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economic systems and games. A possible reason for this 
long delay lies in the complexity of a belief hierarchy. 
Despite being a very natural object, it is quite difficult to 
work with because it involves infinitely many layers.

The purpose of this chapter is to provide an over-
view of some of the most important ideas and results 
in epistemic game theory, with a focus on the central 
concept of common belief in rationality. The outline is as 
follows: in section 2, we show how infinite belief hier-
archies in static games can conveniently be encoded by 
means of epistemic models with types and use it in sec-
tion 3 to formally define common belief in rationality. 
In section 4, we present a recursive elimination proce-
dure that characterizes the choices that can be rationally 
made under common belief in rationality. In section 5, 
we discuss the epistemic gap between common belief in 
rationality and the famous notion of Nash equilibrium. 
In section 6, finally, we discuss how the idea of common 
belief in rationality can be extended to dynamic games.

For a more comprehensive overview of epistemic 
game theory, the reader is referred to the overview paper 
by Brandenburger (2007), the textbook by Perea (2012), 
the handbook chapter of Dekel and Siniscalchi (2015), 
the encyclopedia entry by Pacuit and Roy (2015), and the 
book by Battigalli, Friedenberg, and Siniscalchi (in press).

2.  Belief Hierarchies and Types

The central idea in epistemic game theory is that of com-
mon belief in rationality. Informally, it states that you 
do not only choose rationally yourself but also believe 
that your opponents will choose rationally, that your 
opponents believe that the other players will choose 
rationally, and so on. Most other reasoning concepts in 
epistemic game theory may be viewed as refinements, or 
variants, of common belief in rationality. The intuitive 
idea of common belief in rationality is already present 
in Spohn (1982) and in the concept of rationalizability 
(Bernheim, 1984; Pearce, 1984), although the latter two 
papers do not formally define the notion.

Summary

In this chapter, we review some of the most important 
ideas, concepts, and results in epistemic game theory, 
with a focus on the central idea of common belief in ratio-
nality. We start by showing how belief hierarchies can 
be encoded by means of epistemic models with types 
and how this encoding can be used to formally define 
common belief in rationality. We next indicate how the 
induced choices can be characterized by a recursive elim-
ination procedure and how the concept relates to Nash 
equilibrium. Finally, we investigate how the idea of com-
mon belief in rationality can be extended to dynamic 
games by looking at several plausible ways in which 
players may revise their beliefs.

1.  From Classical to Epistemic Game Theory

Classical game theory, as explored in chapter 9.1 by Albert 
and Kliemt (in this handbook), was pioneered by the sem-
inal work of von Neumann (1928/1959), von Neumann 
and Morgenstern (1944), and Nash (1950, 1951). It pre
sents a series of concepts that select, for every game and 
each of the players in that game, a set of possible choices.

In epistemic game theory, we concentrate on the beliefs 
that motivate these choices. These may be beliefs about 
the possible choices of the opponents ( first-order beliefs) 
but also beliefs about the beliefs of others (higher-order 
beliefs). Putting these first-order and higher-order beliefs 
together leads to belief hierarchies—the language of epis-
temic game theory. The aim of epistemic game theory is 
to impose reasonable conditions on such belief hierar-
chies and to explore the behavioral consequences resulting 
from these conditions.

As with many disciplines in science, it is difficult to 
say when epistemic game theory really started off. Mor-
genstern (1935/1976), more than 80 years ago, already 
stressed the importance of belief hierarchies in economic 
analysis, but it took a long time before belief hierarchies 
structurally entered the analysis of human behavior in 

 9.2  Epistemic Game Theory
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544	 Andrés Perea

of probability distributions on X. By C–i × T–i :=  ⨉j ≠ i (Cj × Tj), 
we denote the set of choice–type combinations for i’s 
opponents.

A finite epistemic model may be viewed as a conve
nient way to encode belief hierarchies in a finite man-
ner. Indeed, for every type in an epistemic model, we 
may derive the full belief hierarchy it induces.

To see how this works, consider the two-player game 
in table 9.2.1, where player 1’s choices are in the rows 
and player 2’s choices are in the columns, together with 
an epistemic model in table 9.2.2.

The superscript of a type always specifies the choice 
that is optimal for that particular type. This will be shown 
later. The expression b1(t1

c ) = (0.6) ⋅ (e, t2e ) + (0.4) ⋅ (f , t2g ) 
means that type t1

c  assigns probability 0.6 to the event 
that player 2 chooses e and is of type t2

e, as well as assigns 
probability 0.4 to the event that player 2 chooses f and is 
of type t2

g. On the other hand, b1(t1
a ) = (g , t2

g ) means that 
type t1

a assigns probability 1 to the event that player 2 
chooses g and is of type t2

g.
Consider the type t1b. As t1b believes that, with prob-

ability 1, player 2 chooses e and is of type t1
e, the induced 

first-order belief is that player 1 believes that, with prob-
ability 1, player 2 chooses e. Moreover, as player 2’s type 
t2
e has the belief (0.6) ⋅ (c, t1c ) + (0.4) ⋅ (d, t1a ) about player 

1, player 2’s type t2
e assigns probability 0.6 to player 1 

choosing c and probability 0.4 to player 1 choosing d. 
Hence, the second-order belief induced by type t1b  is that 
player 1 assigns probability 1 to the event that player 2 
assigns probability 0.6 to player 1 choosing c and prob-
ability 0.4 to player 1 choosing d. In a similar fashion, 

An important question is how the idea of common 
belief in rationality can be defined formally. Consider 
a finite static game1 G  =  (Ci, ui)i ∈I, where I is the finite set 
of players, Ci the finite set of choices for player i, and 
ui:  ⨉j∈I Cj   →   ℝ player i’s utility function. It is assumed 
that all these ingredients—the set of players, the sets of 
choices, and the utility functions—are commonly believed 
among the players. Moreover, here and in the rest of 
this chapter, we restrict to noncooperative games. When 
we say that player i believes in the opponents’ rational-
ity, we mean that player i believes that every opponent 
j chooses optimally, given what player i believes that 
player j believes about his opponents’ choices. For this to 
be formally defined, we need to specify i’s belief about j’s 
choice—a first-order belief—together with i’s belief about 
j’s belief about his opponents’ choices, which is a second-
order belief. Similarly, to formally define that player i 
believes that player j believes in his opponents’ rational-
ity, we need to additionally specify the belief that i holds 
about the belief that j holds about the belief that every 
opponent k holds about the other players’ choices, which 
is a third-order belief. By continuing in this fashion, we can 
form, for any given player i, an infinite string originat-
ing in a first-order belief about the opponents’ choices, 
a second-order belief about the opponents’ first-order 
beliefs, a third-order belief about the opponents’ second-
order beliefs, and so on. Such infinite strings of beliefs are 
called belief hierarchies. They constitute the central con-
cept of the language of epistemic game theory.

In view of the fact that belief hierarchies are infinite 
strings, making it hard to write them down explicitly, epis-
temic game theorists typically encode them in an easy and 
compact way as types in the sense of Harsanyi (1967–1968). 
The main idea is as follows: in a belief hierarchy, player 
i holds, for every opponent j, a belief about j’s choice, j’s 
first-order belief, j’s second-order belief, and so on. That 
is, a belief hierarchy for player i specifies, for every oppo-
nent j, a belief about j’s choice and j’s belief hierarchy. If we 
replace the words “belief hierarchy” by “type” and formal-
ize beliefs by probability distributions, we obtain the fol-
lowing definition of an epistemic model with types:

Definition 1 (Epistemic Model with Types). Consider a 
finite static game G  =  (Ci, ui)i ∈I. A finite epistemic model 
for G is a tuple M  =  (Ti, bi)i ∈I, where Ti is the finite set 
of types for player i, and bi: Ti   →   Δ(C–i × T–i) is i’s belief 
mapping, which assigns to every type ti   ∈Ti a probabi-
listic belief bi(ti)   ∈  Δ(C–i × T–i) on the choice–type com-
binations of i’s opponents.

In this definition, we have used the following pieces of 
notation: for every finite set X, we denote by Δ(X ) the set 

Table 9.2.1
A two-player game

e f g h

a 0,0 4,1 4,4 4,3
b 3,2 0,0 3,4 3,3
c 2,2 2,1 0,0 2,3
d 1,2 1,1 1,4 0,0

Table 9.2.2
An epistemic model for the game in table 9.2.1

Types T1 = {t1
a, t1b, t1

c },T2 = {t2
e, t2

g, t2h }

Beliefs for player 1 b1(t1
a ) = (g , t2

g )

b1(t1b ) = (e, t2
e )

b1(t1
c ) = (0.6)⋅(e,t2e ) + (0.4)⋅(f , t2g )

Beliefs for player 2 b2(t2
e ) = (0.6) ⋅(c, t1c ) + (0.4) ⋅(d, t1a )

b2(t2
g ) = (a, t1

a )

b2(t2h ) = (c, t1
c )
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be verified that a is optimal for the type t1
a, b is optimal 

for the type t1b, and c is optimal for the type t1
c. Similarly, 

e is optimal for player 2’s type t2
e, g is optimal for the type 

t2
g, and h is optimal for the type t2h.

Remember that a type ti holds a probabilistic belief 
bi(ti) on the opponents’ choice–type combinations. For 
a type ti to believe in the opponents’ rationality means 
that bi(ti) must only assign positive probability to oppo-
nents’ choice–type pairs where the choice is optimal for 
the type.

Definition 2 (Belief in the Opponents’ Rationality). Con-
sider a finite epistemic model M  =  (Ti, bi)i ∈I for a finite 
static game G  =  (Ci, ui)i ∈I. A type ti   ∈Ti believes in the 
opponents’ rationality if bi(ti)((cj, tj)j ≠ i)   >   0 only if, for 
every opponent j   ≠   i, choice cj is optimal for type tj.

In the epistemic model of table 9.2.2, it can be veri-
fied that types t1

a, t1b, t2
g, and t2h believe in the opponents’ 

rationality, but the other two types do not. Indeed, the 
type t1

c  for player 1 assigns positive probability to player 
2’s choice–type pair (f , t2

g ), where f is not optimal for 
the type t2

g , and hence t1
c does not believe in player 2’s 

rationality. Similarly, player 2’s type t2
e assigns positive 

probability to player 1’s choice–type pair (d, t1
a ), where 

d is not optimal for t1
a , and hence t2

e  does not believe in 
player 1’s rationality.

With the definition of belief in the opponents’ ratio-
nality at hand, we can now recursively define k-fold 
belief in rationality for all k   ≥   1, which finally enables us 
to formalize common belief in rationality.

Definition 3 (Common Belief in Rationality). Consider a 
finite epistemic model M  =  (Ti, bi)i ∈I for a finite static 
game G  =  (Ci, ui)i ∈I.

(Induction start) A type ti   ∈Ti expresses onefold 
belief in rationality if ti believes in the opponents’ 
rationality.

(Induction step) For k   >   1, a type ti   ∈Ti expresses k-fold 
belief in rationality if bi(ti)((cj, tj)j ≠ i)   >   0 only if, for 
every opponent j   ≠   i, type tj expresses (k  −  1)-fold 
belief in rationality.

A type ti   ∈  Ti expresses common belief in rationality if ti 
expresses k-fold belief in rationality for every k   ≥   1.

Hence, twofold belief in rationality entails that a type 
only assigns positive probability to opponents’ types that 
express onefold belief in rationality. In other words, the 
player believes that every opponent believes in his oppo-
nents’ rationality. Similarly, threefold belief in rational-
ity corresponds to the event that a player believes that 
his opponents believe that their opponents believe in 
their opponents’ rationality, and so on.

we can derive the higher-order beliefs, and hence the 
full belief hierarchy, for the type t1b and for all the other 
types in the epistemic model.

In the game-theoretic literature, people often use infi-
nite instead of finite epistemic models, because they wish 
to work with models that encode all possible belief hierar-
chies. Such exhaustive models are also called terminal type 
structures. That terminal type structures exist for every 
finite static game—something that is far from obvious—
has been shown by Armbruster and Böge (1979), Böge and 
Eisele (1979), Mertens and Zamir (1985), and Branden-
burger and Dekel (1993). For this chapter, we have chosen 
to work with finite epistemic models instead for two rea-
sons. First, finite epistemic models are easier to work with 
than terminal type structures, since no advanced measure-
theoretic or topological machinery is needed. Moreover, 
as we will see, this choice does not affect the main results 
we discuss.

The game-theoretic literature also uses alternative 
ways of encoding belief hierarchies, such as Kripke struc-
tures (Kripke, 1963) and Aumann structures (Aumann, 
1974, 1976). The first is the predominant model in the 
logical and philosophical literature, whereas the latter is 
often used by economists. Both models use states instead 
of types and assign to every state and every player i a 
choice for player i, together with a belief for player i about 
the states. In a similar way as above, one can then derive 
from such a structure a belief hierarchy for every player 
at every state. In this chapter, we have chosen to encode 
belief hierarchies by means of types, but the whole chap-
ter could have been written by using Kripke structures or 
Aumann structures instead.

3.  Common Belief in Rationality

In the previous section, we have seen that belief hierar-
chies can be encoded by means of epistemic models with 
types. This now enables us to provide a formal definition 
of common belief in rationality, starting from the first 
layer of common belief in rationality, which states that 
player i believes that every opponent chooses rationally.

To express this event within the formalism of epistemic 
models with types, we must first define what it means for 
a choice to be optimal for a type. Consider an epistemic 
model M  =  (Ti, bi)i ∈I for a static game G  =  (Ci, ui)i ∈I, a type 
ti   ∈  Ti, and a choice ci   ∈  Ci. Then,

ui(ci , ti ) := bi(ti )(c−i , t−i ) ⋅ui(ci , c−i)
(c− i,t− i )∈C− i ×T− i

∑

denotes the expected utility for type ti of choosing ci. We 
say that choice ci is optimal for type ti if ui(ci, ti)   ≥   ui(ci′, ti) 
for all ci′   ∈  Ci. In the epistemic model of table 9.2.2, it can 
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546	 Andrés Perea

In this chapter, however, we assume that players do not 
randomize when making a decision, and these random-
izations ri are merely used as an auxiliary device to charac-
terize choices that are optimal for some belief. The reason 
is that players are assumed to be expected utility maximiz-
ers, and hence a player can never increase his expected 
utility by randomizing over his choices.

Lemma 3  in Pearce (1984) can now be stated as 
follows:

Lemma 1 (Pearce, 1984). Consider a finite static game 
G  =  (Ci, ui)i ∈I and a choice ci   ∈Ci. Then, there is a belief 
bi   ∈Δ(C–i) such that ci is optimal in G for bi if, and only 
if, ci is not strictly dominated in G.

This lemma can be used to characterize the choices 
a player can rationally make if he believes in his oppo-
nents’ rationality. Let G1 be the reduced game that 
remains if we eliminate, for every player, the choices that 
are strictly dominated in G. For a player to believe in the 
opponents’ rationality thus means, by lemma 1, that his 
belief is fully concentrated on opponents’ choices in G1. 
By applying lemma 1 to the reduced game G1, we thus 
conclude that, for every player, the choices he can ratio-
nally make if he believes in the opponents’ rationality 
are exactly the choices in G1 that are not strictly domi-
nated in G1. That is, these are the choices that survive two 
rounds of elimination of strictly dominated choices. In a 
similar vein, it can be shown that the choices that can 
rationally be made if a player believes in his opponents’ 
rationality, and believes that his opponents believe in 
their opponents’ rationality (i.e., if he expresses up to 
twofold belief in rationality), are exactly the choices that 
survive three rounds of elimination of strictly dominated 
choices. By continuing in this fashion, we arrive at the 
following elimination procedure:

Definition 4 (Iterated Elimination of Strictly Dominated 
Choices). Consider a finite static game G  =  (Ci, ui)i ∈I.

(Induction start) Let G0 := G be the full game.
(Induction step) For every k   >   0, let Gk be the reduced 

game that remains if we eliminate from Gk−1 all 
choices that are strictly dominated in Gk−1.

A choice ci   ∈  Ci survives iterated elimination of strictly 
dominated choices if ci is in Gk for all k   >   0.

By the argument above, we thus see that G2 contains 
exactly those choices that can rationally be made if a 
player believes in the opponents’ rationality. By iterat-
ing this argument, we conclude that, for every k   ≥   2, the 
k-fold reduced game Gk contains exactly those choices 
that can rationally be made under some belief hierarchy 
that expresses up to (k  −  1)-fold belief in rationality. This 

Within a finite static game G  =  (Ci, ui)i ∈I, we say that 
player i can rationally choose ci   ∈  Ci under common belief in 
rationality if there is a finite epistemic model M  =  (Ti, bi)i ∈I 
and a type ti   ∈Ti such that ti expresses common belief in 
rationality and ci is optimal for ti. That is, choice ci can be 
supported by some belief hierarchy that expresses com-
mon belief in rationality.

In the epistemic model of table 9.2.2, it can be veri-
fied that types t1

c  and t2
e do not express onefold belief in 

rationality. Indeed, type t1
c assigns positive probability 

to the choice–type pair (f , t2
g ), where f is not optimal for 

the type t2
g and similarly for type t2

e. Next, types t1b and t2h 
express onefold but not twofold belief in rationality. To 
see why, note that type t1b believes that player 2 is of type 
t2
e, which does not express onefold belief in rationality, 

and similarly for type t2h. Finally, types t1
a and t2

g  express 
common belief in rationality. Indeed, type t1

a  believes 
that player 2 is of type t2

g, whereas type t2
g believes that 

player 1 is of type t1
a. As both t1

a and t2
g express onefold 

belief in rationality, it can inductively be shown that t1
a 

expresses k-fold belief in rationality for all k and hence 
expresses common belief in rationality, and similarly for 
type t2

g . Consequently, player 1 can rationally choose 
a and player 2 can rationally choose g under common 
belief in rationality.

4.  Recursive Procedure

Suppose that in a given static game, we are interested in 
the choices that the players can rationally make under 
common belief in rationality. Is there an easy method 
to find these choices, without having to resort to epis-
temic models with types? That is the question that will 
be addressed in this section.

The key to answering this question is lemma 3  in 
Pearce (1984), which we will reproduce below. To state 
the lemma formally, we need the following definitions. 
Consider a finite static game G  =  (Ci, ui)i ∈I, a choice ci, and 
a belief bi   ∈  Δ(C–i) about the opponents’ choices. Then,

ui(ci, bi ) := bi(c−i ) ⋅ui(ci,c−i)
c− i ∈C− i

∑

denotes the expected utility of choice ci under the belief 
bi. Choice ci is called optimal in G for the belief bi if 
ui(ci, bi)   ≥   ui(ci′, bi) for all ci′   ∈  Ci. Choice ci is called strictly 
dominated in G if there is some randomization ri   ∈  Δ(Ci) 
such that

ui(ci , c−i ) < ri( ′ci ) ⋅ui( ′ci , c−i)
′ci ∈Ci
∑  for all c–i   ∈ C–i.

In the literature, such randomizations ri   ∈  Δ(Ci) are typ-
ically called mixed strategies or randomized choices, and they 
are often interpreted as real objects of choice for player i. 
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& Wilson, 1982) for dynamic games. See chapter 9.1 by 
Albert and Kliemt (this handbook) for a discussion of the 
latter two concepts. However, for a long time, it remained 
unclear what epistemic conditions are needed for play-
ers to choose in accordance with Nash equilibrium. The 
purpose of this section is to investigate Nash equilibrium 
from an epistemic perspective and to link it to the con-
ditions of common belief in rationality that we have 
explored so far. Let us start by giving the definition of 
Nash equilibrium. See also chapter 9.1, where it is called 
mixed-strategy equilibrium.

Definition 5 (Nash Equilibrium). Consider a finite static 
game G  =  (Ci, ui)i ∈I. A Nash equilibrium in G is a tuple 
(σi)i ∈I where σi   ∈  Δ(Ci) for every player i, such that 
σi(ci)   >   0 only if 

σ j(cj )j≠ i∏( ) ⋅ ui(ci , c−i ) ≥
c− i = (cj )j ≠ i ∈C− i

∑

σ j (cj )j≠i∏( ) ⋅ ui( ′ci
c− i = (cj )j ≠ i ∈C− i

∑ , c−i )

for all ci′   ∈  Ci.

In other words, a Nash equilibrium is a tuple of prob-
ability distributions on choices such that a choice only 
receives positive probability if it is optimal against the 
probability distributions on the opponents’ choices. Tra-
ditionally, these probability distributions σi have been 
interpreted as conscious randomizations, or mixed strate-
gies, by the players. A more recent approach, adopted by 
Spohn (1982), Aumann and Brandenburger (1995), and 
other authors, is to interpret σi as the (common) proba-
bilistic belief that i’s opponents have about i’s choice, 
and this is also the interpretation we use here.

A Nash equilibrium (σi)i ∈I induces, in a natural way, 
a belief hierarchy for player i in which his (first-order) 
belief about the opponents’ choices is given by (σj)j ≠ i, his 
(second-order) belief about j’s belief about his opponents’ 
choices is given by (σk)k ≠ j, and so on. Such belief hier-
archies are called simple in Perea (2012). Moreover, this 
belief hierarchy can be shown to express common belief in 
rationality, relying on the optimality conditions in a Nash 
equilibrium. To see this, consider the belief hierarchy for 
player i induced by a Nash equilibrium (σi)i ∈I. Then, player 
i only assigns positive probability to a choice cj of player j if 
σj(cj)   >   0. By the optimality condition of Nash equilibrium, 
this is only the case if cj is optimal against (σk)k ≠ j, which 
is what player i believes that player j believes about his 
opponents’ choices. Altogether, we see that player i only 
assigns positive probability to cj if cj is optimal for player 
j, given what player i believes that player j believes about 
his opponents’ choices. That is, with this belief hierarchy, 

argument already appears in Spohn (1982). In particular, 
the choices that survive the full procedure will be exactly 
those choices that can rationally be made under com-
mon belief in rationality. This leads to the following cen-
tral result, which is based on theorems 5.2 and 5.3 in Tan 
and Werlang (1988), and which Brandenburger (2014) 
has called the “fundamental theorem of epistemic game 
theory.” Brandenburger and Dekel (1987) offer in their 
proposition 2.1 a similar result, characterizing common 
belief in rationality by “best reply sets” instead of an 
elimination procedure.

Theorem 1 (Fundamental Theorem of Epistemic Game 
Theory). Consider a finite static game G  =  (Ci, ui)i ∈I and 
a choice ci   ∈ Ci. Then, ci can rationally be made under 
common belief in rationality if, and only if, ci survives 
iterated elimination of strictly dominated choices.

The fundamental theorem would remain unaffected 
if we were to use terminal type structures (hence, infi-
nite epistemic models) instead of finite epistemic models 
to define common belief in rationality. To illustrate the 
procedure of iterated elimination of strictly dominated 
choices and the theorem above, consider the game G 
from table 9.2.1. In the full game G, it is easily verified 
that player 1’s choice d is strictly dominated by the ran-
domization that assigns probability 0.5 to his choices a 
and b and that player 2’s choice f is strictly dominated 
by the randomization that assigns probability 0.5 to 
his choices g and h. No other choices are strictly domi-
nated. Hence, G1 is the game obtained after eliminating 
the choices d and f. Within the onefold reduced game 
G1, player 1’s choice c is strictly dominated by b (or, 
rather, the randomization that assigns probability 1 to 
b), and player 2’s choice e is strictly dominated by h. 
Hence, G2 is the game obtained from G1 after eliminat-
ing the choices c and e. Finally, within G2, player 1’s 
choice b is strictly dominated by a, and player 2’s choice 
h is strictly dominated by g. As such, only the choices a 
and g survive iterated elimination of strictly dominated 
choices, and hence, by theorem 1, these are the only 
choices that can rationally be made under common 
belief in rationality.

5.  Nash Equilibrium

For many decades, the concept of Nash equilibrium (Nash, 
1950, 1951) has dominated the classical approach to game 
theory, inspiring many refinements such as perfect equi-
librium (Selten, 1975) and proper equilibrium (Myerson, 
1978) for static games, as well as subgame-perfect equi-
librium (Selten, 1965) and sequential equilibrium (Kreps 
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from Nash equilibrium. This is reflected in Spohn’s 
(1982) theorem on page  253, and Aumann and Bran-
denburger’s (1995) theorem A, which both state that in 
two-player games, mutual belief in rationality, together 
with mutual belief in the actual first-order beliefs, leads 
to Nash equilibrium. Here, mutual belief in rationality 
means that player 1 believes in 2’s rationality, and player 
2 believes in 1’s rationality. Similarly, mutual belief in 
the actual first-order beliefs means that player 1 is cor-
rect about 2’s first-order belief, and player 2 is correct 
about player 1’s first-order belief. From a one-person 
perspective (in which conditions are imposed on the 
belief hierarchy of a single player i) the Spohn–Aumann–
Brandenburger conditions thus state that player i 
believes that j is rational, believes that j believes that i 
is rational, that i believes that j is correct about i’s first-
order belief, and that i believes that j believes that i is 
correct about j’s first-order belief. In particular, Spohn, 
Aumann, and Brandenburger show that the first two lay-
ers of common belief in rationality, together with the 
correct beliefs assumptions above, are enough to imply 
Nash equilibrium. Not all layers of common belief in 
rationality are needed. Polak (1999) shows, however, 
that if mutual belief in the actual first-order beliefs is 
strengthened to common belief in the actual first-order 
beliefs, then the Spohn–Aumann–Brandenburger condi-
tions would imply common belief in rationality. Other 
epistemic foundations for Nash equilibrium in two-
player games, which in some way or another involve the 
correct beliefs assumption above, can be found in Tan 
and Werlang (1988), Brandenburger and Dekel (1989), 
Asheim (2006), and Perea (2007a). As the reasonability 
of the correct beliefs assumption can be debated—after 
all, why should an opponent be correct about your first-
order belief?—these papers implicitly point at the prob-
lematic assumptions underlying Nash equilibrium.

For more than two players, the above conditions are 
no longer enough to characterize Nash equilibrium. For 
such games, Nash equilibrium additionally implies that 
i’s belief about j’s choice must be stochastically indepen
dent from i’s belief about k’s choice and that i’s belief 
about j’s belief about k’s choice must be the same as i’s 
belief about k’s choice. The first property follows from 
the fact that in a Nash equilibrium (σi)i ∈I, the belief of 
i about the opponents’ choices is given by the indepen
dent probability distributions (σj)j ≠ i, whereas the second 
condition is implied by the property that i’s belief about 
j’s belief about k’s choice and i’s belief about k’s choice are 
both given by σk. These two conditions are not implied by 
common belief in rationality, and hence the gap between 
Nash equilibrium and common belief in rationality is 

player i believes in j’s rationality. In a similar vein, it can 
be shown that with this belief hierarchy, induced by a 
Nash equilibrium, player i also believes that every oppo-
nent j believes in his opponents’ rationality, and so on. 
Hence, every Nash equilibrium induces, for every player, a 
belief hierarchy that expresses common belief in rational-
ity. We can thus say that Nash equilibrium implies com-
mon belief in rationality.

But is the other direction also true? Does common 
belief in rationality necessarily lead to Nash equilib-
rium? The answer, as we will see, is no. Consider the two-
player game in table 9.2.3, which is similar to the game 
of figure 1 in Bernheim (1984).

It may be verified that all three choices can rationally 
be made under common belief in rationality. However, 
there is only one Nash equilibrium (σ1, σ2) in this game, 
where σ1 assigns probability 1 to c and σ2 assigns prob-
ability 1 to f. Hence, in this example, Nash equilibrium 
imposes more restrictions than just common belief in 
rationality. But what are these extra restrictions?

To see this most clearly, consider the epistemic model, 
together with its graphical representation, in figure 9.2.1.

It may be verified that all types in the epistemic 
model express common belief in rationality. Moreover, 
the respective superscripts of the types indicate the 
choice that is optimal for that type. Remember that only 
the choices c and f are supported by a Nash equilibrium 
in this game.

Consider the type t1
a that supports the choice a—a 

choice that is not supported by a Nash equilibrium. The 
induced belief hierarchy states that, on the one hand, 
player 1 believes that player 2 chooses e but, on the 
other hand, believes that 2 believes that 1 believes that 2 
chooses d. That is, player 1 believes that player 2 is incor-
rect about 1’s first-order belief. The same can be said about 
his type t1b. In contrast, the type t1

c that supports the Nash 
equilibrium choice c induces a belief hierarchy in which 1 
believes that 2 is correct about 1’s first-order belief.

It turns out that in two-player games, this correct 
beliefs assumption—that is, that a player believes that 
his opponent is correct about his first-order belief—is 
exactly what separates common belief in rationality 

Table 9.2.3
A two-player game

d e f

a 0,3 3,0 0,2

b 3,0 0,3 0,2

c 2,0 2,0 2,2
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If player 1 believes that player 2 would rationally 
choose g at his last move, then he would choose a at the 
beginning. Common belief in rationality thus seems to 
suggest that player 2 should initially believe that player 
1 chooses a. However, when it is player 2’s turn to move, 
this initial belief has been contradicted by player 1’s past 
play, and hence player 2 must revise his belief about 
player 1. But how? As we will see, there are at least two 
plausible ways for player 2 to revise his belief.

One option is to interpret player 1’s past move b as 
a mistake, yet at the same time maintain the belief that 
player 1 would choose rationally at his second move, as 
well as the belief that player 1 believes that player 2 would 
rationally choose g at his second move. In that case, player 
2 would believe, upon observing b, that player 1 would 
choose e at this second move, and therefore player 2 would 
choose c. This type of reasoning, in which the players are 
free to interpret “surprising” past moves as mistakes but 
believe that the opponents will choose rationally in the 
future, believe that the opponents always believe that 
their opponents will choose rationally in the future, and 
so on, is called backward induction reasoning and is formally 
captured by the concept of common belief in future rational-
ity (Perea, 2014). Similar lines of reasoning are present in 
Penta (2015), Baltag, Smets, and Zvesper (2009), and the 
concept of sequential rationalizability (Dekel, Fudenberg, 
& Levine, 1999, 2002; Asheim & Perea, 2005). Backward 
induction reasoning is also implicitly present in the back-
ward induction procedure (for a survey of the various 
epistemic foundations for backward induction, see Perea, 
2007b) and the equilibrium concepts of subgame-perfect 
equilibrium (Selten, 1965) and sequential equilibrium 
(Kreps & Wilson, 1982; for a formal statement, see Perea 
& Predtetchinski, 2019).

Another option for player 2, after observing the “sur-
prising” move b, is to interpret b as a conscious, optimal 
choice for player 1. However, this is only possible if player 
2 believes that player 1 would choose f afterward and if 
player 2 believes that player 1 assigns a high probability 
to player 2 making the suboptimal choice h at his second 
move. Consequently, player 2 would choose d and, in 
case he is asked to make a second move, choose g. This 
type of reasoning, where a player, whenever possible, 
tries to interpret “surprising” past choices as conscious, 
optimal choices, is called forward induction reasoning. It 
can be formalized by the epistemic condition of strong 
belief in the opponents’ rationality (Battigalli & Siniscalchi, 
2002), which states that a player, whenever possible, 
must believe that his opponents are implementing opti-
mal strategies.2 The concepts that most closely imple-
ment this type of reasoning are explicable equilibrium 

even bigger in games with more than two players. Epis-
temic foundations for Nash equilibrium in games with 
more than two players can be found in Brandenburger 
and Dekel (1987), Aumann and Brandenburger (1995), 
Perea (2007a), Barelli (2009), and Bach and Tsakas 
(2014).

6.  Dynamic Games

So far, we have been exploring static games, where all 
players only make one choice, and players choose in com-
plete ignorance of the opponents’ choices. We now inves-
tigate how the idea of common belief in rationality can be 
translated to dynamic games. In a dynamic game, players 
may choose one after the other, may choose more than 
once, and may fully or partially observe what the oppo-
nents have done in the past when it is their turn to move. 
As a consequence, a player may need to revise his belief 
about the opponents when he discovers that his previous 
belief has been contradicted by some of the opponents’ 
past choices. As an illustration, consider the game from 
figure 9.2.2, which is based on Reny (1992).

Player 1 Player 2 Player 1

Types

Beliefs for
player 1

Beliefs for
player 2

(c,t1
c)

(b,t1
b)

(a,t1
a)

(c,t1
c)

(b,t1
b)

(a,t1
a)(d,t2

d)

(e,t2
e)

(  f,t2
f )

b1(t1
a) = (e,t2

e)

b1(t1
b) = (d,t2

d)

b1(t1
c) = (f,t2

f)

b2(t2
d) = (a,t1

a)

b2(t2
e) = (b,t1

b)

b2(t2
f ) = (c,t1

c)

T1 = {t1
a,t1

b,t1
c}, T2 = {t2

d,t2
e,t2

f}

Figure 9.2.1
Epistemic model for the game in table  9.2.3 and a graphical 

representation.
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Aumann, R. J. (1974). Subjectivity and correlation in random-

ized strategies. Journal of Mathematical Economics, 1, 67–96.

Aumann, R. J. (1976). Agreeing to disagree. Annals of Statistics, 

4, 1236–1239.

Aumann, R., & Brandenburger, A. (1995). Epistemic conditions 

for Nash equilibrium. Econometrica, 63, 1161–1180.

Bach, C. W., & Tsakas, E. (2014). Pairwise epistemic conditions 

for Nash equilibrium. Games and Economic Behavior, 85, 48–59.

Baltag, A., Smets, S., & Zvesper, J.  A. (2009). Keep “hoping” 

for rationality: A solution to the backward induction paradox. 

Synthese, 169, 301–333.

Barelli, P. (2009). Consistency of beliefs and epistemic condi-

tions for Nash and correlated equilibrium. Games and Economic 

Behavior, 67, 363–375.

Battigalli, P. (1997). On rationalizability in extensive games. 

Journal of Economic Theory, 74, 40–61.

Battigalli, P., & Friedenberg, A. (2012). Forward induction rea-

soning revisited. Theoretical Economics, 7, 57–98.

Battigalli, P., Friedenberg, A., & Siniscalchi, M. (in press). Epis-

temic game theory: Reasoning about strategic uncertainty.

Battigalli, P., & Siniscalchi, M. (2002). Strong belief and forward 

induction reasoning. Journal of Economic Theory, 106, 356–391.

Bernheim, B.  D. (1984). Rationalizable strategic behavior. 

Econometrica, 52, 1007–1028.

Böge, W., & Eisele, T. (1979). On solutions of Bayesian games. 

International Journal of Game Theory, 8, 193–215.

Brandenburger, A. (2007). The power of paradox: Some recent 

developments in interactive epistemology. International Journal 

of Game Theory, 35, 465–492.

Brandenburger, A. (Ed.). (2014). The language of game theory: 

Putting epistemics into the mathematics of games (World Scientific 

Series in Economic Theory, Vol. 5). Singapore: World Scientific.

Brandenburger, A., & Dekel, E. (1987). Rationalizability and 

correlated equilibria. Econometrica, 55, 1391–1402.

(Reny, 1992) and extensive-form rationalizability (Pearce, 
1984; Battigalli, 1997), where the latter has epistemically 
been characterized by common strong belief in rationality 
in Battigalli and Siniscalchi (2002). See also Battigalli and 
Friedenberg (2012), in which forward induction with 
exogenous restrictions on the players’ beliefs is studied.

As the example above illustrates, backward and forward 
induction reasoning may lead to different strategy choices. 
Indeed, player 2 chooses c under backward induction rea-
soning but would choose (d, g) under forward induction 
reasoning. However, both types of reasoning lead to the 
same outcome, which is the terminal history following a. 
Battigalli (1997) has shown that the latter is always true 
in dynamic games with perfect information without rele-
vant ties by proving that in every such game, the forward 
induction concept of extensive-form rationalizability 
always uniquely leads to the backward induction outcome. 
This result is remarkable, as forward induction and back-
ward induction represent two completely different lines 
of reasoning. The connection between these two lines of 
reasoning in general dynamic games is one of the many 
intriguing problems in epistemic game theory that need 
further exploration.

Notes

1. ​ Such a static game may also correspond to the strategic form 

of a dynamic game, as explained in chapter 9.1 by Albert and 

Kliemt (this handbook).

2. ​ Strong belief in rationality is very similar to assumption of 

rationality in static games, which has been used by Branden-

burger, Friedenberg, and Keisler (2008) to epistemically char-

acterize the iterated elimination of weakly dominated choices.
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