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In this paper, we give a historical overview of the transition from classical game theory
to epistemic game theory. To that purpose we will discuss how important notions such
as reasoning about the opponents, belief hierarchies, common belief, and the concept of
common belief in rationality arose, and gradually entered the game theoretic picture,
thereby giving birth to the field of epistemic game theory. We will also address the
question why it took game theory so long before it finally incorporated the natural
aspect of “reasoning” into its analysis. To answer the latter question we will have a close
look at the earliest results in game theory, and see how they shaped our approach to
game theory for many years to come.
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1. Introduction

An important characteristic of human beings is that they reason before making
a decision. Indeed, before we make a choice we typically think about the possible
consequences, and we look for the choice that yields — at least in our expectation —
the most favorable outcome. This reasoning aspect is even more prominent in game
theoretic situations, in which the consequence of a choice also depends on the choices
made by others. In such situations it is natural to reason about the possible choices

*This paper has been presented at the LOFT conference in Sevilla (2012), and at seminars at
Maastricht University, Corvinus University of Budapest and the Institute for Advanced Studies
in Vienna. I thank all audiences for their feedback. I would also like to thank two reviewers for
their insightful remarks.
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that our opponents may make. And in order to reason our way towards sensible
predictions about the opponents’ choices, it may be helpful to also reason about the
possible desires and beliefs of our opponents. This naturally leads to the emergence
of belief hierarchies which do not only describe what one believes about the others’
choices and desires, but also what one believes about the beliefs that others have
about their opponents’ choices and desires, and so on.

However, it took game theory a very long time before it finally incorporated the
aspect of reasoning into its analysis. The question that we wish to answer is why?

To answer this question we will first have a close look at the earliest results in
game theory, and see how these shaped the classical approach to game theory — an
approach that would set the research agenda for many decades to come. Afterwards
we discuss how important epistemic notions such as belief hierarchies, common
belief, and common belief in rationality, arose and how they slowly but surely
provided an alternative to the classical approach. Our historical investigation starts
and ends with a discussion of Oskar Morgenstern’s view on game theory. He was
one of the first persons to argue for models that explicitly deal with the reasoning
of people about the choices and beliefs of their opponents. In a sense he was way
ahead of his time with these ideas, and it was only many decades later that game
theory really offered what he asked for — an approach in which the reasoning of
people is at center stage. This approach is nowadays known as epistemic game
theory.

While carrying out this historical investigation, I benefitted a lot from Branden-
burger’s (2010) historical overview of the origins of epistemic game theory, especially
for the sections on Morgenstern’s view and the early results in game theory. I am
also grateful to Schwalbe and Walker’s (2001) discussion of Zermelo’s paper, which
provided me with some new insights about Zermelo’s work on chess. The overview
papers on common belief and common knowledge by van Ditmarsch et al. (2009)
and Cubitt and Sugden (2003) have been important for the section on common
belief. Finally, the book by Leonard (2010) has given me some interesting insights
into the lives of John von Neumann and Oskar Morgenstern, and the role they
played in the creation of game theory.

2. Morgenstern’s View

In an important paper from 1935, called “Perfect foresight and economic equilib-
rium”, Oskar Morgenstern already stresses the importance of reasoning and belief
hierarchies for economic analysis. As an illustration, he uses the following story:

“Sherlock Holmes, pursued by his opponent, Moriarity, leaves London for
Dover. The train stops at a station on the way, and he alights there rather
than traveling on to Dover. He has seen Moriarity at the railway station,
recognizes that he is very clever and expects that Moriarity will take a
faster special train in order to catch him in Dover. Holmes’ anticipation
turns out to be correct. But what if Moriarity had been still more clever,
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had estimated Holmes’ mental abilities better and had foreseen his actions
accordingly? Then, obviously, he would have traveled to the intermediate
station. Holmes, again, would have had to calculate that, and he himself
would have decided to go on to Dover. Whereupon, Moriarity would again
have “reacted” differently. ... One may be easily convinced that there lies
an insoluble paradox.” (Morgenstern, 1935)

Indeed, if we assume that both Sherlock Holmes and Moriarity hold correct
beliefs about the opponent’s choice, then no configuration of choices is sustainable.
So, at the end one of the two persons must necessarily hold an inaccurate belief
about the opponent’s choice. Yet, in economic theory up to that time, the traditional
assumption was that all agents do hold correct beliefs about all relevant events,
including the choices of other agents. Morgenstern uses the Sherlock Holmes story
to show that this assumption may not at all be realistic, and should actually be
dropped. Morgenstern writes:

“Assumptions of this kind, which the analysis of equilibrium must make,
are substantially that all persons concerned correctly foresee the relevant
events in the future, and this foresight has to include not only the change in
objective data but also the behavior of all other persons. ... But can equi-
librium really take place with a faulty, heterogenous foresight, however? . ..
From the whole exposition, it follows that the assumption of perfect fore-
sight is to be cut out from economic theory.” (Morgenstern, 1935)

But if the economic model should allow agents to hold incorrect beliefs about
some events, then it also becomes important to describe what an agent believes
about the beliefs of other agents about these events, and so on. That is, belief hier-
archies come into play. Morgenstern already gives a hint how such belief hierarchies
could be constructed:

“The remedy would lie in analogous employment of the so-called Russell
theory of types in logistics. This would mean that on the basis of the
assumed knowledge by the economic subjects of theoretical tenets of Type I,
there can be formulated higher propositions of the theory; thus, at least, of
Type II. On the basis of information about tenets of Type II, propositions
of Type III, at least, may be set up, etc.” (Morgenstern, 1935)

From the above we may conclude that Morgenstern strongly argues in favor
of models in which agents reason about the possible choices and beliefs of other
agents. However, it is precisely this reasoning component that has received very
little attention in game theory until recently. A natural question that arises is
why? 1 think the answer lies in the nature of the first results in game theory, and
how they have shaped our approach to game theory in the decades that followed.
Let us therefore go back one century, and have a close look at these pioneering
works.
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3. Early Days

Zermelo (1913) published a theoretical paper on chess which is generally regarded as
the first contribution to game theory. He was primarily interested in two questions:
(a) Can we give a mathematical definition of a winning position for White? and
(b) Can we determine an upper bound for the number of moves that White needs
to win whenever he is in a winning position? Of course, the same questions can be
posed for Black. As a by-result of this analysis, he showed that every position is
either a winning position for White, or a winning position for Black, or a nonlosing
position for both White and Black. That is, from every position either White can
guarantee a win within finitely many moves, independently of Black’s strategy, or
Black can guarantee a win within finitely many moves, independently of White’s
strategy, or both White and Black can guarantee at least a draw, independently of
the opponent’s strategy. Within game theory, this latter result has become known
as Zermelo’s theorem.

However, contrary to what many game theorists believe (including myself until
recently), Zermelo did not use backward induction of any kind to prove his results
on chess! In fact he could not, as he assumed no stopping rule for chess. That
is, within his model the game of chess could potentially go on forever as long as
no player reaches a win, and therefore there is no place to start the backward
induction procedure from. This confusion probably arose because von Neumann
and Morgenstern (1953), in the third edition of their book, did assume a stopping
rule for chess and did use backward induction to prove Zermelo’s theorem (see
their Secs. 15.6 and 15.7). I think many people assumed that von Neumann and
Morgenstern based their proof on Zermelo’s proof, but that is not true. In fact,
Schwalbe and Walker (2001) already warned us that Zermelo did not use backward
induction, but somehow their warning did not receive the attention it deserved.

Some years later, Borel (1921, 1924, 1927) started to investigate a different
class of recreational games, namely symmetric two-person zero-sum games involving
chance. These are games where (a) the outcome depends both on chance and the
skills of the players, (b) at every outcome the sum of the payoffs among the two
players is zero, and (c) both players can choose from the same set of strategies,
and their roles in the game are identical. Borel starts by iteratedly removing bad
strategies from the game, which are strategies that yield an expected payoff of at
most 0, no matter what the opponent does. So, we first eliminate all bad strategies
for both players in the original game, which possibly yields a reduced game with
fewer strategies. Within that reduced game we again remove all bad strategies for
both players, and so on, until no bad strategies remain.

In Borel (1921) he shows that, if the final reduced game contains exactly three
strategies for each player, then both players have a randomization over strategies
that yields them an expected payoff of exactly zero, no matter what the opponent
does in the reduced game. That is, both players can randomize in such a way that
they are guaranteed to break even in expectation. In Borel (1924) he proves the
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same result for the case where the final reduced game contains exactly five strategies
for both players, whereas in Borel (1927) he conjectures the result to be true also
for the case of seven remaining strategies. In these three works, Borel was the first
to introduce the concept of a randomized, or mized strategy, and to use the idea of
iterated elimination of “unreasonable” strategies — an idea that later would play
a prominent role within epistemic game theory.

Shortly after, von Neumann (1928) generalized Borel’s results to the class of all
two-person zero-sum games, including those that are not symmetric. More precisely,
von Neumann showed that for every two-person zero-sum game, there is a unique
number v such that (a) player 1 has a randomized strategy that guarantees him
an expected payoff of at least v, no matter what player 2 does, and (b) player 2
has a randomized strategy that yields him an expected payoff of at least —v, no
matter what player 1 does. In a symmetric game it is clear that v must be zero, and
hence Borel’s results can be derived from von Neumann’s theorem. The number v
above is called the value of the game, and the strategies for players 1 and 2 that
guarantee them an expected payoff of at least v and —v, respectively, are called
mazxmin strategies for these players. The term mazxmin is chosen because such a
strategy mazimizes the minimum expected payoff that can be achieved by playing
this strategy.

If we look at the results by Zermelo, Borel and von Neumann we see a common
pattern, namely that all these results focus on strategies that guarantee a player
a certain minimum outcome, irrespective of what the opponent does. We call this
the mazxmin approach to games. Note that this approach is basically free of any
reasoning about the opponent, because it is interested in outcomes that can be
guaranteed by a player even if he has no clue about the opponent’s choice. Indeed,
the maxmin-criterion makes no distinction between more reasonable and less rea-
sonable choices by the opponent, but simply looks at the “worst” strategy that
the opponent could choose for you, no matter whether this strategy is plausible
or not.

In 1944, when von Neumann and Morgenstern published their seminal book on
game theory, it was von Neumann’s maxmin approach that dominated the book,
and not Morgenstern’s concern for reasoning and belief hierarchies. Also in the
first decade after the publication of their book it was the maxmin approach that
would set the research agenda in game theory for many years to come. We can only
speculate about the reasons for this phenomenon, but very likely game theory would
have evolved in a rather different direction if Morgenstern’s views on reasoning and
belief hierarchies were more prominently present at that time.

Also Nash’s concept of equilibrium, presented in Nash (1950, 1951), can be seen
as a product of the maxmin approach to games, as it yields precisely von Neumann’s
maxmin strategies when applied to two-person zero-sum games. Its original defi-
nition — stating that a player’s strategy must be optimal given the opponents’
strategies — suggests that players are somehow able to correctly foresee the strate-
gies by their opponents. This makes it hard to place the concept of equilibrium
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within a model of reasoning, because in such models it seems natural to allow
players to have incorrect beliefs about the opponents’ choices.

A more recent interpretation of Nash equilibrium is that the components in a
Nash equilibrium do not represent the choices by the players, but rather the beliefs
that players hold about their opponents’ choices. See, for instance, Aumann and
Brandenburger (1995). But also with this interpretation there is still a problem,
namely that Nash equilibrium assumes that players can somehow correctly foresee
the beliefs that the opponents hold about their opponents’ choices. See Tan and
Werlang (1988), Brandenburger and Dekel (1989), Aumann and Brandenburger
(1995), Polak (1999), Perea (2007) and Bach and Tsakas (2012) for papers that
basically make this point.

Despite these problems, there is probably no concept that has dominated game
theory so strongly, and for such a long period, as Nash equilibrium. Indeed, after its
invention Nash equilibrium has been at the very center of game theoretic research
for many decades. The downside of it all is that the reasoning component did not
really enter the game theory picture during all these decades, despite the early
message by Oskar Morgenstern. In 1953, Maurice Fréchet — when commenting on
the papers by Emile Borel — already points at the absence of this reasoning part
from game theory by saying:

“One can imagine other theories, directed to the same end, that would
take into account, in each individual decision, the presumptions (of the
individual who makes the decision) concerning the decisions of the other
individuals.” (Fréchet, 1953)

Summarizing, we can conclude that the maxmin approach advocated by von
Neumann — to be continued by Nash’s equilibrium approach — have strongly
shaped our view on game theory for many decades, thereby preventing the reasoning
approach from entering the picture during all those years. This, at least to me, is
the reason why it took game theory such a long time to take the reasoning aspect
seriously, and to explicitly incorporate it into its models.

4. Belief Hierarchies: The Type-Based Approach

As we saw, Morgenstern (1935) already stressed the importance of belief hierarchies
for a more realistic economic analysis. Remember that a belief hierarchy does not
only describe the belief a person has about the relevant parameters in the model
and the opponents’ choices, but also the belief he holds about the beliefs his oppo-
nents hold about these objects, and so on. A full description of a belief hierarchy
thus involves infinitely many belief levels, which makes it a complicated construct
to work with from a practical point of view. Morgenstern already gave a verbal
description of how to model such an infinite belief hierarchy — see the third quote
in Sec. 2 — but many years elapsed before a first formal definition of such a belief
hierarchy was given in game theory.
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To the best of my knowledge, the paper by Harsanyi in 1962 is the first to for-
mally define an infinite belief hierarchy, although it does so for a very special setting.
Harsanyi (1962) focuses on bargaining situations between two persons who may face
uncertainty about the opponent’s utility function. He informally introduces a belief
hierarchy as follows:

“In bargaining, and more generally in all nontrivial game situations, the
behavior of a rational individual will depend on what he expects the other
party will do. Party 1 will ask for the best terms he expects party 2 to
accept. But party 1 will know that the terms party 2 will accept in turn
depend on what terms party 2 expects party 1 to accept. Thus, party 1’s
behavior will depend on what may be called his second-order expectations,
i.e., on party 1’s expectations concerning party 2’s expectations about party
1’s behavior. These again will depend on party 1’s third-order expectations,
i.e., on his expectations concerning party 2’s second-order expectations,
etc.” (Harsanyi, 1962)

Later on in that paper, Harsanyi formalizes such belief hierarchies. However,
he restricts to a special type of belief hierarchies that contains nonprobabilistic
beliefs only. That is, player 1 assigns probability 1 to one specific concession point
by player 2, assigns probability 1 to one specific nonprobabilistic estimate that
player 2 can hold about player 1’s concession point, and so on. Here, a concession
point represents the least favorable outcome that a player is willing to accept.

A few years later, Harsanyi (1967-1968) applied the idea of an infinite belief hier-
archy to a much broader setting, namely to analyze the reasoning and behavior of
players in the general class of games with incomplete information. These are games
in which players may have uncertainty about some of the relevant characteristics
of the game, such as the physical outcomes of the game, the opponents’ utility
functions or the opponents’ sets of available choices. However, Harsanyi showed
that each of these three types of uncertainty may eventually be reduced to uncer-
tainty about the opponents’ utility functions alone. Hence, the belief hierarchies
that Harsanyi uses contain the belief that a player has about the opponents’ utility
functions, the belief he has about the opponents’ beliefs about their opponents’
utility functions, and so on, ad infinitum.

A major problem that needs to be tackled in order to put these belief hierar-
chies to work is how to represent such infinite belief hierarchies. Writing these
down ezxplicitly is not really an option, because it would require writing down
infinitely many levels — an impossible task. According to Harsanyi, this problem
has obstructed the research on games with incomplete information in an impor-
tant way:

“It seems to me that the basic reason why the theory of games with incom-
plete information has made so little progress so far lies in the fact that
these games give rise, or at least appear to give rise, to an infinite regress
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in reciprocal expectations on the part of the players.” (Harsanyi, 1967,
Part I)

One of the most beautiful contributions of Harsanyi’s (1967-1968) work is to
show how such infinite belief hierarchies can be encoded in a simple and compact
way. Here is the main idea. Every player ¢ in Harsanyi’s model is characterized by
(a) a utility function a;, and (b) an infinite belief hierarchy b;. Here, we stick to
Harsanyi’s original notation. The pair (a;, b;) is called player ¢’s information vector,
or attribute vector, or type. In fact, Harsany uses all three terms at different places
in the paper, but nowadays we mostly use the term type. The key insight is to see
that a belief hierarchy for player 7 induces a belief about (a) the opponents’ util-
ity functions, and (b) the opponents’ belief hierarchies. Indeed, a belief hierarchy
specifies a belief about the opponents’ utility functions, a belief about the oppo-
nents’ first-order beliefs about their opponents’ utility functions, a belief about the
opponents’ second-order beliefs, and so on. In short, it yields a belief about the
opponents’ utilities and the opponents’ belief hierarchies. Remember that a type
is combination (a;, b;) of player i’s utility function and player i’s belief hierarchy.
Hence, we conclude that every type (a;,b;) of player i specifies a belief about the
opponents’ utility functions and belief hierarchies, and hence specifies a belief about
the opponents’ types!

So, Harsanyi proposes to specify for every player a number of types, and to
specify for every type a utility function and some probabilistic belief about the
opponents’ types. Within this construction we can then derive for every type the
complete infinite belief hierarchy it induces. Harsanyi’s model thereby provides an
extremely simple, yet beautiful, way to encode such complicated objects as infinite
belief hierarchies. This construction turned out to be a milestone in the development
of epistemic game theory, since game theorists could now work with infinite belief
hierarchies in an easy and convenient way, without having to write them down
explicitly.

The original model by Harsanyi has been designed to encode belief hierarchies
that only involve beliefs about the opponents’ utilities, beliefs about these beliefs,
and so on. In subsequent years, Harsanyi’s construction has been extended to allow
for more general belief hierarchies, which also involve beliefs about the opponents’
choices. Pioneering work in this direction has been done by Werner Boge and his
colleagues at the University of Heidelberg in the seventies. In Bbge and Eisele
(1979), for instance, they define the notion of systems of complete reflections in
Definition 2, which is very similar to Harsanyi’s type model. Indeed, the set R in
their definition plays the same role as the set of types in Harsanyi’s construction.
However, the crucial difference is that Boge and Eisele assign to every type not
only a utility function and a probabilistic belief about the opponents’ types — like
Harsanyi does — but also a choice for every such type. Since a type holds a belief
about the opponents’ types, and every opponent’s type is associated with a choice,
a type in Boge and Eisele’s model holds in particular a belief about the opponents’
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choices. By iterating this argument, we see that a type in Boge and Eisele also
holds a belief about the opponents’ beliefs about their opponents’ choices, and so
on. As such, the model by Boge and Eisele is more general than Harsanyi’s original
construction as it allows us to model belief hierarchies about the opponents’ utilities
and choices — not only about the opponents’ utilities. It should be noted, however,
that the way of encoding infinite belief hierarchies in Bége and Eisele is essentially
Harsanyi’s. In that sense, it is quite surprising to see that Bége and Eisele do not
refer to Harsanyi’s work. We do not know the reasons for this. In a related work,
Armbruster and Bége (1979) define the notion of an oracle system in Definition
4.1, which plays exactly the same role as a system of complete reflections in Boge
and Eisele (1979). This paper, contrary to Bége and Eisele (1979), does refer to
Harsanyi’s work.

5. Belief Hierarchies: The State-Based Approach

Next to Harsanyi’s type-based approach there is another prominent model in the lit-
erature that can be used to describe belief hierarchies, namely the state-based model
developed by Kripke (1963) and Aumann (1976). The philosopher and logician
Kripke (1963) presented his model as a semantics for modal logic, which describes
what a person deems possible, what he deems possible about what other people
deem possible, and so on, about some relevant states of affair. The economist and
game theorist Aumann takes a purely set theoretic approach in his model, with-
out any explicit reference to logic. Moreover, Aumann’s model was intended to
model what people know, what they know about what others know, and so on,
about some relevant states of affair. Since knowledge can be viewed as a special
case of Kripke’s “deeming possible” operator, Kripke’s model is a little bit more
general than Aumann’s. This statement has been made precise in Samet (1990),
for instance, who shows that Aumann’s model is obtained from Kripke’s model by
imposing some suitable restrictions on the “deeming possible” operator. We will
come back to this issue below.

The main idea in Kripke and Aumann’s approach is that we model the possible
states of affair by a set of states of the world. Every state of the world describes a
possible way how the states of affair could be, but a player may not know exactly
what the real state of the world is. This uncertainty is modeled as follows: At every
state of the world w, we specify for each player the set of states he deems possible
at w. This set may or may not contain the true state w. In fact, Kripke allows
this set not to contain the true state of the world — and hence the person to be
wrong about the state of affairs — whereas Aumann’s model requires this set to
contain the true state w. More precisely, Samet (1990) shows that if we require the
“deeming possible” operator to satisfy positive introspection, negative introspection
and the truth aziom, then we obtain precisely Aumann’s model. A similar result is
shown in Bacharach (1985) who, unlike Samet, does not explicitly refer to Kripke’s
work.
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Now, if we assume that every player is informed about the above ingredients of
the model — including the “deeming possible” operator for each of the players — we
can derive at every state w, for every player, a complete hierarchy which describes
(a) which states this person deems possible at w, (b) what he deems possible at w
about the sets of states that his opponents deem possible, and so on. Namely, at
w he deems possible some set of states, and at each of these states every opponent
deems possible a certain set of states as well, and hence he holds a certain belief
about the sets of states that his opponents may deem possible. In this way, we can
at every state w derive, for every player i, an infinite hierarchy of beliefs, similarly
to how we derived an infinite belief hierarchy for every type from Harsanyi’s type
based model.

Note, however, that the original models by Kripke and Aumann are non-
probabilistic in nature, as they specify only which states a player deems possi-
ble, without assigning probabilities to these states. But their models can easily be
extended by assigning at every state w, for every player 7, a probability distribution
over the states he deems possible at w. If we do so, then we can derive at every
state an infinite probabilistic belief hierarchy for every player.

Like Harsanyi’s model, also the models by Kripke and Aumann are very flexible
in that they are capable to describe belief hierarchies about basically anything we
want. Suppose, for instance, that we wish to describe belief hierarchies concerning
the players’ wtilities in a game, like Harsanyi did. Then, we can assign to every
state of the world a utility function for every player, just like Harsanyi assigned
a utility function to every type. If we want to model belief hierarchies concerning
the players utilities and choices, then the only thing we have to change is to assign
to every state of the world a utility function and choice for every player. This is
comparable to the type-based model by Boge and Eisele (1979) and Armbruster
and Boge (1979) described above, which also models belief hierarchies concerning
the players utilities and choices, by assigning to every type a utility function and a
choice.

So we see that the type-based model by Harsanyi, and the state-based model by
Kripke and Aumann, are very similar in nature, and the types in Harsanyi’s model
play essentially the same role as the states of the world in Kripke and Aumann’s
model. This statement has been made precise in Brandenburger and Dekel (1993),
Tan and Werlang (1992) and Tsakas (2012) who show that every encoding of a
belief hierarchy in one model can be mimicked by an equivalent encoding in the
other model. In the game theoretic literature both the type-based approach and the
state-based approach have been extensively used, but eventually they do exactly
the same thing — namely to provide an easy and convenient encoding of infinite
belief hierarchies.

To conclude this section we wish to mention that Aumann, in an interview
published in “Epistemic Logic, 5 Questions”, has said that Harsanyi played an
important role in developing his model for representing knowledge (Hendricks and
Roy, 2010).
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6. Common Belief

With the introduction of belief hierarchies it became possible to make formal state-
ments about what a player believes the others will do, about the beliefs that a
player has about the beliefs that others have about what their opponents will do,
and so on. A major task of epistemic game theory is to put some plausible restric-
tions on such belief hierarchies, as to distinguish reasonable from less reasonable
belief hierarchies. Indeed, all concepts in epistemic game theory can be viewed as
a collection of conditions on belief hierarchies, which eventually selects for every
player a family of belief hierarchies he could plausibly hold if he were to reason
in accordance with that concept. Most of these concepts assume common belief,
or common knowledge, of a particular pattern of reasoning about the opponents,
which means that every player reasons in this particular way about his opponents,
every player believes that every player reasons in this way, and so on, ad infinitum.

A prominent example of such a concept is common belief in rationality, which
will be discussed in more detail in the next section. Common belief in rationality
states that every player believes that all of his opponents will choose rationally,
that every player believes that every player believes that all of his opponents will
choose rationally, and so on. Hence, it assumes common belief in the event that
“players believe that their opponents choose rationally”.

In order to define such concepts formally we must first have a precise definition
of what we mean by common belief and common knowledge. It seems that the
sociologist Friedell (1967, 1969) and the philosopher Lewis (1969) were the first
to give a definition of common belief and common knowledge, followed by the
economist and game theorist Aumann (1976). It is interesting to see that the same
idea has been presented by people from three different disciplines. As all three
authors use a rather different approach to common belief and common knowledge,
we will now briefly discuss these approaches separately and see what the main
differences and similarities are.

Friedell works within a syntactic framework of modal logic, and uses the term
“common opinion” rather than “common belief”. For a person A and an event x
he defines Ax to be the event that “A believes z”. For two persons A and B, the
event ABx means that A believes that B believes x. Beliefs of higher order can be
generated in a similar fashion. Friedell then defines the event C'o4 g, meaning that
“r is a matter of common opinion between persons A and B”, by

(o]
Coap = (ﬂ(AﬁB)i> x.
i=1

That is, both A and B believe z, both A and B believe that both A and B believe z,
and so on, ad infinitum. This is what we usually call common belief in the event x.
In his papers, Friedell makes a distinction between belief and knowledge.

A person may believe an event x which is in fact not true, but knowing an event
x implies that z must be true. In this spirit, he defines common knowledge among
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persons A and B of the event = to be the event where (a) = is a matter of common
opinion between persons A and B, and (b) the event x is true.

However, Friedell goes much beyond merely formalizing the notion of common
opinion, as he is also interested in real life situations that could generate common
opinion between two persons of a certain event x. One such situation could be that
person A believes x, and believes that the other person B is in the same cognitive
position as A himself (Friedell, 1969, p. 31). Then, A will also believe that B believes
x. But then, as A expects B to reason in precisely this way about A, person A
will believe that B believes that A believes x. By continuing this argument, we
eventually arrive at the event where there is common opinion between A and B
of z. One could also think of a situation where A and B are in face-to-face contact
and hear from a voice whose authority is not in question that “You both believe x”
(Friedell, 1969, p. 32). This event would also lead to common opinion between A
and B of z. Or, one could imagine a situation where there is eye-contact between A
and B, which leads to common knowledge of the presence of both persons (Friedell,
1969, p. 34).

Similarly to Friedell, also Lewis (1969), in his book Conuvention, is interested
in plausible situations that could generate common knowledge. In fact, Lewis uses
one such situation as his definition for common knowledge! Indeed, stated within
Friedell’s terminology, Lewis’ definition of common knowledge runs as follows: There
is common knowledge between persons A and B of the event x if some other event
y holds such that (1) both A and B have reason to believe that y holds, (2) event
y indicates to A and B that both A and B have reason to believe that y holds, and
(3) event y indicates to both A and B that event z holds (see Lewis, 1969, p. 56).

If this is the case, then by combining (1) and (3) it follows that both A and B
have reason to believe that « holds. Moreover, by combining (1) and (2) we obtain
that both A and B have reason to believe that A and B have reason to believe that
y holds. This, together with (3), implies that A and B have reason to believe that
A and B have reason to believe that x holds. Now, if we apply (2) to itself, then
we conclude that y indicates to A and B that both A and B have reason to believe
that A and B have reason to believe that y holds. This, in combination with (1)
and (3), leads to the conclusion that both A and B have reason to believe that A
and B have reason to believe that A and B have reason to believe that x holds. By
continuing this argument, we see that the conditions (1), (2) and (3) finally lead to
the event where A and B have reason to believe z, A and B have reason to believe
that A and B have reason to believe x, and so on, ad infinitum.

The latter event, that follows from Lewis’ definition of common knowledge,
is similar to what Friedell has called common opinion between A and B of the
event . However, there is one important difference, namely that Lewis talks about
the persons’ reasons to believe, not their real beliefs, whereas Friedell speaks about
the persons’ real beliefs. But apart from this difference, one could argue that Lewis’
definition of common knowledge provides a set of sufficient conditions for Friedell’s
notion of common opinion.
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Unlike Friedell and Lewis, who defined their notions in a syntactic logical frame-
work, Aumann (1976) used a semantical framework to give his definition of common
knowledge. More precisely, Aumann used the Kripke-Aumann structure discussed
in Sec. 5, with a set of possible states of the world describing all the relevant states of
affair that could possibly be. An event corresponds to a set E of states in Aumann’s
model, namely the set of those states where the event is true. Remember that in
a Kripke-Aumann structure, a person A deems at every state w some set of states
possible. Aumann says that at a given state w there is common knowledge of an
event E among two persons A and B, if at w both A and B only deem possible
states in F, if at w both A and B only deem possible states at which A and B only
deem possible states in E, and so on, ad infinitum. This corresponds exactly to
Friedell’s definition of common knowledge. However, in contrast with Friedell and
Lewis, Aumann does not describe situations that would generate common knowl-
edge among a group of persons.

In spite of the differences described above, the three definitions of common belief
(and common knowledge) given in Friedell, Lewis and Aumann all share the same
flavor — they describe situations in which all members of a group believe a certain
event z, all members believe that all members believe z, and so on. This definition
proved to be crucial for the development of concepts in epistemic game theory, as
we shall see in the following section.

7. Common Belief in Rationality

In my opinion, the concept of common belief in rationality really constitutes the
central idea in epistemic game theory. It states that all players in a game believe that
their opponents choose rationally, that all players believe that all players believe
that their opponents choose rationally, and so on, ad infinitum. So, in terms of
common belief as discussed in the previous section, it can be expressed as the
event that (a) players believe that their opponents choose rationally, together with
(b) common belief in the event that “players believe that their opponents choose
rationally”.

This concept thus imposes restrictions on the belief hierarchy of a player in a
game. However, it does not necessarily tell us how a player reasons his way towards
such a belief hierarchy. In that sense, the concept only imposes restrictions on the
output of the reasoning procedure by a player, not necessarily on the reasoning
process itself.

Since most other concepts in epistemic game theory can be seen as some sharp-
ening, or variant, of common belief in rationality, we may indeed say that the
concept of common belief in rationality is the cornerstone of epistemic game the-
ory. See Perea (2012) for a detailed overview of such concepts in epistemic game
theory that are based on the idea of common belief in rationality.

The idea behind common belief in rationality certainly has some intuitive
appeal, and it is therefore not surprising that this idea has been floating around in
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the game theory literature for quite some time — starting from the late sixties —
although it did so in different disguises as we shall see.

Friedell (1969), in his section on economics, already discusses the idea of common
knowledge of rationality in games, although he is not very precise about the notion
of rationality. Moreover, he restricts attention to a very specific setting, namely
that of two-player zero-sum games where both players face uncertainty about the
utilities in the game. But it is the first paper I am aware of that explicitly deals
with the idea of common knowledge (or belief) of rationality.

The first papers to provide a formal definition of common belief in rationality
in a general setting are, to the best of my knowledge, Boge and Eisele (1979) and
Armbruster and Boge (1979). Indeed, it can be shown that the notion of a system
of complete reflections over R' in Boge and Eisele (1979) (see their Definition 2)
corresponds precisely to the idea of common belief in rationality. Similarly for the
concept of an oracle system in Armbruster and Boége (1979) (see their Definition
4.1). Nevertheless, these papers have been largely overlooked in the literature when
it comes to discussing common belief in rationality. The main reason, I believe,
is that the authors use completely different names for the concept, and — even
more importantly — that it is not so easy to deduce that their definitions actually
correspond to common belief in rationality. Let us therefore scrutinize their defini-
tions in some detail, and explain why they represent common belief in rationality
— although in a somewhat different disguise than we are used to. For the sake of
brevity, we restrict our attention to the notion of a system of complete reflections
over R in Boge and Eisele (1979). A similar story could be told for the notion of
an oracle system in Armbruster and Boge (1979).

In Bége and Eisele’s terminology, a system of complete reflections over R!
consists of (a) a set R, representing the set of possible type combinations for the
players (in the sense of Harsanyi), (b) a set R", containing the possible choices and
utility functions for the players, and (c¢) a mapping p that assigns to every type
combination in R a combination of choices and utility functions for the players in
R, and that additionally assigns to every type combination in R, for every player,
a probabilistic belief about the type combinations in R. So, the mapping p assigns
to every type combination r € R, and for every player ¢, some choice ¢;(r), some
utility function wu;(r), and some probabilistic belief b;(r) about the players’ type
combinations. In particular, the belief b;(r) induces a belief for player i about the
opponents’ choices, as every type combination yields a combination of choices for
the opponents.

The key condition that Boge and Eisele impose is that for every type combina-
tion 7, and every player ¢, the induced choice ¢;(r) must be optimal for player 4,
given his induced utility function u;(r), and given his belief about the opponents’
choices induced by b;(r). Let us call this condition (). (This corresponds to their
condition (4) in Definition 2.) If condition (*) holds for every type combination r,
then the construct above is called a system of complete reflections over R*.
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It can now be shown that condition (%) implies that every type in R expresses
common belief in rationality. Take, namely, some type combination r in R and
some player ¢. Then, by construction, player ¢’s type in r only assigns positive
probability to type combinations 7 in R. By condition () we have for every such
type combination 7, and every opponent j, that the induced choice ¢;(#) is optimal
for player j, given his induced utility function u;(7), and given his belief about the
opponents’ choices induced by b; (7). In other words, player i’s type in r only assigns
positive probability to opponents’ types for which the induced choice is optimal,
given his induced utility function and belief. That is, player i’s type in r believes
in his opponents’ rationality. So, we see that at every type combination in R, every
player believes in his opponents’ rationality.

Since at every type combination 7 in R, every player only assigns positive prob-
ability to type combinations that are in R, it follows from our insight above that
at every type combination in R, every player only assigns positive probability to
type combinations where all players believe in their opponents’ rationality. That is,
at every type combination in R, every player believes that his opponents believe
in their opponents’ rationality. By continuing in this fashion, we conclude that at
every type combination in R, every player expresses common belief in rationality.
So, indeed, condition (x) — and hence Boge and Eisele’s definition of a system of
complete reflections over R' — implies common belief in rationality.

The main difficulty, however, is to see that our condition (%) is equivalent to
Boge and Eisele’s condition (4) in their definition of a system of complete reflections
over R'. This is far from easy, and this may have contributed to the fact that the
literature has largely overlooked the paper by Boge and Eisele when it comes to
discussing common belief in rationality.

Boge and Eisele (1979) and Armbruster and Boge (1979) are not only the first
ones to give a formal definition of common belief in rationality, they also provide
in their papers a recursive procedure that yields all choices that the players can
rationally make under common belief in rationality. See Theorem 2 in Boge and
Eisele (1979) and Example 6.2 in Armbruster and Boge (1979). Their procedure
may be summarized as follows: In round 1 we start with the full set of choices for
every player. At every further round k we select those choices for player i that are
optimal for some probabilistic belief on the opponents’ choices that have survived
up to this round. In Theorem 2, Bége and Eisele (1979) prove that this procedure
yields precisely those choices that the players can rationally make under common
belief in rationality.

Some years after Boge and Eisele (1979) and Armbruster and Bége (1979),
the papers by Bernheim (1984) and Pearce (1984) independently developed the
concept of rationalizability which is equivalent to the idea of common belief in
rationality. Perhaps somewhat surprisingly, both Bernheim and Pearce do not refer
to the works by Boge and Eisele (1979) and Armbruster and Boge (1979). Moreover,
both Bernheim and Pearce had a rather different motivation for their concept of
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rationalizability than Boge and Eisele (1979) and Armbruster and Boge (1979), as
they viewed it as a more basic and natural alternative to Nash equilibrium — a
concept they heavily critize in their respective papers. Here are just a few quotes
which illustrate this:

“While analyses of Nash equilibria have unquestionably contributed to our
understanding of economic behavior, it would be unreasonably optimistic
to maintain that Nash “solved” the problem of noncooperative strategic
choice. ... The notion of an equilibrium has little intrinsic appeal within a
strategic context. ... The economist’s predilection for equilibria frequently
arises from the belief that some underlying dynamic process (often sur-
pressed in formal models) moves a system to a point from which it moves
no further. However, where there are no equilibrating forces, equilibrium
in this sense is not a relevant concept.” (Bernheim, 1984)

“... as a criterion for judging a profile of strategies to be “reasonable”
choices for players in a game, the Nash equilibrium property is neither
necessary nor sufficient. ... The standard justifications for considering only
Nash profiles are circular in nature, and make gratuitous assumptions about
players’ decision criteria or beliefs.” (Pearce, 1984)

They then introduce the notion of rationalizability as a constructive answer
to this critique about Nash equilibrium. Although the idea of common belief in
rationality is very much present in their papers, both Bernheim and Pearce do not
formalize this notion explicitly. But some quotes in these papers show that they
really had the idea of common belief in rationality in mind as a motivation for
rationalizability:

“For strategic games in normal form, it is natural to proceed on the basis of
two premises: (1) agents view their opponents’ choices as uncertain events,
and (2) all agents abide by Savage’s axioms of individual rationality, and
this fact is common knowledge (in the sense of Aumann). Rationalizability
is the logical consequence of these two premises.” (Bernheim, 1984)

“The purpose of this section is to develop a solution concept for finite
normal form games, based on three assumptions:

Assumption (A1l): When a player lacks an objective probability distribution
over another player’s choice of strategy, he forms a subjective prior that
does not contradict any of the information at his disposal.

Assumption (A2): Each player maximizes his expected utility relative to
his subjective priors regarding the strategic choices of others.

Assumption (A3): The structure of the game (including all participants’
strategies and payoffs, and the fact that each player satisfies Assumptions
(A1) and (A2)) is common knowledge.” (Pearce, 1984)
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Nevertheless, the definitions that Bernheim and Pearce give for rationalizability
do not explicitly refer to common belief in rationality. In fact, Bernheim and Pearce
both give a different definition of rationalizability, but it can be shown that these
two definitions give rise to the same set of choices for every player, and can thus be
viewed as equivalent.

Of these two definitions for rationalizability, Bernheim’s is perhaps the one that
comes closest to our modern formulation of common belief in rationality, since it
uses belief hierarchies — although in a different way than we are used to today.
His key concept is that of a consistent system of beliefs, which may be defined as
follows.

A system of beliefs ¥ consists of objects (i, 11, .. .,ik, D;, ) where (i,41,...,1) is
a sequence of players, and D;, is a subset of choices for the last player, i, in this
sequence. The interpretation is that i believes that i1 believes that io believes that
... that ix chooses from D;, . We call this a kth-order belief for player i. Moreover,
a system of beliefs ¥ must have the property that for every sequence of players
(4,41, ...,1) there is exactly one subset of choices D;, such that (i,41,...,ix, D;,)
is in X.

Take a kth-order belief (4,41, ... ik, D;,) for player i. For every player j # i,
extend this belief to a (k + 1)th-order belief (¢,41,...,10k, 7, D;). We say that
the kth-order belief (i,41,...,14%, D;,) is justified by the (k + 1)th-order beliefs
(4,91, ...,1k, J,D;) for every player j # iy, if every choice ¢;, in D;, is optimal
for some belief of player i, about the opponents’ choices which, for every opponent
Jj, only assigns positive probability to choices in D;. Bernheim calls a system ¥ of
beliefs consistent, if every kth-order belief in ¥ is justified by (k + 1)th-order beliefs
in 3, for every k.

Now, consider some consistent system of beliefs 3. To say that a 1st-order belief
(1,11, D;,) in X is justified by 2nd-order beliefs (,41,142, D;,) in X, actually means
that player i believes that opponent i; chooses rationally. Namely, player ¢ only
deems possible choices for i1 in D;,, and each of these choices ¢;, in D;, is optimal
for some belief of player i1 that, for each of his opponents is, only assigns positive
probability to choices in D;,. Moreover, every 2nd-order belief (i,i1,12,D;,) in ¥
that was used to justify the lst-order belief (7,41, D;, ), is in turn justified by 3rd-
order beliefs in ¥. By using a similar argument as above, this implies that ¢ also
believes that i; believes that each of his opponents i chooses rationally and so
on. Hence, by continuing in this way, we see that a consistent system of beliefs, in
the sense of Bernheim, actually gives rise to belief hierarchies that express common
belief in rationality.

Bernheim then calls a choice ¢; for player j rationalizable if there is a consistent
system of beliefs ¥, and some belief (4,71,...,%4—1,7, D;) in 3, such that ¢; is in
D;. Actually, Bernheim’s original definition is slightly different, but it can easily be
seen that our definition is equivalent to Bernheim’s.

Pearce (1984) defines rationalizability in a completely different, yet equivalent,
way. He introduces a recursive elimination procedure, which is almost identical to
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the procedure used by Boge and Eisele (1979) and Armbruster and Boge (1979)
(see our discussion above), and calls a choice rationalizable if it survives this pro-
cedure. The only difference with the procedure by Boge and Eisele (1979) and
Armbruster and Boge (1979) is that Pearce assumes that a player’s belief about
the opponents’ choices must be independent across the opponents, in case there are
more than two players, whereas Boge and Eisele (1979) and Armbruster and Boge
(1979) do not impose this independence assumption. This independence condition
is also assumed by Bernheim (1984). If we leave out the independence condition
from rationalizability, then the resulting concept is often called correlated rational-
izability.

So, what Boge and Eisele (1979) actually showed in their Theorem 2 is that the
choices that can rationally be made under common belief in rationality are exactly
the choices that correspond to correlated rationalizability. This also indicates that
Bernheim’s formulation of rationalizability — which basically resembles the idea
of common belief in rationality — is actually equivalent to Pearce’s algorithmic
definition of rationalizability — which corresponds to the recursive procedure by
Boge and Eisele and Armbruster and Boge.

A few years later, Aumann (1987) and Brandenburger and Dekel (1987) provide
foundations for the concepts of correlated equilibrium and correlated rationalizabil-
ity, respectively, by using a notion that is slightly stronger than common belief in
rationality. Both papers model the players’ belief hierarchies about choices through
the state-based model by Kripke and Aumann, as discussed in Sec. 5. To every
state of the world they assign a choice for every player, and a probabilistic belief
for every player about the states he deems possible. The condition they impose
is that at every state of the world w, the choice prescribed for every player must
be optimal, given his belief at w about the opponents’ choices. As a consequence,
at every state a player only deems possible states at which his opponents choose
optimally given their beliefs, only deems possible states at which their opponents
only deem possible states at which their opponents choose optimally, and so on.
That is, the conditions in Aumann (1987) and Brandenburger and Dekel (1987)
imply common belief in rationality. But their conditions are actually a bit stronger
than this, as they require optimality of the players’ choices to hold at every state
in the model, and not only at those states that are relevant for a specific belief
hierarchy of a player. Sometimes this condition is called universal rationality, but
Aumann, Brandenburger and Dekel use it to formalize the idea of common belief
i rationality, which is really what they had in mind.

Around the same time, Tan and Werlang (1988) provide a definition of common
belief in rationality — they actually call it common knowledge of rationality —
by using Harsanyi’s type-based model in Sec. 4. More precisely, they assume for
every player a set of types, and assign to every type a probabilistic belief about the
opponents’ choices and types. In a similar way as explained in Sec. 4, we can then
derive for every type a complete belief hierarchy about the players’ choices.
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Tan and Werlang define the concept of common belief in rationality recursively.
They start by defining for every player i the set K}, which is the set of types
for player 4 which only assign positive probability to opponents’ choice-type pairs
(¢j,t;) where the choice ¢; is optimal for the type ¢;, given the belief that the type t;
holds about the other players’ choices. Intuitively, the set K} contains those types
that believe in the opponents’ rationality. For every m > 2, they recursively define
K" to be set of types for player i that only assign positive probability to opponents’
types t; that are in K}”fl. So, K? contains those types which only assign positive
probability to opponents’ types that believe in their opponents’ rationality. That is,
all types in K? believe that the opponents believe in their opponents’ rationality,
and so on. Finally, common belief in rationality is said to hold at a given type
t; for player i if type t; belongs to K" for all m. Within the literature that uses
Harsanyi’s type-based models, the definition by Tan and Werlang has become the
standard definition of common belief in rationality.

So we see that the literature has offered various different formulations of the
same idea of common belief in rationality, ranging from the definitions of a system
of complete reflections and an oracle system in Boge and Eisele and Armbruster
and Boge, through Bernheim’s consistent system of beliefs to the more standard
definitions by Aumann, Brandenburger and Dekel, and Tan and Werlang. The first
three formulations are often overlooked in the literature, as they are not that easily
recognizable as being representations of common belief in rationality, but this does
not make these contributions less important.

Moreover, the various formulations of common belief in rationality have also
given rise to some of the first theorems in epistemic game theory. As we already
mentioned, Boge and Eisele (1979) showed in their Theorem 2 that the choices
that can rationally be made under their formulation of common belief in rational-
ity are exactly the choices that are given by their recursive elimination procedure.
This is perhaps the first real theorem in epistemic game theory, characterizing the
behavioral consequences of the fundamental epistemic concept of common belief
in rationality. Similar results have been shown in Brandenburger and Dekel (1987)
and Tan and Werlang (1988). Brandenburger and Dekel show, in their Proposition
2.1, that their formulation of common belief in rationality yields precisely those
choices that are correlated rationalizable, which, we have seen, are precisely the
choices that survive the Boge—Eisele recursive procedure. Tan and Werlang addi-
tionally assume independence, and show in their Theorems 5.4 and 5.5 that their
definition of common belief in rationality, together with independence, gives pre-
cisely the original (uncorrelated) rationalizable choices by Bernheim and Pearce.

We may thus conclude that the various definitions of common belief in rational-
ity have been fundamental for the development of epistemic game theory, as they
did not only formalize a natural way of reasoning upon which most other concepts
have been based, but also triggered some of the first theorems in epistemic game
theory.
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8. Morgenstern’s View

Remember from the beginning of our story that Oskar Morgenstern, in the thirties
of the previous century, already asked for models in which players may be wrong in
their beliefs, and in which these players may also hold beliefs about the beliefs of
their opponents. As natural as this idea may be, it took game theory many decades
before it eventually developed, and integrated, such models. But after a very long
and gradual process — in which notions such as belief hierarchies, common belief,
common belief in rationality, and other epistemic notions slowly but surely entered
the game theoretic picture — it seems that Morgenstern’s view has now received
the attention that it deserved. The field that arose from this process — epistemic
game theory — has finally put Morgenstern’s view at the place where it belongs —
right at the center of game theory.

One important contribution of epistemic game theory is that it has estab-
lished solid epistemic foundations for existing game-theoretic solution concepts such
as rationalizability, Nash equilibrium, iterated elimination of weakly dominated
choices, and many other concepts. Indeed, for each of these concepts, authors have
singled out collections of epistemic assumptions that characterize the concept at
hand in the following sense: if a player reasons in accordance with these epistemic
assumptions, then the possible beliefs he can have, or the possible choices he can
make, are precisely those given by the concept.

In my opinion, an important task for epistemic game theory in the future is to
develop new game-theoretic concepts by first presenting new, natural collections of
epistemic assumptions, and subsequently characterize the choices — or beliefs —
that result from these. Some work has already been done in this direction, but there
is still plenty of room for more. In particular, epistemic game theory could help to
develop concepts that rely on elements of bounded rationality, or even irrationality,
as to better accomodate the game-theoretic concepts to the observed behavior of
people in laboratory experiments. The good news is that with epistemic game theory
we finally have the tools that are necessary to successfully tackle these problems.
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