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Abstract: We consider situations where the cooperation and negotiation possibilities
between pairs of agents are given by an undirected graph. Every connected component
of agents has a value, which is the total surplus the agents can generate by working
together. We present a simple, sequential, bilateral bargaining procedure, in which at
every stage the two agents in a link, (i,j) bargain about their share from cooperation in
the connected component they are part of. We show that this procedure yields the
Myerson value (Myerson, 1997) if the marginal value of any link in a connected
component is increasing in the number of links in that connected component.
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1 Introduction

This paper introduces a non-cooperative bargaining procedure that leads to the
Myerson value (Myerson 1977) for network games. Network games range from
the seminal work by Myerson (1977), in which cooperative TU games are
restricted by communication structures, to the more general specification intro-
duced by Jackson and Wolinsky (1996), in which the value function takes the
network as a primitive." The Myerson value has been widely used as an exogen-
ously given payoff scheme in many non-cooperative settings, although the
choice of allocation rules, or equivalently, payoff schemes is quite large.

1 See the book by Jackson (2008), Chapter 12, for a more formal definition.

2 Apart from the Myerson value, many other allocation rules have been proposed and studied
for network games. See, for example, Amer and Carreras (1995), Bergantifios, Carreras, and
Garcia- Jurado (1993), Borm, Owen, and Tijs (1992), Calvo, Lasaga, and van den Nouweland
(1999), Hamiache (1999), Herings, van der Laan, and Talman (2008), Jackson (2005), Slikker
(2005), Slikker, Gilles, Norde, and Tijs (2005), Talman and Yamamoto (2008) and
Vazquez-Brage, Garcia-Jurado, and Carreras (1996).
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The Myerson value is relatively easy to compute. Nevertheless, this is not the
only reason for its popularity. The Myerson value holds appealing properties
when applied to network formation settings.’> Namely, some non-cooperative
network formation procedures have a potential when the payoffs for players are
equal to the Myerson value in each of the possible resulting networks.* A similar
result is known about the Shapley value and non-cooperative coalition forma-
tion procedures.’ In addition, Jackson (2003) shows that there always exists a
pairwise stable network relative to the Myerson value and, more importantly,
following improving paths with respect to the Myerson value always leads to a
pairwise stable network. These are very important features of the Myerson value,
since the existence of pairwise stable networks or them being a “sink” of a
dynamic network formation process is not always granted.

The bargaining procedure we propose, consisting of a sequence of bilateral
negotiations between players, leads to the Myerson value of the final network if
the value function is link-convex, or, in other words, if the marginal value of a
link to a connected component is increasing in the presence of other links
inside that component. The procedure works as follows. We first fix a graph
representing the links, or pairs of agents, that are allowed to bargain directly,
and a rule of order on them. When a link is called to play, the corresponding two
players simultaneously bid to become a proposer of a take-it-or-leave-it offer
to the other player. In case of acceptance by the other player, both players
cooperate and commit to the proposed pair of payoffs, and the mechanism turns
to the next link given by the rule of order. In case of rejection, the proposer has
to pay his announced bid to the other player and either player loses the
possibility to bargain (and cooperate) directly with each other any time later
in the procedure. This means that the procedure starts all over again by fixing a
new graph, namely the current graph after deleting the link representing the
pair of players not reaching an agreement, and a new rule of order over such
a new graph. The procedure continues until all the links in the original graph
have been considered. The final result of this procedure is a series of bilateral
agreements on payoffs and a graph, possibly empty, which includes all links
that have reached an agreement and therefore will cooperate to extract the
value.

3 See for example Aumann and Myerson (1988), Dutta, van den Nouweland, and Tijs (1998),
Garrat and Qin (2003a) and Garrat and Qin (2003b), Pin (2011), Slikker et al. (2000), Slikker and
van den Nouweland (2000) and Slikker and van den Nouweland (2002).

4 For a definition of games with potential, see Monderer and Shapley (1996).

5 See Qin (1996).
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Given the sequential nature of our bargaining procedure, there is a first-
mover advantage. Two players agreeing on payoffs that are too high can induce
a future disagreement when they do not leave enough surplus on the table for
the players that bargain later in the procedure. In order to avoid this type of
agreement, we need to impose link-convexity on the value function. Indeed, we
show that link-convexity of the value function implies that the Myerson value for
all agents in a component increases by adding any link to this component.
Therefore, if link-convexity is satisfied, there is no incentive for inducing a
later disagreement, as the resulting payoffs of the bargaining procedure after a
rejection would be smaller for everybody. This allows us to prove that, under the
assumption that the surplus from cooperation is link-convex, there is a unique
subgame perfect equilibrium outcome in pure strategies to the above explained
procedure such that (i) all proposed payoffs are accepted and (ii) the final
payoffs for the players coincide with the Myerson value applied to the starting
graph.

The need for the value function to be convex can also be found in the
implementation literature dealing with the Shapley value.® The Demand
Commitment Game (DCG) is a well-known game form that Winter (1994) and
Dasgupta and Chiu (1998), in two different versions, have proven to lead to the
Shapley value in subgame perfect equilibrium. The DCG consists basically of
players sequentially sending a demand and committing to join any coalition that
would provide them with such a demand.” Both versions of the procedure,
which differ on how to order players, require the TU game to be convex in
order to implement the Shapley value in any subgame perfect equilibrium.
Convexity of the TU game implies that the Shapley value to each agent increases
if a new agent, or a new set of agents, joins the coalition. Therefore, if the TU
game is convex, no agent has an incentive of demanding too much, which
would induce some agents out of the grand coalition. In a recent working
paper, De Fontenay and Gans (2007) implement the Myerson value in a bilateral
sequential setting. Instead of assuming perfect information and convexity on the
value function, they assume that (i) only breakdowns, and not agreed-upon

6 In the case of the literature implementing the Shapley value, the value function is defined as
a function of coalitions of players. In the case of the Myerson value, the value function is mainly
a function of the links in a network.

7 Currarini and Morelli (2000) and Slikker and van den Nouweland (2001) adapt the DCG to
network settings. In Currarini and Morelli (2000) players’ demands are not contingent on
network structures, while Slikker and van den Nouweland (2001) consider a simultaneous
version of the DCG where demands are link-contingent, i.e., players send a claim or demand
per link in which they would be willing to participate.
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payoffs, are common knowledge, and (ii) players hold “passive beliefs” about
unobservable actions (i.e., the agreed-upon payoffs inside the links in which
they are not participating). Passive beliefs mean that players believe that all
unobservable actions are in concordance with equilibrium behavior and, in case
of receiving an offer out of equilibrium, they do not update beliefs about the
unobservable actions. Therefore, there is no room for foreseeing future rejections
as a result of a current (possible) out-of-equilibrium agreements, which, as
mentioned above, was causing the need of a convexity-type requirement on
the value function.

Finally, Slikker (2007) has shown that a modification of the bidding-for-the-
surplus (BFS) obtains the Myerson value for monotonic value functions.® As it is
a procedure based on the BFS, it mainly differs from our procedure in three
points. First, we propose a procedure that is based on sequential and bilateral
bargaining, while the BFS is not. Second, in the BFS, prices are always paid in
equilibrium, whereas in our mechanism the announced prices are paid only if a
proposal is rejected. In particular, no prices are paid in the unique subgame
perfect equilibrium outcome. Finally, in case of a rejection, the BFS mechanism
for network games deletes all the links of the proposer, while our procedure only
eliminates the link for which the players have failed to reach an agreement.
Mutuswami Pérez-Castrillo, and Wettstein (2004) extend the BFS mechanism to
the provision of public goods and network formation. In the latter context, the
main difference with respect to the original BFS mechanism is that the proposer
announces, in addition to a monetary offer, a coalition and a connected graph
on such coalition.”

Our procedure here, compared to the BFS explained above, has the
advantage of simplicity from the players’ point of view. Players are not

8 The BFS procedure was first introduced by Pérez-Castrillo and Wettstein (2001) and consists
of a two-stage negotiation process in which all currently active players first simultaneously bid
against all the other players for becoming a proposer. After net bids are paid and received, the
proposer, who is the player with the highest net bid, makes a feasible proposal to all of the
active players, who sequentially accept or reject the proposal. If they all accept, then the set of
active players cooperate together and distribute the value as proposed. If one player rejects then
the proposer leaves the game and the mechanism starts all over again. In this case, the set of
active players coincides with the previous set of active players excluding the player whose
proposal has just been rejected. An alternative mechanism that also implements the Shapley
value is provided by Hart and Mas-Colell (1996)

9 For the sake of completeness, Vidal-Puga and Bergantifios (2003) apply the BFS mechanism
to implement the Owen value, which is an extension of the Shapley value to cooperative
situations where players are organized in a-priori unions.
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required to compute and send an offer to every other player, and, in the
event of being a proposer, they only send offers to players with whom they
can potentially cooperate, and they do so sequentially. The bid is only paid
in case of a rejection, still allowing to balance bargaining power without the
need of making a transaction. Final payoffs are also easy to compute since in
equilibrium they are equal to offers, as no bid prices have to be paid.
Compared to the DCG explained further above, the advantage of our mechan-
ism is that it is a bilateral procedure, arguably fitting better in network
contexts. Since the value from cooperation is generated by bilateral relation-
ships, it seems natural to allow the participants in each bilateral relationship
to bargain directly. As such, the presence or absence of a link in the network
goes hand in hand with the agreement or disagreement by the two partici-
pating players on how to distribute payoffs. Furthermore, mechanisms that
are sequential and bilateral create a direct, positive relationship between the
amount of bilateral relationships and bargaining participation, since the
bigger the amount of a player’s bilateral relationships is, the more frequently
will he be called to play.

This paper is organized as follows. In Section 2, we lay out the model of a
cooperative game with network structure, introduce the Myerson value, and
offer some examples of link-convexity. In Section 3, we describe the bargaining
procedure. In Section 4, we present and prove the main result, stating that the
bargaining procedure uniquely leads to the Myerson value, provided link-con-
vexity is satisfied. There is a web appendix available online that contains an
illustration of the bargaining procedure by means of a three-player example, the
proof that, in a link-convex game, the Myerson value of a player in a connected
component decreases if we delete a link from this component, and a proof of the
claim that the last example in Section 2.4 is link-convex.

2 The model

2.1 Cooperation in graphs and value functions

Let N ={1,...,n} be the set of players. The bilateral negotiation possibilities
among players are given by an undirected graph g with N being the set of nodes.
Such a graph g consists of a set of undirected links (i, j), and the interpretation is
that players i and j can negotiate directly if and only if (i, j) € g. The coalitions
in N which will eventually cooperate are the connected components of N in g.
Every connected component S in g has a value w(S, g), which is the total surplus



136 —— Noemi Navarro and Andres Perea DE GRUYTER

from cooperation for S, if the cooperation structure is given by g. This value is
assumed to be perfectly transferable among players in S.

Let G be the set of all possible undirected graphs on N. For every graph
g and coalition S, we define the restriction of g to S as g|g={(i,j) €
g:i€Sandj e S}. Note that g|; C g and g|, = g. A coalition R C S is called a
connected component of S in g if: (1) for every two players in R, there is a path,
that is, a set of consecutive links, in g|; connecting them, and (2) for any player i
in R and any player j not in R, there is no path in g| that connects them. Let S|g
be the set of connected components of S induced by g. Similarly, we may define
N|g as the set of connected components of N in g. Note that N|g is a partition of
N. A graph g is connected if N|g = {N}.

A value function is a map w that assigns to every graph g and every
connected component S in g a value w(S, g). Following Jackson and Wolinsky
(1996), we assume throughout the paper that the value w(S, g) does not depend
on the cooperation structure outside S. That is, w(S,g) = w(S,g’) whenever
gls = g'|s- However, we allow w(S,g) to depend on the cooperation structure
inside S, hence, w(S, g) may differ from w(S, ¢’) if g|g and ¢'| are different. From
now on, the value function w is assumed to be fixed.

2.2 The Myerson value

An allocation rule is a function y that assigns to every graph g € G some payoff
vector y(g) € R". An allocation rule is called component efficient if for every
graph g € G and every connected component S € N|g, we have

> vi(g) = w(S. g).

icS
Let g\(i,j) be the graph that results after deleting the link (i, ;) from g. An
allocation rule y is called fair (Myerson (1977)) if for every graph g € G and
every link (i,j) € g, it holds that

yi(8) —yi(8\(1.))) = yi(&) — ¥;(8\(i.)))-
By fairness, we thus impose that two players who cooperate directly gain or lose
the same amount by dissolving this cooperation.

Jackson and Wolinsky (1996) show that there is a unique component effi-
cient and fair allocation rule, which can be written as the Shapley value of some
auxiliary TU-game to be described below. This is an extension of an earlier result
by Myerson (1977), who restricted attention to value functions w with the
property that w(S,g) is independent of the cooperation structure inside and
outside S.
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For every graph g € G, let [N, U,| be the auxiliary TU-game in which the
characteristic function U, assigns to every coalition S the value

Ug(S) = 3 w(R.gls).

ReS|g

Intuitively, U,(S) is the total surplus from cooperation that players in S may
obtain if the cooperation structure is restricted to g and no cooperation with
players outside S is possible. Note that if S is a connected component in g, then
Ug(S) = w(S, g)-

Theorem 2.1 (Myerson 1977 and Jackson and Wolinsky 1996). There is a unique
component efficient and fair allocation rule, namely the allocation rule assigning
to every graph g the Shapley value of [N, U,|.

Throughout the paper, the fair and component efficient allocation rule will
be referred to as the Myerson value, and will be denoted by m. More precisely,
by m;(g), we denote the payoff for player i if the Myerson value is applied to

graph g.

2.3 Link-convexity

For the remainder of this paper, we shall restrict our attention to a particular
class of value functions, namely those satisfying link-convexity. In words, link-
convexity states that the marginal contribution of a link to a connected compo-
nent is increasing in the number of links inside this component. Formally, we
have the following definition.

Definition 2.2 A value function w is called link-convex if

Uy(S)— U

\I! (S) > Ug\lz(S) - Ug\{llﬁlz}(sh

for every graph g, every connected component S € N|g and every two links
I 2 inglg.
Note that link convexity implies that
Ug(S) > Ugu(S), [1]

for every graph g, connected component S in g and link / € g|s. This is obtained
by considering the case /! = /2 in the definition of link-convexity.
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We now derive a result that proves to be important for our main theorem.
One can show, namely, that for a link-convex value function, deleting a link
from a connected component leads to a strictly lower Myerson value payoff for
all players in that component.

Lemma 2.3 Let w be a link-convex value function. Then, m;(w,g) > m;(w,g\l) for
every graph g, connected component S € N|g, player i € S and link | € g|,.

The proof for this lemma can be found in the web appendix.

2.4 Examples for link-convexity

We conclude this section with some examples of value functions that satisfy link-
convexity.'® It is obvious that a value function w of the form w(g,S) = f(|gs]),
where /() is a strictly convex function and |g|| is the number of links in g|¢, will be
link-convex. Other relatively simple value functions w that are link-convex have a
product structure, for example as in w(S,g) = [[;c,, c(/) or in w(S,g) =
S| H,eg‘s (1), where ¢(/) is a positive number attributed to link I, as long as ¢(/) > 2.

The form w(S,g) = [, c(/), for every g and every S € N|g, represents for
example a production function. Consider a group N of scientists that may work
together on a project. Each scientist is involved in bilateral cooperations with other
scientists, represented by a graph g. As every scientist has his own field of
expertise, every bilateral cooperation, or link, yields a type of knowledge that can
only be generated by this specific cooperation. For every link [, the function c(/)
reflects the contribution of the bilateral cooperation [ to the project. The total
scientific output of the group S corresponds to a Cobb—Douglas production function
in the input variables c(/) generated by the various bilateral cooperations inside S.

The form w(S, g) = |S| [ ] eq, c(/), for every g and every S € N|g, represents for
example a profit function. Consider a group N of firms producing a homogeneous
good in a perfectly competitive market. Each firm may be engaged in bilateral R&D
agreements with other firms. Each of these agreements are represented by links in a
graph g and they translate into the reduction of production costs by developing new,
more efficient technologies. Suppose that C;(x;, g) denotes the total cost for firm i of
producing quantity x; when the collection of R&D agreements is equal to g. Fix
Ci(x;,g) = x? for every disconnected firm i in g and assume that the ratio Glig\)

Ci(xi,g) °
representing the cost reduction induced by the R&D cooperation I, is independent of

10 In addition to these examples, van den Nouweland and Borm (1991) find, in a context of TU
games with communication structures, necessary and sufficient conditions for the resulting
game U, to be link-convex when the underlying TU game is convex.
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the graph g, the firm i, and the quantity x;. Let us therefore fix o(/) = % for each

lin g. It is easy to check that all these ingredients result in
X2
Cilxi.8) =
) Mg, o)

for every firm i in a connected component S. Assume that each firm indepen-
dently chooses its profit maximizing output and the price of the good is normal-
ized to 1. Then, if w represents total profits in a connected component we would
obtain the product structure we were describing above, with™

W(S,g) = ‘[‘ﬂHleg\s (Z(l)’

when S contains at least two firms, and w({i},g) = ; when i is disconnected.

Finally, we can obtain a link-convex value function with a quadratic expres-
sion by considering a simplified version of the setting introduced by Goyal and
Joshi (2003) on networks of research collaboration between firms. A node in N
represents a firm and a link in the network represents a research collaboration
that results in a reduction of marginal costs, as in the previous example above.
Following Goyal and Joshi (2003), the marginal cost of a firm i participating in a
network g of research collaborations is given by

ci(g) = 7o — ydi(8), 2]

where d;(g) is the degree or number of links in the network g that agent i has,
and both y, and y are strictly greater than zero. Assume that each firm i enjoys a
monopoly in a market where demand is given by p¢ = a; — Q;, with o; > .
Given optimal monopoly quantities, each firm obtains a profit equal to

ai — Yo + ydl(g):| 2’ [3]

mi(g) = [ >

when the network of research collaborations is equal to g.

11 Optimal quantity for firm i in a connected component S is given by

1
i(8) =5 ] L1cg, @)
and therefore its profit is given by

1(8) =3 g, 40
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Firms in a component have to bear costs from building those collaboration
agreements in g|;. Assuming that such costs constitute a strictly concave func-
tion C increasing on the number of links of a component S, with
a; — vy > C(1) — C(0), we obtain that

w(S,g) = > mi(g) — C(lgls), [4]

icS

for each component S € N|g, which is link-convex. The details of why this value
function is link-convex can be found at the end of the web appendix.’?

3 The bargaining procedure

3.1 Description

We now present a simple bargaining procedure that leads to the Myerson value.
Let N be the set of players and g a graph representing the bilateral negotiation
possibilities. For every connected component S, we start the following proce-
dure: Fix an ordering of the links in g| such that, whenever (i, j) is not the last
link in S, then either i or j (or both) are involved in some future link. For every
link (i, j), the negotiation between i and j consists of two stages:

Bidding Stage. Both players simultaneously make non-negative bids b, and b,.

Proposal Stage. The player with the highest bid proposes a payoff pair (x;,x;)
which the other player can accept or reject. If the player accepts, we move to the
next link. If the player rejects the link, (i, j) is removed, the proposer pays his bid
to the other player and the procedure starts all over again for the reduced graph
g\(i,j) . In case both players have chosen the same bid in the bidding stage,
both will propose with equal probability.

At the end, we reach a graph g’ C g, possibly the empty graph, where all
bilateral negotiations have led to an agreement. For every connected component
S’ in g’ with at least two players, let X (S’) be the sum of all agreed upon payoffs

12 Alternatively, if we assume that there is perfect competition in each node i, then the
consumer surplus in each market is a quadratic function of the number of links that each
firm i has, namely CS/ = 1 (o; — y, + 7di(g))’. If w is the sum of all market surpluses minus an
increasing, concave function C on the number of links inside a component, we would also
obtain a link-convex value function.
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of all the players in §'. If X(S’) does not exceed the total value w(S’, g’), then
every player i € S’ obtains, next to the bids received or paid as a result of
possible previous rejections, the sum of all the agreed upon payoffs to i. If
X(S') exceeds the total value w(S’,g’), no player in S’ receives anything next
to the bids received or paid during the negotiation process. If S’ = {i}, then
player i obtains, next to the bids received or paid as a result of possible previous
rejections, his stand-alone value w({i},g’).

3.2 Order of bilateral negotiations

In our procedure, we have imposed a restriction on the order of the bilateral
negotiations. Namely, within a connected component S, if i and j negotiate and
are not the last ones to negotiate, then either i or j (or both) will negotiate at
least once more in the future. Put equivalently, if i and j are not the last ones to
negotiate within S, then it should not be the case that both i and j will leave the
negotiations immediately afterwards. We call such orders of bilateral negotia-
tions regular.

If orders of bilateral negotiations are not regular, then there is no reason to
expect a fair allocation of the surplus. Let us see why this is the case.
Assume that within some connected component S, players i and j negotiate
directly and that both of them leave the negotiations immediately afterwards.
If some other players in S still negotiate in the future, i and j will grab all the
surplus, and leave the remaining negotiators just the minimal amount so that
they would accept. This, of course, would never yield a fair allocation, and
hence the Myerson value will surely not result as a subgame perfect equilibrium
if we do not impose our regularity condition on the order of bilateral
negotiations.

The question remains whether we can always find a regular order of bilateral
negotiations. It can easily be verified that this is indeed always possible. Namely,
at every stage in the procedure we can choose the next link (i,j) in such a way that
the set of remaining links (including (i,j)) is connected. If we do so, then, unless
(i,j) is the last link, either i or j will be connected to a future link, and hence either
i or j will negotiate at least once more. So, we obtain a regular order.

4 The main result

We now prove that the bargaining procedure always leads to the Myerson value
if the value function w is link-convex.
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Theorem 4.1 Let w be a link-convex value function and g a graph. Then, there is
a unique subgame perfect equilibrium outcome for the bargaining procedure,
and in this outcome the total payoffs for all the players coincide with the
Myerson value at g.

Proof. We show the statement by induction on the number of links in g. Assume
that the graph is empty. Then, by construction of the procedure, every player
receives his stand-alone value, which is also the Myerson value of the empty graph.

Now consider a graph g and assume that for any subgraph g’, the procedure
implements the Myerson value. By the construction of the bargaining procedure
it is clear that we can apply the procedure to each connected component in g
separately. We therefore assume, without loss of generality, that the full player
set N is a connected component within g.

Suppose now that the procedure reaches the link (i, ), that is, i and j must
negotiate. Let N°" be the players that will not negotiate anymore, and let
N = N\N° be those players that will negotiate at least once more, starting
from link (i,j). Let X°* denote the sum of total payoffs claimed so far by the
players in N°| and let M°* be the sum of the Myerson value payoffs for the
players in N°". We prove the following claim.

Claim. Consider the subgame that starts at link (i, j), and where the players in
N°" have together claimed a total payoff of X°*. Suppose that, for every remaining
link (k,1), we have that X°"'<M°" + |N™|(m;(g) — my(g\(k,1))). Then, there is a
unique subgame perfect equilibrium outcome in this subgame, where every player
k € N™ will receive a total payoff

Mout _ Xout

k k (g ) + | Nm|
Proof of the Claim. We prove the claim by induction on the number of links that
follow (i,j). To start with, assume that (i,j) is the last link. Suppose that
XOUSMO + IN™|(mi(g) — mi(g\(i./))), that s,

X< M + 2(m;(g) — mi(g\(i,)))-

Assume that players i and j have claimed total payoffs of X; and X; so far. If i
wins the bidding stage, proposes (xi,)c_,), and player j rejects, j’s total payoff will
be m;(g\(i,/)) + b;. Here, we use the induction assumption that if the link gets
broken, the bargaining procedure leads to the Myerson value for g\ (i,j). On the
other hand, if player j accepts, his total payoff will be X; + x;. We will now show
that player i will choose the x; such that X; +x; = m;(g\(i,j)) + b:.
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If player i offers x; such that X; +x; > m;(g\(i,/)) + b; then player j obtains
strictly more by accepting than by rejecting, therefore, he accepts. Player i
obtains in this case X; +x; = Uy(N) — X' — (X; +x;).

If x; is such that X; +x; = m;(g\(i,/)) + b;, then player j is indifferent
between accepting or rejecting the offer. Let us admit then the possibility for
mixed strategies and fix ¢ as the probability that j accepts this offer x; =
m;(g\(i,j)) + b; — X;. Player i obtains in this case X; +x; = q[U, (N)—X°"—
my(g\(i,i)] + (1 = qmi(8\(ij)) — i

Finally, if x; is such that X; + x;j<m;(g\(i,/)) + b;, then player j rejects the
offer and player i obtains m;(g\(i,)) — b;.

We show that ¢, the probability that player j accepts if X;+x; =
m;(g\(i,j)) + b;, must be 1. Suppose, namely, that ¢ is strictly less than 1. Let
¢ > 0 be such that

€ <(1—q)[Ug(N) — X — mi(g\(i.])) — m;(g\(i.))]-

Then, player i would be strictly better off by offering any xj’ such that
X; +x; = mi(g\(i,))) + b + ¢ than by offering x; with X; +x; = m;(g\(i,/)) + bi.
But, in that case, there is no best response for player i because for any offer x}
with X; +x; = m;(g\(i./)) + bi + ¢, there is a smaller offer x/<x; that player j
would still accept with probability 1. Therefore, there is no subgame perfect
equilibrium with ¢ <1.

Hence, in subgame perfect equilibrium, player i offers x; with X; +x; =
m;(g\(i,j)) + b;, and player j accepts that offer with probability 1, even if we
allow for mixed strategies at this stage. Hence, player j’s total payoff is

X +x = mj(g\(i,))) + by, [5]
and player i’s total payoff would be the remaining amount, which is

Xi+xi = Ug(N) — Xou _ (X] +Xj)
= Ug(N) — X*" — mj(g\(i,j)) — bi.
This indicates that player i’s total payoff is decreasing in his own bid when he is
the proposer.
Similarly, if player j is the proposer, player i’s total payoff is
Xi +Xxi = ml(g\(laj)) + ij [7]
and player j’s total payoff is
Xj+x = Ug(N) — X" — mi(g\(i,j)) — by. 8]

[6]
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Hence, also player j’s total payoff is decreasing in his own bid when he is the
proposer.

This implies that, in equilibrium, players i and j must choose the same bid.
Namely, if b, > b;, player i could improve his total payoff by lowering his bid a
little and still become the proposer. Therefore, players i and j will both become
the proposer with probability one half.

Furthermore, the common bid b must be such that both players are indifferent
between being the proposer and the respondent. If a player strictly preferred being
the proposer, then he could improve his total payoff by raising his bid a little and
become the proposer with probability one. If he strictly preferred being the
respondent, he could improve his total payoff by lowering his bid a little and
become the respondent with probability one. It can easily be shown that such a
common bid exists and is unique: If we take b, = b; = b and set (5) equal to (8),
we get the same solution for b as when we set (6) equal to (7), namely

Ug(N) — X — mi(g\(i,j)) — m;(g\(i.)))

b= 5 .

As, Uy(N) = M°" + m;(g) + m;(g), we have that

_ M — X+ my(g) + mi(g) — mi(g\(1,))) — mi(g\(i,]))
2
9]

out Xout

2

b

=m;(g) — mi(g\(i,])) +

Here, the second equality follows from the fact that m;(g) —m;(g\(i,))) =
mi(g) —mi(g\(i,/)). Since, by assumption, X°"<M*" +2(m;(g) —mi(g\(i./))),
we obtain that » > 0. So, the common bid is positive and therefore well-defined.

We should also check that b; = b is still a best response to b; = b even
when we allow for mixed strategies at the bidding stage. Note that, for any 5,<b
that is chosen with positive probability in any mixed strategy, player i will for
sure win the bidding stage when b; = b. In this case, player i will earn a profit
smaller than the one he would obtain with b, = b because payoffs are strictly
decreasing in b; when player i is the proposer. For any b; < b that is chosen
with positive probability in any mixed strategy, player j becomes the proposer
with b; = b. In this case, player i obtains exactly the same payoff as when
choosing b; = b. Hence, there is no profitable deviation for player i when player
j chooses b; = b, even if we consider mixed strategies for player i, because the
expected payoff from any of those (possibly mixed) strategies cannot not be
bigger than what player i obtains when he is choosing 5; = b (assuming that
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player j chooses b; = b). The same would be true about player j when player i
chooses b; = b, and hence b; = b; = b is the bid in a subgame perfect equili-
brium in pure strategies.

With all of the above, the total expected payoffs for players i and j equal the
total payoffs they obtain by being the respondent, namely

Xi+x = mi(g\(1,])) + b,and X; + x; = m;(g\(i.j)) + b. [10]

By substituting egs. [9] into [10], and using the fact that m;(g) — m;(g\(i,j)) =
mj(g) —m;(g\(i,))), we get

Mout _ Xout Mout _ Xout
Xi+ xi = mi(g) + ————=mi(g) T
and
Mout _ Xout Mout _ Xout
X;+ x5 = mi(g) + = = mg) + e

So, the claim holds if (i, j) is the last link.

Consider now a link (i,j) which is not the last link, and suppose that
XU < MO 4 |N™|(my (g) — my(g\(k, 1)) for every remaining link (k,/). Assume
also that the claim holds for all the links that follow. There are two possible
cases to distinguish, namely that neither i nor j will not leave the negotiations
after (i, j) or that one of them will.

Case 1. Suppose that neither i nor j will leave the negotiations after (i,j).

In this case, the set of inactive players N°* will remain the same after the
negotiation at (i, j), and hence so will the claimed amount X°*. Therefore, by
our induction assumption, the eventual payoffs for the players in N'* are not
affected at all by the negotiation at (i, j), as long as the offer there is accepted.
So, the only objective for players i and j is to make sure that the offer is
accepted, and hence the claim follows rather trivially in this case.

Case 2. Suppose that player i will leave the negotiations after (i, ;).

Since the order of bilateral negotiations is regular, we know that player j is
involved in at least one other remaining link.

Assume that players i and j have claimed total payoffs X; and X; so far. If i
wins the bidding stage, proposes (x;,x;) and player j rejects, then j's total payoff
will be

m;(g\(i,))) + bi. [11]
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If j accepts, then his total payoff will be

(M mi(g) — (X + Xi +x)
N1

m;(g) + : [12]

Here, we have used the assumption that the claim holds for the link that follows
(i, j). Namely, if j accepts, then player i will have a total payoff equal to X; + x;.
Since player i leaves after (i, j), the total claimed amount by the inactive players
after (i, j) would be X°"' + X; + x;, and the sum of the Myerson value payoffs of
the inactive players after (i, j) would be (M + m;(g)). Moreover, the number of
active players after (i, j) would be |[N™| — 1.

So, if i proposes, then he will choose x; such that (11) and (12) are equal.
Hence, player i’s total payoff will be

Xi+ X = M™ + mi(g) — X" + (IN"| = 1)(my(g) — mj(g\(i,))) — by),  [13]
and player j’s total payoff will be

m;(g\(i,j)) + bi. [14]

We thus see that player i’s total payoff is decreasing in his own bid if he is the
proposer.

If j wins the bidding stage, proposes (x;,x;) and i rejects, then i’s total payoff
will be m;(g\(i, j)) + b;. If i accepts, then his total payoff will be X; + x;, and
player j’s total payoff will be

(M + mi(g)) — (X + X; + xi)
[Nn| —1

m;(g) +

So, player j chooses x; such that X; +x; = m;(g\(i,/)) + b;, and hence j’s own
total payoff is

(M 4+ mi(g)) — (X +my(g\(i,j)) + by)
N[ —1 ’

m;(g) + [15]

whereas i’s total payoff is
mi(g\(i,])) + bj. [16]

Hence, also player j’s total payoff is decreasing in his own bid if he is the proposer.



DE GRUYTER Simple Bargaining Procedure =— 147

Summarizing, we see that for both players, the total payoff when being
the proposer is decreasing in the winning bid. But then, both players
must choose the same bid b and in such a common bid both players are
indifferent between being the proposer and being the respondent. The
argument follows as in the proof for the last link, and it can therefore be omitted
here. Hence, players i and j will both become the proposer with probability one
half.

It is easily verified that such bid b exists: By setting (13) equal to (16)
for b; = b; = b, we obtain the same solution for b as by setting (14) equal
to (15), namely

p_ MO =X+ mi(g) — mi(g\(11)) + (N = 1)(my(g) — my(8\(3,1)
[N

As m;(g) —m;(g\(i,))) = mi(g) — mi(g\(i,)), we obtain that
out _ Xout

b =mi(g) — mi(g\(i,j)) + TN [17]

which is positive since, by assumption, X°U'<A°" + |N™|(m;(g) — mi(g\(i,))))-
Hence, the common bid b is well-defined.

So, player i’s total expected payoff is equal to his expected payoff by being
the respondent, which, by eq. [16], is equal to m;(g\(i,j)) + b. By eq. [17], we can
then conclude that player i’s total expected payoff is

Mout _ Xout

|Nin| [18]

mi(g) +
Similarly, player j’s total expected payoff is equal to m;(g\(i,/)) + b, which, by
eq. [17] and the fact that m;(g) — m;(g\(i,/)) = mi(g) — mi(g\(7,/)), is equal to

Mout _ Xout

|Nin| [19]

m;(g) +
We now explore what the other active players after (i, j) would get. Consider the
subgame that starts immediately after (i, j), and let X°*, M°", and N™ refer to
this subgame. Since player i leaves the negotiations after (i, j), and receives total
payoff m;(g) 4+ (M°* — X°*)/|N™|, we have that

Mout _ xout Mout 4 (|Nm‘ _ 1)X()ut

yout __ yout . — m:
X _X +ml(g)+ |Nin‘ _ml(g)+ |Nin|
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Obviously, M°* = M + m,(g) and |N™| =|N™ —1. As, by assumption,
Xout < MO 4 IN™|(my (g) — my(g\(k,1))) for every link (k,/) that comes after
(i,7), we may conclude that

Xout < mi(g) + MOut (|Nin| —1)(mi(g) — me(g\(k, 1))
= M + IN™|(my(g) — mie(8\ (k. 1)),

for every link (&, /) that comes after (i, ;). But then, by our induction assumption, we
may conclude that every active player k after (i, j) will receive total payoff

Mout o Xout Movt _ xout
T T

my(g) +

Together with egs. [18] and [19], we then obtain that every player k € N™ receives
total payoff

Mout _ Xout
my(g) + TN
which was to show. By induction, the proof of the claim is complete.

We finally prove the statement of the theorem. Let us move to the beginning
of the bargaining procedure, that is, to the first link (i, j). There, obviously,
XOut = MUt = (. Since the value function is link-convex, we know by Lemma 2.3
that my(g) > mi(g\(k,1)) for every link (k,/). Hence, we have that
Xout<Mout + IN™|(my(g) — mi(g\(k,1))) for every link (k,/). But then, by our
Claim, we may conclude that there is a unique subgame perfect equilibrium
outcome in the bargaining procedure, where every player k receives total payoff

Mout _ Xout

- = Mmg(§).
N &)

my(g) +

This completes the proof of the theorem. Ml
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