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PLAUSIBILITY ORDERINGS IN
DYNAMIC GAMES

ANDRÉS PEREA

Maastricht University, Holland

In this paper we explore game-theoretic reasoning in dynamic games
within the framework of belief revision theory. More precisely, we focus
on the forward induction concept of ‘common strong belief in rationality’
(Battigalli and Siniscalchi (2002) and the backward induction concept of
‘common belief in future rationality’ (Baltag et al. 2009; Perea 2014). For
both concepts we investigate whether the entire collection of selected belief
revision policies for a player can be characterized by a unique plausibility
ordering. We find that this is indeed possible for ‘common strong belief in
rationality’, whereas this may be impossible in some games for ‘common
belief in future rationality’.

1. INTRODUCTION

Belief revision plays a fundamental role in human decision making, and
determines to a large extent the choices we make. Indeed, the beliefs
we hold today may be contradicted by new evidence tomorrow, and
at that point in time we must be prepared to change our beliefs as
to accommodate the new piece of information. The choices we make
tomorrow will therefore crucially depend upon how we revise these
beliefs.

So, in order to understand how people make decisions in a dynamic
environment we must first investigate how they may revise their beliefs
upon observing new facts. Of course there are many different ways of
changing beliefs, and in order to develop a meaningful theory of belief
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revision we must present a list of desirable properties that a belief revision
process should satisfy. In the 1980s, Alchourrón et al. (1985) presented one
such list of properties – known today as the AGM-axioms – that would
have a fundamental impact on the development of belief revision theory.
The class of belief revision policies satisfying the AGM-axioms still serves
as a central model of belief change in many works in various different
areas.1

Some years later, Grove (1988) proved a beautiful characterization
result which states that the belief revision policies satisfying the AGM-
axioms are precisely those that can be derived from some plausibility
ordering over states of the world. By the latter we mean that the decision-
maker ranks all possible states of the world in terms of their (subjective)
plausibility, and upon receiving a new piece of information restricts his
new belief to the most plausible states that are compatible with the new
information. This plausibility ordering not only determines the decision-
maker’s initial belief – namely the set of states he deems most plausible
overall – but also how the decision-maker changes his belief in case the
new information completely – or partially – contradicts his initial belief.
In this case, the decision-maker restricts his attention to a smaller set of
states – namely those that are not ruled out by the new information – and
among these states he selects those that he finds most plausible. This will
then serve as his new, revised belief. In my view, plausibility orderings
provide a very natural way of inducing a belief revision policy, and
Grove’s representation theorem confirms that the AGM-axioms indeed
establish an intuitive list of postulates, leading to a natural class of belief
revision rules.

Belief revision is of special importance in dynamic games, where
players may learn new facts about the past behaviour of their opponents
during the game. In such cases, players may need to revise their beliefs
about the opponents’ strategy choices, and the eventual choices made by
the players will crucially depend on how they revise these beliefs. As an
illustration, consider the dynamic game in Figure 1.

For player 2 it seems reasonable to initially believe – before anything
has happened – that player 1 will choose b and end the game immediately.
To see this, note that for player 2 it is irrational to choose g. Hence, if
player 1 believes that player 2 would choose rationally upon choosing a ,
then player 1 expects not to get more than 2 by choosing a , and therefore
would rather choose b.

But what would player 2 do in this game? If it is player 2’s turn to
make a move, he knows that player 1 has chosen a , and not b, so player 2

1 Despite their intuitive appeal, some authors have criticized the AGM-axioms for being
too conservative. See, for instance, Levi (2013) and Kevin Kelly’s work on simplicity and
Occam’s razor.
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FIGURE 1. Belief revision matters for choices

has to revise his initial belief about player 1. But how? We will describe
two plausible belief revision scenarios for player 2 in this game, leading
to two different choices.

In the first scenario, player 2 believes that choosing a was a conscious,
optimal choice for player 1. In that case, however, player 2 must believe
that player 1 will subsequently choose d, as this is the only way for player
1 to obtain more than 3 – the utility he could have guaranteed by choosing
b at the beginning. So, player 2 will respond by choosing f . Note that in
this scenario, player 2, upon observing a , can no longer believe that player
1 believes that player 2 will choose rationally after a . Namely, in order to
rationalize player 1’s move a , player 2 must believe that player 1 ascribes
a high probability to player 2 making the irrational choice g, as only
then can player 1 achieve more than 3 by choosing a . This belief revision
scenario corresponds to the forward induction concept of ‘common strong
belief in rationality’ as developed by Battigalli and Siniscalchi (2002), and
which is based upon the ‘extensive-form rationalizability procedure’ by
Pearce (1984). The main idea in this concept is that a player, when he
observes an unexpected move by his opponent, tries to interpret this move
as being part of an optimal strategy, whenever this is possible. This is
precisely what player 2 does in the game of Figure 1 under the belief
revision scenario described above, when he observes the unexpected
move a by player 1. He interprets a as being part of an optimal strategy by
player 1, but then he must believe that player 1 will choose the follow-up
action d, and hence player 2 will choose f himself.

This is not the only plausible way for player 2 to revise his belief,
however. If he observes that player 1 has – surprisingly – chosen a , he
could also believe that this was a mistake by player 1, but that player 1
will still choose rationally in the game that lies ahead, and that player
1 still believes that player 2 will choose rationally in the remainder of
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the game. In that case, player 2 will believe that player 1 believes that
player 2 will not choose g. Hence, player 2 will believe that player 1
chooses c after a – and not d as in the belief revision scenario above.
As a consequence, player 2 will respond by choosing e – and not f as
in the scenario above. This second belief revision scenario is implicit in
the backward induction concept of ‘common belief in future rationality’
as proposed by Perea (2014) and Baltag et al. (2009). The key condition
in this concept is that a player, upon observing an unexpected move by
his opponent, always believes that the opponent will choose rationally
from now on, and that the opponent believes that the other players will
also choose rationally from now on, and so forth. However – and that
is the main difference with ‘common strong belief in rationality’ – the
player need not believe that the opponent’s past choice was an optimal
choice, even when believing so is possible. In fact, the player is free to
believe that the unexpected move he observed was actually a mistake by
the opponent. What is important is that the player believes that from now
on everything is back to normal – that is, that the opponent will choose
rationally from now on, and that the opponent believes that everybody
else will choose rationally from now on, and so forth. In this sense the
concept is entirely forward looking, as it only imposes conditions on how
players reason about current and future moves, and not about past moves.
That is why we call it a backward induction concept, as opposed to forward
induction reasoning which requires players to also reason critically about
opponents’ past moves.

We thus see that the forward induction concept of ‘common strong
belief in rationality’ and the backward induction concept of ‘common
belief in future rationality’ do not only describe different belief revision
scenarios for player 2 in the game above, but also lead to different choices
for player 2. This shows that belief revision crucially matters for how
players choose in a dynamic game.

Since belief revision is so important for the study of dynamic games,
it seems only natural to embed the analysis of dynamic games within
the framework of belief revision theory. But somewhat surprisingly, this
approach has hardly been adopted so far in the game theory literature –
some exceptions being the works by Bonanno (2009, 2011, 2013) and Baltag
et al. (2009).

The purpose of this paper is to enhance this connection by building
a bridge between the study of dynamic games on the one hand, and the
idea of plausibility orderings in belief revision theory on the other hand.
For this investigation we restrict our attention to the concepts of ‘common
strong belief in rationality’ and ‘common belief in future rationality’
mentioned above. In general, these two concepts do not prescribe a unique
belief revision policy for a player, but typically select for every dynamic
game a whole collection of belief revision policies for this player. Of course,
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these belief revision policies must share some common feature, since
they all correspond to the same game-theoretic concept. The question
we want to address for each of the two concepts is whether the entire
collection of belief revision policies selected for a given player can be
summarized by a common plausibility ordering. That is, can we find, for
every player i , a unique plausibility ordering such that the belief revision
policies selected for player i by the concept at hand are precisely those
belief revision policies that respect this plausibility ordering. If that is
true, then the common feature that these belief revision policies share
is precisely this common plausibility ordering. In fact, the whole game-
theoretic concept could then be summarized by one plausibility ordering
for each of the players, which would constitute a very simple and natural
representation of the concept. It would also reveal a clear intuition for the
concept at hand, as the concept would require every player to revise his
beliefs according to this common plausibility ordering – nothing more and
nothing less.

We find that the collection of belief revision policies selected by
‘common strong belief in rationality’ can indeed by summarized by a
single plausibility ordering for each of the players, whereas this is not
always possible for ‘common belief in future rationality’ in some games.
Moreover, we show in Theorem 6.4 what this plausibility ordering looks
like for ‘common strong belief in rationality’. In contrast, for the concept
of ‘common belief in future rationality’ a unique plausibility ordering is
often not enough to characterize all belief revision policies for a given
player in the game. We provide an example for this in Section 7.2.

At the end of this paper we focus on the special class of games with
perfect information, in which players move one at a time, and always
observe precisely what their opponents have done so far. We show by
means of a counterexample that even in such games, the collection of
belief revision policies selected for a given player by ‘common belief
in future rationality’ cannot be characterized by a unique plausibility
ordering. However, we show that the concept can be refined to a stronger
concept, ‘common belief in rationality at future and parallel information
sets’, where these collections of belief revision policies can be characterized
by a common plausibility ordering for this special class of games,
provided there are no relevant ties in the game. Moreover, the latter
concept, like ‘common belief in future rationality’, always induces the
backward induction strategies in such games.

For the class of games with perfect information, Baltag et al. (2009)
have defined the concept of ‘common knowledge of stable belief in
dynamic rationality’, which has exactly the same spirit as ‘common belief
in future rationality’, and show that it also uniquely yields the backward
induction strategies in case there are no relevant ties. One difference with
‘common belief in future rationality’ is that their concept assumes, from
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the beginning, that the belief revision policies are given by a unique
plausibility ordering for every player. So, in that sense the concept is
similar to ‘common belief in rationality at future and parallel information
sets’ which is also characterized by a unique plausibility ordering for
every player in perfect information games without relevant ties, and also
uniquely leads to the backward induction strategies there. These insights
show that for perfect information games, backward induction can be
characterized by suitably chosen plausibility orderings.

The paper is organized as follows. In Section 2 we give a formal
definition of a dynamic game and its associated strategies. In Section 3
we introduce hierarchies of conditional beliefs in dynamic games, and
show how these can be encoded by means of an epistemic model with
types. We also show how belief revision can be captured within this
model. In Section 4 we give a definition of a ‘reasoning context’ for
dynamic games, describing the possible belief hierarchies that a player
can hold for any such game. The concepts of ‘common strong belief in
rationality’ and ‘common belief in future rationality’ are thus special cases
of a ‘reasoning context’. In Section 5 we introduce plausibility orderings
in dynamic games, and define what it means for a reasoning context
to be characterized by a unique plausibility ordering for every player.
This means that for every player, the whole collection of selected belief
hierarchies can be summarized by a unique plausibility ordering for this
player – precisely the idea we have discussed above. In Section 6 we
formally introduce the concept of ‘common strong belief in rationality’
and show that it can always be characterized by a unique plausibility
ordering for every player. In Section 7 we formally define the concept
of ‘common belief in future rationality’ and demonstrate that it cannot
always be characterized by a unique plausibility ordering for every player.
In Section 8 we investigate the class of games with perfect information, as
discussed above. In Section 9 we end with a discussion. All proofs are
collected in the appendix.

2. DYNAMIC GAMES

2.1 A Model of Dynamic Games

In a dynamic game, players may have to choose more than once during
the course of the game, and may partially or completely observe what
other players have done in the past when it is their time to make a
choice. Throughout this paper we assume that the dynamic game is finite
– that is, the game ends after finitely many moves, and every player has
finitely many choices available at every moment in time where it is his
turn to move. Formally, a finite dynamic game G consists of the following
ingredients.

http://journals.cambridge.org
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There is a finite set of players I. The instances where one or more
players must make a choice are given by a finite set X of non-terminal
histories. The possible instances where the game ends are described by
a finite set Z of terminal histories. By ∅ we denote the beginning of the
game.

Consider a non-terminal history x where it is player i ’s turn to move.
As player i may not fully observe what his opponents have done in the
past, player i may not be able to distinguish x from other non-terminal
histories. Formally, we model player i ’s information at x by an information
set h that contains all non-terminal histories that, from player i ’s point of
view, are indistinguishable from x. We denote by Hi the collection of all
information sets for player i in the game. We assume that there is perfect
recall, meaning that a player never forgets what he previously did, and
what he previously knew about the opponents’ past choices.

Consider a non-terminal history x at which player i must make a
choice. By Ci (x) we denote the finite set of choices that are available to
player i at x. Let h ∈ Hi be the information set for player i to which x
belongs. As on the one hand, player i cannot distinguish x from other non-
terminal histories in h, but on the other hand is assumed to know the set
of choices available to him, we must require that Ci (y) = Ci (x) for all non-
terminal histories y ∈ h. But then, we may as well use the notation Ci (h),
specifying the (unique) set of choices available to player i at information
set h ∈ Hi .

We explicitly allow for simultaneous moves in the dynamic game. That
is, we allow for non-terminal histories at which several players make a
choice. Formally, this means that for some non-terminal histories x there
may be different players i and j , and information sets h ∈ Hi and h′ ∈
Hj , such that x ∈ h and x ∈ h′. In this case, we say that the information
sets h and h′ are simultaneous. So, two information sets h ∈ Hi and h′ ∈ Hj

are simultaneous if they have a non-empty intersection. For instance, in
the game of Figure 1 we see that players 1 and 2 simultaneously move at
information set h1. In that game, the information set for player 1 at that
stage is identical to the information set for player 2 at that stage – both
are equal to h1. But in general there may also be different information sets
h ∈ Hi and h′ ∈ Hj that are simultaneous. Consider, for instance, two non-
terminal histories x and y where both i and j make a choice. Suppose that
player i knows at x that x has been reached. So, h = {x} is an information
set for player i. Suppose that player j does not know at x whether x or y
has been reached. So, h′ = {x, y} is an information set for player j. Then, h
and h′ are simultaneous – yet different – information sets.

Consider a non-terminal history x where I (x) is the set of active
players. That is, I (x) contains those players who must make a choice
at x. Then, every combination of choices (ci )i∈I (x) is assumed to move
the game from the non-terminal history x to some other (terminal or
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non-terminal) history y. These transitions can formally be described by a
move-function m, which assigns to every non-terminal history x, and every
combination of choices (ci )i∈I (x), the (terminal or non-terminal) history
m(x) that follows.

We say that history y follows some other history x if y can be reached
from x by a suitable sequence of choice combinations, given the move-
function m. Similarly, we say that an information set h follows some other
information set h′ if there are histories x ∈ h and y ∈ h′ such that x follows
y. We say that information set h weakly follows h′ if either h follows h′, or
h and h′ are simultaneous. We assume, throughout this paper, that there
is an unambiguous ordering of the information sets in the game. That is, if
information set h follows information set h′, then h′ does not follow h.

Or, equivalently, there cannot be histories x, y ∈ h, and histories x′, y′ ∈ h′

such that x follows x′, and y′ follows y.

Players are assumed to have preferences over the possible outcomes
in the game, representable by utility functions over the set of terminal
histories Z. Formally, for every terminal history z ∈ Z and player i , we
denote by ui (z) the utility for player i at z, representing how desirable he
deems the outcome z.

2.2 Strategies

Intuitively, a strategy for a player is a complete plan which describes what
he will, or would, do in every situation that could possibly arise in the
game. By definition, the possible situations in the game where player i
must make a choice are exactly the information sets in Hi . So, a possible
definition of a strategy for player i – and this is in fact the traditional
definition of a strategy in game theory – would be a function that assigns
an available choice to each of player i ’s information sets. The problem
with this definition, however, is that it may contain some redundant
information, as certain future information sets of player i can be excluded
by choices at earlier information sets of player i. In that case, it is no longer
relevant to specify what this player would do at those excluded future
information sets, as those information sets will certainly not be reached if
the player implements the strategy correctly – as we suppose him to do.
Consider, for instance, the game in Figure 1. If player 1 decides to go for b
at the beginning of the game, he is certain that his future information set h1
will not be reached. So in that case it is redundant to specify what player
1 would do were h1 to be reached, as h1 is clearly avoided by the choice b.

We may therefore view b as a complete plan, although b is not a strategy
in the traditional sense. In fact, we will accept b as a full description of a
strategy for player 1.

An argument that is often used in defence of the traditional definition
of a strategy is that the choices specified at precluded information sets
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reflect the opponents’ counterfactual beliefs about his future behaviour if
the player decides to deviate from his plan. See Rubinstein (1991) for a
discussion of this issue. But this would mean that the strategy represents
both choices and beliefs – something I consider highly undesirable. In my
opinion, we should always clearly separate objects of choice from beliefs,
and to put them in the same object is likely to cause confusion. After all,
the term strategy suggests that it reflects only the plan of choices of a
player. The beliefs of the players will anyhow be modelled separately in
the next section, so there is no need to mix them with the players’ choices.

Having said this, we opt for a definition of a strategy that only
prescribes choices at those information sets not precluded by earlier choices.
To define this formally, consider two information sets h and h′ for player
i , and an available choice c ∈ Ci (h) at h. We say that choice c avoids
information set h′ if h precedes h′, and if for every non-terminal history
x ∈ h, choosing c at x can never lead to a non-terminal history in h′.

Definition 2.1 (Strategy) A strategy for player i is a function si : Ĥi →
∪h∈Ĥi

Ci (h) where (1) Ĥi ⊆ Hi , (2) si (h) ∈ Ci (h) for all h ∈ Ĥi , (3) for every
h ∈ Ĥi there is no h′ ∈ Ĥi such that the prescribed choice si (h′) avoids h, and (4)
for every h ∈ Hi , if h is not avoided by any prescribed choice si (h′) with h′ ∈ Ĥi ,
then h must be in Ĥi .

Conditions (3) and (4) thus guarantee that Ĥi contains exactly those
information sets not precluded by earlier choices – not more and not less.
The definition of a strategy we use corresponds to what Rubinstein (1991)
calls a plan of action.

Let us denote by Si the set of all strategies for player i. Since the
dynamic game G is finite, the set Si will be finite as well. By S :=
×i∈I Si we denote the set of all strategy combinations, and for every
player i we denote by S−i := × j∈I\{i}Sj the set of strategy combinations
for i ’s opponents. For a given information set h ∈ Hi , let S(h) be the
set of strategy combinations that reach h – that is, the set of strategy
combinations (s j ) j∈I that reach some history in h if every player j carries
out his strategy s j . By Si (h) we denote the set of strategies si for player
i for which there is some opponents’ strategy combination s−i ∈ S−i such
that (si , s−i ) ∈ S(h). We say that strategies in Si (h) possibly reach h. Similarly,
S−i (h) denotes the set of strategy combinations s−i ∈ S−i for which there
is some strategy si ∈ Si such that (si , s−i ) ∈ S(h). We say that strategy
combinations in S−i (h) possibly reach h.

Consider some information set h ∈ Hi for player i. As we assume that
the game G has perfect recall, player i remembers at h each of his past
choices, and hence h is preceded by a unique sequence of past choices
for player i. So, Si (h) contains precisely those strategies that prescribe this
unique sequence of player i choices preceding h. But then, it is not difficult
to see that S(h) = Si (h) × S−i (h) for every h ∈ Hi .
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3. MODELLING BELIEF HIERARCHIES

We now wish to model the players’ beliefs in a dynamic game. There are
at least two complications that we face here.

First, when players reason about their opponents in a dynamic game,
they do not only hold beliefs about what other players do (first-order
beliefs), but also hold second-order beliefs about the opponents’ first-
order beliefs about what others do, and third-order beliefs about the
opponents’ second-order beliefs, and so on. So, players hold a full infinite
belief hierarchy.

Secondly, a player in a dynamic game may have to revise his belief
if the game moves from one of his information sets to another. That
is, a player will hold at each of his information sets a new conditional
belief about the opponents which is compatible with the event that
this particular information set has been reached. Consider, namely,
some player i who observes that his information set h ∈ Hi has been
reached. Then he knows that his opponents’ must be implementing
some combination of strategies in S−i (h) – the set of opponents’ strategy
combinations that make reaching h possible – and hence player i must at
h restrict his belief to opponents’ strategy combinations in S−i (h). And this
conditional belief may be – partially or completely – contradicted at some
later information set, in which case he must change his belief there.

Consider, for instance, the game in Figure 1, and suppose that player
2 initially believes that player 1 chooses b. Then, if player 2 is required to
make a choice at h1, he knows that player 1 has chosen a , and hence his
previous belief was wrong. Player 2 must therefore substitute it by a new
conditional belief at h1 that only considers strategies for player 1 that are
still possible – namely (a , c) and (a , d).

Summarizing, we see that we need to model conditional belief
hierarchies for a player, which specify at each of his information sets what
he believes about the opponents’ strategy choices, the opponents’ first-
order beliefs, the opponents’ second-order beliefs, and so on. But how
can we model such complicated objects? One way to do so is by using
a Harsanyi-style model with types (Harsanyi 1967–1968) and adapt it
to dynamic games. To see how this works, consider a player i who at
information set h ∈ Hi holds a belief about the opponents’ strategies,
the opponents’ first-order beliefs, the opponents’ second-order beliefs,
and so on. In other words, this player holds at h a belief about the
opponents’ strategies and the opponents’ conditional belief hierarchies.
So, a conditional belief hierarchy for player i specifies at each of i ’s
information sets a conditional belief about the opponents’ strategy choices
and the opponents’ conditional belief hierarchies. If we substitute the
word ‘belief hierarchy’ by the word ‘type’ – as Harsanyi did – then we
obtain the following definition.
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Definition 3.1 (Epistemic model) Consider a dynamic game G. An epistemic
model for G is a tuple M = (Ti , bi )i∈I where

(a) Ti is a set of types for player i ,
(b) bi is a function that assigns to every type ti ∈ Ti , and every information set

h ∈ Hi ∪ {∅}, a probability distribution bi (ti , h) ∈ �(S−i (h) × T−i ).

Recall that S−i (h) represents the set of opponents’ strategy combinations
that possibly reach h. By T−i := × j∈I { j}Tj we denote the set of opponents’
type combinations. For every set X, we denote by �(X) the set of
probability distributions on X. Clearly, player i must at h only assign
positive probability to opponents’ strategy combinations in S−i (h), as
these are the only strategy combinations compatible with the event that h
is reached. This explains the condition in (b) that bi (ti , h) ∈ �(S−i (h) × T−i ).
Note that in part (b) we require player i to hold a conditional belief also
at ∅ – the beginning of the game – even when player i is not active there.
Hence, we assume that every player holds an initial belief before the start
of the game.

From now on, we will use the notation H∗
i := Hi ∪ {∅}. So, at

every information set h ∈ H∗
i type ti holds a conditional probabilistic

belief bi (ti , h) about the opponents’ strategies and types. In particular,
type ti holds conditional beliefs about the opponents’ strategies. As
every opponent’s type holds conditional beliefs about the other players’
strategies, every type ti holds at every h ∈ Hi also a conditional belief
about the opponents’ conditional beliefs about the other players’ strategy
choices. And so on. Since a type may hold different beliefs at different
histories, a type may, during the game, revise his belief about the
opponents’ strategies, but also about the opponents’ conditional beliefs.
In fact, for a given type ti within an epistemic model, we can derive the
complete belief hierarchy it induces.

4. REASONING CONTEXTS

A reasoning context imposes restrictions on the way a player reasons about
his opponents in a dynamic game. Remember from the previous section
that we have summarized the reasoning of a player by a conditional
belief hierarchy, which describes at each of his information sets what
he believes about the opponents’ strategy choices, the opponents’ first-
order beliefs, the opponents’ second-order beliefs, and so on. In turn,
such belief hierarchies have been modelled by epistemic models with
types, which may be seen as an easy way to encode such infinite belief
hierarchies.

But if this is true, then we could attempt to formalize a reasoning
context as follows: Take an arbitrary dynamic game G and an epistemic
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model M. Then, a reasoning context selects for a given player a subset
of types within M, representing those belief hierarchies that are ‘allowed
for’ by the reasoning context. Although this may seem reasonable there is
one major problem with this attempt, namely that the epistemic model
at hand may not contain all belief hierarchies that we are interested
in – some belief hierarchies that we would wish to select are simply
not present in the epistemic model. In order to avoid this problem
we assume the epistemic model to be belief complete2(cf. Brandenburger
2003).

Definition 4.1 (Belief complete epistemic model) Consider a dynamic game
G and an epistemic model M = (Ti , bi )i∈I for G. The epistemic model M is belief
complete if for every player i , and every possible conditional belief vector βi =
(βi (h))h∈H∗

i
for player i , where βi (h) ∈ �(S−i (h) × T−i ) for every h ∈ H∗

i , there
is some type ti ∈ Ti for which bi (ti , h) = βi (h) for every h ∈ H∗

i .

That is, for every possible conditional belief vector that we can construct
within our model there is a type that has precisely this belief vector. It
is not at all obvious that such models will always exist. Battigalli and
Siniscalchi (1999), however, have shown that for every finite dynamic
game, we can always construct a belief complete epistemic model which
assumes (common belief in) Bayesian updating. A similar construction
can be employed to build a belief complete epistemic model without
Bayesian updating, as we use here. Formally speaking, there may be
various different belief complete epistemic models for a given dynamic
game. However, all such belief complete epistemic models may be viewed
as ‘equivalent’, since each of these encodes all possible conditional belief
hierarchies we can think of.

So, if we work with a belief complete epistemic model, then we are
sure not to miss out on any conditional belief vector we could possibly
have constructed within our model. With this definition at hand, we can
now define a reasoning context as a mapping that selects a subset of belief
hierarchies within a belief complete epistemic model.

Definition 4.2 (Reasoning context) A reasoning context is a mapping ρ that
assigns to every finite dynamic game G, every belief complete epistemic model
M = (Ti , bi )i∈I for G, and every player i ∈ I , some subset ρi (G, M) ⊆ Ti of
types.

So, effectively, a reasoning context selects for every dynamic game a set
of belief hierarchies for every player – those belief hierarchies that are
deemed ‘most plausible’ by this reasoning context.

2 Brandenburger (2003) uses the term complete. Following Amanda Friedenberg’s suggestion
I use the term belief complete instead, as it reveals more precisely its content. Moreover, it
avoids a possible confusion with the term complete as used in complete topological spaces.
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5. PLAUSIBILITY ORDERINGS

5.1 Plausibility Orderings in Dynamic Games

Plausibility orderings are a very natural way to generate, or characterize,
belief revision policies by agents. Consider an agent whose space of
uncertainty is given by a set X of possible states of the world. Now
suppose that, before receiving any new information, this agent ranks the
possible states in X according to a plausibility ordering. That is, for every
pair of states x and y, the agent specifies which of these two states he
deems more plausible, if any. If the agent subsequently receives new
information revealing that the true state must be in E ⊆ X, then it makes
intuitive sense for the agent to concentrate his conditional belief only on
states in E that he deems ‘most plausible’.

This approach plays an important role both in belief revision theory
and counterfactual logic. Grove (1988) has shown that the belief revision
policies that follow the AGM axioms are exactly those that can be
characterized by plausibility orderings over states. So, in a sense, the AGM
axioms for belief revision are logically equivalent to the use of plausibility
orderings. In his paper, Grove uses systems of spheres instead of plausibility
orderings, but we will see below that both approaches are equivalent.
Lewis (1973) and Stalnaker (1968), on the other hand, use plausibility
orderings to evaluate counterfactual statements. More precisely, they
assume for every state x a plausibility ordering over states that deems
x, and only x, as most plausible. According to the Lewis-Stalnaker theory,
a conditional statement ‘if p then q ’ is true at that state x if q is true at all
‘most plausible p-states’. By the latter, we mean states at which p is true,
and which are most plausible amongst the states at which p is true. Unlike
Lewis, Stalnaker assumes that there is always a unique most plausible p-
state, but apart from this the two approaches are basically equivalent. An
important difference between the Grove model and the Lewis–Stalnaker
model is that Grove assumes just one global plausibility ordering, whereas
Lewis and Stalnaker consider a local plausibility ordering for every
state x.

In a dynamic game, a player holds at each of his information sets some
conditional belief about the opponents’ strategies and belief hierarchies.
In the previous section we have seen that the players’ belief hierarchies
can be encoded by means of types within a epistemic model M =
(Ti , bi )i∈I . Moreover, M is guaranteed to capture, for every player i , all
possible conditional belief vectors on S−i × T−i if we require M to be
belief complete. So, if we take a belief complete epistemic model M =
(Ti , bi )i∈I , then the space of uncertainty for player i is given by S−i × T−i

– the set of all opponents’ strategy-type combinations. Consequently,
a plausibility ordering for player i is an ordering over the set
S−i × T−i .
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Definition 5.1 (Plausibility ordering) Consider a dynamic game G and a
belief complete epistemic model M = (Ti , bi ) for G. Then, a plausibility ordering
for player i is a binary relation �i on S−i × T−i that is

(a) total, i.e. for every two strategy-type combinations x and y in S−i ×T−i

either x �i y or y �i x,
(b) reflexive, i.e. x �i x for every x ∈ S−i × T−i , and
(c) transitive, i.e. x �i z whenever there is some y with x �i y and y �i z.

The meaning of x �i y is that player i deems the opponents’ strategy-
type combination x at least as plausible as y. Consider now a player i
who holds a plausibility ordering �i on S−i × T−i , and who observes
that his information set h has been reached. Then, player i knows that
the opponents’ strategy-type combination must be somewhere in S−i (h) ×
T−i , as S−i (h) contains precisely those opponents’ strategy combinations
that make reaching h possible. If player i ’s belief revision policy is
governed by his plausibility ordering �i , then player i should concentrate
his conditional belief at h on those strategy-type combinations in S−i (h) ×
T−i that he deems most plausible. That is, player i must concentrate his
conditional belief on the set

max�i (S−i (h) × T−i ) := {x ∈ S−i (h) × T−i | x �i y for all y ∈ S−i (h) × T−i }.
But for this conditional belief to be well-defined, we must require that the
set max�i (S−i (h) × T−i ) is non-empty. So, we must require that at each of
player i ’s information sets, there is at least one most plausible strategy-
type combination in S−i (h) × T−i . This condition is not automatically
satisfied as the set T−i is infinite – in fact uncountably infinite – whenever
the epistemic model is belief complete and the game is non-trivial. A
plausibility ordering that satisfies this additional requirement is called
well-ordered.

Definition 5.2 (Well-ordered) A plausibility ordering �i on S−i × T−i is well-
ordered if the set max �i (S−i (h) × T−i ) is non-empty for every information set
h ∈ Hi .

It turns out that there is a close connection between well-ordered
plausibility orderings and systems of spheres as used in Grove (1988).
Namely, for a given well-ordered plausibility ordering �i , consider for
every x ∈ S−i × T−i the set

spherex := {y ∈ S−i × T−i | y �i x}.
Then, the collection of sets {spherex | x ∈ S−i × T−i } is nested, that is,
either spherex ⊆ spherey or spherey ⊆ spherex for all x, y. Moreover, the
well-ordering condition guarantees that for every information set h ∈ Hi

there is a smallest sphere in the collection that intersects S−i (h) × T−i .
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Hence, the collection {spherex | x ∈ S−i × T−i } corresponds to a system
of spheres as in Grove (1988). The other direction is also true: If
we start from a Grovean system of spheres on S−i × T−i , then this
naturally induces a well-ordered plausibility ordering on S−i × T−i . We
may therefore interchangeably speak about well-ordered plausibility
orderings and systems of spheres – both ways of modelling are
equivalent.

5.2 Unique Plausibility Orderings for Reasoning Contexts

Consider a dynamic G and a belief complete epistemic model M =
(Ti , bi )i∈I . Then, every type ti ∈ Ti holds at every information set h ∈ H∗

i
a conditional belief bi (ti , h) ∈ �(S−i (h) × T−i ) on the space of uncertainty
S−i × T−i . In particular, the support of bi (ti , h) – which we denote by supp
bi (ti , h) – represents the set of opponents’ strategy-type pairs that ti deems
possible at h.

Now, fix a well-ordered plausibility ordering �i on S−i × T−i . Then,
we say that the type respects the plausibility ordering �i if at every
information set h ∈ H∗

i , the type ti only deems possible strategy-type pairs
that are deemed most plausible at h by �i . We can formally state this as
follows.

Definition 5.3 (Type respecting a plausibity ordering) Consider a dynamic
game G and a belief complete epistemic model M = (Ti , bi )i∈I . For a given player
i , consider a type ti ∈ Ti and a well-ordered plausibility ordering �i on S−i × T−i .

Then, type ti respects the plausibility ordering �i if

supp bi (ti , h) ⊆ max�i (S−i (h) × T−i )

at every information set h ∈ H∗
i .

In a sense, the plausibility ordering �i imposes at every information
set h ∈ H∗

i an upper bound – max�i (S−i (h) × T−i ) – on the (support of the)
conditional beliefs that can be held there. In terms of sphere systems, the
above definition states that at every information set h the type ti looks
for the smallest sphere A that intersects S−i (h) × T−i , and concentrates
at h on the intersection of S−i (h) × T−i with A. This is diagrammatically
represented in Figure 2, where A is the sphere with the thick border.

Consider next a reasoning context ρ, which selects for the dynamic
game G and the epistemic model M some subset of types ρi (G, M) ⊆ Ti for
player i. That is, the reasoning context ρ puts some restrictions on player
i ’s belief hierarchies in G. The question we are interested in is whether
these restrictions can be characterized by a unique plausibility ordering �i

on S−i × T−i . So, can we find a single plausibility ordering �i on S−i × T−i

such that the reasoning context ρ selects for player i precisely those types
ti that respect �i ?
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FIGURE 2. (Colour online) Type respecting a plausibility ordering

Definition 5.4 (Reasoning context characterized by plausibility order-
ing) Consider a dynamic G, a belief complete epistemic model M = (Ti , bi )i∈I

and a reasoning context ρ, selecting for every player i some subset of types
ρi (G, M) ⊆ Ti . For every player i , consider a well-ordered plausibility ordering
�i on S−i × T−i . Then, the reasoning context is characterized at (G, M) by the
profile (�i )i∈I of plausibility orderings if for every player i ,

ρi (G, M) = {ti ∈ Ti | ti respects �i }.
Hence, if we know the single plausibility ordering �i for player i , then we
also know precisely which belief hierarchies are selected for player i by
the reasoning context.

5.3 Discussion

The definition above can be decomposed into two separate parts. The first
part states that all player i belief hierarchies selected by the reasoning
context ρ should respect the same plausibility ordering �i . That is,
at every information set h ∈ H∗

i there is a common upper bound –
max�i (S−i (h) × T−i ) – for the (supports of) all conditional beliefs selected
by ρ. This condition alone is not very restrictive, however. What one
can always do is to take the trivial plausibility ordering �trivial

i , which
deems all opponents’ strategy-type combinations as equally plausible,
and which has the property that max�i (S−i (h) × T−i ) = S−i (h) × T−i for
every information set h ∈ H∗

i . Then, it is trivially true that every type
ti ∈ Ti respects �trivial

i .

The second part requires, in turn, that every type ti ∈ Ti which respects
the plausibility ordering �i must necessarily be selected by the reasoning
context ρ. So, not only does �i impose, at every information set h ∈ H∗

i ,
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a common upper bound – max�i (S−i (h) × T−i ) – on the (supports of) all
conditional beliefs selected by ρ, but these upper bounds are also sharp.
By the latter we mean that the reasoning context ρ will select at least one
type ti for which

supp bi (ti , h) = max�i (S−i (h) × T−i )

at all information sets h ∈ H∗
i . That is, the bounds imposed by the

plausibility ordering �i will actually be covered by some of the belief
hierarchies selected by the reasoning context ρ.

By combining these two parts we make sure that the full set of belief
hierarchies for player i selected by ρ can actually be characterized by one
and the same plausibility ordering �i on S−i × T−i . Not only do all belief
hierarchies selected by ρ respect the same, common plausibility ordering
�i , but also all belief hierarchies that do respect this plausibility ordering
�i are actually selected by ρ. It is thus justified to say that the reasoning
context ρ is characterized by �i .

A similar condition could be stated for individual types or belief
hierarchies. For a single type ti ∈ Ti and plausibility ordering �i on S−i ×
T−i , we could say that ti is qualitatively characterized by �i if

supp bi (ti , h) = max�i (S−i (h) × T−i )

for all information sets h ∈ H∗
i . But by Grove’s (1988) theorem this would

be equivalent to stating that for type ti , the induced qualitative (non-
probabilistic) conditional beliefs, supp bi (ti , h), must satisfy the AGM-
axioms. In particular, every type ti that satisfies Bayesian updating
whenever possible, can always be qualitatively characterized by some
plausibility ordering �i on S−i × T−i .

But what we require in Definition 5.4 goes much beyond the AGM-
axioms, or Bayesian updating. Instead of requiring that every individual
type can be characterized by an individual plausibility ordering, we impose
that the full set of selected types can be characterized by a common
plausibility ordering that applies to all types simultaneously.

6. COMMON STRONG BELIEF IN RATIONALITY

6.1 Definition

The reasoning context of ‘common strong belief in rationality’ has been
developed by Battigalli and Siniscalchi (2002). They have shown that
the strategies that can rationally be chosen by players who reason in
accordance with this concept correspond precisely to the extensive form
rationalizable strategies as defined by Pearce (1984) and Battigalli (1997).
The main idea behind ‘common strong belief in rationality’ is that a player
must believe in the opponents’ rationality whenever this is possible. More
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precisely, if player i finds himself at information set h, and concludes
that h could be reached if his opponents choose rationally, then player i
must believe at h that his opponents choose rationally. We say that player
i strongly believes in the opponents’ rationality. Moreover, if h could be
reached if his opponents choose rationally, then player i asks a second
question, namely whether h could still be reached if his opponents do
not only choose rationally but also strongly believe in their opponents’
rationality. If the answer is yes, then player i must believe at h that
his opponents choose rationally and strongly believe in their opponents’
rationality. By iterating this argument, we arrive at ‘common strong belief
in rationality’. To formalize this notion, let us first define what we mean
by rationality and strong belief.

Consider a type ti for player i , an information set h ∈ Hi and a strategy
si that possibly reaches h. By ui (si , bi (ti , h)) we denote the expected utility
that player i gets if the game is at h, player i chooses si there, and
holds the conditional belief bi (ti , h) about the opponents’ strategy-type
combinations. Note that this expected utility does not depend on the full
conditional belief that ti holds at h, but only on the conditional belief about
the opponents’ strategy choices.

Definition 6.1 (Rational choice) Consider a type ti for player i , an information
set h ∈ Hi and a strategy si that possibly reaches h. Strategy si is rational for
type ti at information set h if ui (si , bi (ti , h)) ≥ ui (s ′

i , bi (ti , h)) for all alternative
strategies s ′

i that possibly reach h. Strategy si is rational for type ti if it is so at
every information set h ∈ Hi that si possibly reaches.

In words, a strategy is rational for a type if at every relevant information
set it yields the highest expected utility, given the conditional belief held
by the type at that information set. We next define the notion of strong
belief.

Definition 6.2 (Strong belief) Consider a type ti within a belief complete
epistemic model M = (Ti , bi )i∈I , and an event E ⊆ S−i × T−i . Type ti strongly
believes the event E if bi (ti , h)(E) = 1 at every information set h ∈ H∗

i where
(S−i (h) ∩ T−i ) ∩ E is non-empty.

That is, at every information set h where the event E is consistent with the
event of h being reached, player i must concentrate his belief fully on E .

The reasoning context of ‘common strong belief in rationality’ can now be
defined as follows.

Definition 6.3 (Common strong belief in rationality) Consider a dynamic
game G and a belief complete epistemic model M = (Ti , bi )i∈I . For every player i
we recursively define sets Tk

i and Rk
i as follows.

Induction start. Define T0
i := Ti and R0

i := {(si , ti ) ∈ Si × T0
i | si rational for

ti }.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Oct 2014 IP address: 137.120.34.93

PLAUSIBILITY ORDERINGS IN DYNAMIC GAMES 349

Induction step. Let k ≥ 1, and suppose Tk−1
i and Rk−1

i have been defined for all
players i. Then,

Tk
i : = {ti ∈ Tk−1

i | ti strongly believes Rk−1
−i }, and

Rk
i : = {(si , ti ) ∈ Si × Tk

i | si rational for ti }.
Common strong belief in rationality selects for every player i the set of types
T∞

i := ∩k∈NTk
i .

Here, Rk−1
−i denotes the set × j∈I\{i} Rk−1

j . We say that a type ti expresses
‘common strong belief in rationality’ if ti ∈ T∞

i . Battigalli and Siniscalchi
(2002) show that the sets of types T∞

i are always non-empty for every
finite dynamic game, and that the strategies which are optimal for a type
in T∞

i are precisely the extensive form rationalizable strategies as defined in
Pearce (1984) and Battigalli (1997). By construction, the sets of types Tk

i are
monotonically shrinking in k, that is, Tk+1

i ⊆ Tk
i for every k. It turns out,

actually, that typically these sets will be strictly shrinking for every k. That
is, typically Tk+1

i ⊂ Tk
i for every k, where ⊂ means strict set inclusion.3

However, the intersection of all these sets – which is T∞
i – will always be

non-empty.

6.2 Characterization Result

We will now prove that the reasoning context of ‘common strong belief
in rationality’ can be characterized by a unique plausibility ordering for
every player, and show how such plausibility orderings can be defined.

Theorem 6.4 (Characterization by plausibility orderings) Consider a
dynamic game G and belief complete epistemic model M = (Ti , bi )i∈I . For every
player i consider the binary relation �i on S−i × T−i given by

(s−i , t−i ) �i (s ′
−i , t′

−i ) if for every k ∈ {0, 1, ...}:
(s−i , t−i ) ∈ Rk

−i whenever (s ′
−i , t′

−i ) ∈ Rk
−i .

Then, �i is a well-ordered plausibility ordering for every player i , and ‘common
strong belief in rationality’ is characterized at (G, M) by the profile (�i )i∈I of
plausibility orderings.

The proof can be found in the appendix. As the proof of the theorem
above shows, the concept of ‘common strong belief in rationality’ can
alternatively be characterized by the Grovean system of spheres

R−1
−i ⊇ R0

−i ⊇ R1
−i ⊇ ... ⊇ R∞

−i

for every player i , where we set R−1
−i := S−i × T−i . That is, player i will

look at every information set h ∈ Hi for the smallest sphere Rk
−i that

3 I am grateful to Amanda Friendenberg who pointed this out to me.
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FIGURE 3. (Colour online) Characterization of ‘common strong belief in rationality’
by Grovean system of spheres

intersects S−i (h) × T−i , and will concentrate his conditional belief at h on
the intersection between S−i (h) × T−i and this smallest sphere Rk

−i . This is
diagrammatically represented in Figure 3.

In this picture, we have taken R1
−i to be the smallest sphere that

intersects S−i (h) × T−i .

7. COMMON BELIEF IN FUTURE RATIONALITY

7.1 Definition

The concept of ‘common belief in future rationality’ has been defined in
Perea (2014), and is very similar to the notion of ‘common knowledge
of stable belief in dynamic rationality’ by Baltag et al. (2009). The main
difference between the two is that the latter notion restricts to dynamic
games with perfect information whereas the first is applicable to all finite
dynamic games. The key idea is that a player must always believe, at
every stage of the game, that his opponents will choose rationally in the
game that lies ahead. We say that this player believes in his opponents’ future
rationality. Baltag et al. (2009) refer to this condition as ‘stable belief in
dynamic rationality’. Not only this, a player must also always believe that
his opponents always believe in their opponents’ future rationality, and
so on. This eventually leads to the concept of ‘common belief in future
rationality’.

This concept is completely forward looking, as a player need not
necessarily believe that his opponents have chosen rationally in the past
even when believing so is possible. At the same time, a player must
always hold on to the belief that his opponents will choose rationally in
the future even when it is evident that these same opponents have chosen
irrationally in the past. So, in a sense, it requires a degree of ‘stubbornness’
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by the players that is not present in ‘common strong belief in rationality’.
To formally define the concept, we first state precisely what we mean by
‘belief in future rationality’.

For a given strategy si for player i , let Hi (si ) denote the collection of
information sets for player i that are possibly reached by si . Consider a
belief complete epistemic model M = (Ti , bi )i∈I for the dynamic game G
at hand. For every information set h in the game, let

Ri [h] := {(si , ti ) ∈ Si × Ti | si is rational for ti at every h′

∈ Hi (si ) weakly following h}.

Remember that h′ weakly follows h if either h′ follows h, or h′ and h are
simultaneous. Hence, Ri [h] contains those strategy-type pairs where the
strategy is optimal for the type ‘from h onwards’.

Definition 7.1 (Belief in future rationality) A type ti believes in his
opponents’ future rationality if at every information set h ∈ H∗

i , the conditional
belief bi (ti , h) assigns probability 1 to the event R−i [h].

Here, R−i [h] := × j∈I\{i} Rj [h]. So, no matter what has happened in the
game so far, type ti will always at every information set h assign
probability 1 to the event that his opponents will choose rationally from
h onwards. With this definition at hand, we can now formally introduce
‘common belief in future rationality’.

Definition 7.2 (Common belief in future rationality) Consider a dynamic
game G and a belief complete epistemic model M = (Ti , bi )i∈I . For every player i
we recursively define sets Tk

i as follows.

Induction start. Define T1
i := {ti ∈ Ti | ti believes in his opponents’ future

rationality }.
Induction step. Let k ≥ 1, and suppose Tk−1

i has been defined for all players i.
Then,

Tk
i := {ti ∈ Tk−1

i | bi (ti , h)(S−i × Tk−1
−i ) = 1 for all h ∈ H∗

i }.

Common belief in future rationality selects for every player i the set of types
T∞

i := ∩k∈NTk
i .

Hence, a type in Tk
i always believes that every opponent j holds a type

in Tk−1
j . In Perea (2014) it is shown that the set T∞

i is always non-empty
for every finite dynamic game. Moreover, both Perea (2014) and Baltag
et al. (2009) show that in every dynamic game with perfect information
without relevant ties, the strategies selected by the concept are precisely
the backward induction strategies.
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FIGURE 4. A game in which ‘common belief in future rationality’ cannot be
characterized by plausibility orderings

7.2 Impossibility Result

We show that the reasoning context of ‘common belief in future
rationality’ can not always be characterized by a unique plausibility
ordering for every player. Consider the game G in Figure 4, which is
known as ‘Battle-of-the-sexes-with-outside-option’ and constitutes one of
the classical forward induction examples in the literature.

Take an arbitrary belief complete epistemic model M = (Ti , bi )i∈I . We
show that the reasoning context of ‘common belief in future rationality’
cannot be characterized at (G, M) by any profile of plausibility orderings.

We first show that there must be a type t∗
2 ∈ T2 for player 2 that

expresses ‘common belief in future rationality’, and which initially
believes that player 1 chooses (a , c). Namely, as the model M is belief
complete, there must be types t∗

1 ∈ T1 and t∗
2 ∈ T2 with the following

conditional beliefs:

b1(t∗
1 , ∅) = (e, t∗

2 ), b1(t∗
1 , h1) = (e, t∗

2 )
b2(t∗

2 , ∅) = ((a , c), t∗
1 ), b2(t∗

2 , h1) = ((a , c), t∗
1 ).

Here, b1(t∗
1 , ∅) = (e, t∗

2 ) means that type t∗
1 ascribes at ∅ probability 1 to the

event that player 2 chooses strategy e while being of type t∗
2 . Similarly for

the other three beliefs.
It can easily be verified that both types t∗

1 and t∗
2 believe in the

opponent’s future rationality. Consider, for instance, the type t∗
2 . That type

believes at ∅ that player 1 chooses (a , c) and that player 1 is of type t∗
1 .

As type t∗
1 believes, at ∅ and h1, that player 2 chooses e, strategy (a , c) is

optimal for t∗
1 at ∅ and h1. Hence, type t∗

2 believes at ∅ that player 1 chooses
optimally at ∅ and h1, so t∗

2 believes at ∅ in 1’s future rationality. Similarly,
it can be checked that the same type t∗

2 believes at h1 that player 1 chooses
optimally at h1. Therefore, t∗

2 believes in 1’s future rationality overall. In
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the same way it can be checked that type t∗
1 also believes in his opponent’s

future rationality. As t∗
1 believes throughout the game that player 2’s type

is t∗
2 , and t∗

2 believes throughout the game that player 1’s type is t∗
1 , it

immediately follows that both t∗
1 and t∗

2 express ‘common belief in future
rationality’. In particular, t∗

2 ∈ T2 is a type that expresses ‘common belief in
future rationality’, and which initially believes that player 1 chooses (a , c).

On the other hand, (a , d) can never be an optimal strategy for player 1
at the beginning, as choosing b always yields him a strictly better outcome.
So, under ‘common belief in future rationality’, player 2 cannot initially
ascribe positive probability to player 1 choosing (a , d). Consequently, there
is no type t2 ∈ T2 that expresses ‘common belief in future rationality’ and
that initially assigns positive probability to player 1 choosing (a , d).

Now suppose, contrary to what we want to show, that the concept of
‘common belief in future rationality’ is characterized at (G, M) by a profile
(�i )i∈I of well-ordered plausibility orderings. Then, in particular,

T∞
2 = {t2 ∈ T2 | t2 respects �2},(1)

where T∞
2 is the set of player 2 types in T2 that express ‘common belief in

future rationality’. This implies that

supp b2(t2, ∅) ⊆ max�2 (S1(∅) × T1)

for all t2 ∈ T∞
2 . Obviously, S1(∅) = S1, so we have that

supp b2(t2, ∅) ⊆ max�2 (S1 × T1)

for all t2 ∈ T∞
2 . As the type t∗

2 above is in T∞
2 , and b2(t∗

2 , ∅) = ((a , c), t∗
1 ), it

follows that

((a , c), t∗
1 ) ∈ max�2 (S1 × T1).(2)

On the other hand, we have seen that there is no t2 ∈ T∞
2 that initially

assigns positive probability to player 1 choosing (a , d). Hence, by (1)

((a , d), t1) /∈ max�2 (S1 × T1) for all t1 ∈ T1.(3)

Note that S1(h1) = {(a , c), (a , d)}. By (2) and (3) it then follows that

((a , d), t1) /∈ max�2 (S1(h1) × T1) for all t1 ∈ T1.(4)

We will now show, however, that there is some t̂2 ∈ T∞
2 which at h1 assigns

probability 1 to player 1 choosing (a , d). As the model M is belief complete,
there must be types t̂1 ∈ T1 and t̂2 ∈ T2 with the following conditional
beliefs:

b1(t̂1, ∅) = ( f , t̂2), b1(t̂1, h1) = ( f , t̂2)
b2(t̂2, ∅) = (b, t̂1), b2(t̂2, h1) = ((a , d), t̂1).
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Note that type t̂2 revises his belief about player 1’s strategy choice during
the game: at the beginning, t̂2 believes that player 1 chooses b, whereas at
h1 type t̂2 believes that player 1 chooses (a , d).

It may be verified that both types t̂1 and t̂2 believe in the opponent’s
future rationality. Consider, for instance, the type t̂2, which believes at ∅
that player 1 chooses b while being of type t̂1. As type t̂1 believes at ∅
that player 2 chooses f , strategy b is optimal for type t̂1 at ∅. Hence, t̂2
believes at ∅ that player 1 chooses rationally at ∅. Strategy b for player
1 makes reaching h1 impossible, so we conclude that type t̂2 believes at
∅ in 1’s future rationality. At h1, the same type t̂2 believes that player 1
chooses (a , d) while being of type t̂1. As type t̂1 believes at h1 that player
2 chooses f , strategy (a , d) is optimal for type t̂1 at h1. Indeed, among
the two strategies for player 1 that reach h1 – which are (a , c) and (a , d)
– strategy (a , d) is optimal under the belief that player 2 chooses f. So,
type t̂2 believes at h1 that player 1 chooses rationally at h1. Overall, we
may conclude that type t̂2 believes at ∅ and h1 in 1’s future rationality.
That is, t̂2 believes in 1’s future rationality. Note, however, that t̂2 believes
at h1 that player 1 has chosen irrationally in the past, as b is better than
(a , d) for t̂1 at the beginning. This is not a problem, as ‘common belief in
future rationality’ only requires players to believe in the opponents’ future
rationality, not necessarily in the opponents’ past rationality.

In a similar fashion, it may be verified that also type t̂1 believes in his
opponent’s future rationality. As t̂1 believes throughout that player 2 is of
type t̂2, and t̂2 believes throughout that player 1 is of type t̂1, it follows that
both t̂1 and t̂2 express ‘common belief in future rationality’. In particular,
we have found a type t̂2 ∈ T∞

2 which at h1 assigns probability 1 to player
1 choosing (a , d).

But then, by (4), it follows that

supp b2(t̂2, h1) � max�2 (S1(h1) × T1).

Hence, t̂2 does not respect the plausibility ordering �2, which contradicts
the assumption (1). We are therefore led to conclude that the concept of
‘common belief in future rationality’ cannot be characterized at (G, M) by
a unique plausibility ordering for every player.

So, in a nutshell, the reason why ‘common belief in future rationality’
cannot be characterized by plausibility orderings in the game of Figure 4
is as follows. Under ‘common belief in future rationality’, player 1 can
rationally choose (a , c) but not (a , d). Therefore, player 2 types which
express ‘common belief in future rationality’ may initially deem (a , c)
possible, but certainly not (a , d). Hence, if ‘common belief in future
rationality’ were to be characterized by a unique plausibility ordering
on player 1’s strategy-type pairs, then this plausibility ordering must
necessarily deem (a , c) more plausible than (a , d). But then, upon reaching
h1, player 2 must necessarily conclude that player 1 did not choose (a , d),
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FIGURE 5. A perfect information game in which ‘common belief in future
rationality’ cannot be characterized by plausibility orderings

which is not true since under ‘common belief in future rationality’ player
2 can believe at h1 that player 1 chooses (a , d).

8. GAMES WITH PERFECT INFORMATION

A dynamic game is said to be with perfect information if different players
never choose simultaneously, and every player, when making a choice,
always knows exactly what the other players have done so far. Formally
this means that at every non-terminal history exactly one player is active,
and every information set consists of precisely one non-terminal history.
We say that the game is without relevant ties (see Battigalli 1997) if for every
player i , every information set h ∈ Hi , and every two different terminal
histories z, z′ following h, it holds that ui (z) �= ui (z′). Hence, two different
choices for player i always lead to different utilities for that player.

It is well-known that in every perfect information game without
relevant ties, the backward induction procedure yields a unique choice
cbi (h) at every information set h. We will refer to these choices as the
backward induction choices in the game. The backward induction strategy for
player i is the unique strategy sbi

i that selects the backward induction
choice cbi (h) at every h ∈ Hi possibly reached by sbi

i .

In Perea (2014) it is shown that in every perfect information game
without relevant ties, the concept of ‘common belief in future rationality’
uniquely selects the backward induction strategy for every player. Indeed,
in such games there is only one strategy that a player can rationally choose
if his belief hierarchy expresses ‘common belief in future rationality’,
namely his backward induction strategy.

However, even for such games the concept of ‘common belief in future
rationality’ may not be characterizable by plausibility orderings, as the
game in Figure 5 shows.
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Clearly, under ‘common belief in future rationality’, player 2 must
believe at ∅ that player 1 believes at ∅ that (a) player 2 will choose c and
(b) player 3 will choose e. Also, player 2 must believe at ∅ that player
1 chooses rationally at ∅ and that player 3 chooses rationally at h3. As
such, under ‘common belief in future rationality’ player 2 must believe at
∅ that player 1 will choose a and that player 3 would choose e at h3. If
‘common belief in future rationality’ were to be characterized by a unique
plausibility ordering �2 for player 2, then �2 must deem the strategy
combination (a , e) most plausible overall. But then, player 2 should still
believe at h2 that player 1 has chosen a and that player 3 would have
chosen e at h3. However, under ‘common belief in future rationality’,
player 2 is free to believe at h2 that player 3 would have chosen f , as player
3’s information set h3 does not follow h2. Hence, in this game with perfect
information, ‘common belief in future rationality’ cannot be characterized
by a unique plausibility ordering for player 2.

At the same time, the example in Figure 5 shows that ‘common belief
in future rationality’ is perhaps a bit too permissive. Indeed, there is no
good reason why player 2 at h2 should suddenly drop his belief that player
3 would choose rationally at h3. This leads to the question whether we
can strengthen the concept of ‘common belief in future rationality’ such
that the new, more restrictive concept can be characterized by plausibility
orderings in perfect information games without relevant ties. We will see
that this is indeed possible.

Instead of only requiring a player to believe that his opponents will
choose rationally at future information sets, let us look at a stronger
condition which states that at any point in time, a player also believes
that his opponents would have chosen rationally at information sets that
have been avoided by past choices. We call such information sets parallel
information sets. For instance, in Figure 5 the information set h3 is parallel
to information set h2 as it is avoided by the past choice a that leads to h2. A
more formal way of stating it is to say that an information set h′ is parallel
to another information set h if h′ does not weakly precede, nor weakly
follow, h.

The condition above, that a player always believes that his opponents
will choose rationally in the future, and would have chosen rationally
at parallel information sets, can formally be stated as follows. Consider
a dynamic G – not necessarily with perfect information – and a belief
complete epistemic model M = (Ti , bi )i∈I for G. For every player i , and
every information set h in G, define the event

R̂i [h] := {(si , ti ) ∈ Si × Ti | si is rational for ti at every h′ ∈ Hi (si )

weakly following h, and every h′ ∈ Hi (si ) that is parallel to h}.
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Definition 8.1 (Belief in rationality at future and parallel information
sets) A type ti believes in his opponents’ rationality at future and parallel
information sets if at every information set h ∈ H∗

i , the conditional belief bi (ti , h)
assigns probability 1 to the event R̂−i [h].

Here, R̂−i [h] := × j∈I\{i} R̂j [h]. With this basic condition at hand, the
reasoning context of ‘common belief in rationality at future and parallel
information sets’ can then be defined in the obvious way.

Definition 8.2 (Common belief in rationality at future and parallel
information sets) Consider a dynamic game G and a belief complete epistemic
model M = (Ti , bi )i∈I . For every player i we recursively define sets Tk

i as follows.

Induction start. Define T1
i := {ti ∈ Ti | ti believes in his opponents’ rationality

at future and parallel information sets }.
Induction step. Let k ≥ 1, and suppose Tk−1

i has been defined for all players i.
Then,

Tk
i := {

ti ∈ Tk−1
i | bi (ti , h

) (
S−i × Tk−1

−i ) = 1 for all h ∈ H∗
i

}
.

Common belief in rationality at future and parallel information sets selects for
every player i the set of types T∞

i := ∩k∈NTk
i .

It can be shown that the sets of types T∞
i that express ‘common belief

in rationality at future and parallel information sets’ will always be non-
empty, and will always be included in the sets of types that express
‘common belief in future rationality’. However, the two concepts are
‘behaviourally equivalent’ as they always select the same sets of strategies
for every player. The reason is that for player i ’s choice at information
set h it is only relevant what player i believes about the opponents’ past
and future choices, not what he believes about the opponents’ possible
behaviour at parallel information sets. Clearly, the two concepts above
impose no conditions on player i ’s belief about his opponents’ past
choices, and impose exactly the same conditions on his belief about the
opponents’ future choices. As such, it does not matter for player i ’s choice
at information set h whether his beliefs are restricted by ‘common belief
in rationality at future and parallel information sets’ or only by ‘common
belief in future rationality’. Therefore, the two concepts only differ in the
restrictions they impose on the players’ conditional beliefs, but not in
the strategy choices they select for the players. The formal proofs for the
insights above are not difficult, and we leave these to the reader for the
sake of brevity.

As discussed above, the concept of ‘common belief in future
rationality’ uniquely filters the backward induction strategies for every
perfect information game without relevant ties. It then immediately
follows also that ‘common belief in rationality at future and parallel
information sets’ uniquely selects the backward induction strategies in
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such games, as it is behaviourally equivalent to ‘common belief in future
rationality’. We can actually say a little more: Under ‘common belief in
rationality at future and parallel information sets’, there will be a unique
belief for every player i at each of his information sets h ∈ H∗

i about the
opponents’ strategy choices, namely that his opponents will choose the
backward induction choices at all future and parallel information sets. This is
not true for ‘common belief in future rationality’. In the game of Figure 5,
for instance, player 2 may believe at h2 under ‘common belief in future
rationality’ that player 3 would choose f at h3, although f is not the
backward induction choice at h3.

Formally speaking, for a given player i and information set h in the
game, let sbi

i [h] be the unique strategy that (a) at every h′ ∈ Hi preceding
h selects the unique choice leading to h, and (b) at every h′ ∈ Hi not
preceding h selects the backward induction choice cbi (h′) whenever h′ is
possibly reached by sbi

i [h]. So, sbi
i [h] possibly reaches h, and selects the

backward induction choices at all future and parallel information sets to h.

We call sbi
i [h] the backward induction strategy conditional on h. For a player

i and information set h ∈ H∗
i , let sbi

−i [h] := (sbi
j [h]) j∈I\{i} be the combination

of opponents’ backward induction strategies conditional on h.

It can be shown that under ‘common belief in rationality at future and
parallel information sets’, a type for player i must at every h ∈ H∗

i assign
probability 1 to the strategy profile sbi

−i [h] by the opponents. This proof is
not difficult, and is left to the reader. Hence, every player i holds a unique
vector βbi

i of conditional beliefs about the opponents’ strategy choices.
But then, every player i must believe throughout the game that every
opponent j holds the belief vector βbi

j , and must believe throughout that
every opponent j believes throughout that every other player k holds the
conditional belief vector βbi

k , and so on. Clearly, this leads to the conclusion
that under ‘common belief in rationality at future and parallel information
sets’, the full belief hierarchy of every player is uniquely determined. That
is, the set T∞

i of types expressing ‘common belief in rationality at future
and parallel information sets’ is a singleton. Let us denote by tbi

i the
unique type for player i that expresses ‘common belief in rationality
at future and parallel information sets’. Then, at every information set
h ∈ H∗

i the conditional belief of type tbi
i about the opponents’ strategy-

type combinations is given by

bi
(
tbi
i , h

) = (
sbi
−i [h], tbi

−i

)
.

That is, at h ∈ H∗
i type tbi

i assigns probability 1 to the event that every
opponent j chooses the backward induction strategy sbi

j [h] conditional on
h while being of type tb j

j . This insight will be important for proving the
following result, which states that for perfect information games without
relevant ties, the reasoning context of ‘common belief in rationality at
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future and parallel information sets’ can be characterized by a unique
plausibility ordering for every player.

Theorem 8.3 (Characterization by plausibility orderings) Consider a
perfect information game G without relevant ties and a belief complete epistemic
model M = (Ti , bi )i∈I . For every player i consider the binary relation �i on
S−i × T−i given by: (s−i , t−i ) �i (s ′

−i , t′
−i ) if either

(a) t−i = tbi
−i and t′

−i �= tbi
−i , or

(b) s−i = sbi
−i [h] for some h ∈ H∗

i and s ′
−i �= sbi

−i [h] for any h ∈ H∗
i , or

(c) s−i �= s ′
−i , and there are some h, h′ ∈ H∗

i , where h′ follows h, such that
s−i = sbi

−i [h] and s ′
−i = sbi

−i [h
′].

Then, �i is a well-ordered plausibility ordering for every player i , and ‘common
belief in rationality at future and parallel information sets’ is characterized at
(G, M) by the profile (�i )i∈I of plausibility orderings.

The proof can be found in the appendix. The theorem above cannot
be extended to general dynamic games, however. Consider for instance
the game in Figure 4. For that game, the concept of ‘common belief
in rationality at future and parallel information sets’ is fully equivalent
– also in terms of beliefs – to ‘common belief in future rationality’
as there are no parallel information sets in that game. Hence, even
the concept of ‘common belief in rationality at future and parallel
information sets’ cannot be characterized by plausibility orderings in that
game.

The theorem above shows, in particular, that for perfect information
games without relevant ties we can always find a reasoning context that
(a) uniquely selects the backward induction strategy for every player,
and (b) can be characterized by plausibility orderings. In that respect,
the result is very similar to Baltag et al. (2009). These authors, namely,
assume from the beginning that the conditional beliefs of the players are
characterized by a unique plausibility ordering for every player. Based
on this assumption they then derive the notion of ‘common knowledge
of stable belief in dynamic rationality’, which is very similar to ‘common
belief in future rationality’, but now with the additional assumption that
conditional beliefs are derived from plausibility orderings. In Corollary
4.5 they then prove that the concept of ‘common knowledge of stable
belief in dynamic rationality’ uniquely yields the backward induction
strategies in every perfect information game without relevant ties. So
Baltag et al. (2009) also present a reasoning context that is characterized
by plausibility orderings and that uniquely returns the backward
induction strategies in perfect information games without relevant
ties.
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9. DISCUSSION

We have seen that for the concept of ‘common strong belief in rationality’,
the whole collection of selected belief hierarchies for a given player can
be summarized by a single plausibility ordering, whereas this is not always
possible for ‘common belief in future rationality’. Can this be viewed as an
argument in favour of the first concept, and against the second? Not neces-
sarily. A player in a dynamic game is in general not interested in finding
all possible belief hierarchies that he could reasonably hold, relative to a
given reasoning context, but rather aims at producing one such reasonable
belief hierarchy. The property above, that all selected belief hierarchies
for a given player can be summarized by a unique plausibility ordering, is
therefore of interest mainly to the game-theorist or analyst – who looks at the
game from a meta-perspective – rather than to the players themselves. In
fact, there is nothing wrong with the concept of ‘common belief in future
rationality’ – the concept is logically sound and is based on rather intuitive
assumptions. Moreover, from a player’s perspective the concept is not
more complex than ‘common strong belief in rationality’. From a meta-
perspective, however, ‘common strong belief in rationality’ can be viewed
as somewhat simpler since the entire set of belief hierarchies selected for
a given player is characterized by a single plausibility ordering.

But even from a meta-perspective, it is not necessarily true that
‘common strong belief in rationality’ is more natural than ‘common belief
in future rationality’. Indeed, why should we necessarily require that all
selected belief hierarchies for a given player share the same plausibility
ordering? Within the bounds of ‘common belief in future rationality’, it is
often the case that different belief hierarchies for the same player are based
on different plausibility orderings. At the same time, these belief hierar-
chies still share an important common feature, namely that they believe in
the opponents’ future rationality, believe that the other players believe in
their opponents’ future rationality, and so on. The difference with ‘com-
mon strong belief in rationality’ is that this common feature cannot be re-
duced to a common plausibility ordering. But why should this be the case?

The investigation we have carried out in this paper is therefore
primarily of a descriptive – and not of a normative – character. We do not
make any normative judgements about the concepts of ‘common strong
belief in rationality’ and ‘common belief in future rationality’ – in fact we
believe that both concepts are quite natural, and have their own intuitive
appeal.
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APPENDIX

Proof of Theorem 6.4. Fix a player i . We first show that the binary relation �i

defined in the statement of the theorem is total, reflexive, transitive and well-
ordered. To prove so, it will be helpful to introduce some additional objects.

Let R−1
−i := S−i × T−i , and R∞

−i := ∩k∈N Rk
−i . Then we have that

S−i × T−i = R−1
−i ⊇ R0

−i ⊇ R1
−i ⊇ ... ⊇ R∞

−i .

Define K := {−1, 0, 1, ...} ∪ {∞}. So, the collection {Rk
−i | k ∈ K } of subsets is nested,

with R1
−i being the full space S−i × T−i . Moreover, R∞

−i is non-empty as shown in
Battigalli and Siniscalchi (2002).

For every element x ∈ S−i × T−i , define the number k(x) := max{k ∈ K | x ∈
Rk

−i }. It is easily seen that k(x) is well-defined. Namely, if x ∈ R∞
−i , then k(x) = ∞

by definition. Suppose, on the other hand, that x /∈ R∞
−i . Since R∞

−i = ∩k∈N Rk
−i , there

must be some k ∈ K\{∞} such that x ∈ Rk
−i but x /∈ Rk+1

−i . But then, k(x) = k. So,
indeed, k(x) is well-defined for every x ∈ S−i × T−i .
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By definition of �i we have that

x �i y if and only if k(x) ≥ k(y)

for all x, y ∈ S−i × T−i . But then, it is immediately clear that �i is total, reflexive
and transitive.

It remains to show that �i is well-ordered. Consider some information set
h ∈ H∗

i . Define the number

k(h) := max{k ∈ K | Rk
−i ∩ (S−i (h) × T−i ) is non-empty}.

We first show that the number k(h) is well-defined. For every opponent j �= i and
every k ∈ K\{−1}, let

Sk
j := {s j ∈ Sj | s j rational for some tj ∈ Tk

j }.

Let Sk
−i := × j∈I\{i}Sk

j . So, Sk
−i is the set of opponents’ strategy combinations present

in Rk
−i . As the dynamic game G is finite, the set S−i of opponents’ strategy-

combinations is finite as well. But then, there must be some k∗ ∈ K\{ − 1, ∞} such
that S∞

−i = Sk∗
−i . Now, to show that the number k(h) is well-defined we distinguish

two cases. Suppose first that R∞
−i ∩ (S−i (h) × T−i ) is non-empty. Then, k(h) = ∞

by definition. Suppose, on the other hand, that R∞
−i ∩ (S−i (h) × T−i ) is empty.

Then, S∞
−i ∩ S−i (h) is empty. Since S∞

−i = Sk∗
−i we have that Sk∗

−i ∩ S−i (h) is empty, so
Rk∗

−i ∩ (S−i (h) × T−i ) is empty as well. But then, there must be some k < k∗ such
that Rk

−i ∩ (S−i (h) × T−i ) is non-empty but Rk+1
−i ∩ (S−i (h) × T−i ) is empty. In that

case, k(h) = k. So, indeed, k(h) is well-defined.
By definition of �i we have at information set h ∈ H∗

i that

max�i (S−i (h) ∩ T−i ) = Rk(h)
−i ∩ (S−i (h) ∩ T−i ),(5)

which is guaranteed to be non-empty. We may therefore conclude that �i is
well-ordered.

We now show that

T∞
i = {ti ∈ Ti | ti respects �i },(6)

which would imply that ‘common strong belief in rationality’ is characterized by
the unique plausibility ordering �i for player i.

For every information set h ∈ H∗
i , remember that k(h) is the highest number

k ∈ K for which Rk
−i ∩ (S−i (h) ∩ T−i ) is non-empty. By definition of ‘common strong

belief in rationality’, T∞
i contains precisely those types ti ∈ Ti that strongly believe

each of the events Rk
−i , k ∈ {0, 1, ...}. But then, it follows that

T∞
i = {ti ∈ Ti | supp bi (ti , h) ⊆ Rk

−i ∩ (S−i (h) ∩ T−i )

whenever Rk
−i ∩ (S−i (h) ∩ T−i ) �= ∅

for all h ∈ H∗
i }

= {ti ∈ Ti | supp bi (ti , h) ⊆ Rk(h)
−i ∩ (S−i (h) ∩ T−i )

for all h ∈ H∗
i }.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 06 Oct 2014 IP address: 137.120.34.93

PLAUSIBILITY ORDERINGS IN DYNAMIC GAMES 363

By (5), we obtain that

T∞
i = {ti ∈ Ti | supp bi (ti , h) ⊆ max�i (S−i (h) ∩ T−i )

for all h ∈ H∗
i }.

Hence, (6) must hold. So, we conclude that ‘common strong belief in rationality’ is
characterized at (G, M) by �i for player i. This holds for every player i , and hence
the proof is complete. �

Proof of Theorem 8.3. Let M = (Ti , bi )i∈I be a belief complete epistemic model for
G. First of all, it can easily be verified that the binary relation �i defined above
is a well-ordered plausibility ordering. We leave this to the reader. Now, let ρ

be the reasoning context of ‘common belief in rationality at future and parallel
information sets’. As we have seen above, there is for every player i a unique type
tbi
i in ρi (G, M), and at every information set h ∈ H∗

i this type holds the conditional
belief bi (tbi

i , h) = (sbi
−i [h], tbi

−i ). So, in order to prove that ρ is characterized by the
plausibility orderings above, we must show that

max�i (S−i (h) × T−i ) = {
(sbi

−i [h], tbi
−i )

}
(7)

for every player i and every h ∈ H∗
i .

Fix a player i and some information set h ∈ H∗
i . As, by construction, sbi

−i [h] ∈
S−i (h), it follows that (sbi

−i [h], tbi
−i ) ∈ S−i (h) × T−i . Hence, it remains to show that

(sbi
−i [h], tbi

−i ) �i (s−i , t−i ) for all (s−i , t−i )∈ S−i (h) × T−i with (s−i , t−i ) �= (
sbi
−i [h], tbi

−i

)
.(8)

Take some arbitrary (s−i , t−i ) ∈ S−i (h) × T−i with (s−i , t−i ) �= (sbi
−i [h], tbi

−i ). We
distinguish the following cases.

Case 1. If t−i �= tbi
−i then, by (a) in the statement of the theorem, (sbi

−i [h], tbi
−i ) �i

(s−i , t−i ).
Case 2. If s−i �= sbi

−i [h
′] for any h′ ∈ H∗

i then, by (b) in the statement of the
theorem, (sbi

−i [h], tbi
−i ) �i (s−i , t−i ).

So, from now on we assume that t−i = tbi
−i and s−i = sbi

−i [h
′] for some h′ ∈ H∗

i .

That is, (s−i , t−i ) = (sbi
−i [h

′], tbi
−i ). We continue by distinguishing the following cases.

Case 3. If h′ follows h then, by (c) in the statement of the theorem, (sbi
−i [h], tbi

−i ) �i

(sbi
−i [h

′], tbi
−i ).

Case 4. Suppose now that h′ precedes h. By definition, sbi
−i [h

′] selects the
backward induction choices at all information sets weakly following h′. Moreover,
by construction of the argument, sbi

−i [h
′] is in S−i (h), so all selected choices weakly

following h′ lie on the path to h. Hence, we conclude that all opponents’ choices
between h′ and h are backward induction choices. This, however, would imply
that sbi

−i [h] = sbi
−i [h

′], which is a contradiction to our assumption that (s−i , t−i ) �=
(sbi

−i [h], tbi
−i ).

Case 5. Suppose finally that h′ does not precede nor follow h. That is, h′ is
parallel to h. Let h∗ be the last information set in H∗

i that precedes both h and
h′. By definition, sbi

−i [h
′] selects the backward induction choices at all information

sets parallel to h′. In particular, sbi
−i [h

′] selects the backward induction choices at
all information sets strictly between h∗ and h. Moreover, by construction of the
argument, sbi

−i [h
′] is in S−i (h), so all selected choices at information sets strictly

between h∗ and h lie on the path to h. Hence, we conclude that all opponents’
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choices between h∗ and h are backward induction choices. This implies that
sbi
−i [h] = sbi

−i [h
∗]. As h′ follows h∗ we have, by (c) in the statement of the theorem,

that (sbi
−i [h

∗], tbi
−i ) �i (sbi

−i [h
′], tbi

−i ), and hence (sbi
−i [h], tbi

−i ) �i (sbi
−i [h

′], tbi
−i ).

This covers all possible cases. Hence, we see that, indeed, (sbi
−i [h], tbi

−i ) �i

(s−i , t−i ) for all (s−i , t−i ) ∈ S−i (h) × T−i with (s−i , t−i ) �= (sbi
−i [h], tbi

−i ), proving (8). This,
in turn, implies (7). Hence, we conclude that the reasoning context of ‘common
belief in rationality at future and parallel information sets’ is characterized by the
profile (�i )i∈I of plausibility orderings. This completes the proof. �
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