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Abstract

In this paper we focus on stochastic games with �nitely many states and actions. For this
setting we study the epistemic concept of common belief in future rationality, which is based
on the condition that players always believe that their opponents will choose rationally in
the future. We distinguish two di¤erent versions of the concept �one for the discounted case
with a �xed discount factor �; and one for the case of uniform optimality, where optimality
is required for �all discount factors close enough to 1�.
We show that both versions of common belief in future rationality are always possible in

every stochastic game. That is, for both versions we can always �nd belief hierarchies that
express common belief in future rationality. We also provide an epistemic characterization
of subgame perfect equilibrium for 2-player stochastic games, showing that it is equivalent
to common belief in future rationality together with mutual belief in Bayesian updating and
some �correct beliefs assumption�.

JEL Classi�cation: C72

Key words: Epistemic game theory, stochastic games, common belief in future rationality.

�We would like to thank János Flesch, some anonymous referees, and the audience at the Workshop on
Correlated Information Change in Amsterdam, for very valuable feedback on this paper.

yAddress: EpiCenter & Dept. of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD
Maastricht, The Netherlands. E-mail: a.perea@maastrichtuniversity.nlWeb: http://www.epicenter.name/Perea/

zAddress: Dept. of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
E-mail: a.predtetchinski@maastrichtuniversity.nl Web: http://researchers-sbe.unimaas.nl/arkadipredtetchinski/

1



1 Introduction

The literature on stochastic games is massive, and has concentrated mostly on the question
whether Nash equilibria, subgame perfect equilibria, or other types of equilibria exist in such
games. To the best of our knowledge, this paper is the �rst to analyze stochastic games from
an epistemic point of view.

A distinctive feature of an equilibrium approach to games is the assumption that every player
believes that the opponents are correct about his beliefs (see Brandenburger and Dekel (1987,
1989), Tan and Werlang (1988), Aumann and Brandenburger (1995), Asheim (2006) and Perea
(2007)). The main idea of this paper is to analyze stochastic games without imposing the correct
beliefs assumption, while at the same time preserving the spirit of subgame perfection. This
leads to a concept called common belief in future rationality �an extension of the corresponding
concept by Perea (2014) which has been de�ned for dynamic games of �nite duration. Very
similar concepts have been introduced in Baltag, Smets and Zvesper (2009) and Penta (2015).

Common belief in future rationality states that, after every history, the players continue to
believe that their opponents will choose rationally in the future, that they believe that their
opponents believe that their opponents will choose rationally in the future, and so on, ad in�ni-
tum. The crucial feature that common belief in future rationality has in common with subgame
perfect equilibria is that the players uphold the belief that the opponents will be rational in the
future, even if this belief has been violated in the past. What distinguishes common belief in
future rationality from subgame perfect equilibrium is that the former allows the players to have
erroneous beliefs about their opponents, while the latter incorporates the condition of correct
beliefs in the sense that we make precise.

We introduce our solution concept using the language of epistemic models with types, fol-
lowing Harsanyi (1967�1968). An epistemic model speci�es, for each player, the set of possible
types, and for each type and each history of the game, a probability distribution over the op-
ponents�strategy�type combinations. An epistemic model succinctly describes the entire belief
hierarchy after each history of the game. This model is essentially the same as the epistemic
models used by Ben-Porath (1997), Battigalli and Siniscalchi (1999, 2002) and Perea (2012,
2014) to encode conditional belief hierarchies in �nite dynamic games.

For a given discount factor �; we say that a type in the epistemic model believes in the
opponents�future ��rationality if, at every history, it assigns probability 1 to the set of oppo-
nents�strategy�type combinations where the strategy is optimal for the type�s beliefs, given the
discount factor �; at every future history. We say that the type believes in the opponents�future
uniform rationality if it assigns probability 1 to the set of opponents�strategy�type combina-
tions where the strategy is uniformly optimal � that is, optimal for all � close to 1 � for the
type�s beliefs at every future history. Common belief in future �-rationality requires that the
type not only believes in the opponents�future �-rationality, but also believes, throughout the
game, that his opponents always believe in their opponents�future �-rationality, and so on, ad
in�nitum. Similarly, we can de�ne common belief in future uniform rationality.

2



In this paper we show that common belief in future rationality is always possible in a sto-
chastic game with �nitely many states. More precisely, we prove in Theorem 5.1 that for every
discount factor � < 1, we can always construct an epistemic model in which all types express
common belief in future ��rationality. A similar result holds for the uniform optimality case �
see Theorem 5.2.

A second objective of this paper is to relate common belief in future rationality in stochastic
games to the well-known concept of subgame perfect equilibrium (Selten (1965)). In Theorems 6.1
and 6.2 we provide an epistemic characterization of subgame perfect equilibrium for 2�player
stochastic games. We show that a behavioral strategy pro�le (�1; �2) is a subgame perfect
equilibrium, if and only if, there is an epistemic model and a type t1 for player 1 such that (a)
t1 expresses common belief in future rationality, (b) t1 believes at every history that player 2
will play �2 in the future, and believes that player 2 believes, after every history, that player 1
will play �1 in the future, (c) t1 satis�es Bayesian updating, and believes that player 2 satis�es
Bayesian updating, and (d) t1 believes that player 2 is correct about 1�s beliefs, and believes
that 2 believes that 1 is correct about 2�s beliefs.

Item (d) expresses the correct beliefs assumption mentioned at the beginning of this intro-
duction, stating that player 1 believes that player 2 is correct about 1�s beliefs, and that player
1 believes that player 2 believes that player 1 is correct about 2�s beliefs. This is the main
condition that separates subgame perfect equilibrium from common belief in future rationality,
at least for the case of two players. Our characterization result is analogous to the epistemic
characterizations of Nash equilibrium as presented in Brandenburger and Dekel (1987, 1989),
Tan and Werlang (1988), Aumann and Brandenburger (1995), Asheim (2006) and Perea (2007).

The equilibrium counterpart of common belief in future uniform rationality is the concept
we term uniform subgame perfect equilibrium. A uniform subgame perfect equilibrium is a
strategy pro�le that is a subgame perfect perfect equilibrium under a discounted evaluation for
all su¢ ciently high values of the discount factor. Uniform subgame perfect equilibria may fail to
exist in some of the stochastic games considered in this paper. Indeed, every uniform subgame
perfect equilibrium is also a subgame perfect equilibrium under the limiting average reward. It
is well�known that subgame perfect equilibria, and in fact even Nash equilibria, may fail to exist
in stochastic games under the limiting average reward criterion. We examine in some detail
two examples that admit no uniform subgame perfect equilibria: the Big Match (Gillette, 1957)
and the quitting game in Solan and Vieille (2003). Our existence result in Theorems 5.1 and
5.2, which guarantee that common belief in future rationality is always possible in a stochastic
game �even for the uniform optimality case �do not rely on any form of equilibrium existence.
Instead, we explicitly construct an epistemic model where each type exhibits common belief in
future (�- or uniform) rationality.

Epistemic game theory has been developed largely within the realm of �nite games, i.e. games
with �nitely many stages. One notable exception is Battigalli (2003), who considers games with
in�nite duration and focuses on the concepts of weak and strong ��rationalizability. Some
important di¤erences between Battigalli�s approach and ours are that (a) Battigalli considers
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games with incomplete information, whereas we stick to the case of complete information, (b)
Battigalli considers exogenous restrictions on the players��rst-order beliefs, whereas we do not,
and (c) Battigalli�s concepts of weak and strong �-rationalizability are both di¤erent from
common belief in future rationality.

More precisely, weak �-rationalizability states that players choose rationally after every
history, given their conditional beliefs, and that this event is commonly believed at the beginning
of the game (but not necessarily when the game is under way). It may be viewed as an extension
of Ben-Porath�s (1997) concept of common certainty of rationality at the beginning of the game
�which has been de�ned for �nite dynamic games with perfect and complete information �to
Battigalli�s framework of in�nite dynamic games with incomplete information and exogenous
restrictions on �rst-order beliefs. Strong �-rationalizability is a forward induction concept
which requires a player to believe, whenever possible, that all opponents are choosing optimal
strategies. It is a generalization of Battigalli and Siniscalchi�s (2002) notion of common strong
belief in rationality �which has been de�ned for �nite dynamic games with complete information
�to Battigalli�s (2003) setting. In contrast, the notion of common belief in future rationality we
use is a backward induction concept, as it requires players to only reason about the opponents�
future moves, not about their past moves as in strong �-rationalizability. If we apply weak
and strong �-rationalizability to our setting of stochastic games with complete information and
no exogenous restrictions on the �rst-order beliefs, then both strong �-rationalizability and
common belief in future rationality are re�nements of weak �-rationalizability, whereas there is
no logical relationship �in terms of induced strategy choices �between the concepts of strong �-
rationalizability and common belief in future rationality. Indeed, even in �nite dynamic games
the concepts of common strong belief in rationality (which in such games is equivalent to strong
�-rationalizability) and common belief in future rationality may induce di¤erent sets of strategy
choices for a player (see, for instance, Perea (2010, 2014)).

The paper is structured as follows. In Section 2 we provide a preliminary discussion of the
concept of common belief in future rationality, and its relation to subgame perfect equilibrium,
by means of two examples: the Big Match (Gillette, 1957) and a quitting game (Solan and Vieille,
2003). In Section 3 we introduce Markov decision problems and stochastic games. In Section 4
we introduce epistemic models and de�ne the concept of common belief in future rationality. In
Section 5 we prove that common belief in future �- (and uniform) rationality is always possible
in a stochastic game, whereas in Section 6 we present our epistemic characterization of subgame
perfect equilibrium. All proofs are collected in Section 7.

2 Two Examples

Before presenting our formal model and de�nitions, we will illustrate the concept of common
belief in future rationality, and its relation to subgame perfect equilibrium, by means of two
well-known examples in the literature on stochastic games: the Big Match by Gillette (1957)
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L R

C (0; 0) (1;�1)
S (1;�1)� (0; 0)�

Figure 1: The Big Match

and a quitting game by Solan and Vieille (2003). Both games have been originally considered
under the limiting average reward criterion. The Big Match has no Nash equilibrium, and hence
no subgame perfect equilibrium, under this criterion. The quitting game of Solan and Vieille
(2003), on the other hand, does have a Nash equilibrium but not a subgame perfect equilibrium
under this criterion.

In dynamic games of �nite duration, subgame perfect equilibrium can be viewed as the
equilibrium analogue to common belief in future rationality. Similarly, within stocahstic games,
uniform subgame perfect equilibrium is the equilibrium counterpart to common belief in future
uniform rationality. Uniform subgame perfect equilibrium is de�ned as a strategy pro�le that
is a subgame perfect equilibrium for all su¢ ciently high values of the discount factor. As
uniform optimality implies optimality under the limiting average reward criterion, each uniform
subgame perfect equilibrium is also a subgame perfect equilibrium under the limiting average
reward criterion. Thus neither the Big Match by Gillette (1957) nor the quitting game by Solan
and Vieille (2003) admit a uniform subgame perfect equilibrium. Nevertheless, we will show
that for both games we can construct belief hierarchies that express common belief in future
rationality with respect to the uniform optimality criterion.

Example 1. The Big Match.

The Big Match, introduced by Gillette (1957), has become a real classic in the literature on
stochastic games. It is a two-player zero-sum game with three states, two of which are absorbing.
Here, by �absorbing�we mean that if the game reaches this state, it will never leave this state
thereafter. In state 1 each player has only one action, and the instantaneous utilities are (1;�1).
From state 1 the transition to state 1 occurs with probability 1, so state 1 is absorbing. In state
2 each player has only one action, and the instantaneous utilities are (0; 0). From state 2 the
transition to state 2 occurs with probability 1, so also state 2 is absorbing. In state 0 player 1
can play C (continue) or S (stop), while player 2 can play L (left) or R (right), the instantaneous
utilities being given by the table in Figure 1. After actions (C;L) or (C;R), the transition to
state 0 occurs, after (S;L) transition to state 1 occurs, while after (S;R) transition to state 2
occurs. So, the � in the table above represents a situation where the game enters an absorbing
state.

It is well-known that for the limiting average reward case �and hence also for the uniform
optimality case �there is no subgame perfect equilibrium, nor a Nash equilibrium, in this game.
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Blackwell and Ferguson (1968) have shown, however, how to construct an "-(subgame perfect)
equilibrium for the limiting average reward case for every " > 0:

Consider now the belief hierarchy for player 1 in which
(a) player 1 always believes that player 2 will always choose L at state 0 in the future,
(b) player 1 always believes that player 2 always believes that player 1 will always choose C

at state 0 in the future,
(c) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 will always choose R at state 0 in the future,
(d) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 always believes that player 1 will choose S at state 0 in the future,
(e) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 always believes that player 1 always believes that player 2 will always choose L at state
0 in the future,

and so on.
Then, it can be veri�ed that player 1 always believes that player 2 will choose rationally

in the future, that player 1 always believes that player 2 always believes that player 1 will
always choose rationally in the future, and so on. Here, rationality is taken with respect to
the uniform optimality criterion. That is, the belief hierarchy above expresses common belief
in future rationality with respect to the uniform optimality criterion. In a similar way, we can
construct a belief hierarchy for player 2 that expresses common belief in future rationality with
respect to the uniform optimality criterion.

Note, however, that in player 1�s belief hierarchy above, player 1 believes that player 2 is
wrong about his actual beliefs: on the one hand, player 1 believes that player 2 will always
choose L in the future, but at the same time player 1 believes that player 2 believes that player
1 believes that player 2 will always choose R in the future. This is something that can never
happen in a subgame perfect equilibrium: there, players are always assumed to believe that the
opponent is correct about the actual beliefs they hold. We will see in Section 6 of this paper
that this correct beliefs assumption is essentially what separates the concept of common belief
in future rationality from subgame perfect equilibrium.

Example 2. A quitting game.

We next consider a quitting game that has been introduced by Solan and Vieille (2003). It
is a two-player stochastic game with four states, denoted 1, 2, 1�, and 2�. The states 1� and 2�

are absorbing, and the players have only one action in both of these states. In state x 2 f1; 2g
player x can choose actions S or C (stop or continue), and the other player has only one action.
If player x plays S, the game moves to state x�, while if he plays C, the game moves to the
state 3� x. The instantaneous utilities in state 1� are (�1; 2), in state 2� they are (�2; 1), and
in states 1 and 2 they are (0; 0). See Figure 2. Also for this game, subgame perfect equilibria
fail to exist if we use the uniform optimality criterion.

6



state 1
C
 ! state 2

S # # S
state 1� state 2�

(�1; 2) (�2; 1)

Figure 2: Quitting game

However, we can construct belief hierarchies for both players that express common belief in
future rationality with respect to the uniform optimality criterion. Consider, for instance, the
belief hierarchy for player 1 where

(a) player 1 always believes that player 2 will always choose C in the future,
(b) player 1 always believes that player 2 always believes that player 1 will choose S in the

future,
(c) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 will choose S in the future,
(d) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 always believes that player 1 will always choose C in the future,
(e) player 1 always believes that player 2 always believes that player 1 always believes that

player 2 always believes that player 1 always believes that player 2 will always choose C in the
future,

and so on.
Then, similarly as in the previous example, it may be veri�ed that this belief hierarchy

expresses common belief in future rationality with respect to the uniform optimality criterion.
In the same fashion, we can also construct a belief hierarchy for player 2 that expresses common
belief in future rationality.

Notice that, similarly to the previous example, the belief hierarchy for player 1 is such that
player 1 believes that player 2 is wrong about player 1�s actual beliefs, and hence this belief
hierarchy violates the correct beliefs assumption that underlies subgame perfect equilibrium.

3 Model

In this section we �rst introduce (one person) Markov decision problems, and subsequently show
how stochastic games can be de�ned as a multi-person generalization of it.

3.1 Markov Decision Problems

A �nite Markov decision problem consists of (1) a �nite, non-empty set of states X; (2) a �nite,
non-empty set of actions A(x) for every state x 2 X; (3) an instantaneous utility u(x; a) for
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every state x 2 X and action a 2 A(x); and (4) a transition probability p(yjx; a) 2 [0; 1] for
every two states x; y 2 X and every action a 2 A(x): Here, the transition probabilities should
be such that X

y2X
p(yjx; a) = 1

for every x 2 X and every a 2 A(x):
Suppose we start at some �xed state x1 2 X: Then, the decision maker chooses at period

1 some action a1 2 A(x1); which moves the system to some new state x2 2 X at period 2,
according to the transition probabilities p(yjx1; a1). If the system is at state x2 in period 2, then
the decision maker chooses some action a2 2 A(x2) at period 2, which moves the system to some
new state x3 2 X at period 3, according to the transition probabilities p(yjx2; a2); and so on.

A history of length k is a sequence h = ((x1; a1); :::; (xk�1; ak�1); xk); where (1) xm 2 X for
all m 2 f1; :::; kg; (2) am 2 A(xm) for all m 2 f1; :::; k � 1g; and where (3) for every period
m 2 f2; :::; kg the state xm can be reached with positive probability given that at period m� 1
state xm�1 and action am�1 2 A(xm�1) have been realized. By x(h) := xk we denote the last
state that occurs in history h: Let Hk denote the set of all possible histories of length k: Let
H := [k2NHk be the set of all (�nite) histories.

A strategy s is a function that assigns to every history h 2 H some action s(h) 2 A(x(h)): The
strategy s is called stationary if s(h) = s(h0) for every two histories h; h0 2 H with x(h) = x(h0):
Hence, the prescribed action only depends on the state reached, not on the speci�c period or
history. In that case, we may write s = (s(x))x2X :

Consider a strategy s; a history h 2 Hk and a history h0 2 Hm with m � k: Then we denote
by p(h0jh; s) the probability that history h0 will be realized, conditional on the event that h has
been realized and that the decision maker chooses according to s: By

Um(h; s) :=
X

h02Hm

p(h0jh; s) u(x(h0); s(h0))

we denote the expected utility achieved at period m by the decision maker, conditional on the
event that history h has been realized and that the decision maker uses strategy s.

For a given discount factor � 2 (0; 1); we denote by

U �(h; s) :=
X
m�k

�mUm(h; s)

the discounted expected utility for the decision maker. We say that a strategy s is �-optimal if

U �(h; s) � U �(h; s0)

for all histories h 2 H and all strategies s0:
The strategy s is said to be uniformly optimal if there is some �� 2 (0; 1) such that s is

�-optimal for all � 2 [��; 1): Every strategy which is uniformly optimal is also optimal under the
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limiting average reward criterion, which is also often used in Markov decision problems. This
result can be found, for instance, in Filar and Vrieze (1997), Theorem 2.8.3.

The following classical results state that for every �nite Markov decision problem, we can
always �nd a stationary strategy that is optimal �both for the �-discounted and the uniform
optimality case.

Theorem 3.1 (Optimal strategies in Markov decision problems) Consider a �nite Markov
decision problem.

(a) For every � 2 (0; 1); there is a �-optimal strategy which is stationary.

(b) There is a uniformly optimal strategy which is stationary.

Part (a) follows from Shapley (1953) and has later been shown in Howard (1960), but Black-
well (1962) provides a simpler proof. The proof for part (b) can be found in Blackwell (1962).

3.2 Stochastic Games

A �nite stochastic game � consists of the following ingredients: (1) a �nite set of players I;
(2) a �nite, non-empty set of states X; (3) for every state x and player i 2 I; there is a �nite,
non-empty set of actions Ai(x); (4) for every state x and every pro�le of actions a in �i2IAi(x);
there is an instantaneous utility ui(x; a) for every player i; and (5) a transition probability
p(yjx; a) 2 [0; 1] for every two states x; y 2 X and every action pro�le a in �i2IAi(x): Here, the
transition probabilities should be such thatX

y2X
p(yjx; a) = 1

for every x 2 X and every action pro�le a in �i2IAi(x):
At every state x; we write A(x) := �i2IAi(x). A history of length k is a sequence h =

((x1; a1); :::; (xk�1; ak�1); xk); where (1) xm 2 X for all m 2 f1; :::; kg; (2) am 2 A(xm) for all
m 2 f1; :::; k�1g; and where (3) for every period m 2 f2; :::; kg the state xm can be reached with
positive probability given that at period m � 1 state xm�1 and action pro�le am�1 2 A(xm�1)
have been realized. By x(h) := xk we denote the last state that occurs in history h: Let Hk

denote the set of all possible histories of length k: Let H := [k2NHk be the set of all (�nite)
histories.

A strategy for player i is a function si that assigns to every history h 2 H some action
si(h) 2 Ai(x(h)): By Si we denote the set of all strategies for player i: Note that the set
Si of strategies is typically uncountably in�nite. We say that the strategy si is stationary if
si(h) = si(h

0) for all h; h0 2 H with x(h) = x(h0): So, the prescribed action only depends on
the state, and not on the speci�c history. A stationary strategy can thus be summarized as
si = (si(x))x2X :
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During the game, players always observe what their opponents have done in the past, but
face uncertainty about what the opponents will do now and in the future, and also about
what these opponents would have done at histories that are no longer possible. That is, after
every history h all players know that their opponents have chosen a combination of strate-
gies that could have resulted in this particular history h: To model this precisely, consider
a history hk = ((x1; a1); :::; (xk�1; ak�1); xk) of length k: For every m 2 f1; :::; k � 1g let
hm := ((x1; a1); :::; (xm�1; am�1); xm)) be the induced history of length m: For every player i; we
denote by Si(h) the set of strategies si 2 Si such that si(hm) = ami for every m 2 f1; :::; k � 1g:
Here, ami is the action of player i in the action pro�le am 2 A(xm): Hence, Si(h) contains
precisely those strategies for player i that are compatible with the history h:

So, after every history h; every player i knows that each of his opponents j is implementing
a strategy from Sj(h); without knowing precisely which one. This uncertainty can be modelled
by conditional belief vectors. Formally, a conditional belief vector bi for player i speci�es for
every history h 2 H some probability distribution bi(h) 2 �(S�i(h)): Here, S�i(h) := �j 6=iSj(h)
denotes the set of opponents�strategy combinations that are compatible with the history h; and
�(S�i(h)) is the set of probability distributions on S�i(h):

To de�ne the space �(S�i(h)) formally we must �rst specify a �-algebra ��i(h) on S�i(h);
since S�i(h) is typically an uncountably in�nite set. Let h 2 Hk be a history of length k: For a
given player j; strategy sj 2 Sj(h); and m � k; let [sj ]m be the set of strategies that coincide
with sj at all histories of length at most m: As m � k; every strategy in [sj ]m must in particular
coincide with sj at all histories that precede h; and hence every strategy in [sj ]m will be in Sj(h)
as well. Let �j(h) be the �-algebra on Sj(h) generated by the sets [sj ]m; with sj 2 Sj(h) and
m � k:1 By ��i(h) we denote the product �-algebra generated by the �-algebras �j(h) with
j 6= i: Hence, ��i(h) is a �-algebra on S�i(h); and this is precisely the �-algebra we will use.
So, when we say �(S�i(h)) we mean the set of probability distributions on S�i(h) with respect
to this speci�c �-algebra ��i(h):

Suppose that the game has reached history h 2 Hk. Consider for every player i some strategy
si 2 Si(h) which is compatible with the history h: Let s = (si)i2I : Then, for every m � k; and
every history h0 2 Hm; we denote by p(h0jh; s) the probability that history h0 2 Hm will be
realized, conditional on the event that the game has reached history h 2 Hk and the players
choose according to s: The corresponding expected utility for player i at period m � k would
be given by

Umi (h; s) :=
X

h02Hm

p(h0jh; s) ui(x(h0); s(h0));

where s(h0) 2 A(x(h0)) is the combination of actions chosen by the players at state x(h0) after
history h0; if they choose according to the strategy pro�le s: The expected discounted utility for

1This is arguably the most natural ��algebra on the set of strategies.
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player i would be
U �i (h; s) :=

X
m�k

�mUmi (h; s):

Suppose now that player i; after history h; holds the conditional belief bi(h) 2 �(S�i(h)):
Then, the expected discounted utility of choosing strategy si 2 Si(h) after history h; under the
belief bi(h); is given by

U �i (h; si; bi(h)) :=

Z
S�i(h)

U �i (h; (si; s�i)) dbi(h):

The strategy si is �-optimal under the conditional belief vector bi if

U �i (h; si; bi(h)) � U �i (h; s0i; bi(h))

for every history h 2 H and every strategy s0i 2 Si(h):
The strategy si is said to be uniformly optimal under bi if there is some �� 2 (0; 1) such that

si is �-optimal under bi for every � 2 [��; 1). Note that every strategy si which is uniformly
optimal under the conditional belief vector bi; will also be optimal under bi with respect to the
limiting average reward criterion �an optimality criterion which is widely used in the literature
on stochastic games. This result follows from Theorem 2.8.3 in Filar and Vrieze (1997).

4 Common Belief in Future Rationality

In this section we de�ne the central notion in this paper �common belief in future rationality. In
words, the concept states that a player always believes, after every history, that his opponents
will choose rationally in the future, that his opponents always believe that their opponents will
choose rationally in the future, and so on. Before we de�ne this concept formally, we �rst
introduce epistemic models with types à la Harsanyi (1967�1968) as a possible way to encode
belief hierarchies.

4.1 Epistemic Model

We do not only wish to model the beliefs of players about the opponents�strategy choices, but
also the beliefs about the opponents�beliefs about the other players�strategy choices, and so
on. One way to do so is by means of an epistemic model with types à la Harsanyi (1967�1968).

De�nition 4.1 (Epistemic model) Consider a �nite stochastic game �: A �nite epistemic
model for � is a tuple M = (Ti; �i)i2I where

(a) Ti is a �nite set of types for player i; and

(b) �i is a mapping that assigns to every type ti 2 Ti; and every history h 2 H; some conditional
belief �i(ti; h) 2 �(S�i(h)� T�i):
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Here, the �-algebra on S�i(h)�T�i that we use is the product �-algebra generated by the �-
algebra ��i(h) on S�i(h); and the discrete �-algebra on the �nite set T�i; containing all subsets.
The probability distribution �i(ti; h) encodes the belief that type ti holds, after history h; about
the opponents�strategies and the opponents�conditional beliefs. In particular, by taking the
marginal of �i(ti; h) on S�i(h); we obtain the �rst-order belief bi(ti; h) 2 �(S�i(h)) of type ti
about the opponents�strategies. As �i(ti; h) also speci�es a belief about the opponents�types,
and every opponent�s type holds conditional beliefs about his opponents�strategies, we can also
derive, for every type ti and history h; the second-order belief that type ti holds, after history
h; about the opponents�conditional �rst-order beliefs.

By continuing in this fashion, we can derive for every type ti in the epistemic model his
�rst-order beliefs, second-order beliefs, third-order beliefs, and so on. That is, we can derive
for every type ti a complete belief hierarchy. The epistemic model just represents a very easy
and compact way to encode such belief hierarchies. The epistemic model above is very similar
to models used in Ben-Porath (1997), Battigalli and Siniscalchi (1999, 2002) and Perea (2012,
2014) for �nite dynamic games.

The reader may wonder why we restrict to �nitely many types in the epistemic model. The
reason is purely pragmatic: it is easier to work with �nitely many types, since we do not need
additional topological or measure-theoretic machinery. At the same time, our analysis and
results in this paper would not change if we would allow for in�nitely many types. For instance,
in order to prove the existence of common belief in future rationality in both the discounted
and the uniform case, it is su¢ cient to build one epistemic model in which all types express
common belief in future rationality, and we show that we can always build an epistemic model
with �nitely many types that has this property.

A property that we will be especially interested in throughout this paper is Bayesian updat-
ing. Here is a formal de�nition.

De�nition 4.2 (Bayesian updating) A type ti satis�es Bayesian updating if for every
history h; and every history h0 following h with �i(ti; h)(S�i(h

0)� T�i) > 0; we have that

�i(ti; h
0)(E�i � ft�ig) =

�i(ti; h)(E�i � ft�ig)
�i(ti; h)(S�i(h

0)� T�i)

for every set E�i 2 ��i(h0) and every t�i 2 T�i:

Remember that ��i(h0) is the �-algebra on S�i(h0) we have introduced in Section 3.

4.2 Belief in Future Rationality

Consider a type ti; and let bi(ti) be the induced �rst-order belief vector. That is, bi(ti) speci�es
for every history h the �rst-order belief bi(ti; h) 2 �(S�i(h)) that ti holds about the opponents�
strategies. Note that bi(ti) is a conditional belief vector as de�ned in the previous section. We
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say that strategy si is �-optimal for type ti at history h if si is �-optimal at h for the conditional
belief bi(ti; h): More precisely, si is �-optimal for type ti at history h if

U �i (h; si; bi(ti; h)) � U �i (h; s0i; bi(ti; h))

for every s0i 2 Si(h):
We say that type ti believes in his opponents� future �-rationality if at every stage of the

game, type ti assigns probability 1 to the set of those opponents�strategy-type pairs where the
opponent�s strategy is �-optimal for the opponent�s type at all future stages. To formally de�ne
this, let

(Si � Ti)h;��opt := f(si; ti) 2 Si � Ti j si is �-optimal for ti at every h0 that weakly follows hg.

Here, we say that h0 weakly follows h if h0 follows h; or h0 = h:Moreover, let (S�i�T�i)h;��opt :=
�j 6=i(Sj � Tj)h;��opt be the set of opponents�strategy-type combinations where the strategies
are �-optimal for the types at all stages weakly following h.

Similar de�nitions can be given for the case of uniform optimality. We de�ne

(Si � Ti)h;u�opt : = f(si; ti) 2 Si � Ti j there is some �� 2 (0; 1) such that for all � 2 [��; 1);
si is �-optimal for ti at every h0 that weakly follows hg,

and let (S�i � T�i)h;u�opt := �j 6=i(Sj � Tj)h;u�opt:

De�nition 4.3 (Belief in future rationality) Consider a �nite epistemic modelM = (Ti; �i)i2I ;
and a type ti 2 Ti:

(a) Type ti believes in the opponents�future �-rationality if for every history h we have
that �i(ti; h)(S�i � T�i)h;��opt = 1:

(b) Type ti believes in the opponents�future uniform rationality if for every history h
we have that �i(ti; h)(S�i � T�i)h;u�opt = 1:

With this de�nition at hand, we can now de�ne �common belief in future �-rationality�,
which means that players do not only believe in their opponents�future �-rationality, but also
always believe that the other players believe in their opponents�future �-rationality, and so on.
We do so by recursively de�ning, for every player i; smaller and smaller sets of types T 1i ; T

2
i ; T

3
i ; :::

De�nition 4.4 (Common belief in future rationality) Consider a �nite epistemic model
M = (Ti; �i)i2I ; and some � 2 (0; 1): Let

T 1i := fti 2 Ti j ti believes in the opponents�future �-rationalityg
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for every player i: For every m � 2; recursively de�ne

Tmi := fti 2 Tm�1i j �i(ti; h)(S�i � Tm�1�i ) = 1 for all h 2 Hg:

A type ti expresses common belief in future �-rationality if ti 2 Tmi for all m:

That is, T 2i contains those types that believe in the opponents� future �-rationality, and
which only deem possible opponents�types that believe in their opponents�future �-rationality.
Similarly for T 3i ; T

4
i ; and so on. This de�nition is based on the notion of �common belief in

future rationality�as presented in Perea (2014), which has been designed for dynamic games of
�nite duration. Baltag, Smets and Zvesper (2009) and Penta (2015) present concepts that are
very similar to �common belief in future rationality�. In the same way, we can de�ne �common
belief in future uniform rationality�for stochastic games.

5 Existence Result

In this section we will show that �common belief in future �-rationality�and �common belief in
future uniform rationality�are possible in every �nite stochastic game. The proof will be con-
structive, as we will explicitly construct an epistemic model in which all types express common
belief in future �- (or uniform) rationality.

5.1 Common Belief in Future Rationality is Always Possible

We �rst show the following important result, for which we need some new notation. For a given
strategy si and history h; let Si[si; h] be the set of strategies in Si(h) that coincide with si on
histories that weakly follow h: Similarly, for a given combination of strategies s�i 2 S�i and
history h; we denote by S�i[s�i; h] := �j 6=iSj [sj ; h] the set of opponents�strategy combinations
in S�i(h) that coincide with s�i on histories that weakly follow h:

Lemma 5.1 (Stationary strategies are optimal under stationary beliefs) Consider a �-
nite stochastic game �: Let s�i be a pro�le of stationary strategies for i�s opponents. Let bi be
a conditional belief vector that assigns, at every history h; probability 1 to S�i[s�i; h]: Then,

(a) for every � 2 (0; 1) there is a stationary strategy for player i that is �-optimal under bi; and

(b) there is a stationary strategy for player i that is uniformly optimal under bi:

That is, if we always assign full probability to the same stationary continuation strategy
for each of our opponents, then there will be a stationary strategy for us that is optimal after
every history. We are now in a position to prove that common belief in future �-rationality is
always possible in every �nite stochastic game.
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Theorem 5.1 (Common belief in future �-rationality is always possible) Consider a �-
nite stochastic game �; and some � 2 (0; 1): Then, there is a �nite epistemic model M =
(Ti; �i)i2I for � such that

(a) every type in M expresses common belief in future �-rationality, and

(b) every type in M satis�es Bayesian updating.

Smilarly, we can prove that common belief in future uniform rationality is always possible
as well.

Theorem 5.2 (Common belief in future uniform rationality is always possible) Consider
a �nite stochastic game �: Then, there is a �nite epistemic model M = (Ti; �i)i2I for � such
that

(a) every type in M expresses common belief in future uniform rationality, and

(b) every type in M satis�es Bayesian updating.

The proof for this theorem is almost identical to the proof of Theorem 5.1. The only di¤erence
is that we must use part (b), instead of part (a), in Lemma 5.1. For that reason, this proof is
omitted.

Suppose that, instead of restricting to �nitely many types, we would start from a terminal
epistemic model (Friedenberg (2010)) in which all possible belief hierarchies are present. Then,
Theorems 5.1 and 5.2 would imply that within this terminal epistemic model we can always �nd
belief-closed submodels with �nitely many types in which every type expresses common belief
in future rationality. Hence, the message of these two theorems would not change if we would
consider such terminal epistemic models with in�nitely many types.

5.2 Examples Revisited

We will now illustrate the existence result by means of the two examples we discussed in Section
2. For both examples, it has been shown that subgame perfect equilibria fail to exist if we use
the uniform optimality criterion. Nevertheless, our Theorem 5.2 guarantees that common belief
in future uniform rationality is possible for both games. In fact, for both games we will explicitly
construct epistemic models where all types express common belief in future uniform rationality,
and all types satisfy Bayesian updating.

Example 1 continued. The Big Match.

Recall the game from Figure 1. We will now construct an epistemic model in which all types
express common belief in future uniform rationality. With a slight abuse of notation we write
C to denote player 1�s stationary strategy in which he always plays action C in state 0, and
similarly for S, L, and R. Now consider the chain of stationary strategy pairs:

(S;R)! (C;R)! (C;L)! (S;L)! (S;R):
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In this chain, each stationary strategy is �-optimal, for every � 2 (0; 1), under the belief that
the opponent will play the preceding strategy in the future. For instance, �(S;R) ! (C;R)�
indicates that for player 1 it is optimal to play C if he believes that player 2 will play R in
the future, and for player 2 it is optimal to play R if he believes that player 1 will play S in
the future. Similarly for the other arrows in the chain. In particular, each of these strategies
is uniformly optimal as well for these beliefs. This chain leads to the following epistemic model
with types

T1 = ftC1 ; tS1 g; T2 = ftL2 ; tR2 g

and beliefs
b1(t

S
1 ; h) = (L; tL2 )

b1(t
C
1 ; h) = (R; tR2 )

b2(t
L
2 ; h) = (C; tC1 )

b2(t
R
2 ; h) = (S; tS1 )

:

Here, b1(tS1 ; h) = (L; t
L
2 ) means that type t

S
1 ; after every possible history h; assigns probability

1 to player 2 choosing the stationary strategy L in the remainder of the game, and to player 2
having type tL2 : Similarly for the other types. The full beliefs of these types can be constructed
such that they all satisfy Bayesian updating.

Note that type tR2 always believes that player 1 will choose S in the current stage, even though
it is evident that player 1 has always chosen C in the past. This degree of stubbornness is typical
for backward induction concepts such as common belief in future rationality or subgame perfect
equilibrium. Think, for instance, of Rosenthal�s (1981) centipede game, where in a subgame
perfect equilibrium a player always believes that his opponent will opt out in the next round,
whereas it is evident that the opponent has not opted out at any point in the past.

It may be veri�ed that every type in the epistemic model above satis�es Bayesian updat-
ing, and that every type believes in the opponent�s future �- (and uniform) rationality. As a
consequence, every type expresses common belief in future �- ( and uniform) rationality.

Note that the type tS1 for player 1 induces exactly the belief hierarchy we have described in
Section 2.

Example 2 continued. A quitting game.

Recall the game from Figure 2. We write Ci to denote player i�s stationary strategy in which
he always plays action C in state i, and similarly for Si. Now consider the chain of stationary
strategy pairs

(S1; S2)! (S1; C2)! (C1; C2)! (C1; S2)! (S1; S2):

In this chain, each stationary strategy is �-optimal, for every � 2 [12 ; 1); under the belief that
the opponent plays the preceding stationary strategy in the future. In particular, each of these
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strategies is uniformly optimal under these beliefs. This leads to the following epistemic model
with types

T1 = ftC11 ; t
S1
1 g; T2 = ft

C2
2 ; t

S2
2 g

and beliefs
b1(t

C1
1 ; h) = (C2; t

C2
2 )

b1(t
S1
1 ; h) = (S2; t

S2
2 )

b2(t
C2
2 ; h) = (S1; t

S1
1 )

b2(t
S2
2 ; h) = (C1; t

C1
1 ):

Again, the full beliefs of these types can be constructed in such a way that all types satisfy
Bayesian updating.

Note that types tS11 and tC22 always believe that the opponent will choose S during the next
stage, although it is evident that the same opponent has always chosen C in the past. Again,
as we have already explained above, this type of stubbornness is not uncommon for backward
induction concepts like common belief in future rationality and subgame perfect equilibrium.

It may be veri�ed that all types believe in the opponents�future �-rationality for all � 2 [12 ; 1):
Consequently, all types express common belief in future �-rationality as well, for all � 2 [12 ; 1):
Similarly, it can be shown that all types express common belief in future uniform rationality.

Note that the type tC11 for player 1 induces exactly the belief hierarchy we have described in
Section 2.

6 Relation to Subgame Perfect Equilibrium

In the literature on stochastic games, the concepts which are most commonly used are Nash
equilibrium (Nash (1950, 1951)) and subgame perfect equilibrium (Selten (1965)). In this section
we will explore the precise relation between common belief in future rationality on the one hand,
and subgame perfect equilibrium on the other hand. We will show that in two-person stochastic
games, subgame perfect equilibrium can be characterized by the conditions in common belief in
future rationality, together with Bayesian updating and some �correct beliefs conditions�. In
particular, it follows that subgame perfect equilibrium can be viewed as a re�nement of common
belief in future rationality, as it implicitly assumes each of its conditions.

In Section 5 we have seen that common belief in future rationality (in combination with
Bayesian updating) is always possible in every �nite stochastic game, even if we use the uniform
optimality criterion. Hence, the reason that subgame perfect equilibrium fails to exist in some of
these games is that the conditions in common belief in future rationality and Bayesian updating
are logically inconsistent with the �correct beliefs conditions�in those games.
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6.1 From Types to Behavioral Strategies

The concepts of common belief in future rationality and subgame perfect equilibrium are de�ned
within two di¤erent languages: The �rst concept is de�ned within an epistemic model with types,
whereas the latter is de�ned by the use of behavioral strategies. How can we then formally relate
these two concepts? We will see that, under certain conditions, a type within an epistemic model
will naturally induce a pro�le of behavioral strategies.

From now on, we assume that there are only two players in the game. Formally, a behavioral
strategy for player i is a function �i that assigns to every history h some probability distribution
�i(h) 2 �(Ai(x(h))) on the set of actions available at state x(h): Now, consider an epistemic
modelM = (Ti; �i)i2I ; and a type ti within that epistemic model. For every history h and every
action aj 2 Aj(x(h)) for opponent j at h; let Sj(h; aj) denote the set of strategies sj 2 Sj(h)
with sj(h) = aj : We de�ne the behavioral strategy �

ti
j induced by type ti for opponent j by

�tij (h)(aj) := �i(ti; h)(Sj(h; aj)� Tj)

for every history h and every action aj 2 Aj(x(h)): Hence, �tij (h)(aj) is the probability that type
ti assigns, after history h; to the event that player j will choose action aj after h: In this way,
every type ti naturally induces a behavioral strategy �

ti
j for his opponent j: So, �

ti
j represents

ti�s conditional beliefs about j�s future behavior.
But what does it mean that a type ti for player i induces a behavioral strategy �i for player i

himself? This is more subtle, as ti holds no belief about his own actions in the game, only about
the actions of his opponent. But ti does hold a belief about j�s beliefs about i�s actions, and this
second-order belief will constitute the link to �i: More precisely, we will say that type ti induces
a behavioral strategy �i for himself if, after any history, he only assigns positive probability to
opponent�s types tj where �

tj
i = �i: This naturally leads to the following de�nition.

De�nition 6.1 (From types to behavioral strategies) A type ti induces a behavioral
strategy pair (�i; �j) if

(1) �tij = �j ; and

(2) after every history h; the conditional belief �i(ti; h) 2 �(Sj(h) � Tj) only assigns positive
probability to types tj for which �

tj
i = �i:

Condition (2) thus states that, after every history h; type ti believes �with probability 1 �
that player j believes that i�s future behavior is given by �i:

With this de�nition at hand it is now clear what it means that a type induces a subgame
perfect equilibrium, since a subgame perfect equilibrium is just a behavioral strategy pair satis-
fying some special conditions. In order to de�ne a subgame perfect equilibrium formally, we need
some additional notation �rst. Take some behavioral strategy pair (�i; �j); and some history
h: We denote by U �i (h; �i; �j) the �-discounted expected utility for player i; if the game would
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start after history h, and if the players choose according to (�i; �j) in the subgame that starts
after history h:

De�nition 6.2 (Subgame perfect equilibrium) (a) A behavioral strategy pair (�1; �2) is a
�-subgame perfect equilibrium if after every history h; and for both players i; we have that
U �i (h; �i; �j) � U �i (h; �0i; �j) for every behavioral strategy �0i:

(b) A behavioral strategy pair (�1; �2) is a uniform subgame perfect equilibrium if there
is some �� 2 (0; 1) such that for every � 2 [��; 1); for every history h; and for both players i; we
have that U �i (h; �i; �j) � U �i (h; �0i; �j) for every behavioral strategy �0i:

Hence, a �-subgame perfect equilibrium constitutes a �-Nash equilibrium in each of the
subgames. A behavioral strategy pair is thus a uniform subgame perfect equilibrium if it is
a subgame perfect equilibrium under a discounted evaluation for all su¢ ciently high values of
the discount factor. The concept of uniform ��equilibrium (e.g. Jáskiewicz and Nowak (2016))
features prominently in the literature on stochastic games. While uniform subgame perfect
equilibrium is not logically related to the uniform ��equilibrium, it is somewhat similar in spirit.
Both concepts entail a requirement of robustness of the solution within a small range of the
parameters of the game.

6.2 Epistemic Characterization of Subgame Perfect Equilibrium

We will now characterize those types ti within an epistemic model that induce a �-subgame
perfect equilibrium. We will see that these are precisely the types that satisfy all the conditions
in common belief in future rationality, together with Bayesian updating and some �correct beliefs
conditions�. Before we state this result formally, we must �rst de�ne what we mean by these
�correct beliefs conditions�.

We say that a type ti believes that opponent j is correct about i�s beliefs, if ti only assigns
positive probability to opponent�s types who are correct about his full belief hierachy. Similarly,
we say that ti believes that j believes that i is correct about j�s beliefs, if ti only assigns positive
probability to opponent�s types tj that believe that i is correct about j�s beliefs. Since ti�s belief
hierarchy is encoded by his type, this leads to the following two de�nitions.

De�nition 6.3 (Correct beliefs assumption) Consider a �nite epistemic modelM = (Ti; �i)i2I :

(1) Type ti believes that j is correct about i�s beliefs, if after every history h; the condi-
tional belief �i(ti; h) 2 �(Sj(h) � Tj) only assigns positive probability to types tj that, after
every history h0; assign probability 1 to type ti:

(2) Type ti believes that j believes that i is correct about j�s beliefs, if after every history
h; type ti only assigns positive probability to types tj that believe that i is correct about j�s
beliefs.
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Remember the de�nition of Bayesian updating that we gave in Section 4. We say that type ti
believes that j satis�es Bayesian updating if, after every history h; the conditional belief �i(ti; h)
only assigns positive probability to types tj that satisfy Bayesian updating.

We are now ready to state our epistemic characterization of �-subgame perfect equilibrium
in two-player stochastic games.

Theorem 6.1 (Characterization of �-subgame perfect equilibrium) Consider a �nite two-
player stochastic game �, and a behavioral strategy pair (�1; �2) in �: Then, (�1; �2) is a �-
subgame perfect equilibrium, if and only if, there is a �nite epistemic modelM = (Ti; �i)i2I and
for both players i a type ti 2 Ti; such that

(1) ti induces (�1; �2);

(2) ti expresses common belief in future �-rationality,

(3) ti believes that j is correct about i�s beliefs, and believes that j believes that i is correct
about j�s beliefs,

(4) ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating.

In a similar way we can prove the following characterization of uniform subgame perfect
equilibrium.

Theorem 6.2 (Characterization of uniform subgame perfect equilibrium) Consider a
�nite two-player stochastic game �, and a behavioral strategy pair (�1; �2) in �: Then, (�1; �2)
is a uniform subgame perfect equilibrium, if and only, there is a �nite epistemic model M =
(Ti; �i)i2I and for both players i a type ti 2 Ti; such that

(1) ti induces (�1; �2);

(2) ti expresses common belief in future uniform rationality,

(3) ti believes that j is correct about i�s beliefs, and believes that j believes that i is correct
about j�s beliefs,

(4) ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating.

The proof is almost identical to the proof of Theorem 6.1, and is therefore omitted.
Note that the two theorems above would not change if we would allow for epistemic models

with in�nitely many types. For instance, if we would start from a terminal epistemic model
in which all belief hierarchies are present, then the two theorems above state that (�1; �2) is
a subgame perfect equilibrium exactly when we can �nd, for both players, a type within that
model which satis�es conditions (1)�(4).
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7 Proofs

Proof of Lemma 5.1. We construct the following Markov decision problem MDP for player
i: The set of states X in MDP is simply the set of states in the stochastic game �; and for
every state x the set of actions A(x) in MDP is simply the set of actions Ai(x) for player i in
�: For every state x and action a 2 A(x); let the utility u(x; a) in MDP be the utility that
player i would obtain in � if the game reaches x; player i chooses a at x; and the opponents
choose according to s�i at x: Note that s�i is a pro�le of stationary strategies, and hence the
behavior induced by s�i at x is independent of the history. So, u(x; a) is well-de�ned. Finally,
we de�ne the transition probabilities q(yjx; a) in MDP . For every two states x; y and every
action a 2 A(x); let q(yjx; a) be the probability that state y will be reached in � next period if
the game is at x; player i chooses a at x; and i�s opponents choose according to s�i at x: Again,
q(yjx; a) is well-de�ned since, by stationarity of s�i; the behavior of s�i at x is independent of
the history. This completes the construction of MDP:

We will now prove part (a) of the theorem. Take some � 2 (0; 1): By part (a) in Theorem
3.1, we know that player i has a �-optimal strategy ŝi in MDP which is stationary. So, we can
write ŝi = (ŝi(x))x2X : Now, let si be the stationary strategy for player i in the game � which
prescribes, after every history h; the action ŝi(x(h)): Then, it may easily be veri�ed that the
stationary strategy si is �-optimal for player i in �; given the conditional belief vector bi:

Part (b) of the theorem can be shown in a similar way, by relying on part (b) in Theorem
3.1. �

Proof of Theorem 5.1. We start by recursively de�ning pro�les of stationary strategies, as
follows. Let s1 = (s1i )i2I be an arbitrary pro�le of stationary strategies for the players. Let
bi[s

1
�i] be a conditional belief vector for player i that assigns, after every history h; probability 1

to some strategy combination s��i[h] in S�i[s
1
�i; h]: Moreover, these strategy combinations s

�
�i[h]

can be chosen in such a way that s��i[h] = s
�
�i[h

0] whenever h follows h0 and s��i[h
0] 2 S�i(h): In

that way, we guarantee that bi[s1�i] satis�es Bayesian updating.
We know from Lemma 5.1 that for every player i there is a stationary strategy s2i which

is �-optimal, given the conditional belief vector bi[s1�i]: Let s
2 := (s2i )i2I be the new pro�le of

stationary strategies thus obtained. By recursively applying this step, we obtain an in�nite
sequence s1; s2; s3; :: of pro�les of stationary strategies.

As there are only �nitely many states in �; and �nitely many actions at every state, there are
also only �nitely many stationary strategies for the players in the game. Hence, there are also
only �nitely many pro�les of stationary strategies. Therefore, the in�nite sequence s1; s2; s3; :::
must go through a cycle

sm ! sm+1 ! sm+2 ! :::! sm+R ! sm+R+1

where sm+R+1 = sm: We will now transform this cycle into an epistemic model where (a) all
types express common belief in future �-rationality, and (b) all types satisfy Bayesian updating.
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For every player i; we de�ne the set of types

Ti = ftmi ; tm+1i ; :::; tm+Ri g;

where tm+ri is a type that, after every history h; holds belief bi[sm+r�1�i ](h) about the opponents�
strategies, and assigns probability 1 to the event that every opponent j is of type tm+r�1j .

If r = 0; then type tmi , after every history h; holds belief bi[s
m+R
�i ](h) about the opponents�

strategies, and assigns probability 1 to the event that every opponent j is of type tm+Rj : This
completes the construction of the epistemic model M:

Then, by construction, every type in the epistemic model satis�es Bayesian updating, since
the conditional belief vectors bi[sk�i] are chosen such that they satisfy Bayesian updating. More-
over, every type tm+ri holds the conditional belief vector bi[sm+r�1�i ] about the opponents�strate-
gies. By construction, the stationary strategy sm+ri is �-optimal under the conditional belief
vector bi[sm+r�1�i ]; and hence sm+ri is �-optimal for the type tm+ri ; for every type tm+ri in the
model.

By construction, every type tm+ri assigns, after every history h; and for every opponent j;
probability 1 to the set of opponents�strategy-type pairs Sj [sm+r�1j ; h] � ftm+r�1j g: As every
strategy s0j 2 Sj [sm+r�1j ; h] coincides with sm+r�1j at all histories weakly following h; and strategy
sm+r�1j is �-optimal for type tm+r�1j at all histories weakly following h; it follows that every
strategy s0j 2 Sj [sm+r�1j ; h] is �-optimal for type tm+r�1j at all histories weakly following h: That
is,

Sj [s
m+r�1
j ; h]� ftm+r�1j g � (Sj � Tj)h;��opt for all histories h:

Since �i(t
m+r
i ; h)(S�i[s

m+r�1
�i ; h]�ftm+r�1�i g) = 1 for all histories h; it follows that �i(tm+ri ; h)(S�i�

T�i)h;��opt = 1 for all histories h: This means, however, that tm+ri believes in the opponents�
future �-rationality.

As this holds for every type tm+ri in the model M; we conclude that all types in M believe
in the opponents�future �-rationality. Hence, as a consequence, all types in M express common
belief in future �-rationality. This completes the proof. �

Proof of Theorem 6.1. (a) Take �rst a �-subgame perfect equilibrium (�1; �2): We will
construct an epistemic model M = (Ti; �i)i2I ; and choose for both players i a type ti 2 Ti
within it, that satis�es the conditions (1) �(4) in the statement of the theorem.

Let T1 = ft1g and T2 = ft2g; so we only consider one type for each player. Fix a player i:We
transform �j into a conditional belief vector b

�j
i for player i about j�s strategy choice, as follows.

Consider a history h = ((x1; a1); :::; (xk�1; ak�1); xk) of length k; and for every m � k � 1 let
hm = ((x1; a1); :::; (xm�1; am�1); xm) be the induced history of length m: Let �hj be a modi�ed
behavioral strategy such that

(i) �hj (h
m)(amj ) = 1 for every m � k � 1; and

(ii) �hj (h
0) = �j(h0) for all other histories h0:
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Hence, �hj assigns probability 1 to all the player j actions leading to h; and coincides with
�j otherwise.

Remember that, for every strategy sj 2 Sj(h) and every m � k; we denote by [sj ]m the set
of strategies in Sj(h) that coincide with sj on histories up to length m: The �-algebra �j(h)
we use is generated by these sets [sj ]m; with sj 2 Sj(h) and m � k: Let H�m be the �nite
set of histories of length at most m. Then, let b�ji (h) 2 �(Sj(h)) be the unique probability
distribution on Sj(h) such that

b
�j
i (h)([sj ]m) :=

Y
h02H�m

�hj (h
0)(sj(h

0)) (1)

for every strategy sj 2 Sj(h) and every m � k: Note that b
�j
i (h) is indeed a probability distrib-

ution on Sj(h) as, by construction, �hj assigns probability 1 to all player j actions leading to h:
In this way, the behavioral strategy �j induces a conditional belief vector b

�j
i = (b

�j
i (h))h2H for

player i about j�s strategy choices. Moreover, the conditional belief b�ji (h) 2 �(Sj(h)) has the
property that the induced belief about j�s future behavior is given by �j :

For both players i; we de�ne the conditional beliefs �i(ti; h) 2 �(Sj(h) � Tj) about the
opponent�s strategy-type pairs as follows. At every history h of length k; let �i(ti; h) 2 �(Sj(h)�
Tj) be the unique probability distribution such that

�i(ti; h)([sj ]m � ftjg) := b
�j
i (h)([sj ]m) (2)

for every strategy sj 2 Sj(h) and all m � k: So, type ti believes, after every history h, that
player j is of type tj ; and that player j will choose according to �j in the game that lies ahead.
This completes the construction of the epistemic model M = (Ti; �i)i2I :

Choose an arbitrary player i: We show that type ti satis�es the conditions (1) �(4) above.

(1) We �rst show that �tij = �j : Take some history h = ((x1; a1); :::; (xk�1; ak�1); xk) of
length k; and some action aj 2 Aj(xk): Let

[Sj(h; aj)]k := f[sj ]k j sj 2 Sj(h; aj)g

be the �nite collection of equivalence classes that partitions Sj(h; aj): Then,

�tij (h)(aj) = �i(ti; h)(Sj(h; aj)� Tj)
= b

�j
i (h)(Sj(h; aj))

=
X

[sj ]k2[Sj(h;aj)]k

b
�j
i (h)([sj ]k)

=
X

[sj ]k2[Sj(h;aj)]k

Y
h02H�k

�hj (h
0)(sj(h

0))

= �hj (h)(aj)

= �j(h)(aj);
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which implies that �tij = �j : Here, the �rst equality follows from the de�nition of �
ti
j : The second

equality follows from (2). The third equality follows from the observation that [Sj(h; aj)]k
constitutes a �nite partition of the set Sj(h; a); and that each member of [Sj(h; aj)]k is in
the �-algebra �j(h): The fourth equality follows from (1). The �fth equality follows from
two observations: First, that sj 2 Sj(h; aj); if and only if, sj(hm) = amj for all m � k � 1
and sj(h) = aj ; where hm = ((x1; a1); :::; (xm�1; am�1); xm) for all m � k � 1: The second
observation is that �hj (h

m)(amj ) = 1 for all m � k � 1: The sixth equality follows from the
fact that �hj coincides with �j on histories that weakly follow h: In particular, this implies that
�hj (h) = �j(h):

In a similar way, we can show that �tji = �i: Since ti only assigns positive probability to type
tj ; it follows that type ti induces the behavioral strategy pair (�1; �2):

(2) We start by showing that type ti believes in j�s future �-rationality. Consider an arbitrary
history h: We show that �i(ti; h)(Sj � Tj)h;��opt = 1:

Since (�i; �j) is a subgame perfect equilibrium, we have at every history h0 weakly following
h that

U �j (h
0; �j ; �i) � U �j (h0; �0j ; �i)

for every behavioral strategy �0j : This implies that

U �j (h
0; �j ; �i) � U �j (h0; s0j ; �i)

for all s0j 2 Sj(h0): By (1), this is equivalent to stating that

U �j (h
0; b

�j
i (h

0); b�ij (h
0)) � U �j (h0; s0j ; b�ij (h

0)) (3)

for every history h0 weakly following h; and every s0j 2 Sj(h0): Let

Soptj (h0) := fsj 2 Sj j U �j (h0; sj ; b�ij (h
0)) � U �j (h0; s0j ; b�ij (h

0)) for all s0j 2 Sj(h0)g;

and let

Sh;optj := fsj 2 Sj(h) j sj 2 Soptj (h0) for every history h0 weakly following hg:

Then, by (3) it follows that b�ji (h)(S
h;opt
j ) = 1:

Since the conditional belief of type tj at h0 about i�s strategy is given by b
�i
j (h

0); it follows

that Sh;optj contains exactly those strategies sj 2 Sj(h) that are �-optimal for type tj at all
histories weakly following h: Moreover, the conditional belief that type ti has at h about j�s
strategy is given by b�ji (h); for which we have seen that b

�j
i (h)(S

h;opt
j ) = 1: By combining these

two insights, we obtain that

�i(ti; h)(Sj � Tj)h;��opt = �i(ti; h)(S
h;opt
j � ftjg) = b

�j
i (h)(S

h;opt
j ) = 1:
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As this holds for every history h; we conclude that ti believes in j�s future �-rationality.
Since this holds for both players i; and since T1 = ft1g and T2 = ft2g; it follows that both

types t1 and t2 express common belief in future �-rationality, which was to show.

(3) By the construction of our epistemic model M; type ti always assigns probability 1 to
type tj which, in turn, always assigns probability 1 to type ti: Hence, type ti believes that j is
correct about i�s beliefs, and believes that j believes that i is correct about j�s beliefs.

(4) Take some history hk = ((x1; a1); :::; (xk�1; ak�1); xk) in Hk; and some history hk+1 =
((x1; a1); :::; (xk�1; ak�1); (xk; ak); xk+1) in Hk+1 that immediately follows hk; and for which
�i(ti; h

k)(Sj(h
k+1)� ftjg) > 0: Consider some m � k + 1; and some sj 2 Sj(hk+1): Then,

�i(ti; h
k)([sj ]m � ftjg) = b

�j
i (h

k)([sj ]m)

=
Y

h2H�m

�h
k

j (h)(sj(h))

= �h
k

j (h
k)(sj(h

k))
Y

h2H�mnfhkg

�h
k+1

j (h)(sj(h))

= �h
k

j (h
k)(akj )

Y
h2H�mnfhkg

�h
k+1

j (h)(sj(h)): (4)

Here, the �rst equality follows from equation (2). The second equality follows from equation
(1). The third equality follows from the observation that �h

k

j and �h
k+1

j coincide on all histories
except hk: The fourth equality follows from the fact that sj(hk) = akj ; since sj 2 Sj(hk+1):

On the other hand,

�i(ti; h
k)(Sj(h

k+1)� ftjg) = �i(ti; h
k)(Sj(h

k; akj )� ftjg)
= �tij (h

k)(akj )

= �j(h
k)(akj )

= �h
k

j (h
k)(akj ): (5)

The �rst equality follows from the observation that Sj(hk+1) = Sj(hk; akj ): The second equality
follows from the de�nition of �tij : The third equality follows from the fact that �tij = �j ; as we

have shown above. The fourth equality follows from the observation that �h
k

j (h
k) = �j(h

k):
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By equations (4) and (5) it follows, for every sj 2 Sj(hk+1);

�i(ti; h
k)([sj ]m � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

=
Y

h2H�mnfhkg

�h
k+1

j (h)(sj(h))

=
Y

h2H�m

�h
k+1

j (h)(sj(h)):

= b
�j
i (h

k+1)([sj ]m)

= �i(ti; h
k+1)([sj ]m � ftjg):

Here, the second equality follows from the fact that �h
k+1

j (hk)(sj(h
k)) = �h

k+1

j (hk)(akj ) = 1;

by construction of �h
k+1

j : The third and fourth equality follow from equations (1) and (2),
respectively.

Hence, we have shown that

�i(ti; h
k+1)([sj ]m � ftjg) =

�i(ti; h
k)([sj ]m � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

for every sj 2 Sj(hk+1) and every m � k + 1: As the �-algebra �j(hk+1) is generated by these
sets [sj ]m; it follows that

�i(ti; h
k+1)(Ej � ftjg) =

�i(ti; h
k)(Ej � ftjg)

�i(ti; h
k)(Sj(hk+1)� ftjg)

for every history h 2 Hk; every history hk+1 2 Hk+1 following hk with �i(ti; h
k)(Sj(h

k+1) �
ftjg) > 0; and every set Ej 2 �j(hk+1): But then, it follows that this equality also holds for every
history h; every history h0 following h with �i(ti; h)(Sj(h

0)� ftjg) > 0; and every Ej 2 �j(h0):
So, type ti indeed satis�es Bayesian updating, as was to show. In the same way, it can be shown
that also tj satis�es Bayesian updating, so ti believes that j satis�es Bayesian updating too.

Summarizing, we have shown that both types ti and tj satisfy the conditions (1) �(4).

(b) Assume next that there is a �nite epistemic model M = (Ti; �i)i2I ; and for both players
i a type ti 2 Ti; such that ti induces (�i; �j); and satis�es conditions (2) �(4). We show that
(�i; �j) must be a �-subgame perfect equilibrium. We proceed in two steps.

Step 1: There is a type tj 2 Tj such that ti always assigns probability 1 to tj :
Proof of Step 1. Suppose that there are two di¤erent types, tj and t0j ; and two histories h; h

0;
such that �i(ti; h) assigns positive probability to tj ; and �i(ti; h

0) assigns positive probability to
t0j : Since, by the �rst part in condition (3), ti believes that j is correct about i�s beliefs, it must
be the case that tj always assigns probability 1 to type ti: But then, tj always believes with
probability 1 that player i; at history h0; assigns positive probability to type t0j 6= tj : This means
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that type tj does not believe that i is correct about j�s beliefs: As a consequence, ti does not
believe that j believes that i is correct about j�s beliefs, which would contradict the second part
of condition (3). Hence, there must be single type tj such that ti always assigns probability 1
to tj : This completes the proof of step 1.

By Step 1, and the assumption that ti believes that j is correct about i�s beliefs, it follows
that there is a single type tj such that (i) ti always assigns probability 1 to tj ; and (ii) tj always
assigns probability 1 to ti: Since ti induces (�i; �j); it must then be that �

ti
j = �j and �

tj
i = �i:

Moreover, as ti satis�es Bayesian updating, and believes that j satis�es Bayesian updating, both
ti and tj must satisfy Bayesian updating.

Step 2: The behavioral strategy pair (�i; �j) is a �-subgame perfect equilibrium.

Proof of Step 2. Take a player i and a history h: We must show that

U �i (h; �i; �j) � U �i (h; �0i; �j) (6)

for every behavioral strategy �0i: By (1) this is equivalent to showing that

U �i (h; b
�i
j (h); b

�j
i (h)) � U

�
i (h; s

0
i; b

�j
i (h)) (7)

for all s0i 2 Si(h): Let

Sopti (h) := fsi 2 Si(h) j U �i (h; si; b
�j
i (h)) � U

�
i (h; s

0
i; b

�j
i (h)) for all s

0
i 2 Si(h)g:

Then, (7) is equivalent to showing that

b�ij (h)(S
opt
i (h)) = 1: (8)

As �tij = �j and ti satis�es Bayesian updating, it follows that the conditional belief of type
ti at h about j�s continuation strategy is given by b

�j
i (h): But then,

Sopti (h) = fsi 2 Si(h) j si is �-optimal for ti at history hg:

As ti; by assumption, believes that j believes in i�s future �-rationality, it must be that tj believes
in i�s future �-rationality. In particular,

�j(tj ; h)(Si � Ti)h;��opt = 1:

As tj assigns probability 1 to ti; and every strategy si which is �-optimal for ti at all histories
weakly following h must be in Sopti (h); it follows that

�j(tj ; h)(S
opt
i (h)� ftig) = 1: (9)
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Since �tji = �i and tj satis�es Bayesian updating, it follows that the conditional belief of
type tj at h about i�s continuation strategy is given by b

�i
j (h): So, (9) implies that

b�ij (h)(S
opt
i (h)) = 1;

which establishes (8). This, as we have seen, implies (6), stating that

U �i (h; �i; �j) � U �i (h; �0i; �j)

for every behavioral strategy �0i:
Since this holds for both players i and every history h, it follows that (�i; �j) is a �-subgame

perfect equilibrium. This completes the proof of Step 2, and therefore completes the proof of
this theorem. �
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[17] Jáskiewicz, A., and A.S. Nowak (2017), Zero�Sum stochastic games, Handbook of Dynamic
Games, Vol. I (Theory), Springer.

[18] Nash, J.F. (1950), Equilibrium points in N -person games, Proceedings of the National
Academy of Sciences of the United States of America 36, 48�49.

[19] Nash, J.F. (1951), Non-cooperative games, Annals of Mathematics 54, 286�295.

[20] Penta, A. (2015), Robust dynamic implementation, Journal of Economic Theory 160, 280�
316.

[21] Perea, A. (2007), A one-person doxastic characterization of Nash strategies, Synthese 158,
251�271 (Knowledge, Rationality and Action 341�361).

[22] Perea, A. (2010), Backward induction versus forward induction reasoning, Games 1, 168�
188.

[23] Perea, A. (2012), Epistemic Game Theory: Reasoning and Choice, Cambridge University
Press.

[24] Perea, A. (2014), Belief in the opponents�future rationality, Games and Economic Behavior
83, 231�254.

29



[25] Rosenthal, R.W. (1981), Games of perfect information, predatory pricing and the chain-
store paradox, Journal of Economic Theory 25, 92�100.

[26] Selten, R. (1965), Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragezeit,
Zeitschrift für die Gesammte Staatswissenschaft 121, 301�324, 667�689.

[27] Shapley, L.S. (1953), Stochastic games, Proceedings of the National Academy of Science
USA 39, 1095�1100.

[28] Solan, E., and N. Vieille (2003), Deterministic multi�player Dynkin games, Journal of
Mathematical Economics 39, 911�929.

[29] Tan, T. and S.R.C. Werlang (1988), The bayesian foundations of solution concepts of games,
Journal of Economic Theory 45, 370�391.

30


