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Abstract. In game theory, basic solution concepts often conflict with
experimental findings or intuitive reasoning. This fact is possibly due to
the requirement that zero probability be assigned to irrational choices in
these concepts. Here, we introduce the epistemic notion of common belief
in utility proportional beliefs which also assigns positive probability to
irrational choices, restricted however by the natural postulate that the
probabilities should be proportional to the utilities the respective choices
generate. Besides, we propose an algorithmic characterization of our epis-
temic concept. With regards to experimental findings common belief in
utility proportional beliefs fares well in explaining observed behavior.
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1 Introduction

Interactive epistemology, also called epistemic game theory when applied to
games, provides a general framework in which epistemic notions such as knowl-
edge and belief can be modeled for situations involving multiple agents. This
rather recent discipline has been initiated by Harsanyi (1967-68) as well as Au-
mann (1976) and first been adopted in the context of games by Aumann (1987),
Brandenburger and Dekel (1987) as well as Tan and Werlang (1988). A com-
prehensive and in-depth introduction to epistemic game theory is provided by
Perea (forthcoming). An epistemic approach to game theory analyzes the re-
lation between knowledge, belief, and choice of rational game-playing agents.
While classical game theory is based on the two basic primitives – game form
and choice – epistemic game theory adds an epistemic framework as a third ele-
mentary component such that knowledge and beliefs can be explicitly modelled
in games.
? We are grateful to conference participants at the Eleventh Conference of the Soci-

ety for the Advancement of Economic Theory (SAET2011) as well as to seminar
participants at Maastricht University for useful and constructive comments.
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Intuitively, an epistemic model of a game can be interpreted as representing
the players’ reasoning. Indeed, before making a decision in a game, a player
reasons about the game and his opponents, given his knowledge and beliefs.
Precisely these epistemic mental states on which a player bases his decisions
and which characterize his reasoning are described in an epistemically enriched
game-theoretic framework.

A central idea in epistemic game theory is common belief in rationality,
first explicitly formalized in an epistemic model for games by Tan and Werlang
(1988). From an algorithmic perspective it corresponds to rationalizability due
to Bernheim (1984) and Pearce (1984). Intuitively, common belief in rationality
assumes a player to believe his opponents to choose rationally, to believe his
opponents to believe their opponents to choose rationally, etc. However, this basic
concept gives counterintuitive as well as experimentally invalidated predictions
in some games that have received a lot of attention. Possibly, the requirement
that only rational choices are considered and zero probability be assigned to any
irrational choice is too strong and does not reflect how real world agents reason.

Here, we introduce the epistemic concept of utility proportional beliefs, ac-
cording to which a player assigns positive probability also to opponents’ irra-
tional choices, while at the same time for every opponent differences in probabil-
ity must be proportional to difference in utility. In particular, better opponents’
choices receive higher probability than inferior choices. Intuitively, probabilities
now confer the intrinsic meaning of how good the respective player deems his
opponents’ choices. The concept of common belief in utility proportional beliefs
formalizes the idea that players do not only entertain utility proportional beliefs
themselves, but also believe their opponents to do so, believe their opponents to
believe their opponents to do so, etc. Philosophically, our concept can be seen as
a way of formalizing cautious reasoning, since no choice is excluded from consid-
eration. Rational choice under common belief in utility proportional beliefs fares
well with regards to intuition and to explaining experimental findings in games
of interest, where classical concepts such as rationalizability perform weakly.

As an illustration consider a simplified version of Basu’s (1994) traveler’s
dilemma. Two persons have traveled with identical items on a plane, however
when they arrive their items are damaged and they want to claim compensation
by the airline. Both travelers are asked to simultaneously submit a discrete price
between 1 and 10. The person with the lower price is then rewarded this value
plus a bonus of 2, while the person with the higher price receives the lower price
minus a penalty of 2. If the travelers submit the same price, then they both are
compensated accordingly. Reasoning in line with common belief in rationality
requires a traveler to rationally choose the lowest price 1. Intuitively, the highest
price can never be optimal for neither traveler, and iteratively inferring that
every respective lower price can then not be optimal neither only leaves the very
lowest price as rational choice. However, this conclusion conflicts with experi-
mental findings as well as with intuition, possibly since people typically do not
do all iterations or do not assign zero probability to opponents’ irrational choices.
Indeed, our concept of common belief in utility proportional beliefs leads to the
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choice of 6. Intuitively, if all prices receive a substantial positive probability, the
very low prices perform quite badly and hence do so too with common belief in
utility proportional beliefs.

The basic idea underlying utility proportional beliefs also appears in Rosen-
thal’s (1989) t-solution, where players are required to assign probabilities to their
own choices such that the probability differences are proportional to the utility
differences using a proportionality factor t. In contrast to our model, Rosenthal
uses the same proportionality factor t across all players; assumes that players
consciously randomize, i.e. pick probability distributions over their choice sets;
and builds in an equilibrium condition implying that players entertain correct
beliefs about their opponents’ randomized choices.

The intuition that better choices receive higher probabilities also occurs in
McKelvey and Palfrey’s (1995) quantal response equilibrium, where the utilities
are subject to random errors. In contrast to our model, McKelvey and Palfrey do
not assume probabilities to be proportional to utilities; require players to hold
correct beliefs about the opponents’ probabilities; and suppose agents to always
choose optimally with respect to their beliefs while their utilities are randomly
perturbed.

The scheme of cautious reasoning – that is, no choice is completely discarded
from consideration – is also present in Schuhmacher’s (1999) and Asheim’s (2001)
concept of proper rationalizability, which assumes better choices to be infinitely
more likely than worse choices. However, in our model every choice receives a
substantial, non-infinitesimal positive probability, which is proportional to the
utility the respective choice generates.

We proceed as follows. In Section 2, the concept of common belief in utility
proportional beliefs is formalized in a type-based epistemic model for games.
Also, a convenient way of stating utility proportional beliefs by means of an
explicit formula is presented. Rational choice under common belief in utility
proportional beliefs is defined as the decision-relevant notion for game-playing
agents. Section 3 introduces the algorithm of iterated elimination of utility-
disproportional-beliefs, which recursively restricts the players’ possible beliefs
about the opponents’ choices. The algorithm is then shown in Section 4 to yield
unique beliefs for every player, which is rather surprising. Section 5 establishes
that iterated elimination of utility-disproportional-beliefs provides an algorith-
mic characterization of common belief in utility proportional beliefs, and can
thus be used as a practical tool to compute the beliefs a player can hold when
reasoning in line with common belief in utility proportional beliefs. Section 6
illustrates how well our concept fares with regards to intuition as well as exper-
imental findings in some games that have received a lot of attention. Section 7
discusses utility proportional beliefs from a conceptual point of view and com-
pares it to some related literature. Finally, Section 8 offers some concluding
remarks and indicates possible directions for future research.
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2 Common Belief in Utility Proportional Beliefs

In order to model reasoning in line with utility proportional beliefs, infinite belief
hierarchies need to be considered. Here, we restrict attention to static games
and follow the type-based approach to epistemic game theory, which represents
belief hierarchies as types. More precisely, a set of types is assigned to every
player, where each player’s type induces a belief on the opponents choices and
types. Then, the whole infinite belief hierarchy can be derived from a given type.
Note that the notion of type was originally introduced by Harsanyi (1967-68) to
model incomplete information, but can actually be more generally used for any
interactive uncertainty. Indeed, the context we consider is the uncertainty about
choice in finite normal form games.

Notationally, a finite normal form game is represented by the tuple

Γ = (I, (Ci)i∈I , (Ui)i∈I),

where I denotes a finite set of players, Ci denotes player i’s finite choice set, and
Ui : ×j∈ICj → R denotes player i’s utility function.

The notion of an epistemic model constitutes the framework in which various
epistemic mental states of players can be described.

Definition 1. An epistemic model of a game Γ is a tuple MΓ = ((Ti)i∈I , (bi)i∈I),
where

– Ti is a finite set of types for player i ∈ I,
– bi : Ti → ∆(C−i × T−i) assigns to every type ti ∈ Ti a probability measure

on the set of opponents’ choice-type combinations.

Here, C−i := ×j∈I\{i}Cj and T−i := ×j∈I\{i} denote the set of opponents’
choice and type combinations, respectively. Note that although according to
Definition 1 the probability measure bi(ti) represents type ti’s belief function
on the set of opponents’ choice-type pairs, for sake of notational convenience
we also use bi(ti) to denote any projected belief function for type ti.1 It should
always be clear from the context which belief function bi(ti) refers to.

Besides, in this paper we follow the one-player perspective approach to epis-
temic game theory advocated by Perea (2007a), (2007b), and (forthcoming).
Accordingly, all epistemic concepts including iterated ones are understood and
defined as mental states inside the mind of a single person. Indeed, a one-player
approach seems natural, since reasoning is formally represented by epistemic
concepts and any reasoning process prior to choice takes place entirely within
the reasoner’s mind.

Some further notions and notation are now introduced. For that purpose
consider a game Γ , an epistemic model MΓ of it, and fix two players i, j ∈ I
such that i 6= j. A type ti ∈ Ti of i is said to deem possible some type tj ∈ Tj of

1 A type’s belief function projected on some opponent’s type space or projected on the
set of opponents’ choice combinations are examples for projected belief functions.
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his opponent j, if bi(ti) assigns positive probability to an opponents’ choice-type
combination that includes tj . By Tj(ti) we then denote the set of types of player
j deemed possible by ti. Furthermore, given a type ti ∈ Ti of player i, and given
an opponent’s type tj ∈ Tj(ti),

(bi(ti))(cj | tj) :=
(bi(ti))(cj , tj)
(bi(ti))(tj)

is type ti’s conditional belief that player j chooses cj given his belief that j is of
type tj . Note that the conditional belief (bi(ti))(cj | tj) is only defined for types
of j deemed possible by ti.

Moreover, a choice combination for player i’s opponents is denoted by c−i ∈
×j∈I\{j}Cj . For each of his choices ci ∈ Ci type ti’s expected utility given his
belief on his opponents’ choice combinations is given by

ui(ci, ti) = Σc−i(bi(ti))(c−i)Ui(ci, c−i).

Besides, let C := ×i∈ICi be the set of all choice combinations in the game. Then,
ui := maxc∈Cui(c) and ui := minc∈Cui(c) denote the best and worst possible
utilities player i can obtain in the game, respectively. Farther, player ti’s average
expected utility is denoted by

uaverage
i (ti) :=

1
| Ci |

Σci∈Ci
ui(ci, ti).

The idea that a player entertains beliefs on his opponents’ choices propor-
tional to the respective utilities these choices yield for the opponents can be
formalized within the framework of an epistemic model for normal form games.

Definition 2. Let i ∈ I be some player, and λi = (λij)j∈I\{i} ∈ R|I\{i}| such
that λij ≥ 0 for all j ∈ I \ {i}. A type ti ∈ Ti of player i expresses λi-utility-
proportional-beliefs, if

(bi(ti))(cj | tj)− (bi(ti))(c′j | tj) =
λij

uj − uj

(uj(cj , tj)− uj(c′j , tj)) (?)

for all tj ∈ Tj(ti), for all cj , c
′
j ,∈ Cj, for all j ∈ I \ {i}.

Accordingly, player i’s conditional beliefs about two choices of any of his oppo-
nents are proportional to the respective utilities the opponent derives from them
with proportionality factor λij

uj−uj
for every opponent j ∈ I \ {j}.

Note that the variable part of the proportionality factor λij in equation (?) is
constrained by the fact that i’s belief functions are probability measures. Indeed,
λi-utility-proportional-beliefs may not exist if any of the λij ’s is too large. For
every opponent j ∈ I \ {i}, let λmax

ij be the highest λij such that the system
of equations (?) yields a well-defined probability measure (bi(ti)(· | tj) for every
type tj ∈ Tj(ti). The tuple λmax

i = (λmax
ij )j∈I\{i} then contains every opponent’s

λmax
ij .
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Intuitively, λij measures the sensitivity of the beliefs to differences in utility.
If it is too large, some of the beliefs will become negative in order to satisfy
equation (?), thus violating the property of being probabilities. Hence, there
exists an upper bound for every λij , which is captured by λmax

ij and furnishes
maximally different beliefs as probabilities while at the same time still complying
with equation (?) for every opponent’s type. Farther, the minimal value λij can
assume is zero, which then implies the conditional beliefs about the respective
opponent’s choice to be uniformly distributed. In other words, if λij = 0, then
utility differences are not at all reflected in the beliefs, as all choices are being
assigned the same probability. Besides, note that in the context of modeling
reasoning in line with utility proportional beliefs, choosing λij = λmax

ij seems
plausible, as the idea of utility proportional beliefs then unfolds its maximal
possible effect.

Moreover, λi-utility-proportional-beliefs are invariant with respect to affine
transformations of any player’s utility function. Indeed, suppose a ∈ R and b > 0
such that ûj(cj , tj) = a + buj(cj , tj) for some j ∈ I \ {i}, for all cj ∈ Cj , and for
all tj ∈ Tj . Assume that ti expresses λi-utility-proportional-beliefs with respect
to ûj . Then, observe that

(bi(ti))(cj | tj)− (bi(ti))(c′j | tj) =
λij

ûj − ûj

(ûj(cj , tj)− ûj(c′j , tj))

=
λij

(a + buj)− (a + buj)
((a + buj(cj , tj))− (a + buj(c′j , tj)))

=
λij

b(uj − uj)
b(uj(cj , tj)− uj(c′j , tj))

=
λij

uj − uj

(uj(cj , tj)− uj(c′j , tj))

for all cj , c
′
j ∈ Cj and for all tj ∈ Tj . The invariance of utility proportional

beliefs with regards to affine transformations of the players’ utilities strengthens
the concept, since it does not depend on the particular cardinal payoff structure
but only on the underlying ordinal preferences.

Utility proportional beliefs as formalized in Definition 2 can be expressed
by means of an explicit formula for a given opponent’s choice conditional of
him being of a given type. This convenient alternative way of stating utility
proportional beliefs only relates the conditional belief in a specific opponent’s
choice to the utilities this choice generates for the respective opponent.

Lemma 1. Let i ∈ I be some player, and λi = (λij)j∈I\{i} ∈ R|I\{i}|. A type
ti ∈ Ti of player i expresses λi-utility-proportional-beliefs if and only if

(bi(ti))(cj | tj) =
1

| Cj |
+

λij

uj − uj

(uj(cj , tj)− uaverage
j (tj)),

for all tj ∈ Tj(ti), for all cj ∈ Cj, for all j ∈ I \ {i}.
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Proof. Let j ∈ I \ {i} be some opponent of player i, tj ∈ Tj(ti) be some type of
j deemed possible by i and c∗j ∈ Cj be some choice of j. Note that

1 = Σcj∈Cj (bi(ti))(cj | tj)

= Σcj∈Cj ((bi(ti))(c∗j | tj) + (bi(ti))(cj | tj)− (bi(ti))(c∗j | tj))

= Σcj∈Cj ((bi(ti))(c∗j | tj) +
λij

uj − uj

(uj(cj , tj)− uj(c∗j , tj)))

= (| Cj | (bi(ti))(c∗j | tj) +
λij

uj − uj

Σcj∈Cj (uj(cj , tj)− uj(c∗j , tj)))

=| Cj | (bi(ti))(c∗j | tj) +
λij

uj − uj

(| Cj | uaverage
j (cj , tj)− | Cj | uj(c∗j , tj)),

which is equivalent to

(bi(ti))(c∗j | tj) =
1

| Cj |
+

λij

uj − uj

(uj(c∗j , tj)− uaverage
j (tj)).

�

Intuitively, the formula provided by Lemma 1 assigns to every opponents’ type
the uniform distribution on the respective opponents’ choice set plus or minus
an adjustment for each choice depending on its goodness relative to the average
utility.

In addition to requiring a player to entertain utility proportional beliefs we
also assume his beliefs to satisfy conditional independence. Intuitively, this condi-
tion – due to Brandenburger and Friedenberg (2008) – states that in games with
more than two players, the belief that some player i holds about some opponent
j’s choice must be independent from his belief about some distinct opponent k’s
choice, if we condition on fixed belief hierarchies of j and k. Conditional inde-
pendence reflects the natural idea that a player believes his opponents to choose
independently from each other, and can formally be defined as follows.

Definition 3. Let ti ∈ Ti be a type for some player i ∈ I. Type ti holds condi-
tionally independent beliefs, if

(bi(ti))((cj , ck) | tj , tk) = (bi(ti))(cj | tj) · (bi(ti))(ck | tk)

for all tj ∈ Tj(ti), tk ∈ Tk(ti), cj ∈ Cj, ck ∈ Ck, and j, k ∈ I \ {i} such that
j 6= k.

Here, (bi(ti))((cj , ck) | tj , tk) denotes the conditional probability that ti assigns
to the opponents’ choice pair (cj , ck), given ti believes these opponents to be of
types tj and tk.

Reasoning in line with utility proportional beliefs requires a player not only
to entertain utility proportional beliefs himself, but also to believe his opponents
to do so, to believe his opponents to believe their opponents to do so, etc. Within
an epistemic framework this reasoning assumption can be formally expressed by
common belief in utility proportional beliefs.
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Definition 4. Let i ∈ I be some player, ti ∈ Ti be some type of player i, and
λ = (λi)i∈I ∈ ×i∈IR|I\{i}|.

– Type ti expresses 1-fold belief in λ-utility-proportional-beliefs, if ti expresses
λi-utility-proportional-beliefs.

– Type ti expresses k-fold belief in λ-utility-proportional-beliefs, if (bi(ti)) only
deems possible types tj ∈ Tj for all j ∈ I \{i} such that tj expresses k−1-fold
belief in λ-utility-proportional-beliefs, for all k > 1.

– Type ti expresses common belief in λ-utility-proportional-beliefs, if ti ex-
presses k-fold belief in λ-utility-proportional-beliefs for all k ≥ 1.

Intuitively, a player i expressing common belief in λ-utility-proportional-beliefs
holds λij-utility-proportional-beliefs on opponent j’s choices, he believes oppo-
nent j to entertain λjj′ -utility-proportional-beliefs on opponent j′’s choices, etc.
In other words, in a belief hierarchy satisfying λ-utility-proportional-beliefs there
is no level at which it is not iteratively believed that every opponent holds λ-
utility-proportional-beliefs.

Analogously, common belief in conditional independence can be inductively
defined. Indeed, the concept we are eventually interested in will be common belief
in “λ-utility-proportional-beliefs and conditional independence”. From now on
common belief in conditional independence is endorsed as an implicit background
assumption and hence no longer be explicitly stated.

The choices a player can reasonably make under common belief in utility
proportional beliefs are those that are rational under his respectively restricted
beliefs on the opponents’ choices.

Definition 5. Let i ∈ I be some player, and λ = (λi)i∈I ∈ ×i∈IR|I\{i}|.
A choice ci ∈ Ci of player i is rational under common belief in λ-utility-
proportional-beliefs, if there exists an epistemic model MΓ and some type ti ∈ Ti

of player i such that ci is optimal given (bi(ti)) and ti expresses common belief
in λ-utility-proportional-beliefs.

3 Algorithm

An algorithm is introduced that iteratively deletes beliefs and that – as will be
shown later in Section 5 – yields precisely those beliefs that are possible under
common belief in λ-utility proportional beliefs.

Before we formally define our algorithm some more notation needs to be
fixed. Let P 0

i := ∆(C−i) denote the set of i’s beliefs about his opponents’ choice
combinations. Moreover, for every player i and each of his opponents j 6= i let
p∗ij : P 0

j → ∆(Cj) be a function mapping beliefs of player j on his opponents’
choice combinations to beliefs on j’s choice, defined as

(p∗ij(pj))(cj) :=
1

| Cj |
+

λij

uj − uj

(uj(cj , pj)− uaverage
j (pj))
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for all cj ∈ Cj and for all pj ∈ P 0
j . Besides, for every player i let p∗i : ×j 6=iP

0
j →

P 0
i be a function mapping i’s opponents’ combinations of beliefs to beliefs of i

about his opponents, given by

(p∗i ((pj)j 6=i))((cj)j 6=i) := Πj 6=i(p∗ij(pj))(cj).

The algorithm iterated elimination of utility-disproportional-beliefs can now
be formally stated.

Definition 6. Let the sequence of sets (P k
i )k≥0 of beliefs on j’s choice space be

inductively given by

P k
i := conv({p∗i ((pj)j 6=i) : pj ∈ P k−1

j for all j 6= i}).

The set of beliefs P∞
i =

⋂
k≥0 P k

i contains the beliefs that survive iterated elim-
ination of utility-disproportional beliefs.

Intuitively, the function p∗i transforms beliefs of i’s opponents’ beliefs on their
opponents’ choices into beliefs of i on his opponents’ choices. The algorithm then
iteratively deletes beliefs that cannot be obtained by the functions p∗i . In other
words, beliefs are repeatedly eliminated which are not utility proportional to
utilities generated by beliefs from the preceding set of beliefs in the algorithm.

4 Uniqueness of Beliefs

Before it is shown that the iterated utility-disproportional beliefs algorithm con-
verges to singleton sets, some preliminary observations are made. First of all, note
that, since λmax

ij is the largest possible proportionality factor such that p∗ij(pj)
is a probability distribution for all pj ∈ P 0

j , it follows that (p∗ij(pj))(cj) ≥ 0 for
all cj ∈ Cj and for all pj ∈ ∆(Ci) under λij = λmax

ij . Hence, if λij < λmax
ij , then

(p∗ij(pj))(cj) > 0 for all cj ∈ Cj . Moreover, p∗ij is a linear function from P 0
j to

∆(Cj), as uj and uaverage
j are linear in pj . Farther, recall that the one norm of a

given vector x = (x1, x2, . . . , xm) is defined as ‖x‖1 = Σm
i=1 | xi |. Notationally,

given a player i ∈ I and some opponents’ choice combination c−i ∈ C−i let
[c−i] denote the | C−i |-dimensional vector containing 1 in its c−i-th entry and 0
otherwise, representing a belief on the opponents’ choices which puts probability
1 on the choice combination c−i.

The following lemma establishes that p∗ij is a contraction mapping.

Lemma 2. Let λij < λmax
ij . There exists α < 1 such that ‖p∗ij(pj)− p∗ij(p

′
j)‖1 ≤

α‖pj − p′j‖1 for all pj , p
′
j ∈ P 0

j .

Proof. As λij < λmax
ij it follows that (p∗ij(pj))(cj) > 0 for all cj ∈ Cj and for all

pj ∈ P 0
j . Let pmin

ij : P 0
j → R be defined as pmin

ij (pj) := mincj (p
∗
ij(pj))(cj) for all

pj ∈ P 0
j . Note that, since p∗ij is linear, it is also continuous, and thus pmin

ij as the
minimum of finitely many continuous functions is continuous as well. Now, P 0

j
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being a non-empty, compact set, the Theorem of Weierstrass ensures that there
exists ε > 0 such that (pmin

ij (pj)) ≥ ε for all pj ∈ P 0
j and hence (p∗ij(pj))(cj) ≥ ε

for all cj ∈ Cj and for all pj ∈ P 0
j , too.

We now show that

‖p∗ij(pj)− p∗ij(p
′
j)‖1 ≤ (1− ε)‖pj − p′j‖1.

Observe that due to the linearity of p∗ij , it holds that

(p∗ij(pj))(cj) = Σc−j∈C−j pj(c−j)(p∗ij([c−j ]))(cj)

for all cj ∈ Cj and for all pj ∈ P 0
j . It then follows that

‖p∗ij(pj)− p∗ij(p
′
j)‖1 = Σcj∈Cj | (p∗ij(pj))(cj)− (p∗ij(p

′
j))(cj) |

= Σcj∈Cj | Σc−j∈C−j pj(c−j)(p∗ij([c−j ]))(cj)−Σc−j∈C−j p
′
j(c−j)(p∗ij([c−j ]))(cj) |

= Σcj∈Cj | Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj) | .

For some fixed cj ∈ Cj consider

Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj)

and note that either

Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj) ≥ 0

or
Σc−j∈C−j

(p′j(c−j)− pj(c−j))(p∗ij([c−j ]))(cj) ≥ 0.

Without loss of generality assume that

Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj) ≥ 0.

Recalling that (p∗ij([c−j ]))(cj) ≥ ε for all cj ∈ Cj and for all c−j ∈ C−j , it thus
follows that,

| Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj) |

= Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj)

= Σc−j∈C−j :pj(c−j)−p′j(c−j)≥0 | pj(c−j)− p′j(c−j) | (p∗ij([c−j ]))(cj)

−Σc−j :pj(c−j)−p′j(c−j)<0 | p′j(c−j)− pj(c−j) | (p∗ij([c−j ]))(cj)

≤ Σc−j∈C−j :pj(c−j)−p′j(c−j)≥0 | pj(c−j)− p′j(c−j) | (p∗ij([c−j ]))(cj)

−εΣc−j :pj(c−j)−p′j(c−j)<0 | p′j(c−j)− pj(c−j) | .

Note that
Σc−j∈C−j (pj(c−j)− p′j(c−j)) = 0
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due to
Σc−j∈C−j pj(c−j) = 1 = Σc−j∈C−j p

′
j(c−j).

It hence follows that

Σc−j :pj(c−j)<p′j(c−j) | pj(c−j)−p′j(c−j) |= Σc−j :pj(c−j)>p′j(c−j) | pj(c−j)−p′j(c−j) | .

Since it is also the case that

| pj(c−j)− p′j(c−j) | ((p∗ij([c−j ]))(cj)− ε) ≥ 0

for all c−j ∈ C−j and for all cj ∈ Cj ,

Σc−j∈C−j :pj(c−j)−p′j(c−j)≥0 | pj(c−j)− p′j(c−j) | (p∗ij([c−j ]))(cj)

−εΣc−j :pj(c−j)−p′j(c−j)<0 | p′j(c−j)− pj(c−j) |

= Σc−j∈C−j :pj(c−j)−p′j(c−j)≥0 | pj(c−j)− p′j(c−j) | ((p∗ij([c−j ]))(cj)− ε)

≤ Σc−j∈C−j | pj(c−j)− p′j(c−j) | ((p∗ij([c−j ]))(cj)− ε)

therefore obtains. Consequently,

‖p∗ij(pj)− p∗ij(p
′
j)‖1 = Σcj∈Cj | Σc−j∈C−j (pj(c−j)− p′j(c−j))(p∗ij([c−j ]))(cj) |

≤ Σcj∈Cj Σc−j∈C−j | pj(c−j)− p′j(c−j) | ((p∗ij([c−j ]))(cj)− ε)

= Σc−j∈C−j (| (pj(c−j)− p′j(c−j))Σcj∈Cj ((p
∗
ij([c−j ]))(cj)− ε) |).

As
Σcj∈Cj (p

∗
ij([c−j ]))(cj) = 1

for all c−j ∈ C−j , it follows that

Σc−j∈C−j (| (pj(c−j)− p′j(c−j))Σcj∈Cj ((p
∗
ij([c−j ]))(cj)− ε) |)

= Σc−j∈C−j (| (pj(c−j)− p′j(c−j))(1− | Cj | ε) |)

= (1− | Cj | ε)‖pj − p′j‖1 ≤ (1− ε)‖pj − p′j‖1.

Hence,
‖p∗ij(pj)− p∗ij(p

′
j)‖1 ≤ (1− ε)‖pj − p′j‖1

holds and since ε > 0 the desired result obtains. �

Note that for the result of Lemma 2 it does not matter which particular norm
is employed. In fact, we used ‖ · ‖1 as it facilitates the proof.

For the following theorem some additional notation is needed. Recall that
P k

i is the set of beliefs for player i about the opponents’ choices that survive k
rounds of the algorithm. For every two distinct players i 6= j let P k

ij denote the
projection of P k

i on ∆(Cj).
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Theorem 1. Let M := maxi∈I{maxpi,p̂i∈P 0
i
{‖pi − p̂i‖1}}. There exists α < 1

such that ‖p′ij − p′′ij‖1 ≤ αkM for all p′ij , p
′′

ij ∈ P k
i , for all k ≥ 0, and for all

i 6= j.

Proof. First of all, note that by Lemma 2, for every two distinct players i, j there
exists αij < 1 such that ‖p∗ij(pj)− p∗ij(p

′
j)‖1 ≤ αij‖pj − p′j‖1 for all pj , p

′
j ∈ P 0

j .
Take α to be the maximum of all these αij .

The proof proceeds by induction on k. Observe that ‖p′i − p′′i ‖1 ≤ M for all
p′i, p

′′
i ∈ P 0

i . Now, let p′ij , p
′′
ij ∈ P k+1

i and note that p′ij = p∗ij(p
′
j) and p′′ij = p∗ij(p

′′
j )

for some p′j , p
′′
j ∈ P k

j . With Lemma 2 and the induction hypothesis, it then
follows that

‖p′ij − p′′ij‖1 = ‖p∗ij(p′j)− p∗ij(p
′′

j )‖1

≤ α‖p′j − p′′j‖1 ≤ ααkM = αk+1M.

�

This preceeding Theorem can be used to show that the beliefs the algorithm
yields are unique.

Theorem 2. Let λij < λmax
ij for all distinct players i and j. Then, | P∞

i |= 1
for all players i.

Proof. It follows directly from Theorem 1 that P∞
i and P∞

j contain exactly one
belief vector, respectively. �

The uniqueness of beliefs – which intuitively follows from recursively applying a
contraction mapping – constitutes a highly convenient property of the algorithm.

Equipped with Theorem 3 the algorithm can be restated in simplified way,
if λij < λmax

ij for all distinct players i and j. In that case we can do without
taking the convex hull at each step in the algorithm.

Corollary 1. Let λij < λmax
ij for all distinct players i and j. Let the sequence

of sets (P̂ k
i )k≥0 of beliefs be inductively given by

P̂ k
i := ({p∗i ((pj)j 6=i) : pj ∈ P̂ k−1

j for all j 6= i}).

Then, P̂∞
i = P∞

i for all players i.

Proof. Since by construction P̂ k
i is a subset of P k

i for all k > 0, it follows that
P̂∞

i is a subset of P∞
i . As P∞

i contains exactly one belief vector, P̂∞
i must be

equal to P∞
i . �

Note that Corollary 1 provides a highly convenient formulation of our algorithm
for application purposes. Besides, in the case of two players the equivalence of
both algorithms ensues directly, as the sets P k

i are already convex for all k > 0.
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5 Algorithmic Characterization of Common Belief in
Utility Proportional Beliefs

It is now established that the algorithm yields precisely those beliefs that a
player can entertain under common belief in λ-utility proportional beliefs.

Theorem 3. Let λ = (λi)i∈I ∈ ×i∈IR|I\{i}| such that λij < λmax
ij for all two

distinct players i and j. A belief pi ∈ ∆(C−i) can be held by a type ti ∈ Ti that
expresses common belief in λ-utility-proportional beliefs in some epistemic model
MΓ of Γ if and only if pi survives iterated elimination of utility-disproportional
beliefs.

Proof. For the only if direction of the theorem, we prove by induction on k
that a belief that can be held by a type that expresses up to k-fold belief in
λ-utility-proportional beliefs survives k rounds of iterated elimination of utility-
disproportional beliefs. It then follows, that a type expressing common belief in
λ-utility-proportional-beliefs holds a belief which survives iterated elimination
of utility-disproportional beliefs.

First of all, let k = 1 and consider ti ∈ Ti that expresses 1-fold belief in
λ-utility-proportional beliefs. Then,

(bi(ti))(cj , tj) = (
1

| Cj |
+

λij

uj − uj

(uj(cj , tj)− uaverage
j (tj)))(bi(ti))(tj)

for all cj ∈ Cj , tj ∈ Tj and for all j ∈ I \ {i}. It follows that,

(bi(ti))(cj) = Σtj∈Tj(ti)(bi(ti))(tj)(
1

| Cj |
+

λij

uj − uj

(uj(cj , tj)− uaverage
j (tj)))

for all cj ∈ Cj . Written as a vector,

(bi(ti))(cj))cj∈Cj
= Σtj∈Tj(ti)bi(ti))(tj)(

1
| Cj |

(1, · · · , 1)

+
λij

uj − uj

(uj(cj , tj)− uaverage
j (tj))cj∈Cj )

obtains. Note that by definition of the algorithm,

1
| Cj |

(1, · · · , 1) +
λij

uj − uj

(uj(cj , tj)− uaverage
j (tj))cj∈Cj ∈ P 1

i

holds. Since (bi(ti))(cj))cj∈Cj thus is a convex combination of elements in the
convex set P 1

i , it follows that (bi(ti))(cj))cj∈Cj ∈ P 1
i .

Now let k ≥ 1 and consider ti ∈ Ti that expresses k-fold belief in λ-utility-
proportional beliefs. Then,

(bi(ti))(cj , tj) = (
1

| Cj |
+

λij

uj − uj

(uj(cj , tj)− uaverage
j (tj)))(bi(ti))(tj)
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for all cj ∈ Cj and for all tj ∈ Tj . Therefore,

(bi(ti))(cj) = Σtj∈Tj(ti)⊆Bk−1
j

(bi(ti))(tj)(
1

| Cj |
+

λij

uj − uj

(uj(cj , tj)−uaverage
j (tj)))

for all cj ∈ Cj , where Bk−1
j denotes the set of j’s types that express k − 1-fold

belief in λ-utility-proportional-beliefs. Written as a vector,

(bi(ti))(cj))cj∈Cj = Σtj∈Tj(ti)⊆Bk−1
j

bi(ti))(tj)(
1

| Cj |
(1, · · · , 1)

+
λij

uj − uj

(uj(cj , tj)− uaverage
j (tj))cj∈Cj )

obtains. Since every tj ∈ Tj(ti) is in Bk−1
j and hence by the induction hypothesis

(bj(tj)) ∈ P k−1
j , it follows that

1
| Cj |

(1, · · · , 1) +
λij

uj − uj

(uj(cj , tj)− uaverage
j (tj))cj∈Cj

= p∗i (bj(tj)) ∈ P k
i .

As (bi(ti))(cj))cj∈Cj
thus is a convex combination of elements in the convex set

P k
i , (bi(ti))(cj))cj∈Cj ∈ P k

i holds as well. By induction on k the only if direction
of the theorem follows.

For the if direction of the theorem, let pi ∈ P∞
i and pj ∈ P∞

j , which are
unique by Theorem 2, respectively. Consider the epistemic model

MΓ = ((Ti, Tj), (bi, bj))

of Γ , where Ti = {ti}, Tj = {tj}, bi(ti) projected on Tj puts probability 1 on
tj , while projected on Cj equals pi. Furthermore, bj(tj) projected on Ti puts
probability 1 on ti, while projected on c−j equals pj(pi)]. Note that (bi(ti))(cj |
tj) = (bi(ti))(cj) for all cj ∈ Cj and (bj(tj))(c−j | ti) = (bj(tj))(c−j) for all
c−j ∈ c−j , since | Ti |= 1 =| Tj |. Using the fact that

pi = p∗i (pj) and pj = p∗j (pi),

it then follows, by construction of bi and bj , that both ti as well as tj express
λ-utility-proportional-beliefs. Moreover, ti and tj express common belief in λ-
utility-proportional-beliefs too, as Tj(ti) = {tj} and Ti(tj) = {ti}. �

According to the preceding theorem the algorithm thus provides a convenient
way to compute the beliefs a player can hold when reasoning in line with common
belief in utility proportional beliefs.

Farther, note that the proof of the if direction of Theorem 3 establishes that
common belief in utility proportional beliefs is always possible in every game.
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Corollary 2. Let λi = (λij)j∈I\{i} ∈ R|I\{i}|. There exists an epistemic model
MΓ of Γ , and a type ti ∈ Ti for every every player i ∈ I such that ti expresses
common belief in λ-utility-proportional-beliefs.

It is thus guaranteed that common belief in utility proportional beliefs is a
logically sound concept, which can be adopted to describe players’ reasoning in
any game.

Linking the algorithmic characterization of common belief in utility propor-
tional beliefs with Theorem 2 establishes the uniqueness of the beliefs that can
be held under common belief in utility proportional beliefs.

Theorem 4. Let λij < λmax
ij and λji < λmax

ji . For both players, there exists a
unique belief about the opponent’s choice that he can hold under common belief
in λ-utility-proportional-beliefs.

Proof. By Theorem 2 the algorithm yields unique beliefs for both players, and
Theorem 3 ensures that these are precisely the beliefs that they can hold under
common belief in λ-utility-proportional-beliefs. �

Consequently, a player reasoning in line with common belief in utility pro-
portional beliefs can only entertain a unique belief about his opponents’ choices.
The suitability of the concept to be used for descriptions in games is therefore
very high.

6 Illustration

Due to its property of always providing unique beliefs for the players about
their respective opponents’ choices, the algorithm is easy and conveniently im-
plementable. Indeed, without any difficulties we wrote a small program, which
computes this unique belief vector given a 2-player game in normal form. We now
illustrate in some well-known games that have received a lot of attention how
well common belief in utility proportional beliefs fares with respect to intuition
as well as to experimental findings – in contrast to classical concepts which run
into problems when applied to these games. In each example we use λij slightly
smaller than λmax

ij such that the differences in utilities have the largest possible
effect on the players’ beliefs, while still guaranteeing these beliefs to be unique.
In fact, from these unique beliefs it is possible to directly read off the rational
choices under common belief in λ-utility-proportional-beliefs, since these choices
must receive the highest probability under those beliefs.

Example 1. Consider again the traveler’s dilemma which has already been in-
troduced in Section 1. Consider three variants of the game, according to which
the players can choose between 10, 30, and 100 prices. Reasoning in line with
common belief in rationality requires the travelers to opt for the minimum price
of 1 in each of the three variations. However, it neither seems plausible to exclude
any irrational choice completely from consideration nor do experiments confirm
such results. For instance, in an experiment with members of the game theory
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society by Becker et al (2005), where prices between 2 and 100 could be chosen,
most persons opted for a high price of at least 90. In fact, contrary to common
belief in rationality, our concept yields the much more natural choices of 6, 26,
and 96, respectively. Besides, note that common belief in utility proportional
beliefs is actually sensitive to the cardinality of the choice sets. Indeed, it seems
intuitive that when there are few prices to choose from rather lower prices will
be opted for, and when there are many prices available then the ones picked will
be higher. ♣

Example 2. Figure 2 depicts an asymmetric matching pennies game that is taken
from Goeree and Holt (2001).

Row Player

Column Player
left right

top 320, 40 40, 80
bottom 40, 80 80, 40

Fig. 1. Asymmetric matching pennies

In the unique Nash equilibrium of the game, Row Player chooses ( 1
2 , 1

2 ) and
Column Player chooses ( 7

8 , 1
8 ). Intuitively, it seems reasonable for Row Player

to opt for top due to the very high possible payoff of 320, while Column Player
might tend to pick right anticipating Row Player’s temptation for top. Indeed, in
experiments by Goeree and Holt (2001) approximately 95 % of the row players
choose top, while approximately 85 % of the column players opt for right. Here,
close to the experimental findings our concept of common belief in utility pro-
portional beliefs yield choices top and right for Row Player and Column Player,
respectively. ♣.

Example 3. Suppose the normal form in Figure 3 which models a coordination
game with a secure outside option that is taken from Goeree and Holt (2001).

Row Player

Column Player
left middle right

top 90, 90 0, 0 0, 40
bottom 0, 0 180, 180 0, 40

Fig. 2. A coordination game with a secure outside option

The game contains multiple Nash equilibria, among which there is the focal
high-payoff one (bottom,middle), while Column Player has access to a secure
outside option guaranteeing him a payoff of 40. In experiments by Goeree and
Holt (2001), approximately 95 % of the row players choose bottom, while ap-
proximately 95 % of the column players pick middle. Close to the results from
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the laboratory, common belief in utility proportional beliefs yields bottom and
middle. ♣

Example 4. The Kreps Game due to Kreps (1995) is represented in Figure 4.

Row Player

Column Player
left middle non-Nash right

top 20, 5 0, 4 1, 3 2,−104

bottom 0,−104 1,−103 3, 3 5, 10

Fig. 3. Kreps game

The game exhibits three Nash equilibria, two pure and one mixed, and in none
of them Column Player chooses Non-Nash with positive proabability. However,
Non-Nash appears to be reasonable, as all other options only yield a slightly
higher payoff, but might lead to considerable losses. If anticipating this reasoning
Row player would optimally choose bottom. Indeed, in informal experiments by
Kreps the row players pick bottom, while the column players choose Non-Nash
in the majority of cases. Also in this game common belief in utility proportional
beliefs performs intuitively by generating top for Row Player and non-Nash for
Column Player, respectively. Indeed, top seems reasonable for the Row Player
as long as he assigns a substantial probability to the Column Player choosing
left, which is what our concept does. ♣

7 Discussion

Utility Proportional Beliefs. The concept of utility proportional beliefs seems
quite a natural and basic way of reasoning in the context of games. Indeed,
it does appear plausible to assign non-zero probability to opponents’ irrational
choices due to causes such as the complexity of the interactive situation, un-
certainty about the opponents’ utilities and choice rules, possibility of mistakes,
caution etc. However, at the same time it is intuitive that the opponents’ relative
utilities are reflected in a player’s beliefs about their choice and to thus assign
probabilities proportional to the respective utilities.

Moreover, utility proportional beliefs furnishes probabilities with intrinsic
meaning in the sense of measuring how good a player deems some choice for the
respective opponent, and thus also provides an account of how agents form their
beliefs. In contrast, basic classical concepts like common belief in rationality
treat every choice that receives positive probability as equally plausible.

Besides, utility proportional beliefs does not only appear reasonable from
intuitive as well as theoretical perspectives, but also fares well with regards
to experimental findings, as indicated in Section 6. In this context, also note
that experimental findings can often not be explained by the basic concept of
common belief in rationality, which implies that any irrational choice always
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receives zero probability. However, if it is assumed that players follow a common
line of reasoning, then positive probability must be assigned to irrational choices,
which is precisely what utility proportional beliefs does.

t-Solutions. Rosenthal’s (1989) class of t-solutions for two player games formal-
izes the idea that players do not exclusively play best responses. Intuitively, given
a fixed parameter t ∈ R, a pair of randomized choices constitutes a t-solution,
if each of them satisfies the property that if positive probability is assigned to
some pure choice, then the difference in probability with any other pure choice of
the same player equals t times the difference in the respective utilities given the
opponent’s randomized choice.2 In other words, players assign probabilities to
their choices such that the probability differences are proportional to the utility
difference multiplied by the proportionality factor t.

In contrast to our concept of utility proportional beliefs, Rosenthal’s t-solutions
employs a proportionality factor which is the same across all players. It seems
more desirable to permit different agents to entertain distinct proportionality
factors, in order to represent heterogenous states of mind, and to thus provide a
more realistic account of reasoning. Also, t-solutions are not invariant to affine
translations of the utilities, which is a serious drawback not arising in our model.
Moreover, the players’ probability distributions which are restricted by a util-
ity proportionality condition are distinct objects in Rosenthal’s and our models.
While in the former randomized choices, i.e. conscious randomizations of the
players are considered, beliefs on the opponents’ choices are used in the latter.
Since assuming probabilities to be objects of choice constitutes a problematic as-
sumption for at least most game-theoretic contexts, probabilities interpreted as
players’ beliefs seems more plausible and realistic. Besides, by keeping the oppo-
nents’ choices fixed, an equilibrium condition is built into Rosenthal’s t-solution
concept. However, from an epistemic point of view fixing the opponents’ choices
seems highly unreasonable, as it means that the reasoner already knows what
his opponents will do in the game. Note that in our model we admit players
to be erroneous about their opponents’ choices as well as beliefs, which again
is closer to real life, where people are frequently not correct about their fellow
men’s choices in interactive situations. Furthermore, if the randomized choices
of a player are interpreted as his opponents’ beliefs about his choice, and if the
same proportionality factor is applied to all players, then with the uniqueness of
the beliefs result of Theorem 2, our concept becomes equivalent to Rosenthal’s
t-solution. Note that the uniqueness of the beliefs imply Rosenthal’s equilibrium
condition. However, we do not impose the equilibrium condition, but it follows
as a result from our model.

Quantal Response Equilibrium. McKelvey and Palfrey (1995) introduce the con-
cept of quantal response equilibrium as a statistical version of equilibrium, where
each player chooses deterministically, however his utility for each of his choices

2 Given a game Γ and a player i ∈ I, a randomized choice for i is a probability
distribution σi ∈ ∆(Ci) on i’s choice space.
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is subject to random error. Given a rational decision rule players are assumed
to apply, the random error induces a probability distribution over the players’
observed choices. In their model these probabilities satisfy the intuitive property
that better choices are more likely to be chosen than worse choices.

In contrast to our concept of utility proportional beliefs, McKelvey and Pal-
frey do not require the probability of a given choice to be proportional to the
expected utility it generates. Yet, in terms of reasoning it appears natural that
a player assigns utility proportional probabilities to his opponents’ choices –
as in our model – when deliberating about what his opponents might choose.
Moreover, the probabilities in quantal response equilibrium are not invariant to
affine translations of the utilities. This serious drawback is avoided in our model.
Besides, from an epistemic point of view McKelvey and Palfrey’s equilibrium
condition implicitly assumes that players’ know their opponents’ random error
induced probabilities. This seems rather implausible, as players can never have
direct access to opponents’ minds. Farther, in McKelvey and Palfrey’s model
agents are assumed to always choose best responses with respect to their beliefs
but not with respect to their utilities , which are randomly perturbed. However,
in our model the utilities are kept fixed, but we allow players to assign positive
probability to opponents’ suboptimal choices.

Proper Rationalizability. The concept of proper rationalizability, introduced by
Schumacher (1999) as well as Asheim (2001), and algorithmically characterized
by Perea (2011), formalizes cautious reasoning in games. Intuitively, a choice is
properly rationalizable for a player, if he is cautious, i.e. does not exclude any
opponent’s choice from consideration; respects his opponents’ preferences, i.e. if
he believes an opponent to prefer some choice c to c′, then he deems c infinitely
more likely than c′; as well as expresses common belief in the event that his
opponents’ are cautious and respect their opponents’ preferences. A standard
tool to model infinitely-more-likely relations are lexicographic beliefs.3 Loosely
speaking, a reasoner is then said to be cautious, if for every opponent each of his
choices occur in the support of the probability distribution of some lexicographic
level of the reasoner’s lexicographic belief. Hence, all opponents’ choices receive
positive probability somewhere in a cautious lexicographic belief.

In the sense of modeling cautious reasoning that considers all choices includ-
ing irrational ones, proper rationalizability and utility proportional beliefs are
similar concepts. However, on the one hand, utility proportional beliefs can be
viewed as a milder version than proper rationalizability, since the former assigns
substantial, infinitesimal positive probability to any choice including non-optimal
ones, while the latter assigns infinitesimal probabilities to non-optimal choices.
On the other hand, the two concepts can be viewed as opposite ways of cau-
tious reasoning, since utility proportional beliefs reflects the utility differences of
choices, while proper rationalizability treats all non-optimal choices as infinitely
less likely than optimal choices. Moreoever, on the purely formal level both ways

3 Given some set W a lexicographic belief is a finite sequence ρ = (ρ1, ρ2, . . . , ρK) of
probability distributions such that ρk ∈ ∆(W ) for all k ∈ {1, 2, . . . , K}.
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of cautious reasoning are distinct, as utility proportional beliefs employs stan-
dard beliefs, whereas proper rationalizability models lexicographically minded
agents.

8 Conclusion

Utility proportional beliefs provides a basic and natural way of of reasoning in
games. The underlying intuitions that irrational choices should not be completely
neglected, and beliefs ought to reflect how good a player deems his opponents’
choices, seem plausible. The surprising property that the iterated elimination
of utility-disproportional-beliefs algorithm yields unique beliefs strengthens the
suitability of common belief in utility proportional beliefs to be used for descrip-
tions in games. Moreover, in various games of interest our concept matches well
intuition and experimental findings.

The idea of utility proportional beliefs opens up a new direction of research.
Naturally, the concept can be extended to dynamic games. Besides, the effects
of allowing uncertainty about the opponents’ λ’s can be studied. Moreover, ap-
plications of our epistemic concept to well-known games or economic problems
such as auctions might be highly interesting.
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