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Abstract

We present an epistemic model for games with perfect information in which players, upon observing
an unexpected move, may revise their belief about the opponents’ preferences over outcomes. For a given
profile P of preference relations over outcomes, we impose the following conditions: (1) players initially
believe that opponents have preference relations as specified by P; (2) players believe at every instance
of the game that each opponent is carrying out a sequentially rational strategy; (3) if a player revises his
belief about an opponent’s type, he must search for a “new” type that disagrees with the “old” type on a
minimal number of statements about this opponent; (4) if a player revises his belief about an opponent’s
preference relation over outcomes, he must search for a “new” preference relation that disagrees with the
“old” preference relation on a minimal number of pairwise rankings. It is shown that every player whose
preference relation is given by P , and who throughout the game respects common belief in the events
(1)–(4), has a unique sequentially rational strategy, namely his backward induction strategy in the game
induced by P.
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1. Introduction

In this paper we are concerned with the problem of how to model rationality in dynamic
games. In a purely static setting, rational choice can be formalized by the requirement that players
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hold beliefs about the opponents’ strategy choices, and choose strategies that are optimal against
these beliefs. In a dynamic game, however, it may happen that a player’s initial belief about the
opponents’ strategy choices will be contradicted by the opponents’ real behavior later on in the
game. The player must then revise his belief about the opponents so as to explain the observed
behavior. The two basic questions that we shall focus on are: How should the player revise his
beliefs? and What consequences does this have for the player’s own behavior?

Throughout this paper, we shall restrict attention to games with perfect information. In order
to formalize how players reason about their opponents, and in particular how players may revise
their beliefs about the opponents’ characteristics, we present a formal epistemic model in which
the relevant characteristics of each player are represented by a type. Within our setup, a type
specifies a strict preference relation over the terminal nodes in the game, and defines at every de-
cision node a conditional belief about the opponents’ strategy choices and types. Since different
opponents’ types may have different preference relations over terminal nodes, a type may, in par-
ticular, revise his belief about the opponents’ preference relations over terminal nodes during the
game. Intuitively, a type for player i may be interpreted as a list of expressions of the kind “player
i has preference relation Pi over terminal nodes”, “player i believes at decision node hi that
player j chooses strategy s j ”, “player i believes at decision node hi that player j has preference
relation Pj over terminal nodes”, “player i believes at hi that player j believes at h j that player
k chooses strategy sk”, and so forth. We refer to such expressions as statements about player i.

We consider a scenario in which players, throughout the game, believe that their opponents
carry out sequentially rational strategies, that is, strategies that are optimal at every decision
node. We refer to this condition as structural belief in sequential rationality (SBSR). Hence, if a
player currently believes that an opponent chooses a certain strategy, but finds out later that his
opponent has chosen otherwise, then the player must seek for a new belief about the opponent
that rationalizes this unexpected event, while maintaining his belief that the opponent carries out
a sequentially rational strategy. This may be done, for instance, by changing the belief about
the opponent’s preferences over terminal nodes, or by changing the belief about the opponent’s
beliefs, or both.

A generally accepted principle in belief revision theory is that belief changes should be as
small as possible, while being able to explain the newly observed information (see Schulte (2002)
for an excellent discussion of the idea of minimal belief revision, and an overview of the various
formalizations thereof in belief revision theory). The intuition behind this principle is that the
current beliefs of a decision maker reflect, in some sense, the “best possible theory” that he can
produce about the state of affairs given his current information. If these beliefs are contradicted
by new observations, the decision maker therefore attempts to explain these new events by
disturbing his previous beliefs as little as possible.

We attempt to incorporate this idea of minimal belief revision into our epistemic model. To
illustrate the basic idea, consider a player i who believes at his decision node hi that player j has
type t j . Suppose there is some future decision node h′

i , also controlled by player i , that cannot
be reached if type t j chooses a sequentially rational strategy. If h′

i is nevertheless reached, player
i should clearly change his belief about player j’s type. The requirement of SBSR, namely,
imposes that player i should still believe at h′

i that player j chooses a sequentially rational
strategy. Since player i may revise his belief about j’s preference relation over terminal nodes,
there are many player j’s types which have a sequentially rational strategy leading to h′

i , and
which could be chosen by player i as a revised belief about player j’s type. Our version of
minimal belief revision (MBR) states that, among these many different new beliefs about player
j’s type that he could choose to rationalize the event of reaching h′

i , he should choose a player
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j type t ′j that is “most similar” to his previous belief t j . By most similar, we mean that t ′j
should disagree with t j on as few statements about player j as possible, and, given the previous
condition, the preference relations over terminal nodes of t ′j and t j should disagree on a minimal
number of pairwise rankings.

A last condition we impose is that there should be some profile P of preference relations over
terminal nodes, specifying one preference relation for each player, such that every player initially
believes that the opponents’ preference relations are given by P . We refer to this event as initial
belief in P (IBP).

The first main result in this paper, Theorem 5.1, shows that common structural belief in the
events IBP, SBSR and MBR is possible. That is, requiring that every player always believes that
every player always believes that... that every player always believes that every player satisfies
IBP, SBSR and MBR does not lead to logical contradictions.

In the second main result, Theorem 5.2, we prove that common structural belief in IBP, SBSR
and MBR leads to backward induction. More precisely, if a type ti for player i has preference
relation Pi as specified by P , and if ti respects common structural belief in IBP, SBSR and MBR,
then this type has a unique sequentially rational strategy, namely his backward induction strategy
in the game induced by the profile P of preference relations.

The concept of common structural belief in IBP, SBSR and MBR may thus be viewed as a
possible foundation for backward induction, which constitutes one of the oldest ideas in game
theory. Other epistemic foundations for the backward induction strategy profile include Asheim
(2002), Asheim and Perea (2005), Aumann (1995), Balkenborg and Winter (1997), Clausing
(2003, 2004), Feinberg (2005), Quesada (2002, 2003), Samet (1996) and Stalnaker (1998).
A detailed description and comparison of these foundations can be found in Perea (2007b).
Battigalli and Siniscalchi (2002) and Brandenburger et al. (2007) provide epistemic models
that lead to the backward induction outcome but not necessarily to the backward induction
strategy profile. The main difference between the above foundations and our model is that in
our setting, players are assumed to interpret every unexpected move by an opponent as a rational
move, whereas this is not the case in the other foundations. Moreover, in our model players
are allowed to revise their beliefs about the opponents’ preference relations over terminal nodes
in order to rationalize such unexpected moves, while the aforementioned foundations do not
model this possibility, at least not explicitly. In fact, Reny (1992a, 1993) has already illustrated
that there are only very few games with perfect information in which common structural belief
in sequential rationality is possible without allowing players to revise their beliefs about the
opponents’ preferences over terminal nodes. Other foundations for backward induction that
do allow players to revise their beliefs about the opponents’ utilities during the game can be
found in Perea (2006, 2007a). The main difference with our approach here is that the latter two
foundations use proper belief revision, rather than MBR, as a criterion to restrict the possible
belief revision procedures. Proper belief revision states that whenever player i at decision node
hi revises his belief about player j , then he must not change his belief about player j’s relative
ranking of two strategies s j and s′

j , if both s j and s′

j could have led to hi . The intuition is that
such belief changes would be “unnecessary ” in order to explain the event that hi has been
reached. In Perea (2006), Theorem 7.1, it is shown that common structural belief in SBSR and
proper belief revision leads to the backward induction strategy profile in every generic game with
perfect information. In Theorem 6.8 we establish a formal relationship between MBR and proper
belief revision, which proves to be important for deriving Theorem 5.2.

The outline of this paper is as follows. In Section 2 we provide an example that illustrates why
common structural belief in IBP, SBSR and MBR leads to backward induction. In Section 3 we



Author's personal copy

4 A. Perea / Mathematical Social Sciences 56 (2008) 1–26

Fig. 1. Common structural belief in IBP, SBSR and MBR leads to backward induction.

develop an epistemic model for games with perfect information. Formal definitions of SBSR and
MBR are given in Section 4. In Section 5 we present the main results. Section 6 discusses some
important implications of (common structural belief in) SBSR and MBR, which will be used in
Section 7 to prove the two main results. Some concluding remarks are given in Section 8. Proofs
of technical lemmas and most preparatory results can be found in the Appendix.

2. Why minimal belief revision leads to backward induction

2.1. An example

As to illustrate why common structural belief in IBP, SBSR and MBR leads to backward
induction, consider the game tree depicted in Fig. 1. The symbols A, C, E and F denote the
different terminal nodes that can be reached at the end. Consider the profile P = (P1, P2) of
preference relations over terminal nodes, where P1 = E AFC and P2 = FC E A. Here, E AFC
means that player 1 strictly prefers E to A, strictly prefers A to F and strictly prefers F to C .
Similarly for FC E A. Let us denote the three decision nodes by h1, h2 and h3, respectively.
Consider a type t2 for player 2 that has preference relation P2 over terminal nodes and respects
common structural belief in IBP, SBSR and MBR. We show that t2 has a unique sequentially
rational strategy, namely c, which is his backward induction strategy induced by P . We proceed
by the following four steps.

Step 1.We show that type t2, at h2, does not revise his belief about player 1’s conditional beliefs.
That is, if type t2 revises a belief at h2, it must be about player 1’s preference relation over the
terminal nodes.

Proof of Step 1. Suppose that t2 initially believes that player 1 has type t ini
1 , but believes at h2 that

player 1 has type t rev
1 . If player 2 is at h2, meaning that he has observed move b by player 1, then

he can always rationalize this move by believing that player 1’s preference relation is E FC A,
while maintaining his previous belief about player 1’s beliefs. Therefore, player 2 can rationalize
the move b by a revised belief about player 1’s type that only differs from t ini

1 on at most one
statement, namely player 1’s preference relation over terminal nodes.

Since type t2 is assumed to satisfy MBR, the revised belief t rev
1 about player 1’s type should

differ from the initial belief t ini
1 on at most one statement. Suppose, contrary to what we want to

prove, that type t2 changes his belief about player 1’s beliefs. That is, suppose that t rev
1 and t ini

1
would have different beliefs about player 2’s strategy choice and/or beliefs. To keep our argument
simple, assume that t rev

1 and t ini
1 would have different first-order beliefs at h1 about player 2’s

choice. Hence, t ini
1 initially believes that player 2 makes choice v at h2, whereas t rev

1 initially
believes that player 2 makes the other choice w 6= v. Suppose also that t ini

1 initially believes that
player 2 believes, at h2, that player 1 makes the choice x at h3, and that t rev

1 initially believes
that player 2 believes, at h2, that player 1 makes the choice y at h3. Since t2 respects common
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structural belief in SBSR, both t ini
1 and t rev

1 must satisfy SBSR. Since t ini
1 initially believes that

player 2 chooses v at h2, choice v must optimal for player 2 at h2, given t ini
1 ’s initial belief that

player 2’s preference relation over terminal nodes is FC E A, and given t ini
1 ’s initial belief that

player 2 believes at h2 that player 1 chooses x at h3. Similarly, as t rev
1 initially believes that player

2 chooses w at h2, choice w must optimal for player 2 at h2, given t rev
1 ’s initial belief that player

2’s preference relation over terminal nodes is FC E A, and given t rev
1 ’s initial belief that player

2 believes at h2 that player 1 chooses y at h3. However, since v 6= w, this can only be the case
if x 6= y as well. That is, t ini

1 and t rev
1 must not only differ on the initial belief they have about

player 2’s choice, but also on the initial belief they have about the belief that player 2 has at h2
about player 1’s choice at h3. So, t ini

1 and t rev
1 must differ on at least two statements, which would

contradict our assumption that t2 satisfies MBR. We may thus conclude that t rev
1 and t ini

1 must
have the same belief, at h1, about player 2’s choice.

By a similar argument we could also show that t rev
1 and t ini

1 must have the same belief, at h1
and at h3, about the belief that player 2 has, initially and at h2, about player 1’s strategy choice.
Also, t rev

1 and t ini
1 must have the same belief, at h1 and at h3, about the belief that player 2 has,

initially and at h2, about the belief that player 1 has, at h1 and h3, about player 2’s choice, and so
on. That is, t rev

1 and t ini
1 must have exactly the same conditional beliefs about player 2. So, type

t2 does not change his belief about player 1’s conditional beliefs, which completes the proof of
step 1.

Step 2. We show that type t2, at h2, does not revise his belief about player 1’s ranking of the
terminal nodes that follow h2.

Proof of Step 2. Recall that t2 initially believes that player 1 is of type t ini
1 with preference relation

P1 = E AFC over the terminal nodes. So, type t2 initially believes that player 1 ranks outcome
E over outcome F . Suppose, contrary to what we want to prove, that type t2, at h2, revises his
belief about player 1’s ranking of the outcomes E and F . That is, type t2 believes, at h2, that
player 1 is of type t rev

1 with a preference relation P rev
1 over terminal nodes that ranks F over

E . Since t2 satisfies SBSR, type t2 must believe at h2 that player 1 is carrying out a sequentially
rational strategy. Hence, choice b must be optimal for player 1, given the preference relation P rev

1
and the initial belief that t rev

1 has about player 2’s choice.
Now, consider the preference relation P̃ rev

1 over terminal nodes which is obtained from P rev
1 by

switching the roles of outcomes E and F , but leaves the roles of the other outcomes unchanged.
In particular, P̃ rev

1 ranks E over F , just as P1 does. Recall that P rev
1 and P1 disagree on the

ranking of E and F . It can be verified (see Lemma 6.7 for a formal proof) that P1 and P̃ rev
1

disagree on less pairwise rankings than P1 and P rev
1 .

Consider now the type t̃ rev
1 which has preference relation P̃ rev

1 , but has the same conditional
beliefs about player 2 as t rev

1 . Then, for type t̃ rev
1 is would still be optimal to choose b at h1, since

t̃ rev
1 holds the same belief at h1 about player 2’s choice as t rev

1 , and P̃ rev
1 has only switched the

roles of E and F . This means, however, that there is another possible revised belief about player
1’s type, t̃ rev

1 , which rationalizes the event that player 1 has chosen b, disagrees with t ini
1 on the

same number of statements as t rev
1 does, but which disagrees with t ini

1 on less pairwise rankings
of terminal nodes than t rev

1 does. This would contradict our assumption that t2 satisfies MBR.
We may thus conclude that t rev

1 must rank E over F . So, type t2, at h2, does not revise his belief
about player 1’s ranking of the terminal nodes that follow h2, as was to show.

Step 3. We show that type t2, at h2, does not change his belief about player 1’s ranking of his
strategies (b, e) and (b, f ) that lead to h2.
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Proof of Step 3. We know from steps 1 and 2 that type t2, at h2, does not change his belief
about player 1’s conditional beliefs, nor about player 1’s ranking of the outcomes E and F . This
implies, however, that type t2 does not change his belief about player 1’s ranking of his strategies
(b, e) and (b, f ).

Step 4. We show that type t2 has only one sequentially rational strategy, namely c, which is his
backward induction strategy induced by P.

Proof of Step 4. Type t2 initially believes that player 1 has preference relation P1 = E AFC . So,
type t2 initially believes that player 1, at h3, ranks strategy (b, e) over strategy (b, f ). By step
3, it then follows that type t2, at h2, still believes that player 1, at h3, ranks strategy (b, e) over
strategy (b, f ). As t2 satisfies SBSR, type t2 must believe at h2 that player 1 is carrying out the
strategy (b, e). Since type t2 has preference relation P2 = FC E A, type t2 must choose c at h2.
This completes the proof.

2.2. Outline of the proof

The proof of our Theorem 5.2, which states that, in general, common structural belief in IBP,
SBSR and MBR leads to backward induction, follows the same steps as the argument above.
Here is a short outline: Take a type ti for player i that respects common structural belief in IBP,
SBSR and MBR.

We first show in Lemma 6.5 that ti never revises his beliefs about the opponents’ conditional
beliefs. This is step 1 in our example above.

We then show, by means of Lemma 6.7 and Theorem 6.8, that ti , at information set hi , does
not revise his belief about opponent j’s ranking of strategies s j and s′

j if both s j and s′

j lead to
hi . Formally, we say that type ti satisfies proper belief revision (see Perea (2006, 2007a)). This
corresponds to steps 2 and 3 in our example.

We finally show, in Section 7.2, that ti only has one sequentially rational strategy, namely his
backward induction strategy induced by P. This final conclusion is based on the insight that ti
satisfies proper belief revision. This corresponds to step 4 in the example.

3. The epistemic model

3.1. Games with perfect information

A dynamic game is said to be with perfect information if every player, at each instance of
the game, observes the opponents’ moves that have been made until then. Formally, an extensive
form structure S with perfect information consists of a finite game tree, a finite set I of players,
for every player i a finite set Hi of decision nodes, for every decision node hi ∈ Hi a finite set
A(hi ) of available actions, and a finite set Z of terminal nodes. Perfect information is modeled by
the assumption that each decision node by itself constitutes an information set. By A we denote
the set of all actions, whereas H denotes the collection of all decision nodes. We assume that
no chance moves occur. The definition of a strategy we shall employ coincides with the concept
of a plan of action, as discussed in Rubinstein (1991). The difference with the usual definition
is that we require a strategy only to prescribe an action at those decision nodes that the same
strategy does not avoid. Formally, let H̃i ⊆ Hi be a collection of player i decision nodes, not
necessarily containing all decision nodes, and let si : H̃i → A be a mapping prescribing at
every hi ∈ H̃i some available action si (hi ) ∈ A(hi ). For a given decision node h ∈ H , not
necessarily belonging to player i , we say that si avoids h if there is some hi ∈ H̃i on the path to
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h at which the prescribed action si (hi ) deviates from the path to h. Such a mapping si : H̃i → A
is called a strategy for player i if H̃i is exactly the collection of player i decision nodes not
avoided by si . Obviously, every strategy si can be obtained by first prescribing an action at all
player i decision nodes, that is, constructing a strategy in the classical sense, and then deleting
those player i decision nodes that are avoided by it. For a given strategy si ∈ Si , we denote by
Hi (si ) the collection of player i decision nodes that are not avoided by si . Let Si be the set of
player i strategies. For a given decision node h ∈ H and player i , we denote by Si (h) the set of
player i strategies that do not avoid h. Then, it is clear that a profile (si )i∈I of strategies reaches
a decision node h if and only if si ∈ Si (h) for all players i.

3.2. Types

We shall now formally model the players in the extensive form structure S as decision makers
under uncertainty. Our primary assumption is that every player i holds a strict, complete and
transitive preference relation Pi over the set of terminal nodes, and holds at the beginning of
the game, as well as at every decision node hi ∈ Hi , a conditional belief about the opponents’
strategy choices and the opponents’ preference relations over terminal nodes. Throughout this
paper, whenever we write “preference relation over terminal nodes”, we always assume that
it is strict, complete and transitive. On top of this we assume that every player, throughout the
game, holds a conditional belief about the opponents’ conditional beliefs about the other players’
strategy choices and a conditional belief about the opponents’ conditional beliefs about the other
players’ preference relations over terminal nodes. Moreover, each player also holds, at every
instance, a conditional belief about the opponents’ conditional beliefs about the other players’
conditional beliefs about their opponents’ strategy choices and preference relations over terminal
nodes, and so on. Repeating this argument leads to infinite hierarchies of conditional beliefs.

Similarly to Ben-Porath (1997), Battigalli and Siniscalchi (1999) and Perea (2006), we model
such hierarchies of conditional beliefs by means of epistemic types. We differ, however, in our
notion of belief. Whereas the aforementioned papers work with probabilistic beliefs, we use the
simpler notion of single-valued possibility sets to express the players’ beliefs. By the latter we
mean that a player, at each of his decision nodes, only deems possible one strategy choice and
one preference relation for every opponent. That is, the first-order belief of every player is single-
valued. Not only this, we also require that a player, at each of his decision nodes, only deems pos-
sible one single-valued first-order belief for every opponent. So, also the second-order belief of a
player should be single-valued. Similarly, we also require that a player, for every k, only deems
possible one single-valued kth-order belief for every opponent at each of his decision nodes.

We make this assumption in order to keep our model and definitions as simple as possible. In
Section 8 we show how the model could be extended to multi-valued possibility sets without
affecting the main results. For the formal representation of our epistemic model we need
some terminology. Let h0 be the decision node that marks the beginning of the game, and let
H∗

i = Hi ∪ {h0}. By P we denote the set of strict, complete and transitive preference relations
over the terminal nodes.

Definition 3.1 (Epistemic Model). An epistemic model in our setting is a tuple

(Ti , Pi , (si j ) j 6=i , (ti j ) j 6=i )i∈I

where, for every player i , (1) Ti is a nonempty set, (2) Pi is a function from Ti to P , and for
every opponent j , (3) si j is a function from Ti to ×hi ∈H∗

i
S j (hi ), and (4) ti j is a function from Ti

to ×hi ∈H∗
i

T j .
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The interpretation is that Ti represents the set of types for player i, Pi (ti ) is ti ’s preference
relation over terminal nodes, si j (ti ) is ti ’s conditional belief vector about player j’s strategy
choice, and ti j (ti ) is ti ’s conditional belief vector about player j’s type. Let si j (ti , hi ) ∈ S j (hi )

denote ti ’s conditional belief at hi about j’s strategy choice, and let ti j (ti , hi ) ∈ T j be ti ’s
conditional belief at hi about j’s type. In order to reduce notation, we write s j (ti , hi ) instead of
si j (ti , hi ), and t j (ti , hi ) instead of ti j (ti , hi ). This cannot cause any confusion, since the index i
in s j (ti , hi ) and t j (ti , hi ) already indicates that these beliefs belong to player i.

We say that the epistemic model is complete if for every player i, every possible preference
relation over terminal nodes, and every possible conditional belief vector about the opponents’
strategy-type pairs there is a type for player i with these characteristics. More formally, we have
the following definition:

Definition 3.2 (Complete Epistemic Model). An epistemic model

(Ti , Pi , (si j ) j 6=i , (ti j ) j 6=i )i∈I

is complete if for every player i , every P̃i ∈ P , every opponent j , every s̃i j ∈ ×hi ∈H∗
i

S j (hi ),

and every t̃i j ∈ ×hi ∈H∗
i

T j there is some ti ∈ Ti with Pi (ti ) = P̃i , si j (ti ) = s̃i j for all opponents
j , and ti j (ti ) = t̃i j for all opponents j.

As is well-known, the existence of complete epistemic models is a nontrivial problem. In
the Appendix, however, we show how to construct such a complete epistemic model. In the
remainder of this paper, whenever we speak about an epistemic model, we assume that it is
complete.

The reason we insist on a complete epistemic model is because we need it later for our
definition of MBR. Intuitively, this condition states that, whenever player i revises his belief
about player j’s type upon observing a new move a by player j , then he should look for the
player j type that (1) rationalizes the newly observed move a, and (2) which is “as similar as
possible” to the previous belief that player i had about player j’s type. So, when player i searches
for the most similar type for player j that rationalizes the newly observed move a, player i should
consider all possible preference relations over terminal nodes and all possible belief hierarchies
that player j could possibly have. That is, we need a complete epistemic model.1

Notice that from our epistemic model we can derive for every type a belief hierarchy. Since
every type ti holds conditional beliefs about player j’s type, and since player j’s type specifies
player j’s preference relation over terminal nodes, one can derive ti ’s conditional belief vector
about player j’s preference relation over terminal nodes. In particular, ti may change his belief
about j’s preference relation over terminal nodes as the game proceeds. Since player j’s type
also specifies j’s conditional belief vector about the opponents’ strategy choices, one can derive
ti ’s conditional belief vector about j’s conditional beliefs about the opponents’ strategy choices,
and so on.

3.3. Belief and common belief

Fix an epistemic model. By T = ∪i∈I Ti we denote the collection of all types for all players.
Let E ⊆ T be some subset of types, and let ti be a specific type for player i . We say that ti

1 We do not need a universal type space, though. (Universality means that every epistemic model can be mapped into
the model by a beliefs-preserving morphism.)
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initially believes E if t j (ti , h0) ∈ E for every opponent j . That is, ti believes at the beginning
of the game that the opponents’ types belong to E . We say that ti structurally believes E if
t j (ti , hi ) ∈ E for every opponent j and every hi ∈ H∗

i . In words, ti believes at every instance of
the game that the opponents’ types belong to E . We recursively define

B1(E) = {t ∈ E |t structurally believes E}

and

Bk(E) = {t ∈ Bk−1(E)|t structurally believes Bk−1(E)}

for every k ≥ 2. We say that ti respects common structural belief in E if t ∈ Bk(E) for every k.
Hence, ti belongs to E , believes at every instance that all opponents’ types belong to E, believes
at every instance that all opponents’ types believe at every instance that all other players’ types
belong to E , and so on.

4. Restrictions on belief revision policies

If a player currently believes that an opponent chooses a certain strategy, but finds out later
that his opponent has not, he must revise his belief about the opponent’s strategy choice. The
first assumption we make is that players believe, at each of their decision nodes, that opponents
choose sequentially rational strategies. Consequently, if a player changes his belief about an
opponent’s strategy choice, he must in general also change his belief about the opponent’s
type, since the newly believed opponent’s strategy should be sequentially rational for the newly
believed opponent’s type. It may be necessary, for instance, to change the belief about the
opponent’s preference relation over terminal nodes as to rationalize the newly observed move.
The player may also decide to change his belief about the opponent’s conditional beliefs. The
second assumption we make is that players should revise their belief about an opponent’s strategy
choice and type in some minimal way. That is, if player i currently believes that player j has type
t j , but finds out later (perhaps surprisingly) that decision node hi has been reached, he should
look for a player j’s type t ′j that (1) has a sequentially rational strategy that leads to hi , and (2)
is as “similar” to t j as possible. By the latter, we mean that t ′j should disagree with t j on as few
“statements” as possible, and, moreover, the preference relations of t ′j and t j over terminal nodes
should disagree on as few pairwise rankings as possible.

We shall now formalize these two assumptions within our epistemic model. We start by
defining sequentially rational strategies. Choose a strategy si and a type ti for player i . Recall
that Hi (si ) is the set of player i decision nodes that are not avoided by si . At a given decision
node hi ∈ Hi (si ), let z(si , ti , hi ) denote the terminal node that is reached if the game would start
at hi , player i would choose according to si , and every opponent j would choose according to
the conditional belief s j (ti , hi ) that ti holds at hi about j’s strategy choice.

Definition 4.1 (Sequentially Rational Strategy). Strategy si is sequentially rational for type ti
if for every decision node hi ∈ Hi (si ) there is no strategy s′

i ∈ Si (hi ) such that Pi (ti ) strictly
prefers the terminal node z(s′

i , ti , hi ) to the terminal node z(si , ti , hi ).

If we would use the “classical” definition of a strategy, prescribing an action at every decision
node, then the definition above would coincide with that of a weakly sequentially rational strategy
(see Reny (1992b)). Weak sequential rationality only requires the player’s behavior to be optimal
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at those information sets that can actually be reached by the strategy at hand, but not necessarily
at information sets which the strategy itself avoids.

We may now formalize what it means that a type always believes that his opponents choose
sequentially rational strategies.

Definition 4.2 (Structural Belief in Sequential Rationality). Type ti structurally believes in
sequential rationality if for every hi ∈ H∗

i and every opponent j it holds that s j (ti , hi ) is
sequentially rational for t j (ti , hi ).

In order to introduce our notion of minimal belief revision, we must define a similarity
relation between types. This similarity relation is based on two components: (1) comparing
the “statements about a player” between types, and (2) comparing the preference relations over
terminal nodes between types.

Definition 4.3 (Statement About a Player). A first-order statement about player i is either a
statement of the type “player i has preference relation P̃i ”, or a statement of the type “player i
believes at hi that player j chooses s j ∈ S j (hi )”. Assuming that (k −1)th-order statements about
player j have been defined for every player j , a kth-order statement about player i is either a
(k − 1)th-order statement about player i , or a statement of the type “player i believes at hi that
ϕ”, where ϕ is a (k − 1)th-order statement about some player j 6= i . A statement about player i
is a kth-order statement about player i for some k.

We say that two types ti , t ′i ∈ Ti disagree on an statement ϕ about player i if ϕ is true at ti but
not at t ′i , or vice versa. Now, consider two preference relations P1 and P2 over terminal nodes.
For every pair of terminal nodes {z, z′

}, we say that P1 and P2 disagree on the pairwise ranking
of {z, z′

} if P1 ranks z over z′ and P2 ranks z′ over z, or vice versa.

Definition 4.4 (Similarity Between Types). Consider three types ti , t ′i and t ′′i for player i . We say
that t ′i is more similar to ti than t ′′i if and only if (1) t ′i disagrees with ti on fewer statements about
player i than t ′′i does, or (2) t ′i disagrees with ti on as many statements about player i as t ′′i does,
but Pi (t ′i ) disagrees with Pi (ti ) on fewer pairwise rankings than Pi (t ′′i ) does.

In this definition, every statement about player i carries equal weight. Hence, an important
implicit assumption we make in this notion of similarity is that all beliefs of any order are viewed
as “equally important”. That is, the belief that player i has about player j’s strategy choice is
considered “as important” as player i’s belief about player j’s belief about the other players’
strategy choices. This assumption seems natural once we impose common structural belief in
SBSR, since in this case player i’s belief about player j’s belief about his opponents’ strategies
serves as a justification for player i’s belief about player j ’s strategy choice. Common structural
belief in SBSR implies, namely, that player i should believe that player j’s strategy choice is
optimal given player i’s belief about player j’s preference relation over terminal nodes, and
given player i’s belief about player j’s conditional beliefs about the opponents’ strategy choices.
Hence, player i’s second-order beliefs justify player i’s first-order beliefs about the opponents’
strategy choices, and therefore both beliefs may be viewed as “equally important”. Similarly,
common structural belief in SBSR implies that player i’s kth-order beliefs justify his (k − 1)th-
order beliefs about the opponents’ strategy choices for any k. For this reason, we assume that
beliefs of all possible orders are viewed as “equally important” in our model, thereby justifying
the notion of similarity as it is stated.
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In order to define minimal belief revision, we need some more terminology. For every decision
node h and every player i , let T sr

i (h) be the set of types for player i for which there is a
sequentially rational strategy in Si (h). That is, if player i structurally believes in sequential
rationality, and finds out that some information set hi has been reached, he should believe that
every opponent j has a type in T sr

j (hi ). Say that decision node h2
i ∈ H∗

i immediately follows

h1
i ∈ H∗

i if (1) h2
i follows h1

i , and (2) there is no player i’s decision node between h1
i and h2

i .

Definition 4.5 (Minimal Belief Revision). Type ti is said to satisfy minimal belief revision if
for every two decision nodes h1

i , h2
i ∈ H∗

i such that h2
i immediately follows h1

i , and for every
opponent j , the type t j (ti , h2

i ) is in T sr
j (h2

i ) and is most similar to t j (ti , h1
i ) among all types in

T sr
j (h2

i ).

5. The main results

Let S be an extensive form structure with perfect information, and P̃ = (P̃i )i∈I a profile of
preference relations on the set of terminal nodes. Let ti be a type for player i . We say that ti
initially believes in P̃ if Pj (t j (ti , h0)) = P̃j for every opponent j . That is, at the beginning ti
believes that the opponents’ preference relations over terminal nodes are as specified by P̃ . Let
IBP denote the event that a type initially believes in P̃ . Moreover, let SBSR denote the event that
a type structurally believes in sequential rationality, and let MBR be the event that a type satisfies
minimal belief revision. The first main result states that common structural belief in the events
IBP, SBSR and MBR is possible. Hence, common structural belief in these events does not lead
to logical contradictions.

Theorem 5.1. Let S be an extensive form structure with perfect information, and P̃ = (P̃i )i∈I a
profile of strict, complete and transitive preference relations on the set of terminal nodes. Then,
there is an epistemic model such that for every player i there is a type ti that respects common
structural belief in the events IBP, SBSR and MBR.

If one would use the “classical” definition of a strategy, prescribing an action at every
information set, then the theorem above would still hold.

The second main result states that common structural belief in the events IBP, SBSR and
MBR leads to backward induction. In order to state this result formally, we need the following
definitions. Let S be an extensive form structure with perfect information, and P̃ = (P̃i )i∈I a
profile of strict, complete and transitive preference relations on the set of terminal nodes. Then,
the pair (S, P̃) may be interpreted as a game, and the backward induction procedure in the game
(S, P̃) leads to a unique backward induction action a∗(hi ) at every decision node hi . For every
player i , let s∗

i be the unique strategy that chooses the backward induction action a∗(hi ) at every
hi ∈ Hi (s∗

i ). We refer to s∗

i as the backward induction strategy for player i in (S, P̃).

Theorem 5.2. Let S be an extensive form structure with perfect information, and P̃ = (P̃i )i∈I
a profile of strict, complete and transitive preference relations on the set of terminal nodes. Let
ti be a type with preference relation P̃i , respecting common structural belief in the events IBP,
SBSR and MBR. Then, there is a unique sequentially rational strategy for ti , namely player i’s
backward induction strategy in (S, P̃).

If we would use the “classical” definition of a strategy, then the theorem above would still
hold.
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Fig. 2. Not every type has a sequentially rational strategy.

6. Implications of SBSR and MBR

Before turning to the proofs of the main results, we discuss some important implications of
(common structural belief in) SBSR and MBR. Proofs of these results, except for Lemma 6.2
and Theorem 6.8, may be found in the Appendix. In the following section, we shall use these
implications for proving Theorems 5.1 and 5.2.

6.1. Existence of sequentially rational strategies

It is important to note that not every type has a sequentially rational strategy. Consider, for
instance, the extensive form structure in Fig. 2. Take a type t1 for player 1 with the preference
relation H EGC A over the terminal nodes. Let player 1’s decision nodes be denoted by h1

1 and
h2

1, respectively. Suppose that t1 believes at h1
1 that player 2 chooses the strategy (d, g), but

believes at h2
1 that player 2 chooses (d, h). The unique strategy that is optimal for t1 at h1

1 is
(b, e). However, (b, e) is not optimal for t1 at h2

1, which implies that t1 has no sequentially
rational strategy. The reason for this is that t1’s conditional beliefs at h2

1 contradict Bayesian
updating: t1’s belief at h1

1 about player 2’s behavior is compatible with the event of reaching h2
1,

and therefore Bayesian updating implies that t1’s belief at h2
1 should coincide with his belief at

h1
1.

We shall now provide a formalization of the above mentioned Bayesian updating requirement
and show in Lemma 6.2 that it guarantees the existence of a sequentially rational strategy. Let h1

i
and h2

i be two decision nodes in H∗

i such that h2
i immediately follows h1

i .

Definition 6.1. We say that ti satisfies Bayesian updating at h2
i if for every opponent j for which

s j (ti , h1
i ) ∈ S j (h2

i ), it holds that s j (ti , h2
i ) = s j (ti , h1

i ).

In other words, if ti ’s belief at h1
i about player j’s strategy choice does not contradict the event

of reaching h2
i , then ti should maintain at h2

i his previous belief about player j’s strategy choice.
We say that ti satisfies Bayesian updating if it does so at every decision node.

Lemma 6.2. Every type that satisfies Bayesian updating has a sequentially rational strategy.

The above result follows from the claim in Battigalli (1997) on p. 54, and hence we do not
provide a proof here.

Lemma 6.3. Let ti be a type that satisfies SBSR and MBR. Then, ti satisfies Bayesian updating.

By combining Lemmas 6.2 and 6.3, we obtain the following corollary.

Corollary 6.4. Let ti be a type that satisfies SBSR and MBR. Then, ti has a sequentially rational
strategy.
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6.2. Maintaining “beliefs about beliefs”

We next show that common structural belief in SBSR and MBR implies that a player never
changes his belief about an opponent’s beliefs about other players. In order to state the result
formally, we need the following definition. For a given type ti ∈ Ti and preference relation
P̃i over the terminal nodes, let (ti , P̃i ) denote the type that has preference relation P̃i and
holds the same conditional beliefs about the opponents’ strategies and types as ti . That is,
s j ((ti , P̃i ), hi ) = s j (ti , hi ) and t j ((ti , P̃i ), hi ) = t j (ti , hi ) for every j 6= i and every hi ∈ H∗

i .

Lemma 6.5. Suppose that ti ∈ Ti respects common structural belief in SBSR and MBR. Let
h1

i , h2
i ∈ H∗

i be such that h2
i immediately follows h1

i , let j be an opponent, let t1
j := t j (ti , h1

i )

and t2
j := t j (ti , h2

i ). Then, t2
j = (t1

j , P̃j ) for some preference relation P̃j over terminal nodes.

6.3. Relation with proper belief revision

We next prove that common structural belief in SBSR and MBR leads to proper belief
revision: a concept that has been put forward in Perea (2006, 2007a). This result will prove
to be crucial for proving Theorem 5.2. Informally, proper belief revision states that a player who
wishes to revise his belief at decision node h about opponent j , should not change his belief
about the opponent’s relative ranking of two strategies s j and s′

j if both s j and s′

j could have led
to h. The intuition is that the player, upon arriving at h, cannot exclude any of the opponent’s
strategies s j and s′

j , and therefore there is no reason for him to change his belief about the
opponent’s relative ranking of s j and s′

j . In order to introduce proper belief revision formally,
we need some more notation and definitions. Let ti be a type for player i , and hi ∈ H∗

i some
decision node. For a given strategy si ∈ Si (hi ), recall that z(si , ti , hi ) denotes the terminal node
that would be reached if the game would start at hi , player i would choose according to si , and
every opponent j would choose according to s j (ti , hi ). For two strategies si , s′

i ∈ Si (hi ),we say
that ti strictly prefers strategy si to strategy s′

i at decision node hi if ti strictly prefers the terminal
node z(si , ti , hi ) to the terminal node z(s′

i , ti , hi ). Now, let ti be a type for player i, let j 6= i
be an opponent, let hi and h j be decision nodes for players i and j , respectively, and let s j , s′

j
be two strategies for player j in S j (h j ). We say that ti believes at hi that player j at h j strictly
prefers strategy s j to strategy s′

j if type t j (ti , hi ) strictly prefers s j to s′

j at h j .

Now, let ti be a type for player i , and let h1
i , h2

i be two decision nodes in H∗

i such that h2
i

immediately follows h1
i .

Definition 6.6 (Proper Belief Revision). We say that ti satisfies proper belief revision at h2
i if for

every opponent j , every decision node h j ∈ H j and every two strategies s j , s′

j that belong to

both S j (h j ) and S j (h2
i ) the following holds: ti believes at h2

i that player j at h j strictly prefers
s j to s′

j if and only if ti believes so at h1
i .

Note that s j , s′

j ∈ S j (h2
i ) implies that both s j and s′

j could have led to h2
i . We say that type ti

satisfies proper belief revision if ti does so at each of his decision nodes.
Before showing that common structural belief in SBSR and MBR implies proper belief

revision, we prove the following lemma. It states that the number of pairwise rankings on which
two preference relations P1 and P2 over terminal nodes disagree can be reduced strictly by
applying the following procedure: First, take a pair {a, b} of terminal nodes on which P1 and P2
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disagree, and then interchange the roles of a and b in P2 without changing the roles of the other
nodes.

Lemma 6.7. Let P1 and P2 be two strict, complete and transitive preference relations on the set
of terminal nodes, and let {a, b} be a pair of terminal nodes on which P1 and P2 disagree. Let
u2 be an arbitrary utility representation of P2, and let the utility function ũ2 be given by

ũ2(z) =


u2(b), if z = a,

u2(a), if z = b,

u2(z), otherwise.

Let P̃2 be the preference relation induced by ũ2. Then, P1 and P̃2 disagree on less pairwise
rankings than P1 and P2.

We are now able to prove the following result.

Theorem 6.8. Let ti be a type that respects common structural belief in SBSR and MBR. Then,
ti satisfies proper belief revision.

Proof. For a given type ti ∈ Ti and decision node hi ∈ H∗

i , let

Z(ti , hi ) = {z(si , ti , hi )|si ∈ Si (hi )}

be the set of terminal nodes that can be reached if the game would start at hi and every opponent
j of player i would act according to s j (ti , hi ).

Let ti be a type for player i that respects common structural belief in SBSR and MBR. We
prove that ti satisfies proper belief revision. Suppose, contrary to what we want to prove, that
ti does not satisfy proper belief revision. Then, there must be two decision nodes h1

i , h2
i ∈ H∗

i
such that h2

i immediately follows h1
i , an opponent j , a decision node h∗

j ∈ H j and two strategies

s j , s′

j ∈ S j (h∗

j )∩S j (h2
i ) such that: ti believes at h1

i that player j strictly prefers s j to s′

j at h∗

j , but

does not believe so at h2
i .

2 Let t1
j = t j (ti , h1

i ) and t2
j = t j (ti , h2

i ), and let P1
j and P2

j denote the

preference relations of t1
j and t2

j over terminal nodes. Since ti respects common structural belief

in SBSR and MBR, Lemma 6.5 guarantees that t1
j and t2

j hold the same conditional beliefs. In

particular, sk(t1
j , h∗

j ) = sk(t2
j , h∗

j ) for every k 6= j.

Since ti believes at h1
i that player j strictly prefers s j to s′

j at h∗

j , but does not believe so at

h2
i , we may conclude that P1

j strictly prefers z(s j , t1
j , h∗

j ) to z(s′

j , t1
j , h∗

j ), but P2
j strictly prefers

z(s′

j , t1
j , h∗

j ) to z(s j , t1
j , h∗

j ). Let u2
j be some arbitrary utility representation of P2

j , and let the

utility function ũ2
j be given by

ũ2
j (z) =


u2

j (z(s
′

j , t1
j , h∗

j )), if z = z(s j , t1
j , h∗

j ),

u2
j (z(s j , t1

j , h∗

j )), if z = z(s′

j , t1
j , h∗

j ),

u2
j (z), otherwise.

(6.1)

2 Note that if ti believes at h1
i that player j is indifferent at h∗

j between s j and s′
j , then necessarily

z(s j , t j (ti , h1
i ), h∗

j ) = z(s′
j , t j (ti , h1

i ), h∗
j ). By Lemma 6.5, we have that t j (ti , h1

i ) and t j (ti , h2
i ) hold the same

conditional beliefs, and hence z(s j , t j (ti , h2
i ), h∗

j ) = z(s′
j , t j (ti , h2

i ), h∗
j ), which implies that ti believes at h2

i that player

j is indifferent between s j and s′
j .
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Let P̃2
j be the preference relation induced by ũ2

j . Since P1
j and P2

j disagree on {z(s j , t1
j , h∗

j ),

z(s′

j , t1
j , h∗

j )}, we know by Lemma 6.7 that P1
j and P̃2

j disagree on less pairwise rankings than

P1
j and P2

j .

Let t̃2
j := (t1

j , P̃2
j ). We now prove that t̃2

j has a sequentially rational strategy s̃2
j ∈ S j (h2

i ).
Since ti respects common structural belief in SBSR and MBR, Lemma 6.3 guarantees that
ti respects common structural belief in the event that types satisfy Bayesian updating. Since
t1

j = t j (ti , h1
i ), and ti believes that player j satisfies Bayesian updating, it follows that t1

j satisfies

Bayesian updating. Since t2
j and t̃2

j have the same conditional beliefs as t1
j , we have that also t2

j

and t̃2
j satisfy Bayesian updating. By Lemma 6.2 we know that t2

j and t̃2
j have a sequentially

rational strategy, which must then be unique. Let s2
j and s̃2

j be the unique sequentially rational

strategies for types t2
j and t̃2

j , respectively. Recall that, by definition, t2
j = t j (ti , h2

i ). By SBSR,

s2
j ∈ S j (h2

i ). We now show that s̃2
j ∈ S j (h2

i ).

For every h j ∈ H j preceding h2
i , let a(h j , h2

i ) be the unique action at h j leading to h2
i . In

order to show that s̃2
j ∈ S j (h2

i ), we prove that s̃2
j (h j ) = a(h j , h2

i ) for all h j ∈ H j (s̃2
j ) preceding

h2
i . Choose some h j ∈ H j (s̃2

j ) preceding h2
i . As s2

j ∈ S j (h2
i ), we have that h j ∈ H j (s2

j ) and

s2
j (h j ) = a(h j , h2

i ). By assumption, s2
j is sequentially rational for t2

j = (t1
j , P2

j ), which means

in particular that s2
j is optimal for t2

j at h j . Hence, P2
j strictly prefers z(s2

j , t1
j , h j ) to all other

nodes in Z(t1
j , h j ). We distinguish two cases.

Case 1. Suppose that z(s2
j , t1

j , h j ) 6= z(s′

j , t1
j , h∗

j ). Recall that P1
j strictly prefers z(s j , t1

j , h∗

j ) to

z(s′

j , t1
j , h∗

j ), but that P2
j strictly prefers z(s′

j , t1
j , h∗

j ) to z(s j , t1
j , h∗

j ). Since P2
j strictly prefers

z(s2
j , t1

j , h j ) to all other nodes in Z(t1
j , h j ), and z(s2

j , t1
j , h j ) 6= z(s′

j , t1
j , h∗

j ), we have by

(6.1) that P̃2
j also strictly prefers z(s2

j , t1
j , h j ) to all other nodes in Z(t1

j , h j ). This implies

that s2
j is optimal for t̃2

j at h j . Since we know that s̃2
j is optimal for t̃2

j at h j , it follows that

s̃2
j (h j ) = s2

j (h j ) = a(h j , h2
i ), which was to show.

Case 2. Suppose that z(s2
j , t1

j , h j ) = z(s′

j , t1
j , h∗

j ). In this case, the terminal node z(s2
j , t1

j , h j )

follows both h j and h∗

j . Hence, it must be the case that h j precedes or follows h∗

j . We distinguish
two subcases.

Case 2.1. Suppose that h j precedes h∗

j . Since z(s2
j , t1

j , h j ) follows h∗

j , it must be the case

that sk(t1
j , h j ) ∈ Sk(h∗

j ) for every k 6= j. We have seen above that t1
j satisfies Bayesian

updating, which then implies that sk(t1
j , h∗

j ) = sk(t1
j , h j ) for every k 6= j . As s j ∈ S j (h∗

j ),

it follows that s j ∈ S j (h j ) and that z(s j , t1
j , h j ) = z(s j , t1

j , h∗

j ). Since P2
j strictly prefers

z(s2
j , t1

j , h j ) = z(s′

j , t1
j , h∗

j ) to all other nodes in Z(t1
j , h j ), it follows by (6.1) that P̃2

j strictly

prefers z(s j , t1
j , h j ) = z(s j , t1

j , h∗

j ) to all other nodes in Z(t1
j , h j ). Hence, s j is optimal for t̃2

j

at h j . Since, by assumption, s̃2
j is optimal for t̃2

j at h j , it follows that s̃2
j (h j ) = s j (h j ). Since

s j ∈ S j (h2
i ), we have that s j (h j ) = a(h j , h2

i ). Hence, s̃2
j (h j ) = a(h j , h2

i ), which was to show.

Case 2.2. Suppose that h∗

j precedes h j . As z(s′

j , t1
j , h∗

j ) = z(s2
j , t1

j , h j ) follows h j , we must

have that sk(t1
j , h∗

j ) ∈ Sk(h j ) for every k 6= j . By Bayesian updating of t1
j , we may then

conclude that sk(t1
j , h j ) = sk(t1

j , h∗

j ) for every k 6= j . Since s j ∈ S j (h2
i ) and h j precedes

h2
i , we have that s j ∈ S j (h j ) as well. Combined with the fact that sk(t1

j , h j ) = sk(t1
j , h∗

j )
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for every k 6= j , this implies that z(s j , t1
j , h j ) = z(s j , t1

j , h∗

j ). Since P2
j strictly prefers

z(s2
j , t1

j , h j ) = z(s′

j , t1
j , h∗

j ) to all other nodes in Z(t1
j , h j ), it follows by (6.1) that P̃2

j strictly

prefers z(s j , t1
j , h j ) = z(s j , t1

j , h∗

j ) to all other nodes in Z(t1
j , h j ). We may thus conclude that

s j is optimal for t̃2
j at h j . As s̃2

j is optimal for t̃2
j at h j as well, it follows that s̃2

j (h j ) = s j (h j ).

By assumption, s j ∈ S j (h2
i ), implying that s j (h j ) = a(h j , h2

i ). Hence, we may conclude that
s̃2

j (h j ) = a(h j , h2
i ), which was to show.

From Case 1 and 2 we may therefore conclude that s̃2
j (h j ) = a(h j , h2

i ) for all decision nodes

h j ∈ H j (s̃2
j ) preceding h2

i . This, in turn, implies that s̃2
j ∈ S j (h2

i ). Summarizing, we have

found a strategy-type pair (s̃2
j , t̃2

j ) with s̃2
j ∈ S j (h2

i ) such that (1) s̃2
j is sequentially rational

for t̃2
j , (2) t̃2

j has the same conditional beliefs as t2
j , and (3) Pj (t1

j ) and Pj (t̃2
j ) disagree on less

pairwise rankings than Pj (t1
j ) and Pj (t2

j ). This, however, is a contradiction to the assumption
that ti satisfies MBR. Therefore, the assumption that ti does not satisfy proper belief revision
cannot be true. Hence, ti must satisfy proper belief revision. This completes the proof of our
theorem. �

7. Proof of the main results

7.1. Proof of Theorem 5.1

For every player i , decision node hi ∈ H∗

i and opponent j 6= i , let s∗

j (hi ) be the unique
strategy for player j with the following properties: (1) at every decision node h j ∈ H j (s∗

j (hi ))

preceding hi , the strategy s∗

j (hi ) prescribes the unique action that leads to hi , and (2) at every
decision node h j ∈ H j (s∗

j (hi )) not preceding hi , it prescribes the backward induction action

a∗(h j ) in the game (S, P̃). Then, by construction, s∗

j (hi ) is a strategy in S j (hi ). Moreover,

s∗

j (h0) coincides with the backward induction strategy s∗

j in (S, P̃).

For every player i , denote by βi the conditional belief vector about the opponents’ strategy
choices in which player i , at every decision node hi ∈ H∗

i , believes that each opponent j chooses
the strategy s∗

j (hi ) ∈ S j (hi ). By construction, the unique strategy that is sequentially rational for

player i with respect to the conditional belief vector βi and the preference relation P̃i is his
backward induction strategy s∗

i in (S, P̃).

Fix a player i and an opponent j 6= i . For every decision node hi ∈ H∗

i we shall define
a conditional belief Pj (hi ) for player i about player j’s preference relation over the terminal
nodes. We proceed recursively, starting from h0. At h0, let Pj (h0) = P̃j . Now, take a decision
node h2

i ∈ H∗

i and suppose that Pj (h1
i ) has already been defined for all h1

i ∈ H∗

i that precede h2
i .

Let h1
i be the unique decision node in H∗

i that immediately precedes h2
i . By assumption, Pj (h1

i )

has already been defined. We can now choose a preference relation Pj (h2
i ) with the following

properties: (1) there is a strategy s j ∈ S j (h2
i ) that is sequentially rational with respect to the

conditional belief vector β j and the preference relation Pj (h2
i ) over the terminal nodes, and (2)

there is no preference relation P̂j (h2
i ) satisfying (1) that disagrees with Pj (h1

i ) on less pairwise
rankings than Pj (h2

i ) does. In this way, a conditional belief Pj (hi ) about player j’s preference
relation over terminal nodes can be defined for every player i , every opponent j , and every
decision node hi ∈ H∗

i .
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We may now construct an epistemic model, and subsequently select a set of types

T ∗
= {t j (hi )|i, j ∈ I, i 6= j and hi ∈ H∗

i }

with the following properties:

(1) the preference relation over terminal nodes for t j (hi ) is equal to Pj (hi );

(2) the conditional belief vector of t j (hi ) about the opponents’ strategy choices is given by β j ;

(3) the conditional belief of t j (hi ) at decision node h j ∈ H∗

j about opponent k’s type is equal to
tk(h j ).

We now prove that every type t j (hi ) ∈ T ∗ respects common structural belief in IBP, SBSR
and MBR. By construction, every type t ∈ T ∗ believes, at each of his decision nodes, that each of
his opponents’ types belongs to T ∗. It is therefore sufficient to show that every type t j (hi ) ∈ T ∗

satisfies IBP, SBSR and MBR
IBP. Choose an arbitrary type t j (hi ) ∈ T ∗. By definition, t j (hi ) believes at h0 that every

opponent k is of type tk(h0). Since tk(h0) has preference relation Pk(h0) over terminal nodes and
since, by construction, Pk(h0) = P̃k , we have that t j (hi ) believes at h0 that every opponent k has
preference relation P̃k over terminal nodes. Hence, t j (hi ) satisfies IBP.

SBSR. Let t j (hi ) ∈ T ∗ and let k 6= j be some opponent. We first show that t j (hi ) initially
believes in sequential rationality. By definition, t j (hi ) believes at h0 that player k chooses
strategy s∗

k (h0) and has type tk(h0). Since type tk(h0)’s conditional belief vector about the
opponents’ strategies is βk , type tk(h0)’s preference relation over terminal nodes is P̃k and s∗

k (h0)

is player k’s backward induction strategy in (S, P̃), it follows that s∗

k (h0) is sequentially rational
for tk(h0). Hence, t j (hi ) initially believes in sequential rationality.

In order to prove that t j (hi ) structurally believes in sequential rationality, we need the
following claim.

Claim. Type t j (hi ) satisfies proper belief revision.

Proof of the claim. Suppose, contrary to what we want to prove, that t j (hi ) does not satisfy
proper belief revision. Then, there must be two decision nodes h1

j , h2
j ∈ H∗

j such that h2
j

immediately follows h1
j , an opponent k, a decision node h∗

k ∈ Hk and two strategies sk, s′

k ∈

Sk(h∗

k) ∩ Sk(h2
j ) such that: t j (hi ) believes at h1

j that player k strictly prefers sk to s′

k at h∗

k , but

does not believe so at h2
j . By definition, t j (hi ) believes at h1

j that player k is of type tk(h1
j ), while

he believes at h2
j that player k is of type tk(h2

j ). Moreover, tk(h1
j ) and tk(h2

j ) only differ by their

preference relations over terminal nodes, Pk(h1
j ) and Pk(h2

j ). Hence, similarly to the proof of

Theorem 6.8, we may conclude that Pk(h1
j ) strictly prefers z(sk, tk(h1

j ), h∗

k) to z(s′

k, tk(h1
j ), h∗

k),

but Pk(h2
j ) strictly prefers z(s′

k, tk(h1
j ), h∗

k) to z(sk, tk(h1
j ), h∗

k). Let u2
k be some arbitrary utility

representation of Pk(h2
j ), and let the utility function ũ2

k be given by

ũ2
k(z) =


u2

k(z(s
′

k, tk(h
1
j ), h∗

k)), if z = z(sk, tk(h
1
j ), h∗

k),

u2
k(z(sk, tk(h

1
j ), h∗

k)), if z = z(s′

k, tk(h
1
j ), h∗

k),

u2
k(z), otherwise.

Let P̃2
k be the preference relation induced by ũ2

k . Since Pk(h1
j ) and Pk(h2

j ) disagree on the

pairwise ranking of {z(sk, tk(h1
j ), h∗

k), z(s′

k, tk(h1
j ), h∗

k)}, we know by Lemma 6.7 that Pk(h1
j )

and P̃2
k disagree on less pairwise rankings than Pk(h1

j ) and Pk(h2
j ).
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By construction of Pk(h2
j ), there is some strategy sk ∈ Sk(h2

j ) that is sequentially rational for

type (tk(h1
j ), Pk(h2

j )). Similarly to the proof of Theorem 6.8, it can be shown that there is also

some sequentially rational strategy s′

k ∈ Sk(h2
j ) for type (tk(h1

j ), P̃2
k ). Hence, we have found a

preference relation P̃2
k such that (1) there is some strategy s′

k ∈ Sk(h2
j ) that is sequentially rational

with respect to P̃2
k and the conditional belief vector β j , and (2) Pk(h1

j ) and P̃2
k disagree on less

pairwise rankings than Pk(h1
j ) and Pk(h2

j ). However, this contradicts the choice of Pk(h2
j ), and

hence we must conclude that t j (hi ) satisfies proper belief revision. This completes the proof of
the claim. �

We now show that type t j (hi ) structurally believes in sequential rationality. Choose a decision
node h j ∈ H∗

j and some opponent k. By definition, t j (hi ) believes at h j that opponent k has type
tk(h j ) and chooses strategy s∗

k (h j ). We prove that s∗

k (h j ) is sequentially rational for tk(h j ). We
do so by induction on the number of decision nodes in H∗

j that precede h j .

Assume first that h j is not preceded by any decision node in H∗

j , that is, h j = h0. We have
seen above that s∗

k (h0) is sequentially rational for tk(h0), and hence there is nothing left to prove
here.

Now, take some decision node h2
j ∈ H∗

j \ {h0} and assume that for every h1
j ∈ H∗

j preceding

h2
j it holds that s∗

k (h1
j ) is sequentially rational for tk(h1

j ). We prove that s∗

k (h2
j ) is sequentially

rational for tk(h2
j ). Hence, we must prove for every hk ∈ Hk(s∗

k (h2
j )) that s∗

k (h2
j ) is optimal for

tk(h2
j ) at hk . We distinguish two cases.

Case 1. Assume that hk ∈ Hk(s∗

k (h2
j )) and that hk does not precede h2

j . Then, by definition

of s∗

k (h2
j ), we have that s∗

k (h2
j ) prescribes the backward induction action a∗(h′

k) at every player
k’s decision node h′

k equal to or following hk . Suppose, contrary to what we want to prove,
that s∗

k (h2
j ) is not optimal for tk(h2

j ) at hk . Hence, there is some sk(h2
j ) ∈ Sk(hk) such that

tk(h2
j ) strictly prefers sk(h2

j ) to s∗

k (h2
j ) at hk . Now, let the strategy s̃k(h2

j ) be such that (1) s̃k(h2
j )

coincides with sk(h2
j ) at hk and at all decision nodes in Hk(s̃k(h2

j )) following hk , and (2) s̃k(h2
j )

coincides with s∗

k (h2
j ) at all other decision nodes in Hk(s̃k(h2

j )). Since s∗

k (h2
j ) ∈ Sk(hk)∩ Sk(h2

j ),

and hk does not precede h2
j , it follows that s̃k(h2

j ) ∈ Sk(hk)∩ Sk(h2
j ) as well. Moreover, as s̃k(h2

j )

coincides with sk(h2
j ) in the subgame starting at hk , we may conclude that tk(h2

j ) strictly prefers

s̃k(h2
j ) to s∗

k (h2
j ) at hk . Since t j (hi ) believes at h2

j that player k is of type tk(h2
j ), the following

holds:

t j (hi ) believes at h2
j that player k, at hk, strictly prefers s̃k(h

2
j ) to s∗

k (h2
j ), (7.1)

where both s̃k(h2
j ) and s∗

k (h2
j ) are in Sk(hk) ∩ Sk(h2

j ).

We have seen in our claim that t j (hi ) satisfies proper belief revision. Now, let h1
j be the

unique decision node in H∗

j that immediately precedes h2
j . Since both s̃k(h2

j ) and s∗

k (h2
j ) are in

Sk(hk) ∩ Sk(h2
j ), proper belief revision of t j (hi ), together with (7.1), imply the following:

t j (hi ) believes at h1
j that player k, at hk, strictly prefers s̃k(h

2
j ) to s∗

k (h2
j ). (7.2)

As h1
j precedes h2

j , and hk does not precede h2
j , we must have that hk does not precede h1

j . Hence,

s∗

k (h1
j ) prescribes at every player k’s decision node h′

k equal to or following hk the backward
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induction a∗(h′

k), just as s∗

k (h2
j ) does. Together with (7.2), this yields:

t j (hi ) believes at h1
j that player k, at hk, strictly prefers s̃k(h

2
j ) to s∗

k (h1
j ).

Since t j (hi ) believes at h1
j that player k has type tk(h1

j ), it follows that s∗

k (h1
j ) is not sequentially

rational for tk(h1
j ), which contradicts our induction assumption that s∗

k (h1
j ) is sequentially

rational for tk(h1
j ). Hence, we may conclude that s∗

k (h2
j ) is optimal for tk(h2

j ) at every hk ∈

Hk(s∗

k (h2
j )) not preceding h2

j . This completes Case 1.

Case 2. Assume that hk ∈ Hk(s∗

k (h2
j )) precedes h2

j . By our construction, tk(h2
j ) has a sequentially

rational strategy sk(h2
j ) in Sk(h2

j ). Suppose, contrary to what we want to prove, that s∗

k (h2
j ) is not

optimal for tk(h2
j ) at hk . Then, necessarily,

tk(h
2
j ) strictly prefers z(sk(h

2
j ), tk(h

2
j ), hk) to z(s∗

k (h2
j ), tk(h

2
j ), hk). (7.3)

Since sk(h2
j ) and s∗

k (h2
j ) are both in Sk(h2

j ), they coincide on all player k’s decision nodes

preceding h2
j . Hence, by (7.3), there must be some player k ’s decision node h′

k not preceding h2
j

such that (1) sl(tk(h2
j ), hk) ∈ Sl(h′

k) for every l 6= k, and (2) (sk(h2
j ), (sl(tk(h2

j ))l 6=k, hk)) and

(s∗

k (h2
j ), (sl(tk(h2

j ))l 6=k, hk)) both reach h′

k . By construction, tk(h2
j ) satisfies Bayesian updating,

and hence we have that sl(tk(h2
j ), h′

k) = sl(tk(h2
j ), hk) for every l 6= k. This implies that

z(sk(h
2
j ), tk(h

2
j ), hk) = z(sk(h

2
j ), tk(h

2
j ), h′

k) and

z(s∗

k (h2
j ), tk(h

2
j ), hk) = z(s∗

k (h2
j ), tk(h

2
j ), h′

k).

Together with (7.3), we may conclude that

tk(h
2
j ) strictly prefers z(sk(h

2
j ), tk(h

2
j ), h′

k) to z(s∗

k (h2
j ), tk(h

2
j ), h′

k),

which means that s∗

k (h2
j ) is not optimal for tk(h2

j ) at h′

k . However, this contradicts our findings

in Case 1, as h′

k does not precede h2
j . Therefore, s∗

k (h2
j ) must be optimal for tk(h2

j ) at hk . This
completes Case 2.

By combining the cases 1 and 2, we have shown for every hk ∈ Hk(s∗

k (h2
j )) that s∗

k (h2
j ) is

optimal for tk(h2
j ) at hk . As such, s∗

k (h2
j ) is sequentially rational for tk(h2

j ). Since t j (hi ) believes

at h2
j that player k is of type tk(h2

j ) and chooses strategy s∗

k (h2
j ), and since this holds for every h2

j
and every opponent k, it follows that t j (hi ) structurally believes in sequential rationality, which
was to show.

MBR. Take some decision nodes h1
j , h2

j ∈ H∗

j such that h2
j immediately follows h1

j . By

definition, t j (hi ) believes at h1
j that player k has type tk(h1

j ) and chooses strategy s∗

k (h1
j ), and

believes at h2
j that player k has type tk(h2

j ) and chooses strategy s∗

k (h2
j ). We have already seen

above that s∗

k (h2
j ) is sequentially rational for tk(h2

j ). By construction of tk(h1
j ) and tk(h2

j ) we

know that tk(h1
j ) has preference relation Pk(h1

j ) over terminal nodes, that tk(h2
j ) has preference

relation Pk(h2
j ) over terminal nodes, and that tk(h1

j ) and tk(h2
j ) have identical conditional beliefs

about the opponents’ strategies and types. As such,

tk(h
2
j ) = (tk(h

1
j ), Pk(h

2
j )).
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In particular, it follows that tk(h1
j ) and tk(h2

j ) disagree on at most one statement about player k,
namely k’s preference relation over terminal nodes.

Moreover, by construction of the preference relation Pk(h2
j ), we know that there is no

preference relation P ′

k such that (1) P ′

k and Pk(h1
j ) disagree on less pairwise rankings than Pk(h2

j )

and Pk(h1
j ) do, and (2) the type (tk(h1

j ), P ′

k) has a sequentially rational strategy in Sk(h2
j ). Hence,

t j (hi ) satisfies MBR.
We may thus conclude that every type t ∈ T ∗ satisfies IBP, SBSR and MBR. As every type

t ∈ T ∗ structurally believes that all opponents’ types are in T ∗, it holds that every type t ∈ T ∗

respects common structural belief in IBP, SBSR and MBR. This completes the proof of this
theorem.

7.2. Proof of Theorem 5.2

For a given player i , decision node hi ∈ H∗

i and opponent j , let S∗

j (hi ) be the set of player j
strategies s j such that (1) s j ∈ S j (hi ), and (2) at every h j ∈ H j (s j ) following hi , the strategy s j

prescribes the backward induction action a∗(h j ) in (S, P̃). We prove the following property.

Claim. Let ti be a type for player i that respects common structural belief in IBP, SBSR and
MBR. Then,

s j (ti , hi ) ∈ S∗

j (hi )

for every hi ∈ H∗

i and every opponent j.

Proof of the claim. We prove the claim by induction on the number of decision nodes following
hi . If hi is not followed by any decision node, the statement is trivial since S∗

j (hi ) = S j (hi ).
Suppose now that the claim holds for all pairs (i ′, j ′) of players and every decision node hi ′

followed by at most K − 1 decision nodes. Choose hi with the property that hi is followed by
exactly K decision nodes. We prove that s j (ti , hi ) ∈ S∗

j (hi ) for every opponent j. Hence, we
must show that for every decision node h j ∈ H j (s j (ti , hi )) following hi , the strategy s j (ti , hi )

prescribes the backward induction action a∗(h j ).

Let t∗j = t j (ti , hi ) and s∗

j = s j (ti , hi ). Choose a decision node h j ∈ H j (s∗

j ) following hi .
We shall prove that s∗

j (h j ) = a∗(h j ). As ti respects common structural belief in IBP, SBSR and
MBR and since ti believes at hi that player j is of type t∗j , it follows that t∗j respects common
structural belief in IBP, SBSR and MBR. Since h j is followed by at most K − 1 decision nodes,
we thus know by the induction assumption that

sk(t
∗

j , h j ) ∈ S∗

k (h j )

for every opponent k 6= j . Consequently, t∗j believes at h j that all opponents choose their

backward induction actions in (S, P̃) at the decision nodes following h j .

As ti satisfies IBP, it follows that t j (ti , h0) has preference relation P̃j . Moreover, since ti
respects common structural belief in SBSR and MBR, we know by Lemma 6.5 that ti does not
change his belief about player j’s beliefs. Hence, it must be the case that t j (ti , h0) has the same
conditional belief vector as t j (ti , hi ) = t∗j . We may thus conclude that t j (ti , h0) believes at

h j that all opponents choose their backward induction actions in (S, P̃) at the decision nodes
following h j . Together with the fact that t j (ti , h0) has preference relation P̃j , it follows that
t j (ti , h0) ’s optimal strategies at h j all prescribe the backward induction action a∗(h j ) at h j .
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More precisely, for every s j ∈ S j (h j ) not prescribing a∗(h j ) at h j there is some s′

j ∈ S j (h j )

prescribing a∗(h j ) at h j such that t j (ti , h0) strictly prefers s′

j to s j at h j . This, in turn, means that
ti believes at h0 that for every s j ∈ S j (h j ) not prescribing a∗(h j ) at h j there is some s′

j ∈ S j (h j )

prescribing a∗(h j ) at h j such that player j strictly prefers s′

j to s j at h j .

Since ti respects common structural belief in SBSR and MBR, we know by Theorem 6.8 that
ti satisfies proper belief revision. Therefore, ti ’s belief at hi about player j’s preference relation
at h j over strategies in S j (h j ) ∩ S j (hi ) should coincide with ti ’s belief at h0 about player j’s
preference relation at h j over strategies in S j (h j ) ∩ S j (hi ). Since, by assumption, h j follows hi
we have that S j (h j ) ⊆ S j (hi ). Hence, ti ’s belief at hi about player j’s preference relation over
strategies in S j (h j ) should coincide with ti ’s belief at the beginning about player j’s preference
relation at h j over strategies in S j (h j ). Since we have seen that ti believes at h0 that for every
s j ∈ S j (h j ) not prescribing a∗(h j ) at h j there is some s′

j ∈ S j (h j ) prescribing a∗(h j ) at h j

such that player j strictly prefers s′

j to s j at h j , it follows that ti believes so at hi . This implies,
however, that ti believes at hi that player j’s optimal strategies at h j all prescribe the backward
induction action a∗(h j ) at h j .

Since ti structurally believes in sequential rationality and s∗

j = s j (ti , hi ), we must have that
s∗

j is optimal for t j (ti , hi ) at h j . By the above, it follows that s∗

j must prescribe the backward
induction a∗(h j ) at h j , which was to show. This completes the proof of the claim.

Now, let ti be a type that has preference relation P̃i , and that respects common structural
belief in IBP, SBSR and MBR. By the claim, we know that ti believes at every decision node hi
that his opponents will choose the backward induction actions in (S, P̃) at every decision node
following hi . Since ti has preference relation P̃i , the unique sequentially rational strategy for ti
is his backward induction strategy in (S, P̃). This completes the proof. �

8. Concluding remarks

We conclude by discussing some explicit and implicit assumptions in our model. In this paper,
we have decided to model the players’ beliefs by single-valued possibility sets so as to make our
definitions and proofs as transparent as possible. However, with some additional effort all of
our definitions and results can be extended to an epistemic model with multi-valued possibility
sets. A first additional difficulty that would arise here is that complete type spaces would no
longer exist if one wishes to allow for all possible multi-valued belief sets (see Brandenburger
(2003)). This problem can be solved by constructing a type space that is not complete, but that
incorporates all beliefs in the belief hierarchy up to a specific order, where this order could be
chosen equal to the length of the game tree. In fact, for our purposes here we only need beliefs
up to this order. A second difficulty would be that the definition of minimal belief revision would
become more elaborate. A type ti in the new, set-valued model would hold, at every decision
node hi and for every opponent j, a set B j (ti , hi ) of strategy-type pairs which ti deems possible
at hi . Now, consider two decision nodes h1

i , h2
i ∈ H∗

i such that h2
i immediately follows h1

i ,

and let T j (ti , h1
i ) and T j (ti , h2

i ) be the sets of j’s types that ti deems possible at h1
i and h2

i ,

respectively. In order to define MBR, one should formalize what it means that the set T j (ti , h2
i ) is

“as similar as possible” to the set T j (ti , h1
i ). A possible way to do so would be to say that for every

t2
j ∈ T j (ti , h2

i ) there should be some t1
j ∈ T j (ti , h1

i ) such that t2
j is as similar as possible to t1

j

among all types in T sr
j (h2

i ). Here, similarity between types could be defined as in Definition 4.4.
The definition of sequential rationality could easily be adapted as follows: For a given decision
node hi , let S j (ti , hi ) be the set of j’s strategies that ti deems possible at hi . A strategy si can
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then be called sequentially rational for type ti if at every decision node hi ∈ Hi (si ) there is no
alternative strategy s′

i ∈ Si (hi ) such that for every (s j ) j 6=i ∈ × j 6=i S j (ti , hi ) the terminal node
z(s′

i , (s j ) j 6=i , hi ) is preferred to z(si , (s j ) j 6=i , hi ). The definitions of SBSR and IBP can then be
stated in the obvious way. By choosing these new definitions of IBP, SBSR and MBR, one could
then still prove Theorems 5.1 and 5.2. The proof of Theorem 5.1 could in fact be copied as it is,
since the types with single-valued beliefs constructed in this proof are simply special cases of
types in the new set-valued model. The proof of Theorem 5.2 could be adapted easily to the new
model, replacing the original claim by the following:

Claim. Let ti be a type for player i that respects common structural belief in IBP, SBSR and
MBR. Then,

S j (ti , hi ) ⊆ S∗

j (hi )

for all hi ∈ H∗

i and all opponents j.

The proof for this claim would go along the same lines as the original proof. Summarizing,
our model and results can be extended to multi-valued possibility sets, at the cost of additional
complications and more elaborate definitions.

Appendix

A.1. Construction of a complete epistemic model

We show that, within our model, it is always possible to construct a complete epistemic model.
Recall that we model the players’ beliefs by single-valued possibility sets. That is, a player, at
each of his decision nodes, only deems possible one strategy choice and one preference relation
over terminal nodes for every opponent. Recall that P denotes the set of strict, complete and
transitive preference relations over terminal nodes. Then, the set of possible first-order beliefs
for player i is given by

B1
i := ×hi ∈H∗

i
× j 6=i (S j (hi ) × P).

Namely, a first-order belief b1
i ∈ B1

i should specify at every decision node hi and for every
opponent j a conditional belief si j (hi ) about player j’s strategy choice (so, a member of S j (hi )),
and a conditional belief Pi j (hi ) about player j’s preference relation over terminal nodes (so, a
member of P).

A second-order belief for player i should specify at every decision node hi and for every
opponent j a (point-) belief about player j’s first-order belief. Hence, the set of possible second-
order beliefs for player i is given by

B2
i := ×hi ∈H∗

i
× j 6=i B1

j .

Similarly, the sets of third-order, fourth-order and higher-order beliefs for player i are given
recursively by

Bk
i := ×hi ∈H∗

i
× j 6=i Bk−1

j

for k ≥ 3. A type for player i describes a preference relation over terminal nodes, and a belief
hierarchy consisting of a first-order belief, a second-order belief, a third-order belief, and so on.
So, the set of all possible types for player i is given by

Ti := P × (×∞

k=1 Bk
i ).
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By construction, the set Ti is homeomorphic to the set

P × (×hi ∈H∗
i

× j 6=i (S j (hi ) × P × (×∞

k=1 Bk
j )))

which is equal to the set

P × (×hi ∈H∗
i

× j 6=i (S j (hi ) × T j )).

The latter set, in turn, is homeomorphic to the set

P × (× j 6=i (×hi ∈H∗
i
(S j (hi ))) × (×hi ∈H∗

i
T j )).

Hence, for every player i there is a homeomorphism

bi : Ti → P × (× j 6=i (×hi ∈H∗
i
(S j (hi ))) × (×hi ∈H∗

i
T j )).

In particular, the function bi is onto. Let the function Pi be the projection of bi on P , and let, for
every opponent j , the function si j be the projection of bi on ×hi ∈H∗

i
S j (hi ) and the function ti j

be the projection of bi on ×hi ∈H∗
i

T j . Since bi is onto, we can find, for every preference relation

P̃i ∈ P, every opponent j , every s̃i j ∈ ×hi ∈H∗
i

S j (hi ), and every t̃i j ∈ ×hi ∈H∗
i

T j some type

ti ∈ Ti with Pi (ti ) = P̃i , si j (ti ) = s̃i j for all opponents j , and ti j (ti ) = t̃i j for all opponents
j . However, this means that the epistemic model constructed above is complete. So, it is always
possible to construct a complete epistemic model.

A.2. Proofs

Proof of Lemma 6.3. Choose a type ti that satisfies SBSR and MBR. Let h1
i , h2

i be two decision
nodes in H∗

i such that h2
i immediately follows h1

i . Let j be an opponent for which s j (ti , h1
i )

belongs to S j (h2
i ). By SBSR it must be the case that s j (ti , h1

i ) is sequentially rational for
t j (ti , h1

i ). Since s j (ti , h1
i ) ∈ S j (h2

i ) it holds that t j (ti , h1
i ) ∈ T sr

j (h2
i ), and MBR implies that

t j (ti , h2
i ) = t j (ti , h1

i ). Since s j (ti , h1
i ) is the unique sequentially rational strategy for t j (ti , h1

i ),
it follows that s j (ti , h2

i ) = s j (ti , h1
i ), which implies that ti satisfies Bayesian updating. This

completes the proof. �

Proof of Lemma 6.5. Let h2
i immediately follow h1

i , and let j be an opponent. Define s1
j :=

s j (ti , h1
i ), t1

j := t j (ti , h1
i ), s2

j := s j (ti , h2
i ) and t2

j := t j (ti , h2
i ). We distinguish two cases.

Case 1. If s1
j ∈ S j (h2

i ). Then, we know by the proof of Lemma 6.3 that t2
j = t1

j and s2
j = s1

j and
hence the statement in the lemma holds.

Case 2. If s1
j 6∈ S j (h2

i ). Then, necessarily, s2
j 6= s1

j . Since s1
j is the unique sequentially rational

strategy for t1
j , it follows that s2

j is not sequentially rational for t1
j .

We now construct a type t ′j such that (1) s2
j is sequentially rational for t ′j , and (2) t ′j = (t1

j , P ′

j )

for some P ′

j . We may construct a preference relation P ′

j 6= Pj (t1
j ) over terminal nodes such

that s2
j is the unique sequentially rational strategy, regardless of the conditional beliefs about

the opponents’ strategies. Define t ′j := (t1
j , P ′

j ). Then, s2
j is sequentially rational for t ′j . Since

Pj (t ′j ) 6= Pj (t1
j ), it follows that t1

j and t ′j disagree on exactly one statement about player j ,
namely player j’s preference relation.

Assume, contrary to what we want to prove, that t1
j and t2

j have different conditional beliefs.

Hence, there is some h j ∈ H∗

j and k 6= j with sk(t1
j , h j ) 6= sk(t2

j , h j ) or tk(t1
j , h j ) 6= tk(t2

j , h j ).
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Suppose first that sk(t1
j , h j ) 6= sk(t2

j , h j ). By common structural belief in SBSR, ti believes at

h1
i that player j structurally believes in sequential rationality. As t j (ti , h1

i ) = t1
j , it follows that

t1
j structurally believes in sequential rationality. Consequently, sk(t1

j , h j ) must be sequentially

rational for tk(t1
j , h j ). Similarly, sk(t2

j , h j ) must be sequentially rational for tk(t2
j , h j ). Since

sk(t1
j , h j ) is the unique sequentially rational strategy for tk(t1

j , h j ), and sk(t1
j , h j ) 6= sk(t2

j , h j ),

it follows that tk(t1
j , h j ) 6= tk(t2

j , h j ). Hence, we have that sk(t1
j , h j ) 6= sk(t2

j , h j ) and

tk(t1
j , h j ) 6= tk(t2

j , h j ), which implies that t1
j and t2

j differ at least on two statements. Since

t1
j and t ′j disagree on exactly one statement, this contradicts the assumption that ti satisfies MBR.

Hence, we may conclude that sk(t1
j , h j ) = sk(t2

j , h j ).

Suppose, next, that tk(t1
j , h j ) 6= tk(t2

j , h j ). We prove that this is impossible. To that purpose,

we show that either Pj (t1
j ) 6= Pj (t2

j ) or sl(t1
j , h′

j ) 6= sl(t2
j , h′

j ) for some h′

j ∈ H∗

j and l 6= j .

Assume, namely, that Pj (t1
j ) = Pj (t2

j ) and sl(t1
j , h′

j ) = sl(t2
j , h′

j ) for all h′

j ∈ H∗

j and l 6= j .

Then, t1
j and t2

j must have the same sequentially rational strategy. By SBSR, ti structurally

believes in sequential rationality, and hence s1
j is sequentially rational for t1

j and s2
j is sequentially

rational for t2
j . Since t1

j and t2
j have the same sequentially rational strategy, it follows that

s1
j = s2

j , which is a contradiction to the assumption that s1
j 6∈ S j (h2

i ). Hence, Pj (t1
j ) 6= Pj (t2

j )

or sl(t1
j , h′

j ) 6= sl(t2
j , h′

j ) for some h′

j ∈ H∗

j and l 6= j . Together with the assumption that

tk(t1
j , h j ) 6= tk(t2

j , h j ), we may conclude that t1
j and t2

j differ at least on two statements. By the
same reasoning as above, this leads to a contradiction.

We may thus conclude that sk(t1
j , h j ) = sk(t2

j , h j ) and tk(t1
j , h j ) = tk(t2

j , h j ) for all h j ∈ H∗

j
and all k 6= j , which completes the proof. �

Proof of Lemma 6.7. Let u1 be an arbitrary utility representation of P1, and let the utility
functions u2 and ũ2 be as stated in the lemma. Let D(P1, P2) be the set of pairs of terminal nodes
on which P1 and P2 disagree. Similarly, we define D(P1, P̃2). Without loss of generality, let a
and b in the lemma be chosen such that u1(a) > u1(b). Then, by construction, u2(a) < u2(b)

and ũ2(a) > ũ2(b). We prove our result through a series of smaller facts. The proof for each of
these facts is given in the lines immediately following the statement of the fact.

Fact 1. It holds that {a, b} 6∈ D(P1, P̃2), but {a, b} ∈ D(P1, P2). This follows directly from the
observation that u1(a) > u1(b), ũ2(a) > ũ2(b) but u2(a) < u2(b).

Fact 2. Let {x, y} ∈ D(P1, P̃2), and x, y 6∈ {a, b}. Then, {x, y} ∈ D(P1, P2). This follows
directly from the observation that ũ2(x) = u2(x) and ũ2(y) = u2(y).

Fact 3. Let {a, y} ∈ D(P1, P̃2) such that ũ2(y) > ũ2(a). Then, {a, y} ∈ D(P1, P2). Since
{a, y} ∈ D(P1, P̃2) and ũ2(a) < ũ2(y), we must have that u1(a) > u1(y). On the other hand,
by construction of ũ2, we know that u2(a) = ũ2(b) and u2(y) = ũ2(y). Since ũ2(y) > ũ2(a)

and ũ2(a) > ũ2(b), it follows that u2(a) = ũ2(b) < ũ2(y) = u2(y), which implies that
{a, y} ∈ D(P1, P2).

Fact 4. Let {a, y} ∈ D(P1, P̃2) such that ũ2(a) > ũ2(y) > ũ2(b). Then, {b, y} ∈ D(P1, P2).

Since {a, y} ∈ D(P1, P̃2) and ũ2(a) > ũ2(y), we must have that u1(a) < u1(y). By assumption,
u1(a) > u1(b), and hence u1(b) < u1(y). By definition of ũ2, we have that u2(b) = ũ2(a)

and u2(y) = ũ2(y). Since ũ2(a) > ũ2(y), we have that u2(b) > u2(y), which implies that
{b, y} ∈ D(P1, P2).
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Fact 5. Let {a, y} ∈ D(P1, P̃2) such that ũ2(y) < ũ2(b). Then, {a, y} ∈ D(P1, P2). As ũ2(y) <

ũ2(b) and ũ2(a) > ũ2(b), we may conclude that ũ2(a) > ũ2(y). Since {a, y} ∈ D(P1, P̃2)

we must have that u1(a) < u1(y). By definition of ũ2, it is seen that u2(y) = ũ2(y) and
u2(a) = ũ2(b). As ũ2(b) > ũ2(y), it follows that u2(a) > u2(y), and hence {a, y} ∈ D(P1, P2).

Fact 6. Let {b, y} ∈ D(P1, P̃2) such that ũ2(y) > ũ2(a). Then, {b, y} ∈ D(P1, P2). As
ũ2(b) < ũ2(a) < ũ2(y), and {b, y} ∈ D(P1, P̃2), we must have that u1(b) > u1(y). By
definition of ũ2, it holds that u2(b) = ũ2(a) and u2(y) = ũ2(y). Since ũ2(a) < ũ2(y), we know
that u2(b) < u2(y), and hence {b, y} ∈ D(P1, P2).

Fact 7. Let {b, y} ∈ D(P1, P̃2) such that ũ2(a) > ũ2(y) > ũ2(b). Then, {a, y} ∈ D(P1, P2).

As ũ2(b) < ũ2(y) and {b, y} ∈ D(P1, P̃2), we may conclude that u1(b) > u1(y). Since
u1(a) > u1(b), it follows that u1(a) > u1(y). On the other hand, we know by definition of
ũ2 that u2(a) = ũ2(b) and u2(y) = ũ2(y). As ũ2(b) < ũ2(y), it follows that u2(a) < u2(y), and
hence {a, y} ∈ D(P1, P2).

Fact 8. Let {b, y} ∈ D(P1, P̃2) such that ũ2(y) < ũ2(b). Then, {b, y} ∈ D(P1, P2). Since
ũ2(b) > ũ2(y) and {b, y} ∈ D(P1, P̃2), it must be the case that u1(b) < u1(y). By construction
of ũ2, it holds that u2(b) = ũ2(a) and u2(y) = ũ2(y). As ũ2(a) > ũ2(b) > ũ2(y), we have that
u2(b) > u2(y), and hence {b, y} ∈ D(P1, P2).

From Facts 1–8, it follows that D(P1, P̃2) contains strictly less pairs than D(P1, P2), which
completes the proof. �
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