
When Do Types Induce the Same Belief Hierarchy?
The Case of Finitely Many Types�

EPICENTER Working Paper No. 1 (2014)

Andrés Pereay

Maastricht University

First version: January 2014
This version: September 2014

Abstract

Harsanyi (1967�1968) showed how in�nite belief hierarchies can be encoded by means
of type structures. Such encodings, however, are far from unique: Two di¤erent types �
possibly from two di¤erent type structures �may generate exactly the same belief hierarchy.
In this paper we present a �nite recursive procedure, the Type Partitioning Procedure, which
veri�es whether two types, from two potentially di¤erent �nite type structures, induce the
same belief hierarchy or not. Important is that the procedure does not make explicit reference
to belief hierarchies, but operates entirely within the �language�of type structures. In the
second part of this paper we relate the procedure to the notion of type morphisms and
hierarchy morphisms between type structures.

JEL Classi�cation: C72

Keywords: Epistemic game theory, types, belief hierarchies.

�This paper is a substantially revised version of an earlier paper with the same title. I would like to thank
Pierpaolo Battigalli, Eddie Dekel, Amanda Friedenberg, Willemien Kets, Christian Nauerz, Miklós Pintér and
Elias Tsakas for very useful comments on the earlier version.

yAddress : EpiCenter and Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200
MD, Maastricht, The Netherlands.
E-mail: a.perea@maastrichtuniversity.nl
Web: http://www.epicenter.name/Perea/

1

1 Introduction

Belief hierarchies play a fundamental role in the modern analysis of games. In games with
incomplete information �where players face uncertainty about the opponents�utilities � it is
important to model what a player believes about his opponents�utility functions, what he be-
lieves about the opponents�beliefs about their opponents�utility functions, and so on (Harsanyi
(1962, 1967�1968), Böge and Eisele (1979), Mertens and Zamir (1985), Ely and P¾eski (2006),
Dekel, Fudenberg and Morris (2007), Weinstein and Yildiz (2007) and others). But even in
games with complete information �where the players�actual utility functions are transparent
to everyone � belief hierarchies naturally enter the analysis when we investigate the belief a
player has about his opponents�choices, the belief he has about the opponents�beliefs about
their opponents�choices, and so on. Such belief hierarchies are the basis for many concepts in
epistemic game theory, most of which build upon the central notion of common belief in ratio-
nality (Brandenburger and Dekel (1987), Tan and Werlang (1988)). For an overview of these
concepts, see Brandenburger (2007), Perea (2012) and Dekel and Siniscalchi (2013).

An in�nite belief hierarchy for a player starts with a �rst-order belief, which is a probability
measure on the player�s basic space of uncertainty. This basic space of uncertainty could contain
the set of opponents�choices, the parameters that determine the players�utility functions (as in
Harsanyi (1962, 1967�1968)), or even a combination of both (as in Böge and Eisele (1979) and
Mertens and Zamir (1985)). A second-order belief for a player is a probability measure on both
the basic space of uncertainty and the opponents�possible �rst-order beliefs. In particular, a
second-order belief induces a belief about the opponents��rst-order beliefs. In the same way,
we can de�ne third-order beliefs and higher. An in�nite belief hierarchy consists of a �rst-order
belief, a second-order belief, and so on, ad in�nitum.

To the best of my knowledge, Harsanyi (1962) was the �rst to formally de�ne a belief
hierarchy within the context of a game, although he did so for a very special setting. One
important practical problem with belief hierarchies � and that may also have been a reason
why belief hierarchies entered the game theory stage relatively late �is that these are in�nite
objects, with in�nitely many layers of beliefs. It is thus impossible to explicitly write down a
belief hierarchy, layer by layer, as there are in�nitely many of these. But then, the question
naturally arises: Is there a way to represent belief hierarchies in a compact and convenient way?

Harsanyi (1967�1968), some years after he introduced the notion of a belief hierarchy, gave
a positive and elegant answer to this question. He focused on a setting in which the belief
hierarchies concern only the players�utilities, but his construction has later been extended to
situations where players also hold beliefs about the opponents�choices. The construction that
Harsanyi proposed was very simple: For every player we de�ne a set of types, and for every
type we de�ne a utility function, together with a probabilistic belief about the opponents�types.
From this very simple construction we can then derive, for every type, a �rst-order belief about
the opponents�utility functions, a second-order belief about the opponents��rst-order beliefs,
and so on. That is, for every type we can derive a full belief hierarchy on the players�possible

2

utility functions in the game. This construction by Harsanyi was a major step forward, as it
allowed us to encode in�nite belief hierarchies about utilities in a very compact and convenient
fashion.

Harsanyi�s original idea can easily be adapted to a framework where players also hold beliefs
about other features besides the players�utilities. Assume that every player faces a basic space
of uncertainty, which can include the parameters determining the players�utility functions, the
set of opponents� choices, and possibly some other features as well. Now, consider for every
player a set of types, and associate to every type a probabilistic belief about the basic space
of uncertainty and the opponents� types. Then, similarly to Harsanyi�s construction, we can
derive for every type a full belief hierarchy, specifying a �rst-order belief about the basic space
of uncertainty, a second-order belief about the opponents��rst-order beliefs about their basic
spaces of uncertainty, and so on. This construction, which we call a type structure, thus allows
us to encode in�nite belief hierarchies about any set of parameters in a very compact way.

Such encodings, however, are far from unique: Two di¤erent types � possibly from two
di¤erent type structures � may encode one and the same belief hierarchy. In view of this
�multiplicity problem�we ask the following natural question in this paper: When do two types,
from two potentially di¤erent �nite type structures, induce the same belief hierarchy?

Checking this directly, by explicitly comparing their induced �rst-order beliefs, second-order
beliefs, and so on, may be quite cumbersome as one needs to check for in�nitely many levels of
belief. Instead, this paper presents a �nite recursive procedure, the Type Partitioning Procedure,
which tells us precisely when two such types induce the same belief hierarchy, and when they do
not. The procedure works as follows. If we compare two types from two di¤erent type structures,
we start by merging the two type structures into one large type structure. In every round, the
procedure generates for every player a partition of the set of types in the large type structure,
where the partition in the current round will always be a re�nement of the partition from the
previous round. Since we restrict to type structures with �nitely many types, this procedure will
always terminate within �nitely many rounds. The equivalence classes in the �nal partitions
will then be exactly those groups of types that generate the same belief hierarchy. That is, two
types generate the same belief hierarchy exactly when they belong to the same equivalence class
in the �nal partition. We actually show a bit more in Theorem 2: We prove that for every n;
two types share the same n-th order belief precisely when they belong to the same equivalence
class of the partition produced in round n of the procedure. In that sense, the Type Partitioning
Procedure provides a convenient and automated way to verify whether two types share the same
belief hierarchy, or the same beliefs up to a �xed order n: Important, moreover, is that the Type
Partitioning Procedure does not make any explicit reference to belief hierarchies � it operates
entirely within the �language�of type structures.

With Theorem 2 at hand, we can use the Type Partitioning Procedure to examine certain
properties of individual type structures, or to investigate relations between type structures. The
procedure can be used, for instance, to verify whether a given type structure is redundant, in
the sense that it contains several di¤erent types inducing the same belief hierarchy. Or we can

3

apply it to check whether two di¤erent type structures generate the same collection of belief
hierarchies, or whether one type structure is �smaller� than the other, in the sense that the
collection of belief hierarchies of the �rst structure is contained in that of the second. This is
the type of question investigated in, for instance, Friedenberg and Meier (2011).

Testing for such properties is important for the analysis of games with complete and incom-
plete information. Consider, for instance, Dekel, Fudenberg and Morris (2007) who show that
in an incomplete information setting, two types generating the same belief hierarchy about the
players�utilities will always induce the same set of interim correlated rationalizable choices1.
Hence, if we want to check whether two di¤erent types � or two di¤erent type structures �
generate the same sets of interim correlated rationalizable choices, it is su¢ cient to verify that
they induce the same belief hierarchy �or collection of belief hierarchies �about the players�
utilities, and this can be done through the Type Partitioning Procedure. Or consider Liu (2009)
who shows that every redundant type structure in an incomplete information setting can be
transformed into a non-redundant type structure in such a way that the set of Bayesian Nash
equilibria is preserved. To see whether such a transformation is necessary or not one �rst has
to check for redundancies in the type structure at hand, and also this can be done by running
the Type Partitioning Procedure.

In this paper we also use the Type Partitioning Procedure to establish an interesting property
of belief hierarchies which �I believe �is new. Suppose we compare two types �possibly from two
di¤erent type structures �and let N be the total number of types in these two type structures.
Then, we prove in Corollary 1 that these two types induce the same belief hierarchy exactly
when they induce the same N -th order belief. To prove this result we use the property that the
Type Partitioning Procedure will always terminate within at most N rounds. In particular, the
smaller the number of types in the type structure, the less belief levels we must check in order
to conclude that two types share the same belief hierarchy.

In the second part of the paper we link the partitions generated by the Type Partitioning
Procedure to the notions of type morphisms and hierarchy morphisms between two type struc-
tures. A type morphism is a function that assigns to every type from the �rst type structure
a �placeholder�in the second type structure, such that the types�beliefs about the opponents�
choice-type combinations are �invariant�under this assignment. In particular, a type morphism
makes no explicit reference to belief hierarchies. A hierarchy morphism, on the other hand, does
explicitly refer to belief hierarchies, as it is de�ned as function assigning to every type from the
�rst type structure a type from the second type structure that induces the same belief hierarchy.

It is well-known that every type morphism is a hierachy morphism (Heifetz and Samet, 1998)
but not vice versa (Friedenberg and Meier, 2011). In fact, Friedenberg and Meier (2011) show,
by means of an example, that for two types sharing the same belief hierarchy it may not be

1Ely and P¾eski (2006) show that this is not true for interim independent rationalizability and Bayesian Nash
equilibrium : Two types generating the same belief hierarchy about the players�utilities may generate di¤erent
interim independent rationalizable choices, and di¤erent Bayesian Nash equilibrium choices.

4

possible to �nd a type morphism that maps the �rst type to the second. In that sense, type
morphisms are �too restrictive�to characterize types that induce the same belief hierarchy.

We show that the �nal partitions of the Type Partitioning Procedure naturally induce a
generalized version of a type morphism �which we call set-valued type morphism. The crucial
di¤erence with �traditional� type morphisms is that a set-valued type morphism maps a type
from the �rst structure to a set of types from the second structure �rather than a single type �
and this set may be empty. Set-valued type morphisms reduce to �traditional�type morphisms,
however, if we require this set of types always to be a singleton. In Theorem 4 we show how
set-valued type morphisms can be used to characterize those types that share the same belief
hierarchy: Two types t and t0 �possibly from di¤erent type structures �induce the same belief
hierarchy precisely when there is a set-valued type morphism from the �rst type structure to
the second type structure, mapping t to a set of types that contains t0: For the proof of this
result we heavily rely on Theorem 2 above. Important is that set-valued type morphisms, like
�traditional�type morphisms, do not make explicit reference to belief hierarchies.

In the last part of Section 4 we �nally relate the partitions generated by the Type Partitioning
Procedure to the notion of hierarchy morphisms, as studied in Friedenberg and Meier (2011). In
Corollary 3 we use the Type Partitioning Procedure to give an easy characterization of hierarchy
morphisms, relying substantially on Theorem 2. Since every type morphism is a hierarchy
morphism but not the other way around � see our discussion above � a natural question is
under which circumstances the two notions coincide. This is a question intensively studied in
Friedenberg and Meier (2011), who show that the two notions are equivalent if the second type
structure is non-redundant �at least when we stick to �nite type structures as we do in this
paper. In Corollary 4 we show how this result can be derived entirely from the insights in this
paper.

The outline of this paper is as follows. In Section 2 we introduce type structures and
belief hierarchies, and show how we can derive belief hierarchies from types. In Section 3
we describe the Type Partitioning Procedure, illustrate it by means of an example, and show
how it characterizes those types that share the same belief hierarchy. In Section 4 we relate
the partitions induced by the Type Partitioning Procedure to type morphisms and hierarchy
morphisms. In Section 5 we discuss some possible extensions of this work. Section 6, �nally,
contains all proofs.

2 Belief Hierarchies and Types

In this section we show how belief hierarchies can be encoded by means of a type structure, and
how every type within a type structure can be �decoded�by deriving a full belief hierarchy from
it.

5

2.1 Encoding Belief Hierarchies by Type Structures

Consider a �nite set of agents I: Assume that each agent i faces a basic space of uncertainty
(Xi;�i); where Xi is an arbitrary set and �i a �-algebra on Xi: That is, (Xi;�i) is a measurable
space. The combination X = (Xi;�i)i2I of basic uncertainty spaces is called a multi-agent
uncertainty space.

If the agents are the players in a game, the basic space of uncertainty for player i could,
for instance, be the set of opponents�choice combinations, or the set of parameters determining
the utility functions of the players, or even a combination of the two. The �rst scenario is
the standard framework for games with complete information, the second scenario is Harsanyi�s
(1967�1968) original setting for games with incomplete information, whereas the last scenario is
investigated in Böge and Eisele (1979) and Mertens and Zamir (1985), among others. The sets
Xi could also include external events that cannot be in�uenced by the agents, as is the case in
Böge and Eisele (1979).

A belief hierarchy for player i speci�es a probability measure on Xi �the �rst-order belief,
a probability measure on Xi and the opponents�possible �rst-order beliefs �the second-order
belief, and so on. Following Harsanyi�s (1967�1968) approach, we will encode such in�nite belief
hierarchies by means of type structures. In this paper we focus on type structures with �nitely
many types, which of course imposes restrictions on the possible belief hierarchies we can encode.
Indeed, there are belief hierarchies which can simply not be encoded by type structures with
�nitely many types. See Section 5 for a discussion of this restriction to �nite type spaces.

De�nition 1 (Type Structure) Consider a multi-agent uncertainty space X = (Xi;�i)i2I :
A �nite type structure for X is a tuple T = (Ti; bi)i2I where, for every player i;
(a) Ti is the �nite set of types for player i; and

(b) bi : Ti ! �(Xi � T�i; �̂i) is a mapping that assigns to every type ti a probabilistic belief
bi(ti) 2 �(Xi � T�i; �̂i) on his basic uncertainty space and the opponents�type combinations.

Here, T�i := �j 6=iTj : For any measurable space (Yi; �̂i); we denote by �(Yi; �̂i) the set of
probability measures on (Yi; �̂i): In part (b) of the de�nition, we assume �̂i to be the product
�-algebra on Xi�T�i induced by the �-algebra �i on Xi and the discrete �-algebra on the �nite
set T�i:

2.2 From Type Structures to Belief Hierarchies

In the previous subsection we have introduced a type structure as a way to encode belief hier-
archies. We will now show how to �decode�a type within a type structure, by deriving the full
belief hierarchy it induces.

Consider a �nite type structure T = (Ti; bi)i2I for �: Then, every type ti within T induces
an in�nite belief hierarchy

hi(ti) = (h
1
i (ti); h

2
i (ti); :::);

6

where h1i (ti) is the induced �rst-order belief, h
2
i (ti) is the induced second-order belief, and so on.

We will inductively de�ne, for every n; the n-th order beliefs induced by types ti in T ; building
upon the (n � 1)-th order beliefs that have been de�ned in the preceding step. We start by
de�ning the �rst-order beliefs.

For every player i; and every type ti 2 Ti; de�ne the �rst-order belief h1i (ti) 2 �(Xi;�i) by

h1i (ti)(Ei) := bi(ti)(Ei � T�i) for all Ei 2 �i:

Now, suppose that n � 2; and assume that the (n � 1)-th order beliefs hn�1i (ti) have been
de�ned for all players i; and every type ti 2 Ti: Let

hn�1i (Ti) := fhn�1i (ti) j ti 2 Tig

be the �nite set of (n� 1)-th order beliefs for player i induced by types in Ti: For every hn�1i 2
hn�1i (Ti); let

Ti[h
n�1
i] := fti 2 Ti j hn�1i (ti) = h

n�1
i g

be the set of types in Ti that have the (n� 1)-th order belief hn�1i :
Let hn�1�i (T�i) := �j 6=ih

n�1
j (Tj); and for a given hn�1�i = (hn�1j)j 6=i in h

n�1
�i (T�i) let T�i[h

n�1
�i] :=

�j 6=iTj [hn�1j]:

We de�ne the n-th order beliefs hni (ti) as follows. Let �
n�1
i be the product �-algebra on

Xi � hn�1�i (T�i) induced by the �-algebra �i on Xi and the discrete �-algebra on the �nite set
hn�1�i (T�i): For every type ti 2 Ti; let the n-th order belief hni (ti) 2 �(Xi� h

n�1
�i (T�i);�

n�1
i) be

given by
hni (ti)(Ei � fhn�1�i g) := bi(ti)(Ei � T�i[h

n�1
�i]) (1)

for every Ei 2 �i and every hn�1�i 2 hn�1�i (T�i):
Finally, for every type ti 2 Ti; we denote by

hi(ti) := (h
n
i (ti))n2N

the belief hierarchy induced by ti:

The way we de�ne belief hierarchies di¤ers in one important way from, for instance, Heifetz
and Samet (1998) and Friedenberg and Meier (2011). In the latter two works, the n-th order
belief hni (ti) is assumed to explicitly incorporate the (n � 1)-th order belief hn�1i (ti) as a com-
ponent, whereas this is not the case in our setting. See equation (1) above. Because of this,
two types that share the same n-th order belief in the Heifetz-Samet and Friedenberg-Meier
setting, automatically will share the same (n� 1)-th order belief. This is not so obvious in our
case. However, we will prove, in Corollary 1, that this property holds for our setting as well.
That is, even though we do not explicitly build in the (n� 1)-th order belief into the n-th order
belief, we show that the (n � 1)-th order belief can be derived from the n-th order belief. Our
belief hierarchies are therefore �shorter�than those considered in Heifetz and Samet (1998) and
Friedenberg and Meier (2011), while containing exactly the same amount of information.

7

3 Type Partitioning Procedure

Suppose we consider a �nite type structure for some multi-agent uncertainty space X : In this
section we will present a recursive procedure �the Type Partitioning Procedure � that tells us,
within �nitely many steps, which types from this type structure induce the same belief hierarchy
and which do not. Important is that this procedure does not make explicit reference to belief
hierarchies, but operates entirely within the �language�of type structures.

3.1 De�nition of the Procedure

To formally de�ne this procedure, we need the following terminology. A �nite partition of a set
A is a �nite collection P = fP1; :::; PKg of nonempty subsets Pk � A such that [Kk=1Pk = A and
Pk \ Pm = ; whenever k 6= m: We refer to the sets Pk as equivalence classes. For an element
a 2 A; we denote by P(a) the equivalence class Pk to which a belongs. The trivial partition of
A is the partition P = fAg containing only one set �the full set A: For two partitions P1 and
P2 on A; we say that P1 is a re�nement of P2 if for every set P 1 2 P1 there is a set P 2 2 P2
such that P 1 � P 2: We say that P1 is a strict re�nement of P2 if P1 is a re�nement of P2 and
P1 6= P2:

In the procedure we recursively partition the set of types of an agent into equivalence classes
�starting from the trivial partition, and re�ning the previous partition with every step �until
these partitions cannot be re�ned any further. We show that the equivalence classes produced
in round n contain exactly the types that induce the same belief hierarchy up to order n: In
particular, the equivalence classes produced at the end contain precisely those types that induce
the same (in�nite) belief hierarchy.

Procedure 1 (Type Partitioning Procedure) Consider a multi-agent uncertainty space X
= (Xi;�i)i2I ; and a �nite type structure T = (Ti; bi)i2I for X :
Initial step. For every agent i; let P0i be the trivial partition of his set of types Ti:
Inductive step. Suppose that n � 1; and that the partitions Pn�1i have been de�ned for every
agent i: Then, for every agent i; and every ti 2 Ti;

Pni (ti) = ft0i 2 Ti j bi(t0i)(Ei � Pn�1�i) = bi(ti)(Ei � P
n�1
�i) (2)

for all Ei 2 �i, and all Pn�1�i 2 Pn�1�i g:

The procedure terminates at round n whenever Pni = Pn�1i for every agent i:

In this procedure, Pn�1�i is the partition of the set T�i induced by the partitions Pn�1j on Tj :
More precisely, if t�i = (tj)j 6=i is in T�i; then

Pn�1�i (t�i) := �j 6=iP
n�1
j (tj);

8

Type structure T = (T1; T2; b1; b2)

T1 = ft1; t01; t001g; T2 = ft2; t02; t002g

b1(t1) =
1
2(c; t2) +

1
2(d; t

0
2)

b1(t
0
1) =

1
6(c; t2) +

1
3(c; t

00
2) +

1
2(d; t

0
2)

b1(t
00
1) =

1
2(c; t

0
2) +

1
2(d; t

00
2)

b2(t2) =
1
4(e; t1) +

1
2(e; t

0
1) +

1
4(f; t

00
1)

b2(t
0
2) =

1
8(e; t1) +

1
8(e; t

0
1) +

3
4(f; t

00
1)

b2(t
00
2) =

3
8(e; t1) +

3
8(e; t

0
1) +

1
4(f; t

00
1)

Table 1: The type structure from Example 1

which is a subset of T�i:
We will now illustrate the Type Partitioning Procedure by means of an example.

Example 1. Consider a multi-agent uncertainty space X = (Xi;�i)i2I where I = f1; 2g;
X1 = fc; dg; X2 = fe; fg; and �1;�2 are the discrete �-algebras on X1 and X2; respectively.
Consider the type structure T = (T1; T2; b1; b2) in Table 1. Here, b1(t1) = 1

2(c; t2) +
1
2(d; t

0
2)

means that type t1 assigns probability 1
2 to the pair (c; t2) 2 X1 � T2; and probability

1
2 to the

pair (d; t02) 2 X1 � T2: Similarly for the other types in the table. We will now run the Type
Partitioning Procedure.

Initial Step. Let P01 be the trivial partition of the set of types T1; and let P02 be the trivial
partition of the set of types T2: That is,

P01 = fft1; t01; t001gg and P02 = fft2; t02; t002gg:

Round 1. By equation (2),

P11 (t1) = f�1 2 T1 j
b1(�1)(fcg � T2) = b1(t1)(fcg � T2) = 1

2 ;

b1(�1)(fdg � T2) = b1(t1)(fdg � T2) = 1
2g

= ft1; t01; t001g;

which implies that
P11 = P01 = fft1; t01; t001gg:

9

At the same time,

P12 (t2) = f�2 2 T2 j
b2(�2)(feg � T1) = b2(t2)(feg � T1) = 3

4 ;

b2(�2)(ffg � T1) = b2(t2)(ffg � T1) = 1
4g

= ft2; t002g

which implies that P12 (t02) = ft02g; and hence

P12 = fft2; t002g; ft02g:

Round 2. By equation (2),

P21 (t1) = f�1 2 T1 j
b1(�1)(fcg � ft2; t002g) = b1(t1)(fcg � ft2; t002g) = 1

2 ;

b1(�1)(fcg � ft02g) = b1(t1)(fcg � ft02g) = 0;
b1(�1)(fdg � ft2; t002g) = b1(t1)(fdg � ft2; t002g) = 0;
b1(�1)(fdg � ft02g) = b1(t1)(fdg � ft02g) = 1

2g
= ft1; t01g;

which implies that P21 (t001) = ft001g; and hence

P21 = fft1; t01g; ft001gg:

Since P11 = P01 ; we may immediately conclude that

P22 = P12 = fft2; t002g; ft02gg:

Round 3. As P22 = P12 ; we may immediately conclude that

P31 = P21 = fft1; t01g; ft001gg:

By equation (2),

P32 (t2) = f�2 2 T2 j
b2(�2)(feg � ft1; t01g) = b2(t2)(feg � ft1; t01g) = 3

4 ;

b2(�2)(feg � ft001g) = b2(t2)(feg � ft001g) = 0;
b2(�2)(ffg � ft1; t01g) = b2(t2)(ffg � ft1; t01g) = 0;
b2(�2)(ffg � ft001g) = b2(t2)(ffg � ft001g) = 1

4g
= ft2; t002g;

10

which implies that P32 (t02) = ft02g; and hence

P32 = fft2; t002g; ft02gg = P22 :

As P31 = P21 and P32 = P22 ; the procedure terminates at round 3. The �nal partitions of the

types are thus given by

P11 = fft1; t01g; ft001gg and P12 = fft2; t002g; ft02gg:

The reader may check that all types within the same equivalence class indeed induce the same
belief hierarchy. That is, t1 induces the same belief hierarchy as t01; and t2 induces the same
belief hierarchy as t002: Moreover, t1 and t

00
1 induce di¤erent belief hierachies, and so do t2 and

t02: �

3.2 Characterization Result

We will now show that the Type Partitioning Procedure identi�es precisely those types that
share the same belief hierarchy. As a preparatory result, we will �rst highlight two important
properties of the procedure. The �rst property states that the procedure is monotonic in the
sense that the partitions generated at a particular round will always be re�nements of the
partitions generated in the round before. The second property states that the number of rounds
that is needed for the procedure to terminate can never be larger than the total number of types
we consider.

Theorem 1 (Properties of the Procedure) Consider a multi-agent uncertainty space X =
(Xi;�i)i2I ; and a �nite type structure T = (Ti; bi)i2I for X : For every agent i and every round
n � 0; let Pni be the partition of Ti generated in round n of the Type Partitioning Procedure.
Let N be the total number of types in [i2ITi: Then,

(a) the partition Pni will always be a re�nement of Pn�1i ; for all agents i and all n � 1;

(b) the procedure will terminate after at most N rounds.

With this result at hand we can now prove the main theorem in this paper, which states that
the Type Partitioning Procedure characterizes precisely those groups of types that induce the
same belief hierarchy. We actually prove a little more: we show that the partitions generated in
round n of the procedure characterize exactly those types that yield the same n-th order belief.

Theorem 2 (Characterization Result) Consider a multi-agent uncertainty space X = (Xi;�i)i2I ;
and a �nite type structure T = (Ti; bi)i2I for X : For every agent i and every round n � 0; let
Pni be the partition of Ti generated in round n of the Type Partitioning Procedure. Let P1i be
the �nal partition generated by the procedure. Then, for every agent i, every n � 1; and every

11

two types ti; t0i 2 Ti, we have that

(a) hni (ti) = h
n
i (t

0
i); if and only if, t

0
i 2 Pni (ti);

(b) hi(ti) = hi(t0i); if and only if, t
0
i 2 P1i (ti):

By combining Theorems 1 and 2 we can derive some interesting facts about �nite type
structures and belief hierarchies, which we state in the following corollary.

Corollary 1 (Properties of Belief Hierarchies) Consider a multi-agent uncertainty space
X = (Xi;�i)i2I ; and a �nite type structure T = (Ti; bi)i2I for X : Let N be the total number of
types in [i2ITi; and let ti; t0i 2 Ti: Then,

(a) for every n � 2; hn�1i (ti) = h
n�1
i (t0i) whenever h

n
i (ti) = h

n
i (t

0
i);

(b) hi(ti) = hi(t0i), if and only if, h
N
i (ti) = h

N
i (t

0
i):

Property (a) thus states that two types agreeing on the n-th order belief will also agree on
all lower order beliefs. That is, the n-th order belief completely determines the �rst-order belief,
the second-order belief, until the (n�1)-th order belief. Property (b) says that in order to check
whether two types share the same in�nite belief hierarchy or not we only have to compare the
N -th order beliefs, where N is the total number of types in the type structure. To the best of
my knowledge, this result is new in the literature.

The proof of this corollary is actually very easy. To show property (a) consider two types
ti; t

0
i with h

n
i (ti) = hni (t

0
i): Then, by Theorem 2, t0i 2 Pni (ti): Since, by Theorem 1, Pni is a

re�nement of Pn�1i ; it follows that t0i 2 Pn�1i (ti) and hence, by Theorem 2, hn�1i (ti) = h
n�1
i (t0i):

To show property (b), take two types ti; t0i with h
N
i (ti) = hNi (t

0
i): Then, by Theorem 2,

t0i 2 PNi (ti): By Theorem 1 we know that the procedure terminates after at most N round, and
hence PNi = P1i : By Theorem 2 we conclude that hi(ti) = hi(t0i):

Some readers may ask why property (a) requires a proof, as in most other papers in the
literature the n-th order belief induced by a type explicitly contains the (n� 1)-th order belief
as a component, and hence property (a) holds trivially. See, for instance, Heifetz and Samet
(1998) and Friedenberg and Meier (2011). However, this is not the case in our setting: Our
de�nition of hni (ti) does not explicitly carry h

n�1
i (ti) as a component, and it is therefore not

obvious that the n-th order belief fully determines the (n� 1)-th order belief. This is a result,
which requires a proof in our setting.

3.3 Comparing Types from Di¤erent Type Structures

We have seen that the Type Partitioning Procedure tells us exactly which types within a given
type structure T induce the same belief hierarchy, and which do not. But what if we want to
compare types from di¤erent type structures? We will see that the procedure will work for such
settings as well.

12

Let us consider two di¤erent �nite type structures, T 1 = (T 1i ; b1i)i2I and T 2 = (T 2i ; b2i)i2I ; for
the same multi-agent uncertainty space X = (Xi;�i)i2I : For a given agent i; take a type t1i 2 T 1i
and a type t2i 2 T 2i : How can we check whether t1i and t2i induce the same belief hierarchy?

What we can do is to �rst merge the two type structures into one large type structure, and to
subsequently run the Type Partitioning Procedure for the large type structure. More precisely,
let T = (Ti; bi)i2I be the �large�type structure, where Ti := T 1i [T 2i for all agents i; and

bi(ti) :=

�
b1i (ti); if ti 2 T 1i
b2i (ti); if ti 2 T 2i

for all types ti 2 Ti: Hence, T is a �block� type structure in which types in T 1i only refer to
opponents�types in T 1�i; and types in T

2
i only refer to opponents�types in T

2
�i: But it is still

a well-de�ned type structure, and hence we can run the Type Partitioning Procedure for the
�block�type structure T ; yielding partitions P1i of the sets Ti = T 1i [T 2i for every agent i: If
t1i 2 T 1i and t2i 2 T 2i turn out to be in the same equivalence class of P1i , then t1i and t2i induce
the same belief hierarchy. Otherwise not. In this way, the Type Partitioning Procedure can also
be used to test whether two types from di¤erent type structures induce the same belief hierarchy
or not.

Example 2. To see how this works, let us consider an example with two agents, I = f1; 2g;
where the basic spaces of uncertainty are again given by X1 = fc; dg and X2 = fe; fg �as in
Example 1 �together the the discrete �-algebras on these sets. Consider the two type structures
T 1 = (T 1i ; b1i)i2I and T 2 = (T 2i ; b2i)i2I on X as given in Table 2. Note that type structure T 1 is
almost identical to the type structure in Example 1, except for the fact that we have added an
extra type t0001 for agent 1.

We want to test whether the types t1 2 T 11 and r1 2 T 21 ; which belong to di¤erent type
structures, induce the same belief hierrachy or not. As a �rst step we merge the two type
structures T 1 and T 2 into one large block type structure, as described above. If we subsequently
run the Type Partitioning Procedure for the large type structure, then the reader may verify that
the partitions in every round are given by Table 3. Here, the procedure terminates at round 3.
As t1 and r1 are not in the same equivalence class, we conclude that t1 and r1 do not induce the
same belief hierarchy. In fact, the �nal partitions tell us that for agent 1, the types t1; t01; r

0
1 and

r001 all induce the same belief hierarchy, that types t
00
1 and r1 induce the same belief hierarchy,

and that for type t0001 2 T 11 there is no type in T 21 that induces the same belief hierarchy. For
agent 2, the types t2; t002 and r

0
2 all induce the same belief hierarchy, and so do the types t

0
2; r2

and r002 : �

3.4 Testing for Properties of Type Structures

The Type Partitioning Procedure can be used to answer several di¤erent questions �local and
global. First, as we already discussed, we can use it to test whether two types �possibly from
di¤erent type structures �induce the same belief hierarchy or not. This is a local test.

13

Type structure T 1 = (T 11 ; T 12 ; b11; b12)

T 11 = ft1; t01; t001; t0001 g; T 12 = ft2; t02; t002g

b11(t1) =
1
2(c; t2) +

1
2(d; t

0
2)

b11(t
0
1) =

1
6(c; t2) +

1
3(c; t

00
2) +

1
2(d; t

0
2)

b11(t
00
1) =

1
2(c; t

0
2) +

1
2(d; t

00
2)

b11(t
000
1) =

1
3(c; t2) +

2
3(d; t

00
2)

b12(t2) =
1
4(e; t1) +

1
2(e; t

0
1) +

1
4(f; t

00
1)

b12(t
0
2) =

1
8(e; t1) +

1
8(e; t

0
1) +

3
4(f; t

00
1)

b12(t
00
2) =

3
8(e; t1) +

3
8(e; t

0
1) +

1
4(f; t

00
1)

Type structure T 2 = (T 21 ; T 22 ; b21; b22)

T 21 = fr1; r01; r001g; T 22 = fr2; r02; r002g

b21(r1) =
1
4(c; r2) +

1
4(c; r

00
2) +

1
2(d; r

0
2)

b21(r
0
1) =

1
2(c; r

0
2) +

1
8(d; r2) +

3
8(d; r

00
2)

b21(r
00
1) =

1
2(c; r

0
2) +

3
8(d; r2) +

1
8(d; r

00
2)

b22(r2) =
1
4(e; r

0
1) +

3
4(f; r1)

b22(r
0
2) =

3
4(e; r

0
1) +

1
4(f; r1)

b22(r
00
2) =

1
8(e; r

0
1) +

1
8(e; r

00
1) +

3
4(f; r1)

Table 2: The type structures from Example 2

Round n Pn1 Pn2
0 fft1; t01; t001; t0001 ; r1; r01; r001gg fft2; t02; t002; r2; r02; r002gg
1 fft1; t01; t001; r1; r01; r001g; ft0001 gg fft2; t002; r02g; ft02; r2; r002gg
2 fft1; t01; r01; r001g; ft001; r1g; ft0001 gg fft2; t002; r02g; ft02; r2; r002gg
3 fft1; t01; r01; r001g; ft001; r1g; ft0001 gg fft2; t002; r02g; ft02; r2; r002gg

Table 3: The Type Partitioning Procedure in Example 2

14

But we can also use it to test global properties of type structures. For instance, we can
use the procedure to test whether a given type structure contains redundant types or not �
where �redundant�means that two di¤erent types induce the same belief hierarchy. For this
redundancy test we can run the Type Partitioning Procedure and see whether the �nal partitions
contain equivalence classes with at least two types. If this is the case then we conclude that the
type structure contains redundancies. If, on the other hand, all equivalence classes contain only
one type, then there are no redundancies in the type structure.

In case the type structure contains redundant types, the Type Partitioning Procedure will
also tell us how to �remove� these redundancies without changing the induced collection of
belief hierarchies. What we can do in this case is to replace every equivalence class in the �nal
partition by a single type, and to change the belief of every type accordingly. Then we will
obtain a smaller, non-redundant type structure that induces exactly the same collection of belief
hierarchies.

As an illustration, consider the type structure from Table 1. We have seen in Example 1
that the Type Partitioning Procedure generates the �nal partitions

P11 = fft1; t01g; ft001gg and P12 = fft2; t002g; ft02gg:

If we replace the equivalence class ft1; t01g by the single type r1; and replace the equivalence class
ft2; t002g by the single type r2; then we obtain the smaller type structure T̂ = (T̂i; b̂i)i2I where

T̂1 = fr1; t001g; T̂2 = fr2; t02g

and

b̂1(r1) = 1
2(c; r2) +

1
2(d; t

0
2);

b̂2(t
00
1) = 1

2(c; t
0
2) +

1
2(d; r2);

b̂2(r2) = 3
4(e; r1) +

1
4(f; t

00
1);

b̂2(t
0
2) = 1

4(e; r1) +
3
4(f; t

00
1):

It can be veri�ed that T̂ is indeed non-redundant, and induces the same collection of belief
hierarchies as the original type structure T from Table 1.

Another global question we can answer is whether two di¤erent type structures generate the
same collection of belief hierarchies, or whether the collection of belief hierarchies induced by
the �rst type structure is contained in that of the second structure. This is the type of question
which is addressed, for instance, in Friedenberg and Meier (2011). To answer the �rst question
we can �rst merge the two type structures into one, and subsequently run the Type Partitioning
Procedure. If the �nal partitions are such that every equivalence class always contains at least
one type from both type structures, then the two structures generate the same collection of belief
hiearchies. Otherwise not. Indeed, assume that every equivalence class in the �nal partitions

15

contains at least one type from each type structure. Then, for every type in the �rst structure
there is a type in the second structure that generates the same belief hierarchy, and vice versa.
That is, both type structures produce exactly the same collection of belief hierarchies. If this
is not the case, that is, if there is an equivalence class that contains only types from one type
structure but not from the other, then these type do not have any �counterpart� in the other
type structure, and hence the two type structures di¤er in the collection of belief hierarchies
they generate. To answer the second question �that is, whether the set of belief hierarchies of
the �rst structure is contained in that of the second �we look at the �nal partitions, and see
whether every equivalence class contains at least one type from the second structure.

We have collected the insights above in the following corollary.

Corollary 2 (Testing for Properties of Type Structures) Consider a multi-agent uncer-
tainty space X = (Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b1i)i2I and T 2 = (T 2i ; b2i)
for X : Let (P1i)i2I be the �nal partitions generated by the Type Partitioning Procedure if we
�rst merge the two type structures into one. Then:

(a) type structure T 1 is redundant, if and only if, there is some agent i and some Pi 2 P1i such
that jPi \ T 1i j � 2;
(b) the collection of belief hierarchies induced by T 1 is a subset of the collection of belief hier-
archies induced by T 2; if and only if, Pi \ T 2i 6= ; for all agents i and all Pi 2 P1i ;
(c) type structures T 1 and T 2 induce the same collection of belief hierarchies, if and only if,
Pi \ T 1i 6= ; and Pi \ T 2i 6= ; for all agents i and all Pi 2 P1i :

Here, we say that a type structure is redundant if it contains at least two di¤erent types that
generate the same belief hierarchy.

4 Type and Hierarchy Morphisms

In this section we will relate the �nal partitions in the Type Partitioning Procedure to the notions
of type morphisms and hierarchy morphisms in the literature, which are functions that map
types from one type structure to types from another type structure while preserving the belief
hierarchies. In the �rst part, we show that the �nal partitions in the Type Partitioning Procedure
give rise to a generalized version of type morphisms �which we call set-valued type morphisms.
We go on by demonstrating how set-valued type morphisms can be used to characterize types
�possibly from di¤erent type structures �that share the same belief hierarchy. In the last part
we discuss the relationship with hierarchy morphisms.

4.1 �Traditional�Type Morphisms

The notion of a type morphism has a long tradition in the literature on belief hierarchies and
type structures. Informally, a type morphism is a function that maps the types from one type

16

structure to �placeholders�in the other type structure, such that the beliefs of the types about
the opponents� choice-type conbinations are �preserved� through this mapping. The formal
de�nition, which we present below, has �to the best of my knowledge ��rst been introduced
by Böge and Eisele (1979), but also appears in Mertens and Zamir (1985), Heifetz and Samet
(1998), Ely and P¾eski (2006), Dekel, Fudenberg and Morris (2007), Liu (2009), Friedenberg and
Meier (2011) and Pintér (2011), among others.

De�nition 2 (Type Morphism) Consider a multi-agent uncertainty space X = (Xi;�i)i2I ;
and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 = (T 2i ; b

2
i) for X : A type morphism

from T 1 to T 2 is a collection (fi)i2I of functions fi : T 1i ! T 2i such that for all agents i; all
types t1i 2 T 1i ; all Ei 2 �i; and all t1�i 2 T 1�i;

b1i (t
1
i)(Ei � f�1�i (f�i(t

1
�i))) = b

2
i (fi(t

1
i))(Ei � ff�i(t1�i))g); (3)

where f�1�i (f�i(t
1
�i)) := ft̂1�i 2 T 1�i j f�i(t̂1�i) = f�i(t1�i)g:

In this de�nition, f�i is the induced function from T 1�i to T
2
�i which assigns to every t

1
�i =

(t1j)j 6=i in T
1
�i the type combination f�i(t

1
�i) := (fj(t

1
j))j 6=i in T

2
�i:

Note that a type morphism does not make direct reference to belief hierarchies. An important
property of type morphisms, however, is that they preserve the belief hierarchies of the types.
That is, if (fi)i2I is a type morphism from the type structure T 1 = (T 1i ; b

1
i)i2I to the type

structure T 2 = (T 2i ; b2i); then fi(t1i) always induces the same belief hierarchy as t1i for all types
t1i 2 T 1i : See Proposition 5.1 in Heifetz and Samet (1998) for a formal proof. So, in particular,
if t1i 2 T 1i and t2i 2 T 2i are two types from two �possibly di¤erent �type structures, and there
is a type morphism between the two structures that maps t1i to t

2
i ; then both types share the

same belief hierarchy.
The opposite direction is not true, however. To see this, consider the type structure T from

Table 1. We have shown in Example 1 �by using the Type Partioning Procedure �that types t1
and t01 induce the same belief hierarchy. However, we will show that there is no type morphism
from T to itself which maps t1 to t01; or t

0
1 to t1:

To see this, suppose that f = (f1; f2) is a type morphism from T to T : As t1 and t01 induce
the same belief hierarchy, which is di¤erent from the belief hierarchy induced by t001; we must
have that f1(t1); f1(t01) 2 ft1; t01g and f1(t001) = t001: We consider the following three cases.

Case 1. Suppose that f1(t1) = t01 and f1(t
0
1) = t

0
1: Then,

b2(t2)(feg � f�11 (f1(t1))) = b2(t2)(feg � f�11 (t01)) = b2(t2)(feg � ft1; t01g) = 3
4 :

Hence, by (3) we must have that

b2(f2(t2))(feg � f1(t1)) = b2(f2(t2))(feg � ft01g) = 3
4 ;

17

which is impossible since there is no type �2 2 T2 with b2(�2)(feg � ft01g) = 3
4 : So, it cannot be

that f1(t1) = t01 and f1(t
0
1) = t

0
1:

Case 2. Suppose that f1(t1) = t01 and f1(t
0
1) = t1: Then,

b2(t2)(feg � f�11 (f1(t1))) = b2(t2)(feg � f�11 (t01)) = b2(t2)(feg � ft1g) = 1
4 :

Hence, by (3) we must have that

b2(f2(t2))(feg � f1(t1)) = b2(f2(t2))(feg � ft01g) = 1
4 ;

which is impossible since there is no type �2 2 T2 with b2(�2)(feg � ft01g) = 1
4 : So, it cannot be

that f1(t1) = t01 and f1(t
0
1) = t1:

Case 3. Suppose that f1(t1) = t1 and f1(t01) = t1: Then,

b2(t2)(feg � f�11 (f1(t1))) = b2(t2)(feg � f�11 (t1)) = b2(t2)(feg � ft1; t01g) = 3
4 :

Hence, by (3) we must have that

b2(f2(t2))(feg � f1(t1)) = b2(f2(t2))(feg � ft1g) = 3
4 ;

which is impossible since there is no type �2 2 T2 with b2(�2)(feg� ft1g) = 3
4 : Hence, it cannot

be that f1(t1) = t1 and f1(t01) = t1:
But then, it must be the case that f1(t1) = t1; f1(t

0
1) = t01 and f1(t

00
1) = t001: In particular,

there is no type morphism from T to T which maps t1 to t01; or t01 to t1: In fact, the reader may
verify that the only type morphism from T to T is the identity mapping.

This example thus shows the following: If we want to test whether types ti and t0i �possibly
from two di¤erent type structures �induce the same belief hierarchy, then the existence of a type
morphism mapping ti to t0i is a su¢ cient condition, but not a necessary condition. Intuitively,
the problem lies in the requirement that every type from the �rst type structure must be mapped
to exactly one �placeholder�type from the second type structure. This requirement may be much
too strong for testing whether ti and t0i share the same belief hierachy.

As we will show in the following subsection, the �nal partitions generated by the Type
Partitioning Procedure give rise to a generalization of a type morphism, in which every type
from the �rst type structure is not necessarily mapped to a single type from the other structure,
but rather to a set of types from the other structure, which may be empty. We will refer to
this generalized notion as a set-valued type morphism. We will show that the existence of a
set-valued type morphism mapping ti to (a set including) t0i is both necessary and su¢ cient for
checking whether ti and t0i induce the same belief hierarchy.

18

4.2 Set-valued Type Morphisms

Consider two �nite type structures T 1 = (T 1i ; b
1
i)i2I and T 2 = (T 2i ; b

2
i) for the multi-agent

uncertainty space X : Suppose we apply the Type Partitioning Procedure to T 1 and T 2 by �rst
merging the two type structures into one large type structure T = (Ti; bi)i2I with Ti = T 1i [T 2i
for all agents i. For every agent i; let P1i be the �nal partition of T 1i [T 2i generated by the
procedure. Then, according to equation (2) in the procedure,

P1i (ti) = ft0i 2 Ti j bi(t0i)(Ei � P1�i) = bi(ti)(Ei � P1�i) (4)

for all Ei 2 �i, and all P1�i 2 P1�ig

for all agents i and all ti 2 Ti:
The partition P1i induces, in a natural way, a correspondence Fi : T 1i � T 22 ; assigning to

every type t1i 2 T 1i the set of types

Fi(t
1
i) := P1i (t1i) \ T 2i ; (5)

which is a subset of T 2i : Note that Fi(t
1
i) may be empty, since P1i (t1i) may contain no types from

T 2i : This is exactly the case when there is no type in T
2
i inducing the same belief hierarchy as

t1i : Also, Fi(t
1
i) may contain more than one type, which is the case when there are several types

in T 2i inducing the same belief hierarchy as t
1
i :

Let us now explore some properties of this correspondence Fi: Note �rst that, for every
two di¤erent types t1i ; r

1
i 2 T 1i ; either Fi(t1i) = Fi(r

1
i); or Fi(t

1
i) \ Fi(r1i) = ;: We say that the

correspondence Fi is disjoint.
For later purposes we de�ne

F�1i (Fi(t
1
i)) := fr1i 2 T 1i j Fi(r1i) = Fi(t1i)g

for every t1i 2 T 1i : Then, it may be veri�ed that

F�1i (Fi(t
1
i)) = P1i (t1i) \ T 1i (6)

for every t1i 2 T 1i :
As expected, we de�ne by F�i the induced disjoint correspondence F�i : T 1�i � T 2�i which

assigns to every t1�i = (t
1
j)j 6=i in T

1
�i the set

F�i(t
1
�i) := �j 6=iFj(t1j):

From (6) it then immediately follows that

F�1�i (F�i(t
1
�i)) = P1�i(t1�i) \ T 1�i (7)

for all t1�i 2 T 1�i:

19

By combining (4), (5) and (7) we conclude that the collection of disjoint correspondences
(Fi)i2I has the following property: For every agent i; and every t1i 2 T 1i ;

Fi(t
1
i) = ft2i 2 T 2i j b1i (t1i)(Ei � F�1�i (F�i(t

1
�i))) = b

2
i (t

2
i)(Ei � F�i(t1�i)) (8)

for all Ei 2 �i, and all t1�i 2 T 1�ig:

This is precisely the de�nition of a type morphism, except for the fact that the mappings Fi
are now correspondences rather than functions. Indeed, if we assume that every correspondence
Fi is in fact a function �that is, maps every type t1i 2 T 1i to a singleton set ft2i g in T 2i �then
condition (8) is identical to condition (3) in the de�nition of a type morphism. Condition (8)
thus generalizes the notion of a type morphism to correspondences between sets of types. We
will call this generalization a set-valued type morphism.

De�nition 3 (Set-valued Type Morphism) Consider a multi-agent uncertainty space X =
(Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 = (T 2i ; b

2
i) for X : A set-

valued type morphism from T 1 to T 2 is a collection (Fi)i2I of disjoint correspondences
Fi : T

1
i � T 2i such that for all agents i and all types t

1
i 2 T 1i ;

Fi(t
1
i) = ft2i 2 T 2i j b1i (t1i)(Ei � F�1�i (F�i(t

1
�i))) = b

2
i (t

2
i)(Ei � F�i(t1�i)) (9)

for all Ei 2 �i, and all t1�i 2 T 1�ig:

Note that a set-valued type morphism, like a �traditional��type morphism, does not make
explicit reference to belief hierarchies. We have seen above that the �nal partitions (P1i)i2I of
T 1i [T 1i ; generated by the Type Partioning Procedure, induce a set-valued type morphism (Fi)i2I
from T 1 to T 2: We will denote this set-valued type morphism by F tpp = (F tppi)i2I :

As an illustration, consider the type structures T 1 and T 2 from Table 2. We have shown in
Example 2 that the �nal partitions generated by the Type Partitioning Procedure are given by

P11 = fft1; t01; r01; r001g; ft001; r1g; ft0001 gg and P12 = fft2; t002; r02g; ft02; r2; r002gg;

(see Table 3). These partitions generate the set-valued type morphism F = (F1; F2); with
correspondences F1 : T 11 � T 21 and F2 : T

1
2 � T 22 ; where

F1(t1) = F1(t
0
1) = fr01; r001g ;

F1(t
00
1) = fr1g;

F1(t
000
1) = ;;

F2(t2) = F2(t
00
2) = fr02g;

F2(t
0
2) = fr2; r002g:

Note that P11 (t0001) = ft0001 g contains no type from T 21 ; because there is no type in T 2 inducing
the same belief hierarchy as t0001 ; and therefore F1(t

000
1) = ;:

20

4.3 Characterization Result

In this subsection we show how set-valued type morphisms can be used to characterize those
groups of types that share the same belief hierarchy. As a �rst step towards this characterization,
we start by showing that the set-valued type morphism F tpp induced by the Type Partioning
Procedure constitutes the �coarsest�possible set-valued type morphism. That is, we will prove
that every set-valued type morphism must necessarily be a �re�nement�of the set-valued type
morphism F tpp:

To formally de�ne what we mean by a re�nement of a set-valued type morphism (Fi)i2I ; we
will �rst naturally transform every disjoint correspondence Fi into a partition of T 1i [T 2i ; and
will then relate the set-valued type morphisms by comparing these induced partitions. More
precisely, consider a disjoint correspondence Fi : T 1i � T 2i : We de�ne the induced partition
Pi[Fi] of T 1i [T 2i by

(Pi[Fi])(ti) :=

8<:
F�1i (Fi(ti)) [Fi(ti); if ti 2 T 1i and Fi(ti) 6= ;

ftig; if ti 2 T 1i and Fi(ti) = ;
ftig; if ti 2 T 2i and ti =2 Fi(t1i) for any t1i 2 T 1i

(10)

for every ti 2 T 1i [T 2i : It can be veri�ed that the collection of sets f(Pi[Fi])(ti) j ti 2 T 1i [T 2i g is
indeed a partition of T 1i [T 2i : Moreover, the reader can check that the partition Pi[Fi] induces
exactly the disjoint correspondence Fi by means of the formula (5) above, and hence the partition
Pi[Fi] really �belongs�to the correspondence Fi:

Now consider two disjoint correspondences Fi and F 0i from T 1i to T
2
i : We say that Fi is a

re�nement of F 0i if the induced partition Pi[Fi] of T 1i [T 2i is a re�nement of Pi[F 0i]: Finally, if
we compare two set-valued type morphisms F = (Fi)i2I and F 0 = (F 0i)i2I from T 1 to T 2; we
say that F is a re�nement of F 0 if for every agent i; Fi is a re�nement of F 0i :

We are now ready to formally state, and prove, the result which says that the set-valued type
morphism induced by the Type Partitioning Procedure is the coarsest possible type morphism.

Theorem 3 (Coarsest Set-valued Type Morphism) Consider a multi-agent uncertainty
space X = (Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 = (T 2i ; b

2
i) for

X : Let F tpp = (F tppi)i2I be the set-valued type morphism from T 1 to T 2 induced by the Type
Partitioning Procedure. Then, every set-valued type morphism from T 1 to T 2 is a re�nement
of F tpp:

We will now use Theorem 3 to show that set-valued type morphisms, in contrast to �tradi-
tional� type morphisms, enable us to provide both su¢ cient and necessary conditions for two
types inducing the same belief hierarchy.

Theorem 4 (Characterization by Set-valued Type Morphisms) Consider a multi-agent
uncertainty space X = (Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 =

21

(T 2i ; b
2
i) for X : Take two types t1i 2 T 1i and t2i 2 T 2i : Then, t1i and t2i induce the same belief

hierarchy, if and only if, there is a set-valued type morphism (Fi)i2I from T 1 to T 2 such that
t2i 2 Fi(t1i):

In a sense, the above theorem shows what it takes to transform the traditional notion of a
type morphism �which gives su¢ cient, but not necessary, conditions for two types sharing the
same belief hierarchy �into a more ��exible�notion that yields both necessary and su¢ cient
conditions.

4.4 Hierarchy Morphisms

We �nally relate the output of the Type Partitioning Procedure to the notion of hierarchy mor-
phisms as de�ned in Friedenberg and Meier (2011).

De�nition 4 (Hierarchy Morphism) Consider a multi-agent uncertainty space X = (Xi;�i)i2I ;
and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 = (T 2i ; b

2
i) for X : A hierarchy mor-

phism from T 1 to T 2 is a collection (fi)i2I of functions f : T 1i ! T 2i such that hi(fi(t
1
i)) = hi(t

1
i)

for all agents i and all t1i 2 T 1i :

That is, a hierarchy morphism is a function that maps types from the �rst structure into
types from the second structure without changing the belief hierarchies. By means of Theorem
2 we can characterize the class of hierarchy morphisms from T 1 to T 2 as follows.

Corollary 3 (Characterization of Hierarchy Morphisms) Consider a multi-agent uncer-
tainty space X = (Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b1i)i2I and T 2 = (T 2i ; b2i)
for X : Let (P1i)i2I be the �nal partitions generated by the Type Partitioning Procedure if we
�rst merge the two type structures into one. Then, a collection (fi)i2I of functions fi : T 1i ! T 2i
is a hierarchy morphism, if and only if, fi(t1i) 2 P1i (t1i) for all agents i and all t1i 2 T 1i :

The proof follows directly from Theorem 2.
From Theorem 4 it follows, moreover, that every type morphism is a hierarchy morphism.

Indeed, we have seen that every type morphism is a special case of a set-valued type morphism �
where every type is mapped to a singleton set �and hence Theorem 4 guarantees that every type
morphism preserves belief hierarchies. This result is also shown by Heifetz and Samet (1998).

The opposite direction, however, is not true: Not every hierarchy morphism is a type mor-
phism. To see this, consider the type structure T from Table 1. We have seen in Example 1 that
types t1 and t01 generate the same belief hierarchy. Therefore, the collection (f1; f2) of functions,
where

f1(t1) = t
0
1; f1(t

0
1) = t1; f1(t

00
1) = t

00
1

and f2 is the identity mapping from T2 to T2; is a hierarchy morphism from T to T . However,
we have shown in Section 4.1 that there is no type morphism from T to T that maps t1 to t01 or

22

vice versa. In particular f; is not a type morphism. Friedenberg and Meier (2011) give another
example where a hierarchy morphism is not a type morphism.

This raises the question: Under which circumstances is every hierarchy morphism also a type
morphism? Friedenberg and Meier (2011) provide a full answer to this question by means of
their Theorem 5.1. As a corollary of this result, they prove that every hierarchy morphism from
T 1 to T 2 is a type morphism whenever T 2 is non-redundant. See their Corollary 7.2, and bear
in mind that we restrict to �nite type structures. We can reproduce this result by relying solely
on insights from this paper.

To see this, suppose that T 2 is non-redundant. Let (P1i)i2I be the �nal partitions generated
by the Type Partitioning Procedure if we �rst merge the two type structures T 1 and T 2 into
one. Since T 2 is non-redundant, we know from Corollary 2 that every equivalence class Pi 2 P1i
contains at most one type from T 2i : Now, take an arbitrary hierarchy morphism f = (fi)i2I from
T 1 to T 2: Then, by Corollary 3, fi(t1i) 2 P1i (t1i) for every t1i 2 T 1i ; and hence

P1i (t1i) \ T 2i = ff1i (t1i)g for all t1i 2 T 1i : (11)

By (11), (4) and (6)it follows that (fi)i2I is a type morphism, as was to show. We have thus
shown the following result.

Corollary 4 (Friedenberg and Meier (2011)) Consider a multi-agent uncertainty space X
= (Xi;�i)i2I ; and two �nite type structures T 1 = (T 1i ; b

1
i)i2I and T 2 = (T 2i ; b

2
i) for X : Let

(P1i)i2I be the �nal partitions generated by the Type Partitioning Procedure if we �rst merge
the two type structures into one. Suppose that T 2 is non-redundant. Then, every hierarchy
morphism from T 1 to T 2 is a type morphism.

Friedenberg and Meier (2011) show in their Theorem 5.1 that � in a sense � the opposite
direction is also true for �nite type structures: If every hierarchy morphism from some (arbitrary)
type structure to T 2 is a type morphism, then T 2 must be non-redundant. Consequently, if we
consider �nite type structures, then non-redundancy of T 2 is both necessary and su¢ cient to
guarantee that all hierarchy morphisms to T 2 are also type morphisms. This follows from the
fact that Friedenberg and Meier�s condition of strong measurability �which plays a key role in
their Theorem 5.1 �is equivalent to non-redundancy if the type structures are �nite.

5 Possible Extensions

We will �nally discuss some possible extensions of this work.

In�nite type spaces. An important restriction we impose in the present framework is that
the type structures contain �nitely many types only. But what if we allow the type structures to
contain in�nitely many types? Can we then still obtain characterization results similar to The-
orems 2 and 4? One important thing that would change is that the Type Partitioning Procedure

23

is no longer guaranteed to terminate after �nitely many steps, as there may be in�nitely many
successive strict re�nements of partitions. Besides, the partitions produced at the various rounds
of the procedure may contain in�nitely many �even uncountably many �partition elements. On
a more technical level, it also becomes important to investigate whether these partition elements
constitute measurable sets or not, so that the procedure would still be well-de�ned. But even
if these problems would all be sorted out, there still remains the question whether the Type
Partitioning Procedure would eventually characterize those types that induce the same belief
hierarchy. This seems an intriguing problem for future research.

From a conceptual viewpoint, how severe is the restriction that we restrict to �nitely many
types? This, of course, depends on the purpose one has in mind. It is well-known that many
concepts in game theory, like rationalizability (Bernheim (1984), Pearce (1984)), common belief
in rationality (Brandenburger and Dekel (1987), Tan and Werlang (1988)), Nash equilibrium
(Nash (1950, 1951)), the Dekel-Fudenberg procedure (Dekel and Fudenberg (1990)), proper ra-
tionalizability (Schuhmacher (1999), Asheim (2001)) and common belief in future rationality
(Perea (2014)) can be characterized by means of �nite type structures. Perea (2012) shows that
even concepts like iterated assumption of rationality (Brandenburger, Friendenberg and Keisler
(2008)) and common strong belief in rationality (Battigalli and Siniscalchi (2002)), which are
originally de�ned within complete �and hence in�nite �type spaces, can also be characterized
within �nite type structures. Therefore, �nite type structures would in principle su¢ ce if the
purpose is to investigate any of these concepts. But there may be other scenarios where in�nite
type structures turn out to be indispensable. For these scenarios it would then be crucial to
have an analogue of Theorem 2 for the case where in�nitely many types are allowed.

Finite belief hierarchies. In many situations of interest, it may simply be too demanding to
require that players hold in�nitely many levels of belief. It is therefore important to model type
spaces in which certain types only hold beliefs up to a certain level n: See Kets (2010, 2013) and
Heifetz and Kets (2013) for a thorough analysis of this phenomenon. An interesting question is
whether the results in this paper can be extended to such settings where some types only induce
a �nite belief hierarchy.

�-belief hierarchies. Ely and P¾eski (2006) introduce a new kind of belief hierarchy induced by
types, which they call �-hierarchies. They proceed by showing that two types in an incomplete
information setting induce the same set of interim independent rationalizable choices, if and
only if, they induce the same �-hierarchy. As we already mentioned in a footnote in the
introduction, this result is not true if we would consider �traditional�belief hierarchies rather
than �-hierarchies. In fact, �-hierarchies contain more information than traditional belief
hierarchies in the sense that two types sharing the same �-hierarchy will always share the
same traditional belief hierarchy, but not vice versa. It would be interesting to see whether our
approach can be used to examine �-hierarchies as well.

Alternative notions of belief. One could also try to extend the results in this paper to more
general notions of belief, such as lexicographic beliefs (Blume, Brandenburger and Dekel (1991a,

24

1991b)) and conditional beliefs in dynamic games (Ben-Porath (1997), Battigalli and Siniscalchi
(1999, 2002)). If one keeps the type structures �nite, I expect that similar results �and similar
proofs �should be possible for these settings as well.

Kripke-Aumann structures. Type structures are not the only way to encode belief hierarchies.
One can also use models with states of the world, à la Kripke (1963) and Aumann (1976), to
represent belief hierarchies. My feeling is that the results in this paper can be adapted to such
models as well.

6 Proofs

Proof of Theorem 1. We �rst prove (a) by induction on n:

Induction start. The partition P1i will always be a re�nement of P0i since P0i is the trivial
partition, by de�nition.

Inductive step. Let n � 2; and suppose that Pn�1i is a re�nement of Pn�2i ; for all agents i:
Consider an agent i; an equivalence class Pni 2 Pni ; and two types ti; t0i 2 Pni : Then, by equation
(2),

bi(ti)(Ei � Pn�1�i) = bi(t
0
i)(Ei � Pn�1�i) for all Ei 2 �i, and all P

n�1
�i 2 Pn�1�i : (12)

As, by the induction assumption, Pn�1j is a re�nement of Pn�2j for all j 6= i; it follows that Pn�1�i
is a re�nement of Pn�2�i : But then, we conclude from (12) that

bi(ti)(Ei � Pn�2�i) = bi(t
0
i)(Ei � Pn�2�i) for all Ei 2 �i, and all P

n�2
�i 2 Pn�2�i ;

which means that ti and t0i belong to the same equivalence class in Pn�1i : So, we have shown that
every two types that are in the same equivalence class of Pni ; are also in the same equivalence
class of Pn�1i : This, however, implies that Pni is a re�nement of Pn�1i ; as was to show. By
induction on n; property (a) follows.

With property (a) at hand, it is easy to prove property (b). By property (a) we know that
for every round n � 1; and every agent i; the partition Pni is a re�nement of Pn�1i : Moreover, for
every �active�round n �where the procedure does not terminate yet �the partition Pni must
be a strict re�nement of Pn�1i for at least one agent i: It may be veri�ed that for every agent i;
the number of successive strict re�nements cannot be larger than the number of types in Ti: As
such, the number of active rounds in the procedure cannot be larger than the number of types
in [i2ITi; which is N: This completes the proof. �

Proof of Theorem 2. We �rst prove (a) by induction on n:

25

Induction start. Consider two types ti; t0i 2 Ti: Suppose �rst that h1i (ti) = h1i (t
0
i): We show

that t0i 2 P1i (ti): For all Ei 2 �i and P 0�i 2 P0�i;

bi(ti)(Ei � P 0�i) = bi(ti)(Ei � T�i) = h1i (ti)(Ei)
= h1i (t

0
i)(Ei) = bi(t

0
i)(Ei � T�i) = bi(t0i)(Ei � P 0�i);

which indeed implies that t0i 2 P1i (ti): Here, the �rst and �fth equality follow from the fact that
P0�i is the trivial partition on T�i; the second and fourth equality follow from the de�nition
of h1i (ti) and hi(t

0
i); respectively, whereas the third equality follows from the assumption that

h1i (ti) = h
1
i (t

0
i).

Assume next that t0i 2 P1i (ti): We show that h1i (ti) = h1i (t0i): For all Ei 2 �i;

h1i (ti)(Ei) = bi(ti)(Ei � T�i) = bi(t0i)(Ei � T�i)
= h1i (t

0
i)(Ei);

which indeed implies that h1i (ti) = h
1
i (t

0
i): Here, the �rst and third equality follow from the de�-

nition of h1i (ti) and h
1
i (t

0
i); respectively, whereas the second equality follows from the assumption

that t0i 2 P1i (ti) and equation (2).
By the two steps above we may conclude that h1i (ti) = h

1
i (t

0
i), if and only if, t

0
i 2 P1i (ti); as

was to show.

Inductive step. Let n � 2; and assume that (a) holds for n� 1 and all agents i: Consider an
agent i and two types ti; t0i 2 Ti: Suppose �rst that hni (ti) = hni (t0i): We show that t0i 2 Pni (ti):

Consider some Pn�1�i 2 Pn�1�i : Take some arbitrary t�i 2 P
n�1
�i and let hn�1�i = hn�1�i (t�i):

By the induction assumption, Pn�1�i contains all type combinations in T�i that induce the same
combination of (n�1)-th order beliefs as t�i: Remember from Section 2.2 that T�i[hn�1�i] denotes
the set of type combinations in T�i that induce hn�1�i : Then, we may conclude that P

n�1
�i =

T�i[h
n�1
�i]: For every Ei 2 �i we then have that

bi(t
0
i)(Ei � Pn�1�i) = bi(t

0
i)(Ei � T�i[hn�1�i]) = h

n
i (t

0
i)(Ei � fhn�1�i g)

= hni (ti)(Ei � fhn�1�i g) = bi(ti)(Ei � T�i[h
n�1
�i]) = bi(ti)(Ei � P

n�1
�i);

which by equation (2) indeed implies that t0i 2 Pni (ti): Here, the �rst and �fth equality follows
from the insight above that Pn�1�i = T�i[h

n�1
�i]; the second and the fourth equality follow from

the de�nition of hni (t
0
i) and h

n
i (ti); whereas the third equality follows from the assumption that

hni (ti) = h
n
i (t

0
i):

Suppose next that t0i 2 Pni (ti): We show that hni (ti) = hni (t0i):
Take some arbitrary combination hn�1�i 2 hn�1�i (T�i) of (n�1)-th order beliefs that is obtained

by at least one type combination in T�i: By the induction assumption, there must be some

26

Pn�1�i 2 Pn�1�i such that Pn�1�i = T�i[h
n�1
�i]: Then, for every Ei 2 �i;

hni (ti)(Ei � fhn�1�i g) = bi(ti)(Ei � T�i[hn�1�i]) = bi(ti)(Ei � P
n�1
�i)

= bi(t
0
i)(Ei � Pn�1�i) = bi(t

0
i)(Ei � T�i[hn�1�i]) = h

n
i (t

0
i)(Ei � fhn�1�i g);

which indeed implies that hni (ti) = h
n
i (t

0
i): Here, the third equality follows from the assumption

that t0i 2 Pni (ti) and equation (2), whereas the other equalities follow exactly as above.
By the two steps above we may thus conclude that hni (ti) = h

n
i (t

0
i); if and only if, t

0
i 2 Pni (ti):

By induction on n; statement (a) follows.

The proof of (b) follows immediately from (a) and property (b) in Theorem 1, which implies
that the procedure terminates after �nitely many rounds. This completes the proof. �

Proof of Theorem 3. Let F = (Fi)i2I be an arbitrary set-valued type morphism from T 1 to
T 2: For every n � 0; let Fn = (Fni)i2I be the set-valued type morphism induced by the partitions
(Pni)i2I generated in round n of the Type Partinioning Procedure. We show, by induction on n;
that Fi is a re�nement of Fni for all agents i and all n � 0:

Induction start. By construction, P0i is the trivial partition of T 1i [T 2i ; and hence Fi is a
re�nement of F 0i ; for all agents i:

Inductive step. Let n � 1; and assume that Fi is a re�nement of Fn�1i for all agents i:
Consider an agent i: We show that Fi is a re�nement of Fni : Hence, we must show that the
partition Pi[Fi] is a re�nement of the partition Pi[Fni]; which requires us to prove that every
equivalence class in Pi[Fi] is a subset of an equivalence class in Pi[Fni]:

Take some equivalence class Pi 2 Pi[Fi]: Then, according to (10) there are two possibilities:
either Pi = F�1i (Fi(t

1
i)) [Fi(t1i) for some t1i 2 T 1i with Fi(t

1
i) 6= ;; or Pi = ftig for some

ti 2 T 1i [T 2i : Clearly, every equivalence class of the second kind is a subset of some equivalence
class in Pi[Fni]:

Now, consider an equivalence class Pi 2 Pi[Fi] of the �rst kind, where Pi = F�1i (Fi(t
1
i)) [

Fi(t
1
i) for some t

1
i 2 T 1i with Fi(t1i) 6= ;: Clearly, t1i 2 F�1i (Fi(t

1
i)); and hence Pi = (Pi[Fi])(t1i):

In order to show that Pi is a subset of some equivalence class in Pi[Fni]; it thus su¢ ces to show
that (Pi[Fi])(t1i) � (Pi[Fni])(t1i):

Take some t̂1i 2 T 1i with t̂1i 2 (Pi[Fi])(t1i); and some t2i 2 T 2i with t2i 2 (Pi[Fi])(t1i): (The
latter is possible since Pi[Fi] \ T 2i = Fi(t1i); which is assumed to be non-empty). We show that
t̂1i ; t

2
i 2 (Pi[Fni])(t1i):
Since Pi = F�1i (Fi(t

1
i)) [Fi(t1i) we conclude that t̂1i 2 F�1i (Fi(t

1
i)) �which means that

Fi(t̂
1
i) = Fi(t

1
i) �and that t

2
i 2 Fi(t1i): As Fi(t̂1i) = Fi(t1i); it follows that t2i 2 Fi(t̂1i) also. Since

F = (Fi)i2I is a set-valued type morphism from T 1 to T 2; it follows by (9) that

b1i (t
1
i)(Ei � F�1�i (F�i(t

1
�i))) = b

2
i (t

2
i)(Ei � F�i(t1�i)) = b1i (t̂1i)(Ei � F�1�i (F�i(t

1
�i))) (13)

27

for all Ei 2 �i and all t1�i 2 T 1�i: As, by our induction assumption, Fj is a of re�nement Fn�1j

for all agents j 6= i; it follows that F�i is a re�nement of Fn�1�i : But then, from (13) we can
conclude that

b1i (t
1
i)(Ei� (Fn�1�i)

�1(Fn�1�i (t
1
�i))) = b

2
i (t

2
i)(Ei�Fn�1�i (t

1
�i)) = b

1
i (t̂

1
i)(Ei� (Fn�1�i)

�1(Fn�1�i (t
1
�i)))

for all Ei 2 �i and all t1�i 2 T 1�i: Since Fn�1�i is the correspondence induced by the partition
Pn�1�i ; the equation above immediately implies that

b1i (t
1
i)(Ei � Pn�1�i) = b

2
i (t

2
i)(Ei � Pn�1�i) = b

1
i (t̂

1
i)(Ei � Pn�1�i)

for all Ei 2 �i and all Pn�1�i 2 Pn�1�i : By equation (2) in the Type Partitioning Procedure, this
means that t̂1i ; t

2
i 2 Pni (t1i). Since Pni (t1i) = (Pi[Fni])(t1i); we conclude that t̂1i ; t2i 2 (Pi[Fni])(t1i);

which was to show.
We have thus shown that (Pi[Fi])(t1i) � (Pi[Fni])(t1i): Since this holds for every t1i 2 T 1i with

Fi(t
1
i) 6= ;; it follows that every equivalence class in Pi[Fi] is a subset of an equivalence class in

Pi[Fni]: Hence, Pi[Fi] is a re�nement of Pi[Fni], which implies that Fi is a re�nement of Fni :
By induction on n we may thus conclude that for all n; the set-valued type morphism

F = (Fi)i2I is a re�nement of Fn = (Fni)i2I : Since F
tpp = FN for some N; it directly follows

that F is a re�nement of F tpp; as was to show. This completes the proof. �

Proof of Theorem 4. Suppose �rst that t1i and t
2
i induce the same belief hierarchy. Then,

by Theorem 2, t2i 2 P1i (t1i); where P1i is the �nal partition of T 1i [T 2i generated by the Type
Partitioning Procedure. Let F tpp = (F tppi)i2I be the set-valued type morphism from T 1 to T 2
induced by these partitions. Then, t2i 2 F

tpp
i (t1i):

Suppose next that there is a set-valued type morphism F = (Fi)i2I from T 1 to T 2 such that
t2i 2 Fi(t1i): By Theorem 3 we know that F is a re�nement of F tpp; and hence, in particular,
t2i 2 F

tpp
i (t1i): This, in turn, means that t

2
i 2 P1i (t1i): By Theorem 2 we may then conclude that

t1i and t
2
i induce the same belief hierarchy. This completes the proof. �

References

[1] Asheim, G.B. (2001), Proper rationalizability in lexicographic beliefs, International Journal
of Game Theory 30, 453�478.

[2] Aumann, R.J. (1976), Agreeing to disagree, Annals of Statistics 4, 1236�1239.

[3] Battigalli, P. and M. Siniscalchi (1999), Hierarchies of conditional beliefs and interactive
epistemology in dynamic games, Journal of Economic Theory 88, 188�230.

[4] Battigalli, P. and M. Siniscalchi (2002), Strong belief and forward induction reasoning,
Journal of Economic Theory 106, 356�391.

28

[5] Ben-Porath, E. (1997), Rationality, Nash equilibrium and backwards induction in perfect-
information games, Review of Economic Studies 64, 23�46.

[6] Bernheim, B.D. (1984), Rationalizable strategic behavior, Econometrica 52, 1007�1028.

[7] Blume, L.E., Brandenburger, A. and E. Dekel (1991a), Lexicographic probabilities and
choice under uncertainty, Econometrica 59, 61�79.

[8] Blume, L.E., Brandenburger, A. and E. Dekel (1991b), Lexicographic probabilities and
equilibrium re�nements, Econometrica 59, 81�98.

[9] Böge, W. and T.H. Eisele (1979), On solutions of bayesian games, International Journal of
Game Theory 8, 193�215.

[10] Brandenburger, A. (2007), The power of paradox: Some recent developments in interactive
epistemology, International Journal of Game Theory 35, 465�492.

[11] Brandenburger, A. and E. Dekel (1987), Rationalizability and correlated equilibria, Econo-
metrica 55, 1391�1402.

[12] Brandenburger, A., Friedenberg, A. and J. Keisler (2008), Admissibility in games, Econo-
metrica 76, 307�352.

[13] Dekel, E. and D. Fudenberg (1990), Rational behavior with payo¤ uncertainty, Journal of
Economic Theory 52, 243�267.

[14] Dekel, E., D. Fudenberg and S. Morris (2007), Interim correlated rationalizability, Theoret-
ical Economics 2, 15�40.

[15] Dekel, E. and M. Siniscalchi (2013), Epistemic game theory, Chapter prepared for Handbook
of Game Theory.

[16] Ely, J.C. and M. P¾eski (2006), Hierrachies of belief and interim rationalizability, Theoretical
Economics 1, 19�65.

[17] Friedenberg, A. and M. Meier (2011), On the relationship between hierarchy and type
morphisms, Economic Theory 46, 377�399.

[18] Harsanyi, J.C. (1962), Bargaining in ignorance of the opponent�s utility function, Journal
of Con�ict Resolution 6, 29�38.

[19] Harsanyi, J.C. (1967�1968), Games with incomplete information played by �bayesian�play-
ers, I�III, Management Science 14, 159�182, 320�334, 486�502.

[20] Heifetz, A. and W. Kets (2013), Robust multiplicity with a grain of naiveté, Working paper.

29

[21] Heifetz, A. and D. Samet (1998), Topology-free typology of beliefs, Journal of Economic
Theory 82, 324�341.

[22] Kets, W. (2010), Bounded reasoning and higher-order uncertainty, Working paper, North-
western University.

[23] Kets, W. (2013), Finite depth of reasoning and equilibrium play in games with incomplete
information, Working paper, Northwestern University.

[24] Kripke, S. (1963), A semantical analysis of modal logic I: Normal modal propositional
calculi, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67�96.

[25] Liu, Q. (2009), On redundant types and Bayesian formulation of incomplete information,
Journal of Economic Theory 144, 2115�2145.

[26] Mertens, J.-F. and S. Zamir (1985), Formulation of bayesian analysis for games with in-
complete information, International Journal of Game Theory 14, 1�29.

[27] Nash, J.F. (1950), Equilibrium points in N -person games, Proceedings of the National
Academy of Sciences of the United States of America 36, 48�49.

[28] Nash, J.F. (1951), Non-cooperative games, Annals of Mathematics 54, 286�295.

[29] Pearce, D. (1984), Rationalizable strategic behavior and the problem of perfection, Econo-
metrica 52, 1029�1050.

[30] Perea, A. (2012), Epistemic Game Theory: Reasoning and Choice, Cambridge University
Press.

[31] Perea, A. (2014), Belief in the opponents�future rationality, Games and Economic Behavior
83, 231�254.

[32] Pintér, M. (2011), Invariance under type morphisms: the Bayesian Nash equilibrium, Work-
ing paper.

[33] Schuhmacher, F. (1999), Proper rationalizability and backward induction, International
Journal of Game Theory 28, 599�615.

[34] Tan, T. and S.R.C. Werlang (1988), The bayesian foundations of solution concepts of games,
Journal of Economic Theory 45, 370�391.

[35] Weinstein, J. and M. Yildiz (2007), Impact of higher-order uncertainty, Games and eco-
nomic Behavior 60, 200�212.

30

