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Abstract

In this paper we introduce a novel framework for modeling bounded reasoning in dynamic games,

based on the idea that at each history of the game each player pays attention to some – not

necessarily all – histories. We refer to this phenomenon as local reasoning, and we show that

several extensively-studied types of bounded rationality can be studied within this framework,

such as for instance limited memory or limited foresight. Then, we proceed to study a standard

form of reasoning within our framework, according to which each player tries to rationalize

her opponents’ past actions at the histories that she reasons about. As a result we obtain

a generalized solution concept, which we call local common strong belief in rationality. We

characterize the strategy profiles that can be rationally played under our concept by means

of a simple iterative elimination procedure. Finally, we show that standard existing solution

concepts – such as extensive-form rationalizability or the backward dominance procedure – are

special cases of rationality and local common strong belief in rationality.
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1. Introduction

Following the seminal work of Sims (2003), limited attention has recently attracted a lot of interest

among economists. The underlying idea is that economic agents often have access to more information

than they can actually process and therefore they choose to disregard certain aspects of it. This

stream of research has mostly focused on understanding how the agents allocate their (limited)

cognitive resources in an optimal way.

In this paper, we study limited attention from a different perspective. Instead of trying to

understand how the agents decide where to focus their attention,1 we study how limited attention

affects their reasoning, and consequently their behavior, in dynamic settings. In particular, we ask

the question of how players choose their strategies in a dynamic game if they focus their attention on

only some, but not necessarily all, histories in the game. In fact, we have in mind dynamic games with

players who disregard certain parts of the game when they form their beliefs about their opponents’

behavior. Throughout the paper we refer to this phenomenon as local reasoning. Answering this

question has important implications for economic theory in general, in fields like (epistemic) game

theory and bounded rationality for instance, as well as for several specific topics, such as signaling

games, long cheap talk, dynamic voting models, and of course the recently surging (in)attention

literature.

Consider for instance the example of an electoral campaign where each candidate has a previous

record of actions. While past actions provide valuable information to the voters regarding some

candidate’s future policies – if elected – it is often the case that the voters disregard some of these

actions, either because they occurred a long time ago, or because they did not affect them personally,

or even because they simply do not deem them of major importance.2 In this case, the voters’ beliefs,

and consequently their voting behavior may be significantly affected, and moreover the candidate

could in principle take this fact into account when designing her electoral campaign. In our framework

this can be modelled by considering voters who do not reason about the histories at which these

particular actions were undertaken by the candidate.

Perhaps of more interest to the economic theorist would be the following example that illustrates

1Understanding how attention is distributed optimally has been recently studied within decision-theoretic settings

(e.g., De Oliveira et al., 2014; Ellis, 2015).
2There is extensive research within psychology indicating that the memories of the voters can even predict electoral

outcomes. For an overview of this literature we refer to the textbook by Lau and Redlawsk (2006). Similar questions

have also been studied by anthropologists (Cole, 2001). In all this work the notion of limited memory is interpreted

as people disregarding past information that they do have access to, rather than having forgotten the information in

the sense of being unaware of it, like for instance in much of the work in economics. As we are going to see in the

paper, this is a crucial distinction.
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how our framework could be relevant for the study of signaling games.3 Take for instance a sender-

receiver game, where Ann (the sender) sends a sequence of signals – instead of a single signal as often

assumed in the literature – to Bob (the receiver), who in turn chooses an action. Then, obviously, if

Bob disregards some of the earlier histories, he essentially disregards some of Ann’s signals, and the

aggregate information contained in the signals that he takes into account may differ from the one he

would have obtained if he had been been paying attention to all of the signals. Of course, this could

have behavioral implications for both the sender and the receiver.

Our formal framework is built on the general idea of each player i being exogenously endowed

with a function mapping each history h to a collection of histories Fi(h) that the player reasons

about, upon i finding herself at the history h. For instance, in the previous example, h is the history

at which the election takes place, and voter i does not reason at h about the past history h′ /∈ Fi(h)

at which the candidate j (e.g., say the former president) decided to raise taxes. Thus, i will not

take j’s behavior into account when forming beliefs on how j would behave (after h) in case she was

elected. We refer to the function Fi as i’s focus function. Then, we further enrich our framework by

allowing for incomplete information about the focus functions that the players may have. The latter

provides enough flexibility for our model to be able to capture certain forms of bounded reasoning

that have over the past decades attracted interest among economists, such as for instance limited

memory or limited foresight. In Section 2.3 it becomes clear why – technically speaking – these

forms of bounded reasoning cannot be captured unless we allow for incomplete information about

the players’ focus function (see Ex. 2).

Thus, the first general contribution of the paper is that it provides a general novel framework for

modelling limited attention in dynamic games. Before moving on, we should stress two important

points. First, we do not model how players choose which histories to reason about, but rather

we assume that this is exogenously given and has already been decided at some earlier stage, not

included in our model. This distinguishes our work from previous literature on inattention. Second,

even though the players do not reason about all histories in the game, they can still “see” the entire

game. This distinguishes our work from the literature on unawareness. Both these distinctions are

extensively discussed throughout the paper.

Then, using our framework, we go on to identify a number of special cases where it can be directly

applied. Each special case corresponds to a specification of each player’s focus function, as well as

her beliefs and higher order beliefs about everybody’s focus function.4 Thus, our second general

3Note that signaling games assume incomplete information about the utility functions, a case we do not explicitly

explore in this paper. However, as we briefly discuss in Section 2.2, our framework can be directly extended to allow

for incomplete information, with all our results remaining valid.
4Throughout the paper, we refer to a specification of a player’s focus as well as her beliefs and higher order beliefs
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contribution is that we manage to embed seemingly unrelated (existing) forms of bounded reasoning

– which so far have been studied independently in the literature – under the common umbrella of local

reasoning, thus being able to also compare the respective behavioral predictions. Furthermore, our

framework allows us to study new interesting forms of bounded reasoning in dynamic environments,

such as for instance focusing exclusively on focal histories which can provide additional insights to

our understanding of behavior in the existence of high (resp. low) stakes decisions (see Section 2.3).

Up to this point, we have motivated our work by stressing the novelty of our framework without

having referred to the exact reasoning process that we have in mind. In other words, we have

exogenously specified which histories the players reason about, but we have not described yet how

the players reason about these histories. To do this, let us first recall that the product of a player’s

game-theoretic reasoning is typically a configuration of this players’ belief hierarchy.5 Incorporating

belief hierarchies in our models has only become possible with the recent surge of the epistemic

approach to game theory. Within the framework of epistemic game theory we can precisely define

what it means to “believe in the opponents’ rationality”. Then, once we have expressed such notions,

we can specify a reasoning process based on some form of common belief in rationality.

Our reasoning process is based on Battigalli and Siniscalchi’s (2002) epistemic notion of strong

belief in rationality. According to their original definition, a player (say Bob) strongly believes in

the opponent’s (say Ann’s) rationality at some history h whenever the following holds: if Bob is

able to rationalize Ann’s moves at all histories leading to h then he believes that Ann will behave

rationally from h onwards. In other words, strong belief in rationality postulates that players look

into their opponents’ past behavior in order to assess whether their opponents will act rationally

in the future. This already suggests that in Battigalli and Siniscalchi’s (2002) framework, Bob is

implicitly assumed to reason about Ann’s behavior at all histories, and in this sense their model is one

with global reasoning, as opposed to the local reasoning that we study here. Thus, we generalize their

notion of strong belief in rationality, by introducing our concept of local strong belief in rationality

given the players’ focus. The underlying idea is that while being at h, Bob tries to rationalize Ann’s

behavior, not at all histories leading to h, but rather at all histories leading to h that Bob reasons

about. More precisely, if at h it is possible for Bob to believe that Ann chooses optimally at all

histories in Fi(h), then he will necessarily believe (at h) that Ann indeed chooses optimally at every

history in Fi(h). Then, similarly to Battigalli and Siniscalchi (2002), we iterate strong belief to

obtain our solution concept of local common strong belief in rationality, thus implying that in our

about the opponents’ focus, as the player’s focus type. For a detailed description of the model, see Section 2.2.
5In a dynamic game, a (conditional) belief hierarchy describes what each player at each history believes about what

each opponent at each history will do, and also what each player at each history believes about what each opponent at

each history believes about what each opponent at each history will do, and so on (Battigalli and Siniscalchi, 1999).
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model player i disregards not only her opponents’ behavior at histories outside Fi(h), but also their

reasoning at those histories. In other words, assuming local reasoning has implications also for higher

order beliefs.

Our main result provides a characterization of the strategies that can be rationally played by each

player at each history under our concept by means of a simple iterative procedure. The procedure is

called local iterated conditional dominance, thus highlighting the similarities that it bears with Shi-

moji and Watson’s (1998) iterated conditional dominance procedure. Our procedure simultaneously

eliminates strategies and conditional beliefs for each history at each step, thus inducing not only the

predictions of our concept, but also the outcome of the reasoning of each player at each history. This

makes our procedure a tractable tool for making predictions, and eventually testing them, especially

since this is a finite procedure.

Then, we undertake our next major task, to study the relationship of our local common strong

belief in rationality with standard existing solution concepts, thus placing it in its right position

in the literature. The two standard families of solution concepts for dynamic games are forward

induction (FI) and backward induction (BI). The main difference between the two is that while FI

solution concepts explicitly or implicitly assume that players use information from past observations

to assess the opponents’ rationality in the future, BI concepts on the other hand typically postulate

that players believe at every history that their opponents will play rationally from that point onwards

irrespective of how they have behaved so far.6 Well-known examples of FI include extensive-form

rationalizability (Pearce, 1984; Battigalli, 1997) and extensive-from best response sets (Battigalli

and Friedenberg, 2012). On the other hand, BI contains concepts like subgame perfect equilibrium

(Selten, 1965), sequential equilibrium (Kreps and Wilson, 1982), backward dominance procedure

(Perea, 2014) and backward rationalizability (Penta, 2015).7

From our previous preliminary analysis, it already becomes clear that the main difference be-

tween FI and BI is the extent to which players reason about past histories. This already suggests

that the two may be embedded as different special cases within our framework. This unification into

a generalized solution concept would also allow us to deeply understand the fundamental similari-

ties/differences between FI and BI reasoning. In fact, there are already several results relating FI

and BI in terms of predicted outcomes (Battigalli, 1997; Chen and Micali, 2013; Heifetz and Perea,

2015), but still the intuitive relationship of the two remains a bit unclear. In this sense, this paper

constitutes a systematic attempt to close this conceptual gap. Indeed, we formally prove that stan-

6We should make clear that the standard backward induction procedure is merely a solution concept within the

family of BI concepts, and it is formally defined only for extensive-form games with perfect information and without

relevant ties.
7For an overview of this literature we refer to the textbook by Perea (2012).
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dard FI and BI solution concepts are actually special cases of our solution concept. In particular,

we show that whenever Fi(h) contains all histories – including the past ones – local common strong

belief in rationality coincides with the standard common strong belief in rationality of Battigalli

and Siniscalchi (2002). Likewise, we formally prove that the strategies that can be rationally played

under Perea’s (2014) common belief in future rationality are exactly those that can be rationally

played under local common strong belief in rationality whenever Fi(h) contains only the present and

future histories.

The paper is structured as follows: In Section 2 we present our basic framework. In Section 3 we

introduce the epistemic structure. In Section 4 we define the solution concept as well as the iterative

conditional dominance procedure, and we present our main characterization result. In Section 5 we

discuss different special cases of local reasoning. Section 6 concludes. All the proofs are relegated to

the Appendices.

2. Basic framework

2.1. Dynamic games with observable actions

We consider dynamic games with observable actions and simultaneous moves, i.e., dynamic games

with the property that at every instance, all players observe the moves that have been undertaken

so far. Our results can be extended to arbitrary dynamic games with perfect recall. Formally, the

game structure is described by the following components:

Players. Let I denote the finite set of players, with typical elements i and j. Throughout the

paper, we often consider examples with the set of players being I = {Ann (a), Bob (b)}.

Histories. For each i ∈ I, let Hi denote the set of histories where player i moves. We permit more

than one player to move at the same history, i.e., Hi∩Hj may be non-empty. For instance, in Fig. 1

we have Ha = {h0, h2} and Hb = {h1, h2}, and we write h1(b) and h2(a, b) to signify that “only Bob

moves at h1” and that “both Ann and Bob move at h2” respectively. Let H :=
⋃
i∈N Hi be the set of

all non-terminal histories, and H−i :=
⋃
j 6=iHj be the set of non-terminal histories where at least one

player other than i moves. Moreover, let Pr(h) denote the set of histories that weakly precede h, i.e.,

the past histories as well as h itself. Likewise, let Fut(h) denote the set of histories that weakly follow

h, i.e., the future histories as well as h itself. Finally, Z denotes the set of terminal histories, i.e., the

histories where no player moves, while Pr(z) ⊆ H denotes the non-terminal histories preceding z.
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Moves and strategies. The finite set of moves (also called actions) from which player i chooses

one at some history h ∈ Hi is denoted by Ai(h). Player i’s strategy space is denoted by Si with

typical element si, e.g., in Fig. 1 we have Sa = {L,RA,RB} and Sb = {L,RC,RD}. Notice that

we define strategies as plans of actions, and not as elements of
�

h∈Hi Ai(h). That is, for instance,

once Ann has decided to choose L at h0, she does not need to specify what she would play if h2 was

reached, since she knows that h2 will not be reached. In either case our analysis would still hold under

the alternative definition of a strategy that often appears in the literature (cf., Rubinstein, 1991). As

usual, S :=
�

i∈I Si denotes the set of strategy profiles with typical element s, and S−i :=
�

j 6=i Sj

denotes the strategy profiles of all players other than i with typical element s−i.

We define player i’s set of conditional strategies at some history h as the set of strategies that

are consistent with h being reached, and we denote it by Si(h). Then, S−i(h) denotes the profiles

s−i ∈ S−i that are consistent with h being reached. For each si ∈ Si we define Hi(si) := {h ∈ Hi :

si ∈ Si(h)}, and likewise we let H(si) := {h ∈ H : si ∈ Si(h)} and H−i(si) := {h ∈ H−i : si ∈ Si(h)}.
For instance, in Fig. 1 we have Sa(h2) = {RA,RB} and Hb(L) = {h1}. Observe that Si(h) and

Hi(si) are always non-empty.

There exists a function ζ : S → Z, mapping each strategy profile s ∈ S to a unique terminal

history. Each strategy profile induces a path of play, which contains the set of histories that are

reached if s is played. Formally, this path contains the non-terminal histories H(s) :=
⋂
i∈I H(si)

and the terminal history ζ(s).

h0(a)

(4,0)

h1(b)

(3,3)

h2(a, b)

5,1

0,0

0,0

1,5

C D

B

A

L R

L R

L

Figure 1: Generalized BoS with outside options.

Utilities. Player i has preferences over the terminal histories, represented by a mapping vi : Z → R.

Recall that each strategy profile s leads to a unique terminal history ζ(s). Thus, we obtain the utility
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function ui : S → R, defined as the composition ui := vi ◦ ζ, that represents i’s preferences over S.8

For instance, in Fig. 1 the strategy profile (RA,L) induces the terminal history that yields a utility

of 3 to each player.

2.2. Local reasoning

In this section we introduce the notion of a player’s focus (of attention) at some history. This concept

is new to the literature and we will use it throughout the paper to model dynamic games with players

who reason locally about some part of the game only, while disregarding the remaining histories. This

tool will provide a general framework which will allow us to systematically study interesting forms of

bounded rationality, such as for instance limited memory or limited foresight, just to mention a few.

Moreover, some standard forms of reasoning – such as backward induction and forward induction –

can be embedded as special cases within this framework.

Formally, for an arbitrary player i, the function

Fi : Hi → 2H (1)

specifies a subset of histories that player i reasons about, upon finding herself at history h ∈ Hi.
9

Throughout the paper, we refer to Fi as i’s focus function, with Fi(h) being i’s focus at h.

The general idea is that player i does not pay attention to certain histories in the game, either

because she cannot, or because it is cognitively very costly, or even because she simply does not find

it important to do so. In fact, the precise reason for not reasoning about certain histories may vary,

depending on which these histories are. Thus, a different motivation should be provided for each

special case (see Section 2.3). In either case, it is important to stress that in our model, player i is

aware of the existence of all histories, including those that do not belong to Fi(h).10

Now, let Fi denote the set of i’s focus functions, letting F :=
�

i∈I Fi be the set of respective

function profiles with typical element F . Following Harsanyi (1967-68) and Battigalli and Siniscalchi

(1999), we model interactive uncertainty about the players’ focus using an (F -based) type structure

F =
(
(Θi)i∈I , (fi)i∈I , (gi)i∈I

)
,

where Θi is a finite set of focus types, also called Θi-types or i-agents,11 fi : Θi → Fi associates each

i-agent to a focus function and gi : Θi ×Hi → ∆(Θ−i) is a function mapping each i-agent θi ∈ Θi at

8As usual, we assume that i has vNM preferences over ∆(Z), and consequently also over ∆(S). Thus, ui can be

seen as the vNM representation of these preferences.
9As usual, 2H denotes the power set of H, i.e., the collection of all subsets of H.

10In Section 6.2 we discuss the relationship of this framework to the literature on dynamic games with unawareness.
11In Section 6.1 we discuss the case of infinite Θi’s.
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each history h ∈ Hi to a conditional belief ghi (θi) ∈ ∆(Θ−i), with Θ−i :=
�

j 6=i Θj.
12

For notation simplicity, throughout the paper we write Fθi := fi(θi). Thus, each θi is a full

description of i’s focus, as well as her beliefs and higher-order beliefs about every player’s focus,

and in this sense, as we are going to see later in the paper, player i’s conditional beliefs about the

opponents’ strategies depend on the specification of θi.

Throughout the paper, we assume that players do not reason indirectly about a history, unless

they also reason directly about this history. Formally, we impose the following assumption.

Assumption 1. For every i ∈ I, every h ∈ Hi and every θi ∈ Θi, if ghi (θi)
(
(θj)j 6=i

)
> 0 then

Fθj(h
′) ⊆ Fθi(h) for all h′ ∈ Fθi(h) ∩Hj and for all j 6= i. /

Below, we present an example of a structure F satisfying Assumption 1.

Example 1. Recall the game in Fig. 1, and take the structure F = (Θa,Θb, fa, fb, ga, gb) with

Θa = {θa, θ′a} and Θb = {θb, θ′b}. Then, for each i ∈ {a, b}, each θi ∈ Θi and each h ∈ Hi, let

Fθa(h0) = H, Fθa(h2) = H, gh0a (θa) = (0.50⊗ θb ; 0.50⊗ θ′b), gh2a (θa) = (0.25⊗ θb ; 0.75⊗ θ′b)

Fθ′a(h0) = H, Fθ′a(h2) = {h2}, gh0a (θ′a) = (0.35⊗ θb ; 0.65⊗ θ′b), gh2a (θ′a) = (1⊗ θb)

Fθb(h1) = H, Fθb(h2) = {h2}, gh1b (θb) = (0.50⊗ θa ; 0.50⊗ θ′a), gh2b (θb) = (1⊗ θ′a)

Fθ′b(h1) = H, Fθ′b(h2) = H, gh1b (θ′b) = (0.25⊗ θa ; 0.75⊗ θ′a), gh2b (θ′b) = (0.50⊗ θa ; 0.50⊗ θ′a)

Notice that the structure F satisfies Assumption 1, e.g., θ′a at h2 reasons only about the present

history h2 and therefore deems θ′b impossible, as θ′b reasons at h2 about histories that θ′a herself does

not, viz., Fθ′b(h) * Fθ′a(h2) for some h ∈ Fθ′a(h2). /

Remark 1. In order to simplify the presentation of our results, we henceforth restrict attention

to cases where the support of ghi (θi) is a singleton. Still, our analysis can be directly extended to

any structure F.13 Finally, throughout the paper, we are often interested in cases where the focus

function of each player is transparent across all players. Formally, this is the case whenever each Θi

is a singleton. In this case, we identify the unique θi ∈ Θi with i, thus simply writing Fi for Fθi , and

we say that F ∈ F is commonly known. /

12Throughout the paper we consider only complete information games. However, our framework can be easily

extended to accomodate incomplete information games, by simply introducing for each i ∈ I a second function

δi : Θi → Ui, where Ui is the set of i’s utility functions. In this extended model we would be able to study interesting

settings, like for instance signaling games.
13In fact, our analysis does not even depend on Assumption 1, thus implying that it could be in principle dispensed

with. Still, we find it to be intuitively appealing, and as such throughout the paper we consider structures F that

satisfy the assumption.
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2.3. Special cases

In this section we identify various special cases that can be embedded within our framework, thus

illustrating its generality on the one hand, and stressing its ability to compare different forms of

(perfect or bounded) reasoning in terms of their respective predictions on the other hand. We classify

our special cases into two families, those corresponding to underlying reasoning structures that we

encounter in the standard analysis of dynamic games in the literature, and those corresponding to

different forms of bounded reasoning in dynamic games.

2.3.1. Standard forms of reasoning

Reasoning about the entire game: Forward induction. The most obvious special case is

the one where it is commonly known that every player reasons at all histories about all histories.

Formally, this is the case when Θi = {θi} and Fθi(h) = Fi(h) = H for all h ∈ Hi and all i ∈ I.

This is in fact the underlying reasoning structure in games where the players use forward induction,

according to which players look at the past before forming their beliefs about the opponents’ present

and future behavior. We analyze this case in detail in Section 5.1.

Reasoning about the future: Backward induction. The second, again rather obvious, special

case is the one where it is common knowledge that each player reasons at all histories only about the

present and the future. Formally, this is the case whenever Θi = {θi} and Fθi(h) = Fi(h) = Fut(h)

for all h ∈ Hi and all i ∈ I. Analogously to the previous case, this is the underlying reasoning

structure in games where the players use backward induction, according to which players disregard

the past before forming their beliefs about the opponents’ present and future behavior. For a detailed

analysis, see Section 5.2.

2.3.2. Bounded reasoning

Limited memory. Dynamic games with limited memory have been extensively studied within

the game-theoretic literature.14 Most of this earlier work has focused either on understanding the

structural foundations of imperfect recall or on studying rational behavior in the existence of limited

14There are different strands of literature within decision theory and game theory that take into account the pos-

sibility of players exhibiting some form of limited memory. In particular, on the one hand, there is a rather large

literature on how to model imperfect recall in dynamic games/decision problems and its behavioral consequences (e.g.,

Dow, 1991; Rubinstein, 1991, 1998; Piccione and Rubinstein, 1997; Kline, 2002; Bonanno, 2004). On the other hand,

there is an also extended literature on repeated games with limited memory (e.g., Aumann and Sorin, 1989; Lehrer,

1988; Cole and Kocherlakota, 2005; Barlo et al., 2009).
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memory. In either case, the common denominator in many of these papers is that players are

– explicitly or implicitly – assumed to literally not be able to remember certain past events, viz.,

players forget past moves and/or past information. In this respect, players behave as if they cannot

even “see” events that took place outside their memory horizon, and more importantly they cannot

do anything about it, i.e., it is not a conscious decision they make to disregard these past events.15

This last part is in contrast to other existing models of limited memory where the players optimally

choose which pieces of information to remember, like for instance in Dow (1991).

In our framework, we consider players who can see the entire game, but still they reason only

about some past histories. It is crucial to stress here that in principle our model can conceptually

accommodate both previously-mentioned approaches, viz., our structure can be used to model players

who cannot remember certain past events, but it can also be used to model players who consciously

choose to disregard these past events, and in this sense we provide a general theory of limited memory

in games. Let us now illustrate how we model limited memory in our framework.

Formally, we consider a structure F such that for every θi ∈ Θi and every h ∈ Hi there exists

some h←θi ∈ Pr(h) with

Fθi(h) = Fut(h←θi ).

In this case, we refer to h←θi as θi’s memory horizon at h, while the number of histories separating h

and h←θi is called the memory length of θi at h.

Example 2. Take for instance, the game in Fig. 1, and assume that both players have a memory

length of 1 throughout the entire game, i.e., at each history their memory horizon is the immediate

predecessor (as long as it exists of course). Formally this means that their respective realized Θi-

types, θa and θb, are such that Fθa(h0) = H and Fθa(h2) = {h1, h2} for Ann, and Fθb(h1) = H

and Fθb(h2) = {h1, h2} for Bob. But then, Assumption 1 postulates that θa cannot put positive

probability at h2 to Bob’s actual Θb-type θb, as Fθb(h1) * Fθa(h2), and therefore we must introduce

additional Θb-types that θa can deem possible at h2 if we want to capture the essence of limited

memory. This highlights the need for incomplete information about the players’ focus. /

From the previous example, it becomes apparent that limited memory will eventually influence

Ann’s higher order beliefs – and consequently her behavior – as she does not reason at h2 about

Bob’s actual Θb-type, but rather about some other θ′b ∈ Θb \ {θb}.
Now, there are two ways to motivate θa’s focus at h2, corresponding to the two aforementioned

interpretations of limited memory. First, we can think of θa as a type of Ann who can see the entire

15For instance, in Piccione and Rubinstein’s (1997) absent-minded driver’s paradox, players have information sets

that contain subsequent histories, the interpretation being that when they find themselves at a latter history within

this information set they cannot remember what they have done at the earlier history in the same information set.
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game tree, but at the same time – upon finding herself at h2 – does not remember the utilities (4, 0)

that the two players would have (counterfactually) obtained if she had herself chosen L at h0. In

other words, according to this interpretation, Ann has forgotten the strategic incentives that the

players had at histories outside her memory horizon. Alternatively, we can think of θa as a type of

Ann who does remember the strategic incentives at h0, but simply chooses to disregard them, either

because it is too costly, or because she might not find it important to do so. Here we should point

out that in this paper – under this second interpretation of limited memory – we do not formally

model the choice of Ann’s memory horizon, like for instance Dow (1991) does, and we take it as

exogenously given. Nevertheless, we believe that this last part is an interesting research question for

future research.

Finally, note that the two cases discussed in Section 2.3.1 are special cases of limited memory,

with the players remembering everything when they reason about the entire game, and analogously

the players remembering nothing when they reason only about the future.

Limited foresight. Similarly to limited memory, dynamic games with limited foresight have also

been extensively studied in the literature.16 Again, the motivation for considering the possibility of

limited foresight differs depending on the context being studied, with the most prominent approach

being that players are often shortsighted due to computational restrictions. Still, similarly to our

discussion on limited memory, our framework allows us to think of players who are not able to reason

about the future, but also of players who consciously choose to disregard some future histories. In

fact, the latter scenario could arise in cases where “looking ahead is computationally expensive and

unnatural because it means reasoning about events that probably will not occur” as Johnson et al.

(2002) elaborately put it. We should repeat that while in this paper we do not study how players

choose their foresight horizon, we find this question to be of interest for future research.

Formally, the idea here is that players can see the entire game, without necessarily reasoning

about all future histories. Thus, we take a structure F, such that for every θi ∈ Θi, every h ∈ Hi and

every z ∈ Z with h ∈ Pr(z), there exists a unique hzθi ∈ Fut(h) ∩ Pr(z) with

Fθi(h) = H \ {h′ ∈ Fut(h) : h′ strictly follows hzθi for some z ∈ Fut(h)}.

Once again, consider the game in Fig. 1, and let θa be such that Fθa(h0) = {h0, h1}. This is for

instance the case when Ann cannot foresee how the players will reason beyond one period ahead.

16In fact, limited foresight has been studied in the context of repeated games (e.g., Jehiel, 2001; Maenner, 2008),

learning (e.g., Mengel, 2014), behavioral and experimental economics (e.g., Johnson et al., 2002) and computer science

(e.g., Grossi and Turrini, 2012; Turrini, 2015), just to mention a few examples.
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Similarly to Ex. 2, one can easily show that incomplete information about the Θi-types is often

needed in order to model limited foresight.

Mixed cases. On top of the previous “pure” cases that we consider, our framework allows us

to consider mixed reasoning structures. This is for instance the case if we want to model limited

memory and limited foresight simultaneously. To the best of our knowledge, this is the first paper

in the literature providing this possibility, thus also allowing us to compare the game-theoretic

predictions induced by different forms of bounded rationality by means of comparative statics.

Focal histories. Besides the standard forms of bounded reasoning that we have presented above,

our framework is flexible enough to accommodate other new forms of bounded reasoning that have

not been systematically studied within game theory and which are often of theoretical and/or applied

importance. One such case of particular interest is games with “focal histories”. These are games

where the choices made at certain histories have a bigger effect on the players’ utilities in comparison

to the choices made at other histories. Indeed, it is often the case that certain decisions carry much

higher weight than others. Traditional game theory does not make any such distinction and assumes

that players treat all the histories in the same way. However, it is rather natural to assume that

in many strategic settings people pay attention to events that involve high stakes. For instance, in

political campaigns voters tend to disregard the candidates’ positions on issues that do not affect

them. Also in personal relationships people often forgive/forget mistakes made by others in situations

of minor importance. These informal examples suggest that our framework could be used to analyze

applied problems that the existing game-theoretic literature cannot.

3. Subjective beliefs and rationality

3.1. Conditional beliefs

Using a variant of the standard framework of Battigalli and Siniscalchi (1999, 2002), we model

conditional belief hierarchies by means of a type structure. Let us begin by fixing a structure F.

Then, we consider the tuple

TF =
(
(Ti)i∈I , (φi)i∈I , (λi)i∈I

)
,

where Ti is a compact metrizable space of player i’s types with typical element ti,
17 φi : Ti → Θi is a

surjective Borel function endowing each Ti-type with a Θi-type, and λi : Ti×Hi → ∆(S−i×T−i) is a

17Throughout the paper we often refer to elements of Ti as Ti-types whenever it is not obvious from the context

and we want to distinguish them from the Θi-types that we introduced in the previous section.
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Borel function associating each type ti ∈ Ti at each history h ∈ Hi with a Borel probability measure

λhi (ti) ∈ ∆
(
S−i(h)× T−i

)
, where T−i :=

�
j 6=i Tj.

18 Henceforth, we refer to the measure λhi (ti) as ti’s

conditional beliefs (or simply beliefs) at a history h. The subset

Tθi := φ−1
i (θi) (2)

contains the Ti-types with φi(ti) = θi. Observe that {Tθi |θi ∈ Θi} is a partition of Ti. Obviously,

it is the trivial partition whenever Θi is a singleton. Whenever ti ∈ Tθi , we naturally require the

conditional belief λhi (ti) to agree with ghi (θi). This restriction is formally imposed by the following

assumption.

Assumption 2. For every i ∈ I, every h ∈ Hi, every θi ∈ Θi, every ti ∈ Tθi , every (θj)j 6=i ∈ Θ−i, it

is the case that λhi (ti)
(
S−i ×

(�
j 6=i Tθj

))
= ghi (θi)

(
(θj)j 6=i

)
. /

Before moving forward, observe that S−i× (
�

j 6=i Tθj) is a Borel event in S−i×T−i, and therefore

the probability λhi (ti)
(
S−i × (

�
j 6=i Tθj)

)
is well-defined. This follows directly from φj being Borel

measurable for every j ∈ I.

Example 3. Recall the game in Fig. 1, together with the structure F from Ex. 1. Now, consider the

type structure TF = (Ta, Tb, φa, φb, λa, λb), with the type spaces being Ta = {ta, t′a} and Tb = {tb, t′b},
where Tθa = {ta}, Tθ′a = {t′a}, Tθb = {tb} and Tθ′b = {t′b}. The corresponding conditional beliefs of

each type are the ones shown below:

λh0a (ta) =
(
0.40⊗ (L, tb) ; 0.20⊗ (L, t′b) ; 0.10⊗ (RC, tb) ; 0.30⊗ (RD, t′b)

)
λh2a (ta) =

(
0.25⊗ (RC, tb) ; 0.75⊗ (RD, t′b)

)
λh0a (t′a) =

(
0.10⊗ (L, tb) ; 0.40⊗ (L, t′b) ; 0.25⊗ (RC, tb) ; 0.25⊗ (RC, t′b)

)
λh2a (t′a) =

(
1⊗ (RC, tb)

)
λh1b (tb) =

(
0.50⊗ (RA, ta) ; 0.50⊗ (RA, t′a)

)
λh2b (tb) =

(
1⊗ (RA, t′a)

)
λh1b (t′b) =

(
0.25⊗ (RA, ta) ; 0.25⊗ (RA, t′a) ; 0.50⊗ (RB, t′a)

)
λh2b (t′b) =

(
0.50⊗ (RA, ta) ; 0.50⊗ (RA, t′a)

)
For instance, if Ann is of type ta, then at h0 she puts probability 0.4 to the event that “Bob will

play L and is of type tb”. When she finds herself at h2, she assigns to the same event probability 0.

Notice that TF satisfies Assumption 2, e.g., tb ∈ Tθb and thus λh1b (tb)(Sa× Tθa) = gh1b (θb)(θa) = 0.5. /

18The assumption that “upon reaching a history h ∈ Hi every type ti assigns probability 1 to S−i(h) × T−i”

corresponds to the standard Condition 1 in (Battigalli and Siniscalchi, 2002, Def. 1). Note that in their paper they

further restrict beliefs to satisfy Bayesian updating whenever possible (see their Condition 3), thus implicitly assuming

that the collection of conditional beliefs forms a conditional probability system, as originally defined by Rênyi (1955).
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A type structure TF induces a conditional belief hierarchy for every ti ∈ Ti. In particular, ti holds

a conditional belief at each h ∈ Hi about the opponents’ strategies (first order conditional beliefs), a

conditional belief at each h ∈ Hi about the opponents’ strategies and first order conditional beliefs

(second order conditional beliefs), and so on. Throughout the paper, we denote ti’s first order

conditional belief at h by

bhi (ti) := margS−i λ
h
i (ti).

In the previous example, ta’s first order conditional beliefs at h2 put probability 0.25 to RC and

probability 0.75 to RD.

Notice that by the previous construction, it is for instance the case that each ti forms a belief at

h ∈ Hi about j’s beliefs at each h′ ∈ Hj, even if ti ∈ Tθi and h′ /∈ Fθi(h). At first sight this might

seem to intuitively contradict our idea of local reasoning. However, recall that our general idea is

that θi at h can see all histories in H but only reasons about those histories that belong to Fθi(h).

This distinction is formally captured by the fact that in our model θi’s beliefs about j’s beliefs at

h′ /∈ Fθi(h) are arbitrary, i.e., ti ∈ Tθi will form her beliefs without applying any form of reasoning

about these histories. This rather subtle point will become clearer in Section 4, where we introduce

a specific form of reasoning.

Definition 1. A type structure TF is said to be complete if for every i ∈ I, every θi ∈ Θi, every

h ∈ Hi, every (θj)j 6=i ∈ Θ−i and every (µhi )h∈Hi with µhi ∈ ∆
(
S−i(h)×T−i

)
and µhi

(
S−i×(

�
j 6=i Tθj)

)
=

ghi (θi)
(
(θj)j 6=i

)
for all h ∈ Hi, there exists some ti ∈ Tθi such that λhi (ti) = µhi for all h ∈ Hi.

Before moving forward, notice that the standard notion of completeness is a special case of

our definition for cases where F is common knowledge. In particular, if F is commonly known,

completeness postulates that the function λi is surjective, i.e., for every collection of conditional

beliefs (µhi )h∈Hi there is some type ti such that λhi (ti) = µhi for all h ∈ Hi. To see that the standard

notion of completeness agrees with our definition whenever F is commonly known, observe that in

this case Tj = Tθj for the unique θj ∈ Θj, and therefore µhi
(
S−i × (

�
j 6=i Tθj)

)
= ghi (θi)

(
(θj)j 6=i

)
= 1

is trivially satisfied. Thus, our definition reduces to the usual one.

Battigalli and Siniscalchi (1999) showed the existence of a complete type structure (with com-

monly known F ).19 It turns out that this result can be extended to arbitrary type structures, i.e.,

19In fact, they proved existence of a complete type structure under Bayesian updating, but their result can be

easily generalized to type structures without Bayesian updating. In a more recent paper, Friedenberg (2010) showed

that for standard belief hierarchies a complete type structure that satisfies certain mild topological conditions induces

all belief hierarchies, i.e., for every belief hierarchy of each player there exists a type associated with this hierarchy.

Moreover, she conjectured – without formally proving it – that the same applies to conditional belief hierarchies that

satisfy Bayesian updating. Finally, notice that her result is directly extended to conditional beliefs without Bayesian
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a complete type structure TF exists for every structure F, even if F is not commonly known. This

claim is formally proven in Appendix A. Throughout the paper, unless explicitly stated otherwise, we

work with complete type structures. Finite type structures that we often consider in our examples

can be seen as belief-closed subspaces of a complete type structure.

At some h ∈ Hi a type ti of player i is said to believe in some event E ⊆ S−i × T−i whenever

λhi (ti)(E) = 1. Then, the types of i that believe in E at h are those in

Bh
i (E) :=

{
ti ∈ Ti : λhi (ti)(E) = 1

}
.

For instance, as we have already mentioned, it is trivially the case that ti ∈ Bh
i

(
S−i(h)× T−i

)
for all

ti ∈ Ti. Moreover, we say that a type believes in E whenever it belongs to

Bi(E) :=
⋂
h∈Hi

Bh
i (E).

Before moving forward, let us point out that henceforth, we focus on structures F with the

property that each θi ∈ Θi puts positive probability to a unique θ−i ∈ Θ−i at each h ∈ Hi. Then, at

some h ∈ Hi a type ti of player i is said to F-strongly believe in some event E ⊆ S−i× T−i whenever

the following condition holds: if E does not contradict the history h, then ti believes in E at h, i.e.,

formally for an arbitrary θi ∈ Θi,

SBh
θi

(E) :=
{
ti ∈ Tθi : if (S−i(h)× T−θi) ∩ E 6= ∅ then ti ∈ Bh

i (E)
}

(3)

where T−θi :=
�

j 6=i Tθj , with (θj)j 6=i being such that ghi (θi)
(
(θj)j 6=i

)
= 1. Notice that, unlike the

standard notion of strong belief à la Battigalli and Siniscalchi (2002), here we require (S−i(h) ×
T−θi) ∩ E 6= ∅ rather than (S−i(h) × T−i) ∩ E 6= ∅, the reason being that from θi’s point of view

the only Tj-types in the model are those in Tθj , i.e., those corresponding to Θj-types that θi deems

possible in the structure F. The set of all types strongly believing in E are those in

SBh
i (E) :=

⋃
θi∈Θi

SBh
θi

(E).

Obviously, if F is commonly known, then SBh
θi

(E) = SBh
i (E), as it is the case that T−θi = T−i.

Of course, it is straightforward to verify that every ti ∈ Tθi strongly believes in S−i(h)× T−θi as

well as in S−i(h) × T−i at h ∈ Hi. Finally, we say that E is strongly believed by θi, whenever it is

strongly believed at every h ∈ Hi, i.e., formally

SBθi(E) :=
⋂
h∈Hi

SBh
θi

(E),

updating.
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and at the same time a Ti-type strongly believes in E whenever it belongs to

SBi(E) :=
⋃
θi∈Θi

SBθi(E).

Once again, if F is commonly known, then SBθi(E) = SBi(E), as it is the case that T−θi = T−i.

3.2. Subjective expected utility and rationality

For an arbitrary conditional belief βhi ∈ ∆
(
S−i(h)

)
and a strategy si ∈ Si(h), we define i’s (subjective)

expected utility at h ∈ Hi in the usual way, i.e., Uh
i (si, β

h
i ) :=

∑
s−i∈S−i β

h
i (s−i) · ui(si, s−i). Then,

we define the expected utility of a strategy type pair (si, ti) ∈ Si(h)× Ti at a history h ∈ Hi by

Uh
i (si, ti) := Uh

i

(
si, b

h
i (ti)

)
. (4)

In our Example 3 for instance, Ann’s expected utility at h2 from playing RA, if she is of type ta, is

equal to Uh2
a (RA, ta) = 1.25.

Player’s rationality at a history. The event that a player is rational at some history h ∈ Hi is

given by

Rh
i :=

{
(si, ti) ∈ Si(h)× Ti : Uh

i (si, ti) ≥ Uh
i (s′i, ti) for all s′i ∈ Si(h)

}
. (5)

If it is indeed the case that (si, ti) ∈ Rh
i , we say that the strategy si is optimal/rational given (the

first order beliefs induced by) ti at h. The idea is that, upon reaching a history h ∈ Hi, player i

chooses a strategy – among the ones that are still available at h – which maximizes her subjective

expected utility. Note that rationality is not an absolute concept. That is, whether a strategy is

rational or not depends on the history that we have in mind, as well as on the conditional beliefs held

by the player at that history. For instance, in Example 3, we have Rh0
a = {(L, ta), (L, t′a), (RA, t′a)}

and Rh2
a = {(RA, ta), (RA, t′a)}. Observe that RA is rational at h0 given the first order beliefs bh0a (t′a),

but not given bh0a (ta). Throughout the paper, for notation simplicity we adopt the convention that

Rh
i = Si(h)× Ti if h /∈ Hi.

Opponents’ rationality at a history. Now, let

Rh
−i :=

¡

j 6=i

{
(sj, tj) ∈ Sj(h)× Tj : if h ∈ Hj then (sj, tj) ∈ Rh

j

}
=
¡

j 6=i
Rh
j . (6)

denote the event that every player other than i – who is active at h – is rational at h.20 In other

words, Rh
−i expresses the idea that upon reaching h, all of i’s active opponents at h choose a strategy

20In order to obtain Rh−i =
�

j 6=iR
h
j we make use of the convention that Rhj = Sj(h)× Tj for all j 6= i with h /∈ Hj .
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– among their respective ones – which maximizes their subjective expected utility. In our previous

example, for instance, on the one hand we have Rh1
−b = Sa(h1) × Ta, because Ann is not active at

h1, and therefore by our convention Rh1
a = Sa(h1) × Ta. On the other hand, it is the case that

Rh2
−b = Rh2

a = {(RA, ta), (RA, t′a)}. This is because Ann is active at h2, and therefore Rh2
a is given by

Eq. (5).

Player’s rationality in a set of histories. Now, consider an arbitrary collection G ⊆ H of

histories. Then, a strategy-type combination (si, ti) is rational in G whenever it is rational at all

histories which (i) are consistent with si, and (ii) belong to G. Formally, the event

RG
i :=

{
(si, ti) ∈ Si × Ti : (si, ti) ∈ Rh

i for all h ∈ Hi(si) ∩G
}

(7)

contains the strategy-type pairs that are rational in G. In our previous example, for instance, if we

let G = {h2} we get R
{h2}
a = {(L, ta), (L, t′a), (RA, ta), (RA, t′a)}. Notice that in general R

{h}
i may

differ from Rh
i , e.g., in our working example Rh2

a = {(RA, ta), (RA, t′a)} 6= R
{h2}
a . The reason is that,

by construction, Rh
i ⊆ Si(h)×Ti while R

{h}
i ⊆ Si×Ti, i.e., Rh

i considers only strategies that reach h,

whereas R
{h}
i also allows for strategies that are not consistent with h. Because of this, RG

i does not

necessarily coincide with
⋂
h∈GR

h
i . Finally, note that the standard notion of rationality corresponds

to the event Ri := RHi
i , i.e., a strategy-type combination (si, ti) is rational whenever it is rational at

all histories h ∈ Hi(si) given the respective conditional first order belief bhi (ti).

Opponents’ rationality in a set of histories. Now, let

RG
−i :=

¡

j 6=i

{
(sj, tj) ∈ Sj × Tj : (sj, tj) ∈ Rh

j for all h ∈ Hj(sj) ∩G
}

=
¡

j 6=i
RG
j (8)

contain i’s opponents’ strategy-type combinations that are rational in G. Then, the usual event of

every player other than i being rational corresponds to R−i := R
H−i
−i .

4. Local reasoning about the opponents’ rationality

So far, we have defined a general framework which allows us to model players who reason only about

some histories in the game. However, we have not specified yet how players reason about these

particular histories. In this section, we formalize a reasoning process, based on the notion of strong

belief in rationality, originally introduced by Battigalli and Siniscalchi (2002), and we introduce a

solution concept that incorporates this reasoning process. This will be an epistemic concept, implying
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that it is defined by means of a sequence of restrictions on the players’ types, and therefore it gives

the set of types (for each player) that are consistent with the particular form of reasoning that we

postulate. Then, we provide a simple procedure which yields the strategies that can be rationally

played given the types that satisfy the restrictions imposed by the concept.

Note that strictly speaking our concept is a family of concepts, each one corresponding to a differ-

ent structure F. In this respect, as we formally show in the next section, several well-known existing

solution concepts – such as extensive-form rationalizability or common belief in future rationality,

for instance – can be embedded in our framework, i.e., we prove that they correspond to particular

specifications of F. Moreover, our concept can be applied to make predictions in dynamic games

with players exhibiting different forms of bounded rationality, such as for instance limited memory

and/or limited foresight.

Let us begin by defining our notion of “a player reasoning locally about the opponents’ rationality

at some histories only”. Fix an arbitrary structure F. Then, for an arbitrary θi ∈ Θi, let

SBh
θi

(
R
Fθi (h)

−i

)
:=
{
ti ∈ Tθi : if (S−i(h)× T−θi) ∩R

Fθi (h)

−i 6= ∅ then ti ∈ Bh
i

(
R
Fθi (h)

−i
) }

. (9)

The underlying idea is that, upon finding herself at history h, the i-agent θi tries to rationalize

the opponents’ moves at every history in Fθi(h). If them being rational at every h′ ∈ Fθi(h) does

not contradict reaching h, then θi will believe at h that they are indeed rational at every history

h′ ∈ Fθi(h). This type of local reasoning will be henceforth called local strong belief in rationality

with respect to F at h, or simply strong belief in rationality at h. Obviously, our notion of local

reasoning depends on the choice of F. Let us illustrate this notion by means of an example.

Example 1 (cont). Recall the game in Fig. 1 and let the functions (λa, λb) be the ones from

Ex. 3. Moreover, assume that Fb is such that Fb(h1) = Fut(h1) = {h1, h2}. As we have already

noted above, it is the case that R
Fb(h1)
−b = R

{h1,h2}
a = {(L, ta), (L, t′a), (RA, ta), (RA, t′a)}. Indeed, both

(L, ta) ∈ R
{h1,h2}
a and (L, t′a) ∈ R

{h1,h2}
a hold, as Ha(L) ∩ {h1, h2} = ∅. At the same time, both

(RA, ta) ∈ Rh2
a and (RA, t′a) ∈ Rh2

a hold, and moreover h2 is the only history in Ha(RA) ∩ {h1, h2},
thus implying (RA, ta) ∈ R{h1,h2}a and (RA, t′a) ∈ R

{h1,h2}
a . Hence, SBh1

b

(
R
Fb(h1)
−b

)
= {tb}. The reason

why t′b does not strongly believe at h1 in Ann’s rationality, is that R
Fb(h1)
−b is consistent with reaching

h1, and yet it does not receive probability 1 by λh1b (t′b), viz., λh1b (t′b) puts positive probability to

(RB, t′a). /

Below, we iterate the reasoning of strong belief in rationality to obtain our solution concept of

common strong belief in rationality.
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4.1. Local common strong belief in rationality

Fix an arbitrary structure F, and take an arbitrary θi ∈ Θi and an arbitrary history h ∈ Hi. Then,

we define the following sequences of subsets of Tθi ⊆ Ti:

T 1
θi

(h) := SBh
θi

(
R
Fθi (h)

−i

)
T 2
θi

(h) := T 1
θi

(h) ∩ SBh
θi

(
R
Fθi (h)

−i ∩
(
S−i × T 1

−θi(Fθi(h))
))

...

T kθi(h) := T k−1
θi

(h) ∩ SBh
θi

(
R
Fθi (h)

−i ∩
(
S−i × T k−1

−θi (Fθi(h))
))

...

where, for each k > 1,

T k−1
−θi

(
Fθi(h)

)
:=
¡

j 6=i

{
tj ∈ Tθj : tj ∈ T k−1

θj
(h′) for all h′ ∈ Fθi(h) ∩Hj

}
,

with (θj)j 6=i being the unique element of Θ−i receiving positive probability by θi at h in F.

Hence, T 1
θi

(h) contains the types in Tθi that strongly believe at h that the opponents are rational

at every h′ ∈ Hj ∩ Fθi(h). Throughout the paper, we refer to the types in

T 1
i (h) :=

⋃
θi∈Θi

T 1
θi

(h)

as those satisfying 1-fold strong belief in rationality at h.

Now, T 2
θi

(h) contains those types in T 1
θi

(h) that strongly believe at h that every opponent j (i)

is rational at every h′ ∈ Hj ∩ Fθi(h), and (ii) strongly believe at every h′ ∈ Hj ∩ Fθi(h) that every

opponent k 6= j is rational at every h′′ ∈ Hk ∩ Fθj(h′). The event described in (i) corresponds to

R
Fθi (h)

−i , while the event described in (ii) corresponds to

S−i × T 1
−θi

(
Fθi(h)

)
=
¡

j 6=i

{
(sj, tj) ∈ Sj × Tθj : tj ∈ SBh′

θj

(
R
Fθj (h′)

−θj

)
for all h′ ∈ Fθi(h) ∩Hj

}
in the second equation of the sequence above. The reason for explicitly requiring every type in T 2

θi
(h)

to belong to T 1
θi

(h) is that the strong belief operator is not monotonic, thus implying that SBh
θi

(E∩F )

is not necessarily equal to SBh
θi

(E) ∩ SBh
θi

(F ).21 Therefore SBh
θi

(
R
Fθi (h)

−i
)

does not follow directly

from SBh
θi

(
R
Fθi (h)

−i ∩
(
S−i × T 1

−θi(Fθi(h))
))

. Throughout the paper, we refer to the types in

T 2
i (h) :=

⋃
θi∈Θi

T 2
θi

(h)

21It is well known that the conjunction property implies monotonicity. Therefore, violations of monotonicity –

which the strong belief operator exhibits – lead to violations of the conjunction property. We refer to Battigalli and

Siniscalchi (2002) for a detailed discussion on this issue.
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as those satisfying up to 2-fold strong belief in rationality at h. The reason we add the term “up to”

is that, by construction, T 2
i (h) ⊆ T 1

i (h), as we have already discussed above.

Continuing inductively we define the set of types that satisfy up to k-fold strong belief in rationality

at h. Those are the types in T ki (h). Then, the types that satisfy common strong belief in rationality

at h are those in

T F
i (h) :=

∞⋂
k=1

T ki (h). (10)

The types that satisfy common strong belief in rationality (F-CSBR) are those in

T F
i :=

⋂
h∈Hi

T F
i (h). (11)

Observe that in order to obtain the types that satisfy F-CSBR, we need to take two intersections.

In particular, first we find, for each h ∈ Hi, the types that that satisfy the (infinitely many) restric-

tions that F-CSBR imposes at h (see Eq. (10)), and then we select those types that satisfy all these

restrictions at every h ∈ Hi (see Eq. (11)). Finally, we say that a strategy si ∈ Si can be rationally

played under common strong belief in rationality (F-RCSBR) whenever si ∈ ProjSi
(
Ri ∩ (Si × T F

i )
)
.

4.2. Local iterated conditional dominance procedure

In this section we introduce a (finite) procedure which, for every player i ∈ I, for every i-agent θi ∈ Θi

and every history h ∈ Hi, iteratively eliminates (at each round) strategies from Si(h) and first order

conditional beliefs from ∆
(
S−i(h)

)
.22 Formally, it is a simultaneous generalization of the iterated

conditional dominance procedure (ICDP), originally introduced by Shimoji and Watson (1998), and

the backward dominance procedure, originally defined in Perea (2014).23 Before formally defining

our procedure, let us first introduce the notion of a decision problem, which will play a central

role throughout this section. In particular, our procedure will be defined as a sequence of decision

problems for each i ∈ I, for each θi ∈ Θi and each history h ∈ Hi.

Decision problem. A decision problem for θi ∈ Θi at a history h ∈ Hi is a tuple
(
Bθi(h), Dθi(h)

)
,

with Bθi(h) ⊆ S−i(h) and Dθi(h) ⊆ Si(h). Intuitively, Bθi(h) can be seen as the subset of the

opponents’ strategies that θi could deem possible at h. At this point, we should already make clear

that the link between Bθi(h) and what θi could deem possible at h is only an informal one. The

22In fact, as we are going to see later in the paper, it might be the case that different strategies and/or conditional

beliefs are eliminated for different Θi-types at the same history.
23Later in the paper, we discuss the relationship of our procedure with the iterated conditional dominance procedure

and with the backward dominance procedure.
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actual relationship between the two will become apparent later on in the paper. Thus, for the time

being, Bθi(h) and Dθi(h) will be merely treated as auxiliary tools, without a concrete meaning.

A strategy si ∈ Dθi(h) is said to be rational in the decision problem
(
Bθi(h), Dθi(h)

)
whenever

there exists a probability measure βhi ∈ ∆
(
Bθi(h)

)
such that Uh

i (si, β
h
i ) ≥ Uh

i (s′i, β
h
i ) for all s′i ∈

Dθi(h). Thus, we draw a link between two different notions of rationality, i.e., between rationality

of a strategy-type combination in a complete type structure on the one hand, and rationality of a

strategy in a decision problem on the other hand.

Now, for an arbitrary structure F, our procedure will be defined by means of a (weakly) decreasing

sequence
(
Bk
θi

(h), Dk
θi

(h)
)
k≥0

of decision problems for each i ∈ I, each θi ∈ Θi and each h ∈ Hi. That

is, at each step of our procedure, we will simultaneously eliminate strategies from Si(h) and strategy

combinations from S−i(h).

Initial step of the procedure. For k = 0, we define

B0
θi

(h) := S−i(h)

D0
θi

(h) := Si(h).

Obviously, this initial step does not depend on the choice of F.

Inductive step of the procedure. Now, fix some k > 0 and suppose that for each i ∈ I, each

θi ∈ Θi and each h ∈ Hi we have undertaken the (k − 1)-th step of our procedure, thus having

obtained
(
Bk−1
θi

(h), Dk−1
θi

(h)
)
. Then, for an arbitrary h ∈ Hi, define

(
Bk
θi

(h), Dk
θi

(h)
)

by

Bk
θi

(h) :=

C
k−1
θi

(h) if Ck−1
θi

(h) 6= ∅

Bk−1
θi

(h) if Ck−1
θi

(h) = ∅
(12)

Dk
θi

(h) :=
{
si ∈ Dk−1

θi
(h) : si is rational in

(
Bk
θi

(h), Dk−1
θi

(h)
) }

, (13)

where

Ck−1
θi

(h) :=
¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ Dk−1

θj
(h′) for all h′ ∈ Hj(sj) ∩ Fθi(h)

}
, (14)

with (θj)j 6=i being the unique element of Θ−i receiving positive probability by θi at h in F.

The underlying idea behind our procedure is as follows: First, for each θi ∈ Θi and each h ∈ Hi, we

compute Ck−1
θi

(h) which contains all strategy combinations of i’s opponents which (i) are consistent

with reaching h, and (ii) have not been eliminated from Dk−1
θj

(h′) at any h′ ∈ Fθi(h) and for any

j-agent θj who is active at h′ and is deemed possible by θi at h in the structure F. Notice that in

principle Ck−1
θi

(h) might be empty. To see this, consider for instance the game in Fig. 1 with the
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commonly known F being such that Fb(h1) = {h0, h2}, and assume that Dk−1
a (h0) = {L}. Then,

clearly it is the case that Sa(h1) ∩Dk−1
a (h0) = ∅, thus implying that Ck−1

b (h1) = ∅.
Having defined Ck−1

θi
(h), we can now proceed to the k-th step of our procedure, by first defining

Bk
θi

(h). In particular, a strategy combination s−i = (sj)j 6=i is eliminated from Bk−1
θi

(h) if and only

if (i) there exists some history h′ ∈ Fθi(h) ∩Hj(sj) such that sj has been eliminated from Dk−1
θj

(h′)

for the Θj-type that θi deems possible at h, and also (ii) there exists another strategy combination

s′−i = (s′j)j 6=i ∈ Bk−1
θi

(h) such that for every j 6= i and every h′ ∈ Fθi(h) ∩Hj(sj) it is the case that

s′j ∈ Dk−1
θj

(h′) for the same Θj-type θj that θi deems possible at h, i.e., not all strategy combinations

are eliminated from Bk−1
θi

(h).

Now, once we have obtained Bk
θi

(h), we can define the decision problem
(
Bk
θi

(h), Dk−1
θi

(h)
)
, and

we eliminate from Dk−1
θi

(h) the strategies that are not rational in this decision problem. Then, it

follows from Pearce (1984, Lem. 3) that a strategy is eliminated from Dk−1
θi

(h) if and only if it is

strictly dominated by a mixed strategy within this decision problem.

This elimination procedure is called iterated conditional dominance procedure (F-ICDP). Ob-

viously, since we consider only finite dynamic games and structures with finitely many Θi-types

for each player, F-ICDP converges after finitely many steps. That it, there exists some K ≥ 0

such that for each k ≥ K, for every i ∈ I, every θi ∈ Θi and every h ∈ Hi, it is the case that(
Bk
θi

(h), Dk
θi

(h)
)

=
(
BK
θi

(h), DK
θi

(h)
)
. Then, we write

(
BF
θi

(h), DF
θi

(h)
)

=
(
BK
θi

(h), DK
θi

(h)
)
. We say

that a strategy si survives the iterated conditional dominance procedure for some θi if it is the case

that si ∈ DF
θi

(h) for all h ∈ Hi(si). Below, we illustrate the F-ICDP with a simple example.

Example 4. Recall the example of Fig. 1, and let Ann always focus on all histories, while Bob

focuses only on future histories. Furthermore, it is commonly believed that both players focus on

the future histories, i.e., formally, the structure F is such that Θa = {θa, θ′a} and Θb = {θb} with

Fθa(h0) = H, Fθa(h2) = H, gh0a (θa) = (1⊗ θb), gh2a (θa) = (1⊗ θb)

Fθ′a(h0) = H, Fθ′a(h2) = {h2}, gh0a (θ′a) = (1⊗ θb), gh2a (θ′a) = (1⊗ θb)

Fθb(h1) = {h1, h2}, Fθb(h2) = {h2}, gh1b (θb) = (1⊗ θ′a), gh2b (θb) = (1⊗ θ′a)

Let us now depict each decision problem
(
Bk
θi

(h), Dk
θi

(h)
)

with a normal form game. The steps

of the F-ICDP are represented by the lines that cross out the corresponding strategies. Eliminations

from Bk
θi

(h) are represented by dashed lines, whereas eliminations from Dk
θi

(h) are represented by

continuous lines. The corresponding number next to each line refers to the step during which the

respective strategy was eliminated.

In particular, at the first step (k = 1), no strategy is eliminated from B0
θi

(h) for any θi ∈ Θi, any

i ∈ I and any h ∈ Hi. Then, RB is eliminated from D0
θa

(h0) and from D0
θ′a

(h0) because it is strictly
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Ann (θa)

(all histories)

L

RA

RB

L RC RD

3,3

3,3

4,0

5,1

0,0

4,0

0,0

1,5

4,0

(k = 1)

(k = 2)

(k = 2)

Bkθa(h0)

Dk
θa

(h0)

h0

RA

RB

RC RD

5,1

0,0

0,0

1,5

(k = 2)

(k = 2)

Bkθa(h2)

Dk
θa

(h2)

h2

Ann (θ′a)

(future hist.)

L

RA

RB

L RC RD

3,3

3,3

4,0

5,1

0,0

4,0

0,0

1,5

4,0

(k = 1)

(k = 2)

(k = 2)

Bkθ′a(h0)

Dk
θ′a

(h0)

h0

RA

RB

RC RD

5,1

0,0

0,0

1,5

Bkθ′a(h2)

Dk
θ′a

(h2)

h2

Bob (θb)

(future hist.)

RA

RB

L RC RD

3,3

3,3

5,1

0,0

0,0

1,5

(k = 1)

DF,k
θb

(h1)

BF,k
θb

(h1)

h1

RA

RB

RC RD

5,1

0,0

0,0

1,5

DF,k
θb

(h2)

BF,k
θb

(h2)

h2

dominated by L at h0, and likewise RC eliminated from D0
θb

(h1) because it is strictly dominated by

L at h1. Hence, we obtain D1
θa

(h0) = D1
θ′a

(h0) = {L,RA} and D1
θb

(h1) = {L,RD}. Furthermore, no

strategy is eliminated for any type at h2, i.e., it is the case that D1
θa

(h2) = D1
θ′a

(h2) = {RA,RB} and

D1
θb

(h2) = {RC,RD}.
At the second step (k = 2), Bob’s strategy RC is eliminated both from B1

θa
(h0) and B1

θ′a
(h0).

This is because at h0 both Θa-types of Ann (i) reason about h1, and (ii) deem θb possible. On the

other hand, RC is eliminated from B1
θa

(h2) but not from B1
θ′a

(h2), the reason being that h1 belongs

to Fθa(h2) but not to Fθ′a(h2). Thus, we obtain B2
θa

(h0) = B2
θ′a

(h0) = {L,RD}, B2
θa

(h2) = {RD}
and B2

θ′a
(h2) = {RC,RD}. Then, RA is eliminated from D1

θa
(h0) and from D1

θ′a
(h0), as it is strictly

dominated by L at h0 for both Θa-types. Furthermore, RA is also eliminated from D1
θa

(h2) but not
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from D1
θ′a

(h2), because it is strictly dominated by RB at h2 in the decision problem
(
B2
θa

(h2), D1
θa

(h2)
)

but not in the decision problem
(
B2
θ′a

(h2), D2
θ′a

(h2)
)
. Now, switching our attention to Bob’s unique

Θb-type θb, RB is not eliminated either from B1
θb

(h1) or from B1
θb

(h2). This is because h0 does not

belong to Fθb(h1) or to Fθb(h2). Also, RA is not eliminated from either B2
θb

(h1) or B2
θb

(h2), because

θb believes that Ann is of the Θa-type θ′a.

Notice that the procedure stops after two rounds of elimination. The strategies of Ann that survive

F-ICDP are L for θa and for θ′a, while for Bob’s unique Θb-type θb the strategies that survive the

procedure are L and RD. Indeed, observe for instance that L ∈ DF
θb

(h) for every h ∈ Hb(L) = {h1}
and also RD ∈ DF

θb
(h) for every h ∈ Hb(RD) = {h1, h2}.

At this point, we should also point out that the procedure yields, not only the strategy profiles

that survive for each Θi-type, but also the conditional beliefs at each history, e.g., according to the

procedure, the only belief that θa can have at h2 is to put probability 1 to Bob playing according to

the strategy RD. Observe that this differs from θ′a’s conditional beliefs at the same history h2. This

is not surprising, given that θa and θ′a reason about different histories while being at h2. Below, we

further elaborate on the fact that the procedure simultaneously induces strategies and conditional

beliefs for each Θi-type of each player at each history. /

Interpretation. Let us begin by stressing that at each step of our procedure we perform two types

of elimination, viz., for each player i ∈ I, each θi ∈ Θi and each h ∈ Hi, first we eliminate opponents’

strategy combinations from Bk
θi

(h), and then we eliminate strategies from Dk
θi

(h). Note that these

two types of elimination are conceptually very different. Let us for the time being focus on Bk
θi

(h).

Eliminating a strategy combination s−i ∈ S−i(h) from Bk
θi

(h) can be thought of as eliminating

all of θi’s first order conditional beliefs at h that put positive probability to s−i. Consequently,

this elimination can be interpreted as a restriction imposed on θi’s types, viz., eliminating s−i

from Bk
θi

(h) essentially means that we are ruling out all types ti ∈ Tθi with the property that

margS−i λ
h
i (ti)({s−i}) > 0. But then recall that this is exactly what F-CSBR does, i.e., it recursively

imposes restrictions on θi’s types. In the next section we show that there is indeed a very tight rela-

tionship between eliminating opponents’ strategies from Bk
θi

(h) and eliminating types from T k−1
θi

(h).

Thus, it becomes clear why earlier in this section we stated that the strategy combinations in Bk
θi

(h)

can be thought as those that θi could deem possible at h after k rounds of reasoning.

4.3. Characterization results

As we have already mentioned in the previous section, there is a very tight relationship between the

process of eliminating types from T k−1
θi

(h) and the process of eliminating opponents’ strategy profiles
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from Bk
θi

(h). The following result makes this relationship formal.

Theorem 1. Fix a structure F and consider a complete type structure TF. Then, for every player

i ∈ I, every θi ∈ Θi, every history h ∈ Hi and every k > 0, the following hold:

(i) If ti ∈ T k−1
θi

(h) then there exists some βhi ∈ ∆
(
Bk
θi

(h)
)

with bhi (ti) = βhi .

(ii) If βhi ∈ ∆
(
Bk
θi

(h)
)

then there exists some ti ∈ T k−1
θi

(h) with bhi (ti) = βhi .

For instance, in the context of Ex. 4 the previous result implies that, for every type ta ∈ T 1
θa

(h2)

it is the case that bh0a (ta) puts probability 0 to RC. This is because B2
θa

(h2) = {RD}. Still, we

should stress that part (ii) in the theorem above does not say that every ti with bhi (ti) ∈ ∆
(
Bk
θi

(h)
)

belongs to T k−1
θi

(h). To see this, consider a type ti ∈ Tθi which at h ∈ Hi puts probability 1 to a

strategy-type combination (s−i, t−i) ∈ Bk
θi

(h) ×
(
T k−3
−θi (h′) \ T k−2

−θi (h′)
)

where h′ ∈ Fθi(h), implying

that bhi (ti) ∈ ∆
(
Bk
θi

(h)
)

and also ti /∈ T k−1
θi

(h). Notice that such a type exists whenever the type

structure is complete.

With this result at hand, we can then characterize the strategies that can be rationally played

under F-CSBR, by means of the F-ICDP.

Theorem 2. Fix a structure F and consider a complete type structure TF. Then, for each player

i ∈ I and each θi ∈ Θi, it is the case that si ∈ ProjSi
(
Ri ∩ (Si × T F

θi
)
)

if and only if si ∈ DF
θi

(h) for

all h ∈ Hi(si).

The previous result formally states that a strategy can be rationally played (by a Θi-type θi)

under F-CSBR if and only it survives the F-ICDP (for θi). For instance, in the context of Ex. 4, the

only strategy that can be rationally played by θa under F-CSBR is L, as this is the only strategy

surviving the F-ICDP. Likewise, the strategies that can be rationally played by θb under F-CSBR

are L and RD, as both of them survive the F-ICDP.

5. Special cases of local reasoning

In this section we present some special cases of F. As we have already mentioned earlier in the paper,

in some of these cases with F ∈ F being commonly known, F-CSBR coincides with existing solution

concepts, such as common strong belief in rationality (Battigalli and Siniscalchi, 2002) or common

belief in future rationality (Perea, 2014). Below, we explicitly show the equivalence to these standard

cases.
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5.1. Reasoning about all histories: Forward induction

The general idea behind forward induction reasoning is that players observe their opponents’ past

behavior and use this information in order to form beliefs about their opponents’ future behavior.24

The most prominent forward induction solution concept is extensive-form rationalizability (EFR),

originally introduced by Pearce (1984), subsequently simplified by Battigalli (1997) and later epis-

temically characterized by Battigalli and Siniscalchi (2002) by means of rationality and common

strong belief in rationality (in a complete type structure). The main idea is that players try to

rationalize the opponents’ strategies whenever this is possible. That is, upon reaching an arbitrary

h ∈ Hi, player i is assumed to believe that her opponents are rational at all histories, as long as their

rationality is not contradicted by the fact that history h has been reached. Thus, EFR implicitly

postulates that player i at h reasons about the opponents’ rationality at all histories.

Let us first formally recall the concept of up to k-fold strong belief in rationality, as it was

originally defined by Battigalli and Siniscalchi (2002). Consider the following sequences of subsets

of Ti:

SB1
i := SBi(R−i)

SB2
i := SB1

i ∩ SBi

(
R−i ∩ (S−i × SB1

−i)
)

...

SBk
i := SBk−1

i ∩ SBi

(
R−i ∩ (S−i × SBk−1

−i )
)

...

with SBk−1
−i :=

�
j 6=i SB

k−1
j for each k > 1. Moreover, let

CSBi :=
∞⋂
k=1

SBk
i (15)

be the set of types that satisfy common strong belief in rationality (CSBR). Finally, we say that a

strategy si can be rationally played under CSBR whenever si ∈ ProjSi
(
Ri ∩ (Si × CSBi)

)
.

Let us now consider a structure F such that (Fi)i∈I is commonly known, with Fi(h) = H for all

h ∈ Hi and all i ∈ I. Then, we ask whether there is a formal relationship between Battigalli and

Siniscalchi’s (2002) CSBR on the one hand and our F-CSBR on the other. As it turns out the two

notions are equivalent, as shown below.

24FI is not a solution concept. Rather it is a general principle which is present in different concepts that have appeared

in the literature (e.g., Pearce, 1984; Battigalli and Siniscalchi, 2002; Stalnaker, 1998; Battigalli and Friedenberg, 2012;

Govindan and Wilson, 2009; Cho, 1987; Cho and Kreps, 1987; Reny, 1992; McLennan, 1985; Hillas, 1994).
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Proposition 1. Let the structure F be such that (Fi)i∈I is commonly known with Fi(h) = H for all

i ∈ I and all h ∈ Hi, and consider an arbitrary type structure TF. Then, for every player i ∈ I and

every k > 0, it is the case that SBk
i =

⋂
h∈Hi T

k
i (h).

Two immediate conclusions follow from the previous result. First, a type satisfies CSBR if and

only it satisfies F-CSBR. Then, it naturally follows that a strategy can be rationally played under

CSBR if and only if it can be rationally played under F-CSBR. This is formally stated in the following

corollary. The proof trivially follows from the definition of rationality.

Corollary 1. Let the structure F be such that (Fi)i∈I is commonly known with Fi(h) = H for all

i ∈ I and all h ∈ Hi, and consider an arbitrary type structure TF. Then, for every player i ∈ I, it is

the case that ProjSi
(
Ri ∩ (Si × CSBi)

)
= ProjSi

(
Ri ∩ (Si × T F

i )
)
.

Another direct consequence of the previous result – combined with Theorem 2 of the previous

section and the characterization result of Shimoji and Watson (1998) – is that a strategy survives k

steps of our F-ICDP if and only if it survives k steps of Shimoji and Watson’s (1998) ICDP. In this

sense, ICDP is a special case of F-ICDP.

Now, notice that in Proposition 1 we do not impose any restriction on the type structure, and

in particular we do not focus exclusively on complete type structures. In fact, it is known that

whenever we restrict attention to complete type structures, Rationality and CSBR epistemically

characterize the strategies that are predicted by Pearce’s (1984) Extensive Form Rationalizability

(EFR) (Battigalli and Siniscalchi, 2002). On the other hand, if we allow for an arbitrary type

structure, Rationality and CSBR yields an Extensive Form Best Response Set (EFBRS) (Battigalli

and Friedenberg, 2012). The fact that Proposition 1 does not restrict the type structure implies that

Rationality and F-CSBR also yield an EFBRS.

5.2. Reasoning about future histories: Backward induction

Contrary to forward induction, the general idea behind backward induction reasoning is that players

ignore their opponents’ realized past behavior when they form beliefs about their opponents’ future

behavior.25

The two concepts that in our view capture this idea – and nothing more – for arbitrary dynamic

games are the backward dominance procedure (BDP) (Perea, 2014) and backward rationalizability

25Once again, BI is not a solution concept but rather a general principle embodied in different concepts in the

literature (e.g., Selten, 1965; Kreps and Wilson, 1982; Perea, 2014; Baltag et al., 2009; Penta, 2015).
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(BR) (Penta, 2015).26 Note that these two concepts differ only in that BR postulates Bayesian updat-

ing, whereas BDP does not. Both these two concepts are epistemically characterized by rationality

and common belief in future rationality in a complete type structure (Perea, 2014).27 Throughout

the paper, we will mostly focus our discussion on BDP. Nonetheless, our analysis is also valid in the

case of BR.

The idea behind BDP is that players maintain the belief that their opponents will continue being

rational irrespective of the moves they have observed so far. That is, upon reaching a history h ∈ Hi

player i is assumed to believe that her opponents will behave rationally from that point onwards,

even if reaching this history contradicts the opponents’ rationality. Thus, BDP implicitly postulates

that player i at h reasons only about the opponents’ rationality at the current history and in the

future.

First, we define the event that player i believes in the opponents’ future rationality by

FBi(R−i) :=
⋂
h∈Hi

Bh
i

(
R

Fut(h)
−i

)
. (16)

Then, we consider the following sequence of subsets of Ti:

FB1
i := FBi(R−i)

FB2
i := FB1

i ∩Bi(S−i × FB1
−i)

...

FBk
i := FBk−1

i ∩Bi(S−i × FBk−1
−i )

...

where FBk−1
−i :=

�
j 6=i FB

k−1
j for each k > 1. We say that FBk

i contains the types that satisfy up to

k-fold belief in future rationality.28 Now, let

CFBi :=
∞⋂
k=1

FBk
i (17)

contain the types that satisfy common belief in future rationality (CBFR). We say that a strategy si

can be rationally played under CBFR whenever si ∈ ProjSi
(
Ri ∩ (Si × CFBi)

)
.

26Concepts like subgame perfect equilibrium (Selten, 1965) or sequential equilibrium (Kreps and Wilson, 1982)

impose additional equilibrium conditions, whereas the standard backward induction procedure is well-defined only for

perfect information extensive-form games without relevant ties.
27Formally speaking, Perea (2014) does not fix a type structure. Instead he looks across different (finite) type

structures. This approach is essentially equivalent to ours, as every finite type structure can be embedded into the

complete type structure that we use here via a type morphism that preserves the conditional belief hierarchies.
28Notice that in the previous definition we have the set Bi(S−i × FBk−1−i ) rather than Bi

(
R−i ∩ (S−i × FBk−1−i )

)
.

This is in contrast to the respective definition of “up to k-fold strong belief in rationality”. This is because – unlike

strong belief – Bi is a monotonic operator (Battigalli and Siniscalchi, 2002).
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The previous idea – of backward induction postulating that players disregard the future – is

formally captured by the assumption that Fi(h) = Fut(h) for all h ∈ Hi and all i ∈ I. Then,

it is natural to investigate the formal relationship between belief in future rationality on the one

hand and strong belief in rationality on the other. First, let us point out that whenever F is such

that Fi(h) = Fut(h), it is by definition the case that strong belief is directly reduced to standard

belief. The reason is that rationality in Fi(h) will never be contradicted by what i has already

observed, as Fi(h) does not contain any past history, i.e., formally speaking, it is the case that

(S−i(h) × T−i) ∩ RFi(h)
−i 6= ∅. Thus, it is not surprising that the two notions are equivalent in terms

of the strategy profiles they predict. Still, this is not necessarily the case for the types they induce.

Let us first illustrate with an example a case where CBFR does not coincide with F-CSBR.

Example 5. Consider the following dynamic game between Ann and Bob, and let (Fa, Fb) be com-

monly known, with Fi(h) = Fut(h) for each i ∈ {a, b} and each h ∈ Hi, i.e., Fa(h0) = {h0, h1} and

Fb(h1) = {h1}.

h0(a)

h1(b)
RL

L R(1,0)

(1,1) (1,0)

Now, consider the type structure TF with the type spaces being Ta = {ta, t′a} and Tb = {tb} and the

corresponding conditional beliefs being given by

λh0a (ta) =
(
1⊗ (R, tb)

)
λh0a (t′a) =

(
1⊗ (L, tb)

)
λh1b (tb) =

(
1⊗ (R, ta)

)
First notice that the only type of Ann that is consistent with up to 1-fold belief in future rationality

is t′a, viz., formally, FR1
a = {t′a}. This is because, Bob’s unique rational strategy at h1 is to choose

L. This implies that tb does not satisfy up to 2-fold belief in future rationality. Indeed, observe that

λh1b (tb)(Sa×FR1
a) = λh1b (tb)(Sa×{t′a}) = 0. In fact, it is the case that FR2

b = ∅, i.e., there is no type

of Bob satisfying up to 2-fold belief in future rationality.

Now, switching our attention to F-CSBR, observe that again the only type of Ann satisfying

1-fold strong belief in rationality at h0 is t′a, viz., T 1
a (h0) = {t′a}. But, then tb does satisfy up to

2-fold strong belief in rationality at h1. This is because Fb(h1) = {h1}, and therefore T kb (h1) = Tb

for all k > 0. /
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The reason for the previously illustrated divergence between FB2
b and

⋂
h∈Hb T

2
b (h) is that in

order for a type tb to satisfy up to 2-fold belief in future rationality, it must attach at h1 probability

1 to Sa×FB1
a. But then, FB1

a contains Ann’s types that require Ann to believe at h0 that Bob will

be rational from that point onwards. In other words, tb must believe at h1 that Ann believed at the

earlier history h0 that Bob would be rational at all histories following h0. On the other hand, in

order for a type tb to satisfy up to 2-fold strong belief in rationality, he must believe at h1 that Ann

will believe at all histories following h1 that Bob will be rational at all future histories. However, in

the previous example there is no history following h1, and hence no requirement is being imposed. In

this respect our concept of F-CSBR with Fi(h) = Fut(h) is a truly backward induction concept as it

completely disregards the past. In particular, it postulates that players ignore not only the opponents’

past behavior, but also the opponents’ reasoning at past histories.

Still, even though F-CSBR and CBFR differ in the conditional beliefs that they induce, they

coincide in the predictions they make. In particular, as we show below, given a complete type

structure, a strategy can be rationally played under F-CSBR if and only if it can be rationally played

under CBFR.

Proposition 2. Let the structure F be such that (Fi)i∈I is commonly known with Fi(h) = Fut(h) for

all i ∈ I and all h ∈ Hi, and consider a complete type structure TF. Then, for every player i ∈ I, it

is the case that ProjSi
(
Ri ∩ (Si × CFBi)

)
= ProjSi

(
Ri ∩ (Si × T F

i )
)
.

The proof of the result follows almost directly from Lemma B3 in Appendix B, which formally

proves that BDP and F-ICDP are essentially equivalent.

Finally, notice that while F-CSBR and CBFR yield the same predicted strategies in a complete

type structure, this is not necessarily the case for an arbitrary type structure. To see this recall

Example 5. In particular, observe that, given the type structure that we assume, Rationality and

CBFR yields an empty set of predictions, whereas Rationality and F-CSBR induces a non-empty

prediction, viz., ProjSb
(
Rb ∩ (Sb × T F

b )
)

= {L}, while ProjSb
(
Rb ∩ (Sb × CFBb)

)
= ∅.

6. Discussion

6.1. Infinite structures

Throughout the paper we have focused exclusively on finite structures F. The main reason for do-

ing so is for simplicity. In our view, almost all interesting cases of local reasoning can be already

modelled within a finite structure and therefore we do not believe that allowing for arbitrary struc-

tures would provide any additional insight. Still, it is natural to ask whether our results also hold
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in the general case. Our conjecture is that they do, but one should first impose some additional

topological/measure-theoretic structure. For instance, if we take some F with Θi being an arbitrary

compact metrizable space, we may need to impose additional restrictions in order to construct the

complete type structure TF. The reason is that in our analysis different Θi-types of player i are

often treated as if they were different players. Finally, on a more practical issue, one of the major

advantages of our F-ICDP is its tractability. This would not be the case anymore if F was infinite,

and therefore it would become challenging to compute the predictions of the model.

6.2. Relationship to unawareness

As we have already mentioned in the paper, our framework differs from the one concerning dynamic

games with unawareness, not only in its technical aspects but also conceptually. In fact, observe

that the underlying idea behind all models of unawareness is that players cannot even “see” some

parts of the game, such as certain moves or even entire histories (e.g., Feinberg, 2012; Heifetz et al.,

2013; Halpern and Rêgo, 2014). As a consequence, players do not reason about these parts of the

game, similarly to what happens in our framework. However, the difference between the two is that

in games with unawareness players do not even form beliefs about these parts of the game, whereas

in our model the players do form beliefs, but these beliefs are completely arbitrary.

This distinction is sometimes crucial, not only conceptually, but also for our predictions. To see

this consider the following simple game, supposing that at h0 Ann does not reason about h2, thus

h0(a)

h1(b)

h2(a)

RL

L R

L R

(1,1)

(0,0)

(2,2) (2,2)

exhibiting limited foresight. Still Ann can figure out that Bob will choose R at h1, even without

thinking about how Bob (at h1) will reason about her behavior at h2. As a consequence, our concept

predicts that she will choose R at h0. On the other hand, if she was unaware at h0 of the existence

of R at h1, she would choose L at h0.

A. Complete type structures

In this section we construct a canonical type structure TF for any structure F. This type structure

will be complete. For notation simplicity, we prove our claim for two players, but our result can be
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directly generalized to any finite number of players.

We begin by fixing some F =
(
(Θi)i∈I , (fi)i∈I , (gi)i∈I

)
, and for each h ∈ Hi we consider the

following sequence of spaces:

Ω0
i (h) := Θi × Sj(h)

Ω1
i (h) := Ω0

i (h)×
(¡
h′∈Hj

∆
(
Ω0
j(h
′)
))

...

Ωk+1
i (h) := Ωk

i (h)×
(¡
h′∈Hj

∆
(
Ωk
j (h
′)
))

...

Obviously, Ωk
i (h) is a compact metrizable space for every k ≥ 0. Then, we define the product spaces

T̃ 0
i (h) :=

�
k≥0 ∆

(
Ωk
i (h)

)
and T̃ 0

i :=
�

h∈Hi T̃
0
i (h). For notation simplicity, let us denote the typical

element of T̃ 0
i by ti. Hence, each ti ∈ T̃ 0

i is essentially an abbreviation for
(
µ1
ti

(h), µ2
ti

(h), . . .
)
h∈Hi

,

with µkti(h) ∈ ∆
(
Ωk−1
i (h)

)
standing for the corresponding coordinate of ti. As usual, we impose the

standard coherency condition, thus restricting attention to collections of conditional beliefs in

T̃ 1
i :=

{
ti ∈ T̃ 0

i : margΩki (h) µ
k+2
ti

(h) = µk+1
ti

(h) for all k ≥ 0 and all h ∈ Hi

}
Then, it follows from earlier works of Brandenburger and Dekel (1993) and Battigalli and Siniscalchi

(1999) that there exists a homeomorphism π̃i : T̃ 1
i →
�

h∈Hi ∆
(
Θi × Sj(h) × T̃ 0

j

)
, with π̃hi (ti) :=

Proj∆(Θi×Sj(h)×T̃ 0
j ) π̃i(ti). In fact, this is a direct consequence of Kolmogorov extension theorem. Now,

for each k > 1, we recursively define

T̃ ki :=
{
ti ∈ T̃ k−1

i : π̃hi (ti)
(
Θi × Sj(h)× T̃ k−1

j

)
= 1 for all h ∈ Hi

}
and we let T̃i :=

⋂
k≥0 T̃

k
i be the set of conditional belief hierarchies that satisfy coherency and

common certainty in coherency. Then, again from Brandenburger and Dekel (1993) and Battigalli and

Siniscalchi (1999) it follows that there exists a homeomorphism πi : T̃i →
�

h∈Hi ∆
(
Θi×Sj(h)× T̃j

)
,

once again with πhi (ti) := Proj∆(Θi×Sj(h)×T̃j) πi(ti). Note that T̃i is a compact metrizable space.

Now, for an arbitrary θi ∈ Θi, define

T̂ 1
θi

:=
{
ti ∈ T̃i : πhi (ti)

(
{θi} × Sj(h)× T̃j

)
= 1 for all h ∈ Hi

}
and let T̂ 1

i :=
⋃
θi∈Θi

T̂ 1
θi

. Observe that {θi} is closed in Θi, and therefore T̂ 1
θi

is closed in T̃i (Aliprantis

and Border, 1994, Cor. 15.6). Thus, T̂ 1
i is also closed in T̃i, as it is the finite union of closed subsets.

In fact, T̂ 1
i is also open, as the complement of the closed subset

⋃
θ′i∈Θi\{θi} T̂

1
θ′i

. Then, for every

θi ∈ Θi and every k > 1, we recursively define

T̂ kθi :=
{
ti ∈ T̂ k−1

θi
: πhi (ti)

(
{θi} × Sj(h)× T̂ k−1

j

)
= 1

}
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and we let T̂θi :=
⋂
k≥0 T̂

k
θi

and moreover T̂i :=
⋃
θi∈Θi

T̂θi . Using a similar argument as above, it

follows from Aliprantis and Border (1994, Cor. 15.6) that T̂ kθi is closed. Hence, T̂θi is also closed as

the intersection of closed subsets, and therefore so is T̂i as the finite union of closed sets.

Now, for an arbitrary θi ∈ Θi, define

T 1
θi

:=
{
ti ∈ T̂θi : πhi (ti)

(
{θi} × Sj(h)× T̂θj

)
= ghi (θi)(θj) for all θj ∈ Θj and all h ∈ Hi

}
.

Observe that T̂θj is clopen, and therefore both {ti ∈ T̂θi : πhi (ti)({θi} × Sj(h) × T̂θj) ≥ ghi (θi)(θj)}
and {ti ∈ T̂θi : πhi (ti)({θi} × Sj(h)× T̂θj) ≤ ghi (θi)(θj)} are closed (Aliprantis and Border, 1994, Cor.

15.6), thus implying that so is T 1
θi

. Then, for every θi ∈ Θi and every k > 1, we recursively define

T kθi :=
{
ti ∈ T k−1

θi
: πhi (ti)

(
{θi} × Sj(h)× T k−1

j

)
= 1

}
and let Tθi :=

⋂
k≥0 T

k
θi

and moreover Ti :=
⋃
θi∈Θi

Tθi . Following the same steps as above, we show

that Tθi and Ti are clopen and therefore compact metrizable subspaces.

Following Brandenburger and Dekel (1993) and Battigalli and Siniscalchi (1999), we show that

there exists a continuous function πi : Ti →
�

h∈Hi ∆
(
Θi×Sj(h)×Tj

)
such that for every (νhi )h∈Hi ∈

�
h∈Hi ∆

(
Θi×Sj(h)×Tj

)
with νhi

(
{θi}×Sj(h)×Tθj)

)
= ghi (θi)(θj) for some θi ∈ Θi and for all h ∈ Hi

and all θj ∈ Θj, there exists some ti ∈ Tθi such that πhi (ti) = νhi for all h ∈ Hi. Finally, define the

type structure TF =
(
(Ti)i∈I , (φi)i∈I , (λi)i∈I

)
, by letting φi(tθi) := θi and λhi (tθi) := margSj(h)×Tj π

h
i (ti)

for every θi ∈ Θi and every h ∈ Hi. Obviously, TF is complete.

B. Proofs

B.1. Proofs of Section 4

We first introduce some additional notation and prove some intermediate results that we will use

throughout the proof of our main theorem. Throughout the entire section, without loss of generality

we consider a given structure F such that for each i ∈ I, each θi ∈ Θi and each h ∈ Hi there exists a

unique θ−i ∈ Θ−i with ghi (θi)(θ−i) = 1.

Lemma B1 (Optimality principle). Fix a structure F, an arbitrary player i ∈ I, an arbitrary θi ∈ Θi,

an arbitrary history h ∈ Hi and some k > 0. Then, a strategy si ∈ Si(h) is rational in
(
Bk
θi

(h), Si(h)
)

if and only if it is rational in
(
Bk
θi

(h), Dk−1
θi

(h)
)
.

Proof . Necessity is straightforward, i.e., if si is rational in
(
Bk
θi

(h), Si(h)
)
, then it is obviously the

case that si ∈ Dk−1
θi

(h) and moreover it is rational in the decision problem
(
Bk
θi

(h), Dk−1
θi

(h)
)
. Now,
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let us now prove sufficiency. Take an arbitrary si ∈ Dk−1
θi

(h) and assume that it is rational in(
Bk
θi

(h), Dk−1
θi

(h)
)
. Then, by definition, there exists some βhi ∈ ∆

(
Bk
θi

(h)
)

such that

Uh
i (si, β

h
i ) ≥ Uh

i (s′i, β
h
i ) (B.1)

for all s′i ∈ Dk−1
θi

(h). Now, assume – contrary to what we want to show – that si is not rational in(
Bk
θi

(h), Si(h)
)
, and take an arbitrary rational strategy s′′i given βhi . Thus, it is the case that

Uh
i (s′′i , β

h
i ) > Uh

i (si, β
h
i ). (B.2)

Notice that the last inequality is strict, because otherwise si would have been a rational strategy

in
(
Bk
θi

(h), Si(h)
)
. Moreover, from the previous step it follows that s′′i ∈ Dk−1

θi
(h). But then, this

contradicts the fact that si is rational in
(
Bk
θi

(h), Dk−1
θi

(h)
)
, thus implying that si must necessarily

be rational in
(
Bk
θi

(h), Si(h)
)
.

Now, let T kθi :=
⋂
h∈Hi T

k
θi

(h). Then, fix an arbitrary G ∈ H := 2H \ {∅}, and define

Dk
θi

(G) := {si ∈ Si : si ∈ Dk
θi

(h) for all h ∈ Hi(si) ∩G} (B.3)

Rk
θi

(G) := {si ∈ Si : there is ti ∈ T kθi such that (si, ti) ∈ Rh
i for all h ∈ Hi(si) ∩G}

= ProjSi

(
RG
i ∩

(
Si × T kθi

))
. (B.4)

Then, we define the set of θi’s strategies that survive F-ICDP at all histories in G by

Dθi(G) :=
∞⋂
k=1

Dk
θi

(G).

Likewise, we define the set of θi’s strategies that are rational given some type (in Tθi) that satisfies

F-CSBR at all histories in G by

Rθi(G) :=
∞⋂
k=1

Rk
θi

(G).

Construction of conditional beliefs. Fix an arbitrary G ∈ H, an arbitrary θi ∈ Θi and an

arbitrary si ∈ D1
θi

(G). Then, it follows directly from Pearce (1984, Lem. 3) that for every h ∈
Hi(si) ∩G there exists at least one conditional belief βhθi,si,G ∈ ∆

(
S−i(h)

)
such that

Uh
i (si, β

h
θi,si,G

) ≥ Uh
i (s′i, β

h
θi,si,G

) (B.5)

for all s′i ∈ Si(h). Now, consider the following two cases:

• Suppose there exists some k ∈ N such that si ∈ Dk
θi

(G)\Dk+1
θi

(G). Then, it follows by definition

that si is rational in
(
Bk
θi

(h), Dk−1
θi

(h)
)
. Hence, it follows from the optimality principle (Lemma

B1) that we can choose some βhθi,si,G ∈ ∆
(
Bk
θi

(h)
)

satisfying Eq. (B.5).
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• Suppose that si ∈ Dk
θi

(G) for all k ∈ N. Then, it follows by definition that si is rational in(
Bk
θi

(h), Dk−1
θi

(h)
)

for every k ∈ N. Thus we can choose some βhθi,si,G ∈ ∆
(
BF
θi

(h)
)

satisfying

Eq. (B.5).

In either of the two cases, complete the collection of conditional beliefs
(
βhθi,si,G

)
h∈Hi

by considering

arbitrary conditional beliefs βh
′

θi,si,G
∈ ∆

(
S−i(h

′)
)

for every h′ ∈ Hi \
(
Hi(si) ∩G

)
.

Construction of types. For each player i ∈ I and each θi ∈ Θi define the finite set

Ψθi := {ψθi,si,G | (si, G) ∈ Si ×H},

and let Ψi :=
⋃
θi∈Θi

Ψθi and Ψ−i :=
�

j 6=i Ψj. Now, define the function φi : Ψi → Θi by φi(ψi) = θi

for each ψi ∈ Ψθi . Moreover, define the mapping γhi : Ψi → ∆
(
S−i(h) × Ψ−i

)
for each h ∈ Hi as

follows: For each si ∈ D1
θi

(G), let

γhi (ψθi,si,G)(s−i, ψ−i) :=

β
h
θi,si,G

(s−i) if ψj = ψθj ,sj ,Fθi (h) for all j 6= i and ghi (θi)
(
(θj)j 6=i

)
= 1

0 otherwise.

On the other hand, if si /∈ D1
θi

(G), let γhi (ψθi,si,G) be an arbitrary probability measure over S−i(h)×
Ψ−i such that

(
margΨ−i γ

h
i (ψθi,si,G)

)(�
j 6=i φ

−1
j (θj)

)
= ghi (θi)

(
(θj)j 6=i

)
for all (θj)j 6=i ∈ Θ−i. Now, ob-

serve that
(
(Ψi)i∈I , (φi)i∈I , (γi)i∈I

)
is a finite type structure, implying that each ψi ∈ Ψi is associated

with a hierarchy of conditional beliefs.

Recall that we have assumed TF =
(
(Ti)i∈I , (φi)i∈I , (λi)i∈I

)
to be a complete type structure. Then,

it follows from Appendix A that there exists a function ξi : Ψi → Ti mapping each ψθi,si,G to a (unique)

type tθi,si,G := ξi(ψθi,si,G) ∈ Tθi such that (i) tθi,si,G and ψθi,si,G induce the same conditional belief

hierarchy, and moreover (ii) it is the case that φi(ψθi,si,G) = φi(tθi,si,G). Furthermore, notice that

by construction it is the case that λhi (tθi,si,G)(s−i, t−i) = γhi (ψθi,si,G)
(
s−i, ξ

−1
i (t−i)

)
for all (s−i, t−i) ∈

S−i × T−i. Finally, by construction it is the case that (si, tθi,si,G) ∈ RG
θi

whenever si ∈ D1
θi

(G).

Before moving on, for notation simplicity, let us adopt the convention that T 0
θi

(h) := Tθi .

Lemma B2. For every i ∈ I, every θi ∈ Θi, every G ∈ H and every k > 0, the following hold:

(i) If ti ∈ T k−1
θi

(h) then bhi (ti) ∈ ∆
(
Bk
θi

(h)
)
.

(ii) If si ∈ Dk
θi

(G) then tθi,si,G ∈ T k−1
θi

(h) for all h ∈ Hi(si) ∩G.

(iii) Rk−1
θi

(G) = Dk
θi

(G).

Proof. We prove the result by induction on k.
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Initial step. First, it is rather trivial to prove the result for k = 1. Indeed, observe that by

construction it is the case that BF,1
θi

(h) = BF,0
θi

(h) = S−i(h), and therefore ∆
(
BF,1
θi

(h)
)

= ∆
(
S−i(h)

)
,

thus implying that bhi (ti) ∈ ∆
(
BF,1
θi

(h)
)

for all ti ∈ Tθi , which proves (i). Moreover, recall from our

convention that T F,0
θi

(h) = Tθi , thus implying that tθi,si,G ∈ T
F,0
θi

(h) for all h ∈ Hi(si)∩G, irrespective

of whether si ∈ DF,1
θi

or not, which proves (ii). Finally, notice that

RF,0
θi

(G) = {si ∈ Si : there is ti ∈ T F,0
θi

(h) such that (si, ti) ∈ Rh
i for all h ∈ Hi(si) ∩G}

= {si ∈ Si : there is ti ∈ Tθi such that (si, ti) ∈ RG
i }

= DF,1
θi

(G)

which proves (iii).

Inductive step. We assume that the result holds for an arbitrary k > 0. We will refer to this as

our “induction assumption (IA)”. Then, we are going to prove it for k + 1.

Proof of (i): Fix some h ∈ Hi, and assume that ti ∈ T kθi(h). Then, by definition it is the case that

ti ∈ SBh
θi

(
R
Fθi (h)

−i ∩ (S−i × T k−1
−θi (Fθi(h)))

)
.

Then, we consider the following two cases:

(a) Let R
Fθi (h)

−i ∩ (S−i × T k−1
−θi (Fθi(h))) 6= ∅.

By the definition of strong belief (at h) it is the case that λhi (ti)
(
R
Fθi (h)

−i ∩(S−i×T k−1
−θi (Fθi(h)))

)
=

1. Now, recall by Eq. (B.4) that

Rk−1
−θi (Fθi(h)) = ProjS−i

(
R
Fi(h)
−i ∩ (S−i × T k−1

−θi (Fθi(h)))
)
,

and therefore it follows that bhi (ti)
(
Rk−1
−θi (Fθi(h))

)
= 1. Now observe that

Rk−1
−θi

(
Fθi(h)

)
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ Rk−1

θj

(
Fθi(h)

) }
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ Dk

θj

(
Fθi(h)

) } (
by the IA

)
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ Dk

θj
(h′) for all h′ ∈ Hj ∩ Fθi(h)

}
, (B.6)

with (θj)j 6=i ∈ Θ−i being such that ghi (θi)
(
(θj)j 6=i

)
= 1. Thus, it is the case that

Ck
θi

(h) =
¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ Dk

θj
(h′) for all h′ ∈ Hj ∩ Fθi(h)

}
= S−i(h) ∩Rk−1

−θi

(
Fθi(h)

)
. (B.7)
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Now, there are two possibilities. According to the first possibility we have Ck
θi

(h) 6= ∅, in which

case we obtain

Bk+1
θi

(h) = Ck
θi

(h)

= S−i(h) ∩Rk−1
−θi

(
Fθi(h)

)
.

Then, by combining bhi (ti)
(
Rk−1
−θi (Fθi(h))

)
= 1 with bhi (ti)

(
S−i(h)

)
= 1, it is straightforward to

obtain bhi (ti)
(
Bk+1
θi

(h)
)

= 1. According to the second possibility we have Ck
θi

(h) = ∅, in which

case we obtain Bk+1
θi

(h) = Bk
θi

(h). But then, since ti ∈ T kθi(h) ⊆ T k−1
θi

(h), it follows from the IA

that bhi (ti)
(
Bk+1
θi

(h)
)

= bhi (ti)
(
Bk
θi

(h)
)

= 1, which completes this part of the proof for the first

case.

(b) Let R
Fθi (h)

−i ∩ (S−i × T k−1
−θi (Fθi(h))) = ∅.

Then, it follows by definition that

Rk−1
−θi

(
Fθi(h)

)
∩ S−i(h) ⊆ Rk−1

−θi

(
Fθi(h)

)
= ProjS−i

(
R
Fθi (h)

−i ∩ (S−i × T k−1
−θi (Fθi(h)))

)
= ∅ (B.8)

Now, using the same reasoning as in Eq. (B.6), combined with Eq. (B.8), we obtain

Rk−1
−θi (Fθi(h)) ∩ S−i(h) =

¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ Dk

θj
(h′) for all h′ ∈ Hj ∩ Fθi(h)

}
= ∅,

again with (θj)j 6=i ∈ Θ−i being such that ghi (θi)
(
(θj)j 6=i

)
= 1. Moreover, using the same

argument as in Eq. (B.7), we obtain

Ck
θi

(h) = S−i(h) ∩Rk−1
−θi

(
Fθi(h)

)
.

Thus, combining the previous two equations, we conclude that Ck
θi

(h) = ∅. Hence, Bk+1
θi

(h) =

Bk
θi

(h). Finally, since ti ∈ T kθi(h) ⊆ T k−1
θi

(h), it follows from the IA that bhi (ti)
(
Bk+1
θi

(h)
)

=

bhi (ti)
(
Bk
θi

(h)
)

= 1, which completes the proof of part (i).

Proof of (ii): Take an si ∈ Dk+1
θi

(G), and consider some h ∈ Hi(si) ∩G. Since Dk+1
θi

(G) ⊆ Dk
θi

(G),

it follows by the IA that tθi,si,G ∈ T k−1
θi

(h). Hence, it suffices to prove that

tθi,si,G ∈ SBh
θi

(
R
Fθi (h)

−i ∩
(
S−i × T k−1

−θi (Fθi(h))
))
. (B.9)

The latter amounts to proving that[
R
Fθi (h)

−i ∩
(
S−i×T k−1

−θi (Fθi(h))
)
6= ∅

]
⇒
[
λhi (tθi,si,G)

(
R
Fθi (h)

−i ∩
(
S−i×T k−1

−θi (Fθi(h))
))

= 1
]

(B.10)
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First, notice that tθi,si,G ∈ SBh
θi

(
R
Fθi (h)

−i ∩
(
S−i × T k−1

−θi (Fθi(h))
))

is trivially satisfied whenever

R
Fθi (h)

−i ∩
(
S−i × T k−1

−θi (Fθi(h))
)

= ∅. Hence, we will focus on the case where R
Fθi (h)

−i ∩
(
S−i ×

T k−1
−θi (Fθi(h))

)
6= ∅. Recall that

(
(θj)j 6=i

)
is the unique element of Θ−i receiving positive probability

by ghi (θi). Then, for every j 6= i, there exists some (s∗j , t
∗
j) ∈ Sj(h) × Tθj such that (i) (s∗j , t

∗
j) ∈ Rh′

j

for all h′ ∈ Hj(s
∗
j) ∩ Fθi(h), and (ii) t∗j ∈ T k−1

θj
(h′) for all h′ ∈ Hj ∩ Fθi(h).

Now, we are going to prove that s∗j ∈ Dk
θj

(h′) for every h′ ∈ Hj(s
∗
j) ∩ Fθi(h). To do so, take an

arbitrary tk−1
j ∈ T k−1

θj
, and define the type t∗∗j by

λh
′

j (t∗∗j ) :=

λ
h′
j (t∗j) for each h′ ∈ Hj(s

∗
j) ∩ Fθi(h),

λh
′
j (tk−1

j ) for each h′ ∈ Hj \
(
Hj(s

∗
j) ∩ Fθi(h)

)
.

Notice that since TF is a complete type structure, such a type exists. Observe that by construction

it is the case that (s∗j , t
∗∗
j ) ∈ RFθi (h)

j , and moreover t∗∗j ∈ T k−1
θj

. Therefore, we obtain

s∗j ∈ Rk−1
θj

(
Fθi(h)

)
∩ Sj(h)

= Dk
θj

(
Fθi(h)

)
∩ Sj(h)

(
by the IA

)
=
{
sj ∈ Sj(h) : sj ∈ Dk

θj
(h′) for all h′ ∈ Hj(sj) ∩ Fθi(h)

}
6= ∅.

The latter implies directly by definition that Ck
θi

(h) 6= ∅. Hence, it is – also by definition – the case

that

Bk+1
θi

(h) = Ck
θi

(h). (B.11)

Now, notice that by construction λhi (tθi,si,G) put positive probability only to strategy-type pairs (sj, tj)

such that tj = tθj ,sj ,Fθi (h). Moreover, since si ∈ Dk+1
θi

(G) it follows from the construction of the beliefs

that bhi (tθi,si,G) ∈ ∆
(
Bk+1
θi

(h)
)
. Therefore, it follows from Eq. (B.11) that margSj×Tj λ

h
i (tθi,si,G) puts

positive probability only to strategy-type pairs (sj, tj) ∈ Sj(h) × Tj such that tj = tθj ,sj ,Fi(h) and

sj ∈ Dk
θj

(h′) for all h′ ∈ Hj(sj) ∩ Fθi(h). Hence, from the IA it follows that margSj×Tj λ
h
i (tθi,si,G)

assigns probability 1 to

R
Fθi (h)

j ∩
{

(sj, tj) ∈ Sj × Tj : tj ∈ T k−1
θj

(h′) for all h′ ∈ Hj ∩ Fθi(h)
}

for every j 6= i. Therefore, by definition, tθi,si,G ∈ T kθi(h), which completes the proof of part (ii).

Proof of (iii): First, we prove that Rk−1
θi

(G) ⊆ Dk
θi

(G): Take an arbitrary si ∈ Rk−1
θi

(G). By

definition there exists a type in ti ∈ T k−1
θi

such that (si, ti) ∈ RG
i . Now, by part (i) of the result

– that we have already proven above – it follows that bhi (ti)
(
Bk
θi

(h)
)

= 1 for all h ∈ Hi(si) ∩ G,

implying that at all histories h ∈ Hi(si) ∩ G, the strategy si is rational in the decision problem
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(
Bk
θi

(h), Dk−1
θi

(h)
)
. Thus, we conclude that si ∈ Dk

θi
(h) for all h ∈ Hi(si) ∩ G. The latter directly

implies that si ∈ Dk
θi

(G) which completes this part of the proof.

Second, we prove that Dk
θi

(G) ⊆ Rk−1
θi

(G): Take an arbitrary si ∈ Dk
θi

(G). Then, by part (ii) that

we have already proven above, it follows that tθi,si,G ∈ T k−1
θi

(h) for all h ∈ G ∩ Hi(si). Now, fix an

arbitrary type tk−1
i ∈ T k−1

θi
, and define the type t∗θi,si,G ∈ Tθi by

λhi (t
∗
θi,si,G

) :=

λ
h
i (tθi,si,G) for each h ∈ Hi(si) ∩G,

λhi (t
k−1
i ) for each h ∈ Hi \

(
Hi(si) ∩G

)
.

Notice that since TF is a complete type structure, such a type exists. Then, by construction it is the

case that t∗θi,si,G ∈ T
k−1
θi

, and therefore it follows that (si, t
∗
θi,si,G

) ∈ Rh
i for all h ∈ G ∩Hi(si). Hence,

we conclude that si ∈ Rk−1
θi

(G), which completes the proof of the lemma.

Proof of Theorem 1. Take an arbitrary i ∈ I, an arbitrary θi ∈ Θi and some h ∈ Hi.

Proof of (i): It follows directly from Lemma B2.i.

Proof of (ii): Fix an arbitrary βhi ∈ ∆
(
BF,k
θi

(h)
)
, and let s∗i ∈ D

F,k
θi

(h) be such that

Uh
i (s∗i , β

h
i ) ≥ Uh

i (si, β
h
i ) (B.12)

for all si ∈ DF,k−1
θi

(h). In fact, notice that Eq. (B.12) holds, not only for every si ∈ DF,k−1
θi

(h), but

for every si ∈ Si(h) (see Lemma B1). Now, we define βhθi,s∗i ,{h}
:= βhi , and construct the type tθi,s∗i ,{h}

like we did above. Then, by Lemma B2.ii, it is the case that tθi,s∗i ,{h} ∈ T
F,k−1
θi

(h), which – together

with the fact that βhθi,s∗i ,{h}
:= bhi (tθi,s∗i ,{h}) – completes the proof.

Proof of Theorem 2. Observe that by construction

RF
θi

(H) = ProjSi
(
Ri ∩ (Si × T F

θi
)
)

DF
θi

(H) = {si ∈ Si : si ∈ DF
θi

(h) for all h ∈ Hi(si)},

and recall by Lemma B2.iii that RF
θi

(H) = DF
θi

(H), which completes the proof.

B.2. Proofs of Section 5

In this section, we focus on structures F with commonly known F ∈ F , implying that Θi is a singleton

for each i ∈ I. Thus, recall that we identify the unique θi with i, e.g., we write Fi(h) for Fθi(h).

Proof of Proposition 1. We proceed by induction on k. First, note that SB1
i =

⋂
h∈Hi T

1
i (h).

Then, assume that for every i ∈ I it is the case that SBk−1
i =

⋂
h∈Hi T

k−1
i (h). Now, observe that for
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every i ∈ I and h ∈ Hi, it is the case that

T k−1
−i
(
Fi(h)

)
=
¡

j 6=i

{
tj ∈ Tj : tj ∈ T k−1

j (h′) for all h′ ∈ Hj}

=
¡

j 6=i

( ⋂
h′∈Hj

T k−1
j (h′)

)
=
¡

j 6=i
SBk−1

j

= SBk−1
−i .

Hence, it is the case that

SBk
i = SBk−1

i ∩ SBi

(
R−i ∩ (S−i × SBk−1

−i )
)

=
( ⋂
h∈Hi

T k−1
i (h)

)
∩
( ⋂
h∈Hi

SBh
i

(
R
Fi(h)
−i ∩

(
S−i × T k−1

−i
(
Fi(h)

))))
=

⋂
h∈Hi

(
T k−1
i (h) ∩ SBh

i

(
R
Fi(h)
−i ∩

(
S−i × T k−1

−i
(
Fi(h)

))))
=

⋂
h∈Hi

T ki (h)

which completes the proof.

In order to prove Proposition 2, we first recall the formal definition of the backward dominance

procedure (BDP), originally introduced by Perea (2014).

Backward dominance procedure. For an arbitrary i ∈ I and an arbitrary h ∈ H, consider the

following sequence of subsets of Si(h):

Q1
i (h) := Si(h)

Q2
i (h) := {si ∈ Q1

i (h) : si is rational in
(
Q1
−i(h

′), Q1
i (h
′)
)

at all h′ ∈ Hi(si) ∩ Fut(h)}
...

Qk
i (h) := {si ∈ Qk−1

i (h) : si is rational in
(
Qk−1
−i (h′), Qk−1

i (h′)
)

at all h′ ∈ Hi(si) ∩ Fut(h)}
...

for each k > 0, where Qk
−i(h) =

�
j 6=iQ

k
j (h). We say that a strategy si survives k steps of the

procedure at h ∈ Hi whenever si ∈ Qk
i (h). The idea is that a strategy survives k steps of the

procedure at some h ∈ Hi whenever it is not strictly dominated in the corresponding normal form

game – that has survived so far – at every history following h where i is active. Then, we define

Qi(h) :=
∞⋂
k=1

Qk
i (h), (B.13)
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and we say that a strategy survives the procedure whenever it is the case that si ∈ Qi(h) for all

h ∈ Hi(si).

Now, let us prove an intermediate lemma that we will use in the proof of Proposition 2.

Lemma B3. Let the structure F be such that (Fi)i∈I is commonly known with Fi(h) = Fut(h) for

all i ∈ I and all h ∈ Hi. Then, for every i ∈ I, every h ∈ Hi and every k > 1 the following hold:

(i) Qk
−i(h) = Bk

i (h).

(ii) Qk+1
i (h) = {si ∈ Si(h) : si ∈ Dk

i (h
′) for all h′ ∈ Fut(h) ∩Hi(si)}.

Proof. We proceed to prove the result by induction on k. The result trivially holds for k = 1. We

assume it holds for k − 1 and we will prove it for k. We begin with part (i). Fix an arbitrary i ∈ I
and an arbitrary h ∈ Hi, and observe that

Bk
i (h) = Ck−1

i (h)
(
because Ck−1i (h) 6= ∅

)
=
¡

j 6=i
{sj ∈ Sj(h) : sj ∈ Dk−1

j (h′) for all h′ ∈ Hj(sj) ∩ Fut(h)}

=
¡

j 6=i
Qk
j (h)

(
by the IA

)
= Qk

−i(h),

which completes the inductive step of the proof for part (i).

Now, we move to the inductive step for part (ii). Again, fix an arbitrary i ∈ I and an arbitrary

h ∈ Hi, and take an arbitrary si ∈ Qk+1
i (h). Then, by definition, si is rational in

(
Qk
−i(h

′), Qk
i (h
′)
)

for every h′ ∈ Fut(h)∩Hi(si), and by part (i) of the present result, si is rational in
(
Bk
i (h′), Qk

i (h
′)
)

for every h′ ∈ Fut(h) ∩Hi(si). Now, notice that for every s′i ∈ Si(h′),

s′i is rational in
(
Bk
i (h′), Qk

i (h
′)
)
⇔ s′i is rational in

(
Bk
i (h′), Si(h

′)
)

⇔ s′i is rational in
(
Bk
i (h′), Dk−1

i (h′)
)
.

The first equivalence follows from Perea (2012, Lem. 8.14.6), while the second one follows from

Lemma B1 above. Hence, si is rational in
(
Bk
i (h′), Dk−1

i (h′)
)

for every h′ ∈ Fut(h) ∩ Hi(si), thus

implying that si ∈ Dk
i (h
′) for every h′ ∈ Fut(h) ∩Hi(si). Therefore,

Qk+1
i (h) ⊆ {si ∈ Si(h) : si ∈ Dk

i (h
′) for all h′ ∈ Fut(h) ∩Hi(si)}. (B.14)

Now, in order to prove the inverse weak inequality, take some si ∈ Dk
i (h
′) for every h′ ∈ Fut(h) ∩

Hi(si). This implies that si is rational in
(
Qk
−i(h

′), Dk−1
i (h′)

)
for every h′ ∈ Fut(h) ∩Hi(si), and by
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the previous sequence of equivalences, si is rational in
(
Qk
−i(h

′), Qk
i (h
′)
)

for every h′ ∈ Fut(h)∩Hi(si).

Then, by definition, si ∈ Qk+1
i (h), thus proving that

Qk+1
i (h) ⊇ {si ∈ Si(h) : si ∈ Dk

i (h
′) for all h′ ∈ Fut(h) ∩Hi(si)}. (B.15)

Then, inequalities (B.14) and (B.15) complete this part of the proof.

Proof of Proposition 2. It follows from Perea (2014, Thm. 5.4) that a strategy can be rationally

played under CBFR (in a complete type structure) if and only if it survives the BDP, i.e., formally,

si ∈ Qi(h) for all h ∈ Hi(si) if and only if si ∈ ProjSi
(
Ri ∩ (Si × CFBi)

)
. Moreover, from our

Theorem 2, a strategy si can be rationally played under F-CSBR (in a complete type structure)

if and only if it survives the F-ICDP, i.e., formally, si ∈ DF
i (h) for all h ∈ Hi(si) if and only if

si ∈ ProjSi
(
Ri ∩ (Si × T F

i )
)
. Thus, it suffice to prove that a strategy survives BDP if and only if it

survives F-ICDP.

First, consider an arbitrary strategy si surviving the BDP. Then, it must be the case that si ∈
Qk
i (h) for every k > 0 and every h ∈ Hi(si). Thus, by Lemma B3, the latter is true if and only

if si ∈ {s′i ∈ Si(h) : s′i ∈ Dk
i (h
′) for all h′ ∈ Fut(h) ∩ Hi(si)} for all k > 0 and for all h ∈ Hi(si).

Obviously, the latter is equivalent to si ∈ Dk
i (h) for every k > 0 and every h ∈ Hi(si), which by

definition means that si survives the F-ICDP, thus completing the proof.

References

Aliprantis, C. & Border, K. (1994). Infinite dimensional analysis. Springer Verlag, Berlin.

Aumann, R.J. & Sorin, S. (1989). Cooperation and bounded recall. Games and Economic Be-

havior 1, 5–39.

Baltag, A., Smets, S. & Zvesper, J.A. (2009). Keep hoping for rationality: a solution to the

backward induction paradox. Synthese 169, 705–737.

Barlo, M., Carmona, M. & Sabourian, H. (2009). Repeated games with one-memory. Journal

of Economic Theory 312–336.

Battigalli, P. (1997). On rationalizability in extensive games. Journal of Economic Theory 74,

40-61.

Battigalli, P. & Friedenberg, A. (2012). Forward induction reasoning revisited. Theoretical

Economics 57–98.

43



Battigalli, P. & Siniscalchi, M. (1999). Hierarchies of conditional beliefs and interactive epis-

temology in dynamic games. Journal of Economic Theory 88, 188–230.

——– (2002). Strong belief and forward induction reasoning. Journal of Economic Theory 106, 356–

391.

Bonanno, G. (2004). Memory and perfect recall in extensive games. Games and Economic Behavior

47, 237–256.

Brandenburger, A. & Dekel, E. (1993). Hierarchies of beliefs and common knowledge. Journal

of Economic Theory 59, 189–198.

Chen, J. & Micali, S. (2013). The order independence of iterated dominance in extensive games.

Theoretical Economics 8, 125–163.

Cho, I.K. (1987). A refinement of sequential equilibrium. Econometrica 55, 1367–1389.

Cho, I.K. & Kreps, D.M. (1987). Signaling games and stable equilibria. Quarterly Journal of

Economics 102, 179–221.

Cole, J. (2001). Forget colonialism? University of California Press.

Cole, H.L. & Kocherlakota, N.R. (2005). Finite memory and imperfect monitoring. Games

and Economic Behavior 53, 59–72.

De Oliveira, H., Denti, T., Mihm, M. & Ozbek, K. (2014). Rationally inattentive preferences.

Working Paper.

Dow, J. (1991). Search decisions with limited memory. Review of Economic Studies 58, 1–14.

Ellis, A. (2015). Foundations for optimal inattention. Working Paper.

Feinberg, Y. (2012). Games with unawareness. Stanford Graduate School of Business Paper, 2122.

Friedenberg, A. (2010). When do type structures contain all hierarchies of beliefs? Games and

Economic Behavior 68, 108–129.

Govindan, S. & Wilson, R. (2009). On forward induction. Econometrica 77, 1–28.

Grossi, D. & Turrini, P. (2012). Short sight in extensive games. Proceedings of the 11th Inter-

national Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), 805–812.

44



Halpern, J.Y. & Rêgo, L.C. (2014). Extensive games with possibly unaware players. Mathemat-

ical Social Sciences 70, 42–58.

Harsanyi, J. (1967-68). Games with incomplete information played by Bayesian players, I-III.

Management Science 14, 159–182, 320–334, 486–502.

Heifetz, A., Meier, M. & Schipper, B. (2013). Dynamic unawareness and rationalizable be-

havior. Games and Economic Behavior 81, 50–68.

Heifetz, A. & Perea, A. (2015). On the outcome equivalence of backward induction and extensive

form rationalizability. International Journal of Game Theory 44, 37–59.

Hillas, J. (1994). Sequential equilibria and stable sets of beliefs. Journal of Economic Theory 64,

78–102.

Jehiel, P. (2001). Limited foresight may force cooperation. Review of Economic Studies 68, 369–

391.

Johnson, E.J., Camerer, C., Sen, S. & Rymon, T. (2002). Detecting failures of backward

induction: monitoring information search in sequential bargaining. Journal of Economic Theory

104, 16–47.

Kline, J.J. (2002). Minimum memory for equivalence between ex ante optimality and time-

consistency. Games and Economic Behavior 38, 278–305.

Kreps, D.M. & Wilson, R. (1982). Sequential equilibria. Econometrica 50, 863–894.

Lau, R.R. & Redlawsk, D.P. (2006). How voters decide: Information processing in an election

campaign. Cambridge University Press.

Lehrer (1988). Repeated games with stationary bounded recall strategies. Journal of Economic

Theory 46, 130–144.

Maenner, E. (2008). Adaptation and complexity in repeated games. Games and Economic Behavior

63, 166–187.

McLennan, A. (1985). Justifiable beliefs in sequential equilibrium. Econometrica 53, 889–904.

Mengel (2014). Learning by (limited) forward looking players. Journal of Economic Behavior and

Organization 108, 59–77.

45



Pearce, D.G. (1984). Rationalizable strategic behavior and the problem of perfection. Economet-

rica 52, 1029–1050.

Penta, A. (2015). Robust dynamic implementation. Journal of Economic Theory (forthcoming).

Perea, A. (2012). Epistemic game theory: Reasoning and choice. Cambridge University Press.

——– (2014). Belief in the opponents’ future rationality. Games and Economic Behavior 83, 231–254.

Piccione, M. & Rubinstein, A. (1997). On the interpretation of decision problems with imperfect

recall. Games and Economic Behavior 20, 3–24.

Reny, P.J. (1992). Backward induction, normal form perfection and explicable equilibria. Econo-

metrica 60, 627–649.

Rênyi, A. (1955). On a new axiomatic theory of probability. Acta Mathetica Academiae Scientiarum

Hungaricae 6, 285–335.

Rubinstein, A. (1991). Comments on the interpretation of game theory. Econometrica 59, 909–924.

——– (1998). Modeling bounded rationality. MIT Press.

Selten, R. (1965). Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragezeit.

Zeitschrift für die Gesammte Staatswissenschaft 121, 301–324, 667–689.

Shimoji, M. & Watson, J. (1998). Conditional dominance, rationalizability, and game forms.

Journal of Economic Theory 83, 161–195.

Sims, C. (2003). Implications of rational inattention. Journal of Monetary Economics 50, 665–690.

Stalnaker, R. (1998). Belief revision in games: Forward and backward induction. Mathematical

Social Sciences 36, 31–56.

Turrini, P. (2015). Computing rational decisions in extensive games with limited foresight. Pro-

ceedings of the 13th AAAI conference on Artificial Intelligence (AAAI 2016) (forthcoming).

46


	Introduction
	Basic framework
	Dynamic games with observable actions
	Local reasoning
	Special cases
	Standard forms of reasoning
	Bounded reasoning


	Subjective beliefs and rationality
	Conditional beliefs
	Subjective expected utility and rationality

	Local reasoning about the opponents' rationality
	Local common strong belief in rationality
	Local iterated conditional dominance procedure
	Characterization results

	Special cases of local reasoning
	Reasoning about all histories: Forward induction
	Reasoning about future histories: Backward induction

	Discussion
	Infinite structures
	Relationship to unawareness

	Complete type structures
	Proofs
	Proofs of Section 4
	Proofs of Section 5


