of outcomes.
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Lemma 6.8 (Sandwich lemma). Consider a reduction operator r that is monotone on reachable histories, and let (D0, ..., D K ) be an 
elimination order for r. For some m ∈ {0, ..., K − 1}, let F := Dm+1 and G := Dm. Then, for every k ≥ 0,

rk+1(G)|H(rk(F )) ⊆ rk(F )|H(rk(F )) ⊆ rk(G)|H(rk(F )),

and

H(rk+1(G)) ⊆ H(rk(F )) ⊆ H(rk(G)).

Proof. We prove the statement by induction on k. Consider first k = 0. As r(G) ⊆ F ⊆ G , it immediately follows that 
r(G)|H(F ) ⊆ F |H(F ) ⊆ G|H(F ) and H(r(G)) ⊆ H(F ) ⊆ H(G), which was to show.

Consider now some k ≥ 1, and suppose that

rk(G)|H(rk−1(F )) ⊆ rk−1(F )|H(rk−1(F )) (6.23)

and

rk−1(F )|H(rk−1(F )) ⊆ rk−1(G)|H(rk−1(F )). (6.24)

We first show that

rk(F )|H(rk(F )) ⊆ rk(G)|H(rk(F )). (6.25)

If we set D := rk−1(F ) and E := rk−1(G), then (6.23) and (6.24) state that

r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D). (6.26)

Clearly, E is possible in an elimination order for r, as G is possible in an elimination order for r and E = rk−1(G). But then, 
together with (6.26) and the fact that r is monotone on reachable histories, we conclude that r(D)|H(D) ⊆ r(E)|H(D) , which 
can be restated as

rk(F )|H(rk−1(F )) ⊆ rk(G)|H(rk−1(F )). (6.27)

This automatically implies (6.25), since H(rk(F )) ⊆ H(rk−1(F )).
We next show that

rk+1(G)|H(rk(F )) ⊆ rk(F )|H(rk(F )). (6.28)

Set D := rk(G) and E := rk−1(F ). Hence, (6.28) can be restated as

r(D)|H(r(E)) ⊆ r(E)|H(r(E)). (6.29)

By (6.27) and (6.23) we know that r(E)|H(E) ⊆ D|H(E) ⊆ E|H(E) , which by Lemma 6.1 implies that H(D) ⊆ H(E). We can 
thus conclude that

r(E)|H(D) ⊆ D|H(D) ⊆ E|H(D). (6.30)

As F is possible in an elimination order for r and E = rk−1(F ), it follows that E is possible in an elimination or-
der for r as well. But then, by (6.30) and the fact that r is monotone on reachable histories, we can conclude that 
r(D)|H(D) ⊆ r(E)|H(D). Since we have seen above that r(E)|H(D) ⊆ D|H(D) , we conclude by Lemma 6.1 that H(r(E)) ⊆ H(D). 
As r(D)|H(D) ⊆ r(E)|H(D) , this implies (6.29), which is equivalent to (6.28) that had to be shown.

Finally, the set inclusions

H(rk+1(G)) ⊆ H(rk(F )) ⊆ H(rk(G))

follow directly from (6.28), (6.25) and Lemma 6.1. By induction on k, the proof is therefore complete. �
We are now ready to prove Theorem 3.2. As we will see, it follows rather directly from Lemma 6.8.

Proof of Theorem 3.2. Consider a reduction operator r that is monotone on reachable histories. We must show that r is 
order independent with respect to outcomes.

Let M := ∑
i∈I |Si | be the total number of strategies in the game. Then, rM+1(D) = rM(D) for every product of strategy 

sets D . Consider an arbitrary elimination order (D0, ..., D K ) for r and some k ∈ {0, ..., K −1}. Then, we know from Lemma 6.8
that

H(rM+1(Dk)) ⊆ H(rM(Dk+1)) ⊆ H(rM(Dk)).
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As rM+1(Dk) = rM(Dk), it follows that H(rM(Dk+1)) = H(rM(Dk)), and hence, in particular, Z(rM(Dk+1)) = Z(rM(Dk)).
Since this holds for every k ∈ {0, ..., K − 1}, we conclude that Z(rM(D0)) = Z(rM(D K )). As r(D K ) = D K , it follows that 

rM(D K ) = D K . We thus conclude that

Z(D K ) = Z(rM(D K )) = Z(rM(D0)) = Z(rM(S)).

As this holds for every elimination order (D0, ..., D K ) for r, we conclude that r is order independent with respect to out-
comes. �
6.4. Proof of Lemma 4.1

In order to show that (Dbi,0, ..., Dbi,K ) is an elimination order for sb, we must show properties (a), (b) and (c) in 
Definition 3.1. As properties (a) and (c) hold by construction, we need only concentrate on (b). The inclusion Dbi,k+1 ⊆ Dbi,k

in (b) again holds by construction. Hence, it only remains to show that sbi(Dbi,k) ⊆ Dbi,k+1
i for every player i.

Take some si ∈ sbi(Dbi,k). Then, si ∈ Dbi,k
i and si is rational at H(Dbi,k) for some bi that strongly believes Dbi,k

−i . Since 
Dbi,k only puts restrictions on choices at histories in Hk , we have that Hk+1\Hk ⊆ H(Dbi,k), and hence it follows that si is 
rational at Hk+1\Hk for bi . Take some h ∈ Hi(si) ∩(Hk+1\Hk). Since bi strongly believes Dbi,k

−i and h ∈ (Hk+1\Hk) ⊆ H(Dbi,k), 
the conditional belief bi(h) only assigns positive probability to opponents’ strategies that prescribe the backward induction 
choice at every history that follows. As si is rational at h for bi , the prescribed choice si(h) at h must be the backward 
induction choice.

We thus conclude that si(h) is the backward induction choice at every h ∈ Hi(si) ∩ (Hk+1\Hk). Since si is in Dbi,k
i , we 

also know that si(h) is the backward induction choice for every h ∈ Hi(si) ∩ Hk . Therefore, si(h) is the backward induction 
choice at every h ∈ Hi(si) ∩ Hk+1. But then, by definition, si ∈ Dbi,k+1

i . As this holds for every si ∈ sbi(Dbi,k), we conclude 
that sbi(Dbi,k) ⊆ Dbi,k+1

i , which was to show.
We thus conclude that the backward induction sequence is an elimination order for sb. This completes the proof. �
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