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Abstract: We investigate the problem in which an agent has to find an object that moves between two locations according to a
discrete Markov process (Pollock, Operat Res 18 (1970) 883–903). At every period, the agent has three options: searching left,
searching right, and waiting. We assume that waiting is costless whereas searching is costly. Moreover, when the agent searches
the location that contains the object, he finds it with probability 1 (i.e. there is no overlooking). Waiting can be useful because it
could induce a more favorable probability distribution over the two locations next period. We find an essentially unique (nearly)
optimal strategy, and prove that it is characterized by two thresholds (as conjectured by Weber, J Appl Probab 23 (1986) 708–717).
We show, moreover, that it can never be optimal to search the location with the lower probability of containing the object. The latter
result is far from obvious and is in clear contrast with the example in Ross (1983) for the model without waiting. © 2009 Wiley
Periodicals, Inc. Naval Research Logistics 56: 526–539, 2009
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1. INTRODUCTION

1.1. Description of the Problem without Waiting

In 1970, Pollock considered the following search prob-
lem: there is an object moving across two locations labeled
as L (left) and R (right) according to a discrete time Markov
process (see Fig. 1).

Hence, if the object currently is at L, it will move to R

with probability q. If the object currently is at R, it will move
to L with probability r . The probabilities q and r are called
the transition probabilities. The probability that the object is
initially at L is p̄, and hence 1 − p̄ is the probability that the
object initially is at R.

The periods at which the agent can search for the object
are denoted by t = 1, 2, 3, . . . As soon as the agent finds
the object, the process stops. If the object has not yet been
found, the agent has two possible actions at any given period:
searching left (L) and searching right (R), which have costs
cL and cR , respectively. Assume that the object is overlooked
with probability αL if it is located at L and the agent searches
L, and overlooked with probability αR if it is located at R

Correspondence to: E. Karagözoğlu (E.Karagozoglu@ALGEC.
unimaas.nl)

and the agent searches R. The objective is to minimize the
total expected searching cost needed for finding the object.

1.2. Overview of the Literature

Ross [7] conjectured that there exists an optimal searching
strategy of the following form: search L at period t if and
only if pt ≥ π̃ , where pt is the probability that the object is
located at L at period t . Here, π̃ is a threshold, which depends
on the parameters of the model (i.e., q, r , and p̄). The con-
jecture is intuitive, but Ross proved it only for the special
case, cL = cR . It is intriguing that despite extensive work by
numerous researchers, this conjecture, in its full generality,
remains unproved to this day.

Pollock [6] showed the existence of such a threshold π̃ for
the special case without overlooking (i.e., αL = αR = 0)
in the discrete time model. He also computed the threshold
π̃ for every possible configuration of parameters. Weber [10]
proved Ross’ conjecture in full generality, but in a continuous
time (rather than discrete time) setting. He also conjectured
that for the case with waiting, the optimal strategy can be
characterized by two thresholds. White [11] proved Ross’
conjecture for a fairly wide range of circumstances and pro-
vided a mathematical structure on which, further work on the
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Figure 1. Search for a moving target.

problem can be based. Later, MacPhee and Jordan [4] proved
Ross’ conjecture for a discrete time Markov process with
the possibility of overlooking, but only for some parameter
configurations.

Assaf and Sharlin-Bilitzky [1] investigated a continuous
time version of the model in which the agent, in addition, can
specify the searching effort. The main result of their article is
to describe the optimal searching strategy in this model. Kan
[3] investigated the search problem above with the additional
option to stop searching. The article characterized optimal
strategies for specific classes of transition probabilities.

1.3. Our Contribution

Our article extends the original search problem by intro-
ducing the option to wait.1 That is, at every period the agent
has now three options: searching left (L), searching right (R),
and waiting (W). We assume that waiting is costless whereas
searching is costly. This extension is motivated by the fact that
an agent can benefit from waiting by getting a more favorable
probability distribution over the two locations next period.

We assume that the costs of searching left and right are
equal (normalized to 1) and the overlooking probabilities are
0. If the agent finds the object he receives a prize P . Provided
the prize is high enough, this gives the agent an incentive to
find the object with probability 1. Without this prize, it would
be optimal to simply wait forever. In line with the previous
literature mentioned above, we assume that future payoffs are
not discounted.

We prove that, if P ≥ 2 and the sum of the transition
probabilities (i.e., q + r) is at least 1, or q = r , then there
exists an optimal strategy of the following form: search R if
pt ∈ [0, π1], wait if pt ∈ (π1, π2) and search L if pt ∈ [π2, 1].
(Recall that pt denotes the probability that the object is at
location L at period t , given it has not been found yet.) That
is, this optimal strategy is given by two thresholds, π1 and
π2, as conjectured by Weber [10]. Moreover, this optimal
strategy is unique up to the choices at π1 and π2.

On the other hand, if P ≥ 2 and 0 < q + r < 1 and
q �= r , we prove that for every ε > 0 there exists an ε-optimal

1 Note that waiting is different from stopping analyzed in Kan [3].
The agent can continue searching after waiting, whereas stopping
means no more search can be done.

strategy of the form described above. By an ε-optimal strategy
we mean that the agent cannot improve his expected utility
by more than ε by switching to another strategy. In this case,
an optimal strategy need not exist since there are situations
in which waiting for one more period always provides more
favorable probabilities pt and 1 − pt for the next period. In
these situations, the agent wants to postpone searching as
long as possible.

We show that our thresholds π1 and π2 have an interest-
ing relationship with the threshold π̃ as derived by Pollock
for the model without waiting: It turns out that π̃ is always
in between π1 and π2. Consequently, if the agent searches a
location in the model with waiting, he would search the same
location in the model without waiting. Although this result is
not unexpected, it is not immediately clear why it should be
the case.

In the model without the option to wait, Ross [7] has shown
that it is possible that searching the location with the lower
probability of containing the object is optimal. The reason is
that searching this location may induce a very favorable prob-
ability distribution for the location of the object next time, in
case it is not found. We show that this is no longer possible
in our model: the agent either searches the location with the
higher probability of containing the object, or he waits. So,
even if the lower probability is close to 1

2 , and searching the
location with the lower probability would provide the agent
with complete certainty next period, he would still not search
that location. This fact is far from obvious.

We would like to make some remarks on the model.
Although the optimal strategies above are designed for an infi-
nite horizon model without discounting, they remain “nearly
optimal” if we either (1) apply them to the discounted case
with a discount factor close enough to 1, or (2) use them in the
finite horizon case with sufficiently many periods. The rea-
son is that after sufficiently many periods the strategies we
propose will have found the object with probability almost 1.
In this respect the optimal strategies we construct are robust,
and particularly useful in situations where either the discount
factor is large but not completely known, or there is a large
but unknown horizon.

From a mathematical point of view, the undiscounted case
raises additional difficulties because the expected payoff is
not continuous in the strategy being chosen. For instance, if
the object does not move (that is, q = r = 0) and is at L with
probability 1, any strategy that waits for finitely many periods
and then searches L is optimal. However, the “limit strategy”
would wait for an infinitely long time, and is therefore not
optimal. As a consequence of this type of discontinuity, opti-
mal strategies may not even exist in general, as we already
discussed above.

Finally, for a game-theoretic discussion of a similar search
problem with multiple searchers, we refer the reader to Flesch
et al. [2].
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Table 1. Values for the thresholds π1 and π2 when q ≤ r . If q < r then α is the smallest positive probability amongst p̄, 1 − p̄, q, 1 − q, r ,
and 1 − r . If q = r , then α = 0.

π1 π2

q + r = 0
1

2

1

2

0 < q + r < 1 and
q(1 + r)

(q + r)(1 + q)
max

{
1

2
,

r

q + r
− αε

2

}

(q + 1)r2 + q2r − q ≤ 0 (Area A in Figure 2) (unique p with V (p, R) = V (π∗, L))

0 < q + r < 1 and
q

(q + r)(1 + q) − q
max

{
1

2
,

r

q + r
− αε

2

}

(q + 1)r2 + q2r − q > 0 (Area B in Figure 2) (unique p with V (p, R) = V (π∗, L))

q + r = 1 q r

1 < q + r < 2 and
q(1 − r)

(q + r)(1 − q)

r

q + r

(1 − q + q2)r − 2q2 + q3 ≤ 0 (Area C in Figure 2) (unique p with V (p, R) = V (Ap, L))

1 < q + r < 2 and
1 − r

(q + r)(1 − q) + 1 − r

r

q + r

(1 − q + q2)r − 2q2 + q3 > 0 (Area D in Figure 2) (unique p with V (p, R) = V (Ap, L))

q + r = 2
1

2

1

2
For our main theorem, any α̃ such that 0 < α̃ < α would also do in case q < r . The parts between brackets will become clear after reading
Section 4.2.

1.4. Road Map

Section 2 of this article introduces the necessary notation
and presents our main theorem along with the values of the
thresholds π1 and π2. Section 3 discusses all different types
of Markov processes. Section 4 introduces the value function
and analyzes its properties, which we use in the proof of the
main theorem. Section 5 contains preparatory lemmas for the
proof of the main theorem. Section 6 contains two lemmas
which prove the existence of the thresholds for all possible
types of Markov processes. In Section 7, we compute the val-
ues of the thresholds π1 and π2 (see Table 1). In Section 8,
we compare our optimal strategy with the optimal strategy for
the model without waiting, as derived by Pollock [6]. Section
9 provides a discussion of the assumptions of the model, as
well as a comparison of the results from different models.

2. MAIN THEOREM

2.1. Optimal and ε-Optimal Strategies

A strategy γ is defined as a sequence (γt )t∈N, where
γt ∈ {L, R, W } describes the action to be taken at period
t if the object has not been found yet.2 The expected util-
ity induced by a strategy γ is denoted by U(γ ), while

2 We do not consider mixed or history dependent strategies here,
since the agent will not be able to improve upon his cost by turning
to such strategies.

the expected searching cost is called C(γ ). Thus, U(γ ) =
µ(γ )P − C(γ ), where µ(γ ) is the probability of finding the
object.

We now mention some specific classes of strategies. We
call a strategy γ successful if µ(γ ) = 1. In that case,
U(γ ) = P − C(γ ). For every period t , let µt(γ ) be the
probability of finding the object at period t , given that it has
not been found yet. Also, let Ct(γ ) be the cost at period t

(so, Ct(γ ) = 1 if the agent searches, and 0 if he waits).
We call the strategy γ loss-free if µt(γ )P − Ct(γ ) ≥ 0 for
every period t , meaning that at every period the expected util-
ity is non-negative. Moreover, we call γ strictly loss-free if
µt(γ )P −Ct(γ ) > 0 for every period t at which γ prescribes
to search.

Formally, the agent’s objective is to find, for a given con-
figuration (p̄, q, r) of initial and transition probabilities, a
strategy γ that maximizes the expected utility, U(γ ). A strat-
egy γ is called optimal if U(γ ) ≥ U(γ ′) for all other
strategies γ ′. For any ε > 0, the strategy γ is called ε-
optimal if U(γ ) ≥ U(γ ′) − ε for all other strategies γ ′. As
we will show below, optimal strategies do not always exist
for every configuration of initial and transition probabilities,
but for every ε > 0 we can always construct an ε-optimal
strategy.

We will show that, if P ≥ 2, then it is sufficient to consider
successful strategies.

Naval Research Logistics DOI 10.1002/nav
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LEMMA 2.1: Let P ≥ 2, and let γ be an arbitrary strategy.
Then, there is a successful strategy γ ′ with U(γ ′) ≥ U(γ ).

PROOF: Suppose that γ is not successful. Let N(γ ) denote
the set of periods at which γ searches a location with proba-
bility zero of containing the object. Let γ̃ denote the strategy
which follows the prescriptions of γ , except that γ̃ waits
at all periods in N(γ ). It is clear that C(γ̃ ) ≤ C(γ ), and
that γ̃ finds the object with the same probability as γ . Thus,
U(γ̃ ) ≥ U(γ ), and γ̃ is also unsuccessful. Let z denote the
smallest positive probability amongst the initial probabili-
ties p̄, 1 − p̄ and the transition probabilities q, 1 − q, r and
1 − r . Note that whenever γ̃ searches a location, then this
location contains the object with probability at least z. Since
γ̃ is unsuccessful, this implies that γ̃ can only search finitely
many times. Thus, there exists a period T such that γ̃ only
waits at all periods t ≥ T .

Now, let γ ′ be the strategy that coincides with γ̃ during
the first t − 1 periods, and which from period t on always
searches the location with the highest current probability of
containing the object. (If both locations are equally likely,
check L). Then, γ ′ will find the object with probability 1, so
is a successful strategy. Suppose that the object has not been
found before period t . Then it can be shown by induction on
k that the expected searching cost until period t +k will be at
most 1+ 1

2 + 1
4 +· · ·+ 1

2k−1 ≤ 2. Therefore, the expected con-
tinuation searching cost for γ ′ from period t on is at most 2.
So, the expected continuation utility for γ ′ from period t on is
at least 0, as P ≥ 2. But then, U(γ ′) ≥ U(γ̃ ) ≥ U(γ ). �

It thus follows that, if P ≥ 2, we may restrict ourselves to
successful strategies. This is useful since finding an optimal
strategy within the class of successful strategies is equivalent
to minimizing the expected searching costs.

The prize, P , should be at least 2 to make the agent search.
If P < 2, the agent may find it optimal to wait forever since
the benefit from finding the object does not cover the expected
costs of search in some cases. Consider, for instance, the sit-
uation where the initial probability p̄ is 1

2 , and the transition
probabilities q and r are 1

2 as well. In that case, the expected
cost of finding the object would be exactly 2.3 Hence, the
agent would have no incentive to search at all.

2.2. Our Main Theorem

Our main theorem states that, whatever configuration
of initial probabilities and transition probabilities we take,

3 The reason is that at every period, if the object has not yet
been found, the probabilities of the object being located at L and
R would be exactly 1

2 . So, the expected searching cost will be
1
2 · 1 + 1

4 · 2 + 1
8 · 3 + · · · = 2.

we can always construct a (nearly) optimal strategy of the
following kind:

• if the probability that the object is at L is below a
threshold π1, search R;

• if the probability that the object is at L is between π1

and another threshold π2 ≥ π1, wait;
• if the probability that the object is at L is above π2,

search L.

The (nearly) optimal strategy is therefore completely charac-
terized by the thresholds π1 and π2. It is possible that the two
thresholds coincide. In that case, the agent will never wait.

In the main theorem, let pt(γ ) be the probability that at
period t the object is at L if strategy γ is being implemented.4

Note that pt(γ ) can easily be computed from γ : If at period
t − 1 action L has been chosen, then pt(γ ) = r . Namely, if
by choosing L the object has not been found at period t − 1,
then the object must have been at R at period t −1, and hence
will be at L with probability r next period. By a similar rea-
soning, if at period t − 1 action R has been chosen, then
pt(γ ) = 1 − q. If at period t − 1 action W has been chosen,
then

pt(γ ) = pt−1(γ )(1 − q) + (1 − pt−1(γ ))r .

THEOREM 2.2: Let P ≥ 2. Take a configuration (p̄, q, r)
of initial and transition probabilities with q ≤ r , let ε > 0,
and choose the thresholds π1 and π2 according to Table 1.
Then, the strategy γ given by

γt =



R, if pt(γ ) ∈ [0, π1]
W , if pt(γ ) ∈ (π1, π2)

L, if pt(γ ) ∈ [π2, 1]
is an ε-optimal strategy.5 Moreover, if q = r or q + r ≥ 1,
then γ is an optimal strategy, unique up to the choices at π1

and π2.
In addition, γ is successful and prescribes to search a loca-

tion only if the probability that the object is at that location
is at least 1

2 . In particular, γ is loss-free.

Figure 2 provides a graphical illustration of the various
areas of (q, r) pairs we distinguish in the theorem. Note that
the assumption q ≤ r is made without loss of generality. If
q < r and q + r ∈ (0, 1), then there are initial probabilities
p̄ for which no optimal strategy exists. However, we can still
guarantee the existence of ε-optimal strategies in this case.

Consider the induced strategy γ in our main theo-
rem. Regarding the number of consecutive periods that

4 From now on, whenever we speak about period t , we always
assume that the object has not been found before this period.
5 In fact, the strategy is ε-optimal from any period on.

Naval Research Logistics DOI 10.1002/nav
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Figure 2. Different areas of (q, r) pairs considered in
Theorem 2.2.

γ will prescribe waiting, it will be clear from Section 3
that:

(1) in the case when q + r ∈ (0, 1) and p ∈ (π1, π2):
for any T ∈ N, if ε > 0 is small, then in cer-
tain situations, γ prescribes waiting for more than
T consecutive periods;

(2) in the case when q + r ∈ (1, 2) and p ∈ (π1, π2):
the strategy γ prescribes waiting at most once before
searching a location.

It will follow from our analysis that our thresholds π1 and
π2 have an interesting relationship with the threshold π̃ as
computed by Pollock (1970) for the model without waiting:
It turns out that π̃ is always in between π1 and π2. Con-
sequently, if the agent searches a location in the model with
waiting, he would search the same location in the model with-
out waiting. Although this result may seem intuitive, it is not
immediate.

The proof of Theorem 2.2 is structured as follows. Section
3 discusses all the different types of dynamics of the two-state
Markov processes under consideration. Section 4 introduces
the value function and analyzes its properties, which is fun-
damental for the proof of the main theorem. Section 5 con-
tains preparatory lemmas for the proof of the main theorem.
Section 6 contains two lemmas which prove the existence
of the thresholds and show that the induced strategies are
successful. We also show that these thresholds are unique if
q = r or q + r ≥ 1. Consequently, we prove for these cases
the uniqueness of the optimal strategy, up to the choices at the
two thresholds. In Section 7, we compute the values of the
thresholds π1 and π2 (see Table 1), and show that the induced
strategy only searches a location if the object is there with
probability at least 1

2 .

3. FIVE POSSIBLE TYPES OF DYNAMICS

We distinguish a number of different types of dynamics in
the Markov process, induced by the transition probabilities q

and r . To formally discuss these different types of dynamics,
we need the following definitions.

Let p denote the probability that the object is at location
L. If the agent waits, the probability that the object will be at
L next period is given by

Ap := p(1 − q) + (1 − p)r = (1 − q − r)p + r . (1)

By induction, the probability that the object will be at L after
n periods of waiting is given by

Anp := (1 − q − r)n
(

p − r

q + r

)
+ r

q + r
, (2)

unless q + r = 0.
Further, we denote the invariant distribution(s) of the

Markov process by (π∗, 1−π∗). In particular, π∗ is a solution
of the equation

Aπ∗ = π∗ ⇔ (1 − q − r)π∗ + r = π∗.

If q + r > 0, then this equation has a unique solution which
is

π∗ = r

q + r
. (3)

We distinguish the following types of dynamics.

(i) Absorbing case: q + r = 0, i.e. q = r = 0. Object
does not move in this case. Function Ap is given
by Ap = p. Invariant distribution π∗ is not unique.
In fact, any π∗ ∈ [0, 1] is invariant.

(ii) Non-oscillating case: 0 < q + r < 1. Function Ap

is strictly increasing in p. Invariant distribution π∗
is unique. Probabilities Ap and p are always on the
same side of π∗. That is, Anp converges to π∗ in a
monotonic (and hence non-oscillating) fashion.

(iii) State independent transitions case: q + r = 1.
Function Ap is constant in p. Invariant distribution
π∗ is unique. The convergence to π∗ is immediate.
Since r = 1−q, the transitions are independent of
the state.

(iv) Oscillating case: 1 < q + r < 2. Function Ap is
strictly decreasing in p. Invariant distribution π∗ is
unique. Probabilities Ap and p are always on dif-
ferent sides of π∗. So, Anp converges to π∗ in an
oscillating fashion although |Anp−π∗| is a strictly
decreasing function of n ∈ N.

(v) Switching case: q+r = 2, i.e. q = r = 1. Function
Ap is given by Ap = 1 − p. Invariant distribution
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π∗ is unique and equal to 1
2 . By waiting, the proba-

bility that the object is at L switches from p to 1−p.
So, unless p̄ = π∗, there will be no convergence
to π∗.

4. VALUE FUNCTION

4.1. Definition

The key concept in the proof of our main theorem is that
of a value function. Fix some transition probabilities q and
r . Suppose that the object is located at L with probability p.
Then, for every strategy γ we denote by C(p, γ ) the expected
cost of finding the object if γ is used. The value V (p) is given
by

V (p) = inf
γ successful

C(p, γ )

and denotes the minimal expected cost of finding the object
if the object is currently located at L with probability p. The
function that assigns to every p the number V (p) is called the
value function. Hence, if a successful strategy γ is optimal
for the configuration (p̄, q, r), then C(p̄, γ ) = V (p̄). Con-
versely, if P ≥ 2 and γ is successful with C(p̄, γ ) = V (p̄),
then, in view of Lemma 2.1, γ is optimal.

Note that C(p, γ ) = pC(1, γ ) + (1 − p)C(0, γ ) is linear
in p. Hence, V (p), being the infimum of linear functions of
p, is a concave function of p.

4.2. Basic Properties of the Value Function

For each action a ∈ {L, R, W }, we define the expected
cost V (p, a) induced by using action a, given that the agent
behaves optimally afterwards. As before, p denotes the
probability that the object is currently at L.

When the agent searches L, then with probability p he
finds the object and his total cost will be 1, while with prob-
ability (1 − p) he cannot find it. In case he cannot find it, the
object was at location R, and the probability of it being at L

next period is r . Hence, he will have a future expected cost
of V (r) if he acts optimally from next period on. Therefore,
the expected cost of searching L can be written as

V (p, L) = p · 1 + (1 − p)[1 + V (r)] = 1 + (1 − p)V (r).
(4)

Similarly, the expected cost of searching R is

V (p, R) = (1 − p) · 1 + p[1 + V (1 − q)]
= 1 + pV (1 − q). (5)

Finally, the expected cost of waiting is

V (p, W) = V (Ap). (6)

Figure 3. Functions V (p, L) and V (p, R).

Recall that Ap denotes the probability that the object will be
at L in the next period, if the object is currently at L with
probability p.

Therefore, the value function satisfies

V (p) = min{V (p, L), V (p, R), V (p, W)}. (7)

An action a ∈ {L, R, W } with V (p, a) = V (p) is called an
optimal action at p. Moreover, for a given ε > 0 we say that
action a is ε-optimal at p if V (p, a) ≤ V (p) + ε.

As it can be seen from the equations above, V (p, L) and
V (p, R) are linear in p. Moreover, V (p, L) is strictly monot-
one decreasing in p, whereas V (p, R) is strictly monotone
increasing in p. Combining this with the fact that V (p, R)

attains its minimum, which is equal to 1, atp = 0 andV (p, L)

attains its minimum, which is equal to 1, atp = 1, we can con-
clude that V (p, L) and V (p, R) always intersect at a unique
π̄ ∈ (0, 1), which is given by the equation

π̄ = V (r)

V (1 − q) + V (r)
. (8)

Hence,

V (p, L) > V (p, R) for all p ∈ [0, π̄)

V (p, L) = V (p, R) at p = π̄

V (p, L) < V (p, R) for all p ∈ (π̄ , 1].

Figure 3 provides a graphical representation of the functions
V (p, L) and V (p, R).

Recall that V (p) is a concave function of p. Since Ap

is linear in p, it follows that V (p, W) = V (Ap) is also
a concave function of p. Note that V (A0) = V (r) and
V (A1) = V (1 − q). As we will argue in the lemma below,
both V (r) and V (1 − q) are greater than or equal to 1.
Therefore, the concave function V (Ap) can cross each of
the functions V (p, L) and V (p, R) at most once. From (7),
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it follows that the optimal action is given by at most two
thresholds.

In the following lemma we list some general properties of
the value function that will be useful for the proof of the main
theorem.

LEMMA 4.1: The value function V (p) satisfies the fol-
lowing properties;

(i) 1 ≤ V (p) ≤ 2, and V (p) = 1 ⇔ p = 0 or p = 1.
(ii) V (p) = inf

n∈{0,1,...}
min{V (Anp, L), V (Anp, R)}.

(iii) V (π∗) = min{V (π∗, L), V (π∗, R)} if q + r > 0.
(iv) V (p) ≤ V (Anp) ∀n ∈ N , and V (p) ≤ V (π∗) if

0 < q + r < 2.
(v) V (1 − q) ≤ 1

q
if q > 0 and V (r) ≤ 1

r
if r > 0.

PROOF: (i) It is clear that V (p) ≥ 1 and V (p) = 1 ⇔
p = 0 or p = 1. It remains to prove that V (p) ≤ 2. Consider
the strategy γ which, at every period t , searches the location
that contains the object with the highest probability (if both
locations are equally likely, check L). Then, by the proof of
Lemma 2.1, we know that C(p, γ ) ≤ 2, yielding V (p) ≤ 2.

(ii) Since V (p) restricts to successful strategies, the agent
can only wait for a finite number of periods in a row, after
which L or R has to be chosen.

(iii) This follows from (ii) and the fact that Anπ∗ = π∗ for
every n.

(iv) By definition, V (p) ≤ V (p, W) = V (Ap). Applying
transformation A recursively, we get

V (p) ≤ V (Ap) ≤ V (A2p) ≤ · · · ≤ V (An−1p) ≤ V (Anp)

for every n.
Since 0 < q + r < 2, the sequence Anp converges

to π∗. By (ii), V (p) is continuous in p, and hence we
have that V (Anp) converges to V (π∗). Therefore, V (p) ≤
limn→∞ V (Anp) = V (π∗).

(v) We have V (1−q) ≤ V (1−q, R) = 1+(1−q)V (1−q).
Hence, if q > 0, this implies

V (1 − q) ≤ 1

q
.

Similarly, one can show that V (r) ≤ 1
r
, if r > 0. �

5. PREPARATORY LEMMAS

To prove our main theorem, we first show that a sequence
of optimal actions, under mild conditions, always leads to an
optimal strategy.

LEMMA 5.1: Let γ be a strategy which never waits infin-
itely long. Let pt(γ ) be the probability that at period t the

object is located at L if the object has not been found yet,
and strategy γ is being implemented. Suppose that there is
an α > 0 such that L is chosen only if pt(γ ) ≥ α, and R is
chosen only if 1 − pt(γ ) ≥ α. Then, γ is successful and

(1) if every action γt is optimal at pt(γ ) then strategy γ

is optimal;
(2) for every ε > 0 and δ ∈ [0, αε], if every action

γt ∈ {L, R} is δ-optimal at pt(γ ) and every action
γt = W is optimal at pt(γ ), then strategy γ is
ε-optimal.

PROOF: Since γ never waits infinitely long, it can be
described as follows: First, wait until period w1, then search
location a1 ∈ {L, R}, then wait until period w2, then search
location a2, and so on. For k = 1, 2, 3, . . . define

zk :=
{
pwk

(γ ), if ak = L

1 − pwk
(γ ), if ak = R.

Hence, zk denotes the probability that the object will be found
by action ak at period wk , if the object has not been found
yet, and strategy γ is being implemented. Note that, by our
assumption in the lemma, zk ≥ α for all k. From now on, we
will write pt instead of pt(γ ).

We now show that γ is successful. The probability that γ

never finds the object is �k≥1(1− zk). Since zk ≥ α for all k,
we have that 1 − zk ≤ 1 − α < 1. Hence, �k≥1(1 − zk) = 0,
yielding that γ is successful.

We now prove (1) and (2) by showing that for every ε ≥ 0,
if δ ∈ [0, αε], every action γt ∈ {L, R} is δ-optimal at pt(γ ),
and every action γt = W is optimal at pt(γ ), then strategy
γ is ε-optimal. Part (1) would then follow by taking ε = 0,
and part (2) would follow by taking ε > 0.

Choose ε ≥ 0 and δ ∈ [0, αε]. Suppose now that at every
period t every action γt ∈ {L, R} is δ-optimal for pt(γ ), and
every action γt = W is optimal at pt(γ ). We will show that
γ is an ε-optimal strategy, i.e. C(p̄, γ ) ≤ V (p̄) + ε, where
p̄ is the initial probability that the object is at L.

For every period t , let γ t be the continuation strategy from
period t onwards. Then,

C(p̄, γ ) = z1 · 1 + (1 − z1)
[
1 + C(pw1+1, γ w1+1)

]
,

since the object will be found at period w1 with probability
z1, while with probability 1 − z1 the continuation strategy
γ w1+1 would be played after period w1. On the other hand,

V (p̄) = V (pw1) ≥ V (pw1 , a1) − δ

= z1 · 1 + (1 − z1)[1 + V (pw1+1)] − δ.

Here, the first equality follows from the fact that waiting
until period w1 is a sequence of optimal actions, and the
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inequality follows from the assumption that a1 is a δ-optimal
action at period w1. The last equality follows from (4) and
(5). Therefore,

V (p̄) − C(p̄, γ )

≥ (1 − z1)
[
V (pw1+1) − C(pw1+1, γ w1+1)

] − δ,

and by induction it would follow that

V (p̄) − C(p̄, γ ) ≥ (1 − z1) · · · · · (1 − zk)

× [
V (pwk+1) − C(pwk+1, γ wk+1)

]
− δ

[
1 + (1 − z1) + · · · + (1 − z1) · · · (1 − zk−1)

]
(9)

for k = 1, 2, 3 . . .

We will show that V (p̄) − C(p̄, γ ) ≥ −ε, which would
imply that γ is an ε-optimal strategy. We already know that
�k≥1(1 − zk) = 0. Hence, it is sufficient to show that

(i) V (pwk+1) − C(pwk+1, γ wk+1) is uniformly bounded
in k, and

(ii) δ[1 + (1 − z1) + · · · + (1 − z1) · · · (1 − zk−1)] ≤ ε

for all k.

To show (i), since by Lemma 4.1 (i), 1 ≤ V (pwk+1) ≤ 2, it
remains to prove that C(pwk+1, γ wk+1) is uniformly bounded.

As zk ≥ α for all k, it holds that

C(pwk+1, γ wk+1) ≤ α · 1 + (1 − α) · α · 2

+ (1 − α)2 · α · 3 + · · · = 1

α
,

and hence C(pwk+1, γ wk+1) is uniformly bounded by 1
α

.
To show (ii), for every k,

δ[1 + (1 − z1) + · · · + (1 − z1) · · · (1 − zk−1)]
≤ αε[1 + (1 − α) + · · · + (1 − α)k−1] ≤ αε

1

α
= ε.

This completes the proof of the lemma. �

The next result relates the transition probabilities, q and r ,
to the values of π∗ and π̄ , which will be useful for the proof
of the main theorem.

LEMMA 5.2: For any transition probabilities q, r ∈ [0, 1]
with q + r > 0, it holds that (i) q < r ⇐⇒ π̄ < π∗, (ii)
q > r ⇐⇒ π̄ > π∗ and (iii) q = r ⇐⇒ π̄ = π∗.

PROOF: It is sufficient to show that the following three
implications are valid: (i) q < r =⇒ π̄ < π∗, (ii)
q > r =⇒ π̄ > π∗, (iii) q = r =⇒ π̄ = π∗.

Proof of (i). Suppose q < r . In view of (8) and (3), π̄ < π∗
is equivalent to

qV (r) < rV (1 − q). (10)

Thus, we have to show that (10) holds. If V (r) < V (1 − q),
then (10) is obvious. So suppose V (r) > V (1 − q). This
means that r �= 1 − q, which together with the assump-
tion q < r leaves us only two cases: q + r ∈ (0, 1) (the
non-oscillating case) and q+r ∈ (1, 2) (the oscillating case).

Assume q + r ∈ (0, 1) (the non-oscillating case). By
(3) we have r < π∗ < 1 − q. Since Anr is monotoni-
cally converging to π∗, we have for all n ∈ N, V (r , L) >

V (Anr , L) > V (An+1, L) and lim
n→∞V (Anr , L) = V (π∗, L),

as well as V (r , R) < V (Anr , R). Hence by property (ii) of
Lemma 4.1 we obtain

V (r) = min{V (π∗, L), V (r , R)}.
Similarly,

V (1 − q) = min{V (1 − q, L), V (π∗, R)}
Since V (π∗, R) > V (r , R), by our assumption V (r) >

V (1−q), inequality V (1−q, L) < V (r , R) follows. Hence,
by (4) and (5),

1 + qV (r) = V (1 − q, L) < V (r , R) = 1 + rV (1 − q)

yielding (10).
Assume now q + r ∈ (1, 2) (the oscillating case). By

(3) we have 1 − q < π∗ < r . Due to the facts that
A(1 − q) > (1 − q) and A(1 − q) > An(1 − q) for all
n > 1 we can conclude that V (A(1 − q), L) < V (1 − q, L)

and V (A(1 − q), L) < V (An(1 − q), L) for all n > 1.
Also by (1 − q) < An(1 − q) for all n ∈ N we have

V (1 − q, R) < V (An(1 − q), R) for all n ∈ N. Therefore,
by property (ii) of Lemma 4.1, V (1 − q) = min{V (A(1 −
q), L), V (1 − q, R)} follows.

Similarly to the arguments above, V (r) = min{V (r , L),
V (Ar , R)}. Since, by (1), A(1 − q) < r , we obtain V (A(1 −
q), L) > V (r , L). Hence, by V (r) > V (1−q), we must have
V (1 − q, R) < V (r , L) yielding V (1 − q) = V (1 − q, R).
Therefore,

V (1 − q) = V (1 − q, R) = 1 + (1 − q)V (1 − q)

From the assumption that q + r ∈ (1, 2), it follows that
q > 0. Therefore, from the equation above, V (1 − q) = 1

q
.

In view of property (v) of Lemma 4.1, we may then conclude
that qV (r) ≤ q

r
< r

q
= rV (1 − q), which implies (10).

Proof of (ii). Similar to the proof of (i) above.
Proof of (iii). Assume that q = r . Then, as transition prob-

abilities q and r are equal, the problem is symmetric, and
V (p) = V (1 − p) for all p ∈ [0, 1]. Hence, by (8) and (3),
we obtain π̄ = 1

2 and π∗ = 1
2 , hence π̄ = π∗ follows. �
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6. EXISTENCE OF THRESHOLDS

In this section we will show that we can always find thresh-
olds π1 and π2 such that the induced strategy γ is (ε-)optimal
and successful. We also show that these thresholds are unique
if q = r or q+r ≥ 1. Consequently, we prove for these cases
the uniqueness of the optimal strategy, up to the choices at
the two thresholds. The exact computation of the thresholds
follows in Section 7.

In view of Lemma 5.1, it is sufficient to prove the following
two lemmas.

LEMMA 6.1: Take a configuration (p̄, q, r) of initial and
transition probabilities with q ≤ r . Then, there are thresholds
π1, π2 ∈ [0, 1] with π1 ≤ π2, π1 < 1 and π2 > 0 such that:
searching R is an optimal action for every p ∈ [0, π1], wait-
ing is an optimal action for every p ∈ (π1, π2), and searching
L is an optimal action for every p ∈ [π2, 1]. Here, the optimal
actions are unique up to the choices at π1 and π2. As usual,
p denotes the probability for the object being located at L.

Moreover, if q = r or q + r ≥ 1, then the induced strategy
γ never waits infinitely long.

Also, if q + r > 0, then π2 = π∗.

We will prove this lemma later in Sections 6.1.–6.5.

LEMMA 6.2: Take a configuration (p̄, q, r) of initial and
transition probabilities such that 0 < q + r < 1 (i.e., the
non-oscillating case) and q < r . Then, there is a threshold
π1 ∈ [0, π∗] satisfying π1 < 1 with the following property:
For every δ > 0 there is a τ > 0 such that searching R is
an optimal action for every p ∈ [0, π1], waiting is an opti-
mal action for every p ∈ (π1, π∗ − τ), and searching L is
a δ-optimal action for every p ∈ [π∗ − τ , 1]. Moreover, the
induced strategy γ never waits infinitely long.

We will prove this lemma in Section 6.6.
We will now prove Lemma 6.1. We distinguish five cases.

6.1. Absorbing Case: q + r = 0

The fact that q = r = 0 implies directly that the object
does not move. Hence, waiting makes no sense. By searching
a location at period 1, one either finds the object immediately,
or one will be sure to find the object next period at the other
location. Therefore, only L is optimal if p > 1

2 , only R is
optimal if p < 1

2 , and both are optimal at p = 1
2 . Accord-

ingly, π1 = π2 = π̄ = 1
2 . Note that the optimal actions

are unique up to the choice at 1
2 , and moreover the induced

strategy never waits.

6.2. Nonoscillating Case: 0 < q + r < 1

Since q ≤ r , by Lemma 5.2 we have that π̄ ≤ π∗. Define
π2 = π∗ and let π1 ∈ [0, π̄ ] be the unique p for which
V (p, R) = V (π∗, L). Note that π1 is well-defined for the
following reasons: First, V (0, R) = 1 ≤ V (π∗, L) due to
Lemma 4.1, (i). Also, V (π̄ , R) = V (π̄ , L) ≥ V (π∗, L)

due to the definition of π̄ , monotonicity of V (p, L), and the
fact that π∗ ≥ π̄ . Hence, there exists a p ∈ [0, π̄ ] with
V (p, R) = V (π∗, L). Moreover, since V (p, R) is strictly
increasing, there can only be one such p.

Note that π2 > 0 as π2 = π∗ = r
q+r

, r ≥ q and q + r > 0.
Also, as π̄ < 1 we have that π1 < 1.

On the interval [0, π1): It holds that V (p, R) < V (p, L)

since π1 ≤ π̄ . Since p < Anp for all n, we have that
V (p, R) < V (Anp, R) for all n. Moreover, since Anp <

π∗, it holds that V (p, R) < V (π1, R) = V (π∗, L) ≤
V (Anp, L). Therefore, by Lemma 4.1, (ii), V (p) = V (p, R),
and only R is optimal at [0, π1).

It similarly follows that R is optimal at π1.
On the interval (π1, π2): We have that V (p, R) >

V (π1, R) = V (π∗, L) ≥ V (π∗), and V (p, L) >

V (π2, L) = V (π∗, L) ≥ V (π∗). Since, by Lemma 4.1,
(iv), V (p) ≤ V (π∗), it follows that V (p) = V (p, W), and
therefore only waiting is optimal at (π1, π2).

On the interval (π2, 1]: We know that V (p, L) < V (p, R).
Since Anp < p for all n, we have that V (p, L) < V (Anp, L)

for all n. Moreover, since Anp > π∗, it holds that V (p, L) <

V (Anp, L) ≤ V (Anp, R). Therefore, by Lemma 4.1, (ii),
V (p) = V (p, L), and only L is optimal at (π2, 1].

It similarly follows that L is optimal at π2.
So, the optimal actions are unique up to the choice at π1

and π2.
Note that if q = r , then π∗ = π̄ by Lemma 5.2, hence

π1 = π2 = π∗. Therefore, the induced strategy never
waits.

6.3. State Independent Transitions Case: q + r = 1

The proof for this case is identical to the previous case.

6.4. Oscillating Case: 1 < q + r < 2

Since q ≤ r , by Lemma 5.2 we have that π̄ ≤ π∗.
Define π2 = π∗ and let π1 ∈ [0, π̄ ] be the unique p for
which V (p, R) = V (Ap, L). Note that π1 is well-defined
for the following reasons: First, V (0, R) = 1 ≤ V (A0, L)

due to the Lemma 4.1, (i). Also, since π∗ ≥ π̄ , we have
V (π̄ , R) = V (π̄ , L) ≥ V (π∗, L) ≥ V (Aπ̄ , L), where the
last inequality follows from the fact that Aπ̄ ≥ π∗. Hence,
there exists a p ∈ [0, π̄ ] with V (p, R) = V (Ap, L). Now,
suppose that more than one p ∈ [0, 1] would exist with
V (p, R) = V (Ap, L). Since both sides are linear functions
in p, it must be the case that V (p, R) = V (Ap, L) for all
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p ∈ [0, 1]. In particular, 1 = V (0, R) = V (A0, L), which
by Lemma 4.1, (i) implies that A0 = 1, and hence r = 1.
Also, V (π̄ , L) = V (π̄ , R) = V (Aπ̄ , L), which implies that
π̄ = Aπ̄ , and hence π̄ = π∗. It follows from Lemma 5.2 that
q = r , and hence q = r = 1, which contradicts q + r < 2.
So, there can only be one p with V (p, R) = V (Ap, L).

Note that π2 > 0 as π2 = π∗ = r
q+r

, r ≥ q and q + r > 1.
Also, as π̄ < 1 we have that π1 < 1.

It also follows that

V (p, R) < V (Ap, L) for all p ∈ [0, π1), and (11)

V (p, R) > V (Ap, L) for all p ∈ (π1, 1]. (12)

On the interval [0, π1) it holds that V (p, R) < V (p, L)

since π1 ≤ π̄ . Since Anp > p for all n, we have
that V (p, R) < V (Anp, R) for all n. Moreover, by (11),
V (p, R) < V (Ap, L) ≤ V (Anp, L), where the latter fol-
lows from the fact that Anp ≤ Ap for all n. Therefore, by
Lemma 4.1, (ii), V (p) = V (p, R), and therefore only R is
optimal at [0, π1).

It similarly follows that R is optimal at π1.
On the interval (π1, π2), we have thatV (Ap, L) < V (p, L)

since Ap > p. Moreover, V (Ap, L) < V (p, R) by (12). In
view of V (p, W) = V (Ap) ≤ V (Ap, L), it follows that only
waiting is an optimal action at (π1, π2).

On the interval (π2, 1], we know that V (p, L) < V (p, R).
Since p > Anp for all n, we have that V (p, L) < V (Anp, L)

for all n. Since π∗ ≥ π̄ , we have that V (π∗, L) ≤
V (π∗, R) = V (Aπ∗, R). Also, V (1, L) = 1 < V (A1, R)

as A1 = 1 − q > 0. Since V (p, L) and V (Ap, R) are linear
in p, it follows that V (p, L) < V (Ap, R) on (π2, 1]. More-
over, V (Ap, R) ≤ V (Anp, R) since Anp ≥ Ap for all n.
Therefore, V (p, L) < V (Anp, R) for all n. Together with
V (p, L) < V (Anp, L) for all n, it follows from Lemma 4.1,
(ii), that V (p) = V (p, L), and only L is optimal at (π2, 1].

It similarly follows that L is optimal at π2.
So, the optimal actions are unique up to the choice

at π1 and π2, and the induced strategy waits at most
once.

6.5. Switching Case: q + r = 2

In this case, q = r = 1, so the object will surely move
to the other location if it is not found. By searching a loca-
tion at period 1, one either finds the object immediately, or
one will be sure to find the object next period at the same
location. Therefore, only L is optimal if p > 1

2 , only R is
optimal if p < 1

2 , and both are optimal at p = 1
2 . Accord-

ingly, π1 = π2 = π̄ = 1
2 . Note that the optimal actions

are unique up to the choice at 1
2 , and moreover the induced

strategy never waits.

6.6. Near Optimality in the Nonoscillating Case:
0 < q + r < 1 and q < r

We now prove Lemma 6.2. Choose π1 as in Lemma 6.1.
Take a δ > 0, and choose τ > 0 small enough such that
π∗ − τ ≥ π̄ and V (π∗ − τ , L) − V (π∗, L) ≤ δ. Such a τ

exists due to Lemma 5.2 (i), and the continuity of V (p, L). On
the interval [π∗−τ , π∗] we have that (1) V (p, R) ≥ V (p, L),
(2) Anp converges to π∗ in a monotonically increasing way,
and (3) V (p, L) is decreasing in p. Therefore, by Lemma 4.1
(ii), V (p) = V (π∗, L) for every p ∈ [π∗ −τ , π∗]. Now, take
some p ∈ [π∗ − τ , π∗]. Then,

V (p, L) − V (p) = V (p, L) − V (π∗, L)

≤ V (π∗ − τ , L) − V (π∗, L) ≤ δ,

which means that searching L is a δ-optimal action on
[π∗ − τ , π∗]. As on the interval [π∗, 1], searching L is an
optimal action (cf. Section 6.2), we obtain that searching L

is a δ-optimal action on the whole [π∗ − τ , 1]. It is clear that
the strategy induced by π1 and π∗ − τ never waits infinitely
long.

7. COMPUTATION OF THRESHOLDS

In this section we derive exact formulas for the thresholds
π1 and π2 in Lemmas 6.1 and 6.2. In Section 7.1 we deal
with Lemma 6.1, and also show that π1 ≤ 1

2 and π2 ≥ 1
2 ,

which will imply that the induced strategies only prescribe
to search a location if the probability that this location con-
tains the object is at least 1

2 . In Section 7.2 we deal with the
computation for Lemma 6.2.

7.1. Computation for Lemma 6.1

Note that for the cases q + r = 0 and q + r = 2 we have
already shown that π1 = π2 = 1

2 (see Sections 6.1. and 6.5.).
So, it remains to analyze the cases where 0 < q + r < 1,
q + r = 1, and 1 < q + r < 2. Recall our assumption that
q ≤ r . By Lemma 5.2 we know that π̄ ≤ π∗. Recall that
π2 = π∗ = r

q+r
≥ 1

2 . So, we only need to compute π1 and

show that π1 ≤ 1
2 .

7.1.1. Nonoscillating Case: 0 < q + r < 1

Since q + r < 1, we have π∗ > r , and 1−π∗ = q

q+r
> q,

which implies π∗ < 1 − q. So,

r < π∗ < 1 − q.

We distinguish two cases here: (i) r ≤ π1 and (ii) r > π1.
We will show that case (i) corresponds to the case in Table 1
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where (q +1)r2 +q2r −q ≤ 0, and that case (ii) corresponds
to the case where (q + 1)r2 + q2r − q > 0.

CASE 1: r ≤ π1.

By Lemma 6.1 we know that

V (r) = V (r , R), and

V (1 − q) = V (1 − q, L) since 1 − q > π∗ = π2.

From equations (4) and (5), it follows

V (r) = 1 + rV (1 − q) and V (1 − q) = 1 + qV (r),

which implies that

V (r) = 1 + r

1 − rq
and V (1 − q) = 1 + q

1 − rq
.

Then, by equations (4) and (5) we can write

V (p, R) = 1 + p
1 + q

1 − rq
and

V (p, L) = 1 + (1 − p)
1 + r

1 − rq
.

Recall that π1 is the unique solution to V (π1, R) = V (π∗, L).
Since

V (π1, R) = 1 + π1
1 + q

1 − rq
and

V (π∗, L) = 1 +
(

1 − r

q + r

)
1 + r

1 − rq
,

we get

π1 = q(1 + r)

(q + r)(1 + q)
.

An easy calculation shows that r ≤ π1 if and only if
(q + 1)r2 + q2r − q ≤ 0. Also, it may be verified that q ≤ r

implies π1 ≤ 1
2 .

CASE 2: r > π1.

Since r < π∗, we know from Lemma 6.1 that

V (r) = V (r , W) = V (Ar).

Since Ar ∈ (π1, π∗), we obtain by induction that

V (r) = V (Anr)

for all n, and hence

V (r) = lim
n→∞ V (Anr) = V (π∗).

As π∗ ≥ π̄ , we have by Lemma 4.1, (iii) that V (π∗) =
V (π∗, L). Hence,

V (r) = V (π∗, L).

Since 1 − q > π∗ = π2, Lemma 6.1 yields V (1 − q) =
V (1 − q, L).

Combining these insights with equations (4) and (5) we
obtain

V (1 − q) = 1 + qV (r) and V (r) = 1 + (1 − π∗)V (r).

From these two equations we get

V (r) = q + r

r
and V (1 − q) = 1 + q

q + r

r
.

Recall that π1 is the unique solution to V (π1, R) = V (π∗, L).
Since

V (π1, R) = 1 + π1V (1 − q) and

V (π∗, L) = V (r) = q + r

r
,

we obtain that

π1 = q

(q + r)(1 + q) − q
.

An easy calculation shows that r > π1 if and only if
(q + 1)r2 + q2r − q > 0.

We will now show that π1 ≤ 1
2 . If r ≤ 1

2 , then π1 < r

yields π1 ≤ 1
2 . Suppose now that r > 1

2 . Let φ(a, b) :=
a2 + a(b − 2) + b for all real numbers a and b. Then, the
inequality π1 ≤ 1

2 is equivalent with φ(q, r) ≥ 0. Notice that,
given any b, the parabola φ(a, b) is minimal at a∗ = 1 − b

2 .
By using that

q < 1 − r ≤ 1 − r

2
,

we obtain

φ(q, r) > φ(1 − r , r) = −1 + 2r ≥ 0,

since r > 1
2 . Hence, π1 ≤ 1

2 .

7.1.2. State Independent Transitions Case: q + r = 1

In this case, π2 = π∗ = r = 1 − q. Since q ≤ r , we
know that q ≤ 1

2 . We show that π1 = q, which will imply
that π1 ≤ 1

2 . By copying the arguments above, we obtain the
following:

CASE 1: r ≤ π1.

We find that

π1 = q(1 + r)

(q + r)(1 + q)
= q(1 + r)

(1 + q)
.
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We note that r ≤ π1 and q ≤ r yield q = r , and hence
π1 = q.

CASE 2: r > π1.

We get

π1 = q

(q + r)(1 + q) − q
= q.

7.1.3. Oscillating Case: 1 < q + r < 2

Since q + r > 1, we have π∗ < r , and 1−π∗ = q

q+r
< q,

which implies π∗ > 1 − q. So,

1 − q < π∗ < r .

We distinguish two cases here: (i) 1 − q ≤ π1 and (ii)
1−q > π1. We will show that case (i) corresponds to the case
in Table 1 where (1−q+q2)r −2q2 +q3 ≤ 0, while case (ii)
corresponds to the case where (1−q +q2)r −2q2 +q3 > 0.

CASE 1: 1 − q ≤ π1.

Since π∗ = π2, we know by Lemma 6.1 that

V (1 − q) = V (1 − q, R) and V (r) = V (r , L).

From Eqs. (4) and (5), it follows

V (1 − q) = 1 + (1 − q)V (1 − q) and

V (r) = 1 + (1 − r)V (r).

Hence

V (1 − q) = 1

q
and V (r) = 1

r
.

Then, by Eqs. (4) and (5) we can write

V (p, R) = 1 + p
1

q
and V (p, L) = 1 + (1 − p)

1

r
.

Recall that π1 is the unique solution to V (π1, R) =
V (Aπ1, L). Since Aπ1 = (1 − q − r)π1 + r , we have

V (π1, R) = 1 + π1
1

q
and

V (Aπ1, L) = 1 + (1 − (1 − q − r)π1 − r)
1

r
.

This yields

π1 = q(1 − r)

(q + r)(1 − q)
.

An easy calculation shows that 1 − q ≤ π1 if and only if
(1 − q + q2)r − 2q2 + q3 ≤ 0. It can also be verified that
q ≤ r implies π1 ≤ 1

2 .

CASE 2: 1 − q > π1.

Since π∗ = π2, we know by Lemma 6.1 that

V (1 − q) = V (1 − q, W) and V (r) = V (r , L).

As V (1 − q, W) = V (A(1 − q)) and A(1 − q) > π∗ = π2,
we obtain V (1−q, W) = V (A(1−q), L). Since A(1−q) =
(1 − q − r)(1 − q) + r , it follows from equations (4) and (5)
that

V (1 − q) = 1 + (1 − (1 − q − r)(1 − q) − r)V (r)

and V (r) = 1 + (1 − r)V (r).

Hence

V (r) = 1

r
and V (1 − q) = q + (q + r)(1 − q)

r
.

Then, by Eqs. (4) and (5) we can write

V (p, R) = 1 + p
q + (q + r)(1 − q)

r
and

V (p, L) = 1 + (1 − p)
1

r
.

Recall that π1 is the unique solution to V (π1, R) =
V (Aπ1, L). Since Aπ1 = (1 − q − r)π1 + r , we have

V (π1, R) = 1 + π1
q + (q + r)(1 − q)

r
and

V (Aπ1, L) = 1 + (1 − (1 − q − r)π1 − r)
1

r
.

This yields

π1 = 1 − r

(q + r)(1 − q) + 1 − r
.

An easy calculation shows that 1 − q > π1 if and only if
(1 − q + q2)r − 2q2 + q3 > 0.

We will now show that π1 ≤ 1
2 . As q + r > 1 and q ≤ r ,

we have r > 1
2 . Let φ(a, b) := −a2 + a(1 − b) + (2b − 1)

for all real numbers a and b. Then, the inequality π1 ≤ 1
2

is equivalent with φ(q, r) ≥ 0. Notice that, given any b, the
parabola φ(a, b) is maximal at a∗ = 1−b

2 . By using that

1 − r

2
< 1 − r < q ≤ r

we obtain

φ(q, r) > φ(r , r) = −2r2 + 3r − 1 = (1 − r)(2r − 1) ≥ 0,

since r > 1
2 . Hence, π1 ≤ 1

2 .
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7.2. Computation for Lemma 6.2

We now compute the threshold π∗ − τ in Lemma 6.2.
Recall that 0 < q + r < 1 and q < r . Take a δ > 0,
and choose τ := min{π∗ − 1

2 , δ
2 }. Note that τ > 0 and

π∗ − τ ≥ 1
2 . We know, from Section 7.1.1., that π1 ≤ 1

2 ,
and hence π∗ − τ ≥ 1

2 ≥ π1. Therefore, on the interval
[π∗ − τ , π∗] we have that (1) V (p, R) ≥ V (π∗, L), (2)
V (p, L) ≥ V (π∗, L), and (3) Anp converges to π∗ in a
monotonically increasing way. Hence, by Lemma 4.1 (ii),
V (p) = V (π∗, L) for every p ∈ [π∗ − τ , π∗]. Now, take
some p ∈ [π∗ − τ , π∗]. In order to prove that searching L is
a δ-optimal action, it is sufficient to show that

V (p, L) ≤ V (p) + δ = V (π∗, L) + δ.

We know, by (4), that

V (p, L) = 1 + (1 − p)V (r)

and

V (π∗, L) = 1 + (1 − π∗)V (r).

Hence V (p, L)−V (π∗, L) = (π∗−p)V (r). But (π∗−p) ≤
δ
2 by the choice of p. Moreover, V (r) ≤ 2 by Lemma 4.1,
(i). Therefore,

V (p, L) − V (π∗, L) = (π∗ − p)V (r) ≤ δ.

8. RELATION TO THE MODEL WITHOUT
WAITING

In this section we compare the optimal strategy we deter-
mined in the previous sections with the optimal strategy that
Pollock [6] found for the model without waiting. We thus
evaluate the precise consequence of introducing the option to
wait. Recall that the optimal strategy in Pollock [6] is given
by only one threshold π̃ , meaning that the agent searches
R if p < π̃ and searches L if p > π̃ , and is indifferent
if p = π̃ . We note that Pollock’s threshold π̃ is always in
between our thresholds π1 and π2, which is far from being
trivial, and is shown in Flesch et al. [2]. Consequently, if
the agent searches a location in the model with waiting,
he would search the same location in the model without
waiting.

Below, we will illustrate, by means of an example from
Ross [7], that in the model without waiting the agent may
search a location that contains the object with probability
less than one half (i.e. π̃ �= 1

2 ). Moreover, we will compare
the values obtained in the two models.

8.1. Ross’ Example Revisited

An important implication of our model is that it is never
optimal to search the location with lower current probabil-
ity of containing the object (See Theorem 2.2). In the model
without the option to wait, as Ross [7] has shown, it is possi-
ble that searching the location with the lower probability of
containing the object is optimal (see also [9]). In fact, this is
a striking result of the model without waiting. This happens
if searching the location with the lower probability of con-
taining the object serves as an investment for the future, i.e.
decreases the uncertainty about the location of the object in
the future. The following example by Ross [7] shows this.

Example [7] p̄ = 0.45 and 1 − p̄ = 0.55, q = 1
2 and

r = 1.
Consider first the model without waiting. Although the ini-

tial probability of location R containing the object is higher,
it is optimal to search L since searching L gives complete
certainty about the location of the object at t = 2 in case it is
not found at t = 1. One can see that, in contrast to searching
L, searching R at t = 1 leads to complete uncertainty about
the location of the object at t = 2, in case it is not found at
t = 1. As a result, the expected cost induced by searching
L at t = 1 and acting optimally afterwards (i.e., search L

again) is 1.55 and the expected cost induced by searching R

at t = 1 and acting optimally afterwards (i.e., search L, and if
the object is not found then search L once more) is 1.675. In
fact, it follows from Pollock’s calculations that π̃ = 0.4 < 1

2 .
Let’s now introduce the option to wait. Since 1 < q + r <

2 and (1 − q + q2)r − 2q2 + q3 > 0 in this example, we
see from Table 1 that the thresholds are π1 = 0 and π2 = 2

3 .
Notice the large difference with the model without waiting.
Hence, at period 1 the agent would wait instead of search-
ing L. After waiting, the probability that the object is located
at L is (0.45)(0.5) + (0.55)1 = 0.775 > π2. Hence, the
agent would search L at period 2. If at period 2, he does not
find the object, he will surely find it in period 3 by search-
ing L. Accordingly, the expected cost of finding the object
is (0.775) · 1 + (0.225) · 2 = 1.225, which is less than the
expected searching cost without the option to wait (i.e., 1.55).

8.2. Comparison of Values

We finally compare the value Ṽ in the model without wait-
ing with the value V in the model with waiting. Clearly,
Ṽ ≥ V always.

We will first investigate the situation where the difference
between the two values is minimal. It is intuitive that when
q = r = 0 (Case 1) or q = r = 1 (Case 5), we have
π1 = π2 = π̃ = 1

2 and hence Ṽ = V . In those cases, namely,
there is no reason for the agent to wait. Hence, optimal strate-
gies in the model with waiting and the optimal strategies in
the model without waiting coincide.
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Now, consider the situation where q = 0, r = 1 (a spe-
cial case of Case 3). In this case, the agent would like to
wait whenever p ∈ (0, 1), so the waiting region is maxi-
mal here. Now suppose that the initial probability is p̄ = 1

2 .
Then, Ṽ ( 1

2 ) = 3
2 , since by searching a location at t = 1

the agent will find the object immediately with probability
1
2 , and otherwise will find the object for sure at location L

next period. On the other hand, in the model with waiting we
have V ( 1

2 ) = 1, since by waiting at t = 1 the agent will find
the object for sure at location L next period. We conjecture
that the difference between the two values can never be more
than 1

2 , so that this would be a case where the difference is
maximal.

9. DISCUSSION

1. Possibility of overlooking. Weber [10] and MacPhee
and Jordan [4] analyzed the search for a moving tar-
get problem with a single agent and without waiting
in continuous time and discrete time, respectively.
Their models take the possibility of overlooking into
account. Thus, in their models, even if the object is at
location L (or R) and the agent searches that location,
he may overlook the object with some positive proba-
bility. This possibility drastically affects the updating
process. Now, when the agent searches a location and
cannot find the object, he should take into account the
possibility that the object was in fact at the location
he searched. Hence, it is not clear from our analysis
that the two-threshold form will hold for the (nearly)
optimal strategy if overlooking is possible.

2. Different searching costs for left and right. It can be
simply shown that our results do not change qual-
itatively since V (p, L) and V (p, R) will remain to
be linear functions of p and V (Ap) will still be a
concave function of p. The (nearly) optimal strategy
for this case can still be described by a two-threshold
form.

3. Costly Waiting. We assumed that waiting is costless,
i.e., cW = 0. Now, assume that cW > 0. In this case,
V (p, W) = cW +V (Ap) will still be a concave func-
tion of p. Moreover, the arguments in Section 4 that
the optimal actions can be described by at most two
thresholds are still valid. However, we can now prove
the existence of an optimal strategy even in the case
0 < q + r < 1, in contrast to the case cW = 0. The
reason is that waiting is not an optimal action at π∗
and hence neither of the thresholds is equal to π∗.

4. Existence of optimal strategies. In the model with-
out the option to wait, optimal strategies always exist

(cf. [4,6]). However, as we mentioned in the analysis
above, when waiting is a (costless) option, an optimal
strategy may not exist in the non-oscillating case (i.e.,
0 < q + r < 1). This is because, for certain initial
probabilities, waiting one more period always pro-
vides a more favorable probability distribution over
the two locations. Nevertheless, we proved that for
every ε > 0, there exists an ε-optimal strategy.

5. More than two locations. The case of more than two
locations is much more difficult than the case of two
locations. Even in the case of three locations, one
should provide two-dimensional areas of probability
distributions that describe an optimal search strat-
egy instead of thresholds on a line. (See Nakai [5],
MacPhee and Jordan [4] and Thomas and Eagle [8]
for some results for the model with more than two
locations.)
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