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Abstract

Battigalli (1997) has shown that in dynamic games with perfect information and with-
out relevant ties, the forward induction concept of extensive-form rationalizability yields the
backward induction outcome. In this paper we provide a new proof for this remarkable result,
based on four steps. We �rst show that extensive-form rationalizability can be characterized
by the iterated application of a special reduction operator, the strong belief reduction op-
erator. We next prove that this operator satis�es a mild version of monotonicity, which we
call monotonicity on reachable histories. This property is used to show that for this opera-
tor, every possible order of elimination leads to the same set of outcomes. We �nally show
that backward induction yields a possible order of elimination for the strong belief reduction
operator. These four properties together imply Battigalli�s theorem.
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1 Introduction

Backward induction and forward induction are two fundamentally di¤erent lines of reasoning
in dynamic games. In backward induction, a player believes throughout the game that his
opponents will choose rationally in the future, regardless of what these opponents have done in
the past. This principle is the basis for the well-known backward induction procedure in dynamic
games with perfect information, and for the concept of common belief in future rationality
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(Perea (2014), see also Penta (2015) and Baltag, Smets and Zvesper (2009) for related lines
of reasoning) for general dynamic games. The backward induction principle is also implicitly
present in equilibrium concepts like subgame perfect equilibrium (Selten (1965)) and sequential
equilibrium (Kreps and Wilson (1982)). A common feature of all these backward induction
concepts is thus that players are not required to reason about the opponents�past choices, but
instead are required to believe that the opponents will act rationally in the future independent
of what these opponents have done in the past.

Forward induction, on the other hand, does require the players to actively reason about
the opponents�past choices. Although there is no unique de�nition of forward induction in the
literature, the main idea is that a player, whenever possible, tries to interpret the opponent�s past
moves as being part of a rational strategy, and that he bases his belief about the opponent�s future
moves on this hypothesis. Extensive-form rationalizability (Pearce (1984), Battigalli (1997)) is
a very basic and natural forward induction concept, based on the idea that a player, whenever
possible, must believe that his opponents are implementing rational strategies. This idea can
be formalized by the epistemic condition of strong belief in the opponents�rationality (Battigalli
and Siniscalchi (2002)), which provides the basis for common strong belief in rationality � a
concept that characterizes extensive-form rationalizability on an epistemic level.

Although extensive-form rationalizability, being a forward induction concept, is based on a
completely di¤erent line of reasoning than backward induction, Battigalli (1997) shows in his
Theorem 4 that both lines of reasoning lead to exactly the same outcome in dynamic games
with perfect information and without relevant ties. This remarkable and surprising result is
important for the foundations of game theory, as backward induction and forward induction
both play a prominent role in the theory of dynamic games. It therefore seems relevant to not
only know that Battigalli�s theorem holds, but also why it holds. The purpose of this paper is to
make a step forward in that direction, by delivering a new proof for Battigalli�s theorem which
we hope leads to an even better understanding of why it holds.

Our proof is based on the following four steps. We �rst introduce a special reduction op-
erator, the strong belief reduction operator, which eliminates strategies from any given set of
strategy pro�les in the game, and show that the extensive-form rationalizable strategies can be
characterized by the iterated application of this strong belief reduction operator to the full set
of strategy pro�les.

In the next step we show that this reduction operator satis�es a mild version of monotonicity
that we call monotonicity on reachable histories. This property may be viewed as a variation on
Luo, Qian and Qu�s (2016) notion of 1-monotonicity�. The condition of 1-monotonicity� states,
for every two sets of strategy pro�les D and E; that, whenever E is possible in some order of
elimination, and D is a partial reduction of E; then the full reduction of D is contained in the
full reduction of E: Here, we say that D is a partial reduction of E if D can be obtained from E
by eliminating some, but not necessarily all, strategies that can be eliminated according to the
reduction operator. By the full reduction of E we mean that we eliminate from E all strategies
that can be eliminated according to the reduction operator. Luo, Qian and Qu (2016) show, for
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�nite games, that 1-monotonicity� guarantees that every possible order of elimination eventually
yields the same set of strategies.

Our notion of monotonicity on reachable histories imposes the same condition on D and E,
provided we restrict to histories in the game that are reachable under D. More precisely, we
consider sets of strategy pro�les D and E where E can be reached by some order of elimination,
and where D is equivalent, in terms of behavior on histories reachable under D; to some partial
reduction of E: Monotonicity on reachable histories then states that for any two such sets D and
E; the full reduction of D, when restricted to histories reachable under D; must be contained
in the full reduction of E; when restricted to these same histories.

In the third step we show that every reduction operator that is monotone on reachable
histories will be order independent with respect to outcomes. That is, every order of elimination
that is possible for this reduction operator eventually yields the same set of induced outcomes.
Together with the second step, this implies that the strong belief reduction operator is order
independent with respect to outcomes.

In the �nal step, we prove that backward induction yields a possible order of elimination
for the strong belief reduction operator. This result, together with the other steps, implies
Battigalli�s theorem.

This paper is not the �rst to prove Battigalli�s theorem. Much credit should of course go to
Battigalli (1997), who was the �rst to prove this result by relying on certain properties of fully
stable sets (Kohlberg and Mertens (1986)). Battigalli�s proof, in turn, was inspired by Reny
(1992)1 who used a similar proof technique to show that a di¤erent forward induction concept
�explicable equilibrium �also leads to the backward induction outcome in the class of games
we consider. Battigalli�s theorem also follows from Chen and Micali (2013), who show that the
iterated elimination of distinguishably dominated strategies is order independent with respect
to outcomes, and that performing this procedure �at full speed� is equivalent to the iterated
conditional dominance procedure (Shimoji and Watson (1998)). Since Shimoji and Watson
(1998) show that the iterated conditional dominance procedure characterizes the extensive-form
rationalizable strategies, and the backward induction outcome can be obtained by a speci�c
order of elimination of distinguishably dominated strategies, Battigalli�s theorem follows. Luo,
Qian and Qu (2016) provide an alternative proof for the fact that the iterated elimination of
distinguishably dominated strategies is order independent with respect to outcomes. Heifetz and
Perea (2015) prove Battigalli�s theorem via a di¤erent route. The main step in their proof is
to show that the extensive-form rationalizable outcomes of a game do not change if we truncate
the game, by eliminating the suboptimal choices at every last non-terminal history. Arieli
and Aumann (2015) prove Battigalli�s theorem for the special case where every player is only
active at one history in the game. The key step in their proof is to show that the extensive-
form rationalizable outcomes in such games can be characterized by their pruning process �
a procedure that iteratively eliminates histories from the game. Features that distinguish our

1See Battigalli (1997), footnote 13.
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approach from the papers above are our use of the strong belief reduction operator, and our focus
on monotonicity on reachable histories as a tool to prove order independence with respect to
outcomes.

The outline of this paper is as follows. In Section 2 we introduce dynamic games with
observable past choices. We de�ne the concept of extensive-form rationalizability in Section 3
and illustrate it by means of an example. In Section 4 we present the strong belief reduction
operator, show that the extensive-form rationalizable strategies are obtained by the iterated
application of this operator, and point out that this operator is not order independent with
respect to strategies. We introduce the notion of monotonicity on reachable histories in Section
5, and show that the strong belief reduction operator satis�es this mild form of monotonicity.
In Section 6 we show that every reduction operator that is monotone on reachable histories will
also be order independent with respect to outcomes. Together with the result from Section 5
it then follows that the strong belief reduction operator is order independent with respect to
outcomes. In Section 7 we prove that backward induction yields a possible order of elimination
for the strong belief reduction operator, which �nally enables us to prove Battigalli�s theorem.
The main body of the paper ends in Section 8 with some concluding remarks. Section 9, �nally,
contains the longer proofs.

The shorter proofs are all given in the main body of this paper. However, for each of the
results requiring a longer proof we give a sketch of the formal proof in the main body. By
doing so, we hope that by reading the main body of this paper the reader will already get a
clear intuition for why Battigalli�s theorem holds. Although Battigalli�s theorem only applies
to dynamic games with perfect information, our Sections 2�6 apply to the more general class of
games with observable past choices which allow for simultaneous moves. Only Section 7 restricts
to games with perfect information.

2 Dynamic Games with Observable Past Choices

In Sections 2�6 of this paper we will focus on �nite dynamic games with observable past choices.
Such games allow for simultaneous moves, but at every stage of the game every active player
knows exactly which choices have been made by the opponents in the past. Formally, a �nite
dynamic game with observable past choices is a tuple

G = (I;H;Z; (Hi)i2I ; (Ci(h))i2I;h2Hi ; (ui)i2I)

where
(a) I = f1; 2; :::; ng is the �nite set of players;
(b) H is the �nite set of histories, consisting of non-terminal and terminal histories. At

every non-terminal history, one or more players must make a choice, whereas at every terminal
history the game ends. By ; we denote the root of the game, which is the non-terminal history
where the game starts;
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(c) Z � H is the set of terminal histories;
(d) Hi � H is the set of non-terminal histories where player i must make a choice. For a

given non-terminal history h; we denote by I(h) := fi 2 I j h 2 Hig the set of active players at
h: We allow I(h) to contain more than one player, that is, we allow for simultaneous moves. At
the same time, we require I(h) to be non-empty for every non-terminal history h;

(e) Ci(h) is the �nite set of choices available to player i at a history h 2 Hi; and
(f) ui : Z ! R is player i�s utility function, assigning to every terminal history z 2 Z some

utility ui(z):

For every non-terminal history h and choice combination (ci)i2I(h) in �i2I(h)Ci(h); we denote
by h0 = (h; (ci)i2I(h)) the (terminal or non-terminal) history that immediately follows this choice
combination at h: In this case, we say that h0 immediately follows h: We say that a history h
follows a non-terminal history h0 if there is a sequence of histories h1; :::; hK such that h1 = h0;
hK = h; and hk+1 immediately follows hk for all k 2 f1; :::;K � 1g: A history h is said to weakly
follow h0 if either h follows h0 or h = h0: In the obvious way, we can then also de�ne what it
means for h to (weakly) precede another history h0:

We view a strategy for player i as a plan of action (Rubinstein (1991)), assigning choices
only to those histories h 2 Hi that are not precluded by previous choices. Formally, consider a
set of non-terminal histories Ĥi � Hi; and a mapping si : Ĥi ! [h2ĤiCi(h) assigning to every
history h 2 Ĥi some available choice si(h) 2 Ci(h): We say that a history h 2 H is reachable
under si if at every history h0 2 Ĥi preceding h; the choice si(h0) is the unique choice that
leads to h: The mapping si : Ĥi ! [h2ĤiCi(h) is called a strategy if Ĥi contains exactly those
histories in Hi that are reachable under si:

By Si we denote the set of strategies for player i: For every history h 2 H and player i; we
denote by Si(h) the set of strategies for player i under which h is reachable. Similarly, for a
given strategy si we denote by Hi(si) the set of histories in Hi that are reachable under si:

Finally, we say that the game is with perfect information if at every non-terminal history
there is only one active player. This is the class of games we will focus on in Section 7.

As an illustration, consider the game G in Figure 1, which is based on Figure 3 in Reny
(1992). The non-terminal histories are ;; h1; h2 and h3; and at every non-terminal history only
one player is active. That is, the game is with perfect information. The strategies for player 1
are a; (b; e) and (b; f); whereas the strategies for player 2 are c; (d; g) and (d; h): We also have,
for instance, that S1(h1) = f(b; e); (b; f)g as h1 is only reachable if player 1 chooses b at ;:

3 Extensive-Form Rationalizability

In this section we will introduce the extensive-form rationalizability procedure (Pearce (1984),
Battigalli (1997)) which recursively eliminates, at every round, some strategies and conditional
belief vectors for the players. To formally state it, we need some additional de�nitions.
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Figure 1: Reny�s game

For a �nite set X; we denote by �(X) the set of probability distributions on X: For a player
i and history h 2 Hi; let S�i(h) := �j 6=iSj(h) be the set of opponents�strategy combinations
under which h is reachable.

A conditional belief vector for player i is tuple bi = (bi(h))h2Hi where bi(h) 2 �(S�i(h)) for
every h 2 Hi: Here, bi(h) represents the conditional probabilistic belief that i holds at h about
the opponents�strategy choices. We say that the conditional belief vector bi satis�es Bayesian
updating if for every h; h0 2 Hi where h0 follows h and bi(h)(S�i(h0)) > 0; it holds that

bi(h
0)(s�i) =

bi(h)(s�i)

bi(h)(S�i(h0))
for all s�i 2 S�i(h0):

By Bi we denote the set of conditional belief vectors for player i that satisfy Bayesian updating.
For a given conditional belief vector bi; a set E � S�i of opponents�strategy combinations,

and a history h 2 Hi; we say that bi(h) strongly believes E if bi(h)(E) = 1 whenever S�i(h)\E 6=
;: That is, bi(h) assigns full probability to E whenever E is logically consistent with the event
that h has been reached. We say that bi strongly believes E if bi(h) strongly believes E at every
h 2 Hi:

For a strategy combination s = (si)i2I we denote by z(s) the induced terminal history. For
a history h 2 Hi; a strategy si 2 Si(h); and a conditional belief bi(h) 2 �(S�i(h)), we denote
by

ui(si; bi(h)) :=
X

s�i2S�i(h)
bi(h)(s�i) � ui(z(si; s�i))

the induced expected utility at h: We say that strategy si is rational at h for the conditional
belief vector bi if ui(si; bi(h)) � ui(s

0
i; bi(h)) for all s

0
i 2 Si(h): That is, strategy si yields the

highest possible expected utility at h under the belief bi(h):
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For a given strategy si and a collection Ĥ � H of histories, we say that strategy si is rational
at Ĥ for bi if si is rational at every h 2 Ĥ \ Hi(si) for bi: Finally, we say that strategy si is
rational for the conditional belief vector bi if si is rational at H for bi:

The extensive-form rationalizability procedure iteratively eliminates strategies and condi-
tional belief vectors, as follows.

De�nition 3.1 (Extensive-Form Rationalizability) Consider a �nite dynamic gameG with
observable past choices.

(Induction start) Set S0i := Si and B
0
i := Bi for all players i:

(Induction step) Let k � 1; and assume that Sk�1i and Bk�1i have already been de�ned for all
players i. Then, de�ne for all players i

Ski : = fsi 2 Sk�1i j si rational for some bi 2 Bk�1i g;
Bki : = fbi 2 Bk�1i j bi strongly believes Sk�ig:

A strategy si 2 Si is called extensive-form rationalizable if si 2 Ski for all k � 0:

Here, by Sk�i we denote the set �j 6=iSkj : Since there are only �nitely many strategies in the
game, there must be some K � 0 such that SK+1i = SKi for every player i: That is, the procedure
will terminate after K steps. By Sefri := SKi we denote the set of extensive-form rationalizable
strategies for player i.

As an illustration, consider again the game G from Figure 1. It may be veri�ed that

S11 = fa; (b; f)g and S12 = fc; (d; g)g:

Note that strategy (b; e) can never be rational for player 1 for any conditional belief vector,
since (b; e) yields player 1 at most utility 2 at ; whereas player 1 can guarantee utility 3 there
by choosing a: Similarly, strategy (d; h) is never rational for player 2 for any conditional belief
vector, as the choice h is suboptimal for player 2 at h3: By construction, we then have that

B11 = fb1 2 B01 j b1 strongly believes fc; (d; g)gg
= fb1 2 B1 j b1(;)(fc; (d; g)g) = 1 and b1(h2)(f(d; g)g) = 1g

and

B12 = fb2 2 B02 j b2 strongly believes fa; (b; f)gg
= fb2 2 B2 j b2(h1)(f(b; f)g) = b2(h3)(f(b; f)g) = 1g:

Note that a is the only strategy for player 1 that is rational for a conditional belief vector in
B11 : Similarly, (d; g) is the only strategy for player 2 that is rational for the unique conditional
belief vector in B12 : Hence,

S21 = fag and S22 = f(d; g)g;
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which implies that

B21 = fb1 2 B11 j b1 strongly believes f(d; g)gg
= fb1 2 B1 j b1(;)(f(d; g)g) = b1(h2)(f(d; g)g) = 1g

and
B22 = fb2 2 B12 j b2 strongly believes fagg = B12 :

After this round the procedure terminates, as S31 = S21 and S
3
2 = S22 : Hence, the extensive-

form rationalizable strategies are a for player 1 and (d; g) for player 2, which implies that the
unique extensive-form rationalizable outcome is the terminal history a: We thus conclude that
the unique extensive-form rationalizable outcome is the same as the backward induction outcome
in this game G: Note, however, that the extensive-form rationalizable strategy (d; g) for player
2 is di¤erent from his backward induction strategy c:

The �forward induction story�behind the eliminations above is as follows: If player 2 observes
at h1 that player 1 has chosen b; he tries to interpret b as being part of a rational strategy for
player 1. Therefore, player 2 must believe at h1 that player 1 will choose f at h2; as that is the
only way for player 1 to obtain more than 3 �the utility he could have guaranteed by choosing
a at ;: This argument is mimicked by the set of beliefs B12 above. If player 2 reasons in this way,
his best strategy is to choose (d; g); which is player 2�s only strategy in S22 : Player 1, anticipating
on player 2 choosing (d; g); will therefore choose a:

Hence, the reason that player 1 chooses a in extensive-form rationalizability is that he expects
player 2 to choose d and g if he were to choose b instead of a at ;: In contrast, the reason that
player 1 chooses a in the backward induction procedure is that he expects player 2 to choose c
if he were to choose b instead of a at ;:We thus see that these two fundamentally di¤erent lines
of reasoning lead to the same outcome a in this game, but for di¤erent reasons.

4 Strong Belief Reduction Operator

In this section we show that the extensive-form rationalizable strategies can be obtained by the
iterated application of a certain reduction operator, which we call the strong belief reduction
operator. Before doing so, we �rst de�ne what we mean by a reduction operator in general, and
then formally introduce the strong belief reduction operator. We next illustrate, by means of
an example, that the strong belief reduction operator is not order independent with respect to
strategies, which means that the �nal set of strategies depends upon the order of elimination we
use. Finally, we show that this order dependence is caused by a failure of Luo, Qian and Qu�s
(2016) notion of 1-monotonicity�:
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4.1 Strong belief reduction operator

A product of strategy sets is a Cartesian product D = �i2IDi; where Di � Si is a subset of
strategies for every player i: A reduction operator is a mapping r that assigns to every product
of strategy sets D a product of strategy sets r(D) � D that is contained in it. Hence, whenever
r(D) 6= D then r(D) is obtained from D by eliminating some strategies. For two products of
strategy sets D and E we say that D is a partial reduction of E if r(E) � D � E: That is, D is
obtained from E by eliminating some, but not necessarily all, strategies that can be eliminated
according to r: Hence, the notion of partial reduction is always de�ned relative to a speci�c
reduction operator r: The set D = r(E) is called the full reduction of E: For every k � 1; we
denote by

rk(D) := (r � ::: � r)| {z }
k times

(D)

the k-fold application of r to the product of strategy sets D; and we set r0(D) := D:
For a given product of strategy sets D; let H(D) � H be the set of histories that are reached

by strategy combinations in D:

De�nition 4.1 (Strong belief reduction operator) The strong belief reduction operator sb
assigns to every product of strategy sets D = �i2IDi the set �i2Isbi(D); where for every i

sbi(D) := fsi 2 Di j si is rational at H(D) for some bi 2 Bi that strongly believes D�ig:

Note that sb(D) � D by de�nition, and that the additional restrictions imposed by sbi(D)
are rationality conditions at histories reachable under D: In that sense, it is similar to Chen and
Micali�s (2013) notion of distinguishable dominance, where dominance is only required at histo-
ries that are reachable under D: In the following subsection we will show that the extensive-form
rationalizable strategies are obtained be the iterated application of the strong belief reduction
operator to the full set of strategies.

4.2 Characterization of extensive-form rationalizable strategies

Remember from De�nition 3.1 that Ski denotes the set of strategies for player i that survives
round k of the extensive-form rationalizability procedure. In the following theorem we show that
Ski is obtained by the k-fold application of the strong belief reduction operator to the product
of full strategy sets. In particular, the extensive-form rationalizable strategies are exactly those
that survive the iterated application of this reduction operator.

Theorem 4.1 (Characterization of EFR strategies) For every k � 0; let Ski be the set of
strategies for player i that survive round k of the extensive-form rationalizability procedure, and
let Sk := �i2ISki be the induced product of strategy sets. Then, for every k � 0 we have that

Sk = (sb)k(S)
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where S := �i2ISi:

We realize that our characterization is very similar to the de�nition of extensive-form ratio-
nalizability, and to its epistemic characterization in Battigalli and Siniscalchi (2002). Indeed,
all rely on the recursive application of some speci�c strong belief operator, and the di¤erence
is really in the details. For instance, in the de�nition of extensive-form rationalizability, the
strategies in round k are those that are rational at all histories for some conditional belief vec-
tor that strongly believes the set of opponents�strategies from the previous round. In turn, our
characterization requires the strategies in round k only to be rational, for such conditional belief
vectors, at histories that are reachable under the sets of strategies from the previous round. The
key observation in the proof is that the restrictions on the conditional belief vectors at histories
that are not reachable under the strategies from the previous round, are already captured by
the restrictions of the preceding rounds. The di¤erence between our characterization and the
epistemic characterization by Battigalli and Siniscalchi (2002) is similar. Not surprisingly, the
proof of Theorem 4.1 is rather immediate, and we therefore view this theorem more as a sophis-
ticated observation. Nevertheless, the result is important for our proof of Battigalli�s theorem.

Here is a sketch of the proof of Theorem 4.1. By de�nition, sb(S) contains those strategies
for player i that are rational (at H(S) = H) for some conditional belief vector bi 2 Bi; which
are precisely the strategies in S1i : Therefore, S

1 = sb(S):
Next, sb2(S) contains precisely those strategies for player i that are in sbi(S); and that are

rational at H(sb(S)) for some conditional belief vector bi 2 Bi that strongly believes sb�i(S):
In view of the above, these are exactly the strategies in S1i that are rational at H(S

1) for some
conditional belief vector bi 2 Bi that strongly believes S1�i: But then, every strategy in S2i will
also be in sb2(S); as every strategy in S2i is in S

1
i and is rational (at H) for some conditional

belief vector bi 2 Bi that strongly believes S1�i:
To show that every player i strategy in sb2(S) is also in S2i ; consider some player i strategy

si in sb2(S): Then, we know from above that si is in S1i ; that is, that si is rational (at H) for
some conditional belief vector b0i , and that si is rational at H(S

1) for some (possibly di¤erent)
conditional belief vector bi 2 Bi that strongly believes S1�i:

We can then de�ne a new conditional belief vector b1i that coincides with bi on histories
that are reachable under S1�i; and that coincides with b

0
i otherwise. This new conditional belief

vector b1i will still strongly believe S
1
�i; but has the additional property that si is rational at all

histories for b1i : Hence, si will be in S
2
i : We thus conclude that every player i strategy in sb

2(S)
is also in S2i : As the opposite direction also holds, it follows that S

2 = sb2(S):
By continuing in this fashion, it can be shown that Sk = sbk(S) for all k: The formal proof

in Section 9 proceeds by induction on k; but the induction step basically mimicks the argument
above. �
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4.3 Order dependence with respect to strategies

A reduction operator r is said to be order independent with respect to strategies if every order
of elimination allowed by r yields the same set of strategies at the end. An elimination order
for r is a �nite sequence of successive partial reductions, and can be formalized as follows.

De�nition 4.2 (Elimination order for r) An elimination order for a reduction operator r is
a �nite sequence (D0; D1; :::; DK) of products of strategy sets where (a) D0 = S; (b) r(Dk) �
Dk+1 � Dk for every k 2 f0; :::;K � 1g; and (c) r(DK) = DK :

Condition (b) thus states that Dk+1 is a partial reduction of Dk; whereas condition (c)
guarantees that r allows no further eliminations after round K:

De�nition 4.3 (Order independence with respect to strategies) A reduction operator
r is order independent with respect to strategies if for every two elimination orders (D0; :::; DK)
and (E0; :::; EL) for r we have that DK = EL:

That is, all possible orders of elimination yield the same set of strategies as output. It turns
out that the strong belief reduction operator sb; which characterizes extensive-form rationaliz-
ability, is not order independent with respect to strategies. To show this, consider the game from
Figure 1. A possible elimination order for sb is the iterated application of sb �at full speed�,
which by Theorem 4.1 yields the extensive-form rationalizable strategies Sefr = fag � f(d; g)g
as �nal output.

Consider now the �backward induction sequence�

D0 = S; D1 = S1 � fc; (d; g)g; D2 = fa; (b; e)g � fc; (d; g)g;
D3 = fa; (b; e)g � fcg; D4 = fag � fcg;

yielding the backward induction strategies a and c: It may be veri�ed that this is an elimination
order for sb: Since it yields a di¤erent output than the �full speed�elimination order above, we
conclude that the strong belief reduction operator sb is not order independent with respect to
strategies.

If sb were order independent with respect to strategies, then proving Battigalli�s theorem
would be easy. The reason is that in every game with perfect information and without rele-
vant ties, the backward induction sequence is an elimination order for sb (see Section 7). As
a consequence, the iterated application of sb at �full speed�, which by Theorem 4.1 yields the
extensive-form rationalizable strategies, would lead to the same strategies as the backward in-
duction elimination order, yielding the backward induction strategies. We know, however, that
this is not true in general, as we have shown above for the game in Figure 1.
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4.4 1-Monotonicity�

For the class of �nite games, Luo, Qian and Qu (2016) provide a su¢ cient condition for order
independence with respect to strategies, which they call 1-monotonicity�. As the strong belief
reduction operator is not order independent with respect to strategies, it must necessarily fail
the 1-monotonicity� condition. We will show this below.

The reason we explore 1-monotonicity� here is that it will be the basis for an alternative
notion, called monotonicity on reachable histories, that we will introduce in the next section.
We will prove in the following section that the strong belief reduction operator does satisfy
monotonicity on reachable histories. In Section 6 we will use this property to show that the
strong belief reduction operator is order independent with respect to outcomes, which will be
su¢ cient to prove Battigalli�s theorem in Section 7.

In the de�nition below, for a given reduction operator r; we say that a product of strategy
sets E is possible in an elimination order for r if there is an elimination order (D0; :::; DK) for
r such that E = Dk for some k 2 f0; :::;Kg:

De�nition 4.4 (1-monotonicity�) A reduction operator r satis�es 1-monotonicity� if for every
two products of strategy sets D and E where E is possible in an elimination order for r and
r(E) � D � E; it holds that r(D) � r(E):

Hence, if E is possible in an elimination order for r and D is a partial reduction of E; then
the full reduction of D is contained in the full reduction of E: If we drop the assumption that
E must be possible in an elimination order for r; we obtain Apt�s (2011) notion of hereditarity.
Moreover, if we require r(D) � r(E) to hold for all D and E with D � E; then we obtain the
stronger notion of hereditarity introduced by Gilboa, Kalai and Zemel (1990) and used in Apt
(2004). In Apt (2011), this stronger notion is called monotonicity.

In Theorem 2, Luo, Qian and Qu (2016) prove, for the class of �nite games, that every
reduction operator that satis�es 1-monotonicity� is order independent with respect to strategies.
Hence, in view of our �ndings above, the strong belief reduction operator sb must necessarily
violate 1-monotonicity�. Indeed, consider the game from Figure 1 and the products of strategy
sets

D = fag � fc; (d; g)g and E = fa; (b; e)g � fc; (d; g)g:

Since the �backward induction sequence�(D0; :::; D4); with

D0 = S; D1 = S1 � fc; (d; g)g; D2 = fa; (b; e)g � fc; (d; g)g
D3 = fa; (b; e)g � fcg; and D4 = fag � fcg

is an elimination order for sb; and E = D2; it follows that E is possible in an elimination order
for sb: It may be veri�ed that

sb(D) = fag � fc; (d; g)g whereas sb(E) = fag � fcg:
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That is, sb(D) * sb(E) despite the fact that E is an elimination order for sb and sb(E) � D � E:
Hence, sb does not satisfy 1-monotonicity�:

5 Monotonicity on reachable histories

In the previous section we saw that the strong belief reduction operator sb does not satisfy
1-monotonicity�. In fact, 1-monotonicity� is too strong for our purposes here. For proving
Battigalli�s theorem it will be su¢ cient to show sb is order independent with respect to outcomes
�not strategies. In turn, for showing this property a di¤erent version of 1-monotonicity� will
su¢ ce, which we call monotonicity on reachable histories. The di¤erence with 1-monotonicity�

is that we require the monotonicity property to hold only on histories that are reachable under
the products of strategy sets we consider.

In this section we �rst provide a formal de�nition of monotonicity on reachable histories, and
then state our monotonicity theorem, showing that the strong belief reduction operator satis�es
this property. We proceed by discussing some preparatory results, which we �nally use to prove
the monotonicity theorem.

5.1 Monotonicity theorem

To formally state monotonicity on reachable histories, we �rst de�ne the restriction of strategies
and strategy sets to subcollections of histories. For a given strategy si 2 Si and a collection of
histories Ĥ � H; let

sijĤ := (si(h))h2Hi(si)\Ĥ

be its restriction to histories in Ĥ: For a set of strategies Di � Si; we denote by DijĤ := fsijĤ j
si 2 Dig the restriction of the set Di to histories in Ĥ. Moreover, for a product of strategy sets
D = �i2IDi; we de�ne DjĤ := �i2IDijĤ :

De�nition 5.1 (Monotonicity on reachable histories) A reduction operator r is monotone
on reachable histories if for every two products of strategy sets D and E where E is possible in
an elimination order for r and

r(E)jH(D) � DjH(D) � EjH(D);

it holds that
r(D)jH(D) � r(E)jH(D):

If in the above de�nition we would replace H(D) by H; then we obtain exactly the conditon
of 1-monotonicity� in Luo, Qian and Qu (2016). Note, however, that 1-monotonicity� does not
automatically imply monotonicity on reachable histories. The reason is that 1-monotonicity�
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restricts to sets D and E with r(E) � D � E; whereas our restrictions on the sets D and E are
milder.

It can be shown that r(E)jH(D) � DjH(D) � EjH(D) if and only if there is a partial reduction
D0 of E with D0jH(D) = DjH(D): To see this, suppose �rst that there is a partial reduction D0 of
E with D0jH(D) = DjH(D): Since r(E) � D0 � E and D0jH(D) = DjH(D); it immediately follows
that r(E)jH(D) � DjH(D) � EjH(D): Assume next that r(E)jH(D) � DjH(D) � EjH(D): Since
DjH(D) � EjH(D) there is a mapping f : D ! E with f(s)jH(D) = sjH(D) for every s 2 D: Then,
it may be veri�ed that D0 := f(D) [ r(E) is a partial reduction of E with D0jH(D) = DjH(D):

Hence, monotonicity on reachable histories states that, whenever E is possible in an elimi-
nation order for r; and D is equivalent, in terms of behavior on H(D); to a partial reduction of
E; then the full reduction of D; when restricted to behavior on H(D); is contained in the full
reduction of E; when restricted to behavior on H(D):

We know, from above, that the strong belief reduction operator does not satisfy 1-monotonicity�.
However, we can show that it satis�es monotonicity on reachable histories.

Theorem 5.1 (Monotonicity theorem) The strong belief reduction operator sb is monotone
on reachable histories.

Suppose we would remove the restriction in De�nition 4.4 that E must be possible in an
elimination order for r: Then, the strong belief reduction operator sb would no longer satisfy
this stronger version of monotonicity. To see this, consider the game in Figure 1 and take the
sets D = fag � fcg and E = fa; (b; f)g � fcg: Then, it may be veri�ed that sb(D) = D and
sb(E) = ;: As a consequence, sb(D)jH(D) * sb(E)jH(D) despite the fact that sb(E)jH(D) �
DjH(D) � EjH(D):

The reason for this failure is that E is not possible in any elimination order for sb: Indeed,
take any elimination order (D0; :::; DK) for sb and suppose that E = Dk for some k 2 f1; :::;Kg:
Then, sb(Dk�1) � E � Dk�1: Since E = Dk does not contain strategy (d; g) for player 2, there
must be some m � k � 1 such that (d; g) 2 Dm2 but (d; g) =2 Dm+12 : On the other hand, since
E � Dk�1 � Dm; it must be that Dm1 contains strategy (b; f) for player 1. As (d; g) 2 Dm2 ; and
(d; g) is rational at H(Dm) for the conditional belief vector b2 with b2(h1) = b2(h3) = (b; f);
which strongly believes Dm1 ; it follows that (d; g) 2 Dm+12 : This, however, is a contradiction.
Therefore, we conclude that E is not possible in any elimination order for sb: We thus see that
in the de�nition of monotonicity on reachable histories we need to restrict to sets E that are
possible in an elimination order for r; otherwise Theorem 5.1 would no longer hold.

In order to prove the monotonicity theorem above, we need some additional results which
will be discussed in the following subsection.

5.2 Some preparatory results

Of all eight preparatory results in this section, only the last three concern the strong belief
reduction operator. The �rst result compares two products of strategy sets D and E: The lemma
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states that, if the behavior in D is more restrictive than the behavior in E; when restricted to
histories that are reachable under D; then all histories that are reachable under D are also
reachable under E: The same holds if we restrict to histories that are reachable under E: The
result is very intuitive, and the formal proof is so basic and short that we include it in the main
text.

Lemma 5.1 (From choice monotonicity to outcome monotonicity) Consider two prod-
ucts of strategy sets D and E such that DjH(D) � EjH(D) or DjH(E) � EjH(E): Then, H(D) �
H(E):

Proof. Assume �rst that DjH(D) � EjH(D): Take some h 2 H(D): Then, there is some strategy
combination s in D that reaches h: As DjH(D) � EjH(D) there is some strategy combination s0
in E with sjH(D) = s0jH(D): Since every history preceding h is also in H(D); it follows that s0
and s coincide at all histories preceding h: But then, also s0 reaches h: Since s0 2 E; it follows
that h 2 H(E): We thus conclude that H(D) � H(E):

Suppose next that DjH(E) � EjH(E): For every k � 0; let Hk be the set of histories that are
preceded by k other histories. We show, by induction on k; that H(D) \Hk � H(E) for every
k � 0:

For k = 0; the statement is trivial as H0 only contains the beginning of the game ;; which
clearly is in H(E): Now, consider some k � 1; and suppose that H(D) \Hk�1 � H(E): Take
some h 2 H(D)\Hk; and let h0 be the history immediately preceding h: Then, h0 2 H(D)\Hk�1;
and hence by the induction assumption we know that h0 2 H(E): This implies that all histories
preceding h are inH(E): Since h 2 H(D); there is some strategy combination s inD that reaches
h: As DjH(E) � EjH(E); there is some strategy combination s0 in E with sjH(E) = s0jH(E): In
particular, s and s0 coincide at all histories preceding h; as we have seen that all these histories
are in H(E): But then, also s0 reaches h; which implies that h 2 H(E): It thus follows that
H(D) \ Hk � H(E): By induction on k we conclude that H(D) � H(E): This completes the
proof. �

In the next result we show that if we take a product of strategy sets D; a conditional belief
for player i at a history in H(D) that strongly believes D�i; and a strategy for player i in Di;
then the induced expected utility for that strategy will not change if we replace the conditional
belief by one that preserves the probabilities on the induced opponents�behavior at H(D) and
replace the strategy by one that preserves the induced behavior for player i at H(D): The formal
proof is rather short an immediate, and is therefore included in the main text.

Lemma 5.2 (Only behavior on reachable histories matters) Consider a product of strat-
egy sets D = �i2IDi; a player i; and a mapping f�i : D�i ! S�i with f�i(s�i)jH(D) = s�ijH(D)
for every s�i 2 D�i: Consider for player i a history h 2 Hi \ H(D); a conditional belief
bi(h) 2 �(S�i(h) \D�i); and a conditional belief b0i(h) 2 �(S�i(h)) such that

b0i(h)(s�i) = bi(h)(f
�1
�i (s�i)) for every s�i 2 S�i(h):
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Then, for every si 2 Di \ Si(h) and every s0i 2 Si with sijH(D) = s0ijH(D); we have

ui(si; bi(h)) = ui(s
0
i; b

0
i(h)):

Proof. By de�nition,

ui(s
0
i; b

0
i(h)) =

X
s0�i2S�i

b0i(h)(s
0
�i) � ui(z(s0i; s0�i)) =

X
s0�i2S�i

bi(h)(f
�1
�i (s

0
�i)) � ui(z(s0i; s0�i))

=
X

s�i2D�i

bi(h)(s�i) � ui(z(s0i; f�i(s�i))); (5.1)

where the second equality follows from the de�nition of b0i(h), and the third equality follows
from the fact that f�1�i (S�i) = D�i: Consider now some s�i 2 D�i and the induced terminal
history z(s0i; f�i(s�i)): By assumption, s

0
ijH(D) = sijH(D) with si 2 Di; and f�i(s�i)jH(D) =

s�ijH(D) with s�i 2 D�i: As z(si; s�i) is only preceded by non-terminal histories in H(D);
and (s0i; f�i(s�i)) coincides with (si; s�i) at all these histories, it follows that z(s

0
i; f�i(s�i)) =

z(si; s�i):
Since this holds for every s�i 2 D�i; it follows with (5.1) that

ui(s
0
i; b

0
i(h)) =

X
s�i2D�i

bi(h)(s�i) � ui(z(s0i; f�i(s�i))) =
X

s�i2D�i

bi(h)(s�i) � ui(z(si; s�i))

= ui(si; bi(h));

where the last equality follows from the fact that bi(h) 2 �(S�i(h) \D�i): This completes the
proof. �

The following result is well-known in the literature on dynamic games. It states that a
strategy which is rational for a conditional belief vector at h will remain rational at a later
history h0 if the conditional belief at h0 is obtained from the conditional belief at h through
Bayesian updating. A formal proof for this result can be found, for instance, in Perea (2012,
Proof of Lemma 8.14.9).

Lemma 5.3 (Bayesian updating preserves optimality) Consider a player i; a strategy si;
a conditional belief vector bi 2 Bi; and two histories h; h0 2 Hi(si) such that h0 follows h and
bi(h)(S�i(h0)) > 0: If si is rational for bi at h; then si is also rational for bi at h0:

The main idea in the proof is the following. If si is rational for bi at h; and the conditional
belief at h assigns positive probability to the event that h0 can be reached, then in particular
si�s continuation behavior from h0 onwards must be optimal for bi(h). By Bayesian updating,
the relative probabilities that bi(h0) assigns to the opponents�continuation strategies after h0

are the same as under bi(h); and hence si will also be rational at h0 for bi(h0): �
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We next show that under Bayesian updating we can always construct a strategy that is
rational at all histories. We even show a little more than this: for every history h� we can
always construct a strategy that makes h� reachable and that is rational at all histories weakly
following h�: The formal proof is rather intuitive and short, and is therefore included in the
main text. The reader will notice that we construct the strategy by a forward procedure, in
which we �rst de�ne it at early stages of the game, after which we extend it to later stages. In
the literature, the construction of such strategies typically proceeds by a backward procedure, in
which the strategy is �rst de�ned at the �nal stages of the game, after which it is inductively
de�ned at earlier stages.

Lemma 5.4 (Existence of rational strategies) Consider a player i; a conditional belief vec-
tor bi 2 Bi and a non-terminal history h� 2 H: Then, there is a strategy si 2 Si(h�) that is
rational for bi at all h 2 Hi(si) that weakly follow h�:

Proof. We inductively de�ne collections of histories H1
i ;H

1+
i ;H2

i ;H
2+
i ::: as follows. Let

H1
i : = fh 2 Hi j h weakly follows h�; and there is no h0 2 Hi

that weakly follows h� and preceeds hg; and
H1+
i : = fh 2 Hi j there is some h0 2 H1

i preceding h with bi(h
0)(S�i(h)) > 0g:

For a given k � 2; assume that Hk�1+
i has already been de�ned. Then, let

Hk
i : = fh 2 Hi j h follows some h0 2 Hk�1

i [Hk�1+
i ; and there is no h00 2 Hi

that follows h0 and preceeds hg; and
Hk+
i : = fh 2 Hi j there is some h0 2 Hk

i preceding h with bi(h
0)(S�i(h)) > 0g:

For every k � 1 and every h 2 Hk
i ; let s

h
i be a strategy in Si(h) that is rational for bi at h:

For every h 2 Hk
i [Hk+

i ; let hki [h] be the unique history in H
k
i that weakly precedes h: Finally,

let si be a strategy in Si(h�) such that for every k � 1 and every h 2 Hi(si) \ (Hk
i [Hk+

i );

si(h) := s
hki [h]
i (h): (5.2)

We now show that si is rational for bi at all h 2 Hi(si) that weakly follow h�: Take an arbitrary
h 2 Hi(si) that weakly follows h�; and let k � 1 be such that h 2 Hk

i [ Hk+
i : We distinguish

two cases: (i) h 2 Hk
i ; and (ii) h 2 Hk+

i :
(i) Consider some h 2 Hk

i : By construction of H
k+
i , every s�i with bi(h)(s�i) > 0 is such

that (si; s�i) only reaches player i histories weakly following h which are in Hk
i [ Hk+

i : Note
that hki [h] = h; because h 2 Hk

i : Therefore, by (5.2), si and s
h
i coincide on all these histories in

Hk
i [Hk+

i weakly following h; and hence ui(si; bi(h)) = ui(shi ; bi(h)): Since s
h
i is rational for bi

at h; we conclude that si is rational for bi at h as well.
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(ii) Assume next that h 2 Hk+
i : Then, there is some h0 2 Hk

i preceding h with bi(h
0)(S�i(h)) >

0: Since we know from (i) that si is rational for bi at h0; it follows from Lemma 5.3 that si is
rational for bi at h as well.

From (i) and (ii) we conclude that si is rational for bi at all h 2 Hi(si) \ (Hk
i [ Hk+

i ): As
this holds for every k � 1; we obtain that si is rational for bi at all h 2 Hi(si) weakly following
h�: This completes the proof. �

The next result shows that for checking the optimality of a strategy with respect to a con-
ditional belief vector, it is su¢ cient to compare the strategy to alternative strategies that are
rational for that belief vector at all histories.

Lemma 5.5 (Comparison to optimal strategies su¢ ces) Consider a player i; a strategy
si; a conditional belief vector bi 2 Bi and a history h� 2 Hi(si) such that si is not rational for
bi at h�: Then, there is a history h�� 2 Hi weakly preceding h� and a strategy ~si 2 Si(h��) that
is rational for bi such that ui(si; bi(h��)) < ui(~si; bi(h��)):

Here is the main idea behind the proof. Choose h�� to be the �rst history for player i that
weakly precedes h� and at which si is not rational for bi: Let H

pre
i be the set of player i histories

preceding h��; let H+
i be the set of player i histories following H

pre
i at which Bayesian updating

of bi is possible from a history in H
pre
i ; and let H0

i contain the �rst histories for player i that are
not in Hpre

i nor in H+
i : Then, by the choice of h

��; strategy si is rational for bi at all histories
in Hpre

i ; and therefore by Lemma 5.3 also at all histories in H+
i : Moreover, by Lemma 5.4 there

is for every history h in H0
i a strategy s

h
i in Si(h) that is rational for bi at h and all player i

histories that follow.
Now, construct the strategy ~si that (a) coincides with si at all histories in H

pre
i and H+

i ;
and (b) for every h 2 H0

i coincides with s
h
i at h and all player i histories that follow. Then,

by construction, the new strategy ~si is in Si(h��) and is rational for bi (at H). Since si is not
rational for bi at h��; it must be that ui(si; bi(h��)) < ui(~si; bi(h��)); which was to show. �

In order to state the last three results we need to introduce a new operator sb�; as follows.
For a product of strategy sets D = �i2IDi; we de�ne for every player i the set

sb�i (D) := fsi 2 Si j si is rational at H(D) for some bi 2 Bi that strongly believes D�ig

and set
sb�(D) := �i2Isb�i (D):

The di¤erence with the operator sb is thus that sbi(D) only considers strategies si inside Di;
whereas sb�i (D) also considers strategies outside Di. As a consequence, sb

�
i (D) is not necessarily

a subset of Di; in contrast to sbi(D):
The objective of the last three results is to show that for every product of strategy sets D

that is possible in an elimination order for sb; we have that sb(D)jH(D) = sb�(D)jH(D): That is,
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for the induced behavior on H(D) it does not matter whether we apply the operator sb or the
weaker operator sb� above. We prove this result in two steps. The �rst lemma below shows, for
any product of strategy sets D; that sb(D)jH(D) = sb�(D)jH(D) whenever sb�(D)jH(D) � DjH(D):
In the second lemma below we prove that every set D that is possible in an elimination order for
sb satis�es the latter property that sb�(D)jH(D) � DjH(D): In combination with the �rst lemma,
it thus follows that sb(D)jH(D) = sb�(D)jH(D) for every set D that is possible in an elimination
order for sb; which is what we want to show.

Lemma 5.6 (Consequence of being closed under rational behavior) For every product
of strategy sets D with sb�(D)jH(D) � DjH(D), it holds that sb�(D)jH(D) = sb(D)jH(D):

Here, the su¢ cient condition sb�(D)jH(D) � DjH(D) reduces to Basu and Weibull�s (1991)
notion of being closed under rational behavior if the game G is a static game, with ; as the
only non-terminal history. For that reason, we will say that D is closed under rational behavior
whenever sb�(D)jH(D) � DjH(D):

The main argument in the proof is as follows. By de�nition, sb(D)jH(D) � sb�(D)jH(D); and
hence it only remains to show that sb�(D)jH(D) � sb(D)jH(D): To prove this, we show that for
every strategy si in sb�i (D) there is some strategy s

0
i in sbi(D) that coincides with si on H(D):

Since si is in sb�i (D); the strategy si is rational at H(D) for some conditional belief vector bi 2 Bi
that strongly believes D�i: Moreover, as sb�i (D)jH(D) � DijH(D); there is some strategy s0i in Di
that coincides with si on H(D):

Since bi strongly believes D�i it assigns, at all player i histories in H(D); only positive
probability to opponents�strategies in D�i. As strategy s0i is in Di and coincides with si on
H(D); the strategies si and s0i therefore yield the same expected utility at all player i histories
in H(D) under the conditional belief vector bi: But then, as si is rational for bi at H(D); it
follows that also s0i is rational for bi at H(D): Since s

0
i is in Di; it follows that s

0
i is in sbi(D);

which was to show. �
Using the result above, we can show that every product of strategy sets D that is possible

in an elimination order for sb is closed under rational behavior.

Lemma 5.7 (sb leads to sets closed under rational behavior) Every product of strategy
sets D that is possible in an elimination order for sb satis�es sb�(D)jH(D) � DjH(D):

We discuss the main steps of the proof. Consider an arbitrary elimination order (D0; :::; DK)
for sb: We will show, by induction on k; that Dk satis�es sb�(Dk)jH(Dk) � DkjH(Dk) for all
k 2 f0; :::;Kg: For k = 0 this statement is trivial since D0 = S: Consider next some k � 1 and
assume that sb�(Dk�1)jH(Dk�1) � Dk�1jH(Dk�1): We will show that sb

�(Dk)jH(Dk) � DkjH(Dk):

De�ne D := Dk and E := Dk�1: Then, sb(E) � D � E; and sb�(E)jH(E) � EjH(E): We
must show that sb�(D)jH(D) � DjH(D): As sb�(E)jH(E) � EjH(E), we know from Lemma 5.6
that sb(E)jH(E) = sb�(E)jH(E): Moreover, since H(D) is a subset of H(E); we conclude that
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sb(E)jH(D) = sb�(E)jH(D): As, by assumption, sb(E) � D; it therefore su¢ ces to prove that
sb�(D)jH(D) � sb�(E)jH(D) in order to show that sb�(D)jH(D) � DjH(D):

Consider a player i and a strategy sDi in sb�i (D): In order to prove that sb
�
i (D)jH(D) �

sb�i (E)jH(D); we must �nd a strategy sEi in sb�i (E) that coincides with sDi on H(D): Since sDi is
in sb�i (D); it is rational at H(D) for some conditional belief vector b

D
i 2 Bi that strongly believes

D�i: We proceed in two steps: In step 1 we transform bDi into a conditional belief vector b
E
i in

Bi that strongly believes E�i: In step 2 we construct a strategy sEi that coincides with s
D
i on

H(D) and is rational for bEi , and therefore will be in sb
�
i (E):

Step 1. We �rst transform bDi into a conditional belief vector b
E
i in Bi that strongly believes

E�i: Let H+
i contain the player i histories following H(D) at which Bayesian updating can be

applied to bDi from a player i history in H(D); and let H0
i contain the �rst histories in Hi that

are not in H(D) nor in H+
i :

At all player i histories in H(D) we set bEi equal to b
D
i ; whereas at all histories h in H

+
i

we de�ne bEi (h) as the Bayesian update of b
E
i (h

0); where h0 is the last player i history in H(D)
preceding h: Finally, at all histories in H0

i we set b
E
i equal to an arbitrary conditional belief

vector bi that strongly believes E�i: As bDi strongly believes D�i; and D�i is a subset of E�i; it
may be veri�ed that bEi is a conditional belief vector in Bi that strongly believes E�i:

Step 2. We next construct a strategy sEi that coincides with s
D
i on H(D); and that is rational

for bEi : By Lemma 5.4 we know that for every history h in H
0
i there is a strategy s

h
i under which

h is reachable, and that is rational for bEi at h and all player i histories that follow. Let s
E
i be

the strategy that coincides with sDi at all player i histories in H(D) and H
+
i ; and that for every

history h in H0
i coincides with s

h
i at h and at all player i histories that follow.

Then, by construction, sEi coincides with s
D
i on H(D); and is rational for b

E
i at all player i

histories in and following H0
i : It only remains to show that s

E
i is rational for b

E
i at H(D) and H

+
i :

Consider �rst a player i history h in H(D): Since bEi (h) = b
D
i (h); it follows by the de�nition of

H+
i that b

E
i (h) only assigns positive probability to opponents�strategy combinations that reach

histories weakly following h that are in H(D) or H+
i : As s

E
i coincides with s

D
i at those histories,

we conclude that ui(sEi ; b
E
i (h)) = ui(s

D
i ; b

E
i (h)): Now, since b

E
i (h) = bDi (h); and s

D
i is rational

for bDi at h 2 H(D); it follows that sEi is rational for bEi at h:
Consider next a history h 2 H+

i : As b
E
i (h) is obtained through Bayesian updating from a

belief bEi (h
0) with h0 2 H(D); and sEi is rational for bEi at h0; it follows from Lemma 5.3 that sEi

is rational for bEi at h as well.
We thus conclude that sEi is rational for b

E
i at all histories. Since b

E
i is in Bi and strongly

believes E�i; it follows that sEi is in sb
�
i (E): Hence, for every strategy s

D
i in sb

�
i (D) there is some

strategy sEi in sb
�
i (E) that coincides with si onH(D): As this holds for every player i; we conclude

that sb�(D)jH(D) � sb�(E)jH(D): As we have seen above, this implies that sb�(D)jH(D) � DjH(D);
that is, sb�(Dk)jH(Dk) � DkjH(Dk): By induction on k; this holds for every k 2 f0; :::;Kg: As
this applies to every elimination order (D0; :::; DK) for sb; the proof is complete. �
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An immediate consequence of the two lemmas above is that every set D that is possible in
an elimination order for sb satis�es sb�(D)jH(D) = sb(D)jH(D):

Corollary 5.1 (Property of sets in elimination order) For every product of strategy sets
D that is possible in an elimination order for sb it holds that sb�(D)jH(D) = sb(D)jH(D):

With these preparatory results at hand we are now fully equipped to prove Theorem 5.1.

5.3 Proof of monotonicity theorem

In this section we discuss the key steps in the proof of Theorem 5.1. Since this theorem is the
main result on which our proof of Battigalli�s theorem rests, we �nd it important to discuss the
proof of Theorem 5.1 in some greater detail here.

We must show, for every two products of strategy sets D and E where E is possible in an
elimination order for sb and sb(E)jH(D) � DjH(D) � EjH(D); that sb(D)jH(D) � sb(E)jH(D):
That is, for every player i we must show that sbi(D)jH(D) � sbi(E)jH(D):

Consider a player i: Since DjH(D) � EjH(D) we know, in particular, that D�ijH(D) �
E�ijH(D): Hence, there is a function f�i : D�i ! E�i such that

f�i(s�i)jH(D) = s�ijH(D) for all s�i 2 D�i: (5.3)

This function, as we will see, plays a key role in the proof.
Now, take some arbitrary strategy sDi in sbi(D): We will show that there is some strategy

sEi in sbi(E) that coincides with s
D
i on H(D): Since s

D
i is in sbi(D); strategy s

D
i is in Di and is

rational at H(D) for some conditional belief vector bDi that strongly believes D�i: We proceed
in three steps: In step 1 we transform bDi into a conditional belief vector b

E
i in Bi that strongly

believes E�i: In step 2 we construct a strategy ~sEi that is rational for b
E
i and that coincides with

sDi on H(D): In step 3 we �nally transform ~sEi into a strategy s
E
i in sbi(E) that coincides with

sDi on H(D):

Step 1. We transform bDi into a conditional belief vector bEi that strongly believes E�i; as
follows. Similarly to the proof of Lemma 5.7, let H+

i be the collection of player i histories
following H(D) at which Bayesian updating of bDi is possible from a player i history in H(D);
and let H0

i contain the �rst histories in Hi that are not in H(D) nor in H
+
i : At every player i

history h in H(D); let

bEi (h)(s�i) := b
D
i (h)(f

�1
�i (s�i)) for all s�i 2 S�i; (5.4)

following the transformation in Lemma 5.2. At player i histories h in H+
i we de�ne b

E
i (h) as the

Bayesian update of bEi (h
0); where h0 is the last player i history in H(D) preceding h: Finally,

at all histories in and following H0
i ; we set b

E
i equal to an arbitrary conditional belief vector
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b̂Ei that strongly believes E�i: Relying on (5.4), it can then be shown that b
E
i is a well-de�ned

conditional belief vector in Bi that strongly believes E�i:

Step 2. We next construct a strategy ~sEi that is rational for b
E
i and that coincides with s

D
i on

H(D); as follows. By Lemma 5.4 there is for every history h in H0
i some strategy s

h
i in Si(h)

that is rational for bEi at all player i histories weakly following h: Now, let ~s
E
i be the strategy

that (a) coincides with sDi on player i histories in H(D) and H
+
i ; and (b) that for every h 2 H0

i

coincides with shi at h and all histories that follow. Then, by construction, ~s
E
i coincides with s

D
i

on H(D); and is rational for bEi at all histories in and following H
0
i : It remains to show that ~s

E
i

is rational for bi at player i histories in H(D) and H+
i :

Consider �rst a player i history h in H(D): Assume, on the contrary, that ~sEi is not rational
at h for bi: Then, by Lemma 5.5, there is some player i history h0 weakly preceding h and some
strategy s00i in Si(h

0) that is rational for bEi such that

ui(~s
E
i ; b

E
i (h

0)) < ui(s
00
i ; b

E
i (h

0)): (5.5)

As h is in H(D) and h0 weakly precedes h; we know that h0 is in H(D) as well. Since bDi strongly
believes D�i; it follows that bDi (h

0) only assigns positive probability to strategy combinations in
S�i(h0) \ D�i: Moreover, as ~sEi and sDi coincide on H(D); strategy sDi is in Di; and bEi (h

0) is
obtained from bDi (h

0) through (5.4), it follows from Lemma 5.2 that

ui(~s
E
i ; b

E
i (h

0)) = ui(s
D
i ; b

D
i (h

0)): (5.6)

On the other hand, we have seen that s00i is rational for b
E
i and that b

E
i strongly believes

E�i; which means that s00i is in sb
�
i (E): As E is possible in an elimination order for sb; we know

by Corollary 5.1 that sb�i (E)jH(E) = sbi(E)jH(E): Moreover, by assumption, DjH(D) � EjH(D);
which implies by Lemma 5.1 that H(D) � H(E): Therefore, sb�i (E)jH(D) = sbi(E)jH(D): If we
combine this with the assumption that sbi(E)jH(D) � DijH(D); it follows that sb�i (E)jH(D) �
DijH(D): Since s00i is in sb�i (E); there must be some ŝDi in Di that coincides with s00i on H(D):
But then, it can be shown in the same way as above that

ui(s
00
i ; b

E
i (h

0)) = ui(ŝ
D
i ; b

D
i (h

0)):

If we combine this with (5.5) and (5.6), we obtain that ui(sDi ; b
D
i (h

0)) < ui(ŝ
D
i ; b

D
i (h

0)); which
contradicts the assumption that sDi is rational for b

D
i at H(D): Therefore, we conclude that ~s

E
i

is rational for bEi at all histories in H(D):
As at histories in H+

i ; the conditional belief vector b
E
i is de�ned by using Bayesian updating

with respect to histories in H(D); it follows from Lemma 5.3 that ~sEi is also rational for b
E
i at

H+
i : Since we have seen above that rationality at histories in and following H

0
i is guaranteed,

we conclude that strategy ~sEi is rational for the conditional belief vector b
E
i :

Step 3. We �nally transform ~sEi into a strategy s
E
i in sbi(E) that coincides with s

D
i on H(D):

We have seen above that ~sEi is rational for the conditional belief vector b
E
i that strongly believes
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E�i; and hence ~sEi is in sb
�
i (E): Since we have shown above that sb

�
i (E)jH(D) = sbi(E)jH(D);

there is some strategy sEi in sbi(E) that coincides with ~s
E
i on H(D): Since ~s

E
i coincides with s

D
i

on H(D); it then follows that sEi coincides with s
D
i on H(D) as well.

Therefore, for every strategy sDi in sbi(D) there is some strategy s
E
i in sbi(E) that coincides

with sDi on H(D): As such, sbi(D)jH(D) � sbi(E)jH(D); which was to show. �

6 Order Independence with Respect to Outcomes

We have seen in Section 4 that the strong belief reduction operator is not order independent
with respect to strategies. In this section we will prove that it does satisfy a milder form of
order independence, which we call order independence with respect to outcomes. That is, every
order of elimination allowed by the strong belief reduction operator will yield the same set of
induced outcomes. In order to prove this result, we show that every reduction operator that
is monotone on reachable histories is also order independent with respect to outcomes. Since
we have seen, in Theorem 5.1, that the strong belief reduction operator is indeed monotone on
reachable histories, it then follows that the strong belief reduction operator is order independent
with respect to outcomes.

In this section we �rst formally de�ne what we mean by order independence with respect
to outcomes, and then present the result above stating that monotonicity on reachable histories
implies order independence with respect to outcomes. We subsequently discuss a preparatory
result that will �nally enable us to prove this theorem.

6.1 Order independence theorem

Consider a reduction operator r; and remember the de�nition of an elimination order for r; as
stated in Section 4. Our notion of order independence with respect to outcomes states that
every elimination order for r must yield the same set of outcomes. In the de�nition below, we
denote by Z(D) := Z \H(D) the set of terminal histories that are reachable under a product
of strategy sets D:

De�nition 6.1 (Order independence with respect to outcomes) A reduction operator r
is order independent with respect to outcomes if for every two elimination orders (D0; :::; DK)
and (E0; :::; EL) for r we have that Z(DK) = Z(EL):

We are now able to state the main result in this section, stating that monotonicity on
reachable histories implies order independence with respect to outcomes.

Theorem 6.1 (Su¢ cient condition for order independence with respect to outcomes)
Every reduction operator r that is monotone on reachable histories is order independent with
respect to outcomes.
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The proof for this theorem will be given at the end of this section. Since we have seen in
Theorem 5.1 that the strong belief reduction operator is indeed monotone on reachable histories,
we immediately obtain the following result.

Corollary 6.1 (Order independence theorem) The strong belief reduction operator is or-
der independent with respect to outcomes.

Before we can prove Theorem 6.1 we will �rst discuss a preparatory result needed to prove
this theorem.

6.2 A preparatory result

Consider a reduction operator r; an elimination order (D0; :::; DK) for r; and two subsequent sets
F and G in this elimination order. The lemma shows that if we iteratively apply the reduction
operator r �at full speed� to F and G respectively, then the induced elimination orders will
be nested at every round in terms of behavior on reachable histories. As a consequence, both
elimination orders will eventually yield the same set of outcomes.

The formal proof of this lemma is rather elementary, and essentially relies on a repeated
application of Theorem 5.1. We therefore include the formal proof in the main text.

Lemma 6.1 (Sandwich lemma) Consider a reduction operator r; and let (D0; :::; DK) be an
elimination order for r: For some m 2 f0; :::;K � 1g; let F := Dm+1 and G := Dm: Then, for
every k � 0;

rk+1(G)jH(rk(F )) � rk(F )jH(rk(F )) � rk(G)jH(rk(F ));
and

H(rk+1(G)) � H(rk(F )) � H(rk(G)):

Proof of Lemma 6.1. We prove the statement by induction on k: Consider �rst k = 0: As
r(G) � F � G; it immediately follows that r(G)jH(F ) � F jH(F ) � GjH(F ) and H(r(G)) �
H(F ) � H(G); which was to show.

Consider now some k � 1; and suppose that

rk(G)jH(rk�1(F )) � rk�1(F )jH(rk�1(F )) (6.1)

and
rk�1(F )jH(rk�1(F )) � rk�1(G)jH(rk�1(F )): (6.2)

We �rst show that
rk(F )jH(rk(F )) � rk(G)jH(rk(F )): (6.3)

If we set D := rk�1(F ) and E := rk�1(G); then (6.1) and (6.2) state that

r(E)jH(D) � DjH(D) � EjH(D): (6.4)

24



Clearly, E is possible in an elimination order for r; as G is possible in an elimination order
for r and E = rk�1(G): But then, together with (6.4) and Theorem 5.1 we conclude that
r(D)jH(D) � r(E)jH(D); which can be restated as

rk(F )jH(rk�1(F )) � rk(G)jH(rk�1(F )): (6.5)

This automatically implies (6.3), since H(rk(F )) � H(rk�1(F )):
We next show that

rk+1(G)jH(rk(F )) � rk(F )jH(rk(F )): (6.6)

Set D := rk(G) and E := rk�1(F ): Hence, (6.6) can be restated as

r(D)jH(r(E)) � r(E)jH(r(E)): (6.7)

By (6.5) and (6.1) we know that r(E)jH(E) � DjH(E) � EjH(E); which by Lemma 5.1 implies
that H(D) � H(E): We can thus conclude that

r(E)jH(D) � DjH(D) � EjH(D): (6.8)

As F is possible in an elimination order for r and E = rk�1(F ); it follows that E is possible in
an elimination order for r as well. But then, by (6.8) and Theorem 5.1 we can conclude that
r(D)jH(D) � r(E)jH(D): Since we have seen above that r(E)jH(E)) � DjH(E) and H(D) � H(E);
we know that r(E)jH(D) � DjH(D); and hence, by Lemma 5.1, we conclude that H(r(E)) �
H(D): As r(D)jH(D) � r(E)jH(D); this implies (6.7), which is equivalent to (6.6) that had to be
shown

Finally, the set inclusions

H(rk+1(G)) � H(rk(F )) � H(rk(G)):

follow directly from (6.6), (6.3) and Lemma 5.1. By induction on k; the proof is therefore
complete. �

6.3 Proof of order independence theorem

We are now ready to prove Theorem 6.1. As we will see, it follows rather directly from Lemma
6.1.

Proof of Theorem 6.1. Consider a reduction operator r that is monotone on reachable
histories. We must show that r is order independent with respect to outcomes.

LetM :=
P
i2I jSij be the total number of strategies in the game. Then, rM+1(D) = rM (D)

for every product of strategy sets D: Consider an arbitrary elimination order (D0; :::; DK) for r
and some k 2 f0; :::;K � 1g: Then, we know from Lemma 6.1 that

H(rM+1(Dk)) � H(rM (Dk+1)) � H(rM (Dk)):
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As rM+1(Dk) = rM (Dk); it follows that H(rM (Dk+1)) = H(rM (Dk)); and hence, in particular,
Z(rM (Dk+1)) = Z(rM (Dk)):

Since this holds for every k 2 f0; :::;K � 1g; we conclude that Z(rM (D0)) = Z(rM (DK)):
As r(DK) = DK ; it follows that rM (DK) = DK : We thus conclude that

Z(DK) = Z(rM (DK)) = Z(rM (D0)) = Z(rM (S)):

As this holds for every elimination order (D0; :::; DK) for r; we conclude that r is order inde-
pendent with respect to outcomes. �

7 Proof of Battigalli�s Theorem

With Theorem 4.1 and Corollary 6.1 at hand we are �nally able to prove Battigalli�s theorem.
Note that so far we have considered general dynamic games with observable past choices, and all
results obtained up to this point hold for that general class. In this section we turn to the more
special class of games with perfect information and without relevant ties �the class of games to
which Battigalli�s theorem applies.

In this section we proceed as follows. We �rst de�ne this more special class of games, and
give a formal statement of Battigalli�s theorem. Next, we show that in every perfect information
game without relevant ties, backward induction yields an elimination order for the strong belief
reduction operator. We �nally use this result, together with Theorem 4.1 and Corollary 6.1, to
prove Battigalli�s theorem.

7.1 Statement of Battigalli�s theorem

Consider a �nite dynamic game G with perfect information. That is, at every non-terminal
history there is exactly one active player. Following Battigalli (1997), we say that G is without
relevant ties if for every player i; every h 2 Hi; every two di¤erent choices ci; c0i 2 Ci(h); every
terminal history z weakly following (h; ci); and every terminal history z0 weakly following (h; c0i);
we have that ui(z) 6= ui(z

0): It is easily veri�ed that every such game has a unique backward
induction outcome zbi 2 Z:

Theorem 7.1 (Battigalli�s theorem) Let G be a �nite dynamic game with perfect informa-
tion and without relevant ties. Let zbi be the unique backward induction outcome, let Sefri be
the set of extensive-form rationalizable strategies for every player i, and let Sefr := �i2ISefri

Then, Z(Sefr) = fzbig:

That is, the backward induction outcome is the unique outcome induced by extensive-form
rationalizability.
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7.2 Backward induction yields elimination order for sb

We de�ne the backward induction sequence (Dbi;0; Dbi;1; :::; Dbi;K) as follows. Let K be the
maximal number of consecutive choices between the root and a terminal history in the game.
For every k 2 f1; :::;Kg; let Hk be the collection of non-terminal histories h such that for every
terminal history z following h there are at most k consecutive choices between h and z:

We de�ne the products of strategy sets Dbi;0; :::; Dbi;K inductively by setting Dbi;0i := Si for
every player i; and

Dbi;ki := fsi 2 Si j si(h) is the backward induction choice at h for all h 2 Hi(si) \Hkg:

for every player i and every k 2 f1; :::;Kg:
Hence, Dbi;Ki contains only one strategy for player i; which is his unique backward induction

strategy. In particular, it follows that Z(Dbi;K) = fzbig:
In order to show Battigalli�s theorem it is therefore su¢ cient, in view of Theorem 4.1 and

Corollary 6.1, to prove that the backward induction sequence above is an elimination order for
sb:

Lemma 7.1 (Backward induction yields elimination order for sb) Let G be a �nite dy-
namic game with perfect information and without relevant ties. Then, the backward induction
sequence (Dbi;0; :::; Dbi;K) de�ned above is an elimination order for sb.

Proof. In order to show that (Dbi;0; :::; Dbi;K) is an elimination order for sb; we must show
properties (a), (b) and (c) in De�nition 4.2. As properties (a) and (c) hold by construction, we
need only concentrate on (b). The inclusion Dbi;k+1 � Dbi;k in (b) again holds by construction.
Hence, it only remains to show that sbi(Dbi;k) � Dbi;k+1i for every player i:

Take some si 2 sbi(Dbi;k): Then, si 2 Dbi;ki and si is rational at H(Dbi;k) for some bi that
strongly believes Dbi;k�i : Since D

bi;k only puts restrictions on choices at histories in Hk, we have
that Hk+1nHk � H(Dbi;k); and hence it follows that si is rational at Hk+1nHk for bi: Take some
h 2 Hi(si) \ (Hk+1nHk): Since bi strongly believes D

bi;k
�i and h 2 (Hk+1nHk) � H(Dbi;k); the

conditional belief bi(h) only assigns positive probability to opponents�strategies that prescribe
the backward induction choice at every history that follows. As si is rational at h for bi; the
prescribed choice si(h) at h must be the backward induction choice.

We thus conclude that si(h) is the backward induction choice at every h 2 Hi(si)\(Hk+1nHk):

Since si is in D
bi;k
i ; we also know that si(h) is the backward induction choice for every h 2

Hi(si) \ Hk: Therefore, si(h) is the backward induction choice at every h 2 Hi(si) \ Hk+1:

But then, by de�nition, si 2 Dbi;k+1i : As this holds for every si 2 sbi(Dbi;k); we conclude that
sbi(D

bi;k) � Dbi;k+1i ; which was to show.
We thus conclude that the backward induction sequence is an elimination order for sb. This

completes the proof. �
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7.3 Proof of Battigalli�s theorem

We are �nally able to prove Battigalli�s theorem. Take the backward induction sequence
(Dbi;0; Dbi;1; :::; Dbi;K) de�ned above. Then we know, by Lemma 7.1, that this is an elimi-
nation order for sb. Moreover, the elimination order (E0; E1; :::; EL) obtained by the iterated
application of sb �at full speed� clearly yields another elimination order for sb: But then, by
Corollary 6.1 we conclude that Z(EL) = Z(Dbi;K): As Z(Dbi;K) = fzbig and, by Theorem 4.1,
Z(EL) = Z(Sefr); it follows that Z(Sefr) = fzbig; which completes the proof of Battigalli�s
theorem. �

8 Concluding Remarks

8.1 Monotonicity on reachable histories

The new notion of monotonicity on reachable histories plays a crucial role in our proof of Batti-
galli�s theorem. This condition enters the proof at two di¤erent stages: We �rst show, in Theorem
5.1, that the strong belief reduction operator is monotone on reachable histories, whereas The-
orem 6.1 guarantees that monotonicity on reachable histories implies order independence with
respect to outcomes. These two steps are our key to proving Battigalli�s theorem.

We believe that Theorem 6.1 may also be of interest outside the speci�c setting of this paper,
since it provides an easy to verify su¢ cient condition for order independence with respect to
outcomes. Indeed, suppose we consider a game-theoretic concept for dynamic games that can be
characterized by the iterated application of a certain reduction operator r: If we wish to prove
that this concept is order independent with respect to outcomes, then, by Theorem 6.1, it would
be su¢ cient to show that the reduction operator r is monotone on reachable histories.

8.2 Reny�s theorem

Proposition 3 in Reny (1992) is, in terms of content and proof, very similar to Battigalli�s theo-
rem. It shows that in every dynamic game with perfect information and without relevant ties,
the forward induction concept of explicable equilibrium yields a unique outcome: the backward
induction outcome. Like Battigalli (1997), also Reny (1992) proves this result by using properties
of fully stable sets (Kohlberg and Mertens (1986)). It would be interesting to see whether the
proof techniques in this paper can be used to develop an alternative proof for Reny�s theorem.

8.3 Games with imperfect information

Common belief in future rationality (Perea (2014)) represents a backward induction concept that
is also applicable to dynamic games with imperfect information. We believe that a similar proof
as the one in this paper can be used to show that in such games, the set of outcomes induced by
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extensive-form rationalizability is always smaller than (or equal to) the set of outcomes induced
by common belief in future rationality.

9 Proofs

9.1 Proofs of Section 4

Proof of Theorem 4.1. We prove the statement by induction on k: For k = 0 the statement
trivially holds as S0 = (sb)0(S) = S:

Consider now some k � 1; and assume that Sk�1 = (sb)k�1(S): In order to show that
Sk = (sb)k(S); we �rst prove that (a) Sk � (sb)k(S); and then show that (b) (sb)k(S) � Sk:
(a)We �rst show that Sk � (sb)k(S): Take some player i and some si 2 Ski :We must show that
si 2 sbi((sb)k�1(S)): As, by the induction assumption, (sb)k�1(S) = Sk�1; it su¢ ces to show
that si 2 sbi(Sk�1):

Since si 2 Ski we know, by de�nition of S
k
i ; that si 2 Sk�1i ; and that si is rational for

some conditional belief vector bi 2 Bk�1i : Here, Bk�1i is the set of conditional belief vectors that
survive round k � 1 of the extensive-form rationalizability procedure. By de�nition of Bk�1i ;
it follows that bi 2 Bi and that bi strongly believes Sk�1�i : Hence, si 2 S

k�1
i and si is rational

for some bi 2 Bi that strongly believes Sk�1�i : In particular, si is rational at H(S
k�1) for bi:

As such, si 2 sbi(Sk�1). Together with the induction assumption that Sk�1 = (sb)k�1(S); we
conclude that si 2 sbi((sb)k�1(S)): This holds for every player i and every si 2 Ski ; and hence
Sk � (sb)k(S):
(b) We next show that (sb)k(S) � Sk; which amounts to proving that sbi((sb)k�1(S)) � Ski
for every player i: Consider some player i and some si 2 sbi((sb)

k�1(S)): By the induction
assumption we know that (sb)k�1(S) = Sk�1; from which we conclude that si 2 sbi(S

k�1):
Hence, si 2 Sk�1i and si is rational at H(Sk�1) for a conditional belief vector bi 2 Bi that
strongly believes Sk�1�i : As si 2 S

k�1
i we know that si is rational (at H) for a conditional belief

vector bk�2i 2 Bk�2i which, by de�nition, strongly believes each of the sets S0�i; S
1
�i; :::; S

k�2
�i :

We now construct a new conditional belief vector bk�1i ; from bi and bk�2i ; as follows. For
every h 2 Hi; let

bk�1i (h) :=

�
bi(h); if Sk�1�i \ S�i(h) 6= ;

bk�2i (h); otherwise
:

We will show that bk�1i 2 Bk�1i ; and that si is rational for bk�1i :
In order to prove that bk�1i 2 Bk�1i we must show that bk�1i satis�es Bayesian updating, and

that bk�1i strongly believes each of the sets S0�i; S
1
�i; :::; S

k�1
�i :

We start by proving Bayesian updating. Consider some h; h0 2 Hi where h0 follows h and
bk�1i (h)(S�i(h0)) > 0: We distinguish two cases: (i) that Sk�1�i \ S�i(h) 6= ;; and (ii) that
Sk�1�i \ S�i(h) = ;:

29



(i) Suppose �rst that Sk�1�i \ S�i(h) 6= ;: Then, bk�1i (h) = bi(h): We know, by assump-
tion, that bi strongly believes Sk�1�i ; and hence bi(h)(S

k�1
�i ) = 1: We are also assuming that

bk�1i (h)(S�i(h0)) > 0; which implies that bi(h)(S�i(h0)) > 0: By combining the insights that
bi(h)(S

k�1
�i ) = 1 and bi(h)(S�i(h

0)) > 0; we obtain that Sk�1�i \S�i(h0) 6= ;: This means, in turn,
that bk�1i (h0) = bi(h

0): We thus see that bk�1i (h) = bi(h) and bk�1i (h0) = bi(h
0): As we assume

that bi satis�es Bayesian updating, we conclude that bk�1i will satisfy Bayesian updating if the
game moves from h to h0:

(ii) Suppose next that Sk�1�i \S�i(h) = ;: Since h0 follows h; we know that S
k�1
�i \S�i(h0) = ;

as well. Therefore, by de�nition, bk�1i (h) = bk�2i (h) and bk�1i (h0) = bk�2i (h0): As bk�2i 2 Bk�2i ;
we know that bk�2i satis�es Bayesian updating, and therefore bk�1i will satisfy Bayesian updating
as well if the game moves from h to h0: By combining the cases (i) and (ii) we conclude that
bk�1i satis�es Bayesian updating.

We next show that bk�1i strongly believes each of the sets S0�i; S
1
�i; :::; S

k�1
�i : Consider some

arbitrary history h 2 Hi: We again consider two cases: (i) that Sk�1�i \ S�i(h) 6= ;; and (ii) that
Sk�1�i \ S�i(h) = ;:

(i) If Sk�1�i \ S�i(h) 6= ;; then bk�1i (h) = bi(h): Since bi strongly believes Sk�1�i ; we conclude
that bk�1i (h)(Sk�1�i ) = bi(h)(S

k�1
�i ) = 1: As S0�i; :::; S

k�2
�i are supersets of Sk�1�i ; it follows that

bk�1i (h)(S0�i) = ::: = b
k�1
i (h)(Sk�2�i ) = 1 as well. Therefore, b

k�1
i (h) strongly believes each of the

sets S0�i; :::; S
k�1
�i :

(ii) If Sk�1�i \S�i(h) = ;; then b
k�1
i (h) automatically strongly believes Sk�1�i : By de�nition, we

have that bk�1i (h) = bk�2i (h): As, by assumption, bk�2i (h) strongly believes the sets S0�i; :::; S
k�2
�i ;

we conclude that bk�1i (h) strongly believes each of the sets S0�i; :::; S
k�1
�i : By combining the cases

(i) and (ii) we obtain that bk�1i strongly believes the sets S0�i; :::; S
k�1
�i : Together with the insight

above that bk�1i satis�es Bayesian updating, we conclude that bk�1i 2 Bk�1i :

We �nally show that si is rational for bk�1i : Consider some arbitrary history h 2 Hi(si): We
again consider the same two cases: (i) that Sk�1�i \ S�i(h) 6= ;; and (ii) that Sk�1�i \ S�i(h) = ;:

(i) If Sk�1�i \ S�i(h) 6= ;; then bk�1i (h) = bi(h): Moreover, as h is reachable under si and
si 2 Sk�1i ; it follows that h 2 H(Sk�1): Since, by assumption, si is rational at H(Sk�1) for bi,
we conclude that si is rational for bk�1i at h:

(ii) If Sk�1�i \ S�i(h) = ;; then bk�1i (h) = bk�2i (h): By assumption, si is rational for bk�2i ,
and hence we see that si is rational for bk�1i at h: By combining the cases (i) and (ii) we may
conclude that si is rational for bk�1i :

Altogether, we see that si is rational for a conditional belief vector bk�1i 2 Bk�1i ; and hence
si 2 Ski : As this holds for every si 2 sbi((sb)k�1(S)); we conclude that sbi((sb)k�1(S)) � Ski :
This applies to every player i; and hence we see that (sb)k(S) � Sk:
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By combining parts (a) and (b) we conclude that Sk = (sb)k(S): By induction, this holds
for every k; and hence the proof is complete. �

9.2 Proofs of Section 5

Proof of Lemma 5.5. Let h�� be the �rst history in Hi weakly preceding h� at which si is
not rational for bi. Note that h�� can be equal to h� itself. Let H

pre
i be the set of histories in

Hi preceding h��; and let

H+
i := fh 2 HinH

pre
i j there is h0 2 Hpre

i preceding h with bi(h0)(S�i(h)) > 0g:

Note that Hpre
i and H+

i can be empty if h�� is not preceded by any history in Hi: Finally, let
H0
i be the collection of histories h in Hin(H

pre
i [H+

i ) such that h is not preceded by any other
h0 2 Hin(Hpre

i [H+
i ): For every h 2 Hin(H

pre
i [H+

i ); let h
0
i [h] be the unique history in H

0
i that

weakly precedes h:
We know by Lemma 5.4 that for every h 2 H0

i there is a strategy s
h
i 2 Si(h) that is rational

for bi at all histories in Hi(shi ) weakly following h: We de�ne the strategy ~si by

~si(h) :=

(
si(h); if h 2 Hpre

i [H+
i

s
h0i [h]
i (h); if h 2 Hin(Hpre

i [H+
i )

for every h 2 Hi(~si):

We �rst show that ~si is rational for bi: That is, we must show that ~si is rational for bi at every
h 2 Hi(~si):We distinguish three cases: (i) h 2 Hpre

i ; (ii) h 2 H+
i ; and (iii) h 2 Hin(H

pre
i [H+

i ):
(i) Take �rst some h 2 Hpre

i . Then, h preceeds h�� and hence, by the choice of h��; strategy
si is rational for bi at h: By construction, every opponents�strategy combination s�i 2 S�i(h)
with bi(h)(s�i) > 0 has the property that (~si; s�i) only reaches player i histories in H

pre
i [H+

i :
As ~si and si coincide on H

pre
i [H+

i ; it follows that ui(~si; bi(h)) = ui(si; bi(h)): Since si is rational
for bi at h; strategy ~si is rational for bi at h as well.

(ii) Consider next some h 2 H+
i : Then, there is some h

0 2 Hpre
i preceding h with bi(h0)(S�i(h)) >

0: Since we have seen in (i) that ~si is rational for bi at h0; we know from Lemma 5.3 that ~si is
rational for bi at h:

(iii) Suppose �nally that h 2 Hin(Hpre
i [H+

i ): Let h
0
i [h] be the unique history in H

0
i that

weakly precedes h: Since ~si coincides with s
h0i [h]
i at all player i histories weakly following h0i [h];

and s
h0i [h]
i is rational for bi at all histories in Hi(s

h0i [h]
i ) weakly following h0i [h]; it follows that ~si

is rational for bi at h:
By (i), (ii) and (iii) it follows that ~si is rational for bi:

We next show that ~si 2 Si(h��): Since si 2 Si(h�) and h�� weakly precedes h� it follows
immediately that si 2 Si(h��): By de�nition, all player i histories preceding h�� are in Hpre

i : As
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~si and si coincide on H
pre
i ; they coincide in particular on the player i histories preceding h��:

From the fact that si 2 Si(h��) it then follows that ~si 2 Si(h��) as well.

Summarizing, we see that ~si is in Si(h��); and that ~si is rational for bi: In particular, ~si is
rational for bi at h��: Since si is not rational for bi at h�� we conclude that ui(si; bi(h��)) <
ui(~si; bi(h

��)); which completes the proof. �

Proof of Lemma 5.6. By de�nition we have that sb(D)jH(D) � sb�(D)jH(D): It therefore only
remains to show that sb�(D)jH(D) � sb(D)jH(D): To that purpose, we show that for every player
i; and every strategy si 2 sb�i (D); there is some s0i 2 sbi(D) with sijH(D) = s0ijH(D):

Take some player i and some si 2 sb�i (D): Then, si is rational at H(D) for some bi 2 Bi that
strongly believes D�i: As sb�i (D)jH(D) � DijH(D); there is some s0i 2 Di with sijH(D) = s0ijH(D):

We show that s0i is rational at H(D) for bi: Take some history h 2 Hi(s
0
i) \ H(D): As

h 2 H(D) and sijH(D) = s0ijH(D); we conclude that h 2 Hi(si) \H(D) as well. By assumption,
si is rational at H(D) for bi; which implies in particular that si is rational at h for bi: That is,

ui(si; bi(h)) � ui(s00i ; bi(h)) for all s00i 2 Si(h): (9.1)

Since h 2 H(D) and bi strongly believes D�i; we conclude that

bi(h)(D�i) = 1: (9.2)

Let Z(D) be the set of terminal histories that are reachable by strategy combinations in D: As
s0i 2 Di; we have that z(s0i; s�i) 2 Z(D) for all s�i 2 D�i: Moreover, as sijH(D) = s0ijH(D); it
follows that

z(si; s�i) = z(s
0
i; s�i) for all s�i 2 D�i: (9.3)

By combining (9.1), (9.2) and (9.3), we conclude that

ui(s
0
i; bi(h)) =

X
s�i2D�i

bi(h)(s�i) � ui(z(s0i; s�i))

=
X

s�i2D�i

bi(h)(s�i) � ui(z(si; s�i))

= ui(si; bi(h)) � ui(s00i ; bi(h)) for all s00i 2 Si(h):

Here, the �rst and third equality follow from (9.2), the second equality follows from (9.3), and
the inequality follows from (9.1). We thus see that s0i is rational at h for bi: Since this holds for
every h 2 Hi(s0i) \H(D); it follows that s0i is rational at H(D) for bi: Together with the facts
that s0i 2 Di and that bi strongly believes D�i; this implies that s0i 2 sbi(D):

Remember that sijH(D) = s0ijH(D): We thus have shown that for every si 2 sb�i (D) there
is some s0i 2 sbi(D) with sijH(D) = s0ijH(D): As this holds for every player i; we conclude that
sb�(D)jH(D) � sb(D)jH(D); which was to show. �
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Proof of Lemma 5.7. Take an arbitrary elimination order (D0; :::; DK) for sb: We prove, by
induction on k; that sb�(Dk)jH(Dk) � DkjH(Dk) for every k 2 f0; :::;Kg: For k = 0 this statement
is trivial since D0 = S: Consider now some k � 1 and assume that sb�(Dk�1)jH(Dk�1) �
Dk�1jH(Dk�1): We show that sb

�(Dk)jH(Dk) � DkjH(Dk):

De�ne D := Dk and E := Dk�1: Then, sb(E) � D � E; and sb�(E)jH(E) � EjH(E): We will
show that

sb�(D)jH(D) � DjH(D): (9.4)

As sb�(E)jH(E) � EjH(E); it follows from Lemma 5.6 that sb�(E)jH(E) = sb(E)jH(E): Hence, we
conclude that sb�(E)jH(D) = sb(E)jH(D) since H(D) � H(E): Since sb�(E)jH(D) = sb(E)jH(D)
and sb(E) � D; it thus su¢ ces to prove that

sb�(D)jH(D) � sb�(E)jH(D) (9.5)

in order to show (9.4).
To prove (9.5), take some player i and some sDi 2 sb�i (D): We show that there is some

sEi 2 sb�i (E) with sDi jH(D) = sEi jH(D): Since sDi 2 sb�i (D); there is some conditional belief vector
bDi 2 Bi that strongly believes D�i such that sDi is rational for bDi at H(D): We proceed in two
steps: In step 1 we transform bDi into a conditional belief vector b

E
i that strongly believes E�i:

In step 2 we �nally construct a strategy sEi that is rational for b
E
i and coincides with s

D
i on

H(D): Consequently, sEi will be in sb
�
i (E) and s

D
i jH(D) = sEi jH(D); as was to show.

Step 1. We �rst transform bDi into a new conditional belief vector b
E
i 2 Bi that strongly believes

E�i; as follows:
(i) For all histories h 2 Hi(D) := Hi \H(D); let

bEi (h) := b
D
i (h): (9.6)

(ii) De�ne H+
i := fh 2 HinHi(D) j bEi (h0)(S�i(h)) > 0 for some h0 2 Hi(D) that precedes

hg: For all histories h 2 H+
i ; let

bEi (h)(s�i) :=
bEi (h

0)(s�i)

bEi (h
0)(S�i(h))

for all s�i 2 S�i(h); (9.7)

where h0 is the last history in Hi(D) that precedes h:
(iii) De�ne H0

i := Hin(Hi(D) [H+
i ): For every history h 2 H0

i ; de�ne

bEi (h) := bi(h) (9.8)

where bi is an arbitrary conditional belief vector in Bi that strongly believes E�i:
The reader may easily verify that bEi satis�es Bayesian updating.
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We next show that bEi strongly believes E�i: That is, we must show that for every h 2 Hi with
S�i(h) \ E�i 6= ;; it holds that bEi (h)(E�i) = 1: We distinguish three cases: (i) h 2 Hi(D); (ii)
h 2 H+

i ; and (iii) h 2 H0
i :

(i) Consider �rst some h 2 Hi(D). Then, by (9.6), bEi (h)(E�i) = bDi (h)(E�i): Since
bDi strongly believes D�i and h 2 Hi(D); we know that bDi (h)(D�i) = 1: This implies that
bDi (h)(E�i) = 1; as D�i � E�i: We thus conclude that bEi (h)(E�i) = bDi (h)(E�i) = 1:

(ii) Consider next some h 2 H+
i , and let h

0 be the last history in Hi(D) that precedes h:
Suppose that bEi (h)(s�i) > 0: Then, by (9.7), b

E
i (h

0)(s�i) > 0: Since we have shown in (i) that
bEi (h

0)(E�i) = 1; it must hold that s�i 2 E�i:We thus see that bEi (h)(s�i) > 0 only if s�i 2 E�i;
which guarantees that bEi (h)(E�i) = 1:

(iii) Consider �nally some h 2 H0
i with S�i(h) \ E�i 6= ;: Then, by (9.8), bEi (h)(E�i) =

bi(h)(E�i) = 1 since bi strongly believes E�i:
By combining the cases (i), (ii) and (iii) we conclude that bEi strongly believes E�i:

Step 2. We now construct a strategy sEi that is rational for b
E
i and coincides with s

D
i on H(D).

For every h 2 H0
i ; let h

0[h] be the �rst history in H0
i that weakly precedes h: As b

E
i satis�es

Bayesian updating, we know by Lemma 5.4 that for every �rst history h 2 H0
i there is some

strategy shi 2 Si(h) that is rational for bEi at every h0 2 Hi(shi ) that weakly follows h:
Let the strategy sEi be such that

sEi (h) :=

(
sDi (h); if h 2 Hi(D) [H+

i

s
h0[h]
i (h); if h 2 H0

i

(9.9)

for all h 2 Hi(sEi ): Then, it immediately follows that sDi jH(D) = sEi jH(D):

We now show that sEi is rational for b
E
i : That is, we must show that s

E
i is rational for b

E
i at

every h 2 Hi(sEi ): We distinguish three cases: (i) h 2 Hi(D); (ii) h 2 H+
i ; and (iii) h 2 H0

i :
(i) Assume �rst that h 2 Hi(D): Since bEi (h) = bDi (h); it follows by de�nition of H

+
i that

every s�i 2 S�i(h) with bEi (h)(s�i) > 0 is such that (sEi ; s�i) only reaches player i histories
weakly following h that are in Hi(D)[H+

i : Since, by (9.9), s
E
i and s

D
i coincide on Hi(D)[H+

i ;
it follows that ui(sEi ; b

E
i (h)) = ui(s

D
i ; b

E
i (h)): As, by (9.6), b

E
i (h) = b

D
i (h); and s

D
i is rational for

bDi at H(D); it follows that s
E
i is rational for b

E
i at h:

(ii) Assume next that h 2 H+
i : Let h

0 be the last history in Hi(D) that precedes h: Then,
by (9.7), bEi (h) is obtained through Bayesian updating from bEi (h

0): Since we have seen in (i)
that sEi is rational for b

E
i at h

0; it follows from Lemma 5.3 that sEi is rational for b
E
i at h as well.

(iii) Assume �nally that h 2 H0
i : As, by assumption, s

h0[h]
i is rational for bEi at all histories

in Hi(s
h0[h]
i ) weakly following h0[h], it follows in particular that sh

0[h]
i is rational for bEi at h:

But then, by (9.9), sEi is rational at h for b
E
i :

Altogether, we see that for all h 2 Hi(sEi ); strategy sEi is rational at h for bEi : That is, sEi is
rational for bEi :
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Since bEi 2 Bi and bEi strongly believes E�i; we conclude that sEi 2 sb�i (E): We know from
above that sDi jH(D) = sEi jH(D): Hence, there is some sEi 2 sb�i (E) with sDi jH(D) = sEi jH(D): As

this holds for every player i and every sDi 2 sb�i (D); we conclude that sb�(D)jH(D) � sb�(E)jH(D);
which establishes (9.5). As we saw above, this implies that sb�(D)jH(D) � DjH(D); that is,
sb�(Dk)jH(Dk) � DkjH(Dk): By induction, this holds for every k 2 f0; :::;Kg: As this applies to
every elimination order (D0; :::; DK); we conclude that every product of strategy sets D that is
possible in an elimination order for sb satis�es sb�(D)jH(D) � DjH(D): This completes the proof.
�

Proof of Theorem 5.1. Consider some products of strategy sets D and E where E is possible
in an elimination order for sb and sb(E)jH(D) � DjH(D) � EjH(D): We must show, for every
player i; that sbi(D)jH(D) � sbi(E)jH(D):

Consider some player i: As DjH(D) � EjH(D) we have, in particular, that D�ijH(D) �
E�ijH(D): Hence, there is some function f�i : D�i ! E�i such that

s�ijH(D) = f�i(s�i)jH(D) for every s�i 2 D�i: (9.10)

Take some strategy sDi 2 sbi(D): We will prove that there is some sEi 2 sbi(E) with sDi jH(D) =
sEi jH(D): By de�nition, sDi 2 Di and sDi is rational at H(D) for some conditional belief vector
bDi 2 Bi that strongly believes D�i: We proceed in three steps: In step 1 we transform bDi into
a conditional belief vector bEi in Bi that strongly believes E�i: In step 2 we construct a strategy
~sEi that is rational for b

E
i and for which ~s

E
i jH(D) = sDi jH(D): In step 3 we transform ~sEi into a

strategy sEi 2 sbi(E) with sEi jH(D) = sDi jH(D):

Step 1. We transform bDi into a conditional belief vector b
E
i in Bi that strongly believes E�i;

as follows.
(i) For all histories h 2 Hi(D) := Hi \H(D); let

bEi (h)(s�i) := b
D
i (h)(f

�1
�i (s�i)) for all s�i 2 S�i: (9.11)

(ii) De�ne H+
i := fh 2 HinHi(D) j bEi (h0)(S�i(h)) > 0 for some h0 2 Hi(D) preceding hg:

For all histories h 2 H+
i ; let

bEi (h)(s�i) :=
bEi (h

0)(s�i)

bEi (h
0)(S�i(h))

for all s�i 2 S�i(h); (9.12)

where h0 is the last history in Hi(D) that precedes h:
(iii) De�ne H0

i := Hin(Hi(D) [H+
i ): For every history h 2 H0

i ; de�ne

bEi (h) := b̂
E
i (h) (9.13)

where b̂Ei is an arbitrary conditional belief vector in Bi that strongly believes E�i:
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We �rst show that bEi is a well-de�ned conditional belief vector. That is, for every h 2 Hi
we must show that bEi (h)(s�i) > 0 only if s�i 2 S�i(h); and that

P
s�i2S�i b

E
i (h)(s�i) = 1: We

consider three cases: (i) h 2 Hi(D); (ii) h 2 H+
i ; and (iii) h 2 H0

i :
(i) Consider �rst some h 2 Hi(D): Suppose that bEi (h)(s�i) > 0: Then, by (9.11), there

is some s0�i 2 D�i with f�i(s0�i) = s�i and bDi (h)(s
0
�i) > 0: Since bDi is a well-de�ned con-

ditional belief vector, we must have that s0�i 2 S�i(h): By (9.10) we know that s0�ijH(D) =
f�i(s0�i)jH(D) = s�ijH(D): Since h 2 Hi(D); all histories preceding h will also be in H(D): Hence,
s0�i and s�i coincide at all histories preceding h: As s

0
�i 2 S�i(h); it follows that s�i 2 S�i(h)

as well. We thus see that bEi (h)(s�i) > 0 only if s�i 2 S�i(h):
Moreover, by (9.11),X

s�i2S�i

bEi (h)(s�i) =
X

s�i2S�i

bDi (h)(f
�1
�i (s�i)) =

X
s0�i2D�i

bDi (h)(s
0
�i) = 1:

The latter equality follows from the facts that h 2 Hi(D) and that bDi strongly believes D�i:
For cases (ii) and (iii), these properties follow automatically from (9.12) and (9.13).

We next show that bEi satis�es Bayesian updating. Consider two histories h; h
0 2 Hi such

that h0 follows h; and bEi (h)(S�i(h
0)) > 0: We must show that

bEi (h
0)(s�i) =

bEi (h)(s�i)

bEi (h)(S�i(h
0))
for all s�i 2 S�i(h0): (9.14)

The only problematic case is where h; h0 2 Hi(D): For the cases where at least one of these two
histories is in H+

i or H0
i ; (9.14) follows rather immediately from (9.12) or (9.13), and we leave

these cases to the reader.
Let us therefore assume that h; h0 2 Hi(D): For every s�i 2 D�i we have by (9.10) that

f�i(s�i)jH(D) = s�ijH(D): As h0 2 H(D); all histories preceding h0 are also in H(D): It thus
follows that s�i 2 D�i \ S�i(h0) if and only if f�i(s�i) 2 S�i(h0): Consequently,

f�1�i (S�i(h
0)) = D�i \ S�i(h0): (9.15)

By (9.11) we then have for every s�i 2 S�i(h0) that

bEi (h)(s�i)

bEi (h)(S�i(h
0))

=
bDi (h)(f

�1
�i (s�i))

bDi (h)(f
�1
�i (S�i(h

0)))
=

bDi (h)(f
�1
�i (s�i))

bDi (h)(D�i \ S�i(h0))

=
bDi (h)(f

�1
�i (s�i))

bDi (h)(S�i(h
0))

= bDi (h
0)(f�1�i (s�i)) = b

E
i (h

0)(s�i);

where the �rst equality follows from (9.11), the second equality from (9.15), the third equality
from the facts that h 2 Hi(D) and that bDi strongly believes D�i; the fourth equality from the

36



fact that bDi satis�es Bayesian updating, and the last equality from (9.11). Hence, (9.14) holds,
which was to show.

We �nally show that bEi strongly believes E�i: That is, we must show that b
E
i (h)(E�i) = 1

whenever S�i(h) \ E�i 6= ;: Consider now an arbitrary h 2 Hi with S�i(h) \ E�i 6= ;: We
distinguish three cases: (i) h 2 Hi(D); (ii) h 2 H+

i ; and (iii) h 2 H0
i :

(i) Suppose �rst that h 2 Hi(D): Consider some s�i 2 S�i(h) with bEi (h)(s�i) > 0: By
(9.11), it then follows that there is some s0�i 2 D�i with f�i(s0�i) = s�i: Hence, s�i 2 E�i: We
thus see that bEi (h)(s�i) > 0 only if s�i 2 E�i; that is, bEi (h)(E�i) = 1:

(ii) Suppose next that h 2 H+
i : Consider some s�i 2 S�i(h) with bEi (h)(s�i) > 0: By (9.12)

it then follows that bEi (h
0)(s�i) > 0; where h0 is the last history in Hi(D) that precedes h: Since

S�i(h) \ E�i 6= ; and h0 precedes h; we know that S�i(h0) \ E�i 6= ; also. As bEi (h0)(s�i) > 0;
we know by (i) above that s�i 2 E�i: We thus see that bEi (h)(s�i) > 0 only if s�i 2 E�i; that
is, bEi (h)(E�i) = 1:

(iii) Suppose �nally that h 2 H0
i : Then, by (9.13), b

E
i (h)(E�i) = b̂

E
i (h)(E�i) = 1; since b̂

E
i

strongly believes E�i:
Overall, we conclude that bEi strongly believes E�i:

Summarizing, we have shown that bEi is a well-de�ned conditional belief vector that satis�es
Bayesian updating and that strongly believes E�i: That is, bEi 2 Bi and bEi strongly believes
E�i:

Step 2. We next construct a strategy ~sEi that is rational for b
E
i and coincides with s

D
i on H(D):

For every h 2 H0
i ; let h

0[h] be the �rst history in H0
i that weakly precedes h: Since b

E
i satis�es

Bayesian updating, we know by Lemma 5.4 that for every �rst history h in H0
i there is some

strategy shi 2 Si(h) that is rational for bEi at all histories in Hi(shi ) that weakly follow h: Let ~sEi
be the strategy given by

~sEi (h) :=

(
sDi (h); if h 2 Hi(D) [H+

i

s
h0[h]
i (h); if h 2 H0

i

(9.16)

for all h 2 Hi(~sEi ): Then, it immediately follows that sDi jH(D) = ~sEi jH(D):

We will now show that strategy ~sEi is rational for b
E
i : That is, we must show that, for all

h 2 Hi(~sEi ); strategy ~sEi is rational at h for bEi . We again consider three cases: (i) h 2 Hi(D);
(ii) h 2 H+

i ; and (iii) h 2 H0
i :

(i) Assume �rst that h 2 Hi(D): Suppose, contrary to what we want to show, that ~sEi is
not rational at h for bEi : Since b

E
i satis�es Bayesian updating there is, by Lemma 5.5, a history

h0 2 Hi weakly preceding h and a strategy s00i 2 Si(h0) such that s00i is rational for bEi and

ui(~s
E
i ; b

E
i (h

0)) < ui(s
00
i ; b

E
i (h

0)): (9.17)

As h 2 Hi(D) and h0 precedes h we know that h0 2 Hi(D) as well. Hence, bDi (h0) 2 �(S�i(h0)\
D�i) since bDi strongly believes D�i. Moreover, b

E
i (h

0) is given by (9.11) above where, by (9.10),
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s�ijH(D) = f�i(s�i)jH(D) for every s�i 2 D�i: Since sDi jH(D) = ~sEi jH(D) and sDi 2 Di; it follows
by Lemma 5.2 that

ui(~s
E
i ; b

E
i (h

0)) = ui(s
D
i ; b

D
i (h

0)): (9.18)

Recall from (9.17) that ui(~sEi ; b
E
i (h

0)) < ui(s00i ; b
E
i (h

0)) for some s00i 2 Si(h0) that is rational
for bEi : As b

E
i strongly believes E�i; it follows that s00i 2 sb�i (E): Since E is possible in an

elimination order for sb, we know from Corollary 5.1 that sb�i (E)jH(E) = sbi(E)jH(E): As, by the
assumptions in the theorem, DjH(D) � EjH(D); we know from Lemma 5.1 that H(D) � H(E);
and hence sb�i (E)jH(D) = sbi(E)jH(D): Moreover, from the other assumption in the theorem,
sbi(E)jH(D) � DijH(D): By combining these two insights we obtain that sb�i (E)jH(D) � DijH(D):
As s00i 2 sb�i (E); we conclude that there is some ŝDi 2 Di with s00i jH(D) = ŝDi jH(D): But then it
follows, in the same was as above, from Lemma 5.2 that

ui(s
00
i ; b

E
i (h

0)) = ui(ŝ
D
i ; b

D
i (h

0)): (9.19)

By combining (9.17), (9.18) and (9.19) it then follows that ui(sDi ; b
D
i (h

0)) < ui(ŝDi ; b
D
i (h

0)); which
contradicts our assumption that sDi is rational for b

D
i at H(D): We therefore conclude that ~s

E
i

is rational at h for bEi :
(ii) Assume next that h 2 H+

i : Let h
0 be the last history in Hi(D) that precedes h: Since

we have shown in (i) that ~sEi is rational at h
0 for bEi ; it follows from (9.12) and Lemma 5.3 that

~sEi is rational at h for b
E
i as well.

(iii) Assume �nally that h 2 H0
i : Then, by (9.16) we know that

~sEi (h
0) = s

h0[h]
i (h0) for all h0 2 Hi(~sEi ) weakly following h: (9.20)

As, by assumption, sh
0[h]
i is rational for bEi at all histories in Hi(s

h0[h]
i ) weakly following h0[h],

it follows in particular that sh
0[h]
i is rational for bEi at h: But then, by (9.20), also ~s

E
i is rational

at h for bEi ; which was to show.
Altogether, we see that for all h 2 Hi(~sEi ); strategy ~sEi is rational at h for bEi : That is, ~sEi is

rational for bEi :

Step 3. We �nally transform ~sEi into a strategy s
E
i 2 sbi(E) that coincides with sDi on H(D):

Since we know from above that ~sEi is rational for b
E
i ; that b

E
i 2 Bi and that bEi strongly believes

E�i; we conclude that ~sEi 2 sb�i (E): Since we have seen above that sb�i (E)jH(D) = sbi(E)jH(D);
there is some sEi 2 sbi(E) with sEi jH(D) = ~sEi jH(D): As, by Step 2, ~sEi jH(D) = sDi jH(D); it follows
that sEi jH(D) = sDi jH(D): Since sDi 2 sbi(D) was chosen arbitrarily, we see that for every sDi 2
sbi(D) there is some sEi 2 sbi(E) with sDi jH(D) = sEi jH(D): That is, sbi(D)jH(D) � sbi(E)jH(D);
which completes the proof. �
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