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Abstract. In games with incomplete information Bayesian equilibrium
constitutes the prevailing solution concept. We show that Bayesian equi-
librium generalizes correlated equilibrium from complete to incomplete
information. In particular, we provide an epistemic characterization of
Bayesian equilibrium as well as of correlated equilibrium in terms of
common belief in rationality and a common prior. Bayesian equilibrium
is thus not the incomplete information counterpart of Nash equilibrium.
To fill the resulting gap, we introduce the solution concept of generalized
Nash equilibrium as the incomplete information analogue to Nash equi-
librium, and show that it is more restrictive than Bayesian equilibrium.
Besides, we propose a simplified tool to compute Bayesian equilibria.
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1 Introduction

In game theory solution concepts are proposed for different classes of games to
reduce the set of possible outcomes according to some decision-making crite-
rion. The most basic class of games is static and exhibits complete information.
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A game is static if every player only chooses once in ignorance of the choices
made by the opponents. According to the assumption of complete information,
the payoffs of each player are transparent to his opponents. Indeed, the payoff
structure of the game is supposed to be commonly known among the players.

For the class of static games with complete information, some of the most
prevalent solution concepts are Nash’s (1950) and (1951) equilibrium, Aumann’s
(1974) and (1987) correlated equilibrium, as well as Bernheim’s (1984) and
Pearce’s (1984) rationalizability. Intuitively, Nash equilibrium requires the play-
ers’ strategies to be mutually best responses. In terms of reasoning, the crucial
ingredient is some correct-beliefs assumption, as the epistemic analysis of Nash
equilibrium has shown (Aumann and Brandenburger, 1995; Polak, 1999; Perea,
2007; Barelli, 2009; Bach and Tsakas, 2014; Bonanno, 2017). Correlated equi-
librium embeds a best response property in an information structure modelling
strategic uncertainty. Aumann (1987) provides an epistemic foundation for cor-
related equilibrium in terms of universal rationality and a common prior. Also,
Brandenburger and Dekel (1987) characterize a variant of correlated equilibrium
without a common prior – a posteriori equilibrium – by common knowledge
of rationality. Rationalizability iteratively deletes choices that fail to satisfy a
best response requirement. From an epistemic perspective, rationalizability cor-
responds to common belief in rationality (Brandenburger and Dekel, 1987; Tan
and Werlang, 1988). Note that for the general case of admitting correlated be-
liefs, rationalizability coincides with iterated strict dominance, which iteratively
deletes choices that are strictly dominated. In terms of set inclusion the three so-
lution concepts can be ordered: Nash equilibrium implies correlated equilibrium,
which implies rationalizability. However, the converse does not hold.

In the more general class of games with incomplete information players face
uncertainty about the opponents’ utility functions. Harsanyi (1967-68) pioneered
the analysis of this class of games and proposed the solution concept of Bayesian
equilibrium. Intuitively, Bayesian equilibrium embeds a best-response property
in a type structure that determines the belief hierarchies on the players’ utility
functions derived from a common prior. While Bayesian equilibrium constitutes
the most prevalent solution concept for incomplete information games, more re-
cently, new solution concepts have been developed based on the non-equilibrium
complete information solution concepts of rationalizability due to Bernheim
(1984) and Pearce (1984). Notably, weak and strong ∆-rationalizability have
been introduced by Battigalli (2003) and further developed by Battigalli and
Siniscalchi (2003) and (2007), Battigalli et al. (2011), Battigalli and Prestipino
(2013), as well as Dekel and Siniscalchi (2015). Intuitively, ∆-rationalizability
concepts iteratively delete strategy utility pairs by some best response require-
ment, and allow for exogenous restrictions on the first-order beliefs. Different
incomplete information generalizations of rationalizability are Ely and Pȩski
(2006)’s interim rationalizability as well as Dekel et al. (2007)’s interim corre-
lated rationalizability, respectively. The essential difference to weak and strong
∆-rationalizability lies in fixing the belief hierarchies on utilities. Besides, gen-
eralized iterated strict dominance by Bach and Perea (2016) iteratively reduces
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decision problems by some strict dominance requirement. In terms of reasoning,
all of the incomplete information rationalizability and strict dominance solution
concepts essentially correspond to common belief in rationality.

Here, we give an epistemic characterization of Bayesian equilibrium in terms
of common belief in rationality and a common prior. For the specific case of com-
plete information, it is shown that the same conditions epistemically character-
ize correlated equilibrium. Thus, Bayesian equilibrium represents the incomplete
information analogue to correlated equilibrium. In particular, Bayesian equilib-
rium does not generalize Nash equilibrium to incomplete information. In fact,
Battigalli and Siniscalchi (2003) already point at this analogy between the so-
lution concepts of Bayesian equilibrium and correlated equilibrium, which we
prove formally from an epistemic perspective here. To fill the ensuing gap, we
then introduce a new solution concept – generalized Nash equilibrium – as a
direct generalization of Nash equilibrium from complete to incomplete informa-
tion. Besides, an epistemic characterization is given of the former in terms of
common belief in rationality and a simple belief hierarchy. Furthermore, the so-
lution concepts of generalized iterated strict dominance, Bayesian equilibrium,
and generalized Nash equilibrium can also be ordered in terms of set inclu-
sion: generalized Nash equilibrium implies Bayesian equilibrium, which implies
generalized iterated strict dominance. However, the converse does not hold. In
addition, we introduce the notion of simplified Bayesian equilibrium, which we
use to characterize the probability measures on choice utility combinations that
arise from Bayesian equilibrium. Simplified Bayesian equilibrium also serves as
a simple tool to identify Bayesian equilibria in specific games.

The table in Figure 1 classifies game-theoretic solution concepts in relation to
their epistemic conditions and the underlying informational assumptions, where
CBR denotes common belief in rationality and CPA denotes common prior
assumption. The classification builds on contributions from the literature as
well as on some of the results provided here. An enhanced understanding of the
relationship between solution concepts thus emerges.

First of all, the epistemic conditions of common belief in rationality character-
ize rationalizability and – if correlated beliefs are admitted – iterated strict dom-
inance (Brandenburger and Dekel, 1987; Tan and Werlang, 1988). In the more
general case of incomplete information common belief in rationality epistemically
characterizes the different ∆-rationalizability variants (Battigalli and Siniscalchi,
1999, 2002, and 2007; Battigalli et al., 2011; Battigalli and Prestipino, 2013) and
generalized iterated strict dominance (Bach and Perea, 2016). ∆-rationalizability
and generalized iterated strict dominance are thus the incomplete information
analogues to the complete information solution concepts of rationalizability and
iterated strict dominance.

Secondly, the epistemic conditions of common belief in rationality and a com-
mon prior characterize correlated equilibrium in the case of complete information
(Theorem 1) and Bayesian equilibrium in the case of incomplete information
(Theorem 2). It follows that Bayesian equilibrium constitutes the incomplete
information analogue to correlated equilibrium (Corollary 1).
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Epistemic Conditions Complete Information Incomplete Information

CBR Rationalizability ∆-Rationalizability

& &

Iterated Strict Dominance Generalized Iterated Strict Dominance

6⇓ / ⇑ 6⇓ / ⇑

CBR & CPA Correlated Equilibrium Bayesian Equilibrium

6⇓ / ⇑ 6⇓ / ⇑

CBR & Simple Belief Hierarchy Nash Equilibrium Generalized Nash Equilibrium

Fig. 1. Solution concepts for static games in relation to informational assumptions and
epistemic conditions. The relationship between the concepts in terms of behavioural
implication for complete and incomplete information, respectively, is also indicated.

Thirdly, common belief in rationality and a simple belief hierarchy charac-
terize Nash equilibrium in the case of complete information (Perea, 2012) and
generalized Nash equilibrium in the case of incomplete information (Theorem
5). Consequently, generalized Nash equilibrium represents the incomplete infor-
mation counterpart to Nash equilibrium.

For the three different epistemic conditions, the behavioural relationship be-
tween the solution concepts is also indicated. Indeed, Theorem 6 and Theorem
4 establish that optimal choice in a generalized Nash equilibrium implies opti-
mal choice in a Bayesian equilibrium, which in turn implies optimal choice in
∆-rationalizability and generalized iterated strict dominance, respectively. How-
ever, the converse does not hold (Remark 1 and Remark 3). In the specific case
of complete information these relationships apply between the analogous solu-
tion concepts of Nash equilibrium, correlated equilibrium, and rationalizability
as well as iterated strict dominance. Note that the relationships between the
solution concepts provided here are stated behaviourally. With a beliefs inter-
pretation of solution concepts in the sense that mixed choices are viewed as
beliefs, a behavioural comparison of solution concepts seems natural.

We proceed as follows. In Section 2, the epistemic framework for games with
incomplete information is set out. Section 3 restricts attention to complete in-
formation and provides an epistemic characterization of correlated equilibrium
in terms of common belief in rationality and a common prior. In Section 4,
Harsanyi’s seminal solution concept of Bayesian equilibrium is considered and
also epistemically characterized by common belief in rationality and a common
prior. A corollary establishing the equivalence of Bayesian equilibrium and cor-
related equilibrium directly follows. Besides, the notion of simplified Bayesian
equilibrium is introduced and used to characterize the probability measures on
choice utility combinations that arise from Bayesian equilibria. This tool sim-
plifies the computation of Bayesian equilibria in specific games. Furthermore, it
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is shown that Bayesian equilibrium is more restrictive than generalized iterated
strict dominance. In Section 5, the solution concept of generalized Nash equilib-
rium is introduced as the incomplete information analogue to Nash equilibrium,
and an epistemic characterization in terms of common belief in rationality and
a simple belief hierarchy is provided. It is also shown that generalized Nash
equilibrium is behaviourally more restrictive than Bayesian equilibrium. Finally,
Section 6 offers some concluding remarks.

2 Preliminaries

A game with incomplete information is modelled as a tuple Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
,

where I is a finite set of players, Ci denotes player i’s finite choice set, and the
finite set Ui contains player i’s utility functions. A utility function ui : ×j∈ICj →
R from Ui assigns a real number ui(c) to every choice combination c ∈ ×j∈ICj .
From the perspective of a single player there exist two basic sources of uncer-
tainty with respect to Γ . A player faces strategic uncertainty, i.e. what choices
his opponents make, as well as payoff uncertainty, i.e. what utility functions
represent the opponents’ preferences.

Reasoning in games is usually modelled by belief hierarchies about the un-
derlying space of uncertainty. Due to Harsanyi (1967-68) types can be used as
implicit representations of belief hierarchies. The notion of an epistemic model
provides the framework to formally describe reasoning in games.

Definition 1. Let Γ be a game with incomplete information. An epistemic
model of Γ is a tuple MΓ =

(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I

– Ti is a finite set of types,
– bi : Ti → ∆(C−i×T−i×U−i) assigns to every type ti ∈ Ti a probability mea-

sure bi[ti] on the set of opponents’ choice type utility function combinations.

Given a game and an epistemic model of it, belief hierarchies, marginal beliefs, as
well as marginal belief hierarchies can be derived from every type. For instance,
every type ti ∈ Ti induces a belief on the opponents’ choice combinations by
marginalizing the probability measure bi[ti] on the space C−i. Note that no
additional notation is introduced for marginal beliefs, in order to keep notation
as sparse as possible. It should always be clear from the context which belief
bi[ti] refers to.

Here, payoff uncertainty is treated symmetrically to strategic uncertainty.
As the latter only concerns the respective opponents’ choices, the former is
also defined with regard to the respective opponents’ utility functions only. Our
approach thus also follows Harsanyi’s (1967-68) model, in which a player’s payoff
uncertainty only concerns his opponents. However, the case of players being
uncertain about their own payoffs could be accommodated in Definition 1 by
extending the space of uncertainty for every player i ∈ I from C−i × T−i × U−i
to C−i×T−i× (×j∈IUj). Alternatively, a reasoner’s actual utility function could
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be defined as the expectation over the set Ui. This modelling choice does not
affect any of the subsequent results.

Since the epistemic model according to Definition 1 treats the sources of
uncertainty – choices and utilities – symmetrically, our approach differs from Ely
and Pȩski (2006) as well as Dekel et al. (2007). Indeed, the latter models formalize
incomplete information by fixing the belief hierarchies on the utilities before
reasoning about choice is considered. Besides, we follow a one-player perspective
approach, which considers game theory as an interactive extension of decision
theory. Accordingly, all epistemic concepts – including iterated ones – are defined
as mental states inside the mind of a single person. A one-player approach seems
natural in the sense that reasoning is formally represented by epistemic concepts
and any reasoning process prior to choice does indeed take place entirely within
the reasoner’s mind. Formally, this approach is parsimonious in the sense that
states, describing the beliefs of all players, do not have to be introduced.

Some further notions and notation are now introduced. For that purpose
consider a game Γ , an epistemic model MΓ of it, and fix two players i, j ∈ I
such that i 6= j.

A type ti ∈ Ti of i is said to deem possible some choice type utility function
combination (c−i, t−i, u−i) of his opponents, if bi[ti] assigns positive probability
to (c−i, t−i, u−i). Analogously, a type ti ∈ Ti deems possible some opponent type
tj ∈ Tj , if bi[ti] assigns positive probability to tj .

For each choice type utility function combination (ci, ti, ui), the expected
utility is given by

vi(ci, ti, ui) =
∑

c−i∈C−i

(
bi[ti](c−i) · ui(ci, c−i)

)
.

Intuitively, the common prior assumption in economics states that every
belief in models with multiple agents is derived from a single probability distri-
bution, the so-called common prior. In our framework all beliefs are furnished
by epistemic models. The common prior assumption thus imposes a condition
on epistemic models, which requires all beliefs to be derived from a single prob-
ability distribution on the basic space of uncertainty and the players’ types.

Definition 2. Let Γ be a game with incomplete information, and MΓ an epis-
temic model of it. The epistemic model MΓ satisfies the common prior assump-
tion, if there exists a probability measure ϕ ∈ ∆

(
×j∈I (Cj × Tj ×Uj)

)
such that

for every player i ∈ I, and for every type ti ∈ Ti it is the case that ϕ(ti) > 0 and

bi[ti](c−i, t−i, u−i) =
ϕ(ci, c−i, ti, t−i, ui, u−i)

ϕ(ci, ti, ui)

for all (ci, ui) ∈ Ci × Ui with ϕ(ci, ti, ui) > 0, and for all (c−i, t−i, u−i) ∈
C−i × T−i × U−i.

Accordingly, every type’s induced belief function obtains from a single probabil-
ity measure – the common prior – via Bayesian updating. Note that the common
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prior is defined on the full space of uncertainty, i.e. on the set of all the players’
choice type utility function combinations, while belief functions are defined on
the space of respective opponents’ choice type utility function combinations. The
common prior assumption could be interpreted by means of an interim stage set-
up, in which every player i ∈ I observes the triple (ci, ti, ui) on which he then
conditionalizes.

Intuitively, an optimal choice yields at least as much payoff as all other op-
tions, given what the player believes his opponents to choose as well as given his
utility function. Formally, optimality is a property of choices given a type utility
function pair.

Definition 3. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, i ∈ I some player, ui ∈ Ui some utility function for player i, and
ti ∈ Ti some type of player i. A choice ci ∈ Ci is optimal for the type utility
function pair (ti, ui), if

vi(ci, ti, ui) ≥ vi(c′i, ti, ui)

for all c′i ∈ Ci.

A player believes in rationality, if he only deems possible choice type utility
function triples – for each of his opponents – such that the choice is optimal for
the type utility function pair, respectively.

Definition 4. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, and i ∈ I some player. A type ti ∈ Ti believes in rationality, if
ti only deems possible choice type utility function combinations (c−i, t−i, u−i) ∈
C−i×T−i×U−i such that cj is optimal for (tj , uj) for every opponent j ∈ I \{i}.

Note that essentially belief in rationality imposes restrictions on the first two
layers of a player’s belief hierarchy, since the player’s belief about his opponents’
choices and utility functions as well as the player’s belief about his opponents’
beliefs about their respective opponents’ choices are affected.

The conditions on interactive reasoning can be taken to further layers in
belief hierarchies.

Definition 5. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, and i ∈ I some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti believes in rationality.
– A type ti ∈ Ti expresses k-fold belief in rationality for some k > 1, if ti

only deems possible types tj ∈ Tj for all j ∈ I \ {i} such that tj expresses
k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti expresses k-fold
belief in rationality for all k ≥ 1.

A player satisfying common belief in rationality entertains a belief hierarchy
in which the rationality of all players is not questioned at any level. Observe
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that if an epistemic model for every player only contains types that believe
in rationality, then every type also expresses common belief in rationality. This
fact is useful when constructing epistemic models with types expressing common
belief in rationality.

A type tj is called belief reachable from a type ti, if there exists a finite
sequence (t1, . . . , tN ) of types with N ∈ N, where tn+1 ∈ supp(bk[tn]) with k ∈ I
such that tn ∈ Tk, as well as t1 = ti and tN = tj for some players i, j ∈ I.
Intuitively, if a type tj is belief reachable from a type ti, the former is not
excluded in the interactive reasoning by the latter.

The following lemma ensures that belief reachability preserves common belief
in rationality.

Lemma 1. Let Γ be a game with incomplete information, MΓ an epistemic
model of it, i, j ∈ I some players, ti ∈ Ti a type of player i, and tj ∈ Tj a type
of player j. If ti expresses common belief in rationality and tj is belief reachable
from ti, then tj expresses common belief in rationality.

Proof. Assume that tj is belief reachable from ti in N > 1 steps, i.e. there exists
a finite sequence (t1, . . . , tN ) of types with tn+1 ∈ supp(bk[tn]) as well as t1 = ti
and tN = tj . Towards a contradiction suppose that tj does not express common
belief in rationality. Then, there exists k > 0 such that tj does not express k-fold
belief in rationality. However, as ti deems possible tj at the N -level of its induced
belief hierarchy, ti thus violates (N + k)-fold belief in rationality and a fortiori
common belief in rationality, a contradiction. �

The choice rule of rationality and the reasoning concept of common belief in
rationality together with a utility function define rational choice under common
belief in rationality.

Definition 6. Let Γ be a game with incomplete information, i ∈ I some player,
and ui ∈ Ui some utility function of player i. A choice ci ∈ Ci of player i is
rational for utility function ui under common belief in rationality, if there exists
an epistemic model MΓ of Γ with a type ti ∈ Ti of player i such that ci is
optimal for (ti, ui) and ti expresses common belief in rationality.

Note that rational choice under common belief in rationality imposes conditions
on choice utility function pairs. Besides, a choice ci is called rational for utility
function ui under common belief in rationality with a common prior, if there
exists an epistemic model MΓ of Γ satisfying the common prior assumption
and containing a type ti ∈ Ti of player i such that ci is optimal for (ti, ui) and
ti expresses common belief in rationality.

The formal framework for complete information games obtains as a special
case. Since payoff uncertainty vanishes, the sets Ui become singletons for every
player i ∈ I. Consequently, a game Γ =

(
I, (Ci)i∈I , (Ui)i∈I

)
is with complete

information, whenever | Ui |= 1 for all i ∈ I. Note that beliefs about payoffs
then become redundant and can be removed from the formal framework. Con-
sequently, the standard complete information case ensues with a game being
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represented by the tuple Γ =
(
I, (Ci)i∈I , (ui)i∈I

)
, where ui : ×j∈ICj → R is

player i’s utility function for every player i ∈ I, and an epistemic model of it by
the tuple MΓ =

(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I the belief func-

tion bi : Ti → ∆(C−i × T−i) assigns to every type ti ∈ Ti a probability measure
bi[ti] on the opponents’ choice type combinations. Accordingly, the formal defi-
nition of the concepts – common prior assumption, optimality, (common) belief
in rationality, rational choice for a given utility function under common belief in
rationality – can readily be applied to complete information.

3 Epistemic Characterization of Correlated Equilibrium

For static games with complete information the solution concept of correlated
equilibrium has been introduced by Aumann (1974) and given an epistemic foun-
dation in terms of universal rationality and a common prior by Aumann (1987).
Loosely speaking, in a correlated equilibrium each player’s choice is required to
satisfy a best response property given a probability measure on his opponents’
choice combinations derived from a common prior via Bayesian updating.

The notion of correlated equilibrium is embedded in the epistemic framework
of Aumann models, which describe the players’ knowledge and beliefs in terms
of information partitions.

Definition 7. Let Γ be a game with complete information. An Aumann model
of Γ is a tuple AΓ =

(
Ω, π, (Ii)i∈I , (σ̂i)i∈I

)
, where

– Ω is a finite set of all possible worlds,
– π ∈ ∆(Ω) is a common prior probability measure on the set of all possible

worlds,
– Ii is an information partition on Ω for every player i ∈ I such that π

(
Ii(ω)

)
>

0 for all ω ∈ Ω, where Ii(ω) denotes the cell of Ii containing ω,
– σ̂i : Ω → Ci is an Ii-measurable choice function for every player i ∈ I.

Note that the players’ beliefs in Aumann models are obtained via Bayesian
conditionalization on the common prior given a player’s information. More pre-
cisely, an event E ⊆ Ω consists of possible worlds, and player i’s belief in E

at a world ω is defined as bi(E,ω) := π
(
E | Ii(ω)

)
=

π
(
E∩Ii(ω)

)
π
(
Ii(ω)

) . Besides,

the Ii-measurability of σ̂i, i.e. σ̂i(ω) = σ̂i(ω
′) for all ω′ ∈ Ii(ω) and for all

ω ∈ Ω, ensures that i knows his own choice. In Aumann models the expected
utility of a choice ci of player i at a world ω is obtained as v̂i(ci, σ̂−i, ω) :=∑
ω′∈Ii(ω)

π(ω′)

π
(
Ii(ω)

) · ui(ci, σ̂−i(ω′)).
Within the framework of Aumann models the notion of correlated equilibrium

can now be formally defined as follows.

Definition 8. Let Γ be a game with complete information, and AΓ an Aumann
model of it with choice functions σ̂i : Ω → Ci for every player i ∈ I. The tuple
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(σ̂i)i∈I of choice functions constitutes a correlated equilibrium, if for every world
ω ∈ Ω, and for every player i ∈ I, it is the case that

v̂i
(
σ̂i(ω), σ̂−i, ω

)
≥ v̂i(ci, σ̂−i, ω)

for every choice ci ∈ Ci.

Intuitively, a choice function tuple constitutes a correlated equilibrium, if at ev-
ery world that receives positive probability by the common prior, for every player
the choice function specifies a best response given the common prior condition-
alized on the player’s information and given the opponents’ choice functions.

From a behavioural viewpoint it is ultimately of interest what choices a player
can make given a particular line of reasoning and decision-making fixed by spe-
cific epistemic assumptions or by a specific solution concept. The notion of op-
timal choice in a correlated equilibrium is thus defined next.

Definition 9. Let Γ be a game with complete information, and i ∈ I some
player. A choice ci ∈ Ci of player i is optimal in a correlated equilibrium, if
there exists an Aumann model AΓ of Γ such that the tuple (σ̂i)i∈I constitutes a
correlated equilibrium and with some world ω ∈ Ω such that

v̂i
(
ci, σ̂−i, ω

)
≥ v̂i(c′i, σ̂−i, ω)

for all c′i ∈ Ci.

An epistemic characterization of correlated equilibrium in terms of common
belief in rationality and a common prior is now given.

Theorem 1. Let Γ be a game with complete information, i ∈ I some player,
and c∗i ∈ Ci some choice of player i. The choice c∗i is optimal in a correlated
equilibrium, if and only if, the choice c∗i is rational under common belief in
rationality with a common prior.

Proof. For the only if direction of the theorem, suppose that c∗i is optimal in a
correlated equilibrium. Let AΓ be an Aumann model and (σ̂j)j∈I a correlated
equilibrium, in which c∗i is optimal. For every player j ∈ I and for every cell Pj ∈
Ij of player j, let σ̂j(Pj) := σ̂j(ω

′) for some ω′ ∈ Pj denote j’s choice across all
worlds in the cell, which is well-defined by Ij-measurability of the choice function

σ̂j . Construct an epistemic modelMΓ of Γ , with type sets Tj := {tPj

j : Pj ∈ Ij}
for every player j ∈ I, a probability measure ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
such that

ϕ
(
(cj , t

Pj

j )j∈I
)

:=

{
π(∩j∈IPj), if cj = σ̂j(Pj) for all j ∈ I,
0, otherwise,

and for every player j ∈ I induced belief functions bj : Tj → ∆(C−j ×T−j) such

that for every type t
Pj

j ∈ Tj

bj [t
Pj

j ](c−j , t
P−j

−j ) :=

{
π(∩k∈IPk)
π(Pj)

, if ck = σ̂k(Pk) for all k 6= j,

0, otherwise,
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for all (c−j , t
P−j

−j ) ∈ C−j × T−j .
Next it is shown that MΓ satisfies the common prior assumption, by estab-

lishing that for all j ∈ I and t
Pj

j ∈ Tj , it is the case that

bj [t
Pj

j ](c−j , t
P−j

−j ) =
ϕ
(
cj , t

Pj

j , c−j , t
P−j

−j
)

ϕ
(
cj , t

Pj

j

)
for all cj ∈ Cj with ϕ(cj , t

Pj

j ) > 0, and for all (c−j , t
P−j

−j ) ∈ C−j×T−j . Note that

ϕ(cj , t
Pj

j ) > 0 only holds if cj = σ̂j(Pj). It thus has to be established that

bj [t
Pj

j ](c−j , t
Pj

−j) =
ϕ
((
σ̂j(Pj), t

Pj

j

)
, (c−j , t

Pj

−j)
)

ϕ
(
σ̂j(Pj), t

Pj

j

)
for all (c−j , t

P−j

−j ) ∈ C−j × T−j and for all t
Pj

j ∈ Tj . Consider some Pj ∈ Ij and
distinguish two cases (I) and (II).

Case (I). Suppose that Pj ∩ (∩k∈I\{j}Pk) 6= ∅ and ck = σ̂k(Pk) for all k ∈
I \ {j}. Observe that

bj [t
Pj

j ](c−j , t
P−j

−j ) = bj [t
Pj

j ](σ̂−j(P−j), t
P−j

−j ) =
π(∩l∈IPl)
π(Pj)

=
ϕ
(
σ̂j(Pj), t

Pj

j , σ̂−j(P−j), t
P−j

−j
)∑

P̂−j∈I−j
π
(
Pj ∩ (∩k∈I\{j}P̂k)

)
=

ϕ
(
σ̂j(Pj), t

Pj

j , σ̂−j(P−j), t
P−j

−j
)

∑
P̂−j∈I−j

ϕ
(
σ̂j(Pj), t

Pj

j , σ̂−j(P̂−j), t
P̂−j

−j
)

=
ϕ
(
σ̂j(Pj), t

Pj

j , σ̂−j(P−j), t
P−j

−j
)∑

(c−j ,t−j)∈C−j×T−j
ϕ
(
σ̂j(Pj), t

Pj

j , c−j , t−j
)

=
ϕ
(
σ̂j(Pj), t

Pj

j , σ̂−j(P−j), t
P−j

−j
)

ϕ
(
σ̂j(Pj), t

Pj

j

) .

Case (II). Suppose that Pj ∩ (∩k∈I\{j}Pk) = ∅ or ck 6= σ̂k(Pk) for some
k ∈ I \ {j}. Then,

bj [t
Pj

j ](c−j , t
P−j

−j ) = 0 =
ϕ
(
σ̂j(Pj), t

Pj

j , c−j , t
P−j

−j
)

ϕ
(
σ̂j(Pj), t

Pj

j

)
holds by definition. Hence, MΓ satisfies the common prior assumption.

Fix some world ω ∈ Ω, some player j ∈ J , and some type t
Pj

j ∈ Tj of player j

such that ω ∈ Pj . Then, v̂j
(
σ̂j(ω), σ̂−j , ω

)
≥ v̂j(cj , σ̂−j , ω) holds for all cj ∈ Cj
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by correlated equilibrium. For every world ω ∈ Pj and for every choice cj ∈ Cj
observe that

uj(cj , t
Pj

j ) =
∑

(c−j ,t
P−j
−j )∈C−j×T−j

bj [t
Pj

j ](c−j , t
P−j

−j ) · uj(cj , c−j)

=
∑

P−j∈I−j

π
(
Pj ∩ (∩k∈I\{j}Pk)

)
π(Pj)

· uj
(
cj , σ̂−j(P−j)

)
=
∑
ω′∈Pj

π(ω′)

π(Pj)
· uj
(
cj , σ̂−j(ω

′)
)

= v̂j(cj , σ̂−j , ω).

Since v̂j
(
σ̂j(Pj), σ̂−j , ω

)
≥ v̂j(cj , σ̂−j , ω) for all cj ∈ Cj , it follows that uj

(
σ̂j(Pj), t

Pj

j

)
≥

uj(cj , t
Pj

j ) for all cj ∈ Cj , and hence σ̂j(Pj) is optimal for t
Pj

j . As every type in

MΓ only assigns positive probability to such choice type pairs
(
σ̂k(Pk), tPk

k

)
∈

Ck × Tk, where the choice is optimal for the type, every type in MΓ expresses
common belief in rationality.

Now consider the choice c∗i of player i. Because c∗i is optimal in the corre-
lated equilibrium (σ̂j)j∈I , there exists a world ω ∈ Ω such that v̂i(c

∗
i , σ̂−i, ω) ≥

v̂i(ci, σ̂−i, ω) for all ci ∈ Ci. Let Pi ∈ Ii such that ω ∈ Pi. Then, ui(c
∗
i , t

Pi
i ) ≥

ui(ci, t
Pi
i ) for all ci ∈ Ci. Since MΓ satisfies the common prior assumption and

tPi
i expresses common belief in rationality, c∗i is rational under common belief in

rationality with a common prior.
For the if direction of the theorem, suppose that c∗i is rational under com-

mon belief in rationality with a common prior. Let MΓ be an epistemic model
satisfying the common prior assumption with probability measure ϕ ∈ ∆

(
×j∈I

(Cj × Tj)
)
, t∗i ∈ Ti be a type of player i in MΓ such that c∗i is optimal for t∗i

and t∗i expresses common belief in rationality. Moreover, let T̂ (t∗i ) be the set of
types reachable from t∗i . Construct an Aumann model AΓ of Γ , with set of all
possible worlds

Ω := {ω(cj ,tj)j∈I : tj ∈ T̂ (t∗i ) for all j ∈ I and ϕ
(
(cj , tj)j∈I

)
> 0},

common prior π ∈ ∆(Ω) such that

π(ω(cj ,tj)j∈I ) :=
ϕ
(
(cj , tj)j∈I

)
ϕ
(
{(c′j , t′j)j∈I | t′j ∈ T̂ (t∗i ) for all j}

)
for all ω(cj ,tj)j∈I ∈ Ω, information partition

Ij(ω(cj ,tj ,c−j ,t−j))

= {ω(cj ,tj ,c
′
−j ,t

′
−j) : (c′−j , t

′
−j) ∈ C−j×T−j , t′k ∈ T̂ (t∗i ) for all k ∈ I\{j}, and ϕ(cj , tj , c

′
−j , t

′
−j) > 0}
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for all ω(cj ,tj ,c−j ,t−j) ∈ Ω and for all j ∈ I, as well as choice function σ̂j : Ω → Cj
such that

σ̂j
(
ω(cj ,tj)j∈I

)
:= cj

for all ω(cj ,tj)j∈I ∈ Ω and for all j ∈ I.

Consider some world ω(cj ,tj)j∈I ∈ Ω and some choice c′j ∈ Cj . Then,

v̂j
(
c′j , σ̂−j , ω

(cj ,tj)j∈I
)

=
∑

ω′∈Ij
(
ω(cj,tj)j∈I

) π(ω′)

π
(
Ij
(
ω(cj ,tj)j∈I

)) · uj(c′j , σ̂−j(ω′))

=
∑

(c′−j ,t
′
−j)∈C−j×T−j :ϕ(cj ,tj ,c′−j ,t

′
−j)>0 and t′k∈T̂ (t∗i ) for all k∈I\{j}

ϕ(cj , c
′
−j , tj , t

′
−j)

ϕ(cj , tj)
·uj(c′j , c′−j)

=
∑

(c′−j ,t
′
−j)∈C−j×T−j :bj [tj ](c′−j ,t

′
−j)>0

bj [tj ](c
′
−j , t

′
−j) · uj(c′j , c′−j)

= uj(c
′
j , tj),

where the third equality follows from the fact that MΓ satisfies the common
prior assumption. By construction of Ω, it is the case that tj ∈ T̂ (t∗i ). Since

ϕ(cj , tj) > 0, there exists a type tk ∈ T̂ (t∗i ) such that bk[tk](cj , tj) > 0. As
t∗i expresses common belief in rationality and thus, by Lemma 1, tk expresses
common belief in rationality, tk believes in j’s rationality. Hence

uj(cj , tj) ≥ uj(c′j , tj)

for all c′j ∈ Cj . As uj(c
′
j , tj) = v̂j

(
c′j , σ̂−j , ω

(cj ,tj)j∈I
)

for all c′j ∈ Cj , it follows
that

v̂j

(
σ̂j
(
ω(cj ,tj)j∈I

)
, σ̂−j , ω

(cj ,tj)j∈I
)

= v̂j
(
cj , σ̂−j , ω

(ck,tk)k∈I
)

= uj(cj , tj)

≥ uj(c′j , tj) = v̂j
(
c′j , σ̂−j , ω

(cj ,tj)j∈I
)

holds for all c′j ∈ Cj , and thus (σ̂j)j∈I constitutes a correlated equilibrium.

As c∗i is optimal for t∗i , it is the case that ui(c
∗
i , t
∗
i ) ≥ ui(ci, t∗i ) for all ci ∈ Ci.

Consider the world ω(ci,t
∗
i ,c−i,t−i) ∈ Ω for some ci ∈ Ci and for some (c−i, t−i) ∈

C−i × T−i. Then,

v̂i
(
c∗i , σ̂−i, ω

(ci,t
∗
i ,c−i,t−i)

)
= ui(c

∗
i , t
∗
i ) ≥ ui(ci, t∗i ) = v̂i(ci, σ̂−i, ω

(ci,t
∗
i ,c−i,t−i))

holds for all ci ∈ Ci. Therefore, c∗i is optimal in the correlated equilibrium
(σ̂j)j∈I . �
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From an epistemic perspective correlated equilibrium is thus behaviourally equiv-
alent to rational choice under common belief in rationality with a common prior.
Note that Theorem 1 provides an epistemic characterization – both only if and if
directions – of correlated equilibrium, whereas Aumann (1987, Main Theorem)
constitutes an epistemic foundation – if direction – for correlated equilibrium.
In fact, the if direction of our characterization is weaker than Aumann’s (1987,
Main Theorem), which gives an epistemic foundation for correlated equilibrium
in terms of universal rationality and Bayesian conditionalization on a common
prior. More precisely, Aumann (1987) assumes that players are rational at all
possible worlds, which is significantly stronger than common belief in rationality.
Intuitively, in Aumann’s (1987) model no irrationality in the system is admitted
at all. Besides, in comparison to the reasoning assumptions underlying Nash’s
(1950) and (1951) notion of equilibrium, correlated equilibrium crucially differs.
Indeed, according to the epistemic analysis of Nash equilibrium (cf. Aumann and
Brandenburger, 1995; Polak, 1999; Perea, 2007; Barelli, 2009; Bach and Tsakas,
2014; Bonanno, 2017) the decisive epistemic property of Nash equilibrium is
some correctness of beliefs assumption. In contrast, no correctness of beliefs as-
sumption whatsoever is needed – neither in Aumann (1987, Main Theorem) nor
in Theorem 1 – for correlated equilibrium.

4 Bayesian Equilibrium

4.1 Definition of Bayesian Equilibrium

The standard solution concept for static games with incomplete information is
due to Harsanyi (1967-68). Before formally defining the so-called Bayesian equi-
librium, Harsanyi’s framework for incomplete information games is presented.

Definition 10. Let Γ be a game with incomplete information. A Harsanyi model
of Γ is a tuple HΓ =

(
(Hi)i∈I , π, (ũi)i∈I , (σ̃i)i∈I

)
, where

– Hi is a finite set of Harsanyi types for every player i ∈ I,
– π ∈ ∆(×j∈IHj) is a common prior probability measure on the set of all

Harsanyi type combinations ×j∈IHj,
– ũi : Hi → Ui assigns a utility function to every Harsanyi type hi ∈ Hi for

every player i ∈ I,
– σ̃i : Hi → ∆(Ci) is a mixed choice function for every player i ∈ I.

Note that mixed choices are considered in Harsanyi models. For the Harsanyi
types of the players the utility functions from the underlying game can then be
extended in the usual way from pure to mixed choices. Indeed, given a Harsanyi
type hi ∈ Hi and an opponents’ mixed choice combination σ−i ∈ ×j∈I\{i}∆(Cj),
the utility of i’s mixed choice σ̃i[hi] is denoted by

w̃i(σ̃i[hi], σ−i, hi) :=
∑
ci∈Ci

∑
c−i∈C−i

σ̃i[hi](ci) · σ−i(c−i) · ũi[hi](ci, c−i).
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In the case of pure choices – which are degenerate mixed choices – the utility
for player i simplifies to w̃i

(
ci, σ−i, hi

)
:=
∑
c−i∈C−i

σ−i(c−i) · ũi[hi](ci, c−i) for
every pure choice ci ∈ Ci. Moreover, players are assumed to be Bayesian and
form their beliefs by conditioning the common prior on their respective Harsanyi
types. Thus the belief of a given Harsanyi type hi on his opponents’ Harsanyi

type combinations is given by π(h−i | hi) = π(hi,h−i)
π(hi)

for all h−i ∈ H−i, if

π(hi) > 0. Consequently, given a Harsanyi type hi, the expected utility of a
mixed choice σ̃i[hi] is obtained as ṽi(σ̃i[hi], σ̃−i, hi) =

∑
h−i∈H−i

π(h−i | hi) ·
w̃i(σ̃i[hi], σ̃−i[h−i], hi). Also, given a Harsanyi type hi ∈ Hi, a utility function
ui ∈ Ui, and a choice ci ∈ Ci, the utility of ci is defined by ṽi(ci, σ̃−i, hi, ui) :=∑
h−i∈H−i

π(h−i | hi) · ui(ci, σ̃−i[h−i]), where ui may be different from ũi[hi].

Besides, given a utility function ui ∈ Ui, the set Hi[ui] := {hi ∈ Hi : ũi[hi] = ui}
contains those Harsanyi types of player i that induce ui.

Within the formal structure provided by Definition 10 the notion of Bayesian
equilibrium can be defined as follows.

Definition 11. Let Γ be a game with incomplete information, and HΓ a Harsanyi
model of it with mixed choice function σ̃i : Hi → ∆(Ci) for every player i ∈ I.
The tuple (σ̃i)i∈I of mixed choice functions constitutes a Bayesian equilibrium,
if for every player i ∈ I and for every Harsanyi type hi ∈ Hi of player i such
that π(hi) > 0 it is the case that

ṽi(σ̃i[hi], σ̃−i, hi) ≥ ṽi(ci, σ̃−i, hi)

for all ci ∈ Ci.

Intuitively, a profile of mixed choice functions is called Bayesian equilibrium, if
every choice is a best response to the Bayesian beliefs induced by the underlying
Harsanyi types. Note that the universal quantifier in the defining condition for
Bayesian equilibrium only runs over all pure choices of the respective player. It
can be dispensed with mixed choices here without loss of generality, as mixed
choices can never obtain a higher payoff than the best pure choice.

In order to behaviourally relate decision-making in line with the solution
concept of Bayesian equilibrium to decision-making in line with the reasoning
concept of common belief in rationality, optimal choice in a Bayesian equilibrium
is defined next.

Definition 12. Let Γ be a game with incomplete information, i ∈ I a player,
and ui ∈ Ui some utility function of player i. A choice ci ∈ Ci of player i
is optimal for the utility function ui in a Bayesian equilibrium, if there exists
a Harsanyi model HΓ of Γ such that the tuple (σ̃i)i∈I constitutes a Bayesian
equilibrium and with some Harsanyi type hi of player i such that π(hi) > 0 and
ṽi(ci, σ̃−i, hi, ui) ≥ ṽi(c′i, σ̃−i, hi, ui) for all c′i ∈ Ci.

4.2 Epistemic Characterization of Bayesian Equilibrium

Harsanyi’s solution concept for incomplete information games can be analyzed
in terms of the players’ reasoning. In fact, it turns out that Bayesian equilibrium
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can be epistemically characterized in terms of common belief in rationality and
the common prior assumption.

Theorem 2. Let Γ be a game with incomplete information, i ∈ I a player,
u∗i ∈ Ui a utility function of player i, and c∗i ∈ Ci a choice of player i. The
choice c∗i is optimal for the utility function u∗i in a Bayesian equilibrium, if
and only if, c∗i is rational for the utility function u∗i under common belief in
rationality with a common prior.

Proof. For the only if direction of the theorem, consider a Bayesian equilibrium
(σ̃i)i∈I in some Harsanyi model HΓ =

(
(Hi)i∈I , π, (ũi)i∈I , (σ̃i)i∈I

)
of Γ . Con-

struct an epistemic model MΓ =
(
(Ti)i∈I , (bi)i∈I

)
of Γ such that Ti := {thi

i :
hi ∈ Hi and π(hi) > 0} for every player i ∈ I, and

bi[t
hi
i ](c−i, t

h−i

−i , u−i) :=

{
π(h−i | hi) ·Πj∈I\{i}σ̃j [hj ](cj), if uj = ũj [hj ] for all j ∈ I \ {i},
0, otherwise,

for every type thi
i ∈ Ti and for every player i ∈ I.

It is first shown thatMΓ satisfies the common prior assumption. Define the
probability measure ϕ ∈ ∆

(
×j∈I (Cj × Tj × Uj)

)
by

ϕ
(
(cj , t

hj

j , uj)j∈I
)

:=

{
π
(
(hj)j∈I

)
·Πj∈I σ̃j [hj ](cj), if uj = ũj [hj ] for all j ∈ I,

0, otherwise,

for all (cj , t
hj

j , uj)j∈I ∈ ×j∈I(Cj × Tj × Uj). It thus has to be established that

bj [t
hj

j ](c−j , t
h−j

−j , u−j) =
ϕ(cj , c−j , t

hj

j , t
h−j

−j , uj , u−j)

ϕ(cj , t
hj

j , uj)

for all t
hj

j ∈ Tj and for all (cj , uj) ∈ Cj × Uj with ϕ(cj , t
hj

j , uj) > 0. Consider

some t
hj

j ∈ Tj and distinguish two cases (I) and (II).
Case (I). Suppose that uk = ũk[hk] for all k ∈ I \ {j}. Observe that

bj [t
hj

j ](c−j , t
h−j

−j , u−j) = π(h−j | hj) ·Πk∈I\{j}σ̃k[hk](ck)

=
π(hj , h−j)

π(hj)
·Πk∈I\{j}σ̃k[hk](ck)

for all (c−j , t
h−j

−j , u−j) ∈ C−j × T−j × U−j . Take some (cj , uj) ∈ Cj × Uj such

that ϕ(cj , t
hj

j , uj) > 0. Then, σ̃j [hj ](cj) > 0 and uj = ũj [hj ]. It follows that

π(hj , h−j)

π(hj)
·Πk∈I\{j}σ̃k[hk](ck)

=
π(hj , h−j) · σ̃j [hj ](cj) ·Πk∈I\{j}σ̃k[hk](ck))

π(hj) · σ̃j [hj ](cj)
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=
ϕ(cj , c−j , t

hj

j , t
h−j

−j , uj , u−j)

ϕ(cj , t
hj

j , uj)

for all h−j ∈ H−j . Hence,

bj [t
hj

j ](c−j , t
h−j

−j , u−j) =
ϕ(cj , c−j , t

hj

j , t
h−j

−j , uj , u−j)

ϕ(cj , t
hj

j , uj)
.

Case (II). Suppose that uk 6= ũk[hk] for some k ∈ I \ {j}. Then,

bj [t
hj

j ](c−j , t
h−j

−j , u−j) = 0 =
ϕ(cj , c−j , t

hj

j , t
h−j

−j , uj , u−j)

ϕ(cj , t
hj

j , uj)

holds for all (c−j , t
h−j

−j , u−j) ∈ C−j × T−j × U−j , for all t
hj

j ∈ Tj , and for all

(cj , uj) ∈ Cj × Uj with ϕ(cj , t
hj

j , uj) > 0 by definition. Therefore, MΓ satisfies
the common prior assumption.

Next, it is shown that every type in the epistemic modelMΓ believes in the

opponents’ rationality. For every player j ∈ I, for every type t
hj

j ∈ Tj , and for
every choice combination c−j ∈ C−j , it is the case that

bj [t
hj

j ](c−j) =
∑

(t
h−j
−j ,u−j)∈T−j×U−j

bj [t
hj

j ](c−j , t
h−j

−j , u−j)

=
∑

h−j∈H−j

π(h−j | hj) ·Πk∈I\{j}σ̃k[hk](ck) = π(c−j | hj).

Hence for every choice cj ∈ Cj and for every utility function uj ∈ Uj ,

ṽj(cj , σ̃−j , hj , uj) =
∑

c−j∈C−j

π(c−j | hj) · uj(cj , c−j)

=
∑

c−j∈C−j

bj [t
hj

j ](c−j) · uj(cj , c−j) = vj(cj , t
hj

j , uj)

holds. Let j ∈ I be some player and t
hj

j ∈ Tj some type of player j. Consider some
opponent k ∈ I \ {j} of player j, and suppose some choice type utility function

triple (ck, t
hk

k , uk) ∈ Ck × Tk × Uk of player k such that bj [t
hj

j ](ck, t
hk

k , uk) > 0.
Then, π(hk | hj) > 0, σ̃k[hk](ck) > 0, and ũk[hk] = uk. As σ̃k is part of a
Bayesian equilibrium with Harsanyi type hk, the choice ck is optimal for hk and
ũk[hk] = uk. Hence, ṽk(ck, σ̃−k, hk, uk) ≥ ṽk(c′k, σ̃−k, hk, uk) for all c′k ∈ Ck.

Consequently, vk(ck, t
hk

k , uk) ≥ vk(c′k, t
hk

k , uk) for all c′k ∈ Ck, and ck is optimal

for (thk

k , uk). Thus, tj believes in k’s rationality. Hence, all types in the epistemic
model MΓ believe in the opponents’ rationality, and therefore all types also
express common belief in rationality.
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Now, consider the choice c∗i , which is optimal for the utility function u∗i in
the Bayesian equilibrium (σ̃j)j∈I . Then, there exists hi ∈ Hi with π(hi) > 0
such that ṽi(c

∗
i , σ̃−i, hi, u

∗
i ) ≥ ṽi(ci, σ̃−i, hi, u

∗
i ) for all ci ∈ Ci. Consequently,

vi(c
∗
i , t

hi
i , u

∗
i ) ≥ vi(ci, t

hi
i , u

∗
i ) for all ci ∈ Ci, and c∗i is optimal for (thi

i , u
∗
i ).

Since thi
i expresses common belief in rationality and MΓ satisfies the common

prior assumption, c∗i is rational for u∗i under common belief in rationality with
a common prior.

For the if direction of the theorem, letMΓ be an epistemic model of Γ with
a common prior ϕ ∈ ∆

(
×j∈I (Cj ×Tj ×Uj)

)
and a type t∗i ∈ Ti of player i such

that c∗i is optimal for t∗i and u∗i and t∗i expresses common belief in rationality.
Construct a Harsanyi model HΓ =

(
(Hj)j∈I , π, (ũj)j∈I , (σ̃j)j∈I

)
of Γ such that

Hj := {h(cj ,tj ,uj)
j : tj ∈ T̂ (t∗i ) and ϕ(cj , tj , uj) > 0} for all j ∈ I, where

π
((
h
(cj ,tj ,uj)
j

)
j∈I

)
:=

ϕ
(
(cj , tj , uj)j∈I

)
ϕ
(
{(cj , tj , uj)j∈I : tj ∈ T̂ (t∗i ) for all j ∈ I}

)
for all

(
h
(cj ,tj ,uj)
j

)
j∈I ∈ ×j∈IHj , and ũj

(
h
(cj ,tj ,uj)
j

)
:= uj as well as σ̃j

(
h
(cj ,tj ,uj)
j

)
:=

cj for all h
(cj ,tj ,uj)
j ∈ Hj and for all j ∈ I.

Let j ∈ I be some player and h
(cj ,tj ,uj)
j ∈ Hj some Harsanyi type of player

j such that π
(
h
(cj ,tj ,uj)
j

)
> 0. Hence, ϕ(cj , tj , uj) > 0 and there exists a type

tk ∈ T̂ (t∗i ) such that bk[tk](cj , tj , uj) > 0. As t∗i expresses common belief in
rationality and thus, by Lemma 1, tk expresses common belief in rationality, tk
believes in j’s rationality. Hence cj is optimal for (tj , uj).

For all c′j ∈ Cj and for all u′j ∈ Uj it is the case that

ṽj
(
c′j , σ̃−j , h

(cj ,tj ,uj)
j , u′j

)
=

∑
h
(c−j ,t−j ,u−j)

−j ∈H−j

π
(
h
(c−j ,t−j ,u−j)
−j | h(cj ,tj ,uj)

j

)
· u′j
(
c′j , σ̃−j [h

(c−j ,t−j ,u−j)]
)

=
∑

h
(c−j ,t−j ,u−j)

−j ∈H−j

π
(
h
(cj ,tj ,uj)
j , h

(c−j ,t−j ,u−j)
−j

)
π
(
h
(cj ,tj ,uj)
j

) · u′j(c′j , c−j)

=
∑

(c−j ,t−j ,u−j)∈C−j×T−j×U−j

ϕ(cj , c−j , tj , t−j , uj , u−j)

ϕ(cj , tj , uj)
· u′j(c′j , c−j)

=
∑

(c−j ,t−j ,u−j)∈C−j×T−j×U−j

bj [tj ](c−j , t−j , u−j) · u′j(c′j , c−j)

= vj(c
′
j , tj , u

′
j),

where the fourth equality follows from the fact that MΓ satisfies the common
prior assumption.
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As cj is optimal for (tj , uj), it follows that vj(cj , tj , uj) ≥ vj(c
′
j , tj , uj) for

all c′j ∈ Cj . Consequently, ṽj
(
cj , σ̃−j , h

(cj ,tj ,uj)
j , uj

)
≥ ṽj

(
c′j , σ̃−j , h

(cj ,tj ,uj)
j , uj

)
for all c′j ∈ Cj and for all h

(cj ,tj ,uj)
j ∈ Hj with π

(
h
(cj ,tj ,uj)
j

)
> 0. Hence, (σ̃j)j∈I

constitutes a Bayesian equilibrium.

Now consider some Harsanyi type h
(ci,t

∗
i ,ui)

i ∈ Hi of player i with π
(
h
(ci,t

∗
i ,ui)

i

)
>

0. As c∗i is optimal for t∗i and u∗i , observe that

ṽi
(
c∗i , σ̃−i, h

(ci,t
∗
i ,ui)

i , u∗i
)

= vi(c
∗
i , t
∗
i , u
∗
i )

≥ vi(c′i, t∗i , u∗i ) = ṽi
(
c′i, σ̃−i, h

(ci,t
∗
i ,ui)

i , u∗i
)

for all c′i ∈ Ci, where the inequality follows from the fact that c∗i is optimal
for (t∗i , u

∗
i ). Hence, c∗i is optimal for the utility function u∗i in the Bayesian

equilibrium (σ̃j)j∈I . �

Note that the epistemic conditions – common belief in rationality with a com-
mon prior – characterizing Bayesian equilibrium in Theorem 2 become precisely
the epistemic conditions characterizing correlated equilibrium in Theorem 1, if
attention is restricted to the class of complete information games. Consequently,
the solution concept of Bayesian equilibrium is behaviourally equivalent to the
solution concept of correlated equilibrium for games with complete information,
and the following corollary obtains directly.

Corollary 1. Let Γ be a game with complete information, i ∈ I a player, and
ci ∈ Ci a choice of player i. The choice ci is optimal in a Bayesian equilibrium,
if and only if, ci is optimal in a correlated equilibrium.

Conceptually, two consequences ensue from Theorem 2 and Corollary 1. Firstly,
no correctness of beliefs assumption whatsoever underlies the solution concept
of Bayesian equilibrium in terms of reasoning. This is in stark contrast to the
solution concept of Nash equilibrium, which crucially requires some correctness
of beliefs assumption, as the epistemic analysis of Nash equilibrium has revealed
(Aumann and Brandenburger, 1995; Polak, 1999; Perea, 2007; Barelli, 2009;
Bach and Tsakas, 2014). Secondly, Bayesian equilibrium constitutes a general-
ization of correlated equilibrium from complete to incomplete information. No-
tably, Bayesian equilibrium is not an incomplete information analogue of Nash
equilibrium.

4.3 Simplified Bayesian Equilibrium

In order to characterize the probability measures on choice utility combinations
induced by the solution concept of Bayesian equilibrium, the notion of simplified
Bayesian equilibrium is introduced. In particular, this simple tool can be used
to compute Bayesian equilibria in specific games.
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Definition 13. Let Γ be a game with incomplete information, and ρ ∈ ∆
(
×i∈I

(Ci×Ui)
)

a probability measure on the players’ choice utility function combina-
tions. The probability measure ρ constitutes a simplified Bayesian equilibrium,
if for all i ∈ I and for all (ci, ui) ∈ Ci × Ui such that ρ(ci, ui) > 0 it is the case
that ∑
(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui)·ui(ci, c−i) ≥
∑

(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui)·ui(c′i, c−i)

holds for all c′i ∈ Ci.

In order to relate simplified Bayesian equilibrium to Harsanyi’s solution con-
cept of Bayesian equilibrium, the notion of induced first-order measure needs
to be defined. Recall that for every player i ∈ I and for every utility function
ui ∈ Ui of player i, the set H[ui] contains those Harsanyi types of player i that
induce ui.

Definition 14. Let Γ be a game with incomplete information, and HΓ a Harsanyi
model of it. The induced first-order measure of HΓ is the probability measure
ρ ∈ ∆

(
×i∈I (Ci × Ui)

)
, where

ρ
(
(ci, ui)i∈I

)
:=

∑
(hi)i∈I∈×i∈IHi[ui]

π
(
(hi)i∈I

)
·Πi∈I σ̃i[hi](ci)

for all (ci, ui)i∈I ∈ ×i∈I(Ci × Ui).

The following result provides a direct characterization of the probability mea-
sures on choice utility combinations that can arise in a Bayesian equilibrium, in
terms of simplified Bayesian equilibrium.

Theorem 3. Let Γ be a game with incomplete information, and ρ ∈ ∆
(
×j∈I

(Cj ×Uj)
)

a probability measure on the players’ choice utility function combina-
tions. There exists a Harsanyi model HΓ of Γ with induced first-order product
measure ρ such that (σ̃i)i∈I constitutes a Bayesian equilibrium, if and only if, ρ
constitutes a simplified Bayesian equilibrium.

Proof. For the only if direction of the theorem, let (ci, ui) ∈ Ci×Ui be a choice
utility function pair of some player i ∈ I such that ρ(ci, ui) > 0. Then,

ρ(c−i, u−i | ci, ui) =
ρ
(
(ci, ui), (c−i, u−i)

)
ρ(ci, ui)

=

∑
(hj)j∈I∈×j∈IHj [uj ]

π
(
(hj)j∈I

)
·Πj∈I σ̃j [hj ](cj)∑

hi∈Hi[ui]
π(hi) · σ̃i[hi](ci)

=
∑

hi∈Hi[ui]

∑
h−i∈H−i[u−i]

π(hi, h−i) · σ̃i[hi](ci) ·Πj∈I\{i}σ̃j [hj ](cj)∑
h′i∈Hi[ui]

π(h′i) · σ̃i[h′i](ci)
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=
∑

hi∈Hi[ui]

( ∑
h−i∈H−i[u−i]

π(hi, h−i)

π(hi)
·Πj∈I\{i}σ̃j [hj ](cj)

)
·
( π(hi) · σ̃i[hi](ci)∑

h′i∈Hi[ui]
π(h′i) · σ̃i[h′i](ci)

)
=

∑
hi∈Hi[ui]

α(ci, hi) ·
∑

h−i∈H−i[u−i]

π(h−i | hi) ·Πj∈I\{i}σ̃j [hj ](cj)

for all (c−i, u−i) ∈ C−i × U−i, where α(ci, hi) := π(hi)·σ̃i[hi](ci)∑
h′
i
∈Hi[ui]

π(h′i)·σ̃i[h′i](ci)
for all

hi ∈ Hi[ui].
Hence, ∑

(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · u′i(c′i, c−i)

=
∑

(c−i,u−i)∈C−i×U−i

∑
hi∈Hi[ui]

α(ci, hi)
∑

h−i∈H−i[u−i]

π(h−i | hi)·Πj∈I\{i}σ̃j [hj ](cj)·u′i(c′i, c−i)

=
∑

hi∈Hi[ui]

∑
c−i∈C−i

∑
u−i∈U−i

∑
h−i∈H−i[u−i]

α(ci, hi)·π(h−i | hi)·Πj∈I\{i}σ̃j [hj ](cj)·u′i(c′i, c−i)

=
∑

hi∈Hi[ui]

∑
c−i∈C−i

∑
h−i∈H−i

α(ci, hi) · π(h−i | hi) ·Πj∈I\{i}σ̃j [hj ](cj) · u′i(c′i, c−i)

=
∑

hi∈Hi[ui]

α(ci, hi) · ṽi(c′i, σ̃−i, hi, u′i)

for all u′i ∈ Ui and for all c′i ∈ Ci. As (σ̃i)i∈I constitutes a Bayesian equilibrium,
ṽi(ci, σ̃−i, hi) ≥ ṽi(c

′
i, σ̃−i, hi) holds for all c′i ∈ Ci, if α(ci, hi) > 0. It follows

that ∑
(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(ci, c−i)

=
∑

hi∈Hi[ui]

α(ci, hi) · ṽi(ci, σ̃−i, hi)

≥
∑

hi∈Hi[ui]

α(ci, hi) · ṽi(c′i, σ̃−i, hi)

=
∑

(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(c′i, c−i)

for all (ci, ui) ∈ Ci × Ui with ρ(ci, ui) > 0 and for all c′i ∈ Ci. Therefore, ρ
constitutes a simplified Bayesian equilibrium.

For the if direction of the theorem, construct a Harsanyi model HΓ =(
(Hi)i∈I , π, (ũi)i∈I , (σ̃i)i∈I

)
of Γ , where

Hi := {h(ci,ui)
i : ρ(ci, ui) > 0}

for all i ∈ I,

π
((
h
(ci,ui)
i

)
i∈I

)
:= ρ

(
(ci, ui)i∈I

)
,
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ũi[h
(ci,ui)
i ] := ui

for all h
(ci,ui)
i ∈ Hi and for all i ∈ I, as well as σ̃i : Hi → ∆(Ci) such that

σ̃i[h
(ci,ui)
i ](ci) := 1

for all ci ∈ Ci, for all h
(ci,ui)
i ∈ Hi, and for all i ∈ I.

By the definition of the common prior π it follows that π
(
h
(c−i,u−i)
−i | h(ci,ui)

i

)
=

ρ(c−i, u−i | ci, ui) for all h
(ci,ui)
i ∈ Hi, and for all i ∈ I. Consider some Harsanyi

type h
(ci,ui)
i ∈ Hi. Since ρ is a simplified Bayesian equilibrium and ρ(ci, ui) > 0,

it is the case that ∑
(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(ci, c−i)

≥
∑

(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(c′i, c−i)

for all c′i ∈ Ci and for all i ∈ I.

For all i ∈ I, for all h
(ci,ui)
i ∈ Hi, for all c′i ∈ Ci, and for all u′i ∈ Ui, note

that
ṽi
(
c′i, σ̃−i, h

(ci,ui)
i , u′i

)
=

∑
(c−i,u−i)∈C−i×U−i:ρ(c−i,u−i)>0

π
(
h
(c−i,u−i)
−i | h(ci,ui)

i

)
· u′i
(
c′i, σ̃−i

(
h
(c−i,u−i)
−i

))
=

∑
(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · u′i(c′i, c−i).

Hence, for every Harsanyi type h
(ci,ui)
i ∈ Hi it follows that

ṽi

(
σ̃i
(
h
(ci,ui)
i

)
, σ̃−i, h

(ci,ui)
i

)
=

∑
(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(ci, c−i)

≥
∑

(c−i,u−i)∈C−i×U−i

ρ(c−i, u−i | ci, ui) · ui(c′i, c−i)

= ṽi
(
c′i, σ̃−i, h

(ci,ui)
i

)
for all c′i ∈ Ci. Consequently, (σ̃i)i∈I constitutes a Bayesian equilibrium. �

Due to Theorem 3, the notion of simplified Bayesian equilibrium can be of prac-
tical virtue, whenever Bayesian equilibria need to be determined. Indeed, sim-
plified Bayesian equilibria are easier to compute than Bayesian equilibria, and
can thus be used to identify the probability measures on choice utility combina-
tions that are possible in Bayesian equilibria. In particular, for applications in
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incomplete information games simplified Bayesian equilibrium could be a useful
tool. However, it follows from Bach and Perea (2017b) that simplified Bayesian
equilibrium and Bayesian equilibrium are not behaviourally equivalent. Besides,
note that for the special case of complete information the notion of simplified
Bayesian equilibrium is actually often employed as the definition of correlated
equilibrium.

The incomplete information notions of Bayesian equilibrium and simplified
Bayesian equilibrium, as well as the epistemic characterization of Bayesian equi-
librium are illustrated next.

Example 1. Consider a two player game with incomplete information between
Alice and Bob, where the choices sets are CAlice = {a, b, c} as well as CBob =
{d, e, f}, respectively, and the set of utility functions are given by UAlice =
{uA, u′A} as well as UBob = {uB , u′B}, respectively. In Figure 2, the utility func-
tions are spelled out in detail.

uA

d e f
a 3 2 1
b 2 1 3
c 0 0 0

u′
A

d e f
a 1 3 1
b 2 1 1
c 0 0 0

uB

a b c
d 3 2 1
e 2 1 3
f 0 0 0

u′
B

a b c
d 1 3 1
e 2 1 1
f 0 0 0

Fig. 2. Utility functions of Alice and Bob.

An interactive representation of the game is provided in Figure 3.

Alice (uA)

Bob (uB)
d e f

a 3, 3 2, 2 1, 0
b 2, 2 1, 1 3, 0
c 0, 1 0, 3 0, 0

Alice (uA)

Bob (u′
B)

d e f
a 3, 1 2, 2 1, 0
b 2, 3 1, 1 3, 0
c 0, 1 0, 1 0, 0

Alice (u′
A)

Bob (uB)
d e f

a 1, 3 3, 2 1, 0
b 2, 2 1, 1 1, 0
c 0, 1 0, 3 0, 0

Alice (u′
A)

Bob (u′
B)

d e f
a 1, 1 3, 2 1, 0
b 2, 3 1, 1 1, 0
c 0, 1 0, 1 0, 0

Fig. 3. Interactive representation of the two-player game with incomplete information
and utility functions as specified in Figure 2.

Suppose the Harsanyi model
(
(Hi)i∈I , π, (ũi)i∈I , (σ̃i)i∈I

)
of the game, where

– HAlice = {hA, h′A} and HBob = {hB , h′B},
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– π(hA, hB) = π(hA, h
′
B) = π(h′A, h

′
B) = 1

3 ,
– ũAlice[hA] = uA and ũAlice[h

′
A] = u′A,

– ũBob[hB ] = uB and ũBob[h
′
B ] = u′B ,

– σ̃Alice[hA] = a and σ̃Alice[h
′
A] = a,

– σ̃Bob[hB ] = d and σ̃Bob[h
′
B ] = e.

Observe that all four Harsanyi types induce choices that are optimal given the
respective Harsanyi type’s posterior belief and the type’s utility function, thus
the tuple of choice functions (σ̃Alice, σ̃Bob) constitute a Bayesian equilibrium.
Consequently, the choice a is optimal for the utility function uA and u′A in a
Bayesian equilibrium, the choice d is optimal for the utility function uB in a
Bayesian equilibrium, and the choice e is optimal for the utility function u′B in
a Bayesian equilibrium.

The induced first-order measure is ρ ∈ ∆(CAlice × CBob × UAlice × UBob)
such that ρ(a, d, uA, uB) = ρ(a, e, uA, u

′
B) = ρ(a, e, u′A, u

′
B) = 1

3 . Observe that a
is optimal for ρ(· | a, uA) and uA as well as for ρ(· | a, u′A) and u′A. Moreover,
d is is optimal for ρ(· | d, uB) and uB , as well as e is optimal for ρ(· | e, u′B)
and u′B . The induced first-order measure ρ thus constitutes a simplified Bayesian
equilibrium.

For the epistemic characterization of (σ̃Alice, σ̃Bob), consider the epistemic
model

(
(Ti)i∈I , (bi)i∈I

)
of the game with a common prior ϕ ∈ ∆(CAlice×CBob×

TAlice × TBob × UAlice × UBob), where

– TAlice = {tA, t′A},
– TBob = {tB , t′B},
– ϕ

(
(a, d), (tA, tB), (uA, uB)

)
= ϕ

(
(a, e), (tA, t

′
B), (uA, u

′
B)
)

= ϕ
(
(a, e), (t′A, t

′
B), (u′A, u

′
B)
)

=
1
3 ,

– bAlice[tA] = ϕ(· | a, tA, uA) = 1
2 · (d, tB , uB) + 1

2 · (e, t
′
B , u

′
B),

– bAlice[t
′
A] = ϕ(· | a, t′A, u′A) = (e, t′B , u

′
B),

– bBob[tB ] = ϕ(· | d, tB , uB) = (a, tA, uA),
– bBob[t

′
B ] = ϕ(· | e, t′B , u′B) = 1

2 · (a, tA, uA) + 1
2 · (a, t

′
A, u

′
A).

Observe that each of the four types in this epistemic model believes in the
opponents’ rationality, and thus each of them also expresses common belief in
rationality. Besides, a is optimal for (tA, uA) as well as for (t′A, u

′
A), d is optimal

for (tB , uB), and e is optimal for (t′B , u
′
B). ♣

4.4 Relationship between Generalized Iterated Strict Dominance
and Bayesian Equilibrium

Arguably, the most basic solution concepts for games with complete informa-
tion are iterated strict dominance as well as rationalizability (Bernheim, 1984
and Pearce, 1984), which are behaviourally equivalent for two-player games.
Due to Brandenburger and Dekel (1987) as well as Tan and Werlang (1988)
the corresponding epistemic conditions only require common belief in rational-
ity. Analogous solution concepts for games with incomplete information include
∆-rationalizability (Battigalli, 2003; Battigalli and Siniscalchi, 2003 and 2007;
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Battigalli et al., 2011, Battigalli and Prestipino, 2013; Dekel and Siniscalchi,
2015), interim rationalizability (Ely and Pȩski, 2006), interim correlated ratio-
nalizability (Dekel et al., 2007), as well as generalized iterated strict dominance
(Bach and Perea, 2016). Common belief in rationality has been formalized and
used in different forms for epistemic characterizations of the ∆-rationalizability
variants by Battigalli and Siniscalchi (1999), (2002), and (2007), Battigalli et
al. (2011), as well as Battigalli and Prestipino (2013), for interim correlated
rationalizability by Battigalli et al. (2011), and for generalized iterated strict
dominance by Bach and Perea (2016). Actually, the solution concepts of ∆-
rationalizability and generalized iterated strict dominance are more elementary
than interim rationalizability and interim correlated rationalizability in the sense
that the latter fix the players’ belief hierarchies on utilities while the former do
not. Besides note that ∆-rationalizability and generalized iterated strict domi-
nance are behaviourally equivalent, if ∆-rationalizability does not contain any
exogenous restrictions. Since the basic epistemic framework – i.e. the notions
of an epistemic model and common belief in rationality – used here is identi-
cal to Bach and Perea’s (2016) epistemic framework for the solution concept
of generalized iterated strict dominance, Bayesian equilibrium is now related to
generalized iterated strict dominance.

The algorithm of generalized iterated strict dominance is built on the notion
of a decision problem. Given a game Γ , a player i ∈ I, and a utility function
ui ∈ Ui, a decision problem Γi(ui) = (Di, D−i, ui) for player i consists of choices
Di ⊆ Ci for i, choice combinations D−i ⊆ C−i for i’s opponents, as well as
the utility function ui restricted to Di ×D−i. Given a utility function ui ∈ Ui
for player i and his corresponding decision problem Γi(ui) = (Di, D−i, ui), a
choice ci ∈ Di is called strictly dominated, if there exists a probability measure
ri ∈ ∆(Di) such that ui(ci, c−i) <

∑
c′i∈Di

ri(c
′
i) · ui(c′i, c−i) for all c−i ∈ D−i.

Generalized iterated strict dominance is then formally defined as follows.

Definition 15. Let Γ be a game with incomplete information.

Round 1. For every player i ∈ I and for every utility function ui ∈ Ui consider
the initial decision problem Γ 0

i (ui) :=
(
C0
i (ui), C

0
−i(ui), ui

)
, where C0

i (ui) :=
Ci and C0

−i(ui) := C−i.
Step 1.1 Set C1

−i(ui) := C0
−i(ui).

Step 1.2 Form Γ 1
i (ui) :=

(
C1
i (ui), C

1
−i(ui), ui

)
, where C1

i (ui) ⊆ C0
i (ui)

only contains choices ci ∈ Ci for player i that are not strictly dominated
in the decision problem

(
C0
i (ui), C

1
−i(ui), ui

)
.

Round k > 1. For every player i ∈ I and for every utility function ui ∈ Ui
consider the reduced decision problem Γ k−1i (ui) :=

(
Ck−1i (ui), C

k−1
−i (ui), ui

)
.

Step k.1 Form Ck−i(ui) ⊆ Ck−1−i (ui) by eliminating from Ck−1−i (ui) every

opponents’ choice combination c−i ∈ Ck−1−i (ui) that contains for some
opponent j ∈ I \ {i} a choice cj ∈ Cj for which there exists no utility
function uj ∈ Uj such that cj ∈ Ck−1j (uj).

Step k.2 Form Γ ki (ui) :=
(
Cki (ui), C

k
−i(ui), ui

)
, where Cki (ui) ⊆ Ck−1i (ui)

only contains choices ci ∈ Ck−1i (ui) for player i that are not strictly
dominated in the decision problem

(
Ck−1i (ui), C

k
−i(ui), ui

)
.
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The set GISD := ×i∈IGISDi ⊆ ×i∈I(Ci × Ui) is the output of generalized
iterated strict dominance, where for every player i ∈ I the set GISDi ⊆ Ci×Ui
only contains choice utility function pairs (ci, ui) ∈ Ci×Ui such that ci ∈ Cki (ui)
for all k ≥ 0.

For the special case of complete information generalized iterated strict dom-
inance is equivalent to iterated strict dominance. To recall the definition of iter-
ated strict dominance, let Γ =

(
I, (Ci)i∈I , ({ui})i∈I

)
be a game with complete

information, and consider the sets C0
i := Ci and

Cki := Ck−1i \ {ci ∈ Ci : there exists ri ∈ ∆(Ck−1i )

such that ui(ci, c−i) <
∑
c′i∈Ci

ri(c
′
i) · ui(c′i, c−i) for all c−i ∈ Ck−1−i }

for all k > 0 and for all i ∈ I. The output of iterated strict dominance is
then defined as ISD := ×i∈IISDi ⊆ ×i∈ICi, where ISDi :=

⋂
k≥0 C

k
i for

every player i ∈ I. By Bach and Perea (2016, Remark 2) it is the case that
×i∈IGISDi = ×i∈I(ISDi × {ui}).

In fact, it turns out that Bayesian equilibrium behaviourally implies gener-
alized iterated strict dominance.

Theorem 4. Let Γ be a game with incomplete information, i ∈ I some player,
ui ∈ Ui some utility function of player i, and ci ∈ Ci some choice of player i. If
ci is optimal for ui in a Bayesian equilibrium, then (ci, ui) ∈ GISDi.

Proof. Let ci be optimal for the utility function ui in a Bayesian equilibrium. In
particular it then follows that, by Theorem 2, ci is rational for the utility function
ui under common belief in rationality. Hence, by Bach and Perea (2016, Theorem
1), (ci, ui) ∈ GISDi. �

However, the converse to Theorem 4 does not hold.

Remark 1. There exists a game Γ with incomplete information, i ∈ I some
player, some utility function ui ∈ Ui of player i, and some choice ci ∈ Ci of
player i such that (ci, ui) ∈ GISDi but ci is not optimal for ui in a Bayesian
equilibrium.

Since for the special case of complete information, generalized iterated strict
dominance is equivalent to iterated strict dominance (Bach and Perea, 2016,
Remark 2), the following complete information example suffices to establish Re-
mark 1.

Example 2. Consider the two player game between Alice and Bob given in Figure
4.

Note that for each of the two players every choice is optimal for some belief
about the opponent. Thus, no choice is strictly dominated in this game. It follows
that ISD = {a, b, c}×{d, e, f}. However, it is established next that only choices
c and f are optimal in a Bayesian equilibrium.
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Alice

Bob
d e f

a 3, 0 0, 3 0, 2
b 0, 3 3, 0 0, 2
c 2, 0 2, 0 2, 2

Fig. 4. A two player game between Alice and Bob.

The notion of simplified Bayesian equilibrium, together with Theorem 3 re-
stricted to the class of complete information games, is now used to determine
the Bayesian equilibria for the game given in Figure 4. First of all, note that
ρ∗ ∈ ∆(×i∈ICi) such that ρ∗(c, f) = 1 constitutes a simplified Bayesian equilib-
rium, as c is optimal for ρ∗(· | c) and f is optimal for ρ∗(· | f).

Next, it is shown that choice a can never receive positive probability in a
simplified Bayesian equilibrium ρ ∈ ∆(×i∈ICi). Towards a contradiction suppose
that ρ(a) > 0. Then, a must be optimal for ρ(· | a) and thus ρ(d | a) ≥ 2

3 , hence
ρ(a, d) > 0. Then, d must be optimal for ρ(· | d) and thus ρ(b | d) ≥ 2

3 , hence
ρ(b, d) > 0. Then, b must be optimal for ρ(· | b) and thus ρ(e | b) ≥ 2

3 , hence
ρ(b, e) > 0. Then, e must be optimal for ρ(· | e) and thus ρ(a | e) ≥ 2

3 , hence
ρ(a, e) > 0. Let ρ(a, d) = α, ρ(a, e) = β, ρ(b, d) = γ, and ρ(b, e) = δ. It follows
that ρ(d | a) = α

α+β+ρ(a,f) ≥
2
3 , hence α

α+β ≥
2
3 , ρ(b | d) = γ

α+γ+ρ(c,d) ≥
2
3 , hence

γ
α+γ ≥

2
3 , ρ(e | b) = δ

γ+δ+ρ(b,f) ≥
2
3 , hence δ

γ+δ ≥
2
3 , and ρ(a | e) = β

β+δ+ρ(c,e) ≥
2
3 , hence β

β+δ ≥
2
3 . Consequently, α ≥ 2β, γ ≥ 2α, δ ≥ 2γ as well as β ≥ 2δ must

hold, and thus α+ β + γ + δ ≥ 2(α+ β + γ + δ) obtains, which is only possible
if α = β = γ = δ = 0, but α = ρ(a, d) > 0, a contradiction.

Similarly, it can be established that ρ(b) = 0, ρ(d) = 0, and ρ(e) = 0. Hence,
ρ∗ ∈ ∆(×i∈ICi) such that ρ∗(c, f) = 1 constitutes the unique simplified Bayesian
equilibrium.

Let (σ̃Alice, σ̃Bob) ∈ ∆(CAlice)
HAlice×∆(CBob)

HBob be some Bayesian equilib-
rium of the game given in Figure 4. Then, by Theorem 3, the induced first-order
measure must be ρ∗ ∈ ∆(CAlice × UAlice × CBob × UBob) with ρ∗(c, f) = 1.
Hence, there exists a Harsanyi model of the game such that σ̃Alice[hAlice](c) = 1
for every Harsanyi type hAlice ∈ HAlice of Alice and σ̃Bob[hBob](f) = 1 for ev-
ery Harsanyi type hBob ∈ HBob of Bob. Therefore, the only optimal choice in a
Bayesian equilibrium of the game is c for Alice and f for Bob.

Thus, for the game in Figure 4 the choices a and b of Alice survive iter-
ated strict dominance, i.e. a, b ∈ ISD, however, neither a nor b is optimal in a
Bayesian equilibrium. ♣

According to Theorem 4 and Remark 1, Bayesian equilibrium is stronger
than generalized iterated strict dominance. Thus, the same relationship emerges
for incomplete information games between Bayesian equilibrium and generalized
iterated strict dominance, as for complete information games between the anal-
ogous solution concepts of correlated equilibrium and iterated strict dominance.
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5 Generalized Nash Equilibrium

5.1 Definition of Generalized Nash Equilibrium

The preceding section has shown that Bayesian equilibrium is not a general-
ization of Nash equilibrium from complete to incomplete information games. In
fact, a generalized notion of Nash equilibrium is now introduced as a new solu-
tion concept for incomplete information games and epistemically characterized
invoking a correctness of beliefs assumption in addition to common belief in ra-
tionality. It also turns out that generalized Nash equilibrium is more restrictive
than Bayesian equilibrium.

In order to keep notation simple, for every tuple (ξi)i∈I ∈ ×i∈I∆(Ci × Ui),
define ξ−i(c−i, u−i) := Πj∈I\{i}ξj(cj , uj) and ξ−i(c−i) := Πj∈I\{i}ξj(cj). Be-
fore the new solution concept of generalized Nash equilibrium for games with
incomplete information is defined, attention is restricted to complete informa-
tion and the definition of Nash equilibrium is recalled. For a given game Γ
with complete information, a tuple (σi)i∈I ∈ ×i∈I∆(Ci) of probability measures
constitutes a Nash equilibrium, whenever for all i ∈ I and for all ci ∈ Ci, if
σi(ci) > 0, then

∑
c−i∈C−i

σ−i(c−i) · ui(ci, c−i) ≥
∑
c−i∈C−i

σ−i(c−i) · ui(c′i, c−i)
for all c′i ∈ Ci. Moreover, a choice ci ∈ Ci is called optimal in a Nash equi-
librium, if there exists a Nash equilibrium (σj)j∈I ∈ ×j∈I∆(Cj) such that∑
c−i∈C−i

σ−i(c−i) · ui(ci, c−i) ≥
∑
c−i∈C−i

σ−i(c−i) · ui(c′i, c−i) for all c′i ∈ Ci.
A direct generalization of Nash equilibrium to incomplete information obtains

as follows.

Definition 16. Let Γ be a game with incomplete information, and ξi ∈ ∆(Ci×
Ui) be probability measures for every player i ∈ I. The tuple (ξi)i∈I constitutes a
generalized Nash equilibrium, whenever for all i ∈ I and for all (ci, ui) ∈ Ci×Ui,
if ξi(ci, ui) > 0, then∑

c−i∈C−i

ξ−i(c−i) · ui(ci, c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · ui(c′i, c−i)

for all c′i ∈ Ci.

Intuitively, the best-response property of a player’s support required by the
complete information solution concept of Nash equilibrium is extended to the
augmented uncertainty space of choices and utility functions. Note that gener-
alized Nash equilibrium imposes the analogous condition on the – due to payoff
uncertainty extended – space ×i∈I

(
∆(Ci × Ui)

)
that Nash equilibrium imposes

on the space ×i∈I∆(Ci). Indeed, in the specific case of complete information,
i.e. Ui = {ui} for all i ∈ I, the notion of generalized Nash equilibrium reduces
to Nash equilibrium.

In order to characterize decision-making in line with generalized Nash equi-
librium in terms of reasoning, the notion of optimal choice in a generalized Nash
equilibrium is defined next.
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Definition 17. Let Γ be a game with incomplete information, i ∈ I a player,
and ui ∈ Ui some utility function of player i. A choice ci ∈ Ci of player i is
optimal for the utility function ui in a generalized Nash equilibrium, if there
exists a generalized Nash equilibrium (ξi)i∈I ∈ ×i∈I

(
∆(Ci × Ui)

)
such that∑

c−i∈C−i

ξ−i(c−i) · ui(ci, c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · ui(c′i, c−i)

for all c′i ∈ Ci and for all i ∈ I.

Note that optimal choice in a generalized Nash equilibrium for incomplete
information games with a single utility function for every player is equivalent to
optimal choice in a Nash equilibrium for complete information games.

Remark 2. Let Γ be a game with complete information, i ∈ I a player, and
ci ∈ Ci a choice of player i. The choice ci is optimal in a generalized Nash
equilibrium, if and only if, ci is optimal in a Nash equilibrium.

5.2 Epistemic Characterization of Generalized Nash Equilibrium

Before an epistemic characterization of the incomplete information solution con-
cept generalized Nash equilibrium can be given, some additional epistemic no-
tions need to be invoked. Given a tuple (ξj)j∈I ∈ ×j∈I

(
∆(Cj×Uj)

)
of probability

measures, a belief hierarchy on choices and utility functions for player i is called
generated by (ξj)j∈I , if for every opponent j ∈ I \ {i}, player i’s belief about
player j’s choice and utility function is ξj ; for every opponent j ∈ I \ {i} and for
every player k ∈ I\{j}, player i believes that j’s belief about player k’s choice and
utility function is ξk; etc. A type ti is then said to entertain a simple belief hierar-
chy, if ti’s belief hierarchy is generated by some tuple (ξj)j∈I ∈ ×j∈I

(
∆(Cj×Uj)

)
of probability measures.1

The solution concept of generalized Nash equilibrium can be epistemically
characterized as follows.

Theorem 5. Let Γ be a game with incomplete information, i ∈ I some player,
u∗i ∈ Ui some utility function of player i, and c∗i ∈ Ci some choice of player i.
The choice c∗i is optimal for u∗i in a generalized Nash equilibrium, if and only if,
there exists an epistemic model MΓ of Γ with a type ti for player i such that
c∗i is optimal for (ti, u

∗
i ) and ti entertains a simple belief hierarchy as well as

expresses common belief in rationality.

Proof. For the only if direction of the theorem, let (ξj)j∈I be a generalized Nash
equilibrium such that∑

c−i∈C−i

ξ−i(c−i) · u∗i (c∗i , c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · u∗i (ci, c−i)

1 The notion of simple belief hierarchy in the context of complete information is due
to Perea (2012).
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for all ci ∈ Ci. Construct an epistemic modelMΓ =
(
(Tj)j∈I , (bj)j∈I

)
of Γ such

that Tj := {tj} for every player j ∈ I and bj [tj ](c−j , t−j , u−j) := ξ−j(c−j , u−j)
for every tuple (c−j , u−j) ∈ C−j × U−j , for every type tj ∈ Tj , and for every
player j ∈ I. Observe that for every player j ∈ I the unique type tj ’s belief
hierarchy is generated by (ξk)k∈I and is thus simple. Consider the unique type
tj of some player j ∈ I, and suppose that bj [tj ](ck, tk, uk) > 0 for some choice
type utility function triple (ck, tk, uk) ∈ Ck×Tk×Uk of some player k ∈ I \ {j}.
It is thus the case that ξk(ck, uk) > 0. Since (ξk)k∈I is a generalized Nash
equilibrium,

vk(ck, tk, uk) =
∑

c−k∈C−k

ξ−k(c−k) · uk(ck, c−k)

≥
∑

c−k∈C−k

ξ−k(c−k) · uk(c′k, c−k) = vk(c′k, tk, uk)

holds for all c′k ∈ Ck. Hence, tj believes in the opponents’ rationality. As this
holds for the unique type of every player in the epistemic model MΓ , it follows
that every type in MΓ also expresses common belief in rationality. Since

vi(c
∗
i , ti, u

∗
i ) =

∑
c−i∈C−i

ξ−i(c−i)·u∗i (c∗i , c−i) ≥
∑

c−i∈C−i

ξ−i(c−i)·u∗i (ci, c−i) = vi(ci, ti, u
∗
i )

for all ci ∈ Ci, the choice c∗i is optimal for (ti, u
∗
i ).

For the if direction of the theorem, let ti’s belief hierarchy be generated by
the tuple (ξj)j∈I ∈ ×j∈I

(
∆(Cj × Uj)

)
. Let ξj(cj , uj) > 0 for some choice utility

function pair (cj , uj) ∈ Cj × Uj of some player j ∈ I. First of all, suppose that
j 6= i. Then, for every type tj ∈ Tj such that bi[ti](cj , tj , uj) > 0, it is the case
that cj is optimal for (tj , uj), as ti expresses common belief in rationality. Since
the belief hierarchy of ti is generated by (ξj)j∈I , the marginal belief of tj about
its opponents’ choices is given by ξ−j(c−j). Hence,∑

c−j∈C−j

ξ−j(c−j) · uj(cj , c−j) ≥
∑

c−j∈C−j

ξ−j(c−j) · uj(c′j , c−j)
)

holds for all c′j ∈ Cj . Now, suppose that i = j. Consider some player k ∈ I \ {i}
and type tk ∈ Tk such that bi[ti](tk) > 0. Then, for every type t′i ∈ Ti such that
bk[tk](ci, t

′
i, ui) > 0, it is the case that ci is optimal for (t′i, ui), as ti expresses

common belief in rationality. Since the belief hierarchy of ti is generated by
(ξj)j∈I , the marginal belief of t′i about its opponents’ choices is given by ξ−i(c−i).
Hence, ∑

c−i∈C−i

ξ−i(c−i) · ui(ci, c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · ui(c′i, c−i)

holds for all c′i ∈ Ci. Consequently, (ξj)j∈I constitutes a generalized Nash equilib-
rium. Since c∗i is optimal for (ti, u

∗
i ) and ti entertains the simple belief hierarchy

generated by (ξj)j∈I , it follows that∑
c−i∈C−i

ξ−i(c−i) · u∗i (c∗i , c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · u∗i (ci, c−i)
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for all ci ∈ Ci. As (ξj)j∈I is a generalized Nash equilibrium, the choice c∗i is
optimal for u∗i in a generalized Nash equilibrium. �

The preceding theorem shows that in terms of reasoning generalized Nash equi-
librium requires substantially more than common belief in rationality. Indeed,
the additional simple belief hierarchy condition can be interpreted as a cor-
rectness of beliefs assumption. Hence, analogous to the complete information
solution concept of Nash equilibrium, which crucially depends on some correct-
ness of beliefs assumption in terms of reasoning (Aumann and Brandenburger,
1995; Polak, 1999; Perea, 2007; Barelli, 2009; Perea, 2012; Bach and Tsakas,
2014; Bonanno, 2017), generalized Nash equilibrium does so too. Also in terms
of reasoning generalized Nash equilibrium thus naturally extends Nash equilib-
rium from complete to incomplete information games. Indeed, Nash equilibrium
can also be characterized by common belief in rationality and a simple belief
hierarchy in the case of games with complete information (Perea, 2012). How-
ever, note that the epistemic characterization of generalized Nash equilibrium
can actually be significantly weakened such that common belief in rationality is
not even implied (Bach and Perea, 2017a). In order to relate the solution concept
of generalized Nash equilibrium to Bayesian equilibrium in terms of reasoning,
the epistemic characterization of the former in Theorem 5.2 is also provided in
terms of common belief in rationality. In fact, both solution concepts differ by
imposing the common prior assumption and simple belief hierarchy, respectively,
on the reasoning of players.

Next, the incomplete information analogue of Nash equilibrium – general-
ized Nash equilibrium – as well as the epistemic conditions characterizing it are
illustrated.

Example 3. Consider a three player game with incomplete information between
Alice, Bob, and Claire, where the choice sets are CAlice = {a, b}, CBob = {c, d},
as well as CClaire = {e, f}, respectively, and the sets of utility functions are given
by UAlice = {uA}, UBob = {uB}, as well as UClaire = {uC , u′C}, respectively. In
Figure 5, the utility functions are spelled out in detail.

uA

(c, e) (d, e) (c, f) (d, f)
a 2 1 0 3
b 0 3 2 1

uB

(a, e) (b, e) (a, f) (b, f)
c 2 3 0 1
d 0 1 1 3

uC

(a, c) (a, d) (b, c) (b, d)
e 1 3 2 0
f 0 2 3 1

u′
C

(a, c) (a, d) (b, c) (b, d)
e 0 1 3 2
f 1 2 3 1

Fig. 5. Utility functions of Alice, Bob and Claire.
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An interactive representation of the game is provided in Figure 6.

Alice (uA)

Bob (uB)
c d

a 2, 2, 1 1, 0, 3
b 0, 3, 2 3, 1, 0

Claire (uC): e

Alice (uA)

Bob (uB)
c d

a 0, 0, 0 3, 1, 2
b 2, 1, 3 1, 3, 1

Claire (uC): f

Alice (uA)

Bob (uB)
c d

a 2, 2, 0 1, 0, 1
b 0, 3, 3 3, 1, 2

Claire (u′
C): e

Alice (uA)

Bob (uB)
c d

a 0, 0, 1 3, 1, 2
b 2, 1, 3 1, 3, 1

Claire (u′
C): f

Fig. 6. A three player game with incomplete information.

The triple
(
(a, uA), (c, uB), 12 · (e, uC) + 1

2 · (f, u
′
C)
)

constitutes a generalized

Nash equilibrium, since a is optimal for
(
(c, uB), 12 · (e, uC) + 1

2 · (f, u
′
C)
)

and

uA, c is optimal for
(
(a, uA), 12 · (e, uC) + 1

2 · (f, u
′
C)
)

and uB , e is optimal for(
(a, uA), (c, uB)

)
and uC , as well as f is optimal for

(
(a, uA), (c, uB)

)
and u′C . It

follows directly that a, c, e, and f are all optimal for some utility function in a
generalized Nash equilibrium.

For the epistemic representation of the generalized Nash equilibrium
(
(a, uA), (c, uB), 12 ·

(e, uC)+ 1
2 · (f, u

′
C)
)
, consider the epistemic model

(
(Ti)i∈I , (bi)i∈I

)
of the game,

where

– TAlice = {tA}, TBob = {tB}, and TClaire = {tC}
– bAlice[tA] = 1

2 ·
(
(c, tB , uB), (e, tC , uC)

)
+ 1

2 ·
(
(c, tB , uB), (f, tC , u

′
C)
)
,

– bBob[tB ] = 1
2 ·
(
(a, tA, uA), (e, tC , uC)

)
+ 1

2 ·
(
(a, tA, uA), (f, tC , u

′
C)
)
,

– bClaire[tC ] =
(
(a, tA, uA), (c, tB , uB)

)
.

Observe that each of the three types in this epistemic model believes in the
opponents’ rationality, and thus each of them also expresses common belief in
rationality. Also, note that every type in the epistemic model entertains a simple
belief hierarchy. Besides, a is optimal for (tA, uA), c is optimal for (tB , uB), e is
optimal for (tC , uC), and f is optimal for (tC , u

′
C). ♣

5.3 Relationship between Bayesian Equilibrium and Generalized
Nash Equilibrium

Next, the relationship between the two incomplete information solution concepts
of generalized Nash equilibrium and Bayesian equilibrium is considered.

In fact, it is the case that an optimal choice in a generalized Nash equilibrium
also is optimal in a Bayesian equilibrium.
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Theorem 6. Let Γ be a game with incomplete information, i ∈ I some player,
u∗i some utility function of player i, and c∗i ∈ Ci some choice of player i. If c∗i
is optimal for u∗i in a generalized Nash equilibrium, then c∗i is also optimal for
u∗i in a Bayesian equilibrium.

Proof. Let (ξj)j∈I ∈ ×j∈I
(
∆(Cj × Uj)

)
be a generalized Nash equilibrium such

that ∑
c−i∈C−i

ξ−i(c−i) · u∗i (c∗i , c−i) ≥
∑

c−i∈C−i

ξ−i(c−i) · u∗i (ci, c−i)

for all ci ∈ Ci.
Construct a Harsanyi model HΓ =

(
(Hj)j∈I , π, (ũj)j∈I , (σ̃j)j∈I

)
of Γ , where

Hj := {h(cj ,uj)
j : ξj(cj , uj) > 0} for all j ∈ I, π

((
h
(cj ,uj)
j

)
j∈I

)
:= Πj∈Iξj(cj , uj),

ũj
(
h
(cj ,uj)
j

)
:= uj for all h

(cj ,uj)
j ∈ Hj and for all j ∈ I, as well as σ̃j [h

(cj ,uj)
j ](cj) :=

1 for all cj ∈ Cj , for all h
(cj ,uj)
j ∈ Hj , and for all j ∈ I.

It is first shown that (σ̃j)j∈I constitutes a Bayesian equilibrium. Consider

some Harsanyi type h
(cj ,uj)
j ∈ Hj of some player j ∈ I. Then, for all c′j ∈ Cj and

for all u′j ∈ Uj it follows that

ṽj
(
c′j , σ̃−j , h

(cj ,uj)
j , u′j

)
=

∑
h
(c−j ,u−j)

−j ∈H−j

π
(
h
(c−j ,u−j)
−j | h(cj ,uj)

j

)
· u′j(c′j , c−j)

=
∑

h
(c−j ,u−j)

−j ∈H−j

π
(
h
(cj ,uj)
j , h

(c−j ,u−j)
−j

)
π
(
h
(cj ,uj)
j

) · u′j(c′j , c−j)

=
∑

(c−j ,u−j)∈C−j×U−j

ξj(cj , uj) · ξ−j(c−j , u−j)
ξj(cj , uj)

· u′j(c′j , c−j)

=
∑

c−j∈C−j

ξ−j(c−j) · u′j(c′j , c−j).

Now, suppose that π
(
h
(cj ,uj)
j

)
> 0. Thus, ξj(cj , uj) > 0. Consequently,

ṽj
(
σ̃j [h

(cj ,uj)
j ], σ̃−j , h

(cj ,uj)
j

)
= ṽj

(
cj , σ̃−j , h

(cj ,uj)
j , uj

)
=

∑
c−j∈C−j

ξ−j(c−j)·uj(cj , c−j)

≥
∑

c−j∈C−j

ξ−j(c−j) · uj(c′j , c−j)) = ṽj
(
c′j , σ̃−j , h

(cj ,uj)
j , uj

)
for all c′j ∈ Cj , where the inequality follows from the fact that (ξj)j∈I is a
generalized Nash equilibrium. Hence, the tuple (σ̃j)j∈I constitutes a Bayesian
equilibrium.
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As c∗i is optimal for u∗i in the generalized Nash equilibrium (ξj)j∈I , it is the
case that

∑
c−i∈C−i

ξ−i(c−i) · u∗i (c∗i , c−i) ≥
∑
c−i∈C−i

ξ−i(c−i) · u∗i (c′i, c−i) for

all c′i ∈ Ci. Consequently, ṽi
(
c∗i , σ̃−i, h

(ci,ui)
i , u∗i

)
≥ ṽi

(
c′i, σ̃−i, h

(ci,ui)
i , u∗i

)
for all

c′i ∈ Ci and for all h
(ci,ui)
i ∈ Hi. Therefore, c∗i is optimal for u∗i in a Bayesian

equilibrium. �

However, the converse to Theorem 6 does not hold.

Remark 3. There exists a game Γ with incomplete information, i ∈ I some
player, some utility function ui of player i, and ci ∈ Ci some choice of player i
such that ci is optimal for ui in a Bayesian equilibrium, but ci is not optimal for
ui in a generalized Nash equilibrium.

Since for the special case of complete information it is the case that general-
ized Nash equilibrium is behaviourally equivalent to Nash equilibrium (Remark
2) and Bayesian equilibrium is behaviourally equivalent to correlated equilibrium
(Corollary 1), the following complete information example suffices to establish
Remark 3.

Example 4. Consider the three player game with complete information between
Alice, Bob, and Claire given in Figure 7.

Alice

Bob
c d

a 1, 1, 2 1, 0, 2
b 0, 0, 2 0, 1, 0

Claire: left

Alice

Bob
c d

a 1, 1, 1 1, 1, 0
b 1, 1, 0 1, 1, 1

Claire: middle

Alice

Bob
c d

a 1, 1, 0 1, 0, 2
b 0, 0, 2 0, 1, 2

Claire: right

Fig. 7. A three player game between Alice, Bob and Claire.

Construct an Auman model
(
Ω, π, (Ii)i∈I , (σ̂)i∈I

)
of the game, where

– Ω = {ω1, ω2},
– π(ω1) = π(ω2) = 1

2 ,

– IAlice(ω1) = {ω1} and IAlice(ω2) = {ω2},
– IBob(ω1) = {ω1} and IBob(ω2) = {ω2},
– IClaire(ω1) = IClaire(ω2) = {ω1, ω2},
– σ̂Alice(ω1) = a and

– σ̂Alice(ω2) = b,

– σ̂Bob(ω1) = c and

– σ̂Bob(ω2) = d,

– σ̂Claire(ω1) = σ̂Claire(ω2) = middle.
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At world ω1 the choices a, c, and middle are optimal for Alice, Bob, and Claire,
respectively, as well as at world ω2 the choices b, d, and middle are optimal
for Alice, Bob, and Claire, respectively. Hence, (σ̂i)i∈I constitutes a correlated
equilibrium. In particular, for Claire, the choice middle is optimal in a correlated
equilibrium.

Define probability measures σ∗Alice ∈ ∆(CAlice) such that σ∗Alice(a) = 1,
σ∗Bob ∈ ∆(CBob) such that σ∗Bob(c) = 1, and σ∗Claire ∈ ∆(CClaire) such that
σ∗Claire(left) = 1. Note that the tuple (σ∗Alice, σ

∗
Bob, σ

∗
Claire) constitutes a Nash

equilibrium, since a is optimal against (c, left), c is optimal against (a, left),
and left is optimal against (a, c). Next, it is shown that there exists no other
Nash equilibrium in this game. Suppose that σClaire(middle) < 1 in some Nash
equilibrium. Then, only a is optimal for Alice, i.e. σAlice(a) = 1. Then, only c
is optimal for Bob, i.e. σBob(c) = 1. Hence, (σ∗Alice, σ

∗
Bob, σ

∗
Claire) = (a, c, left)

constitutes the only Nash equilibrium with σClaire(middle) < 1. Towards a
contradiction, suppose that σClaire(middle) = 1 in some Nash equilibrium. Note
that it is the case that either σAlice(a) · σBob(c) ≤ 1

4 or
(
1 − σAlice(a)

)
·
(
1 −

σBob(c)
)
≤ 1

4 . However, if σAlice(a) · σBob(c) ≤ 1
4 , then right is better than

middle for Claire, and if
(
1− σAlice(a)

)
·
(
1− σBob(c)

)
≤ 1

4 , then left is better
than middle for Claire, a contradiction. Thus, (σ∗Alice, σ

∗
Bob, σ

∗
Claire) = (a, c, left)

constitutes the unique Nash equilibrium. In particular, only left is then optimal
in a Nash equilibrium for Claire.

Therefore, for the game in Figure 7 the choice middle of Claire is optimal in
a correlated equilibrium, but not optimal in a Nash equilibrium. ♣

According to Theorem 6 and Remark 3, generalized Nash equilibrium is more
restrictive than Bayesian equilibrium. Thus, the same relation emerges for in-
complete information games between generalized Nash equilibrium and Bayesian
equilibrium, as for complete information games between the analogous solution
concepts of Nash equilibrium and correlated equilibrium.

6 Conclusion

It has been shown that Bayesian equilibrium actually constitutes a generalization
of correlated equilibrium to incomplete information. To complete the picture,
the new solution concept of generalized Nash equilibrium has been proposed as
an incomplete information counterpart to Nash equilibrium. Since generalized
Nash equilibrium is stronger than Bayesian equilibrium, it could be of interest
in terms of future research to investigate how this new solution concept fares in
applications with payoff uncertainty.
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