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For dynamic games we consider the idea that a player, at every stage of the game,
will always believe that his opponents will choose rationally in the future. This is the
basis for the concept of common belief in future rationality, which we formalize within an
epistemic model. We present an iterative procedure, backward dominance, that proceeds by
eliminating strategies from the game, based on strict dominance arguments. We show that
the backward dominance procedure selects precisely those strategies that can rationally be
chosen under common belief in future rationality if we would not impose (common belief
in) Bayesian updating.
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1. Introduction

The goal of epistemic game theory is to describe plausible ways in which a player may reason about his opponents before
he makes a decision in a game. In static games, the epistemic program is largely based upon the idea of common belief in
rationality (Tan and Werlang, 1988), which states that a player believes that his opponents choose rationally, believes that
every opponent believes that each of his opponents chooses rationally, and so on.

Extending this idea to dynamic games, however, does not come without problems. One obstacle is that in dynamic games
it may be impossible to require that a player always believes that his opponents have chosen rationally in the past. Consider,
for instance, a two-player game where player 1, at the beginning of the game, can choose between stopping the game and
entering a subgame with player 2. If player 1 stops the game he would receive a utility of 10, whereas entering the subgame
would always give him a lower utility. If player 2 observes that player 1 has entered the subgame, he cannot believe that
player 1 has chosen rationally in the past.1 In particular, it will not be possible in this game to require that player 2 always
believes that player 1 chooses rationally at all points in time. In dynamic games, we are therefore forced to weaken the notion
of belief in the opponent’s rationality. But how?

In this paper we present one such way. We require that a player, under all circumstances, believes that his opponents will
choose rationally now and in the future. So, even if a player observes that an opponent has chosen irrationally in the past, this
should not be a reason to drop his belief in this opponent’s present and future rationality. In order to keep our terminology
short, we refer to this condition as belief in the opponent’s future rationality, so we omit belief in present rationality in this
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phrase. The reader should bear in mind, however, that we always assume belief in the opponent’s present rationality as well.
A first observation is that belief in the opponents’ future rationality is always possible: Even if an opponent has behaved
irrationally in the past, it is always possible to believe that he will choose optimally now and at all future instances.

Belief in the opponents’ future rationality is certainly not the only reasonable condition one can impose on a player’s
beliefs in a dynamic game, but we think it provides a natural and plausible way of reasoning about the opponents. In a
sense, it assumes that the player is completely forward looking – he only reasons about the opponents’ behavior in the future
of the game, and takes the opponents’ past choices for granted without drawing any conclusions from these. A possible
explanation the player could give for unexpected past choices is that his opponents were making mistakes, or misjudging
the situation at hand, but this should, according to the concept of belief in the opponents’ future rationality, not be a reason
to give up the belief that these opponents will choose rationally in the future. This condition can thus be viewed as a typical
backward induction condition, as opposed to forward induction reasoning which assumes that the player, at every stage of the
game, tries to interpret the opponents’ past choices as being part of some rational plan. There is something to say for both
lines of reasoning, but in this paper we focus on the first one.

In this paper, we do not only impose that a player always believes in his opponents’ future rationality, we also require
that a player always believes that every opponent always believes in his opponents’ future rationality, and that he always
believes that every opponent always believes that every other player always believes in his opponents’ future rationality,
and so on. This leads to the concept of common belief in future rationality, which is the central idea in this paper.

As a first step, we lay out a formal epistemic model for finite dynamic games with complete information, and formalize
the notion of common belief in future rationality within this model. This enables us to define precisely which strategies
can be chosen by every player under common belief in future rationality. It turns out that the strategies that can rationally
be chosen under common belief in future rationality are precisely the strategies that survive Penta’s (2009) backwards
rationalizability procedure – a procedure that iteratively eliminates strategies and conditional belief vectors from the game.

We go on by presenting a new iterative procedure – which we call the backward dominance procedure – that solely
eliminates strategies (not conditional belief vectors) from the game, based on strict dominance arguments. The procedure
works as follows: In the first round we eliminate, at every information set, those strategies for player i that are strictly
dominated at a present or future information set for player i. In every further round k we eliminate, at every information
set, those strategies for player i that are strictly dominated at a present or future information set hi for player i, given the
opponents’ strategies that have survived until round k at that information set hi . We continue until we cannot eliminate
anything more. The strategies that eventually survive at the beginning of the game are those that survive the backward
dominance procedure.

We show that the strategies that survive the backward dominance procedure are exactly the strategies that can rationally
be chosen under common belief in future rationality if we would not impose (common belief in) Bayesian updating. In fact,
imposing (common belief in) Bayesian updating can matter for the strategies that can eventually be chosen under common
belief in future rationality. Consequently, the backward dominance procedure will in general select a set of strategies that
contains the strategies that can rationally be chosen under common belief in future rationality, but it can actually contain
more. In that sense, the backward dominance procedure can be used as a first selection towards the precise set of strate-
gies that corresponds to common belief in future rationality. This is an important result, since the backward dominance
procedure is particularly easy to use.

If we apply the backwards rationalizability procedure – or even the backward dominance procedure – to games with
perfect information, then we obtain precisely the well-known backward induction procedure. As a consequence, applying
common belief in future rationality to games with perfect information leads to backward induction.

The idea of (common) belief in the opponents’ future rationality is not entirely new. For games with perfect information,
some variants of it have served as an epistemic foundation for backward induction. See, for instance, Asheim (2002), Baltag
et al. (2009), Feinberg (2005) and Samet (1996). In fact, the condition of “stable belief in dynamic rationality” in Baltag
et al. (2009) matches exactly our definition of belief in the opponents’ future rationality, although they restrict to a non-
probabilistic framework. The reader may consult Perea (2007) for a detailed overview of the various epistemic foundations
that have been offered for backward induction in the literature.

For general dynamic games, belief in the opponents’ future rationality is implicitly present in “backward induction con-
cepts” such as sequential equilibrium (Kreps and Wilson, 1982) and sequential rationalizability (Dekel et al., 1999, 2002 and
Asheim and Perea, 2005). In fact, we show in Section 7 that sequential equilibrium and sequential rationalizability are both
more restrictive than common belief in future rationality.

Now, why should we be interested in common belief in future rationality as a concept if it is already implied by sequen-
tial equilibrium and sequential rationalizability? We believe there are several important reasons.

First, the concept of common belief in future rationality is based upon very elementary decision theoretic and epistemic
conditions, namely that players should always believe that their opponents will choose rationally in the remainder of the
game, and that there is common belief throughout the game in this event. No other conditions, besides (common belief
in) Bayesian updating, are imposed. In particular, we impose no equilibrium conditions as in sequential equilibrium. So, in
this sense, common belief in future rationality constitutes a very basic concept. Compared to sequential rationalizability,
the concept of common belief in future rationality is very explicit about the epistemic assumptions being made. In the
formulation of sequential rationalizability, the epistemic conditions imposed are somewhat more hidden in the various
ingredients of its definition.
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Second, the concept of sequential equilibrium may rule out reasonable choices in some games, precisely because it im-
poses equilibrium conditions which are hard to justify if the game is played only once, and the players cannot communicate
before the game. See Bernheim (1984) for an early and similar critique to Nash equilibrium.

Finally, we provide some iterative procedures that support the concept of common belief in future rationality, making
the concept attractive also from a practical point of view. In general, sequential equilibrium strategies are much harder to
compute.

In Section 7 we also compare our notion with the concept of extensive form rationalizability (Pearce, 1984; Battigalli,
1997; Battigalli and Siniscalchi, 2002) and find that, in terms of strategy choices, there is no general logical relationship
between the two. In fact, there are games where both notions provide a unique, but different, strategy choice for a player.
However, in terms of outcomes that can be reached, extensive form rationalizability is more restrictive than common belief
in future rationality. Namely, every outcome that can be reached under extensive form rationalizability can also be reached
under common belief in future rationality, but not vice versa. The reader is referred to Chapter 9 in Perea (2012) for a
formal statement and proof of this result. Moreover, in Section 7 we compare our backward dominance procedure with
the iterated conditional dominance procedure (Shimoji and Watson, 1998), which characterizes extensive form rationalizability.
Both algorithms are similar in spirit, as they proceed by successively eliminating strategies at every information set in the
game. However, the criteria that are used to eliminate a strategy at a given information set are different in both procedures.
In Section 7 we precisely describe the differences and similarities between the two procedures.

The outline of this paper is as follows. In Section 2 we give some basic definitions and introduce an epistemic model for
dynamic games. In Section 3 we formalize the idea of common belief in future rationality within this epistemic model. In
Section 4 we present Penta’s (2009) backwards rationalizability procedure, and show that it yields precisely those strategies
that can rationally be chosen under common belief in future rationality. In Section 5 we introduce the backward dominance
procedure, and show that the procedure selects exactly those strategies that can rationally be chosen under common belief
in future rationality if we would not impose (common belief in) Bayesian updating. In Section 6 we discuss some important
properties of the concept of common belief in future rationality and the associated procedures. In Section 7 we explore the
relation between common belief in future rationality and other concepts for dynamic games such as sequential rationaliz-
ability and extensive form rationalizability. In Section 8 we discuss possible lines for future research. Section 9 contains all
the proofs.

2. Model

In this section we formally present the class of dynamic games we consider, and explain how to build an epistemic
model for such dynamic games.

2.1. Dynamic games

In this paper we restrict attention to dynamic games with complete information, in which the players’ utility functions
are transparent to everyone. By I we denote the set of players, by X the set of non-terminal histories (or nodes) and by Z
the set of terminal histories. By ∅ we denote the beginning (or root) of the game. For every player i, we denote by Hi the
collection of information sets for that player. Every information set hi ∈ Hi consists of a set of non-terminal histories. At
every information set hi ∈ Hi , we denote by Ci(hi) the set of choices (or actions) for player i at hi . We assume that all sets
mentioned above are finite, and hence we restrict to finite dynamic games in this paper. Finally, for every terminal history z
and player i, we denote by ui(z) the utility for player i at z. As usual, we assume that there is perfect recall, meaning that a
player never forgets what he previously did, and what he previously knew about the opponents’ past choices.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for non-terminal histories at which
several players make a choice. Formally, this means that for some non-terminal histories x there may be different players i
and j, and information sets hi ∈ Hi and h j ∈ H j , such that x ∈ hi and x ∈ h j . In this case, we say that the information sets
hi and h j are simultaneous. Explicitly allowing for simultaneous moves is important in this paper, especially for describing
the concept of common belief in future rationality.

Say that an information set h follows some other information set h′ if there are histories x ∈ h and y ∈ h′ such that y is
on the unique path from the root to x. Finally, we say that information set h weakly follows h′ if either h follows h′ , or h
and h′ are simultaneous. We write h � h′ to denote that h weakly follows h′ .

We assume, throughout this paper, that there is an unambiguous ordering of the information sets in the game. That is, if
information set h follows information set h′ , then h′ does not follow h. Or, equivalently, there cannot be histories x, y ∈ h,
and histories x′, y′ ∈ h′ such that x is on the path from the root to x′ , and y′ is on the path from the root to y. This will be
important for the concept of common belief in future rationality that we will develop.

To illustrate the concepts defined above, let us have a look at the example in Fig. 1. At the beginning of the game, ∅,
player 1 chooses between a and b, and player 2 simultaneously chooses between c and d. So, ∅ is an information set that
belongs to both players 1 and 2. If player 1 chooses b, the game ends, and the utilities are as depicted. If he chooses a,
then the game moves to information set h2.1 or information set h2.2, depending on whether player 2 has chosen c or d.
Player 1, however, does not know whether player 2 has chosen c or d, so player 1 faces information set h1 after choosing a.
Hence, h2.1 and h2.2 are information sets that belong only to player 2, whereas h1 is an information set that belongs only
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Fig. 1. Example of a dynamic game.

to player 1. Note that information sets h1,h2.1 and h2.2 follow ∅, and that player 2’s information sets h2.1 and h2.2 are
simultaneous with player 1’s information set h1. At h1,h2.1 and h2.2, players 1 and 2 simultaneously make a choice, after
which the game ends.

2.2. Strategies

A strategy for player i is a complete choice plan, prescribing a choice at each of his information sets that can possibly be
reached by this choice plan. Formally, for every hi,h′

i ∈ Hi such that hi precedes h′
i , let ci(hi,h′

i) be the choice at hi for player

i that leads to h′
i . Note that ci(hi,h′

i) is unique by perfect recall. Consider a subset Ĥi ⊆ Hi , not necessarily containing all

information sets for player i, and a function si that assigns to every hi ∈ Ĥi some choice si(hi) ∈ Ci(hi). We say that si allows
an information set hi ∈ Hi if at every h′

i ∈ Ĥi preceding hi we have that si(h′
i) = ci(h′

i,hi). By Hi(si) we denote the collection

of player i information sets that si allows for. A strategy for player i is a function si , assigning to every hi ∈ Ĥi ⊆ Hi some
choice si(hi) ∈ Ci(hi), such that Ĥi = Hi(si). By Si we denote the set of strategies for player i.

Note that this definition slightly differs from the standard definition of a strategy in the literature. Usually, a strategy
for player i is defined as a mapping that assigns to every information set hi ∈ Hi some available choice – also to those
information sets hi that cannot be reached by si . The definition of a strategy we use corresponds to what Rubinstein (1991)
calls a plan of action. One can also interpret it as the equivalence class of strategies (in the classical sense) that are outcome-
equivalent. Hence, taking for every player the set of strategies as we use it corresponds to considering the pure strategy
reduced normal form. However, for the concepts and results in this paper it does not matter which notion of strategy we use.

The following definitions will be especially important for what we do in this paper.

Definition 2.1 (Strategies that allow an information set). Consider an information set h. Then, we define the following sets:

S(h) =
{
(si)i∈I ∈

∏
i∈I

Si: (si)i∈I reaches some history in h
}
,

Si(h) = {
si ∈ Si: (si, s−i) ∈ S(h) for some s−i ∈ S−i

}
,

S−i(h) = {
s−i ∈ S−i: (si, s−i) ∈ S(h) for some si ∈ Si

}
.

Here, by S−i we denote the set
∏

j �=i S j of opponents’ strategy combinations. We say that strategies in Si(h), and strategy
combinations in S−i(h), allow the information set h. By perfect recall we have that S(hi) = Si(hi) × S−i(hi) for every player i
and every information set hi ∈ Hi .

In the game of Fig. 1, the strategies for player 1 are (a, e), (a, f ) and b, whereas the strategies for player 2 are
(c, g), (c,h), (d, i) and (d, j). Note that within our terminology, b is a complete strategy for player 1 as player 1, by choos-
ing b, will make sure that his subsequent information set h1 cannot be reached, and hence we do not have to specify what
player 1 would do if h1 would be reached. Note also that player 1 cannot make his choice dependent on whether h2.1 or
h2.2 is reached, since these are information sets for player 2 only, and player 1 does not know which of these information
sets is reached. As such, (a, e) is a complete strategy for player 1. For player 2, (c, g) is a complete strategy as by choosing c
player 2 will make sure that h2.2 cannot be reached, and hence we do not have to specify what player 2 would do if h2.2
would be reached. Similarly for his other three strategies.
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Table 1
An epistemic model for the game in Fig. 1.

Types T1 = {t1, t′
1}, T2 = {t2}

Beliefs for player 1 b1(t1,∅) = ((c,h), t2)

b1(t1,h1) = ((c,h), t2)

b1(t′
1,∅) = ((d, i), t2)

b1(t′
1,h1) = ((d, i), t2)

Beliefs for player 2 b2(t2,∅) = (b, t1)

b2(t2,h2.1) = ((a, f ), t′
1)

b2(t2,h2.2) = ((a, f ), t′
1)

In this example, the sets of strategies that allow the various information sets are as follows:

S1(∅) = S1, S2(∅) = S2,

S1(h1) = S1(h2.1) = S1(h2.2) = {
(a, e), (a, f )

}
,

S2(h1) = S2, S2(h2.1) = {
(c, g), (c,h)

}
, S2(h2.2) = {

(d, i), (d, j)
}
.

2.3. Epistemic model

We now wish to model the players’ beliefs in the game. At every information set hi ∈ Hi , player i holds a belief about
(a) the opponents’ strategy choices, (b) the beliefs that the opponents have, at their information sets, about the other players’
strategy choices, (c) the beliefs that the opponents have, at their information sets, about the beliefs their opponents have,
at their information sets, about the other players’ strategy choices, and so on. A possible way to represent such conditional
belief hierarchies is as follows.

Definition 2.2 (Epistemic model). Consider a dynamic game Γ . An epistemic model for Γ is a tuple M = (Ti,bi)i∈I where

(a) Ti is the finite set of types for player i,
(b) bi is a function that assigns to every type ti ∈ Ti , and every information set hi ∈ Hi , a probability distribution bi(ti,hi) ∈

�(S−i(hi) × T−i).

Recall that S−i(hi) represents the set of opponents’ strategy combinations that allow hi . By T−i := ∏
j �=i T j we denote

the set of opponents’ type combinations. For every finite set X , we denote by �(X) the set of probability distributions on X .
So, at every information set hi ∈ Hi type ti holds a conditional probabilistic belief bi(ti,hi) about the opponents’ strate-

gies and types. In particular, type ti holds conditional beliefs about the opponents’ strategies. As every opponent’s type
holds conditional beliefs about the other players’ strategies, every type ti holds at every hi ∈ Hi also a conditional belief
about the opponents’ conditional beliefs about the other players’ strategy choices. And so on. Since a type may hold dif-
ferent beliefs at different histories, a type may, during the game, revise his belief about the opponents’ strategies, but also
about the opponents’ conditional beliefs.

For a given type ti within an epistemic model, we can derive the complete belief hierarchy it induces. As an illustration,
consider the epistemic model in Table 1, which is an epistemic model for the game in Fig. 1. So, we consider two possible
types for player 1, t1 and t′

1, and one possible type for player 2, t2. Player 2’s type t2 believes at the beginning of the game
that player 1 chooses b and is of type t1, whereas at h2.1 and h2.2 this type believes that player 1 chooses strategy (a, f )
and is of type t′

1. In particular, type t2 revises his belief about player 1’s strategy choice if the game moves from ∅ to h2.1
or h2.2. Note that player 1’s type t1 believes that player 2 chooses strategy (c,h), whereas his other type t′

1 believes that
player 2 chooses strategy (d, i). So, type t2 believes at ∅ that player 1 believes that player 2 chooses (c,h), whereas t2
believes at h2.1 and h2.2 that player 1 believes that player 2 chooses (d, i). Hence, player 2’s type t2 also revises his belief
about player 1’s belief if the game moves from ∅ to h2.1 or h2.2. By continuing in this fashion, we can derive the full belief
hierarchy for type t2. Similarly for the other types in this model.

Note that in our definition of an epistemic model, we restrict attention to models with finitely many types. The reason is
that it suffices for the things we want to do in this paper.

3. Belief in the opponents’ future rationality

We now present the main idea in this paper, namely that a player always believes that his opponents will choose
rationally now and in the future. We first define what it means for a strategy si to be optimal for a type ti at a given
information set h. Consider a type ti , a strategy si and an information set hi ∈ Hi(si) that is allowed by si . By ui(si, ti | hi)

we denote the expected utility from choosing si under the conditional belief that ti holds at hi about the opponents’ strategy
choices.
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Definition 3.1 (Optimality at a given information set). Consider a type ti , a strategy si and a history hi ∈ Hi(si). Strategy si is
optimal for type ti at hi if ui(si, ti | hi) � ui(s′

i, ti | hi) for all s′
i ∈ Si(hi).

Remember that Si(hi) is the set of player i strategies that allow hi . We can now define belief in the opponents’ future
rationality.

Definition 3.2 (Belief in the opponents’ future rationality). Consider a type ti , an information set hi ∈ Hi , and an opponent j �= i.
Type ti believes at hi in j’s future rationality if bi(ti,hi) only assigns positive probability to j’s strategy-type pairs (s j, t j)

where s j is optimal for t j at every h′
j ∈ H j(s j) that weakly follows hi . Type ti believes in the opponents’ future rationality

if at every hi ∈ Hi , type ti believes in every opponent’s future rationality.

So, to be precise, a type that believes in the opponents’ future rationality believes that every opponent chooses rationally
now (if the opponent makes a choice at a simultaneous information set), and at every information set that follows. As such,
the correct terminology would be “belief in the opponents’ present and future rationality”, but we stick to “belief in the
opponents’ future rationality” as to keep the name short.

In the epistemic model of Table 1, it may be verified that the type t1 for player 1, and the type t2 for player 2, believe
in the opponent’s future rationality. For instance, type t1 believes at ∅ and h1 that player 2 chooses strategy (c,h) and is of
type t2. On the other hand, type t2 believes at ∅ that player 1 chooses b, and believes at h2.1 that player 1 chooses (a, f ).
So, strategy (c,h) is optimal for t2 at ∅, and is also optimal for t2 at h2.1. As such, t1 believes at ∅ and h1 in player 2’s
future rationality. Similarly, it can be verified that player 2’s type t2 believes in 1’s future rationality.

However, player 1’s type t′
1 does not believe in 2’s future rationality, as type t′

1 believes at ∅ that player 2 chooses
strategy (d, i) and is of type t2, whereas strategy (d, i) is clearly not optimal for t2 at ∅.

Another condition we impose is that a type uses Bayesian updating when revising his belief about the opponent’s
strategy and type, whenever this is possible. It is well-known that with this requirement, a player can always construct
a strategy that is optimal at each of his information sets – something that is not generally possible if we do not impose
Bayesian updating. Moreover, under Bayesian updating such an optimal strategy can be designed by recursively selecting
optimal choices at all information sets, starting at the final information sets of this player and then working backwards until
his first information sets are reached. This result is often referred to as the one-deviation principle (see Hendon et al., 1996
and Perea, 2002). Formally, Bayesian updating is defined as follows.

Definition 3.3 (Bayesian updating). A type ti satisfies Bayesian updating if for every two informations sets hi,h′
i ∈ Hi where h′

i
follows hi , and bi(ti,hi)(S−i(h′

i) × T−i) > 0, it holds that

bi
(
ti,h′

i

)
(s−i, t−i) = bi(ti,hi)(s−i, t−i)

bi(ti,hi)(S−i(h′
i) × T−i)

for every opponents’ strategy–type combination (s−i, t−i) ∈ S−i(h′
i) × T−i .

Here, S−i(h′
i) denotes the set of opponents’ strategy combinations that allow h′

i , and T−i denotes the set of opponents’
type combinations. By bi(ti,hi)(S−i(h′

i) × T−i) we denote the total probability that the conditional belief bi(ti,hi) assigns to
all opponents’ strategy–type combinations in S−i(h′) × T−i .

Next, we formalize the requirement that a player not only believes in the opponents’ future rationality and satisfies
Bayes updating, but also always believes that every opponent does so, and so on. This leads to the definition of common
belief in future rationality. We proceed by recursively defining sets of types T k

i for all k ∈ N.

Definition 3.4 (Common belief in future rationality). Consider a dynamic game Γ and some epistemic model M = (Ti,bi)i∈I
for Γ .

Initial step. Define for every player i the set of types

T 1
i := {ti ∈ Ti: ti believes in the opponents’ future rationality and satisfies Bayesian updating}.

Inductive step. Let k � 2, and suppose that T k−1
i has been defined for all players i. Then, we define

T k
i := {

ti ∈ T k−1
i : bi(ti,hi)

(
S−i × T k−1

−i

) = 1 for all hi ∈ Hi
}
.

A type ti expresses common belief in future rationality if ti ∈ T k
i for every k.

Here, T k−1
−i := ∏

j �=i T k−1
j . So, a type in T 2

i always believes that his opponents’ believe in their opponents’ future rational-

ity and that his opponents satisfy Bayesian updating. A type in T 3
i always believes, in addition, that his opponents reason

in this way as well, and so on. We say that types in T k express k-fold belief in future rationality.
i
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In the epistemic model of Table 1, no type expresses common belief in future rationality. Namely, type t′
1 does not

believe in 2’s future rationality as we have seen. As player 2’s type t2 believes at h2.1 and h2.2 that player 1 is of type t′
1,

type t2 does not express 2-fold belief in future rationality. Type t1 believes that player 2 is of type t2, and hence does not
express 3-fold belief in future rationality. We may thus conclude that no type in that model expresses common belief in
future rationality.

Finally, we define those strategies that can rationally be chosen under common belief in future rationality. Before doing
so, we first state what it means for a strategy to be rational for a type.

Definition 3.5 (Rational strategy). A strategy si is rational for a type ti if si is optimal for ti at every hi ∈ Hi(si).

In the literature, this is often called sequential rationality. A strategy should thus be optimal at every information set that
is allowed by this strategy, given the conditional belief that is held at that information set.

Definition 3.6 (Rational strategy under common belief in future rationality). A strategy si can rationally be chosen under common
belief in future rationality if there is some epistemic model M = (Ti,bi)i∈I , and some type ti ∈ Ti , such that ti expresses
common belief in future rationality, and si is rational for ti .

In other words, a strategy can rationally be chosen under common belief in future rationality if there is some type
expressing common belief in future rationality that supports this strategy choice.

4. Penta’s backwards rationalizability procedure

We will now provide a recursive procedure that yields precisely those strategies – and conditional beliefs about the
opponents’ strategies – that are possible under common belief in future rationality. The procedure is due to Penta (2009) who
calls it the backwards rationalizability procedure.

4.1. Description of the procedure

To formally define the backwards rationalizability procedure we first introduce the notion of a conditional belief vector,
and define what it means for a conditional belief vector to satisfy Bayesian updating.

Definition 4.1 (Conditional belief vector). A conditional belief vector for player i is a vector bi = (bi(hi))hi∈Hi that assigns
to every information set hi ∈ Hi a probabilistic belief bi(hi) ∈ �(S−i(hi)) about the opponents’ strategy combinations that
allow hi .

The conditional belief vector bi = (bi(hi))hi∈Hi satisfies Bayesian updating if for every two informations sets hi,h′
i ∈ Hi

where h′
i follows hi , and bi(hi)(S−i(h′

i)) > 0, it holds that

bi
(
h′

i

)
(s−i) = bi(hi)(s−i)

bi(hi)(S−i(h′
i))

for every opponents’ strategy combination s−i ∈ S−i(h′
i).

Let us denote by Bi the set of all conditional belief vectors for player i in the game Γ . Penta’s recursive procedure
eliminates at every step some strategies and conditional belief vectors from the game, and is formally defined as fol-
lows.

Algorithm 4.2 (Penta’s backwards rationalizability procedure).

Initial step. For every player i and all information sets h ∈ H define

S0
i (h) := Si(h),

B0
i := {bi ∈ Bi: bi satisfies Bayesian updating}.

Inductive step. Let k � 1, and suppose that Sk−1
i (h) and Bk−1

i have been defined for all players i, and all h ∈ H. Then, we define for all
players i and all information sets h ∈ H

Sk
i (h) := {

si ∈ Sk−1
i (h): there is some bi ∈ Bk−1

i such that si is optimal for bi
(
h′

i

)
at every h′

i � h with h′
i ∈ Hi(si)

}
,

Bk
i := {

bi ∈ Bk−1
i : bi(hi) ∈ �

(
Sk

−i(hi)
)

for all hi ∈ Hi
}
.

A strategy si is said to survive the backwards rationalizability procedure if si ∈ Sk(∅) for every k.
i
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Fig. 2. Illustration of the two procedures.

Here, we denote by H the collection of all information sets in the game. Remember that h′
i � h means that h′

i weakly
follows h. So, in the backwards rationalizability procedure we need to keep track of the players’ possible conditional belief
vectors at every stage of the process, and not only of the possible strategies at the various information sets. Since the game
Γ is finite, it may easily be verified that this procedure will stop after finitely many rounds.

Penta (2009) uses this procedure also for games with incomplete information, and applies it to problems of mechanism
design and implementation. Hence, he uses it for a much wider range of situations than we do here in this paper. Moreover,
Penta shows that the backwards rationalizability procedure characterizes the epistemic concept of interim perfect equilibrium
across models of beliefs.

4.2. Illustration of the procedure

We will now illustrate the backwards rationalizability procedure by means of an example. Consider the game in Fig. 2.
So, at the beginning of the game, ∅, only player 1 is active. He can choose between a and b. If he chooses b, the game ends
and the utilities are 4 and 0 for the players. If he chooses a, then we reach information set h1 at which players 1 and 2
choose simultaneously. At h1, player 1 is the row player, and player 2 the column player.

There are two information sets in this game, ∅ and h1. Clearly, strategy (a,d) cannot be optimal for player 1 at ∅ for any
conditional belief, whereas h cannot be optimal for player 2 at h1 for any conditional belief. However, (a,d) can be optimal
for player 1 at h1 for some conditional belief. So, we have that

S1
1(∅) = {

(a, c), (a, e),b
}
,

S1
1(h1) = {

(a, c), (a,d), (a, e)
}
,

S1
2(∅) = { f , g},

S1
2(h1) = { f , g}.

As a consequence,

B1
1 = {

b1 ∈ B0
1: b1(∅) ∈ �

({ f , g}) and b1(h1) ∈ �
({ f , g})},

B1
2 = B0

2.

After this step, strategy (a, e) cannot be optimal at ∅ – nor at h1 – for any conditional belief vector in B1
1. So, we have that

S2
1(∅) = {

(a, c),b
}
,

S2
1(h1) = {

(a, c), (a,d)
}
,

S2
2(∅) = { f , g},

S2
2(h1) = { f , g}.

As a consequence,

B2
1 = B1

1,

B2
2 = {

b2 ∈ B0
2: b2(h1) ∈ �

({
(a, c), (a,d)

})}
.

After this step the procedure stops, as no further strategies or beliefs can be eliminated. We thus conclude that the strategies
which survive the backwards rationalizability procedure are (a, c) and b for player 1, and f and g for player 2. It may be
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verified that these are precisely the strategies that players 1 and 2 can rationally choose under common belief in future
rationality.

Note that the concept of sequential equilibrium singles out the strategy b for player 1. Namely, in the subgame at h1
the only Nash equilibrium is ( 1

2 c + 1
2 d, 3

4 f + 1
4 g). Hence, in a sequential equilibrium, player 1 must believe that, with

probability 3
4 , player 2 will choose f and with probability 1

4 he will choose g . As such, player 1’s expected utility from
choosing a at the beginning will be 11/4 < 4, and therefore player 1 must choose b.

But why should player 1 exactly attribute the probabilities 3
4 and 1

4 to the strategies f and g? The fact that player 1
may assign a positive probability to g indicates that apparently g is a reasonable choice for player 2. But why could player 1
then not assign probability 1 to g , and choose (a, c) as a best response to that?

Common belief in future rationality allows player 1 to choose strategy (a, c), because under this concept he may indeed
believe that player 2 will choose g with probability 1. So, in this example sequential equilibrium is really more restrictive
than common belief in future rationality. In fact, we believe that sequential equilibrium is too restrictive in this example.

4.3. Characterization result

The following theorem shows that the backwards rationalizability procedure yields precisely those strategies that can
rationally be chosen under common belief in future rationality.

Theorem 4.3 (Strategies selected by backwards rationalizability procedure). A strategy si can rationally be chosen under common
belief in future rationality, if and only if, si survives the backwards rationalizability procedure.

The proof is very similar to the proof of Theorem 5.4 which we will present in the following section, and is therefore
omitted.

5. Backward dominance procedure

We will now provide a recursive procedure, called the backward dominance procedure, that proceeds by eliminating strate-
gies only – not beliefs – and where strategies are removed based on strict dominance arguments. In that sense, the algorithm
is similar to the iterated conditional dominance procedure by Shimoji and Watson (1998) which characterizes those strategies
that are possible under extensive-form rationalizability (Pearce, 1984; Battigalli, 1997). Since Battigalli and Siniscalchi (2002)
prove that the strategies that can rationally be chosen under the epistemic concept of common strong belief in rationality are
precisely the extensive-form rationalizable strategies, the iterated conditional dominance procedure also selects precisely
those strategies that players can rationally choose under common strong belief in rationality.

Later on in this section we will prove that every strategy that can rationally be chosen under common belief in future ra-
tionality will always survive the backward dominance procedure, but not necessarily vice versa. So, the backward dominance
procedure always gives a superset of the set of strategies that are possible under common belief in future rationality. Con-
sequently, we can use the backward dominance procedure as a first selection procedure to find those strategies that players
can choose under common belief in future rationality.

In fact, the only difference between the backward dominance procedure and common belief in future rationality is that
the former allows for conditional beliefs that violate Bayesian updating, whereas the latter does not. More precisely, we
will prove that the backward dominance procedure yields precisely those strategies that are possible if we would impose
common belief in future rationality, but without the Bayesian updating requirement. In many games, this difference has no
effect on the possible strategies that players can choose under common belief in future rationality, but there are games
where this difference is important – as we will see.

5.1. Description of the procedure

In order to formally state our algorithm we need the following definitions. For a given information set h let S(h) be
the set of all strategy combinations s = (si)i∈I that reach h. Then, a subset Γ (h) ⊆ S(h) is called a decision problem at h if
for every active player i at h there are some sets Di ⊆ Si(h) and D−i ⊆ S−i(h) such that Γ (h) = Di × D−i . The intuition is
that player i at h believes that his opponents will choose some strategy combination in D−i , whereas player i himself only
considers strategies in Di as reasonable options. So, in a sense, Di represents the objects of choice for player i at h, whereas
D−i represents the states of the world about which he is uncertain. This explains the term decision problem.

Consider an information set h, a player i who is active at h, and a decision problem Γ (h) = Di × D−i at h. We say that
strategy si ∈ Di is strictly dominated within the decision problem Γ (h) if there is some randomized strategy μi ∈ �(Di) such
that ui(μi, s−i) > ui(si, s−i) for all s−i ∈ D−i . By sdi(Γ (h)) we denote the set of strategies si ∈ Di that are strictly dominated
within Γ (h) for the active player i. Similarly, we denote by

sd
(
Γ (h)

) := {
(si)i∈I ∈ Γ (h): si ∈ sdi

(
Γ (h)

)
for some i that is active at h

}
the set of strategy combinations in Γ (h) that involve a strategy for an active player that is strictly dominated within Γ (h).
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Remember that h′ � h means that information set h′ weakly follows information set h. The backward dominance procedure
can now be defined as follows.

Algorithm 5.1 (Backward dominance procedure).

Initial step. For every information set h, define Γ 0(h) := S(h).

Inductive step. Let k � 1, and suppose that the decision problems Γ k−1(h) have been defined for every information set h. Then, at
every information set h we define

Γ k(h) := Γ k−1(h)
∖ ⋃

h′�h

sd
(
Γ k−1(h′)).

A strategy si survives the backward dominance procedure if there is some s−i ∈ S−i such that (si, s−i) ∈ Γ k(∅) for all k.

So, at every step of the procedure we delete from the current decision problem Γ k−1(h) those strategies si that are
strictly dominated within a decision problem Γ k−1(h′) at which player i is active, and that weakly follows h. Since we only
have finitely many strategies in the game, and the decision problems can only become smaller at every step, this procedure
must converge after finitely many steps.

However, in order for this procedure to be well-defined, we must show that Γ k(h) is a decision problem for every k and
every information set h. That is, we must show that, whenever i is an active player at h, then Γ k(h) = Di × D−i for some
Di ⊆ Si(h) and D−i ⊆ S−i(h). The following lemma guarantees that this is always true.

Lemma 5.2 (Every Γ k(h) is a decision problem). For every k � 0, every information set h, and every active player i at h, there are sets
Di ⊆ Si(h) and D−i ⊆ S−i(h) such that Γ k(h) = Di × D−i .

The proof can be found in Section 9. Another important question is whether this procedure always delivers a nonempty
set of strategies for every player at every information set. Or is it possible that at a given information set we delete all
strategies for a player? We will see that the algorithm will never eliminate all strategies for a player at an information
set. Here, we say that a strategy si survives the backward dominance procedure at some information set h if there is some
s−i ∈ S−i such that (si, s−i) ∈ Γ k(h) for all k.

Theorem 5.3 (Backward dominance delivers nonempty output). For every information set h, and every player i, there is at least one
strategy si ∈ Si(h) that survives the backward dominance procedure at h.

The formal proof for this result can be found in Section 9.

5.2. Illustration of the procedure

We will now illustrate our backward dominance procedure by means of the game in Fig. 2. At the beginning of the
procedure we start with two decision problems, namely the full decision problem Γ 0(∅) at ∅ where only player 1 is active,
and the full decision problem Γ 0(h1) at h1 where both players are active. These decision problems can be found in Table 2.
Step 1. At Γ 0(∅) we delete strategy (a,d) for player 1 since it is strictly dominated at Γ 0(∅) by b. At Γ 0(∅) we also delete
strategy h for player 2 since it is strictly dominated by f and g at the future decision problem Γ 0(h1) at which player 2
is active. Finally, at Γ 0(h1) we delete strategy h for player 2 as it is strictly dominated by f and g at Γ 0(h1). This leads to
the new decision problems Γ 1(∅) and Γ 1(h1) which can be found in Table 3.
Step 2. At Γ 1(∅) we delete strategy (a, e) for player 1 since it is strictly dominated at Γ 1(∅) by (a, c) and b. At Γ 1(h1) we
delete strategy (a, e) for player 1 since it is strictly dominated by (a, c) and (a,d) at Γ 1(h1). This leads to the new decision
problems Γ 2(∅) and Γ 2(h1) presented in Table 4.

After this step no more strategies can be eliminated. So, the algorithm stops here, and the strategies that survive the
backward dominance procedure are (a, c) and b for player 1, and f and g for player 2. Note that these are the same
strategies that survived Penta’s backwards rationalizability procedure.

Table 2
Full decision problems in backward dominance procedure:

Player 1 active

Γ 0(∅) f g h
(a, c) 2,3 5,1 2,0
(a,d) 3,1 2,3 2,0
(a, e) 1,4 1,3 6,0
b 4,0 4,0 4,0

Players 1 and 2 active

Γ 0(h1) f g h
(a, c) 2,3 5,1 2,0
(a,d) 3,1 2,3 2,0
(a, e) 1,4 1,3 6,0
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Table 3
Step 1 of backward dominance procedure:

Player 1 active

Γ 1(∅) f g
(a, c) 2,3 5,1
(a, e) 1,4 1,3
b 4,0 4,0

Players 1 and 2 active

Γ 1(h1) f g
(a, c) 2,3 5,1
(a,d) 3,1 2,3
(a, e) 1,4 1,3

Table 4
Step 2 of backward dominance procedure:

Player 1 active

Γ 2(∅) f g
(a, c) 2,3 5,1
b 4,0 4,0

Players 1 and 2 active

Γ 2(h1) f g
(a, c) 2,3 5,1
(a,d) 3,1 2,3

5.3. Characterization result

It turns out that the backward dominance procedure eventually yields a set of strategies for every player that includes
the strategies that can rationally be chosen under common belief in future rationality. So, the backward dominance procedure
can be used as a first selection procedure to eventually find all strategies that are possible under common belief in future
rationality. This is an important result, since the backward dominance procedure is very easy to use – the only thing
we have to do is to recursively eliminate strategies at information sets based on strict dominance criteria. In fact, the
whole procedure can be formulated as a linear program, and hence can be implemented easily on a computer. In contrast,
the backwards rationalizability procedure requires us to simultaneously remove strategies and conditional belief vectors at
every step, and does not work with strict dominance arguments, which makes it more difficult to use than the backward
dominance procedure.

We can actually be more precise about the strategies selected by the backward dominance procedure – they turn out
to be precisely those strategies that a player can rationally choose if we would impose common belief in future rationality
without the Bayesian updating requirement. So, what separates the backward dominance procedure from common belief in
future rationality is (common belief in) Bayesian updating – nothing more and nothing less. Consequently, if we want
to find precisely those strategies that players can rationally choose under common belief in future rationality (with the
Bayesian updating condition), then we could first run the backward dominance procedure, and afterwards additionally
impose common belief in Bayesian updating.

Theorem 5.4 (Strategies selected by backward dominance procedure). Player i can rationally choose strategy si under common belief
in future rationality without the Bayesian updating requirement, if and only if, si survives the backward dominance procedure.

The proof can be found in Section 9.

6. Discussion

In this section we will discuss some important properties of the concept of common belief in future rationality, and of
the associated backward dominance procedure and backwards rationalizability procedure.

6.1. Bayesian updating can matter

Shimoji and Watson (1998) have shown that for the concept of extensive-form rationalizability (Pearce, 1984; Battigalli,
1997) it is inessential whether we impose (common belief in) Bayesian updating or not. As the epistemic notion of common
strong belief in rationality (Battigalli and Siniscalchi, 2002) selects precisely the extensive-form rationalizable strategies, we
may conclude that Bayesian updating is also irrelevant for the eventual strategy choices selected by common strong belief in
rationality (although it may matter for the types selected by this concept).

This naturally raises the question whether the same is true for the concept of common belief in future rationality. So, would
it matter for the eventual strategy choices of the players whether we drop the Bayesian updating condition or not? We will
see that Bayesian updating can matter for the concept of common belief in future rationality.

Consider, for instance, the game in Fig. 1. We will show that player 2 can rationally choose (c,h) under common belief
in future rationality if we would not impose (common belief in) Bayesian updating, but that he can longer rationally choose
(c,h) if we do impose (common belief in) Bayesian updating. To that purpose, consider the epistemic model in Table 5.
It may be verified that both types, t1 and t2, express common belief in future rationality without the Bayesian updating
requirement. As strategy (c,h) is rational for type t2, we may conclude that player 2 can rationally choose strategy (c,h)

under common belief in future rationality without the Bayesian updating requirement. Note, however, that type t1 does not
satisfy Bayesian updating when the game moves from ∅ to h1. So, type t2 does not believe that player 1 satisfies Bayesian
updating.
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Table 5
A new epistemic model for the game in Fig. 1.

Types T1 = {t1}, T2 = {t2}
Beliefs for player 1 b1(t1,∅) = ((c,h), t2)

b1(t1,h1) = ((d, i), t2)

Beliefs for player 2 b2(t2,∅) = (b, t1)

b2(t2,h2.1) = ((a, f ), t1)

b2(t2,h2.2) = ((a, f ), t1)

Fig. 3. Chronological order of moves matters for “common belief in future rationality”.

In fact, we can show that player 2 can no longer rationally choose (c,h) if we additionally impose common belief in
Bayesian updating. Namely, if player 1 believes in 2’s future rationality, then player 1 must at ∅ assign probability 1 to
player 2 choosing c. If we assume that player 1 satisfies Bayesian updating, then he must at h1 still believe that player 2
has chosen c. Hence, at h1 player 1 must believe that he is at h2.1. So, player 1’s unique optimal choice at h1 is e. But
then, if player 2 believes at h2.1 that (a) player 1 believes at ∅ in player 2’s future rationality, (b) player 1 satisfies Bayesian
updating and (c) player 1 chooses rationally at h1 (which weakly follows h2.1), then player 2 must believe at h2.1 that player
1 chooses e. Hence, player 2’s unique optimal choice at h2.1 is g . As player 2 will clearly choose c at ∅, we thus see that
under common belief in future rationality with the Bayesian updating requirement, player 2 can only rationally choose the
strategy (c, g). In particular, strategy (c,h) is no longer rational for player 2 under common belief in future rationality with
the Bayesian updating requirement.

Equivalently, it can be shown that the backwards rationalizability procedure uniquely selects the strategy (c, g) for
player 2 in this game, whereas the backward dominance procedure selects strategies (c, g) and (c,h) for player 2. The
reader may verify this.

6.2. Modeling the order of moves

The concept of common belief in future rationality is very sensitive to the way in which we model the chronological
order of moves in the game! Consider, for instance, the three games in Fig. 3.

In game Γ 1 player 1 moves before player 2, in game Γ 2 player 2 moves before player 1, and in game Γ 3 both players
choose simultaneously. In Γ 1 and Γ 2, the second mover does not know which choice has been made by the first mover.
So, all three games represent a situation in which both players choose in complete ignorance of the opponent’s choice.
Since the utilities in the games are identical, one can argue that these three games are in some sense “equivalent”. In fact,
the three games above only differ by applying the transformation of interchange of decision nodes,2 as defined by Thompson
(1952). However, for the concept of common belief in future rationality it crucially matters which of the three representations
Γ 1,Γ 2 or Γ 3 we choose.

In the game Γ 1, common belief in future rationality does not restrict player 2’s belief at all, as player 1 moves before
him. So, player 2 can rationally choose d and e under common belief in future rationality here. On the other hand, player 1

2 For a formal description of this transformation, the reader may consult Thompson (1952), Elmes and Reny (1994) or Perea (2001).
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may believe that player 2 chooses d or e under common belief in future rationality, and hence player 1 himself may
rationally choose a or b under common belief in future rationality.

In the game Γ 2, common belief in future rationality does not restrict player 1’s beliefs as he moves after player 2.
Hence, player 1 may rationally choose a or b under common belief in future rationality. Player 2 must therefore believe that
player 1 will either choose a or b in the future, and hence player 2 can only rationally choose d under common belief in
future rationality.

In the game Γ 3, finally, player 1 can only rationally choose a, and player 2 can only rationally choose d under common
belief in future rationality. Namely, if player 2 believes in player 1’s (present and) future rationality, then player 2 believes
that player 1 does not choose c, since player 1 moves at the same time as player 2. Therefore, player 2 can only rationally
choose d under common belief in future rationality. If player 1 believes in player 2’s (present and) future rationality, and
believes that player 2 believes in player 1’s (present and) future rationality, then player 1 believes that player 2 chooses d,
and therefore player 1 can only rationally choose a under common belief in future rationality.

Hence, the precise order of moves is very important for the concept of common belief in future rationality! In particular,
this concept is not invariant with respect to Thompson’s (1952) transformation of interchange of decision nodes.

Now, why is this? In the concept of common belief in future rationality, the key condition is that a player, at any point
in time, believes that his opponent will choose rationally from now on, but not necessarily that he has acted rationally in
the past – even if believing so is possible. Hence, for this concept it is absolutely crucial how we model the chronological
order of moves. Indeed, if we interchange some decision nodes – as we did in the games in Fig. 3 – then we change the
meaning of past, present and future in the game, and thereby also change the meaning of belief in future rationality! So, for
the concept of common belief in future rationality, the interchange of decision nodes does change some essential features
of the game.

Is this a big problem? Not if we take the precise modeling of the dynamic game seriously. Namely, if we insist that the
order of the information sets in the dynamic game faithfully represents the actual chronological order of moves, then there
is no problem in using common belief in future rationality as a concept.

6.3. Order independence

As we defined it, the backward dominance algorithm eliminates, at every step and every information set h, all strategies
for player i that are strictly dominated at some decision problem for player i weakly following h. Suppose we would, at
every step, only eliminate some of these strategies, but not all. Would it matter for the eventual result? The answer is “no”:
The order and speed in which we eliminate strategies in the backward dominance procedure has no influence on the final
output. Here is an argument.

Let us compare two procedures, Procedure 1 and Procedure 2, where Procedure 1 eliminates, at every step, all strategies
that can possibly be eliminated, whereas Procedure 2 eliminates at every step only some strategies that can be eliminated.
Then, Procedure 1 will, at every step and every information set h, have eliminated at least as many strategies as Procedure 2.
Namely, at Step 1 this is true by construction. Consider now Step 2. Suppose that in Procedure 2 we would eliminate
strategy si at h because it is strictly dominated at the future decision problem Γ̃ 1(h′) for player i. Here, Γ̃ 1(h′) is the
decision problem at h′ after Step 1 of Procedure 2. Now, let Γ 1(h′) be the decision problem at h′ after Step 1 of Procedure 1.
Then, Γ 1(h′) contains at most as many strategies for i’s opponents as Γ̃ 1(h′). Hence, if si was strictly dominated at Γ̃ 1(h′),
it will certainly be strictly dominated at Γ 1(h′), and so in Procedure 1 we will also eliminate strategy si at h. We thus
see that in Step 2, every strategy that is eliminated in Procedure 2 will also be eliminated in Procedure 1. Of course we
can iterate this argument and conclude that at every step, Procedure 1 will have deleted as least as many strategies as
Procedure 2.

We now show that the converse is also true, namely every strategy that is eliminated in Procedure 1 will also eventually
be eliminated in Procedure 2. Suppose this would not be true. Then, let k be the last step such that every strategy eliminated
by Procedure 1 before Step k is also eventually eliminated by Procedure 2. Take then a strategy si that is eliminated at some
information set h in Step k of Procedure 1, but which is never eliminated in Procedure 2. The reason for eliminating si at
h in Procedure 1 is that si is strictly dominated at some decision problem Γ k−1(h′) for player i weakly following h. By
assumption, in Procedure 2 there is some step m � k − 1 such that the associated decision problem Γ̃ m(h′) is a “subset”
of Γ k−1(h′), which means that the strategy sets in Γ̃ m(h′) are contained in the strategy sets of Γ k−1(h′). But then, if si is
strictly dominated at Γ k−1(h′), it is certainly strictly dominated in Γ̃ m(h′). As such, Procedure 2 must eliminate si sooner
or later at information set h. This contradicts our assumption above. We may thus conclude that every strategy that is
eliminated in Procedure 1 will also eventually be eliminated in Procedure 2.

Altogether, we see that Procedure 1 and Procedure 2 must eventually yield the same set of strategies at every information
set. So, the order and speed in which we delete strategies from the game does not matter for the output of the backward
dominance procedure. The intuitive reason is that the algorithm is monotonic in the following sense: If we make the decision
problems smaller, then it becomes easier for a strategy to become strictly dominated, and hence we will eliminate more,
which in turn leads to smaller decision problems, and so on.

In fact, the same conclusion can be drawn for the backwards rationalizability procedure, based on a similar reasoning.
Also for that procedure, the order and speed in which we delete strategies and conditional belief vectors from the game is
irrelevant.
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This result also has some important practical implications for the backward dominance procedure and the backwards ra-
tionalizability procedure. In some games it may be easier not to eliminate strategies at all information sets simultaneously,
but rather to start with the decision problems at the end of the game, apply the procedure there until we can eliminate
nothing more, then turn to decision problems that come just before, apply the procedure there until we can eliminate
nothing more, and so on. That is, to use a backward induction approach to eliminate the strategies. Such an order of elimi-
nation will be convenient especially for large dynamic games, with many consecutive information sets. In fact, Penta (2009)
refers to this backward induction approach as the “backwards procedure” if we apply it to the backwards rationalizability
procedure.

6.4. Games with perfect information

In this section we explore what common belief in future rationality does for games with perfect information. A dynamic
game is said to be with perfect information if at every information set exactly one player is active, and this player knows
exactly which choices have been made until then. Formally, this means that at every information set h there is exactly one
player i with h ∈ Hi , and the information set h consists of a single history x.

As in Battigalli (1997), we say that a game with perfect information is with no relevant ties if for every player i, and every
information set hi ∈ Hi , two different choices at hi will always lead to two different utilities for player i. That is, for every
two terminal histories z, z′ following hi ∈ Hi which contain different choices at hi , we have that ui(z) �= ui(z′). It is easily
seen that every game with perfect information and no relevant ties yields a unique backward induction strategy for every
player.

Consider now an arbitrary game with perfect information and no relevant ties. We know that the backwards rationaliz-
ability procedure delivers exactly the strategies that can rationally be chosen under common belief in future rationality. In
the previous subsection we have seen that the order of elimination does not matter, so we may as well use the backward
induction order described above. So, we first consider all information sets at the end of the game, at which the backwards
rationalizability procedure deletes all suboptimal choices. That is, we uniquely select the backward induction choices at all
information sets at the end of the game.

Next, we turn to the information sets just before these, where we start by deleting the strategies that were already
deleted at the previous round. In this case, we would thus keep only those strategies that prescribe the backward induction
choice at the last information sets in the game. Then, we would delete those strategies that are not optimal against the
surviving strategies, that is, we remove strategies that are not optimal against the backward induction choices at the end of
the game. So, we select the backward induction choices also at information sets just before the last information sets in the
game.

By iterating this argument, we see that applying the backwards rationalizability procedure in the backward induction
fashion would yield exactly the backward induction choice at every information set. Consequently, we obtain the unique
backward induction strategy for every player. Since the order of elimination does not matter, as we have seen, we conclude
that applying the backwards rationalizability procedure to a game with perfect information and no relevant ties would yield
precisely the backward induction strategies for the players.

Together with Theorem 4.3 we thus see that in every game with perfect information and no relevant ties, common belief
in future rationality leads to backward induction.

Theorem 6.1 (Common belief in future rationality leads to backward induction). Consider a dynamic game with perfect information
and no relevant ties. Then, every player has exactly one strategy he can rationally choose under common belief in future rationality,
namely his backward induction strategy.

So we see that the order independence of the backwards rationalizability procedure can also be used to provide rela-
tionships between common belief in future rationality and other concepts in the literature.

6.5. Best-response characterization

We will finally use the backwards rationalizability procedure to provide a characterization of common belief in future
rationality in terms of “best responses”. For every information set h, let S∞

i (h) be the set of strategies for player i that
survive the backwards rationalizability procedure at h. Moreover, let B∞

i be the set of conditional belief vectors selected by
the procedure at the end. By construction of the procedure, these sets S∞

i (h) and B∞
i have the following properties:

(1) S∞
i (h) contains precisely those strategies si ∈ Si(h) for player i that are optimal, for some bi ∈ B∞

i , at every h′
i ∈ Hi(si)

weakly following h.
(2) B∞

i contains precisely those conditional belief vectors bi that satisfy Bayesian updating, and for which bi(hi) ∈
�(S∞

−i(hi)) at every hi ∈ Hi .

By combining (1) and (2), we obtain the following characterization of the sets S∞(h):
i
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S∞
i (h) contains precisely those strategies si ∈ Si(h) for player i that are optimal, at every h′

i ∈ Hi(si) weakly following h,
for some conditional belief vector bi that satisfies Bayesian updating, and for which bi(h′

i) ∈ �(S∞
−i(h

′
i)) at every h′

i ∈ Hi
weakly following h.

We say that the collection (S∞
i (h))h∈H,i∈I of strategy sets is “closed under belief in future rationality”. Here, H denotes

the collection of all information sets. We first formally define what we mean by “closed under belief in future rationality”.

Definition 6.2 (Closed under belief in future rationality). For every information set h, and every player i, let Di(h) ⊆ Si(h)

be some subset of strategies. The collection (Di(h))h∈H,i∈I of strategy subsets is closed under belief in future rationality if
for every si ∈ Di(h) there is some belief vector bi satisfying Bayesian updating, such that (1) bi(h′

i) ∈ �(D−i(h′
i)) for every

h′
i ∈ Hi weakly following h, and (2) si is optimal for bi(h′

i) at every h′
i ∈ Hi(si) weakly following h.

We now show that the strategies that can rationally be chosen under common belief in future rationality are exactly
those that correspond to some collection of strategy subsets which is closed under belief in future rationality.

Theorem 6.3 (Best-response characterization of common belief in future rationality). A strategy si can rationally be chosen under
common belief in future rationality, if and only if, there is a collection (Di(h))h∈H,i∈I of strategy subsets which is closed under belief in
future rationality, and in which si ∈ Di(∅).

The proof can be found in Section 9. In fact, the proof tells us a little bit more, namely that the collection (S∞
i (h))h∈H,i∈I

of strategy subsets surviving the backwards rationalizability procedure is the largest collection that is closed under belief in
future rationality. In general, there may be other, smaller collections which are also closed under belief in future rationality.

7. Relation to other concepts

In this section we will investigate the relation that common belief in future rationality bears with other epistemic
concepts for dynamic games, in particular sequential rationalizability and extensive form rationalizability.

7.1. Sequential rationalizability

The concept of sequential rationalizability has been proposed independently by Dekel et al. (1999, 2002) (DFL from now
on) and Asheim and Perea (2005), although they differ considerably in their formulation. Here we will use the formulation
by DFL as it makes it easier to compare the concept to our notion of common belief in future rationality. The key ingredients
in DFL’s model are

(a) behavioral strategies πi , which assign to every information set hi for player i a probability distribution over i’s choices
at h. A behavioral strategy πi represents i’s strategy choice;

(b) assessments ai , which assign to every information set hi for player i a probability distribution over the histories in h. An
assessment ai represents i’s conditional beliefs about the opponents’ past behavior; and

(c) profiles π i
−i of behavioral strategies for i’s opponents. A profile π i

−i represents i’s conditional beliefs about the opponents’
future behavior.

Since the profile π i
−i is not correlated, the last ingredient implies that player i’s belief about opponent j’s future behavior

should be independent from his belief about opponent k’s future behavior. A conditional belief pair (ai,π
i
−i) is called

Kreps–Wilson consistent (Kreps and Wilson, 1982) if there is a sequence (an
i ,π

i,n
−i )n∈N converging to (ai,π

i
−i) in which π i,n

−i

assigns positive probability to all choices, and an
i is obtained from π i,n

−i by Bayesian updating.

For every player i, consider a set V i of strategy-belief triples (πi,ai,π
i
−i). The collection V = (V i)i∈I of sets of strategy-

belief triples is called sequentially rationalizable if for every (πi,ai,π
i
−i) ∈ V i ,

(a) (ai,π
i
−i) is Kreps–Wilson consistent,

(b) strategy πi is optimal at every information set hi ∈ Hi under the belief (ai,π
i
−i), and

(c) the belief π i
−i about the opponents’ future behavior only assigns positive probability to opponents’ strategies π j which

are part of some triple in V .3

The last two conditions together thus state that a player, at every information set, should only assign positive probability
to opponents’ strategies that, at every future information set, are optimal for some belief in V . Finally, a strategy πi is called

3 For a precise statement of this condition, see Definition 2.2 in Dekel et al. (2002).
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sequentially rationalizable if there is some sequentially rationalizable collection (V i)i∈I of sets of strategy-belief triples, such
that πi is part of some triple in V i .

Let us now try to translate this concept in terms of conditional beliefs as we use them in this paper. The conditional
belief pair (ai,π

i
−i) in DFL corresponds to a conditional belief vector (bi(hi))hi∈Hi in our setup, where bi(hi) is a probability

distribution over S−i(hi) for every hi ∈ Hi . This conditional belief vector (bi(hi))hi∈Hi should be such, however, that i’s
conditional belief at hi about the opponents’ future behavior is independent across opponents. For every player i, consider
a set Ṽ i of conditional belief vectors (bi(hi))hi∈Hi . Then, the collection Ṽ = (Ṽ i)i∈I is sequentially rationalizable if for every
(bi(hi))hi∈Hi ∈ Ṽ i ,

(d) at every hi ∈ Hi , the conditional belief about the opponents’ future behavior is independent across opponents,
(e) the conditional belief vector (bi(hi))hi∈Hi is Kreps–Wilson consistent,
(f) at every hi ∈ Hi , the conditional belief bi(hi) only assigns positive probability to opponents’ strategies s j which are

optimal, at every h′
j ∈ H j(s j) weakly following hi , for some conditional belief vector in Ṽ j .

Here, condition (f) follows from our insight above that in DFL’s definition, a player should, at every information set, only
assign positive probability to opponents’ strategies that, at every future information set, are optimal for some belief in V j .
So, a strategy si is sequentially rationalizable, if and only if, there is some sequentially rationalizable collection (Ṽ i)i∈I of
conditional belief vectors, and some conditional belief vector in Ṽ i , for which si is optimal at every information set.

Now, take a sequentially rationalizable collection (Ṽ i)i∈I of conditional belief vectors. For every player i, every informa-
tion set hi ∈ Hi , and every opponent j, let D j(hi) ⊆ S j(hi) be the set of strategies that receive positive probability at hi

under some conditional belief in Ṽ i . At an information set hi ∈ Hi , let Di(hi) ⊆ Si(hi) be the set of strategies in Si(hi) that
are optimal, at every h′

i ∈ Hi weakly following hi , for some conditional belief vector in Ṽ i .
Note that every conditional belief vector that is Kreps–Wilson consistent, also satisfies Bayesian updating. But then, by

conditions (e) and (f) above, we know that the collection (Di(h))i∈I,h∈H of strategy subsets has the following property:
If si ∈ Di(h), then si is optimal, at every h′

i ∈ Hi(si) weakly following h, for some conditional belief vector bi that (1) sat-
isfies Bayesian updating and (2) for which bi(h′

i) ∈ �(D−i(h′
i)) at every h′

i ∈ Hi weakly following h. That is, the collection
(Di(h))i∈I,h∈H is closed under belief in future rationality, conform our Definition 6.2. We have thus shown that every se-
quentially rationalizable collection (Ṽ i)i∈I of conditional belief vectors induces, in a natural way, a collection (Di(h))i∈I,h∈H
of strategy subsets that is closed under belief in future rationality. But then, it immediately follows from our Theorem 6.3
that every sequentially rationalizable strategy can rationally be chosen under common belief in future rationality. We have
thus established the following result.

Theorem 7.1 (Relation to sequential rationalizability). Every sequentially rationalizable strategy can rationally be chosen under com-
mon belief in future rationality.

The opposite direction is not true in general. Consider, namely, a one-shot game with three players or more, in which
all players simultaneously make one choice. For such games, the concept of sequential rationalizability coincides with un-
correlated rationalizability, as defined by Bernheim (1984) and Pearce (1984), in which it is assumed that a player’s belief
about the opponents’ choice combinations is independent across opponents. Moreover, for these games our concept of com-
mon belief in future rationality coincides with the concept of correlated rationalizability, in which a player’s belief about
the opponents’ choice combinations may be correlated across opponents. It is well-known that for such games, uncorrelated
rationalizability may be strictly more restrictive than correlated rationalizability. Hence, in general, the concept of sequential
rationalizability may be strictly more restrictive than common belief in future rationality.

The theorem above also implies that common belief in future rationality is always possible in every dynamic game,
as sequentially rational strategies always exist (see for instance Asheim and Perea, 2005). We thus obtain the following
existence result.

Theorem 7.2 (Common belief in future rationality is always possible). For every finite dynamic game Γ there is an epistemic model
M = (Ti,bi)i∈I such that for every player i there is some type ti ∈ Ti that expresses common belief in future rationality.

In Asheim and Perea (2005) it is shown that sequential equilibrium constitutes a refinement of sequential rationalizabil-
ity. More precisely, every strategy that receives positive probability in a sequential equilibrium is sequentially rationalizable.
From Theorem 7.1 it thus follows that every strategy that receives positive probability in a sequential equilibrium can ra-
tionally be chosen under common belief in future rationality. That is, common belief in future rationality is a weakening of
the concept of sequential equilibrium.

7.2. Extensive form rationalizability

The concept of extensive form rationalizability has originally been proposed in Pearce (1984) by means of an iterated
reduction procedure. Later, Battigalli (1997) has simplified this procedure and has shown that it delivers the same output as
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Fig. 4. There is no logical relationship, in terms of strategies, between common belief in future rationality and extensive form rationalizability.

Pearce’s procedure. More recently, Battigalli and Siniscalchi (2002) have provided an epistemic characterization of extensive
form rationalizability – common strong belief in rationality.

In this section we wish to compare our notion of common belief in future rationality to the concept of extensive form
rationalizability. A more detailed comparison of these two concepts can be found in Perea (2010), which analyzes the
differences between backward and forward induction reasoning in dynamic games. To carry out this comparison we will
use yet another procedure leading to extensive form rationalizability, namely the iterated conditional dominance procedure
developed by Shimoji and Watson (1998). The reason is that this procedure is closer to our backward dominance algorithm,
and therefore easier to compare.

Indeed, Shimoji and Watson’s procedure is very similar in spirit to our backward dominance procedure, as it iteratively
removes strategies from decision problems. However, their criterion for removing a strategy in a particular decision problem
is different. Formally, their procedure can be formulated as follows.

Algorithm 7.3 (Shimoji and Watson’s iterated conditional dominance procedure).

Initial step. For every information set h, define Γ 0(h) := S(h).

Inductive step. Let k � 1, and suppose that the decision problems Γ k−1(h) have been defined for every information set h. Then, at
every information set h we define

Γ k(h) := Γ k−1(h)
∖ ⋃

h′∈H

sd
(
Γ k−1(h′)).

A strategy si survives the iterated conditional dominance procedure if there is some s−i ∈ S−i such that (si, s−i) ∈ Γ k(∅) for all k.

Remember from the backward dominance procedure that sd(Γ k−1(h′)) contains all those strategy combinations (si)i∈I
in Γ k−1(h′) such that si is strictly dominated within Γ k−1(h′) for some active player i at h′ . By H we denote the collection
of all information sets in the game.

So, the crucial difference with the backward dominance procedure is that in the iterated conditional dominance proce-
dure, we eliminate a strategy from Γ k−1(h) whenever it is strictly dominated at some decision problem Γ k−1(h′) that either
precedes h, or weakly follows h, or neither precedes nor follows h. In contrast, within the backward dominance procedure
we only eliminate a strategy from Γ k−1(h) if it is strictly dominated at some decision problem that weakly follows h.

Shimoji and Watson (1998) have shown that the iterated conditional dominance procedure delivers exactly the set of
extensive form rationalizable strategies. Moreover, they prove that for the output of the iterated conditional dominance
procedure it is inessential whether we impose (common belief in) Bayesian updating or not. So, the iterated conditional
dominance procedure in combination with common belief in Bayesian updating would also yield exactly the extensive form
rationalizable strategies.

Note that in the iterated conditional dominance procedure, it is possible that at a given decision problem Γ k−1(h) all
strategy combinations will be eliminated in step k – something that can never happen in the backward dominance proce-
dure. In other words, the decision problem Γ k(h) may become empty at some step k. Consider, namely, some information
set hi ∈ Hi , and some information set h′ following hi . Then, it is possible that within the decision problem Γ k−1(hi), all
strategies for player i that are in Γ k−1(h′) are strictly dominated within Γ k−1(hi). In that case, we would eliminate in
Γ k−1(h′) all remaining strategies for player i, and hence all remaining strategy combinations!

To illustrate this important aspect, let us consider the game from Fig. 2, and replace the utilities 4,0 after choice b by
7,0. Then, in the first step of the iterated conditional dominance procedure we would eliminate strategies (a, c), (a,d) and
(a, e) for player 1 at h1, as they are all strictly dominated by b at ∅. So, after Step 1 we have no strategy combinations left
at h1 – that is, Γ 1(h1) would be empty.

Now, what can we say about the relationship between common belief in future rationality and extensive form rational-
izability? It turns out that in terms of strategies, there is no logical relationship between the two concepts. Consider, to that
purpose, the game in Fig. 4. The full decision problems at ∅ and h1 are represented in Table 6.
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Table 6
The full decision problems in Fig. 3:

Player 1 active

Γ 0(∅) e f g
(a, c) 2,2 2,1 0,0
(a,d) 1,1 1,2 4,0
b 3,0 3,0 3,0

Players 1 and 2 active

Γ 0(h1) e f g
(a, c) 2,2 2,1 0,0
(a,d) 1,1 1,2 4,0

The backward dominance procedure does the following: In the first round, we eliminate from Γ 0(∅) strategy (a, c) as it
is strictly dominated by b at player 1’s decision problem Γ 0(∅), and we eliminate from Γ 0(∅) and Γ 0(h1) strategy g as it is
strictly dominated by e and f at player 2’s decision problem Γ 0(h1). In the second round, we eliminate from Γ 1(∅) strategy
(a,d) as it strictly dominated by b at Γ 1(∅), and we eliminate strategy (a,d) also from Γ 1(h1) as it is strictly dominated by
(a, c) at Γ 1(h1). In the third round, finally, we eliminate from Γ 2(∅) and Γ 2(h1) strategy f , as it is strictly dominated by e
in Γ 2(h1). So, only strategies b and e remain at ∅. Hence, the backward dominance procedure uniquely yields the strategies
b and e for players 1 and 2, respectively. But then, by Theorem 5.4, only strategies b and e can rationally be chosen under
common belief in future rationality.

The iterated conditional dominance procedure works differently here: In the first round, we eliminate strategy (a, c) from
Γ 0(∅) and Γ 0(h1) as it is strictly dominated by b at player 1’s decision problem Γ 0(∅), and we eliminate from Γ 0(∅) and
Γ 0(h1) strategy g as it is strictly dominated by e and f at player 2’s decision problem Γ 0(h1). In the second round, we
eliminate (a,d) from Γ 1(∅) and Γ 1(h1) as it is strictly dominated by b at Γ 1(∅) – thus making Γ 2(h1) empty – and we
eliminate e from Γ 1(∅) and Γ 1(h1) as it is strictly dominated by f in Γ 1(h1). This only leaves strategies b and f at ∅, and
hence only strategies b and f can be chosen under extensive form rationalizability.

In particular, we see that common belief in future rationality uniquely selects strategy e for player 2, whereas extensive
form rationalizability singles out strategy f for player 2. The crucial difference lies in how player 2 at h1 explains the
surprise that player 1 has not chosen b. Under common belief in future rationality, player 2 believes at h1 that player 1 has
simply made a mistake, but he still believes that player 1 will choose rationally at h1, and he still believes that player 1
believes that player 2 will not choose g at h1. So, player 2 believes at h1 that player 1 will choose (a, c), and therefore
player 2 will choose e at h1. Under extensive form rationalizability, player 2 believes at h1 that player 1’s decision not to
choose b was a rational decision, but this is only possible if player 2 believes at h1 that player 1 believes that player 2 will
irrationally choose g at h1. In that case, player 2 will believe at h1 that player 1 will go for (a,d), and therefore player 2
will choose f at h1.

The game in Fig. 4 thus shows that, in terms of strategies, common belief in future rationality and extensive form
rationalizability may yield unique but opposite predictions for a certain player. Note, however, that in this game both
concepts lead to the same outcome, namely b.

This leads to the following question: Is it possible to find games where both concepts would also yield unique but
different outcomes? The answer is “no”. In Chapter 9 of Perea (2012) it is shown, namely, that every outcome which can be
realized under extensive form rationalizability, can also be realized under common belief in future rationality.

This result also follows from Chen and Micali (2013). They show, namely, that changing the order of elimination in the
iterated conditional dominance procedure does not change the outcomes that are selected by the procedure – although it
may change the strategies selected. Now, it can be verified that the backward dominance procedure corresponds to the first
few steps in the iterated conditional dominance procedure – by choosing a very specific, different order of elimination –
but without necessarily completing the procedure after these first few steps! By combining these two facts, we thus con-
clude that the outcomes selected by the backward dominance procedure will always contain the outcomes selected by the
iterated conditional dominance procedure. As common belief in future rationality corresponds to the backward dominance
procedure in combination with common belief in Bayesian updating, and extensive form rationalizability corresponds to
the iterated conditional dominance procedure in combination with common belief in Bayesian updating, it follows that, in
terms of outcomes, the concept of extensive form rationalizability is more restrictive than common belief in future rational-
ity.

8. Future research

A possibly interesting application of the idea of common belief in future rationality would be to investigate its be-
havioral implications for finitely and infinitely repeated games. Although infinitely repeated games fall outside the class
of games considered in this paper, the concept of common belief in future rationality could be defined for such games
as well. A question that could be addressed is: Can we find an easy algorithm that computes, for every stage of the re-
peated game, the set of choices a player can make there under common belief in future rationality? As a next step, one
could also explore the idea of common belief in future rationality in discounted stochastic games, which include finitely
and infinitely repeated games as special cases. An interesting question, similar to the one above, would be: Is there an
algorithm that computes, for every state, the set of choices a player can make there under common belief in future ratio-
nality?
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9. Proofs

In this section we will deliver formal proofs for the theorems in this paper. Before doing so, we first present some
preparatory results that will play a crucial role in some of these proofs.

9.1. Some preparatory results

For a given player i, let (D−i(hi))hi∈Hi be a collection of nonempty strategy subsets D−i(hi) ⊆ S−i(hi). Say that
(bi(hi))hi∈Hi is a conditional belief vector on (D−i(hi))hi∈Hi if bi(hi) ∈ �(D−i(hi)) for every hi ∈ Hi . Fix some information
set h∗

i ∈ Hi , and some conditional belief bi(h∗
i ) ∈ �(D−i(h∗

i ))̇. The question is: Can we extend bi(h∗
i ) to a conditional belief

vector (bi(hi))hi∈Hi on (D−i(hi))hi∈Hi such that there exists a strategy si ∈ Si(h∗
i ) which is optimal, at every hi ∈ Hi weakly

following h∗
i , for the belief bi(hi)? We provide a sufficient condition under which this is indeed possible.

Definition 9.1 (Forward inclusion property). The collection (D−i(hi))hi∈Hi of strategy subsets D−i(hi) ⊆ S−i(hi) satisfies the
forward inclusion property if for every hi,h′

i ∈ Hi where h′
i follows hi , it holds that D−i(hi) ∩ S−i(h′

i) ⊆ D−i(h′
i).

Lemma 9.2 (Existence of sequentially optimal strategies). For a given player i, consider a collection (D−i(hi))hi∈Hi of strategy subsets
satisfying the forward inclusion property. At a given information set h∗

i ∈ Hi fix some conditional belief bi(h∗
i ) ∈ �(D−i(h∗

i )). Then,
bi(h∗

i ) can be extended to a conditional belief vector (bi(hi))h∈Hi on (D−i(hi))hi∈Hi , such that there is some strategy si ∈ Si(h∗
i ) which

is optimal at every hi ∈ Hi weakly following h∗
i for the belief bi(hi).

Proof. Fix some information set h∗
i ∈ Hi , and some conditional belief bi(h∗

i ) ∈ �(D−i(h∗
i )). We will extend bi(h∗

i ) to some
conditional belief vector (bi(hi))hi∈Hi on (D−i(hi))hi∈Hi , and construct some strategy si ∈ Si(h∗

i ), such that si is optimal at
every hi ∈ Hi weakly following h∗

i for the belief bi(hi).
Let Hi(h∗

i ) be the collection of player i information sets that follow h∗
i . Let H+

i (h∗
i ) be those information sets hi ∈ Hi(h∗

i )

with bi(h∗
i )(S−i(hi)) > 0, where bi(h∗

i )(S−i(hi)) is a short way to write
∑

s−i∈S−i(hi)
bi(h∗

i )(s−i). For every hi ∈ H+
i (h∗

i ) we
define the conditional belief bi(hi) ∈ �(D−i(hi)) by

bi(hi)(s−i) := bi(h∗
i )(s−i)

bi(h∗
i )(S−i(hi))

for every s−i ∈ S−i(hi). So, bi(hi) is obtained from bi(h∗
i ) by Bayesian updating. To see that bi(hi) ∈ �(D−i(h)), note that

bi(hi) only assigns positive probability to s−i ∈ S−i(hi) that received positive probability under bi(h∗
i ). Since, by construction,

bi(h∗
i ) ∈ �(D−i(h∗

i )), it follows that bi(hi) only assigns positive probability to s−i ∈ D−i(h∗
i ) ∩ S−i(hi). However, by the

forward inclusion property, D−i(h∗
i ) ∩ S−i(hi) ⊆ D−i(hi), and hence bi(hi) ∈ �(D−i(hi)).

Now, consider an information set hi ∈ Hi(h∗
i )\H+

i (h∗
i ) which is not preceded by any h′

i ∈ Hi(h∗
i )\H+

i (h∗
i ). That is,

bi(h∗
i )(S−i(hi)) = 0, but bi(h∗

i )(S−i(h′
i)) > 0 for every h′

i ∈ Hi between h∗
i and hi . For every such hi , choose some arbitrary

conditional belief bi(hi) ∈ �(D−i(hi)).
Let H+

i (hi) be those information sets h′
i ∈ Hi weakly following hi with bi(hi)(S−i(h′

i)) > 0. For every h′
i ∈ H+

i (hi), define
the conditional belief bi(h′

i) as above, so bi(h′
i) is obtained from bi(hi) by Bayesian updating. By the same argument as

above, it can be shown that bi(h′
i) ∈ �(D−i(h′

i)) for every h′
i ∈ H+

i (hi).
By continuing in this fashion, we will finally define for every hi ∈ Hi following h∗

i some conditional belief bi(hi) ∈
�(D−i(hi)), such that these conditional beliefs, together with bi(h∗

i ), satisfy Bayesian updating where possible. For every
information set hi ∈ Hi not weakly following h∗

i , define bi(hi) ∈ �(D−i(hi)) arbitrarily. So, (bi(hi))hi∈Hi is a conditional belief
vector on (D−i(hi))hi∈Hi which extends bi(h∗

i ), and it satisfies Bayesian updating at information sets weakly following h∗
i .

We will now construct a strategy si ∈ Si(h∗
i ) that, at every hi ∈ Hi weakly following h∗

i , is optimal for the belief bi(hi). By
“backward induction”, we choose at every hi ∈ Hi weakly following h∗

i a choice ci(hi) ∈ Ci(hi) that is optimal at hi for the
belief bi(hi), given player i’s own choices at future histories. More precisely, we start with information sets hi ∈ Hi weakly
following h∗

i which are not followed by any other player i information set. At those hi , we specify a choice ci(hi) ∈ Ci(hi)

with

ui
(
ci(hi),bi(hi)

)
� ui

(
c′

i,bi(hi)
)

for all c′
i ∈ Ci(hi).

Now, suppose that hi ∈ Hi weakly follows h∗
i , and that ci(h′

i) has been defined for all h′
i ∈ Hi following hi . Then, we specify

a choice ci(hi) ∈ Ci(hi) with

ui
((

ci(hi),
(
ci

(
h′

i

))
h′

i∈Hi(h)

)
,bi(hi)

)
� ui

((
c′

i,
(
ci

(
h′

i

))
h′

i∈Hi(h)

)
,bi(hi)

)
(9.1)

for all c′
i ∈ Ci(hi). Here, Hi(hi) denotes the collection of information sets in Hi that follow hi . In this way, we specify at

every hi ∈ Hi weakly following h∗ a choice ci(hi) that satisfies (9.1).
i
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Now, let si be the strategy that

(a) at every hi ∈ Hi(si) weakly following h∗
i , prescribes the optimal choice ci(hi) as in (9.1),

(b) at every hi ∈ Hi(si) preceding h∗
i , prescribes the unique choice ci(hi) that leads to h∗

i , and
(c) at every other hi ∈ Hi(si) specifies an arbitrary choice.

By construction the strategy si is in Si(h∗
i ), as it prescribes all choices that lead to h∗

i . As the conditional belief vector
(bi(hi))hi∈Hi satisfies Bayesian updating at information sets weakly following h∗

i , it follows from Theorem 3.1 in Perea
(2002) that this profile of beliefs satisfies the one-deviation property at information sets weakly following h∗

i . That is, every
strategy si for which the choices ci(hi) are optimal in the sense of (9.1), is optimal as a strategy at every hi ∈ Hi weakly
following h∗

i . Hence, we may conclude that the strategy si so constructed is optimal at every hi ∈ Hi(si) weakly following h∗
i

for the belief bi(hi). Since si is in Si(h∗
i ), and (bi(hi))hi∈Hi is a conditional belief vector on (D−i(hi))hi∈Hi which extends

bi(h∗
i ), the proof is complete. �

The lemma above implies in particular that, whenever the collection (D−i(hi))hi∈Hi satisfies the forward inclusion prop-
erty, then it allows for a conditional belief vector (bi(hi))hi∈Hi and a strategy si , such that si is optimal at every hi ∈ Hi(si)

for the belief bi(hi). In other words, collections (D−i(hi))hi∈Hi that satisfy the forward inclusion property allow for strate-
gies that are sequentially optimal. We believe this an interesting result which may be useful for other applications as
well.

Our second result shows that the sets of strategies surviving a particular round of the backward dominance procedure
satisfy the forward inclusion property. This result thus guarantees that we can apply Lemma 9.2 to every round of the
backward dominance procedure – something that will be important for proving some of our theorems in the paper.

Lemma 9.3 (Backward dominance procedure satisfies forward inclusion property). For every player i and information set hi ∈ Hi , let
Γ k(hi) = Sk

i (hi) × Sk
−i(hi), where Γ k(hi) is the decision problem at hi produced in round k of the backward dominance procedure.

Then, the collection (Sk
−i(hi))h∈Hi of strategy subsets satisfies the forward inclusion property.

Proof. For k = 0 the statement is trivial since S0
−i(hi) = S−i(hi) for all hi ∈ Hi . So, take some k � 1. Suppose that hi,h′

i ∈ Hi

and that h′
i follows hi . Take some opponent’s strategy combination s−i in Sk

−i(hi) ∩ S−i(h′
i), where s−i = (s j) j �=i . Then, for

every j �= i, we have that s j is not strictly dominated in any decision problem Γ k−1(h′′
j ) where h′′

j ∈ H j(s j) weakly follows hi .

As h′
i follows hi , it holds in particular that s j is not strictly dominated in any decision problem Γ k−1(h′′

j ) where h′′
j ∈ H j(s j)

weakly follows h′
i . Together with the fact that s−i ∈ S−i(h′

i), this implies that s−i ∈ Sk
−i(h

′
i). So, Sk

−i(hi) ∩ S−i(h′
i) ⊆ Sk

−i(h
′
i),

and hence the forward inclusion property holds. �
Our third lemma shows an important optimality property of our backward dominance procedure. Recall that in the

backward dominance procedure, Γ k(h) denotes the decision problem at h produced at the end of round k. We say that
Γ k(h) contains a strategy si for player i if there is some s−i ∈ S−i such that (si, s−i) ∈ Γ k(h). For every player i, let Sk

i (h)

be the set of strategies that are contained in Γ k(h). In particular, if player i is active at h then we have that Γ k(h) =
Sk

i (h) × Sk
−i(h) for some Sk

−i(h) ⊆ S−i(h).

By construction of the algorithm, Sk
i (h) contains exactly those strategies in Sk−1

i (h) that, at every h′
i ∈ Hi(si) weakly

following h, are not strictly dominated in Γ k−1(h′
i). By Lemma 3 in Pearce (1984), we know that si is not strictly dominated

in Γ k−1(h′
i) if and only if there is some belief bi(h′

i) ∈ �(Sk−1
−i (h′

i)) such that si is optimal for bi(h′
i) among all strategies in

Sk−1
i (h′

i). That is,

ui
(
si,bi

(
h′

i

))
� ui

(
s′

i,bi
(
h′

i

))
for all s′

i ∈ Sk−1
i

(
h′

i

)
.

However, we can show a little more about si : Not only is si optimal for the belief bi(h′
i) among all strategies in Sk−1

i (h′
i), it

is even optimal among all strategies in Si(h′
i). That is, at every h′

i ∈ Hi(si) weakly following h we even have that

ui
(
si,bi

(
h′

i

))
� ui

(
s′

i,bi
(
h′

i

))
for all s′

i ∈ Si
(
h′

i

)
.

We call this the optimality principle for the backward dominance procedure, and it will play a crucial role in proving some
of the results in our paper.

Lemma 9.4 (Optimality principle for backward dominance procedure). Let Sk
i (h) denote the set of player i strategies contained in the

decision problem Γ k(h) produced in round k of the backward dominance procedure. Then, si ∈ Sk
i (h) if and only if for every h′

i ∈ Hi(si)

weakly following h there is some belief bi(h′) ∈ �(Sk−1(h′)) such that si is optimal for bi(h′) among all strategies in Si(h′).
i −i i i i
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Proof. The “if” direction follows immediately, so we only have to prove the “only if” direction. Fix some information set h,
some player i, some strategy si ∈ Sk

i (h), and some h′
i ∈ Hi(si) weakly following h. Then we know from our argument above

that there is some bi(h′
i) ∈ �(Sk−1

−i (h′
i)) such that

ui
(
si,bi

(
h′

i

))
� ui

(
s′

i,bi
(
h′

i

))
for all s′

i ∈ Sk−1
i

(
h′

i

)
. (9.2)

We will prove that, in fact,

ui
(
si,bi

(
h′

i

))
� ui

(
s′

i,bi
(
h′

i

))
for all s′

i ∈ Si
(
h′

i

)
.

Suppose, on the contrary, that there would be some s′
i ∈ Si(h′

i) such that

ui
(
si,bi

(
h′

i

))
< ui

(
s′

i,bi
(
h′

i

))
. (9.3)

We show that in this case there would be some s∗
i ∈ Sk−1

i (h′
i) with ui(s′

i,bi(h′
i)) � ui(s∗

i ,bi(h′
i)), which together with (9.3)

would contradict (9.2).
From Lemma 9.3 we know that the collection (Sk−1

−i (h′′
i ))h′′

i ∈Hi
satisfies the forward inclusion property. Hence, by

Lemma 9.2, we can extend bi(h′
i) to some conditional belief vector (bi(h′′

i ))h′′
i ∈Hi

with bi(h′′
i ) ∈ �(Sk−1

−i (h′′
i )) for all h′′

i ∈ Hi ,

and we can find some strategy s∗
i ∈ Si(h′

i) which is optimal, at every h′′
i ∈ Hi(s∗

i ) weakly following h′
i , for the belief bi(h′′

i ).

But then, it follows that s∗
i ∈ Sk

i (h
′
i), and hence in particular s∗

i ∈ Sk−1
i (h′

i). Moreover, s∗
i is optimal at h′

i for the belief bi(h′
i).

And hence, we have by (9.3) that

ui
(
si,bi

(
h′

i

))
< ui

(
s′

i,bi
(
h′

i

))
� ui

(
s∗

i ,bi
(
h′

i

))
for some s∗

i ∈ Sk−1
i

(
h′

i

)
.

This, however, contradicts (9.2). So, (9.3) must be incorrect, and hence si is optimal at h′
i for the belief bi(h′

i) among all
strategies in Si(h′

i). �
9.2. Every Γ k(h) in the backward dominance procedure is a decision problem

We now prove Lemma 5.2, which states that every Γ k(h) within the backward dominance procedure is a decision
problem. That is, we must show that for every k � 0, every information set h, and every active player i at h, there are sets
Di ⊆ Si(h) and D−i ⊆ S−i(h) such that Γ k(h) = Di × D−i . We prove this statement by induction on k.

Consider first the case k = 0. Take some information set h and some active player i at h. By definition, Γ 0(h) = S(h).
Moreover, by perfect recall we have that S(h) = Si(h) × S−i(h), and hence Γ 0(h) = Si(h) × S−i(h). So the statement holds
for k = 0.

Take now some k � 1, and assume that the statement holds for k − 1. Take some information set h and some active
player i at h. By our induction assumption, we have that Γ k−1(h) = Dk−1

i × Dk−1
−i for some sets Dk−1

i ⊆ Si(h) and Dk−1
−i ⊆

S−i(h). We now prove that Γ k(h) = Dk
i × Dk

−i for some sets Dk
i ⊆ Si(h) and Dk

−i ⊆ S−i(h).

Consider two arbitrary strategy combinations (si, s−i) and (s′
i, s′

−i) in Γ k(h). We show that (si, s′
−i) and (s′

i, s−i) are also

in Γ k(h), which would prove the desired statement.
As Γ k(h) ⊆ Γ k−1(h) we have in particular that (si, s−i) and (s′

i, s′
−i) are in Γ k−1(h), so si and s′

i are in Dk−1
i and s−i and

s′
−i are in Dk−1

−i . Since

Γ k(h) = Γ k−1(h)
∖ ⋃

h′�h

sd
(
Γ k−1(h′))

it follows that si and s′
i are both not strictly dominated in any Γ k−1(h′

i) where h′
i weakly follows h and i is active. Similarly,

both s−i and s′
−i do not contain any strategy for any player j �= i that is strictly dominated in some Γ k−1(h′

j) where h′
j

weakly follows h and j is active. But then, by definition of Γ k(h), it follows that (si, s′
−i) and (s′

i, s−i) are also in Γ k(h).

So we have shown that (si, s′
−i) and (s′

i, s−i) are in Γ k(h) whenever (si, s−i) and (s′
i, s′

−i) are in Γ k(h). But then, we

conclude that there must be some sets Dk
i ⊆ Si(h) and Dk

−i ⊆ S−i(h) such that Γ k(h) = Dk
i × Dk

−i . By induction on k, the
proof is complete. �
9.3. Backward dominance procedure delivers nonempty output

We now prove Theorem 5.3, which states that the backward dominance procedure delivers at every information set a
decision problem with nonempty strategy sets. Let Sk

i (h) denote the set of player i strategies in the decision problem Γ k(h)

produced by round k of the backward dominance procedure. We show, by induction on k, that Sk
i (h) is always nonempty.

For k = 0 it is true since S0(h) = Si(h), which is nonempty.
i
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Suppose now that k � 1, and that Sk−1
i (h) is nonempty for every information set h and player i. Fix some information

set h∗ and player i. We show that Sk
i (h

∗) is nonempty. By Lemma 9.3 we know that the collection (Sk−1
−i (hi))hi∈Hi satisfies

the forward inclusion property. Hence, by Lemma 9.2, we can find a conditional belief vector (bi(hi))hi∈Hi with bi(hi) ∈
�(Sk−1

−i (hi)) for all hi ∈ Hi , and a strategy si ∈ Si(h∗), such that si is optimal at every hi ∈ Hi weakly following h∗ for the

belief bi(hi). But then, we know from Lemma 9.4 that si ∈ Sk
i (h

∗), and hence Sk
i (h

∗) is nonempty. By induction on k, the
proof is complete. �
9.4. Backward dominance procedure characterizes strategy choices under common belief in future rationality (without Bayesian
updating)

We now prove our main result, Theorem 5.4, which states that the backward dominance procedure yields exactly those
strategies that can rationally be chosen under common belief in future rationality, if we do not impose (common belief in)
Bayesian updating. For the sake of brevity, whenever we speak about common belief in future rationality in this section, we
actually mean common belief in future rationality without (common belief in) Bayesian updating.

So we must prove two directions: First, that every strategy that can rationally be chosen under common belief in fu-
ture rationality survives the backward dominance procedure, and second that every strategy surviving the procedure can
rationally be chosen under common belief in future rationality.

(a) Every strategy that can rationally be chosen under common belief in future rationality (without Bayesian updating)
survives the backward dominance procedure.

For every player i and every information set hi ∈ Hi , let

Bi(hi) := {
bi(hi) ∈ �

(
S−i(hi)

)
: there is a type ti expressing common belief in

future rationality such that the marginal of bi(ti,hi) on S−i(hi) is bi(hi)
}
.

So, Bi(hi) contains those conditional beliefs at hi about the opponents’ strategy choices that are possible under common
belief in future rationality. By Sk

−i(hi) we denote the set of opponents’ strategies in the decision problem Γ k(hi) produced
in round k of the backward dominance procedure. We prove the following claim.

Claim. Bi(hi) ⊆ �(Sk
−i(hi)) for every k.

Proof. We prove the claim by induction on k. For k = 0 the statement is true since S0
−i(hi) = S−i(hi).

Now, take some k � 1, and assume that Bi(hi) ⊆ �(Sk−1
−i (hi)) for every player i and every hi ∈ Hi . Fix some player i and

some information set hi ∈ Hi . We show that Bi(hi) ⊆ �(Sk
−i(hi)).

Take some bi(hi) ∈ Bi(hi). Then, there is some epistemic model M = (Ti,bi)i∈I , and some type ti ∈ Ti expressing common
belief in future rationality, such that the marginal of bi(ti,hi) on S−i(hi) is equal to bi(hi). So, ti ’s belief at hi about the
opponents’ strategies and types, which is bi(ti,hi), only assigns positive probability to opponents’ types t j that express
common belief in future rationality. Since, by our induction assumption, B j(h′

j) ⊆ �(Sk−1
− j (h′

j)) for all opponents j, and all
h′

j ∈ H j , it follows that bi(ti,hi) only assigns positive probability to opponents’ types t j whose belief at every h′
j ∈ H j about

the other players’ strategy choices is in �(Sk−1
− j (h′

j)).
As ti expresses common belief in future rationality, bi(ti,hi) only assigns positive probability to opponents’ strategy–type

pairs (s j, t j) where s j is optimal for t j at every h′
j ∈ H j(s j) weakly following hi . Together with the fact that bi(ti,hi) only

assigns positive probability to opponents’ types t j whose belief at such h′
j about the other players’ strategy choices is in

�(Sk−1
− j (h′

j)), this implies that bi(ti,hi) only assigns positive probability to opponents’ strategies s j that are optimal, at

every h′
j ∈ H j(s j) weakly following hi , for some belief in �(Sk−1

− j (h′
j)). However, by Lemma 9.4, these latter strategies s j are

exactly the strategies in Sk
j(hi). Hence, bi(ti,hi) only assigns positive probability to opponents’ strategies in Sk

j(hi), which

means that the marginal of bi(ti,hi) on S−i(hi) is in �(Sk
−i(hi)). By definition, the marginal of bi(ti,hi) on S−i(hi) was

bi(hi), so bi(hi) ∈ �(Sk
−i(hi)).

Since this holds for every bi(hi) ∈ Bi(hi), we may conclude that Bi(hi) ⊆ �(Sk
−i(hi)). By induction on k, the proof of the

claim is complete. �
We are now ready to prove part (a). Take some strategy si that can rationally be chosen under common belief in future

rationality. Then, there is some epistemic model M = (Ti,bi)i∈I , and some type ti ∈ Ti expressing common belief in future
rationality, such that si is rational for ti . So, si must be optimal at every hi ∈ Hi(si) for the belief bi(ti,hi). By the claim
above we know that bi(ti,hi) ∈ �(S∞

−i(hi)), where S∞
−i(hi) := ⋂

k Sk
−i(hi). So, at every hi ∈ Hi(si) strategy si is optimal for

some belief in �(S∞
−i(hi)). By Lemma 9.4 this implies that si ∈ S∞

i (∅), where S∞
i (∅) := ⋂

k Sk
i (∅). This means, however, that

si survives the backward dominance procedure, and hence the proof of part (a) is complete.
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(b) Every strategy that survives the backward dominance procedure can rationally be chosen under common belief in
future rationality (without Bayesian updating).

For every information set h and every player i, let S∞
i (h) be the set of player i strategies that are left at h at the end of

the backward dominance procedure. So, S∞
i (h) := ⋂

k Sk
i (h). Remember that S∞

i (∅) contains exactly those player i strategies
that survive the backward dominance procedure.

The idea for proving (b) is as follows: We construct an epistemic model M = (Ti,bi)i∈I in which every type expresses
common belief in future rationality. Moreover, for every si ∈ S∞

i (∅) there will be some type ti ∈ Ti for which si is rational.
But then, every si ∈ S∞

i (∅) can be chosen rationally by a type that expresses common belief in future rationality, which
would prove part (b).

For every player i, we define the set of types

Ti := {
tsi

i : si ∈ Si
}
.

For every strategy si , let H∗
i (si) be the (possibly empty) collection of information sets hi ∈ Hi for which si ∈ S∞

i (hi). So, by
Lemma 9.4, we can find for every si ∈ Si some conditional belief vector (bi(si,hi))hi∈Hi such that (a) bi(si,hi) ∈ �(S∞

−i(hi))

for every hi ∈ Hi , and (b) si is optimal at every hi ∈ H∗
i (si) for the belief bi(si,hi).

We will now define the conditional beliefs of the types. Take a type tsi
i in Ti , and an information set hi ∈ Hi . For every

opponents’ strategy profile (s j) j �=i , let bi(si,hi)((s j) j �=i) be the probability that bi(si,hi) assigns to (s j) j �=i . Let bi(t
si
i ,hi) be

the conditional belief about the opponents’ strategy–type pairs given by

bi
(
tsi

i ,hi
)(

(s j, t j) j �=i
) :=

{
bi(si,hi)((s j) j �=i), if t j = t

s j

j for every j �= i,

0, otherwise.

So, at every hi ∈ Hi , type tsi
i holds the same belief about the opponents’ strategy choices as bi(si,hi). Moreover, at every

information set hi ∈ Hi , type tsi
i assigns only positive probability to strategy–type pairs (s j, t j) where s j ∈ S∞

j (hi) and

t j = t
s j

j .
We now prove that every type in this epistemic model believes in the opponents’ future rationality. Take some type

tsi
i ∈ Ti and an information set h ∈ Hi . Then, by construction, bi(t

si
i ,hi) only assigns positive probability to opponents’

strategy–type pairs (s j, t
s j

j ) where s j ∈ S∞
j (hi).

Take an opponent’s strategy s j ∈ S∞
j (hi). By construction of our algorithm, we have that s j ∈ S∞

j (h′
j) for every h′

j ∈ H j(s j)

weakly following hi . In other words, if s j ∈ S∞
j (hi), then every h′

j ∈ H j(s j) weakly following hi is in H∗
j (s j).

By construction, at every h′
j ∈ H∗

j (s j) type t
s j

j holds the same belief about the opponents’ strategy choices as b j(s j,h′
j).

Moreover, at every h′
j ∈ H∗

j (s j), strategy s j is optimal under the belief b j(s j,h′
j). So, at every h′

j ∈ H∗
j (s j), strategy s j is

optimal for type t
s j

j . Since we have seen that every h′
j ∈ H j(s j) weakly following hi is in H∗

j (s j), it follows that s j is optimal

for type t
s j

j at every h′
j ∈ H j(s j) that weakly follows hi .

So, we have shown for every s j ∈ S∞
j (hi) that s j is optimal for type t

s j

j at every h′
j ∈ H j(s j) weakly following hi . Since

bi(t
si
i ,hi) only assigns positive probability to opponents’ strategy–type pairs (s j, t

s j

j ) where s j ∈ S∞
j (hi), we may conclude

the following: Type tsi
i assigns at hi only positive probability to opponents’ strategy–type pairs (s j, t

s j

j ) where s j is optimal

for type t
s j

j at every h′
j ∈ H j(s j) weakly following hi . In other words, type tsi

i believes at hi in the opponents’ future

rationality. As this applies to every hi ∈ Hi , we may conclude that type tsi
i believes in the opponents’ future rationality. So,

every type tsi
i in the epistemic model believes in the opponents’ future rationality.

From this fact, it immediately follows that every type in the epistemic model expresses common belief in future ratio-
nality.

Now, take a strategy si that survives the backward dominance procedure, that is, si ∈ S∞
i (∅). Consider the associated

type tsi
i . Above, we have seen that every hi ∈ Hi(si) weakly following ∅ is in H∗

i (si). Since, as we have seen above, si is
optimal for tsi

i at every hi ∈ H∗
i (si), it follows that si is optimal for tsi

i at every hi ∈ Hi(si) weakly following ∅. However, this
means that si is rational for type tsi

i . Since, as we have shown above, tsi
i expresses common belief in future rationality, it

follows that si can rationally be chosen under common belief in future rationality. This completes the proof of part (b). �
9.5. Best-response characterization

We finally prove Theorem 6.3, which provides a best-response characterization of common belief in future rationality.
More precisely, we must show that a strategy si can rationally be chosen under common belief in future rationality, if and
only if, there is a collection (Di(h))h∈H,i∈I of strategy subsets which is closed under belief in future rationality and where
si ∈ Di(∅). So, we must prove two directions.
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Suppose first that si can rationally be chosen under common belief in future rationality. Then, by Theorem 4.3, si ∈
S∞

i (∅). As the collection (S∞
i (h))h∈H,i∈I of strategy subsets is closed under belief in future rationality, the proof of the first

direction is complete.
Suppose next that (Di(h))h∈H,i∈I is a collection of strategy subsets which is closed under belief in future rationality,

and take some si ∈ Di(∅). We must show that si can rationally be chosen under common belief in future rationality. To
show this we prove the following claim. Recall that Sk

i (h) denotes the set of player i strategies produced in round k of the
backwards rationalizability procedure at information set h.

Claim. Di(h) ⊆ Sk
i (h) for every k.

Proof. We proceed by induction on k. For k = 0 the statement is true since S0
i (h) = Si(h).

Take now some k � 1, and suppose that Di(h) ⊆ Sk−1
i (h) for every player i and information set h. Fix some player i and

some information set h. We will show that Di(h) ⊆ Sk
i (h).

Choose some arbitrary si ∈ Di(h). As the collection (Di(h))h∈H,i∈I is closed under belief in future rationality, there must
be some conditional belief vector bi satisfying Bayesian updating such that (1) bi(h′

i) ∈ �(D−i(h′
i)) for every h′

i ∈ Hi weakly
following h, and (2) si is optimal for bi(h′

i) at every h′
i ∈ Hi(si) weakly following h. As, by induction assumption, D−i(h′

i) ⊆
Sk−1

−i (h′
i), we conclude that there is some conditional belief vector bi satisfying Bayesian updating such that (1) bi(h′

i) ∈
�(Sk−1

−i (h′
i)) for every h′

i ∈ Hi weakly following h, and (2) si is optimal for bi(h′
i) at every h′

i ∈ Hi(si) weakly following h.

But then, by construction of the backwards rationalizability procedure, we have that si ∈ Sk
i (h)̇. We thus conclude that

Di(h) ⊆ Sk
i (h), and the proof of the claim is complete by induction on k. �

From the claim, it immediately follows that Di(h) ⊆ S∞
i (h) for every information set h and player i. Take some strategy

si ∈ Di(∅). As Di(∅) ⊆ S∞
i (∅), it follows that si ∈ S∞

i (∅), which means that si survives the backwards rationalizability pro-
cedure. But then, by Theorem 4.3, we know that si can rationally be chosen under common belief in future rationality. This
completes the proof of Theorem 6.3. �
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