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Abstract In this paper we develop an epistemic model for dynamic games in
which players may revise their beliefs about the opponents’ utility functions
as the game proceeds. Within this framework, we propose a rationalizability
concept that is based upon the following three principles: (1) at every instance
of the game, a player should believe that his opponents are carrying out opti-
mal strategies, (2) a player, at information set h, should not change his belief
about an opponent’s relative ranking of two strategies s and s′ if both s and
s′ could have led to h, and (3) the players’ initial beliefs about the opponents’
utility functions should agree on a given profile u of utility functions. Com-
mon belief in these events leads to the concept of persistent rationalizability
for the profile u of utility functions. It is shown that for a given game tree with
observable deviators and a given profile u of utility functions, every properly
point-rationalizable strategy is a persistently rationalizable strategy for u. This
result implies that persistently rationalizable strategies always exist for all game
trees with observable deviators and all profiles of utility functions. We provide
an algorithm that can be used to compute the set of persistently rationaliz-
able strategies for a given profile u of utility functions. For generic games with
perfect information, persistent rationalizability uniquely selects the backward
induction strategy for every player.
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1 Introduction

1.1 Persistent rationalizability

In most existing equilibrium and rationalizability concepts for dynamic games
it is assumed that players do not revise their belief about the opponents’ utility
functions during the game. That is, the utilities we write at the terminal nodes
are usually assumed to be “fixed”, as players are supposed never to question
these utilities even if this means that certain moves have to be interpreted as
irrational moves. Consequently, common belief in rationality will in general
not be possible in such models. Reny (1992a, 1993) has shown, for instance,
that within the class of games with perfect information there are only very few
games in which common belief in rationality is possible at all information sets,
provided that players do not revise their belief about the opponents’ utility
functions.

In this paper we take an alternative approach: we allow players to revise their
belief about the opponents’ utility functions, but at the same time require play-
ers to interpret every opponent’s move as a rational move. We call this belief
in sequential rationality (BSR). The other key ingredient in our model, proper
belief revision (PBR), states that players, when changing their belief about
an opponent’s utility function, should not carry out “unnecessary” changes.
More precisely, if player i decides to change his belief about player j’s utility
function and/or player j’s belief about the other players’ strategy choices, then
player i also changes his belief about player j’s ranking of his strategies, since
this ranking is induced by player j’s utility function and belief about the other
players’ choices. Suppose that player i observes that his information set hi has
been reached, and in order to explain this event he decides to change his belief
about player j’s utility function and/or player j’s belief about the other players’
choices. Suppose also that sj and s′

j are two strategies for player j that might
have led to hi. PBR states that in this case, player i should maintain his initial
belief about player j’s ranking of the two strategies sj and s′

j [see also Perea
(2006) for a formulation of this principle within an equilibrium framework].
The intuition behind this condition is one of minimal belief revision: the fact
that hi has been reached does not provide absolute evidence against player i’s
initial belief about player j’s relative ranking of sj and s′

j, and therefore, within
the spirit of minimal belief revision, player i should maintain his initial belief
about this relative ranking.

The last condition we impose states that the players’ initial beliefs about the
opponents’ utility functions should agree on some profile u = (ui)i∈I of utility
functions. We call this initial belief in u (IBu). This condition is not crucial con-
ceptually, but helps us to compare our concept with existing rationality concepts
in the literature that assume a “fixed” profile u of utilities, in the sense explained
above. An important difference with these existing concepts is that our concept
allows players to change their belief about the opponents’ utilities as the game
moves on.



Proper belief revision 531

Fig. 1 Implications of
persistent rationalizability
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In order to formalize the three conditions above we develop an appropriate
epistemic model for dynamic games. A type for player i has a utility function
over the terminal nodes and holds at every information set hi a conditional
probabilistic belief about the possible opponents’ strategy choices and types.
Since different types may hold different utility functions, and since types may
change their belief about the opponents’ types, our model allows in particular
for belief revision about the opponents’ utility functions during the game, and
is thus suited for our approach. A type ti for player i is said to be persistently
rationalizable for a given profile u of utility functions if ti respects common
belief, at every information set, in the events BSR, PBR and IBu. A strategy
that is sequentially rational for such a type ti is accordingly called persistently
rationalizable for u.

In order to understand the implications of persistent rationalizability, con-
sider the game in Fig. 1. Let u = (u1, u2) be the profile of utility functions
depicted at the terminal nodes. We show that d is player 2’s only persistently
rationalizable strategy for u. Namely, let t2 be a persistently rationalizable type
for player 2 for u. By common belief in BSR, t2 initially believes that player 1
initially believes that player 2 chooses rationally at his information set. By com-
mon belief in IBu, t2 initially believes that player 1 initially believes that player 2
has utility function u2. As such, t2 initially believes that player 1 initially believes
that player 2 will not choose f . By IBu, t2 initially believes that player 1 has
utility function u1. Combining this with the previous insight, we may conclude
that t2 initially believes that player 1 strictly prefers c to a, and strictly prefers
a to b. By BSR, t2 initially believes that player 1 chooses rationally, and hence
t2 initially believes that player 1 chooses c. Now, at player 2’s information set
type t2 must conclude that player 1 did not choose c, and hence BSR forces t2 to
change his belief about player 1’s utility function and/or player 1’s belief about
player 2’s strategy choice. Since t2 initially believes that player 1 ranks a strictly
above b, and since a and b both lead to player 2’s information set, PBR implies
that t2 should still believe at his information set that player 1 ranks a strictly
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above b. By BSR, t2 should then believe at his information set that player 1 has
chosen a. Since t2 has utility function u2, type t2’s unique sequentially rational
strategy is d. Hence, d is player 2’s only persistently rationalizable strategy for u.

Note, however, that t2 must revise his belief about player 1’s utility function
when observing that player 1 has not chosen c. Namely, upon observing this
event, t2 must still believe that player 1 initially believes that player 2 has utility
function u2 and chooses rationally. As such, t2 must still believe that player 1
initially believes that player 2 will not choose f . By BSR, t2 must believe at
his information set that player 1 has chosen rationally, and this can only be
realized if t2 changes his belief about player 1’s utility function. For instance,
t2 could believe, upon observing that player 1 has not chosen c, that player 1’s
utility function is not u1, but (2, 2, 0, 1, 1, 4, 1), while maintaining his previous
belief about player 1’s beliefs. Here, the first utility in the vector corresponds
to the highest terminal node, and the last utility to the lowest terminal node.
This belief revision policy satisfies PBR, since player 2 will still believe at his
information set that player 1 strictly prefers a to b.

1.2 Relation with proper rationalizability

It turns out that the concept of proper rationalizability (Schuhmacher 1999; As-
heim 2001) also uniquely selects the strategy d for player 2 in Fig. 1. However,
the line of reasoning that leads to this strategy choice is at some points crucially
different from persistent rationalizability. The key idea in proper rationalizabil-
ity, and also in Myerson’s (1978) proper equilibrium and Schulte’s (2003) respect
for public preferences, is that a player, when choosing his strategy, should not
exclude any of the opponents’ strategies, yet should deem one opponent strat-
egy “infinitely more likely” than another if he believes the opponent to prefer
the former to the latter. Here, the notion of “infinitely more likely” can be
made explicit by the use of lexicographic probability distributions, as has been
done by Blume et al. (1991a, b) and Asheim (2001) in their characterizations of
proper equilibrium and proper rationalizability, respectively. Moreover, proper
rationalizability implicitly assumes that players never revise their beliefs about
the opponents’ utility functions during the game.

In the example of Fig. 1, the reasoning of proper rationalizability implies
that, since player 2 should not exclude that player 1 may choose a or b, he
should strictly prefer d and e to f . Player 1, knowing this, should then deem d
and e infinitely more likely than f , and hence should strictly prefer c to a and
strictly prefer a to b. Player 2, at the beginning of the game, should then deem
c infinitely more likely than a, and deem a infinitely more likely than b. This
implies that player 2, upon observing that player 1 has chosen a or b, should
still deem a infinitely more likely than b, and hence player 2 should choose d
at his information set. However, when player 2 observes that player 1 has not
chosen c, he must conclude that player 1 has chosen irrationally, since proper
rationalizability does not allow player 2 to change his belief about player 1’s
utility function during the game.
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The crucial difference between persistent rationalizability and proper ration-
alizability in this example is thus the following: within the context of persistent
rationalizability, player 2 believes at his information set that player 1 has ratio-
nally foregone the option of choosing c. To this purpose, player 2 changes
his initial belief about player 1’s utility function upon observing that player 1
has not chosen c. Within the context of proper rationalizability, on the other
hand, player 2 believes at his information set that player 1 has chosen irra-
tionally, while maintaining his initial belief about player 1’s utility function.
However, both concepts lead player 2 to believe that player 1 has chosen a
upon observing that player 1 has not chosen c, and this eventually leads to the
same strategy choice for player 2 in both concepts.

The first main result in this paper, Theorem 5.3, shows that the relation-
ship in the example between properly rationalizable strategies and persistently
rationalizable strategies is not a coincidence. Namely, we shall prove that some
refinement of proper rationalizability, to which we refer as proper point-ration-
alizability, implies persistent rationalizability whenever the game tree satisfies
the so-called observable deviators condition. Here, a game tree is said to be
with observable deviators (see Battigalli 1996) if for every information set h
the following holds: if every player chooses a strategy that may possibly lead
to h, then the resulting profile will lead to h. Consequently, if player i believes
at information set hi that his information set h′

i will not be reached, but finds
out later, by surprise, that his information set h′

i has been reached, then player
i knows precisely at h′

i about which opponents he needs to revise his belief in
order to make his new belief compatible with the event of reaching h′

i. This
assumption appears to be crucial, since persistently rationalizable types and
strategies need not exist in game trees that violate observable deviators (see
Sect. 5.2). Formally, Theorem 5.3 states that for every game tree with observable
deviators and every possible profile u of utility functions, every properly point-
rationalizable strategy for u is persistently rationalizable for u. Since properly
point-rationalizable strategies exist for every game tree and every u, this result
implies the existence of persistently rationalizable strategies for every game
tree with observable deviators and every profile u of utility functions.

1.3 Relation with backward induction

If the concept of persistent rationalizability is applied to generic games with per-
fect information, it uniquely selects the backward induction strategy for every
player. To illustrate this relationship, consider the example in Fig. 2, which
is taken from Reny (1992b). Let u = (u1, u2) be the pair of utility functions

Fig. 2 Persistent
rationalizability leads to
backward induction
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depicted at the terminal nodes, and let t1 be a persistently rationalizable type
for player 1 for u. By IBu, t1 must initially believe that player 2, at his last infor-
mation set, prefers strategy (r2, d4) to (r2, r4). Since both (r2, d4) and (r2, r4)

lead to player 1’s second information set, PBR implies that t1 should believe, at
his second information set, that player 2, at his second information set, prefers
(r2, d4) to (r2, r4). By BSR, t1 should believe at his second information set that
player 2 chooses (r2, d4).

Now, let t2 be a persistently rationalizable type for player 2 for u. Since t2 ini-
tially believes that player 1 satisfies IBu, PBR and BSR, we know by the above
argument that t2 initially believes that player 1 believes at his second informa-
tion set that player 2 chooses (r2, d4). Since t2 initially believes that player 1 has
utility function u1, t2 initially believes that player 1, at his second information
set, prefers (r1, d3) to (r1, r3). As both (r1, d3) and (r1, r3) lead to player 2’s first
information set, PBR implies that t2, at his first information set, should believe
that player 1 prefers (r1, d3) to (r1, r3). By BSR, t2 should believe at his first
information set that player 1 chooses (r1, d3). Since t2 has utility function u2, we
conclude that t2 has a unique sequentially rational strategy, namely d2, which is
player 2’s backward induction strategy with respect to u.

Summarizing, player 2 has a unique persistently rationalizable strategy for u,
namely his backward induction strategy for u. Theorem 7.1 shows that this result
holds in general: for a given game tree with perfect information and generic pro-
file u of utility functions, every player has a unique persistently rationalizable
strategy for u, namely his backward induction strategy for u.

1.4 Relation with other rationality concepts

The concept of common certainty of rationality at the beginning of the game
(Ben-Porath 1997), also called weak sequential rationalizability, requires com-
mon belief at the beginning of the game that players choose rationally at each
of their information sets. The only restriction on the players’ belief revision
policies, however, is that players should not change their belief about the oppo-
nents’ utility functions. In particular, players may believe that an opponent has
chosen irrationally if the initial belief about this opponent’s strategy choice has
been contradicted by the play of the game. In the game of Fig. 1, common cer-
tainty of rationality at the beginning implies that player 1 should believe that
player 2 will not choose f , and that player 2 should believe initially that player
1 chooses c. However, if player 2 is led to revise his belief about player 1 upon
observing that player 1 has not chosen c, he may believe that player 1 has chosen
a or b, and player 2 may choose both d and e. Hence, in this example, every per-
sistently rationalizable strategy for u is also weakly sequentially rationalizable,
but not vice versa. In Sect. 7 we show that this relationship holds in general: for
every game tree and every profile u of utility functions, every strategy that is
persistently rationalizable for u is also weakly sequentially rationalizable for u.

The concept of extensive form rationalizability (Pearce 1984; Battigalli 1997),
on the other hand, places important restrictions on player 2’s belief revision
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procedure in Fig. 1, and eventually singles out the choice e for player 2. In
words, the concept requires a player, at each of his information sets, to maintain
his original belief about the opponents’ utility functions and to look for the
“highest possible degree of interactive belief in rationality”1 that rationalizes
the event of reaching this information set. The player should then form his
current and future beliefs on the basis of this degree until this degree will be
contradicted by some other event in the future. In the game of Fig. 1, this means
that player 2, upon observing that player 1 has chosen a or b, should still believe
that player 1 has utility function u1, and should attempt to explain this event
by a theory in which player 1 is believed to choose rationally. If this is possi-
ble, then player 2 should try to find a “more sophisticated” theory explaining
this event in which player 1 is not only believed to choose rationally, but is
also believed to believe that player 2 will choose rationally at his information
set. If this is not possible, then player 2 should stick to his first theory. If the
more sophisticated theory is possible, then player 2 should attempt to find a
theory with an even higher degree of interactive belief in rationality, and so on.
According to this line of reasoning, player 2’s “most sophisticated” theory that
explains the event of player 1 choosing a or b, without changing his belief about
player 1’s utility function, is the following: player 1 is believed to rationally
choose b, and player 1 is believed to believe with high probability that player 2
will irrationally respond with f . Consequently, player 2 should choose e. Since
we have seen that player 2’s unique persistently rationalizable strategy for u is
d, we conclude that there is no general logical relationship between persistent
rationalizability and extensive form rationalizability.

The outline of this paper is as follows. In Sect. 2 we first present some prelim-
inary definitions and notation in extensive form games. Section 3 lays out the
epistemic model we use. The concept of persistent rationalizability is introduced
in Sect. 4. In Sect. 5 we prove our result concerning the relationship between
proper and persistent rationalizability. In Sect. 6 we present an algorithm that
can be used to compute the set of persistently rationalizable strategies for a
given extensive form game. In Sect. 7 we use this algorithm to study the rela-
tionships with backward induction and weak sequential rationalizability. All
proofs are collected in the appendix.

2 Extensive form structures

In this section we present the notation and some basic definitions. The rules
of the game are represented by an extensive form structure S consisting of a
finite game tree, a finite set of players I, a finite collection Hi of information
sets for each player i and at each information set hi ∈ Hi a finite collection
A(hi) of actions for the player. The set of terminal nodes in S is denoted by Z,
whereas H = ∪i∈IHi denotes the collection of all information sets. By h0 we
denote the beginning of the game, and we use the notation H∗

i = Hi ∪ {h0} for

1 Battigalli and Siniscalchi (2002) call it “highest possible degree of strategic sophistication”.
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every player i. We assume throughout that the extensive form structure satisfies
perfect recall and that no chance moves occur.

The concept of strategy we use is different from the usual one since it does
not require a player to specify actions at information sets that are avoided by the
same strategy. It thus coincides with the concept of plan of action in Rubinstein
(1991). The use of this alternative definition is not really relevant for the anal-
ysis, but rather avoids the inclusion of redundant information in the definition
of a strategy. Formally, let H̃i ⊆ Hi be some collection of information sets for
player i, not necessarily containing all player i’s information sets, and let si be a
mapping that assigns to every hi ∈ H̃i some available action si(hi) ∈ A(hi). We
say that some information set h∗ ∈ H is avoided by the mapping si if for every
profile of actions (a(h))h∈H with a(h) ∈ A(h) for all h and a(hi) = si(hi) for all
hi ∈ H̃i, it holds that (a(h))h∈H avoids the information set h∗. We say that si
is a strategy if its domain H̃i is equal to the collection of player i’s information
sets that are not avoided by si. Obviously, every strategy si can be obtained by
first prescribing some action at all player i’s information sets (that is, defining
a strategy in the usual sense) and then deleting those player i’s information
sets that are avoided by it. Let Si denote the set of player i’s strategies, and let
S = ×i∈ISi be the set of all strategy profiles.

For a given information set h, let S(h) be the set of strategy profiles that
reach h. For a given player i, not necessarily the player who moves at h, let
Si(h) be the set of strategies si ∈ Si for which there is some opponents’ strategy
profile s−i ∈ S−i := ×j �=iSj such that (si, s−i) reaches h. We say that S is with
observable deviators (see Battigalli 1996, among others) if S(h) = ×i∈ISi(h) for
every information set h. That is, if every player i chooses a strategy si that may
possibly reach h, then the strategy profile (si)i∈I will reach h. For two-player
games, the condition is implied by perfect recall. This is not true for more than
two players.

3 Epistemic framework

In this section we formally model the players in an extensive form structure
as decision makers under uncertainty. As already outlined in the introduction,
such model should allow players to have uncertainty about the opponents’
utilities, and to revise their beliefs about the opponents’ utilities as the game
proceeds. In addition, the model should provide a language in which beliefs
about beliefs about …about beliefs of arbitrary length can be formalized. That
is, it should allow for statements of the form “player i believes with probability
αi at information set hi that player j believes with probability αj at information
set hj that player k chooses strategy sk” or “player i believes with probability
αi at information set hi that player j believes with probability αj at information
set hj that player k has utility function uk”. By applying techniques similar to
Mertens and Zamir (1985), Brandenburger and Dekel (1993) and Battigalli and
Siniscalchi (1999), this can be achieved by constructing for each player i a set
Ti of types such that every type ti ∈ Ti can be identified with a profile
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(ui(ti), μi(ti, hi)hi∈H∗
i
),

where ui(ti) : Z → [−M, M] represents ti’s von Neumann–Morgenstern util-
ity function from the set Z of terminal nodes to the interval [−M, M], and
μi(ti, hi) ∈ �(S−i(hi)× T−i) is ti’s probabilistic belief at hi about the opponents’
strategy choices and types. Here, M is some large, fixed, positive number. By
�(X), we denote the set of probability distributions on a set X, whereas S−i(hi)

and T−i are short ways to write ×j �=iSj(hi) and ×j �=iTj, respectively. Recall that
H∗

i = Hi ∪ {h0}. Hence, every type is assumed to have a conditional belief at
the beginning of the game (his initial belief) and at each of his information sets.
For a formal construction of these type spaces Ti, the reader is referred to a
previous version of this paper (Perea 2003). The main idea in the construction
is to recursively define, for every player i, a set of kth order conditional beliefs,
consisting of conditional beliefs about the opponents’ possible strategies and
(k − 1)th order conditional beliefs. An important technical feature is that for
every k, the set of kth order conditional beliefs is compact with respect to the
weak topology on probability measures. Together with a coherence condition,
this property implies that every infinite hierarchy of conditional beliefs, con-
sisting of kth order conditional beliefs for every k, can be identified with a type
as described above. This eventually leads to complete type spaces Ti for every
player i, which are uncountably infinite compact metric spaces, where “com-
pact” is defined with respect to the weak topology on probability measures.
Moreover, for every player i there is a homeomorphism

fi : Ti → U × (×hi∈H∗
i
�(S−i(hi) × T−i)),

where U is the set of utility functions from Z to [−M, M]. The function fi thus
identifies every type ti ∈ Ti with the profile fi(ti) = (ui(ti), μi(ti, hi)hi∈H∗

i
) as

described above.
We now formalize what it means that a type respects common belief in the

event that types have certain properties. Let Ei ⊆ Ti be a subset of player
i’s types for every i, and let E = ×i∈IEi. We say that type ti believes in E if
suppμi(ti, hi) ⊆ S−i(hi) × E−i for all hi ∈ H∗

i , where E−i = ×j �=iEj. Hence, at
every instance of the game type ti assigns probability 1 to the event that all
opponents’ types belong to E. We recursively define

B1
i (E) = {ti ∈ Ei|ti believes in E}

for all i, and

Bk
i (E) = {ti ∈ Bk−1

i (E)|ti believes in ×j∈I Bk−1
j (E)}

for all i and all k ≥ 2. By B∞
i (E) = ∩k∈NBk

i (E) we denote the set of player i’s
types that respect common belief in E. That is, a type ti ∈ B∞

i (E) belongs to E,
believes throughout the game that all opponents’ types belong to E, believes
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throughout the game that all opponents’ types believe throughout the game
that all the other players’ types belong to E, and so forth.

4 Persistent rationalizability

In the concept of persistent rationalizability we impose two conditions on types,
to which we refer as PBR and BSR. In the previous section, we have seen that
every type ti ∈ Ti corresponds to a vector (ui(ti), μi(ti, hi)hi∈H∗

i
), where ui(ti) is

a utility function and μi(ti, hi) is a probability measure on S−i(hi) × T−i. PBR
states that, whenever player i initially believes that player j strictly prefers some
strategy sj to some strategy s′

j, then player i should continue to believe so at
every information set that can both be reached by sj and s′

j. Consequently,
player i should attach probability zero to s′

j at every such information set if he
believes player j to choose rationally. More precisely, let j be an opponent for
player i, let sj, s′

j be two strategies for player j, and let hj be some information
set in H∗

j (sj) ∩ H∗
j (s′

j). Here, by H∗
j (sj) we denote the collection of information

sets hj ∈ H∗
j that are reachable by sj. Similarly for H∗

j (s′
j). We say that a type tj

strictly prefers sj to s′
j at hj if

uj(tj)(sj, μj(tj, hj)) > uj(tj)(s′
j, μj(tj, hj)),

where uj(tj)(sj, μj(tj, hj)) denotes the expected utility induced by the utility func-
tion uj(tj), the strategy sj and the belief μj(tj, hj) at hj over the opponents’ strat-
egy-type pairs. Similarly for uj(tj)(s′

j, μj(tj, hj)). For a given type ti, we say that
ti initially believes that player j at hj strictly prefers sj to s′

j, if ti at h0 attaches
probability 1 to the set of player j’s types that strictly prefer sj to s′

j at hj.

Definition 4.1 A type ti is said to satisfy proper belief revision (PBR) if for every
opponent j, every two strategies sj and s′

j for player j, and every information set
hj ∈ H∗

j (sj) ∩ H∗
j (s′

j) the following holds: if ti initially believes that player j at hj

strictly prefers sj to s′
j, then ti assigns probability zero to s′

j at every information
set hi ∈ H∗

i (sj) ∩ H∗
i (s′

j).

Here, H∗
i (sj) denotes the collection of player i information sets hi ∈ H∗

i that
are reachable by sj. We next define BSR. A strategy si is sequentially rational
for type ti if at every information set hi ∈ H∗

i (si) there is no strategy s′
i ∈ Si(hi)

that is strictly preferred to si by ti at hi. Let (Si ×Ti)
sr be the set of strategy-type

pairs for player i at which si is sequentially rational for ti.

Definition 4.2 A type ti believes in sequential rationality (BSR) if suppμi(ti,
hi) ⊆ ×j �=i(Sj × Tj)

sr for every hi ∈ H∗
i .

We are now ready to formalize our concept of persistent rationalizability.

Definition 4.3 A type ti is persistently rationalizable if it respects common belief
in the event that types satisfy PBR and BSR.
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By our definition of “common belief”, the condition that a type respects
common belief in BSR implies in particular that the type itself satisfies BSR.
Similarly, saying that the type respects common belief in PBR implies that the
type itself satisfies PBR.

Finally, let u = (ui)i∈I be some profile of utility functions at the terminal
nodes. We say that a type ti initially believes in u (IBu) if for every opponent j
the initial belief μi(ti, h0) assigns probability 1 to the set of player j’s types with
utility function uj.

Definition 4.4 A type ti is persistently rationalizable for (S, u) if (1) ti is persis-
tently rationalizable, (2) ui(ti) = ui, and (3) ti respects common belief in the event
IBu. A strategy si ∈ Si is persistently rationalizable for (S, u) if there is some
persistently rationalizable type ti for (S, u) such that si is sequentially rational
for ti.

5 Relation to proper rationalizability

5.1 Proper rationalizability

Schuhmacher (1999) introduced the concept of proper rationalizability as a ra-
tionalizability-type analogue to proper equilibrium, and showed that it uniquely
selects the backward induction strategies in generic games with perfect infor-
mation. Asheim (2001) provided a characterization of proper rationalizability
in terms of lexicographic beliefs for the case of two players. In this section,
we introduce a refinement of properly rationalizable strategies to which we
refer as “properly point-rationalizable strategies”. For the definition of prop-
erly point-rationalizable strategies, we use Asheim’s characterization of proper
rationalizability and extend it to games with more than two players.

Consider some type space Ri
2 for every player i with the property that every

type ri ∈ Ri can be identified with some pair (ui(ri), λi(ri)), where ui(ri) is a von
Neumann–Morgenstern utility function, and λi(ri) is a cautious lexicographic
probability distribution on S−i ×R−i. By a lexicographic probability distribution
we mean a vector λi(ri) = (λ1

i (ri), λ2
i (ri), . . . , λK

i (ri)) of probability distributions
on S−i × R−i, and we call λk

i (ri) the kth order belief in λi(ri). The interpretation
is that player i assigns “infinitely more importance” to his kth order beliefs than
to his (k + 1)th order beliefs, without completely discarding the latter beliefs.

For every opponent j, let Rj(ri) be the set of player j’s types that ri deems
possible, that is, rj ∈ Rj(ri) if there is some k such that λk

i (ri) assigns positive
probability to some (s−i, r−i) in which rj is present. We say that λi(ri) is cautious
if for every opponent j, every type rj ∈ Rj(ri) and every strategy sj ∈ Sj, there is
some k for which λk

i (ri) assigns positive probability to some (s−i, r−i) ∈ S−i×R−i
in which (sj, rj) is present. That is, no opponent’s strategy is excluded for any
type rj ∈ Rj(ri).

2 Here, we use different symbols for types as to distinguish them from the types introduced in
Sect. 3.
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For every strategy si and every order k, let

uk
i (ri)(si) =

∑

(s−i,r−i)∈S−i×R−i

λk
i (ri)(s−i, r−i)ui(ri)(si, s−i)

be the kth order expected utility of strategy si, where ui(ri)(si, s−i) is the utility
at the terminal node reached by (si, s−i). Type ri strictly prefers strategy si to
strategy s′

i if there is some k with uk
i (ri)(si) > uk

i (ri)(s′
i) and ul

i(ri)(si) = ul
i(ri)(s′

i)

for all l < k. For every player j strategy-type pair (sj, rj) with rj ∈ Rj(ri), let
k(ri)(sj, rj) be the first k such that λk

i (ri) assigns positive probability to some
(s−i, r−i) in which (sj, rj) is present. Type ri deems (sj, rj) infinitely more likely
than (s′

j, rj) if k(ri)(sj, rj) < k(ri)(s′
j, rj).

Definition 5.1 Type ri respects the opponents’ preferences if for every opponent
j, every type rj ∈ Rj(ri) and all strategies sj, s′

j such that rj strictly prefers sj to s′
j, it

holds that ri deems (sj, rj) infinitely more likely than (s′
j, rj).

Hence, player i should deem superior strategies infinitely more likely than
inferior strategies.

So far, we have followed Asheim’s model. We now impose an additional
condition on types. Type ri has point-beliefs on types if Rj(ri) only contains one
type for every opponent j. Hence, ri only deems possible one type for every
opponent.

Let Ei ⊆ Ri be a subset of player i’s types for every i, and let E = ×i∈IEi. We
say that ri believes in E if for every k and every opponent j, λk

i (ri) only assigns
positive probability to player j’s types in Ej. We recursively define

B1
i (E) = {ri ∈ Ei|ri believes in E}

for every i, and

Bk
i (E) =

{
ri ∈ Bk−1

i (E)|ri believes in ×j∈I Bk−1
j (E)

}

for every i and every k ≥ 2. By B∞
i (E) = ∩k∈NBk

i (E) we denote the set of
player i’s types that respect common belief in E.

Definition 5.2 Let S be an extensive form structure and u a profile of utility
functions. A type ri ∈ Ri is properly point-rationalizable for (S, u) if ri respects
common belief in the events that types (1) have utility functions as specified by
u, (2) respect the opponents’ preferences, and (3) have point-beliefs on types.
A strategy si is properly point-rationalizable for (S, u) if there is a properly
point-rationalizable type ri for (S, u) such that si is optimal for ri.

The difference between proper point-rationalizability, as we define it, and
proper rationalizability, as characterized by Asheim (2001), lies in the condition
of point-beliefs on types. Asheim’s characterization of properly rationalizable
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types and strategies, namely, is obtained by imposing common belief in the
events (1) and (2) only. Following Asheim (2001), it can be shown that every
strategy si that is assigned positive probability in some mixed strategy proper
equilibrium for (S, u) is properly point-rationalizable for (S, u). Therefore, we
may conclude that properly point-rationalizable strategies always exist for every
(S, u).

5.2 Relation between persistent and proper point-rationalizability

We now prove that in every game tree with observable deviators, every properly
point-rationalizable strategy for (S, u) is persistently rationalizable for (S, u).
This implies that persistently rationalizable strategies always exist for games
with observable deviators.

Theorem 5.3 Let S be an extensive form structure with observable deviators and
u = (ui)i∈I a profile of utility functions. Then, every properly point-rationalizable
strategy for (S, u) is persistently rationalizable for (S, u).

It is easily seen that the converse of this theorem is not true in general:
in a simultaneous move game, the concept of persistent rationalizability coin-
cides with “ordinary” rationalizability, as defined by Bernheim (1984) and Pe-
arce (1984). Since it is well-known that not every rationalizable strategy is
properly rationalizable (and hence not properly point-rationalizable), this im-
plies that persistently rationalizable strategies need not be properly (point-)
rationalizable.

For the proof of the theorem, the assumption of “observable deviators” is
crucial. It can even be shown that without this assumption, persistently ratio-
nalizable types and strategies may fail to exist for a given game (S, u). As to
illustrate this fact, consider the game in Fig. 3. Let h be the information set
controlled by player 3. By definition,

Fig. 3 Importance of
observable deviators
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S(h) = {(a, d, e), (a, d, f ), (b, c, e), (b, c, f )},
S1(h) = {a, b}, S2(h) = {c, d} and S3(h) = {e, f }

which implies that S(h) �= S1(h) × S2(h) × S3(h), and hence the game has no
observable deviators. Let u1, u2 and u3 be the utility functions depicted at the
terminal nodes. We show that there is no persistently rationalizable type, and
hence no persistently rationalizable strategy, for player 3 in (S, u). Suppose, on
the contrary, that t3 is a persistently rationalizable type for player 3 in (S, u).
By IBu, player 3 initially believes that player 1 strictly prefers a to b, and that
player 2 strictly prefers c to d. Since S1(h) = {a, b} and S2(h) = {c, d}, PBR
would require that player 3, at h, assigns probability zero to b and d. However,
this is incompatible with the event that h has been reached. We conclude that
there is no persistently rationalizable type for player 3 in (S, u).

The problem with the game in Fig. 3 is that the violation of observable devi-
ators at information set h generates a conflict between BSR and PBR. Namely,
persistent rationalizability for u implies that player 3 should initially believe
that player 1 ranks a above b and that player 2 ranks c above d. When player
3 finds himself at his information set, he must conclude that either player 1 has
not chosen a or player 2 has not chosen c, and hence BSR forces him to give up
either his initial belief about player 1’s ranking or his initial belief about player
2’s ranking. PBR, on the other hand, tells player 3 not to change his belief about
opponent j’s ranking of strategies unless the observed play of the game provides
absolute evidence against this belief. Since the structure of information set h
violates observable deviators, the event of reaching player 3’s information set
does not provide absolute evidence against player 3’s initial belief about player
1’s ranking of strategies, nor does it provide absolute evidence against player 3’s
initial belief about player 2’s ranking. PBR therefore tells player 3 to maintain
his original belief about player 1’s ranking and about player 2’s ranking, which
contradicts BSR at player 3’s information set.

On the other hand, this conflict between BSR and PBR cannot occur if the
game has observable deviators. Suppose that player i is surprised by the fact
that his information set hi has been reached, since it contradicts his initial belief
about the opponents’ conditional rankings over strategies. By the observable
deviators condition at hi, player i knows exactly for which opponents he needs
to revise his belief about their ranking, and for which opponents he needs not,
and hence the conflict as it appears in Fig. 3 cannot arise.

6 Algorithmic characterization of persistently rationalizable strategies

6.1 The algorithm

In this subsection we provide an algorithm that can be used to compute the set
of persistently rationalizable strategies for a given extensive form game (S, u).
In order to formally state the algorithm, we need the following definitions.
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A conditional belief vector for player i is a vector bi = (bi(hi))hi∈H∗
i

that to
every hi ∈ H∗

i assigns a conditional probability distribution bi(hi) ∈ �(S−i(hi))

on the feasible opponents’ strategies. We say that strategy si is sequentially
rational with respect to bi if at every hi ∈ H∗

i (si) it holds that ui(si, bi(hi)) =
maxs′i∈Si(hi) ui(s′

i, bi(hi)). Here, ui(si, bi(hi)) is the expected utility induced by the
strategy si, the conditional belief bi(hi) and the utility function ui. For a given
set Bi of conditional belief vectors for player i, and a strategy si, let Bi(si) be
the set of those belief vectors in Bi for which si is sequentially rational. For any
two strategies si, s′

i and information set hi ∈ H∗
i (si)∩ H∗

i (s′
i), say that si is strictly

preferred to s′
i at hi with respect to bi if ui(si, bi(hi)) > ui(s′

i, bi(hi)).
In our algorithm, we recursively define for every player i and every k ∈ N

a set Bk
i of conditional belief vectors as follows. For k = 0, let B0

i be the set
of all possible conditional belief vectors for every player i. Now, suppose that
Bk−1

j has been defined for all players j. Then, Bk
i is defined to be the set of those

conditional belief vectors bi in Bk−1
i with the following two properties:

(A.1) bi(h0) only assigns positive probability to player j’s strategies sj for
which Bk−1

j (sj) is nonempty;
(A.2) if there are strategies sj and s′

j for player j and an information set
hj ∈ H∗

j (sj) ∩ H∗
j (s′

j) such that for every s′′
j assigned positive probability

by bi(h0) and every bj ∈ Bk−1
j (s′′

j ), strategy sj is strictly preferred to s′
j at

hj with respect to bj, then bi(hi) assigns probability zero to s′
j at every

hi ∈ H∗
i (sj) ∩ H∗

i (s′
j).

For every player i, let B∞
i = ∩k∈NBk

i .

Theorem 6.1 Let (S, u) be an extensive form game. Then, si is persistently ratio-
nalizable for (S, u) if and only if there is some bi ∈ B∞

i such that si is sequentially
rational with respect to bi.

6.2 An illustration

We illustrate the algorithm by means of the example of Fig. 1. Let h0 and
h1 denote the beginning of the game and player 2’s information set, respec-
tively. For every round k, the sets of conditional belief vectors Bk

1, Bk
2, Bk

1(s1)

and Bk
2(s2), with s1 ∈ S1 and s2 ∈ S2, are given by Table 1. Here, b1(h0)(f )

denotes the probability that b1 assigns at h0 to f . Similarly for the other expres-
sions. By (c, a) we denote the conditional belief vector for player 2 that initially
assigns probability 1 to c, and at h1 assigns probability 1 to a. The crucial
step in the algorithm is to conclude that B2

2 = {(c, a)}. In round 2 player 2
initially believes that player 1 chooses c, since B1

1(a) and B1
1(b) are empty.

Hence, player 2 initially believes that player 1’s conditional belief vector is in
B1

1(c) = B1
1. Since for every b1 ∈ B1

1 it holds that a is preferred to b, player
2 should assign probability zero to b at h1. Consequently, player 2’s unique
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Table 1 Illustration of the algorithm

B0
1(a) = ∅, B0

1(b) =
{

b1|b1(h0)(f ) ≥ 2
3

}
, B0

1(c) =
{

b1|b1(h0)(f ) ≤ 2
3

}

B0
2(d) =

{
b2| b2(h0)(a) ≥ b2(h0)(b)

b2(h1)(a) ≥ 1
2

}
, B0

2(e) =
{

b2| b2(h0)(a) ≤ b2(h0)(b)

b2(h1)(a) ≤ 1
2

}
, B0

2(f ) = ∅

B1
1 = {b1|b1(h0)(f ) = 0}, B1

2 = {b2|b2(h0)(a) = 0}
B1

1(a) = ∅, B1
1(b) = ∅, B1

1(c) = B1
1

B1
2(d) =

{
b2| b2(h0) = c

b2(h1)(a) ≥ 1
2

}
, B1

2(e) =
{

b2| b2(h0)(a) = 0
b2(h1)(a) ≤ 1

2

}
, B1

2(f ) = ∅

B2
1 = B1

1, B2
2 = {(c, a)}

B2
1(a) = ∅, B2

1(b) = ∅, B2
1(c) = B1

1

B2
2(d) = {(c, a)}, B2

2(e) = ∅, B2
2(f ) = ∅

B3
1 = B∞

1 = {d}, B3
2 = B∞

2 = {(c, a)}

conditional belief vector in B2
2 is (c, a). The algorithm stops after three rounds,

and selects a unique conditional belief vector for both players: d for player 1,
and (c, a) for player 2. By Theorem 6.1, the unique persistently rationalizable
strategies for the players are thus c and d.

6.3 Comparison with Schulte’s algorithm

We proceed by comparing our algorithm above with Schulte’s “iterated back-
ward inference algorithm” (Schulte 2003), as both procedures are similar in
spirit, although different on a more detailed level. While our procedure itera-
tively eliminates conditional belief vectors, Schulte’s procedure iteratively elim-
inates, for every information set h, strategies that lead to h. That is, for every
k ∈ N, every information set h and every player i, Schulte iteratively defines
monotonically decreasing sets Sk

i (h) of strategies in Si(h). Intuitively, Sk
i (h) rep-

resents the set of player i’s strategies that one may attach positive probability to
in round k of the procedure, conditional on the event that h has been reached.
Hence, these sets Sk

i (h) naturally induce, for every k and every player i, a set B̃k
i

of “admissible” conditional belief vectors, where bi ∈ B̃k
i if and only if bi assigns

at every hi ∈ H∗
i positive probability only to player j’s strategies in Sk

j (hi). In
order to compare Schulte’s procedure with ours, it is convenient to provide an
algorithmic characterization of Schulte’s induced sets of admissible conditional
belief vectors B̃k

i , and compare them with our sets Bk
i of admissible conditional

belief vectors as defined in our algorithm.
In Schulte’s procedure, the induced sets B̃k

i of conditional belief vectors can
be generated as follows: for k = 0, let B̃0

i be the set of all conditional belief
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vectors for player i. For k = 1, let B̃1
i be the set of conditional belief vectors

bi ∈ B̃0
i with the following property:

(D.1) for every two strategies sj and s′
j and every hj ∈ H∗

j (sj)∩H∗
j (s′

j) such that

sj is weakly preferred to s′
j at hj with respect to every bj ∈ B̃0

j and sj is

strictly preferred to s′
j at hj with respect to some bj ∈ B̃0

j , it holds that
bi(hi)(s′

j) = 0 for all hi ∈ H∗
i (sj) ∩ H∗

i (s′
j).

For k ≥ 2, let B̃k
i be the set of bi ∈ B̃k−1

i with the following property:
(D.2) for every two strategies sj and s′

j and every hj ∈ H∗
j (sj)∩H∗

j (s′
j) such that

sj is strictly preferred to s′
j at hj with respect to every bj ∈ B̃k−1

j , it holds
that bi(hi)(s′

j) = 0 for all hi ∈ H∗
i (sj) ∩ H∗

i (s′
j).

As the reader may verify, the conditions (D.1) and (D.2) are very similar to
the condition (A.2) in our algorithm. However, they differ slightly on a more
detailed level. Condition (D.1), for instance, requires that conditional belief vec-
tors should assign, at every information set h, probability zero to an opponent
strategy sj that is weakly dominated by some other strategy leading to h. Our
condition (A.2) does not necessarily rule out such strategies. On the other hand,
condition (D.2) is logically weaker than our condition (A.2): while condition
(A.2) states that bi(hi)(s′

j) = 0 whenever there are some strategy sj and infor-
mation set hj ∈ H∗

j (sj)∩H∗
j (s′

j) such that both sj and s′
j lead to hi and sj is strictly

preferred to s′
j at hj with respect to every bj ∈ ∪s′′j ∈supp(bi(h0))

Bk−1
j (s′′

j ) ⊆ Bk−1
j ,

condition (D.2) only requires this whenever sj is strictly preferred to s′
j at hj with

respect to every bj ∈ B̃k−1
j . Hence, both algorithms differ on a technical level,

although they are similar in spirit.

6.4 Alternative characterization of persistently rationalizable strategies

Our algorithm presented above only uses belief revisions about strategy choices,
and not belief revisions about opponents’ utility functions. The concept of per-
sistent rationalizability, on the other hand, has been defined assuming that
types may, and sometimes must, revise their beliefs about the opponents’ util-
ity functions. The question thus arises whether one can construct an alternative
epistemic model, leading to the same set of persistently rationalizable strategies,
in which types do not revise their beliefs about the opponents’ utility functions.
The answer is “yes”, as can be seen from the following lemma.

Lemma 6.2 Let (S, u) be an extensive form game. Then, si is a persistently ratio-
nalizable strategy for (S, u) if and only if it is sequentially rational for some type
ti that has utility function ui and respects common belief in the events that types
(1) believe in u at all information sets, (2) satisfy PBR, and (3) initially believe
in sequential rationality.

Similarly to the proof of Theorem 6.1, it can be shown that the algorithm
selects exactly those strategies that are sequentially rational for types satisfying
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the properties in Lemma 6.2. As such, those strategies coincide with the set of
persistently rationalizable strategies for (S, u). Since the proof of this result is
basically a copy of the proof of Theorem 6.1, we omit it.

The crucial difference with the original definition of persistently rationaliz-
able strategies is that the alternative definition insists on players maintaining
their original belief in the opponents’ utility functions, while allowing them to
drop their original belief in the opponents’ rationality, whereas the original
definition insists on players maintaining their original belief in the opponents’
rationality, while allowing them to drop their original belief in the opponents’
utility functions. In the game of Fig. 1, for instance, persistent rationalizability
implies that player 2 initially believes player 1 to choose c, while he revises this
belief to a upon observing that he has not chosen c. Within our original defini-
tion, player 2 interprets the strategy choice a as a rational choice for player 1
since he believes, upon observing that c is not chosen, that player 1’s utility from
(a, d) is higher than his utility from c. According to the alternative definition,
player 2 interprets the strategy choice a as a suboptimal choice for player 1,
since he maintains his original belief in player 1’s utility function, and therefore
still believes that c is better than a for player 1.

7 Relation to other concepts

In this section we use the algorithm above to compare persistent rationalizabil-
ity with the concepts of backward induction, weak sequential rationalizability
(Ben-Porath 1997) and extensive form rationalizability (Pearce 1984; Battigalli
1997).

7.1 Backward induction

We show that in generic games with perfect information, every player has
a unique persistently rationalizable strategy, namely his backward induction
strategy. A game with perfect information (S, u) is in generic position if for
every player i and every pair z1, z2 of different terminal nodes, ui(z1) �= ui(z2).
For such a game, let a∗(hi) ∈ A(hi) denote the unique backward induction
action at information set hi. For every player i, there is a unique strategy s∗

i with
s∗

i (hi) = a∗(hi) for every hi ∈ Hi(s∗
i ), to which we shall refer as the backward

induction strategy in (S, u).

Theorem 7.1 Let (S, u) be a game with perfect information in generic position.
Then, every player has a unique persistently rationalizable strategy for (S, u),
namely his backward induction strategy in (S, u).

In view of Theorem 7.1, the concept of persistent rationalizability may be
employed as an alternative epistemic foundation for backward induction in
games with perfect information. There is an important difference with other
foundations proposed in the literature, such as Aumann (1995), Samet (1996),
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Balkenborg and Winter (1997), Stalnaker (1998) and Asheim (2002), as persis-
tent rationalizability allows players to revise their conjectures about the oppo-
nents’ utility functions during the game, whereas the latter foundations do not.
In turn, persistent rationalizability requires players to interpret “unexpected
moves” (in this case, moves that deviate from the backward induction play)
always as being in accordance with common belief in rationality.

7.2 Weak sequential rationalizability

Formally speaking, the concept of weak sequential rationalizability as we use it,
is an extension of the notion of common certainty of rationality at the beginning
of the game, defined in Ben-Porath (1997) for the class of games with perfect
information, to the general class of extensive form games. For a given extensive
form game (S, u), say that strategy si is weakly sequentially rationalizable for
(S, u) if it is sequentially rational for a type ti with the following properties: (1)
ti has utility function ui, (2) ti respects common belief in the event that types
throughout the game believe in u, and (3) ti respects common belief in the event
that types initially believe in sequential rationality. In particular, after observing
an unexpected move by player j, type ti need no longer believe that player j acts
rationally. On the other hand, ti is assumed not to revise his belief about the
opponents’ utility functions as the game proceeds.

It is well-known that the set of weakly sequentially rationalizable strategies
for (S, u) can be obtained by the following algorithm: first, eliminate strategies
that are never sequentially rational for any conditional belief vector. Next, elim-
inate strategies that are never sequentially rational for any conditional belief
vector that initially assigns probability zero to opponent strategies eliminated
in the first round. Then, eliminate strategies that are never sequentially rational
for any conditional belief vector that initially assigns probability zero to oppo-
nent strategies eliminated in the first and second round, and so on.3 However, it
is not hard to verify that this is exactly the procedure that is obtained by delet-
ing the requirement (A.2) in our algorithm of Sect. 6, thus yielding a “weaker”
algorithm. Together with Theorem 6.1, this leads to the observation that every
persistently rationalizable strategy for (S, u) is also weakly sequentially ratio-
nalizable for (S, u). The other direction is not true, as we have seen in the
introduction.

7.3 Extensive form rationalizability

We have seen that persistent rationalizability and extensive form rationalizabil-
ity lead to disjoint sets of strategies for player 2 in the game of Fig. 1. However,

3 For games with perfect information in generic position, this procedure coincides with the
Dekel-Fudenberg procedure (Dekel and Fudenberg 1990), that is, one round of elimination of
weakly dominated strategies followed by iterative elimination of strongly dominated strategies.
See Ben-Porath (1997) for a proof of this result.
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both concepts lead to the same outcome in this game, namely the terminal node
following c. The question remains whether both concepts may also differ out-
come-wise. To this purpose, consider a small variation of the game in Fig. 1 in
which the utility-pair (4, 0) is replaced by (4, 4). Extensive form rationalizabil-
ity then uniquely selects the strategies b and f , leading to the outcome (b, f ).
Namely, if player 2 observes that c is not chosen, then, according to extensive
form rationalizability, he must conclude that player 1 has chosen b, since a is
dominated by c, whereas b is not. Hence, player 2 must respond with f , and
player 1 must choose b.

Using the algorithm in Sect. 6, it can be shown that

B∞
1 = {b1|b1(h0)(e) = 0} and B∞

2 = {b2|b2(h0)(a) = 0}.

Hence, {b, c} and {d, f } are the sets of persistently rationalizable strategies for
the two players. In particular, the outcome c can be reached by persistent ration-
alizability, but not by extensive form rationalizability. So far, I did not manage
to find an example in which the two concepts lead to disjoint sets of outcomes.

8 Appendix

In order to prove Theorem 5.3 we need the following two technical lemmas. The
first lemma provides a useful technical property of extensive form structures
with observable deviators. We need some additional notation. Let i and j be
different players, hi ∈ H∗

i and hj ∈ Hj. If hj precedes hi, let A(hj, hi) be the set
of actions at hj which lead to the information set hi, that is, a ∈ A(hj, hi) if and
only if there is some path from the root to hi at which a is chosen at hj. If hj
does not precede hi, then define A(hj, hi) = A(hj). Recall that Sj(hi) is the set of
player j’s strategies that do not avoid hi. Let Zj(hi) be the set of terminal nodes
that can be reached by choosing a strategy in Sj(hi). Let Hj(sj) be the collection
of player j information sets in Hj that are not avoided by strategy sj.

Lemma 8.1 Let S be an extensive form structure with observable deviators. Let
i and j be different players and let hi ∈ H∗

i . Then, the following holds:
(a) sj ∈ Sj(hi) if and only if sj(hj) ∈ A(hj, hi) for every hj ∈ Hj(sj),
(b) z ∈ Zj(hi) if and only if for every information set hj ∈ Hj on the path to z, the
unique action at hj leading to z belongs to A(hj, hi).

Proof (a) Let sj ∈ Sj(hi). Suppose that there is some hj ∈ Hj(sj) with sj(hj) /∈
A(hj, hi). Then, necessarily, hj precedes hi. Hence, by the definition of A(hj, hi),
the action sj(hj) avoids hi. On the other hand, since hj precedes hi, there is some
node x ∈ hj which leads to hi. By perfect recall, there is some strategy profile s−j
such that (sj, s−j) reaches x. Hence, there is some strategy profile (s̃j, s̃−j) such
that (s̃j, s̃−j) reaches x and hi. Since (s̃j, s̃−j) ∈ S(hi) and since, by the observable
deviators condition, S(hi) = ×k∈ISk(hi), it follows that s̃−j ∈ ×k �=jSk(hi). Since
(s̃j, s̃−j) reaches x ∈ hj, we know, by perfect recall, that s̃j coincides with sj on the
player j information sets preceding hj. Hence, (sj, s̃−j) reaches hj. Since sj(hj)
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avoids hi, we have that (sj, s̃−j) does not reach hi, and hence (sj, s̃−j) /∈ S(hi).
Since, by the observable deviators condition, S(hi) = ×k∈ISk(hi) and s̃−j ∈
×k �=jSk(hi), it thus follows that sj /∈ Sj(hi), which is a contradiction. We may
thus conclude that sj(hj) ∈ A(hj, hi) for all hj ∈ Hj(sj).

Now, let sj be such that sj(hj) ∈ A(hj, hi) for all hj ∈ Hj(sj). We prove that
sj ∈ Sj(hi). We distinguish two cases. Suppose first that there is no player j
information set preceding hi. Then, obviously, sj ∈ Sj(hi). Suppose now that
there is some player j information set preceding hi. Let hj ∈ Hj(sj) be a player
j information set preceding hi such that there is no other player j information
set in Hj(sj) between hj and hi. By assumption, sj(hj) ∈ A(hj, hi), hence there
exists a node x ∈ hj such that hi can be reached through x via action sj(hj).
By perfect recall, there is some strategy profile s̃−j for the opponents such that
(sj, s̃−j) reaches x. Since there is no h′

j ∈ Hj(sj) between hj and hi, and since hi

can be reached through x via sj(hj), we can choose s̃−j such that (sj, s̃−j) reaches
hi. But then, by definition, sj ∈ Sj(hi). This completes the proof of part (a).

(b) Suppose that z ∈ Zj(hi) and that hj ∈ Hj is a player j information set on
the path to z. Then, obviously, the unique action at hj leading to z belongs to
A(hj, hi). Suppose, on the other hand, that the terminal node z is such that for
every player j information set hj on the path to z, the unique action at hj leading
to z belongs to A(hj, hi). Let sj be a strategy such that at every information
set hj ∈ Hj(sj) on the path to z, the strategy sj chooses the unique action at
hj leading to z, and at every other information set hj ∈ Hj(sj) the strategy sj
chooses some action in A(hj, hi). Then, sj(hj) ∈ A(hj, hi) for all hj ∈ Hj(sj), and
hence, by part (a), sj ∈ Sj(hi). Since z can be reached by strategy sj, it follows
that z ∈ Zj(hi). This completes the proof. ��

The second lemma deals with the problem of transforming a type from the
“proper rationalizability type space” into a type from the “persistent rationaliz-
ability type space” while preserving its “relevant properties”. Such transforma-
tions are relevant for the problem at hand since, in order to prove that properly
point-rationalizable strategies are persistently rationalizable, we shall show that
every properly point-rationalizable type can be transformed into a persistently
rationalizable type, while preserving its “relevant properties”. Before stating
the lemma, we need some additional definitions. For every two players i and j
and information set hi ∈ H∗

i , recall that Zj(hi) denotes the set of terminal nodes
that can be reached by some strategy in Sj(hi). Let the utility functions (ui)i∈I
be given. Define for every player i, every hi ∈ H∗

i and every opponent j the
player j utility function ũj(hi) : Z → R by

ũj(hi)(z) =
{

uj(z), if z ∈ Zj(hi),
uj(z) − Kj(hi), if z /∈ Zj(hi),

(8.1)

where the constant Kj(hi) > 0 is chosen such that uj(z1) > uj(z2) − Kj(hi) for
all z1 ∈ Zj(hi) and all z2 /∈ Zj(hi). In the proof of Theorem 5.3, ũj(hi) shall
represent player i’s belief about player j’s utility function once information set
hi has been reached.
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Let Ri and Ti denote the set of player i’s types in the proper rationalizability
model and persistent rationalizability model, respectively. Let R∗

i be the set of
types in Ri that respect common belief in the event that types have point-beliefs
on types. For every type ri ∈ R∗

i and opponent j, let rj(ri) be the unique player
j type that ri deems possible. For every type ri ∈ R∗

i and every information set
hi ∈ H∗

i , let λi(ri, hi) be the marginal of the lexicographic probability distribu-
tion λi(ri) on S−i(hi), and let μi(ri, hi) be the first-order probability distribution
(or first-order belief) of λi(ri, hi) on S−i(hi).

Lemma 8.2 There is a transformation mapping t∗ which to every type ri ∈ R∗
i

and every opponent’s information set hl assigns some type t∗(ri, hl) in Ti such
that for all ri, hl and hi:
(a) t∗(ri, hl) has utility function ũi(hl) for all ri and hl,
(b) type t∗(ri, hl) assigns at hi probability one to type t∗(rj(ri), hi) ∈ Tj for every
opponent j,
(c) the probability that type t∗(ri, hl) assigns at hi to s−i is equal to the probability
that μi(ri, hi) assigns to s−i, for all s−i ∈ S−i(hi).

The lengthy proof of this result can be found in a previous version (Perea
2003) of this paper, and is omitted here for the sake of brevity.

Proof of Theorem 5.3 Lemma 8.2 guarantees that there is some transformation
mapping t∗ which to every type ri ∈ R∗

i and information set hl assigns some type
t∗(ri, hl) ∈ Ti satisfying the properties (a), (b) and (c) as stated in that lemma.
As a preliminary step we first show the following claim, stating that these types
t∗(ri, hl) have properties that can be used later to show that every properly
point-rationalizable strategy for (S, u) is persistently rationalizable for (S, u).
Claim 1 For every player i, every properly point-rationalizable type r∗

i ∈ R∗
i ,

every player l �= i and every hl ∈ H∗
l , the type t∗(r∗

i , hl) satisfies IBu, PBR and
BSR.
Proof of Claim 1 Fix a type t∗i = t∗(r∗

i , hl), induced by a properly point-rational-
izable type r∗

i .
1. Initial belief in u. By Lemma 8.2 (b), we know that μi(t∗i , h0) assigns prob-

ability 1 to type t∗(rj(r∗
i ), h0) for every opponent j. By Lemma 8.2 (a), such

type t∗(rj(r∗
i ), h0) has utility function ũj(h0). Since Zj(h0) = Z, it follows from

(8.1) that ũj(h0) = uj. Hence, t∗i believes at h0 that all opponents j hold utility
function uj, and hence t∗i satisfies IBu.

2. Proper belief revision. Suppose that t∗i initially believes that player j, at
information set hj, strictly prefers strategy sj to strategy s′

j, where hj ∈ H∗
j (sj) ∩

H∗
j (s′

j). By Lemma 8.2 (b), we know that μi(t∗i , h0) assigns probability 1 to
player j type t∗(rj(r∗

i ), h0). Therefore, type t∗(rj(r∗
i ), h0) strictly prefers sj to s′

j at
hj. Since we have seen above that t∗(rj(r∗

i ), h0) has utility function uj, and since
t∗(rj(r∗

i ), h0) satisfies property (c) above, it follows that

uj(sj, μj(rj(r∗
i ), hj)) > uj(s′

j, μj(rj(r∗
i ), hj)). (8.2)
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Now, let s̃j be the unique strategy in Sj(hj) that coincides with sj at every infor-
mation set h′

j ∈ Hj(s̃j) following hj, and coincides with s′
j at all information sets

h′
j ∈ Hj(s̃j) not following hj. Then, it follows immediately from (8.2) that

uj(s̃j, μj(rj(r∗
i ), hj)) = uj(sj, μj(rj(r∗

i ), hj)) > uj(s′
j, μj(rj(r∗

i ), hj)). (8.3)

We shall use (8.3) to prove that rj(r∗
i ) strictly prefers s̃j to s′

j.
Recall that rj(r∗

i ) holds a lexicographic probability distribution λj(rj(r∗
i )) on

S−j × R−j, and that λj(rj(r∗
i ), hj) is the marginal of λj(rj(r∗

i )) on S−j(hj). By
μj(rj(r∗

i ), hj) we have denoted the first-order probability distribution on S−j(hj)

induced by λj(rj(r∗
i ), hj). Suppose that λj(rj(r∗

i )) = (λ1
j , . . . , λL

j ), and let l∗ be the

first order for which λl∗
j (S−j(hj) × R−j) > 0.

Claim 1.1 For all l < l∗, we have that

uj(s̃j, λl
j) = uj(s′

j, λ
l
j).

Proof of Claim 1.1 Since, by the observable deviators condition, S(hj) = Sj(hj)×
S−j(hj), and since λl

j(S−j(hj) × R−j) = 0 for all l < l∗, it follows that both (s̃j, λl
j)

and (s′
j, λ

l
j) reach hj with probability zero for all l < l∗. By construction, s̃j and

s′
j only differ at information sets following hj, and hence uj(s̃j, λl

j) = uj(s′
j, λ

l
j) for

all l < l∗. This completes the proof of Claim 1.1.
Claim 1.2 uj(s̃j, λl∗

j ) < uj(s′
j, λ

l∗
j ).

Proof of Claim 1.2 Let Z(hj) be the set of terminal nodes that follow hj. Then,
we have

uj(s̃j, λl∗
j ) = λl∗

j (S−j(hj) × R−j) uj(s̃j, μj(rj(r∗
i ), hj)) +

∑

z/∈Z(hj)

P
(s̃j,λl∗

j )
(z)uj(z)

> λl∗
j (S−j(hj) × R−j)uj(s′

j, μj(rj(r∗
i ), hj)) +

∑

z/∈Z(hj)

P
(s̃j,λl∗

j )
(z)uj(z)

= λl∗
j (S−j(hj) × R−j)uj(s′

j, μj(rj(r∗
i ), hj)) +

∑

z/∈Z(hj)

P
(s′j,λ

l∗
j )

(z)uj(z)

= uj(s′
j, λ

l∗
j ).

Here, P
(s̃j,λl∗

j )
(z) denotes the probability of reaching terminal node z under

(s̃j, λl∗
j ). The first equality follows from the observation that (1) (s̃j, s−j) leads to

a terminal node in Z(hj) if and only if s−j ∈ S−j(hj), and (2) μj(rj(r∗
i ), hj) is the

conditional distribution of λl∗
j on S−j(hj). The inequality follows from (8.3) and

the assumption that λl∗
j (S−j(hj) × R−j) > 0. The second equality follows from

the fact that s̃j and s′
j only differ at information sets following hj, and hence



552 A. Perea

P
(s̃j,λl∗

j )
(z) = P

(s′j,λ
l∗
j )

(z) for all z /∈ Z(hj). The last equality follows from the same

argument as used for the first equality.
By Claims 1.1 and 1.2, we may conclude that type rj(r∗

i ) strictly prefers
strategy s̃j to s′

j. In order to prove that t∗i satisfies PBR, we must show that
t∗i = t∗(r∗

i , hl) assigns at every information set hi ∈ H∗
i (sj) ∩ H∗

i (s′
j) probability

zero to s′
j. Let hi be an information set in H∗

i (sj) ∩ H∗
i (s′

j), that is, sj and s′
j are

both in Sj(hi). Hence, by Lemma 8.1 (a), at every information set hj ∈ Hj pre-
ceding hi, both sj and s′

j choose an action in A(hj, hi). Since the actions chosen
by s̃j coincide either with sj or s′

j, it follows that at every information set hj ∈ Hj

preceding hi, also s̃j chooses an action in A(hj, hi). Therefore, by Lemma 8.1 (a),
both s̃j and s′

j are in Sj(hi). Since r∗
i is properly point-rationalizable, and rj(r∗

i )

strictly prefers strategy s̃j to s′
j, it follows that r∗

i deems s̃j infinitely more likely
than s′

j. In particular, since s̃j, s′
j ∈ Sj(hi), it follows that μi(r∗

i , hi) assigns prob-
ability zero to s′

j. By Lemma 8.2 (c) we may then conclude that t∗i = t∗(r∗
i , hl)

assigns at hi probability zero to s′
j, which was to show. Hence, t∗i satisfies PBR.

3. Belief in sequential rationality. We finally show that t∗i = t∗(r∗
i , hl) satisfies

BSR. Hence, we must prove that μi(t∗i , hi) assigns probability one to the set of
sequentially rational strategy-type pairs (sj, tj) for all players j and at all informa-
tion sets hi ∈ H∗

i . Fix an information set h∗
i and an opponent j. Then, by Lemma

8.2 we know that μi(t∗i , h∗
i ) assigns probability one to type tj = t∗(rj(r∗

i ), h∗
i ),

with utility function uj(tj) = ũj(h∗
i ). Suppose that sj is a strategy in Sj(h∗

i ) that
is not sequentially rational for tj. We prove that μi(t∗i , h∗

i ) puts probability zero
on sj.

Since uj(tj) = ũj(h∗
i ), and sj is not sequentially rational for tj, there exists

some information set h∗
j ∈ H∗

j (sj) such that sj is not optimal given the probabil-
ity distribution μj(tj, h∗

j ) on S−j(h∗
j ) × T−j and the utility function ũj(h∗

i ). Since

sj is not optimal at h∗
j , there is some other strategy s1

j ∈ Sj(h∗
j ) such that

ũj(h∗
i )(sj, μj(tj, h∗

j )) < ũj(h∗
i )(s

1
j , μj(tj, h∗

j )), (8.4)

where ũj(h∗
i )(sj, μj(tj, h∗

j )) is the expected utility induced by the utility function
ũj(h∗

i ), the strategy sj and the belief μj(tj, h∗
j ) at h∗

j about the opponents’ strat-
egy-type pairs. In order to prove that μi(t∗i , h∗

i ) puts probability zero on sj, we
shall show the following claim.
Claim 1.3 There exists some s′

j ∈ Sj(h∗
i ) such that rj(r∗

i ) strictly prefers s′
j to sj.

Suppose, namely, that this claim would be true. Then, since r∗
i is properly

rationalizable and hence respects the opponents’ preferences, it would follow
that r∗

i deems sj infinitely less likely than s′
j. As both sj and s′

j belong to Sj(h∗
i ),

this would imply that μi(r∗
i , h∗

i ) assigns probability zero to sj. But then, part
(c) in Lemma 8.2 would guarantee that t∗i = t∗(r∗

i , hl), at information set h∗
i ,

attaches probability zero to sj, which was to show. It thus suffices to prove Claim
1.3 in order to prove BSR of t∗i .
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Proof of Claim 1.3 We shall prove Claim 1.3 through a series of smaller claims.
Recall that, by (8.4), there is some strategy s1

j ∈ Sj(h∗
j ) such that

ũj(h∗
i )(sj, μj(tj, h∗

j )) < ũj(h∗
i )(s

1
j , μj(tj, h∗

j )).

Claim 1.3.1 There is a strategy s2
j , differing from sj only at information sets

following h∗
j , such that

ũj(h∗
i )(sj, μj(tj, h∗

j )) < ũj(h∗
i )(s

2
j , μj(tj, h∗

j )).

Proof of Claim 1.3.1 Let s2
j be the unique strategy in Sj(h∗

j ) that coincides with

s1
j on all information sets hj ∈ Hj(s2

j ) following h∗
j , and coincides with sj on all

information sets hj ∈ Hj(s2
j ) not following h∗

j . Then, s2
j only differs from sj at

information sets following h∗
j , and

ũj(h∗
i )(s

2
j , μj(tj, h∗

j )) = ũj(h∗
i )(s

1
j , μj(tj, h∗

j )),

which together with (8.4) completes the proof of Claim 1.3.1.
Claim 1.3.2 ũj(h∗

i )(sj, μj(tj, h∗
j )) = uj(sj, μj(tj, h∗

j )).
Here, uj(sj, μj(tj, h∗

j )) denotes the expected utility induced by the utility func-
tion uj.
Proof of Claim 1.3.2 Since sj ∈ Sj(h∗

i ), we know that sj can only lead to terminal
nodes in Zj(h∗

i ), and hence (sj, μj(tj, h∗
j )) induces a probability distribution on

Zj(h∗
i ). By (8.1), ũj(h∗

i ) coincides with uj on Zj(h∗
i ), and hence the claim follows.

Note that s2
j is not necessarily a strategy in Sj(h∗

i ). However, we can prove
the following.
Claim 1.3.3 There is a strategy s3

j in Sj(h∗
i ) such that

ũj(h∗
i )(s

2
j , μj(tj, h∗

j )) ≤ ũj(h∗
i )(s

3
j , μj(tj, h∗

j )).

Proof of Claim 1.3.3 Let

Ĥj = {hj ∈ Hj(s2
j )|s2

j (hj) /∈ A(hj, h∗
i )}.

By definition of A(hj, h∗
i ), we have that a ∈ A(hj)\A(hj, h∗

i ) if and only if hj

precedes h∗
i and a avoids h∗

i . Hence, if a ∈ A(hj)\A(hj, h∗
i ) and h̃j follows hj

and a, then h̃j cannot precede h∗
i , and hence A(h̃j, h∗

i ) = A(h̃j). Consequently,
if hj and h̃j are both in Ĥj, then hj cannot precede nor follow h̃j. Note that
every hj in Ĥj follows h∗

j . Namely, we have seen that sj and s2
j can only differ at

information sets following h∗
j . Since sj ∈ Sj(h∗

i ), we have, by Lemma 8.1 (a), that
sj(hj) ∈ A(hj, h∗

i ) for all hj. In particular, sj(hj) ∈ A(hj, h∗
i ) at all information

sets hj not following h∗
j . Since s2

j coincides with sj on these information sets, it
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follows that s2
j (hj) ∈ A(hj, h∗

i ) at all information sets hj not following h∗
j . Hence,

Ĥj can only contain information sets following h∗
j .

Let s3
j be some strategy which coincides with s2

j on all information sets in

(Hj(s3
j ) ∩ Hj(s2

j ))\Ĥj, and chooses some action in A(hj, h∗
i ) at all other informa-

tion sets in Hj(s3
j ). Then, by construction, s3

j (hj) ∈ A(hj, h∗
i ) at all information

sets hj ∈ Hj(s3
j ). By Lemma 8.1 (a), it then follows that s3

j ∈ Sj(h∗
i ). By con-

struction, s3
j only differs from s2

j at information sets hj that either belong to

Hj(s3
j ) ∩ Hj(s2

j ) ∩ Ĥj, or that follow an information set in Hj(s3
j ) ∩ Hj(s2

j ) ∩ Ĥj.

At every information set hj ∈ Hj(s3
j )∩ Hj(s2

j )∩ Ĥj, the strategy s3
j chooses some

a ∈ A(hj, h∗
i ), which eventually leads to Zj(h∗

i ). At such information sets hj, the
strategy s2

j chooses some action a /∈ A(hj, h∗
i ), eventually leading to Z\Zj(h∗

i ).
The latter follows from Lemma 8.1 (b). By (8.1), we know that

ũj(h∗
i )(z1) > ũj(h∗

i )(z2)

for all z1 ∈ Zj(h∗
i ) and all z2 ∈ Z\Zj(h∗

i ), which, together with the observations
above, implies that

ũj(h∗
i )(s

2
j , μj(tj, h∗

j )) ≤ ũj(h∗
i )(s

3
j , μj(tj, h∗

j )).

This completes the proof of Claim 1.3.3.
Claim 1.3.4 ũj(h∗

i )(s
3
j , μj(tj, h∗

j )) = uj(s3
j , μj(tj, h∗

j )).
Proof of Claim 1.3.4 The proof is identical to the proof of Claim 1.3.2, since
s3

j ∈ Sj(h∗
i ).

By combining the Claims 1.3.1 until 1.3.4, we obtain that

uj(sj, μj(tj, h∗
j )) < uj(s3

j , μj(tj, h∗
j )), (8.5)

where both sj and s3
j belong to Sj(h∗

j ) ∩ Sj(h∗
i ), and s3

j and sj only differ at infor-

mation sets following h∗
j . We have seen namely, that s2

j only differs from sj at

information sets following h∗
j , while s3

j only differs from s2
j at information sets

in, or following, Ĥj. Since Ĥj only contains information sets following h∗
j , it

follows that s3
j and sj only differ at information sets following h∗

j . Summarizing,

we thus know that (1) tj = t∗(rj(r∗
i ), h∗

i ), (2) uj(sj, μj(tj, h∗
j )) < uj(s3

j , μj(tj, h∗
j )),

and (3) sj and s3
j only differ at information sets following h∗

j . By using the same
techniques as in the proof of PBR above, one can now show that rj(r∗

i ) strictly
prefers s3

j to sj. Since s3
j ∈ Sj(h∗

i ), Claim 1.3 follows. As we have seen above, this
implies that t∗i satisfies BSR.

This therefore completes the proof of Claim 1. We thus have shown that for
every properly point-rationalizable type ri for (S, u) and every information set
hl, the induced type t∗(ri, hl) satisfies IBu, PBR and BSR.
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Now, let T∗ be the set of all types t in ∪i∈ITi that can be written as t = t∗(ri, hl)

for some properly point-rationalizable type ri for (S, u), and some information
set hl. For a given properly point-rationalizable type ri for (S, u), it holds, by
definition of proper point-rationalizability, that rj(ri) is properly point-ratio-
nalizable for every opponent j. Together with property (b) in Lemma 8.2,
it follows that every type t in T∗ assigns, at every information set, proba-
bility 1 to opponents’ types in T∗. Since we have seen that every type in
T∗ satisfies IBu, PBR and BSR, it follows that every type t∗(ri, hl) in T∗ re-
spects common belief in the events IBu, PBR and BSR. However, this implies
that every type t∗(ri, hl) induced by a properly point-rationalizable type ri for
(S, u), is persistently rationalizable and respects common belief in the event
IBu.

Now, let s∗
i be a properly point-rationalizable strategy for (S, u). Then, there

is some properly point-rationalizable type r∗
i for (S, u) such that s∗

i is optimal for
r∗

i . Let t∗i = t∗(r∗
i , h0). Then, by property (a) in Lemma 8.2, t∗i holds utility func-

tion ũi(h0) = ui. Since we have seen above that t∗i is persistently rationalizable
and respects common belief in the event IBu, it follows that t∗i is persistently
rationalizable for (S, u).

Since s∗
i is optimal for r∗

i , and since the lexicographic probability distribution
λi(r∗

i ) is cautious, it follows that s∗
i is optimal with respect to μi(r∗

i , hi) at every
information set hi ∈ H∗

i (s∗
i ). By property (c) in Lemma 8.2, we then know that

s∗
i is optimal with respect to μi(t∗i , hi) for all hi ∈ H∗

i (s∗
i ). This implies that s∗

i
is sequentially rational for t∗i , and hence s∗

i is persistently rationalizable for
(S, u). We thus have shown that every properly point-rationalizable strategy for
(S, u) is persistently rationalizable for (S, u). This completes the proof of this
theorem. ��
Proof of Theorem 6.1 For every player i, let Tpr

i be the set of persistently ratio-
nalizable types for (S, u). For a given type ti ∈ Tpr

i , let bi(ti) be the induced
conditional belief vector, and let Bpr

i = {bi(ti) | ti ∈ Tpr
i }.

Claim 1 For every player i we have Bpr
i ⊆ B∞

i .
Proof of Claim 1 We show by induction on k that Bpr

i ⊆ Bk
i for all k. By

definition, it holds that Bpr
i ⊆ B0

i for all players i. Now, take a player i, and
suppose that Bpr

j ⊆ Bk−1
j for all players j. We show that Bpr

i ⊆ Bk
i . Take some

bi ∈ Bpr
i . Hence, there is some persistently rationalizable type ti for (S, u) such

that bi = bi(ti). Assume that bi(ti)(h0) assigns positive probability to some sj.
Hence, there is some tj ∈ Tj such that μi(ti, h0) assigns positive probability to
(sj, tj). As ti is persistently rationalizable for (S, u), it follows that tj must be
persistently rationalizable for (S, u) and that sj must be sequentially rational
for tj. But then, sj is sequentially rational with respect to bj(tj) ∈ Bpr

j . Since, by

induction assumption, Bpr
j ⊆ Bk−1

j , it follows that bj(tj) ∈ Bk−1
j (sj), and hence

Bk−1
j (sj) is nonempty. Hence, bi(ti) satisfies (A.1) above.
Suppose now that there are some sj, s′

j and hj ∈ H∗
j (sj) ∩ H∗

j (s′
j) such that for

all s′′
j assigned positive probability by bi(ti)(h0) and all bj ∈ Bk−1

j (s′′
j ), strategy

sj is strictly preferred to s′
j at hj with respect to bj. Let ti initially assign positive
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probability to some strategy-type pair (s′′
j , tj). Since ti is persistently rationaliz-

able for (S, u), it follows that tj ∈ Tpr
j . By induction assumption we have that

Bpr
j ⊆ Bk−1

j , and hence bj(tj) ∈ Bpr
j ⊆ Bk−1

j . Since ti satisfies BSR, it must
be the case that s′′

j is sequentially rational for tj, and hence s′′
j is sequentially

rational with respect to bj(tj). Combined with the fact that bj(tj) ∈ Bk−1
j , it

follows that bj(tj) ∈ Bk−1
j (s′′

j ). By our assumption above, we then know that sj

is strictly preferred to s′
j at hj with respect to bj(tj). We thus have shown that

every strategy-type pair (s′′
j , tj) to which ti initially assigns positive probability

has the property that sj is strictly preferred to s′
j at hj with respect to bj(tj).

Hence, ti initially believes with probability 1 that player j, at hj, strictly prefers
sj to s′

j. By PBR of ti, we may then conclude that ti, at every hi ∈ H∗
i (sj)∩H∗

i (s′
j),

assigns probability zero to s′
j. As such, bi(ti) assigns probability zero to s′

j at
every hi ∈ H∗

i (sj) ∩ H∗
i (s′

j). This implies that bi(ti) satisfies (A.2) above, and

hence bi(ti) ∈ Bk
i . We have thus shown that Bpr

i ⊆ Bk
i . By induction, it follows

that Bpr
i ⊆ B∞

i for all players i, which completes the proof of this claim.
Now, suppose that si is persistently rationalizable for (S, u). Then, there is

some type ti ∈ Tpr
i such that si is sequentially rational for ti, implying that si

is sequentially rational with respect to bi(ti) ∈ Bpr
i . Since Bpr

i ⊆ B∞
i , it follows

that si is sequentially rational with respect to some bi ∈ B∞
i , thus establishing

the ‘only-if’ part of the theorem.
In order to prove the ‘if’ part, choose for every player i a finite subset B̂∞

i ⊆
B∞

i such that for every bi ∈ B∞
i there is some b̂i ∈ B̂∞

i with the following prop-
erty: for any two strategies si, s′

i and every information set hi ∈ H∗
i (si) ∩ H∗

i (s′
i),

strategy si is strictly preferred to s′
i at hi with respect to bi if and only if si is

strictly preferred to s′
i at hi with respect to b̂i.4 Recall by our notation introduced

above, that B̂∞
i (si) denotes the set of those conditional belief vectors in B̂∞

i for
which strategy si is sequentially rational. By construction of the sets B∞

i and
B̂∞

i , we have that every bi ∈ B̂∞
i satisfies the following two properties:

(B.1) bi(h0) only assigns positive probability to player j’s strategies sj for which
B̂∞

j (sj) is nonempty;
(B.2) if there are some strategies sj and s′

j and an information set hj ∈ H∗
j (sj)∩

H∗
j (s′

j) such that for all s′′
j assigned positive probability by bi(h0) and all

bj ∈ B̂∞
j (s′′

j ), strategy sj is strictly preferred to s′
j at hj with respect to bj,

then bi(hi) assigns probability zero to s′
j at all hi ∈ H∗

i (sj) ∩ H∗
i (s′

j).

For every strategy si with nonempty B̂∞
i (si), define B∗

i (si) := B̂∞
i (si). For

every strategy si with empty B̂∞
i (si), let B∗

i (si) be some arbitrary subset of B̂∞
i .

Then, we may define for every strategy si and every conditional belief vector

4 Finding such finite subsets B̂∞
i is always possible since there are only finitely many information

sets hi ∈ H∗
i , and for every information set hi there are only finitely many preference relations over

strategies in Si(hi).
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bi ∈ B∗
i (si) a type ti(si, bi), with a utility function that may differ from ui, with

the following properties:

(C.1) si is sequentially rational for ti(si, bi);
(C.2) ti(si, bi) has utility function ui whenever B̂∞

i (si) is nonempty;
(C.3) the probability that ti(si, bi) assigns at hi ∈ H∗

i to a strategy-type pair
(sj, tj) is equal to

{
bi(hi)(sj)/|B∗

j (sj)|, if tj = tj(sj, bj) for some bj ∈ B∗
j (sj),

0, otherwise,

where bi(hi)(sj) is the probability that bi assigns at hi to sj.
For every player i, let T∗

i be the set of types {ti(si, bi) | si ∈ Si and bi ∈ B∗
i (si)}

obtained in this way.
Claim 2 Every type ti ∈ T∗

i is persistently rationalizable, and respects common
belief in the event IBu.
Proof of Claim 2 Since, by (C.3), every type ti ∈ T∗

i assigns at every hi ∈ H∗
i only

positive probability to player j’s types in T∗
j , it suffices to show that every type

ti ∈ T∗
i satisfies IBu, BSR and PBR. Take some type ti ∈ T∗

i , with ti = ti(si, bi)

for some si and some bi ∈ B∗
i (si).

Initial belief in u. Suppose that ti(si, bi) initially assigns positive probability
to some player j type tj. By (C.3), there must be some strategy sj and bj ∈ B∗

j (sj)

such that tj = tj(sj, bj) and bi(h0)(sj) > 0. Since bi ∈ B̂∞
i , it follows by (B.1)

that B̂∞
j (sj) is nonempty. By (C.2), we may then conclude that tj = tj(sj, bj) has

utility function uj. Hence, ti(si, bi) satisfies IBu.
Belief in sequential rationality. By (C.3), type ti(si, bi) only assigns positive

probability to strategy-type pairs (sj, tj) where tj = tj(sj, bj) for some bj ∈ B∗
j (sj).

Since, by (C.1), sj is sequentially rational for tj(sj, bj), BSR follows.
Proper belief revision. Suppose that ti(si, bi) initially believes with probability

1 that player j, at hj ∈ H∗
j (sj)∩H∗

j (s′
j), strictly prefers sj to s′

j. Recall that ti(si, bi)

initially believes that player j has utility function uj. Hence, by (C.3) it follows
that for every s′′

j with bi(h0)(s′′
j ) > 0, and for every bj ∈ B∗

j (s
′′
j ), it holds that

sj is strictly preferred to s′
j at hj with respect to bj. Since bi ∈ B̂∞

i , it follows

by (B.1) that B̂∞
j (s′′

j ) is nonempty for every s′′
j with bi(h0)(s′′

j ) > 0. But then,

B∗
j (s

′′
j ) = B̂∞

j (s′′
j ) for all s′′

j with bi(h0)(s′′
j ) > 0. We may thus conclude that

for every s′′
j with bi(h0)(s′′

j ) > 0, and for every bj ∈ B̂∞
j (s′′

j ), it holds that sj is
strictly preferred to s′

j at hj with respect to bj. By (B.2), we may then conclude
that bi(hi)(s′

j) = 0 for all hi ∈ H∗
i (sj) ∩ H∗

i (s′
j). Together with (C.3), it follows

that ti(si, bi) assigns at every hi ∈ H∗
i (sj) ∩ H∗

i (s′
j) probability zero to s′

j. Hence,
ti(si, bi) satisfies PBR, which completes the proof of Claim 2.

Suppose, finally, that si is sequentially rational with respect to some bi ∈ B∞
i .

Then, si is sequentially rational with respect to some bi ∈ B̂∞
i (si), and hence

si is sequentially rational for the type ti = ti(si, bi) ∈ T∗
i . In particular, B̂∞

i (si)
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is nonempty, which, by (C.2), implies that ti(si, bi) has utility function ui. Since
ti(si, bi) is persistently rationalizable, respects common belief in the event IBu,
and since ti(si, bi) has utility function ui, it follows that ti(si, bi) is persistently
rationalizable for (S, u). This implies that si is persistently rationalizable for
(S, u), which completes the ‘if’ part of this theorem. ��
Proof of Theorem 7.1 Let (S, u) be a game with perfect information in generic
position. For a given information set hi ∈ H∗

i and opponent j, let S∗
j (hi) denote

the set of strategies sj ∈ Sj(hi) such that at every information set hj ∈ Hj(sj)

following hi, the strategy sj prescribes the backward induction action a∗(hj).
Say that hi is followed by at most k information sets if every path from hi to
a terminal node passes through at most k information sets. Let Hk

i be the set
of information sets hi ∈ H∗

i followed by at most k information sets. For every
player i, let B1

i , B2
i , . . . be the sets of conditional belief vectors as specified by

the algorithm in Sect. 6. We prove the following claim.
Claim For every k, every bi ∈ Bk

i and every hi ∈ Hk
i , the conditional belief

bi(hi) assigns positive probability only to player j’s strategies in S∗
j (hi).

Proof of Claim By induction on k. If k = 0, bi ∈ B0
i and hi ∈ H0

i , then hi
is not followed by any information set. Hence, S∗

j (hi) = Sj(hi), and the state-
ment holds trivially. Now, assume that the statement holds for k − 1 and every
player i. We prove that the statement holds for k and every player i. Choose a
player i, a conditional belief vector bi ∈ Bk

i and an information set hi ∈ Hk
i . Sup-

pose that sj ∈ Sj(hi)\S∗
j (hi). We show that bi(hi) assigns probability zero to sj. As

sj ∈ Sj(hi)\S∗
j (hi), there is some hj ∈ Hj(sj) following hi such that sj(hj) �= a∗(hj).

Take some s∗
j ∈ S∗

j (hi). Since hj follows hi and hi ∈ Hk
i , we have that hj ∈ Hk−1

j .

Hence, we know by the induction assumption that for every bj ∈ Bk−1
j , the

conditional belief bj(hj) assigns only positive probability to player k strategies
in S∗

k(hj). This implies that for every bj ∈ Bk−1
j , strategy s∗

j is strictly preferred

to sj at hj. Since sj, s∗
j ∈ Sj(hi), we have that hi ∈ H∗

i (sj)∩ H∗
i (s∗

j ). As bi ∈ Bk
i , we

may therefore conclude by (A.2) of the algorithm that bi(hi) assigns probability
zero to sj, which was to show. By induction on k, the claim follows.

Now, choose a strategy si that is persistently rationalizable for (S, u). By The-
orem 6.1, we know that si is sequentially rational for some conditional belief
vector bi ∈ B∞

i . Since B∞
i = ∩k∈NBk

i , we know by the claim that for every
information set hi ∈ H∗

i , the conditional belief bi(hi) assigns positive proba-
bility only to player j’s strategies in S∗

j (hi). But then, the unique strategy that
is sequentially rational with respect to bi is the backward induction strategy in
(S, u). Hence, si must be equal to the backward induction strategy in (S, u). This
completes the proof of the theorem. ��
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