Common Belief in Rationality in Psychological Games

Stephan Jagau

Nottingham University Business School
UK | CHINA | MALAYSIA

EPICENTER
Research Center for
Epistemic Game Theory

July 8, 2024

Introduction

■ So far preferences over choices only depended on first-order beliefs wrt opponent behavior.

■ This lecture: What if players care about opponent behavior and beliefs?
■ Two examples with second-order beliefs:

- If aiming to meet opponent's expectations (aka guilt aversion) you prefer a choice to the extent that you believe the opponent expects you to make that choice.
- If aiming to surprise opponent you prefer a choice to the extent that you believe the opponent expects you to not make that choice.

■ Notes:

- Here, guilt/surprise emerge as reflections wrt (not) matching expectations. Such insights make psychological game useful.
- No new tools needed here. Instead, different notion of optimal choice leads to more complex setting.

Introductory Example

Surprising Barbara, baseline decision problem

- You and Barbara are invited to a party. Each of you simultaneously choose from dress colors blue, green, red.

■ Personally, you prefer blue to green to red. In addition, you seek to wear different color than Barbara.

■ Same for Barbara with color preference red to blue to green.

You	blue	green	red		Barbara	blue	green	red
blue	0	3	3		blue	0	2	2
green	2	0	2		green	1	0	1
red	1	1	0		red	3	3	0

Introductory Example

Surprising Barbara, surprise utilities
■ Additionally, you seek to surprise Barbara, deriving additional utility for surprising choices proportional to your color preference. Same is true for Barbara.

				Barbara expects				
You expect								
You	blue	green	red		Barbara	blue	green	red
blue	0	3	3		blue	0	2	2
green	2	0	2		green	1	0	1
red	1	1	0		red	3	3	0

Introductory Example

Surprising Barbara, full decision problem
■ Finally, suppose your overall utility is the sum of your baseline and surprise utilities.

■ This yields decision problem with choice-belief combinations replacing choices for opponent.

You	(b, b)	(b, g)	(b, r)	(g, b)	(g, g)	(g, r)	(r, b)	(r, g)	(r, r)
blue	0	3	3	3	6	6	3	6	6
green	4	2	4	2	0	2	4	2	4
red	2	2	1	2	2	1	1	1	0

Barbara	(b, b)	(b, g)	(b, r)	(g, b)	(g, g)	(g, r)	(r, b)	(r, g)	(r, r)
blue	0	2	2	2	4	4	2	4	4
green	2	1	2	1	0	1	2	1	2
red	6	6	3	6	6	3	3	3	0

Introductory Example: Expected Utility

How to calculate utility at a second-order belief? Take following example:

■ You believe w. 0.2: Barbara chooses blue and believes you choose blue. \Rightarrow State (b, b) in decision problem.

■ Similarly, you assign $0.8 \cdot 0.5=0.4$ each to states (r, g) and (r, r).
■ Then, for example, choosing blue yields expected utility $0.2 \cdot 0+0.4 \cdot 6+0.4 \cdot 6=4.8$.

Introductory Example: Rationality

You	(b, b)	(b, g)	(b, r)	(g, b)	(g, g)	(g, r)	(r, b)	(r, g)	(r, r)
blue	0	3	3	3	6	6	3	6	6
green	4	2	4	2	0	2	4	2	4
red	2	2	1	2	2	1	1	1	0
Barbara	(b, b)	(b, g)	(b, r)	(g, b)	(g, g)	(g, r)	(r, b)	(r, g)	(r, r)
blue	0	2	2	2	4	4	2	4	4
green	2	1	2	1	0	1	2	1	2
red	6	6	3	6	6	3	3	3	0

■ Your choice red is strictly dominated by (e.g.) $0.4 \cdot$ blue $+0.6 \cdot$ green.Similarly, green strictly dominated for Barbara by (e.g.) $0.4 \cdot$ red $+0.6 \cdot$ blue .

■ Hence, no second-order belief makes these choices optimal for you and Barbara. \Rightarrow irrational

Introductory Example: Rationality

Remaining choices blue and green rational for you:

■ blue strictly optimal if you believe Barbara chooses blue and believes you choose green (state (b, g)). Similar for green at (r, b).
■ Also, blue is optimal for Barbara at (g, r) and red is optimal for her at (b, b).
\Rightarrow Common belief in rationality.
■ Note: Both can choose at least 2 colors, so surprise possible at CBR.

Agenda

■ Psychological Games and Common Belief in Rationality

■ Procedural Characterization

- Possibility

■ Variants of the Procedure

Second-Order Expectations

Definition

A second-order expectation for player i is a probability distribution $e_{i} \in \Delta\left(C_{i} \times C_{j}\right)$.

- Second-order expectations concern events of form "player j chooses c_{j} and believes player i chooses c_{i} " $\left(\hat{=} e_{i}\left(c_{j}, c_{i}\right)\right)$.
■ Formally, every second-order belief $b_{i}^{2} \in \Delta\left(C_{j} \times \Delta\left(C_{i}\right)\right)$ induces a second-order expectation e_{i} via

$$
e_{i}\left(c_{j}, c_{i}\right)=b_{i}^{1}\left(c_{j}\right) \int_{\Delta\left(C_{i}\right)} b_{j}^{1}\left(c_{i}^{\prime}\right) \mathrm{d} b_{i}^{2}\left(\mid c_{j}\right),
$$

where $b_{i}^{2}\left(E \mid c_{j}\right)=b_{i}^{2}\left(\left\{c_{j}\right\} \times E\right) / b_{i}^{2}\left(\left\{c_{j}\right\} \times \Delta\left(C_{i}\right)\right)$ for every $E \subseteq \Delta\left(C_{i}\right)$.

(Linear) Psychological Games (of Order 2)

Definition

A psychological game with two players specifies
a) finite set of choices C_{i} for both players i,
b) utility function $u_{i}: C_{i} \times \Delta\left(C_{j} \times C_{i}\right) \rightarrow \mathbb{R}$ for both players i, where

$$
u_{i}\left(c_{i}, e_{i}\right)=\sum_{\left(c_{j}, c_{i}^{\prime}\right) \in C_{j} \times C_{i}} e_{i}\left(c_{j}, c_{i}\right) u_{i}\left(c_{i},\left(c_{j}, c_{i}^{\prime}\right)\right)
$$

Notes:

■ u_{i} generalizes standard expected utility using expectations.
■ Assumptions: (i) u_{i} depends on second-order beliefs only,
(ii) u_{i} is linear in up to level-2 uncertainty.
\Rightarrow Decision problems with set of states $C_{j} \times C_{i}$ iso C_{j}.
■ General psychological games: u_{i} non-linear in full belief hierarchy.

Linearity in up to Second-Order Uncertainty

Reconsider introductory example:

■ Both second-order beliefs above induce the same expectation $e_{i}=0.2 \cdot(b, b)+0.4 \cdot(r, g)+0.4 \cdot(r, r)$.

■ Intuitively, it does not matter whether uncertainty emanates at level 1 (other's behavior) or level 2 (other's beliefs about behavior).

Epistemic Model for Introductory Example

■ Types: $T_{1}=\left\{t_{1}^{\text {blue }}, t_{1}^{\text {green }}\right\}, T_{2}=\left\{t_{2}^{\text {blue }}, t_{2}^{\text {red }}\right\}$
■ Beliefs for You: $b_{1}\left(t_{1}^{\text {blue }}\right)=0.8 \cdot\left(\right.$ blue,$\left.t_{2}^{\text {blue }}\right)+0.2 \cdot\left(\right.$ red,$\left.t_{2}^{\text {red }}\right)$,

$$
b_{1}\left(t_{1}^{\text {green }}\right)=\left(\text { red }, t_{2}^{\text {red }}\right) .
$$

■ Beliefs for Barbara: $b_{2}\left(t_{2}^{\text {blue }}\right)=\left(\right.$ green,$\left.t_{1}^{\text {green }}\right)$,

$$
b_{2}\left(t_{2}^{\text {red }}\right)=0.9 \cdot\left(\text { blue, } t_{1}^{\text {blue }}\right)+0.1 \cdot\left({\text { green } \left., t_{1}^{\text {green }}\right) . ~}_{\text {and }}\right.
$$

Types, Optimal and Rational Choices

■ Consider epistemic models like in Chapter 3, but now possibly with infinitely many types.

■ Main change in psychological games: optimality is wrt exectations.

Definition

Take type t_{i} with expectation e_{i}. Choice $c_{i} \in C_{i}$ is optimal for t_{i} if

$$
u_{i}\left(c_{i}, t_{i}\right)=u_{i}\left(c_{i}, e_{i}\right)=\sum_{\left(c_{j}, c_{i}^{\prime}\right) \in C_{j} \times C_{i}} e_{i}\left(c_{j}, c_{i}^{\prime}\right) u_{i}\left(c_{i},\left(c_{j}, c_{i}^{\prime}\right)\right) \geq u_{i}\left(c_{i}^{\prime \prime}, e_{i}\right)
$$

for all $c_{i}^{\prime \prime} \in C_{i}$.

(Common) Belief in Rationality

Up to k-fold/common belief in rationality now defined like in standard game:

Definition

Type t_{i},

- believes in the opponents' rationality if $b_{i}\left(t_{i}\right)$ only deems possible $\left(c_{j}, t_{j}\right)$ where c_{j} is optimal for t_{j},
- expresses up to k-fold belief in rationality for $k \geq 1$ if $b_{i}\left(t_{i}\right)$ only deems possible $\left(c_{j}, t_{j}\right)$ where c_{j} is optimal for t_{j} expressing up to ($k-1$)-fold belief in rationality,
- expresses common belief in rationality if $b_{i}\left(t_{i}\right)$ expresses up to k-fold belief in rationality for all $k \geq 1$.

Agenda

■ Psychological Games and Common Belief in Rationality

■ Procedural Characterization

■ Possibility

■ Variants of the Procedure

Towards an Iterative Procedure

- To find all choices consistent with common belief in rationality, we generalize iterated strict dominance.

■ As seen in following example, eliminating strictly dominated choices and corresponding (standard) states in decision problems is not enough.

■ More surprisingly, also eliminating choices and full states (deterministic second-order expectations) is not enough.

Example: "Black and White Dinner with a Twist"

■ You and Barbara go to a dinner an simultaneously choose from dress colors black and white.
■ Personally, you prefer white to black. However, to the degree that you believe Barbara wears white and expects you to wear white, you slightly prefer black.

■ Barbara's preferences are the same with black and white reversed.

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$		Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	3		black	2	2	2	2
white	2	2	2	2		white	3	0	0	0

- Note that no choice is strictly dominated for you or Barbara!

"Black and White Dinner with a Twist": Rationality

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$		Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$
	black	0	0	0	3		black	$\left.w_{2}\right)$	
white	2	2	2	2		white	3	2	2
2	0	0	0						

■ Even though no strategy is dominated, we are not done yet.
■ Why?

- Utilities depend on second-order expectations.
- Hence, need to track choices and first-order beliefs.

■ black rational for you iff $e_{1}\left(w_{2}, w_{1}\right) \geq 2 / 3$.
■ Similarly, white rational for Barbara iff $e_{2}\left(b_{1}, b_{2}\right) \geq 2 / 3$.

"Blk and Wt Dinner w Twist": Belief in Rationality

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$		Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	3		black	2	2	2	2
white	2	2	2	2		white	3	0	0	0

■ How does belief in rationality affect states you deem possible?

- For Barbara to rationally play white, need $b_{2}^{1}\left(b_{1}\right) \geq \frac{2}{3}$. (If not, could never have $e_{2}\left(b_{1}, b_{2}\right) \geq \frac{2}{3}$.)
- But then, using Bayes' rule, belief in Barbara's rationality implies $e_{1}\left(w_{1} \mid w_{2}\right)=\frac{e_{1}\left(w_{2}, w_{1}\right)}{e_{1}\left(w_{2}, b_{1}\right)+e_{1}\left(w_{2}, w_{1}\right)} \leq \frac{1 / 3}{2 / 3+1 / 3}=1 / 3$.
\Rightarrow Conditional on Barbara rationally choosing w_{2}, you must believe Barbara assigns at most $1 / 3$ to your choice w_{1}.

■ Similarly, belief in rationality implies $e_{2}\left(b_{1} \mid b_{2}\right) \leq 1 / 3$ for Barbara.

"Blk and Wt Dinner w Twist": Belief in Rationality

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$		Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$
	$\left(w_{1}, w_{2}\right)$								
black	0	0	0	3		black	2	2	2
white	2	2	2	2		white	3	0	0

■ But then, black is not rational for you under belief in rationality! Why?

- Rationality of black for you requires $e_{1}\left(w_{2}, w_{1}\right) \geq 2 / 3$
- Belief in Barbara's rationality requires $e_{1}\left(w_{1} \mid w_{2}\right) \leq 1 / 3$.
- The latter implies $e_{1}\left(w_{2}, w_{1}\right)=b_{1}^{1}\left(w_{2}\right)\left[e_{1}\left(w_{1} \mid w_{2}\right)\right] \leq 1 / 3$.
$\Rightarrow \perp$.
■ Similarly, white is not rational for Barbara under belief in rationality.

"Blk and Wt Dinner w Twist": Belief in Rationality

- Clearly, cannot capture reasoning using strict dominance and elimination of standard states.

■ However, also no full state among $\left(b_{2}, b_{1}\right),\left(b_{2}, w_{1}\right),\left(w_{2}, w_{1}\right),\left(w_{1}, w_{2}\right)$ can be eliminated here (and similarly for Barbara).

■ Why? Barbara's rational choice white puts probabilistic upper bound $1 / 3$ on her belief in w_{1} (and analogously for you).

■ Hence, correct decision problems for belief in rationality:

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, 2 / 3 \cdot b_{1}+1 / 3 \cdot w_{1}\right)$		Barbara	$\left(b_{1}, 2 / 3 \cdot w_{2}+1 / 3 \cdot b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	1	black	2	2	2	2	
white	2	2	2	2		white	1	0	0	0

"Blk and Wt Dinner w Twist": CBR

■ Eliminating black for you and white for Barbara (and one more round of eliminating states) yields:

You	$\left(b_{2}, w_{1}\right)$	Barbara	$\left(w_{1}, b_{2}\right)$
white	2		black

\Rightarrow white for you and black for Barbara uniquely rational under CBR.

Elimination of Second-Order Expectations

■ Crucial step in example: Eliminate e_{i} inconsistent w. j 's rationality.
■ More generally, following recipe:

1) For every undominated c_{j}, find expectations $E_{j}\left(c_{j}\right)$ making c_{j} optimal.
2) Let $B_{j}\left(c_{j}\right)=\left\{b_{j} \in \Delta\left(C_{j}\right) \mid b_{j}=\operatorname{marg}_{C_{j}} e_{j}\right.$ for some $\left.e_{j} \in E_{j}\left(c_{j}\right)\right\}$ be corresponding first-order beliefs.
3) Then, conditional on c_{j}, i must believe j 's first-order belief is in $B_{j}\left(c_{j}\right)$. Formally, $e_{i}\left(\mid c_{j}\right) \in B_{j}\left(c_{j}\right)$, where

$$
e_{i}\left(c_{i} \mid c_{j}\right)=\frac{e_{i}\left(c_{j}, c_{i}\right)}{\sum_{c_{i}^{\prime} \in C_{i}} e_{i}\left(c_{j}, c_{i}^{\prime}\right)} \text { for all } c_{i} \in C_{i} .
$$

■ Notes:

- Let E_{i} be i 's expectations satisfying (3). E_{i} is convex combination of finitely many extreme $e_{i} \in \Delta\left(C_{j} \times C_{i}\right)$.
- Repeat steps above for e_{i} (in)consistent w. up to k-fold belief in rationality, $k>1$.

"BIk and Wt Dinner w Twist": Eliminating Second-Order Expectations

■ Tetrahedron: $\Delta\left(C_{j} \times C_{i}\right)$-probability simplex.
■ Solid triangle: Indifference hyperplane for choices black and white.
■ Dotted triangle and below: Expectations consistent with belief in rationality.

It. Elim. of Choices and Second-Order Expectations

Definition

Round 1. For both players i, eliminate all strictly dominated choices. For all other c_{i}, let $E_{i}^{1}\left(c_{i}\right)$ be supporting expectations.
Round $k \geq 1$. For each player i and opp. choice c_{j}, let $B_{j}^{k-1}\left(c_{j}\right)$ be first-order beliefs induced by $E_{j}^{k-1}\left(c_{j}\right)$, and let E_{i}^{k} be i 's expectations s.th. $e_{i}\left(\mid c_{j}\right) \in B_{j}^{k-1}\left(c_{j}\right)$ f. all c_{j} deemed possible by e_{i}. Eliminate all choices c_{i} that are not optimal for any $e_{i} \in E_{i}^{k}$. For all other c_{i}, let $E_{i}^{k}\left(c_{i}\right)$ be supporting expectations.
Proceed until no more choices/expectations can be eliminated.

Theorem

For any $k \geq 1$, choice c_{i} is rational for player i under up to k-fold (common) belief in rationality iff c_{i} survives $(k+1)$-fold (iterated) elimination of choices and expectations.

Example: "Dinner w Strong Preference f Surprise"

- You and Barbara go to a dinner an simultaneously choose from dress colors black and white.

■ Your preferences are the same as before, except each of you more strongly prefers your less liked choice if you mismatch with your opponent and surprise them as well.

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$		Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	5		black	2	2	2	2
white	2	2	2	2		white	5	0	0	0

- We use iterated elimination of choices and expectations to find choices consistent with common belief in rationality.

"Dinner w Str Pref f Surprise": Rationality

■ As before, no choices strictly dominated.

- black rational for you iff $e_{1}\left(w_{2}, w_{1}\right) \geq 2 / 5$ and white rational for Barbara iff $e_{1}\left(b_{2}, b_{1}\right) \geq 2 / 5$.
your conditional preference relation

Barbara's conditional preference relation

"Dinner w Str Pref f Surprise": Belief in Rationality

\square With belief in rationality, must have $e_{1}\left(w_{1} \mid w_{2}\right) \leq 3 / 5$. Hence, state $\left(w_{2}, w_{1}\right)$ in your decision problem replaced by $2 / 5 \cdot\left(w_{2}, b_{1}\right)+3 / 5 \cdot\left(w_{2}, w_{1}\right)$.

■ Similarly, state $\left(b_{1}, b_{2}\right)$ in Barbara's decision problem replaced by $2 / 5 \cdot\left(b_{1}, w_{2}\right)+3 / 5 \cdot\left(b_{1}, b_{2}\right)$.
your conditional preference relation

Barbara's conditional preference relation

■ As seen in the figure, no choices are eliminated at belief in rationality.

"Dinner w Str Pref f Surprise": Belief in Rationality

■ Decision problems after 2-fold elimination of choices and expectations:

| You | $\left(b_{2}, b_{1}\right)$ | $\left(b_{2}, w_{1}\right)$ | $\left(w_{2}, b_{1}\right)$ | $\left(w_{2}, 2 / 5 \cdot b_{1}+3 / 5 \cdot w_{1}\right)$ | | Barbara | $\left(b_{1}, 2 / 5 \cdot w_{2}+3 / 5 \cdot b_{2}\right)$ | $\left(b_{1}, w_{2}\right)$ | $\left(w_{1}, b_{2}\right)$ | $\left(w_{1}, w_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| black | 0 | 0 | 0 | 3 | black | 2 | 2 | 2 | 2 | |
| white | 2 | 2 | 2 | 2 | | white | 3 | 0 | 0 | 0 |

- As follows from the table, black rational for you under belief in rationality iff $e_{1}\left(w_{2}, 2 / 5 \cdot b_{1}+3 / 5 \cdot w_{1}\right) \geq 2 / 3$.

■ Analogously, white rational for Barbara under belief in rationality iff $e_{2}\left(b_{1}, 2 / 5 \cdot w_{2}+3 / 5 \cdot b_{2}\right) \geq 2 / 3$.

"Dinner w Str Pref f Surp": Up to 2-Fold Bel in Rat

■ With up to 2 -fold belief in rationality (given new extreme state), must now have $e_{1}\left(w_{1} \mid w_{2}\right) \leq 1 / 3$. Hence, state $2 / 5 \cdot\left(w_{2}, b_{1}\right)+3 / 5 \cdot\left(w_{2}, w_{1}\right)$ in your decision problem replaced by $2 / 3 \cdot\left(w_{2}, b_{1}\right)+1 / 3 \cdot\left(w_{2}, w_{1}\right)$.

■ Similarly, state $2 / 5 \cdot\left(b_{1}, w_{2}\right)+3 / 5 \cdot\left(b_{1}, b_{2}\right)$ in Barbara's decision problem replaced by $2 / 3 \cdot\left(b_{1}, w_{2}\right)+1 / 3 \cdot\left(b_{1}, b_{2}\right)$.

- As seen in figure, black eliminated for you and white for Barbara.

"Dinner w Str Pref f Surp": Common Belief in Rat

■ Decision problems after 3-fold elimination of choices and expectations:

| You | $\left(b_{2}, b_{1}\right)$ | $\left(b_{2}, w_{1}\right)$ | $\left(w_{2}, b_{1}\right)$ | $\left(w_{2}, 2 / 3 \cdot b_{1}+1 / 3 \cdot w_{1}\right)$ | | Barbara | $\left(b_{1}, 2 / 3 \cdot w_{2}+1 / 3 \cdot b_{2}\right)$ | $\left(b_{1}, w_{2}\right)$ | $\left(w_{1}, b_{2}\right)$ | $\left(w_{1}, w_{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| black | 0 | 0 | 0 | 1 | black | 2 | 2 | 2 | 2 | |
| white | 2 | 2 | 2 | 2 | | white | 1 | 0 | 0 | 0 |

- With 4-fold elimination of choices and expectations, states involving w_{2} are eliminated for you and states involving b_{1} are eliminated for Barbara.
- Then, with 5 -fold elimination of choices and expectations, state $\left(b_{2}, b_{1}\right)$ is eliminated for you and state $\left(w_{1}, w_{2}\right)$ is eliminated for Barbara.
- Beliefs diagram for CBR:

$$
\begin{array}{ccc}
\text { You } & \text { Barbara } & \text { You } \\
\text { white } \longrightarrow \text { black } \longrightarrow \text { white }
\end{array}
$$

Example: "Dinner w Huge Preference f Surprise"

■ Different from previous procedures, elimination of choices and expectations is not finite, even with finitely many choices for both players.
■ This is seen in following variation of previous examples:

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, w_{1}\right)$	Barbara	$\left(b_{1}, b_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	8	black	2	2	2	2
white	2	2	2	2	white	8	0	0	0

■ We use iterated elimination of choices and expectations to find choices consistent with common belief in rationality.

"Dinner w Huge Pref f Surprise": Rationality

■ Again, no choices strictly dominated.

- black rational for you iff $e_{1}\left(w_{2}, w_{1}\right) \geq 1 / 4$ and white rational for Barbara iff $e_{1}\left(b_{2}, b_{1}\right) \geq 1 / 4$.
your conditional preference relation

Barbara's conditional preference relation

"Dinner w Huge Pref f Surp": Belief in Rationality

\square With belief in rationality, must have $e_{1}\left(w_{1} \mid w_{2}\right) \leq 3 / 4$. Hence, state $\left(w_{2}, w_{1}\right)$ in your decision problem replaced by $1 / 4 \cdot\left(w_{2}, b_{1}\right)+3 / 4 \cdot\left(w_{2}, w_{1}\right)$.

■ Similarly, $1 / 4 \cdot\left(b_{1}, w_{2}\right)+3 / 4 \cdot\left(b_{1}, b_{2}\right)$ replaces $\left(b_{1}, b_{2}\right)$ for Barbara.
your conditional preference relation

Barbara's conditional preference relation

■ As seen in figure, more expectations supporting black for you and white for Barbara survive initial restrictions.

"Dinner w Huge Pref f Surp": Common Bel in Rat

■ It turns out that some beliefs supporting black for you and white for Barbara are never eliminated.

■ To see this write $\left(1-e^{k-1}\right)$ for maximum weight on $\left(w_{2}, w_{1}\right) /\left(b_{1}, b_{2}\right)$ after round $k-1$ and consider reduced decision problems at round k :

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2},\left(1-e^{k-1}\right) \cdot w_{1}+e^{k-1} \cdot b_{1}\right)$		Barbara	$\left(b_{1},\left(1-e^{k-1}\right) \cdot b_{2}+e^{k-1} \cdot w_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0		black	2	2	2	2	
white	2	2	2	$\left(1-e^{k-1}\right) 8$		white	$\left(1-e^{k-1}\right) 8$	0	0	0

■ New minimum weight e^{k} on $\left(w_{2}, w_{1}\right) /\left(b_{1}, b_{2}\right)$ solves $e^{k} \geq \frac{2}{8\left(1-e^{k-1}\right)}$.
■ $e^{k} \neq e^{k-1}$ for any finite k.
■ Furthermore, at common belief in rationality/iterated elimination of choices and expectations, one has $e^{k}=e^{k-1}=1 / 2$.

"Dinner w Huge Pref f Surp": Common Bel in Rat

■ Reduced decision problems after countably many rounds:

You	$\left(b_{2}, b_{1}\right)$	$\left(b_{2}, w_{1}\right)$	$\left(w_{2}, b_{1}\right)$	$\left(w_{2}, 1 / 2 \cdot w_{1}+1 / 2 \cdot b_{1}\right)$		Barbara	$\left(b_{1}, 1 / 2 \cdot b_{2}+1 / 2 \cdot w_{2}\right)$	$\left(b_{1}, w_{2}\right)$	$\left(w_{1}, b_{2}\right)$	$\left(w_{1}, w_{2}\right)$
black	0	0	0	4		black	2	2	2	2
white	2	2	2	2		white	4	0	0	0

■ Expectations consistent with CBR:

"Dinner w Huge Pref f Surp": Beliefs Diagram

Agenda

■ Psychological Games and Common Belief in Rationality

■ Procedural Characterization

■ Possibility

■ Variants of the Procedure

Possibility of Common Belief in Rationality

■ An important question is whether psychological games as defined here are always consistent with common belief in rationality.

■ In other words, for any such game Γ, can we find a model M^{Γ} such that some type t_{i} for every i expresses common belief in rationality?

- The answer is non-obvious in view of the procedure's countable length (see previous example).

Possibility of Common Belief in Rationality

■ Using that E_{i}^{k} is a convex polytope for both players i and any k, standard techniques (Cantor's intersection theorem) imply that $\bigcap_{k \geq 1} E^{k}$ is non-empty for both players.

■ For similar reasons, any choice elimination must occur within finite steps.
■ However, between two consecutive choice eliminations, the procedure may take any finite number of steps.

■ Note:
■ General psychological games can feature both non-existence and eliminations after countable steps.
■ Linearity ensures all choice eliminations are after finite steps.
Dependence of u_{i} on finite orders of beliefs ensures existence. Both conditions can be weakened.

Agenda

■ Psychological Games and Common Belief in Rationality

■ Procedural Characterization

■ Possibility

■ Variants of the Procedure

Order Independence

■ Similar to standard iterated strict dominance, iterated elimination of choices and expectations is order-independent.

- Intuitively, this is true for two reasons:

1) If a choice is strictly dominated in a decision problem, it is also strictly dominated in any reduced version of that problem.
2) If an expectation is not eliminated a some step, it can still be eliminated at a later step.

■ As a consequence, we can start off eliminating strictly dominated choices and probability-one second-order expectations and then apply the full procedure to the simplified problem.

■ Caution: Correct intermediate outputs (k-fold elim of chs and exps, $k \geq 1$) only found when eliminating full-speed in the original order.

States-First Procedure

The following procedure is output-equivalent to the original one:

Definition

Round 1. For both players i, eliminate all strictly dominated choices.
Round $k \geq 1$. For each player i's decision problem, eliminate all states $\left(c_{j}, c_{i}\right)$ such that either choice has been eliminated for the respective player at the previous round. In the reduced problem, eliminate all strictly dominated choices.
Proceed until no more choices/states can be eliminated. Subsequently perform elimination of choices and expectations.

Theorem

The states-first procedure always yields the same final output as iterated elimination of choices and expectations.

Example: "Exceeding Barbara's Expectations"

- You and Barbara record a song together, each practicing 1,3,5, or 7 weeks.
- Investing w_{i} weeks costs w_{i}^{2} for both players i.

■ Direct benefits of practice are given by $w_{i} \cdot w_{j}$ with own investment w_{i} and opponent investment w_{j}.
Additionally, each of you wants to exceed other's expectations w_{i}^{\prime}, giving you added benefit of $\left(w_{i}-w_{i}^{\prime}\right)$ for $w_{i}>w_{i}^{\prime}$.
■ Utility functions: $u_{i}\left(w_{i},\left(w_{j}, w_{i}^{\prime}\right)\right)=\left\{\begin{array}{l}w_{i} \cdot w_{j}-w_{i}^{2}+\left(w_{i}-w_{i}^{\prime}\right), \text { if } w_{i}>w_{i}^{\prime}, \\ w_{i} \cdot w_{j}-w_{i}^{2}, \text { otherwise } .\end{array}\right.$

You/Barbara	$(1,1)$	$(1,3)$	$(1,5)$	$(1,7)$	$(3,1)$	$(3,3)$	$(3,5)$	$(3,7)$	$(5,1)$	$(5,3)$	$(5,5)$	$(5,7)$	$(7,1)$	$(7,3)$	$(7,5)$	$(7,7)$
1	0	0	0	0	2	2	2	2	4	4	4	4	6	6	6	6
3	-4	-6	-6	-6	2	0	0	0	8	6	6	6	14	12	12	12
5	-16	-18	-20	-20	-6	-8	-10	-10	4	2	0	0	14	12	10	10
7	-36	-38	-40	-42	-22	-24	-26	-28	-8	-10	-12	-14	6	4	2	0

■ We use states-first procedure to find choices consistent with common belief in rationality.

"Exceeding Barbara's Expectations": Rationality

You/Barbara	$(1,1)$	$(1,3)$	$(1,5)$	$(1,7)$	$(3,1)$	$(3,3)$	$(3,5)$	$(3,7)$	$(5,1)$	$(5,3)$	$(5,5)$	$(5,7)$	$(7,1)$	$(7,3)$	$(7,5)$	$(7,7)$
1	0	0	0	0	2	2	2	2	4	4	4	4	6	6	6	6
3	-4	-6	-6	-6	2	0	0	0	8	6	6	6	14	12	12	12
5	-16	-18	-20	-20	-6	-8	-10	-10	4	2	0	0	14	12	10	10
7	-36	-38	-40	-42	-22	-24	-26	-28	-8	-10	-12	-14	6	4	2	0

■ 7 strictly dominated by 5 for you and Barbara.

"Exceeding Barbara's Exp": States-First Proc Rd 2

You/Barbara	$(1,1)$	$(1,3)$	$(1,5)$	$(3,1)$	$(3,3)$	$(3,5)$	$(5,1)$	$(5,3)$	$(5,5)$
1	0	0	0	2	2	2	4	4	4
3	-4	-6	-6	2	0	0	8	6	6
5	-16	-18	-20	-6	-8	-10	4	2	0

■ All states of form $(7, \cdot)$ and $(\cdot, 7)$ eliminated.
■ Then, 3 strictly dominates 5 .

"Exceeding Barbara's Exp": States-First Proc Rd 3

You/Barbara	$(1,1)$	$(1,3)$	$(3,1)$	$(3,3)$
1	0	0	2	2
3	-4	-6	2	0

■ All states of form $(5, \cdot)$ and $(\cdot, 5)$ eliminated.

- No more choices strictly dominated.
\Rightarrow Switch to elimination of choices and expectations.
- 1 weakly dominates 3.
- Hence, 3 is optimal iff $e_{i}(3,1)=1$ and 1 is optimal for any expectation.

"Exceeding Barb's Exp": States-First Proc Rd 4 ff

■ Given 3-fold reduced decision problem, belief in Barbara's rationality requires that $e_{1}(3 \mid 3)=1$.
■ Hence, surviving states at rd 4 in $\operatorname{Conv}\{(1,1),(1,3),(3,3)\}$.

- Since state $(3,1)$ is eliminated, choice 3 is also eliminated. $\Rightarrow 1$ uniquely rational under CBR for both players.

Interacting Belief Restrictions \& Strict Dominance

■ In "Black and White Dinner with a Twist" and other examples, standard iterated strict dominance is insufficient for CBR.

■ This is due to interacting belief restrictions.
■ E.g., in "Dinner w twist" your choosing black requires sufficiently high expectation of $\left(w_{2}, w_{1}\right)$.

■ But any such expectation for you goes beyond Barbara's maximum belief in w_{1} while rationally choosing w_{2}.

■ Hence, belief in Barbara's rationality eliminates these expectations and your choice black.

Interacting Belief Restrictions \& Strict Dominance

- Interacting belief restrictions are the reason why iterated strict dominance does not work in psychological games.

■ Conversely, special psychological games may exclude such interactions, allowing us to use strict dominance.

■ In psychological games as studied here, this will be true for player i if:

- i cares only about j 's behavior and j only cares about i 's first-order beliefs.
- i cares only about j 's first-order beliefs.

■ In particular, iterated strict dominance works for both players if one player only cares about behavior and the other only cares about first-order beliefs.

Example: "Barbara's Birthday"

■ You choose to buy a necklace, ring, or bracelet as a gift for Barbara.
■ You personally prefer necklace over ring over bracelet. In addition, you seek to surprise Barbara with your gift. Meanwhile, Barbara seeks to guess which gift you bought her.

You	(\cdot, n)	(\cdot, r)	(\cdot, b)		Barbara	(n, \cdot)	(r, \cdot)	(b, \cdot)
necklace	0	3	3		necklace	1	0	0
ring	2	0	2		ring	0	1	0
bracelet	1	1	0		bracelet	0	0	1

- Your behavior matters for Barbara but not vice versa. Similarly, you care what Barbara expect you to do but not vice versa.
- Hence, no belief restrictions for you and Barbara interact in this game.
\Rightarrow Iterated strict dominance finds choices consistent with CBR.

"Barbara's Birthday": Rationality

You	(\cdot, n)	(\cdot, r)	(\cdot, b)		Barbara	(n, \cdot)	(r, \cdot)	(b, \cdot)
necklace	0	3	3		necklace	1	0	0
ring	2	0	2		ring	0	1	0
bracelet	1	1	0		bracelet	0	0	1

■ bracelet strictly dominated for you by (e.g.) $0.4 \cdot$ necklace $+0.6 \cdot$ ring.
■ No choice dominated for Barbara.

"Barbara's Birthday": Belief in Rationality

You	(\cdot, n)	(\cdot, r)	(\cdot, b)		Barbara	(n, \cdot)	(r, \cdot)
necklace	0	3	3		necklace	1	0
ring	2	0	2		ring	0	1
					bracelet	0	0

■ Under belief in rationality, Barbara discards all states of form (b, \cdot).
■ Then, bracelet strictly dominated by (e.g.) $0.5 \cdot$ necklace $+0.5 \cdot$ ring .
■ No choice or state eliminated for you.
Caution: (\cdot, b) eliminated for you at up to 2-fold belief in rationality!

"Barbara's Bday": Common Belief in Rationality

You	(\cdot, n)	(\cdot, r)		Barbara	(n, \cdot)	(r, \cdot)
necklace	0	3		necklace	1	0
ring	2	0		ring	0	1

■ Under up to 2-fold belief in rationality, you discard (\cdot, b) as well as (b, n) and (b, r).
■ Finally, under up to 3-fold belief in rationality, Barbara discards (n, b) and (r, b).

■ No further choices are eliminated, so the procedure stops.

- Reduced decision problems:

You	(n, n)	(n, r)	(r, n)	(r, r)		Barbara	(n, n)	(n, r)	(r, n)	(r, r)
necklace	0	3	0	3		necklace	1	1	0	0
ring	2	0	2	0		ring	0	0	1	1

"Barbara's Birthday": Beliefs Diagram

■ To support your choices, only need partial beliefs diagram, omitting beliefs about Barbara's behavior:

■ Now complete diagram to also support Barbara's choices:

