Generalized Nash Equilibrium

Characterization

Epistemic Game Theory: Incomplete Information Part II: Correct Beliefs

Christian W. Bach

University of Liverpool & EPICENTER

EPICENTER Summer Course 2024: Incomplete Information (II / III)

1/31 h

http://www.epicenter.name/bach

< 17 ▶

Correct Beliefs Assumption and Equilibrium

- In games with complete information, it has been shown that common belief in rationality together with a correct beliefs assumption epistemically characterizes Nash Equilibirum.
- One possible way of fleshing out the correct beliefs assumption are simple belief hierarchies.
- In Incomplete Information Part I the notion of common belief in rationality has been generalized to incomplete information.
- In this part simple belief hierarchies are extended to games with incomplete information.
- It turns out that they are equivalent to a solution concept called Generalized Nash Equilibrium.

EPICENTER Summer Course 2024: Incomplete Information (II / III) 2/31 http://www.epicenter.name/bach

Generalized Nash Equilibrium

Characterization

Simple Belief Hierarchies

- With complete information a simple belief hierarchy (SBH) is generated by a tuple of conjectures (or mixed choices) $(\sigma_i)_{i \in I}$, where $\sigma_i \in \Delta(C_i)$ for all $i \in I$.
- An important feature of a simple belief hierarchy is that *i* believes his opponents to be correct about all the beliefs *i* holds.
- With more than 2 players, two further conditions arise:
 - *i* believes that any opponent *j*'s belief about a third player *k* is the same as *i*'s belief about *k*. (PROJECTION)
 - *i* belief about his opponents' choices are independent. (INDEPENDENCE)
- For incomplete information, all of these conditions need to be tailored to *i*'s extended basic space of uncertainty:

$$(\times_{j \neq i} C_j) \times (\times_{j \neq i} U_j)$$

Example: What is Barbara's favourite Colour?

Story:

- Barbara and you are going together to another party.
- *You* wonder what colour you should wear.
- You prefer blue (4) to green, green (3) to red, red (2) to yellow (1), and dislike most to wear the same colour (0) as Barbara.
- However, you drank so much at the last party, that you forgot Barbara's colour preferences.
- You are still certain about Barbara also disliking most to wear the same colour (0) as you.
- Also, you remember that Barbara either prefers red (4) to yellow, yellow (3) to blue, blue (2) to green (1); or blue (4) to yellow, yellow (3) to green, green (2) to red (1).
- Question: Which colours can you rationally choose for tonight's party under common belief in rationality?

Generalized Nash Equilibrium

Example: What is Barbara's favourite Colour?

■ The game in one-person perspective form:

- Suppose the following epistemic model of this game:
 - $T_{you} = \{t_y^1, t_y^2, t_y^3\}$ and $T_{Barbara} = \{t_B^1, t_B^2\}$,

•
$$b_{Barbara}[t_B^1] = (green, t_y^2, u_y),$$

- $b_{Barbara}[t_B^2] = (blue, t_y^1, u_y).$
- Your type t_v^1 believes that Barbara chooses red and has utility function u_B^r .
- Also, t_v^1 believes that Barbara believes that you believe Barbara chooses blue and has utility function u_B^b .
- Thus, you believe Barbara to be incorrect about your (first-order) beliefs.

Generalized Nash Equilibrium

Example: What is Barbara's favourite Colour?

The game in one-person perspective form:

- Suppose the following epistemic model of this game:
 - $T_{you} = \{t_y^1, t_y^2, t_y^3\}$ and $T_{Barbara} = \{t_B^1, t_B^2\}$,

- $b_{Barbara}[t_B^1] = (green, t_y^2, u_y),$
- $b_{Barbara}[t_B^2] = (blue, t_y^1, u_y).$
- Your type t_v^2 believes that Barbara chooses blue and has utility function u_B^b .
- Also, r_y^2 believes that *Barbara* believes that you believe *Barbara* chooses blue and has utility function u_B^b .
- In fact, t_y^2 even believes that *Barbara* believes that *your* type is t_y^2 .
- Thus, you believe that Barbara is correct about beliefs of yours even about your entire belief hierarchy.

Generalized Nash Equilibrium

Example: What is Barbara's favourite Colour?

The game in one-person perspective form:

- Suppose the following epistemic model of this game:
 - $T_{you} = \{t_y^1, t_y^2, t_y^3\}$ and $T_{Barbara} = \{t_B^1, t_B^2\}$,

- $b_{Barbara}[t_B^1] = (green, t_y^2, u_y),$
- $b_{Barbara}[t_B^2] = (blue, t_y^1, u_y).$
- The belief hierarchy induced by t_y^2 is completely generated by the two (marginal) conjectures: $\sigma_y = (green, u_y)$ and $\sigma_B = (blue, u_B^b)$.
- Accordingly: your belief about Barbara's choice and utility function is σ_B; you believe that Barbara's belief about your choice and utility function is σ_y; you believe that Barbara believes that your belief about Barbara's choice and utility function is σ_B; etc.
- This belief hierarchy is simple and it is generated by the tuple of marginal conjectures ($\sigma_{y_2} \sigma_B$).

Introduction

Simple Belief Hierarchy

Generalized Nash Equilibrium

(日)

Characterization

Simple Belief Hierarchy

Generalized Nash Equilibrium

Charaterization

EPICENTER Summer Course 2024: Incomplete Information (II / III) 8/31 http://www.epicenter.name/bach

(日本) (日本) (日本)

SIMPLE BELIEF HIERARCHY

EPICENTER Summer Course 2024: Incomplete Information (II / III) 9/31 http://www.epicenter.name/bach

э.

Conjectures and Marginal Conjectures

- Let $i \in I$ be some player.
- A conjecture of *i* is a belief about his opponents' choices and utility functions, denoted as μ_i ∈ Δ(×_{j≠i} (C_j × U_j)).
- A marginal conjecture about player *i* is a belief about *i*'s choice and utility function, denoted as $\sigma_i \in \Delta(C_i \times U_i)$.
- A conjecture of *i* induces a marginal conjecture $\operatorname{marg}_{C_j \times U_j} \mu_i$ about every opponent $j \neq i$.
- Note that a first-order belief of a type $t_i \in T_i$ constitutes a conjecture of that player:

$$\operatorname{marg}_{C_j \times U_j} b_i[t_i] \in \Delta \big(\times_{j \neq i} (C_j \times U_j) \big)$$

(日)

Belief Hierarchies based on Marginal Conjectures

Definition 1

Let Γ be a game with incomplete information, \mathcal{M}^{Γ} an epistemic model of Γ , $i \in I$ some player, $t_i \in T_i$ some type of player *i*, and $(\sigma_j)_{j \in I} \in \times_{j \in I} (\Delta(C_j \times U_j))$ a tuple of marginal conjectures. The induced belief hierarchy of t_i is called *generated* by $(\sigma_j)_{j \in I}$, whenever:

- player *i*'s 1st-order belief: $\prod_{j \neq i} \sigma_j$,
- player i's 2nd-order belief: i believes that every opponent j ≠ i holds 1st-order belief ∏_{k≠i} σ_k,
- player *i*'s 3rd-order belief: *i* believes that every opponent *j* ≠ *i* believes that every opponent *k* ≠ *j* holds 1st-order belief ∏_{*l*≠k} σ_{*l*},

• etc.

Generalized Nash Equilibrium

Characterization

Simple Belief Hierarchy

Definition 2

Let Γ be a game with incomplete information, \mathcal{M}^{Γ} an epistemic model of Γ , $i \in I$ some player, and $t_i \in T_i$ some type of player *i*. Type t_i holds a *simple belief hierarchy*, if there exists a tuple of marginal conjectures $(\sigma_j)_{j \in I} \in \times_{j \in I} (\Delta(C_j \times U_j))$ such that the induced belief hierarchy of t_i is generated by $(\sigma_j)_{j \in I}$.

Generalized Nash Equilibrium

Characterization

Decision Rule with SBH

Definition 3

Let Γ be a game with incomplete information, $i \in I$ some player, $c_i \in C_i$ some choice of player *i*, and $u_i \in U_i$ some utility function of player *i*. The choice c_i is *rational under common belief in rationality and a simple belief hierarchy* given u_i , if there exists an epistemic model \mathcal{M}^{Γ} of Γ with some type $t_i \in T_i$ of player *i* such that

- *t_i* expresses common belief in rationality,
- \blacksquare *t_i* holds a simple belief hierarchy,
- c_i is optimal for (t_i, u_i) .

Generalized Nash Equilibrium

Example: What is Barbara's favourite Colour?

■ The game in one-person perspective form:

- Suppose the following epistemic model of this game:
 - $T_{you} = \{t_y\}$ and $T_{Barbara} = \{t_B\}$,
 - $b_{you}[t_y] = 0.5 \cdot (red, t_B, u_B^r) + 0.5 \cdot (blue, t_B, u_B^b),$
 - b_{Barbara}[t_B] = (green, t_y, u_y).
- The belief hierarchy induced by t_y is completely generated by the two (marginal) conjectures $\sigma_y = (green, u_y)$ and $\sigma_B = 0.5 \cdot (red, u_B^r) + 0.5 \cdot (blue, u_B^b)$ and therefore simple.
- Note that this simple belief hierarchy expresses inherent payoff uncertainty.
- Indeed you assign probability 0.5 to Barbara's utility function u^r_B and 0.5 to u^b_B: you are thus inherently uncertain about Barbara's utility function.
- Moreover, you believe that this payoff uncertainty is transparent between Barbara and you.
- Besides, observe that ty actually expresses common belief in rationality.

A (10) A (10) A (10)

GENERALIZED NASH EQUILIBRIUM

EPICENTER Summer Course 2024: Incomplete Information (II / III) 15/31 http://www.epicenter.name/bach

Generalized Nash Equilibrium ○●○○○

(日)

Characterization

Equilibrium for Incomplete Information

Definition 4

Let Γ be a game with incomplete information. A tuple of marginal conjectures $(\sigma_j)_{j\in I} \in \times_{j\in I} (\Delta(C_j \times U_j))$ constitutes a *Generalized Nash Equilibrium* of Γ , whenever for all $i \in I$ and for all $(c_i, u_i) \in C_i \times U_i$ such that $\sigma_i(c_i, u_i) > 0$ it is the case that:

$$\sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c_i, c_{-i})$$
$$\geq \sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c'_i, c_{-i})$$

for all $c'_i \in C_i$.

Remark: for the special case of complete information, Generalized Nash Equilibrium coincides with Nash Equilibrium.

Generalized Nash Equilibrium

Characterization

Decision Rule with GNE

Definition 5

Let Γ be a game with incomplete information, $i \in I$ some player, $c_i \in C_i$ some choice of player *i*, and $u_i \in U_i$ some utility function of player $i \in I$. The choice c_i is *rational under generalized Nash equilibrium* given u_i , if there exists a generalized Nash equilibrium $(\sigma_j)_{j \in I}$ of Γ such that

$$\sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c_i, c_{-i})$$

$$\geq \sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c'_i, c_{-i})$$

for all $c'_i \in C_i$.

(日)

Example: What is Barbara's favourite Colour?

- Consider the two (marginal) conjectures $\sigma_y = (green, u_y)$ and $\sigma_B = 0.5 \cdot (red, u_B^r) + 0.5 \cdot (blue, u_B^b)$.
- σ_ν only assigns positive probability to green.
- Observe that *your* choice of *green* is optimal for u_y given the marginal belief $0.5 \cdot red + 0.5 \cdot blue$ on *Barbara*'s choices.
- σ_B assigns positive probability to red as well as to blue.
- Observe that Barbara's choice of red is optimal for u^B_B given the marginal belief green on your choices as well as that Barbara's choice of blue is optimal for u^B_B given the marginal belief green on your choices.
- Therefore, the tuple (σ_v, σ_B) forms a generalized Nash equilibrium.
- **Your** choice of green is rational under the generalized Nash equilibrium (σ_v, σ_B) given u_v .
- Barbara's choice of red is rational under the generalized Nash equilibrium (σ_y, σ_B) given u_B^r and Barbara's choice of blue is rational under the generalized Nash equilibrium (σ_y, σ_B) given u_B^r .

Introduction

Simple Belief Hierarchy

Generalized Nash Equilibrium ○○○○●

Characterization

Existence

Theorem 6

For every finite game with incomplete information there exists a Generalized Nash Equilibrium.

EPICENTER Summer Course 2024: Incomplete Information (II / III) 19/31 http://www.epicenter.name/bach

CHARACTERIZATION

EPICENTER Summer Course 2024: Incomplete Information (II / III) 20/31 http://www.epicenter.name/bach

Generalized Nash Equilibrium

Characterization

Fixing a SBH ensures that CBR iff GNE

Lemma 7

Let Γ be a game with incomplete information, \mathcal{M}^{Γ} an epistemic model of Γ , $(\sigma_j)_{j\in I} \in \times_{j\in I} (\Delta(C_j \times U_j))$ some tuple of marginal conjectures, $i \in I$ some player, and $t_i \in T_i$ some type of player i that holds a simple belief hierarchy generated by $(\sigma_j)_{j\in I}$. The type t_i expresses common belief in rationality, if and only if, $(\sigma_j)_{j\in I}$ forms a Generalized Nash Equilibrium of Γ .

EPICENTER Summer Course 2024: Incomplete Information (II / III) 21/31 http://www.epicenter.name/bach

<ロ> <同> <同> < 同> < 同> < 同> 、

э.

Proof of the Only If Direction of Lemma 7

- Consider some opponent $k \neq i$ of player *i*.
- As t_i believes in k's rationality, t_i only assigns positive probability to triples (c_k, t_k, u_k) such that c_k is optimal for (t_k, u_k) .
- Since t_i 's belief hierarchy is generated by $(\sigma_j)_{j \in I}$, t_i 's marginal conjecture on $C_k \times U_k$ is given by σ_k and t_i believes k's belief about C_{-k} to be $\prod_{j \neq k} \max_{C_i} \sigma_j$.
- It follows that, for all (c_k, u_k) ∈ supp(σ_k) it is the case that

$$\sum_{c_{-k} \in C_{-k}} \prod_{j \in I \setminus \{k\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_k(c_k, c_{-k}) \geq \sum_{c_{-k} \in C_{-k}} \prod_{j \in I \setminus \{k\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_k(c_k', c_{-k})$$

for all $c'_k \in C_k$.

Inti	rod	ucti	on
00	000	200	

Proof of the Only If Direction of Lemma 7

- Due to his simple belief hierarchy, t_i believes each of his opponents to hold marginal conjecture σ_i about *i*.
- As t_i believes each of his opponents to believe in i's rationality, t_i only assigns positive probability to opponents' types that in turn only assign positive probability to triples (c_i, t'_i, u_i) such that c_i is optimal for (t'_i, u_i).
- Since t_i's belief hierarchy is generated by (σ_j)_{j∈I}, t_i believes that any opponent's marginal conjecture on C_i × U_i is given by σ_i and t_i believes that any opponent's type believes that i holds ∏_{j≠i} marg_{Cj} σ_j as belief about C_{-i}.
- It follows that, for all $(c_i, u_i) \in \text{supp}(\sigma_i)$ it is the case that

$$\sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c_i, c_{-i}) \geq \sum_{c_{-i} \in C_{-i}} \prod_{j \in I \setminus \{i\}} \operatorname{marg}_{C_j} \sigma_j(c_j) \cdot u_i(c_i', c_{-i})$$

for all $c'_i \in C_i$.

Consequently, for every $j \in I$, it is the case that σ_j only assigns positive probability to pairs (c_j, u_j) such that

$$-\sum_{c_{-j}\in C_{-j}}\prod_{l\in I\setminus\{j\}}\mathrm{marg}_{C_l}\sigma_l(c_l)\cdot u_j(c_j,c_{-j})\geq \sum_{c_{-j}\in C_{-j}}\prod_{l\in I\setminus\{l\}}\mathrm{marg}_{C_l}\sigma_l(c_l)\cdot u_j(c_j',c_{-j})$$

for all $c'_j \in C_j$.

Therefore, the tuple $(\sigma_j)_{j \in I}$ of marginal conjectures constitutes a generalized Nash equilibrium.

Generalized Nash Equilibrium

(4) (3) (4) (4) (4)

Epistemic Characterization of Generalized Nash Equilibrium

Theorem 8

Let Γ be a game with incomplete information, $i \in I$ some player, $c_i \in C_i$ some choice of player i, and $u_i \in U_i$ some utility function of player i. The choice c_i is rational under common belief in rationality and a simple belief hierarchy given u_i , if and only if, c_i is rational under Generalized Nash Equilibrium given u_i .

Characterization

Example: The Moonlight Serenade

- You had a fight with Barbara and contemplate about three ways of apologizing to her:
 - perform a moonlight serenade outside her house,
 - bring her a box of her chocolate,
 - send your common friend Chris to apologize for you.
- When the doorbell rings *Barbara* can open up or ignore the bell.
- Your preferences are captured by the following decision problem:

		open	ignore
	serenade	4	0
$\Gamma_y(u_y)$	chocolate	0	4
	Chris	3	3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Generalized Nash Equilibrium

< 17 ▶

(4) (3) (4) (4) (4)

Characterization

Example: The Moonlight Serenade

- You are uncertain about Barbara's preferences and whether she will be in an angry or a forgiving mood.
- Her preferences are captured by the following two decision problems:

Generalized Nash Equilibrium

Characterization

Example: The Moonlight Serenade

The game in one-person perspective form:

Application of GISD to the game:

In $\Gamma_{y}(u_{y})$ each of *your* three choices is optimal for some belief about *Barbara*'s choices.

In $\Gamma_B(u_B^{an})$ open is strictly dominated by ignore: delete open from $\Gamma_B(u_B^{an})$.

In $\Gamma_B(u_B^{for})$ each of *Barbara*'s two choices are optimal for some belief about *your* choices.

■ It follows that GISD = GISD_{you} × GISD_{Barbara}

= { (serenade, u_y), (chocolate, u_y), (Chris, u_y) } × { (ignore, u_B^{an}), (open, u_B^{for}), (ignore, u_B^{for}) }

- Consequently, you can rationally pick each of your three choices under common belief in rationality given your (only) utility function.
- Barbara can rationally only pick ignore under common belief in rationality if she is angry, whereas she can
 pick both open and ignore under common belief in rationality if she is forgiving.

(日)

Generalized Nash Equilibrium

Characterization

< 回 > < 回 > < 回

Example: The Moonlight Serenade

The game in one-person perspective form:

- Next, GNE is applied to the game.
- Consider the tuple (σ_v, σ_B) of marginal conjectures, where

$$\sigma_v = 0.75 \cdot (chocolate, u_v) + 0.25 \cdot (Chris, u_v)$$

and

$$\sigma_B = 0.25 \cdot (open, u_B^{for}) + 0.75 \cdot (ignore, u_B^{an})$$

- Observe that
 - Chocolate is optimal for you given u_v and σ_B as belief about Barbara's choice.
 - Chris is also optimal for you given u_y and σ_B as belief about Barbara's choice.
 - Open is optimal for *Barbara* given u_B^{for} and σ_y as belief about *your* choice.
 - Ignore is optimal for *Barbara* given u_B^{an} and σ_v as belief about your choice.
- Therefore, (σ_ν, σ_B) constitutes a GNE.
- Consequently, chocolate and Chris are rational under GNE for u_y as well as open is rational under GNE for u_B^{for} and ignore is rational under GNE for u_B^{an} .

Generalized Nash Equilibrium

Characterization

Example: The Moonlight Serenade

The game in one-person perspective form:

- Can Barbara also rationally ignore the doorbell under GNE if she is forgiving?
- Consider the tuple (σ_v, σ_B) of marginal conjectures, where

$$\sigma_y = 0.5 \cdot (chocolate, u_y) + 0.5 \cdot (Chris, u_y)$$

and

$$\sigma_B = 0.25 \cdot (open, u_B^{for}) + 0.75 \cdot (ignore, u_B^{for})$$

- Observe that
 - Chocolate is optimal for you given u_v and σ_B as belief about Barbara's choice.
 - Chris is also optimal for you given u_y and σ_B as belief about Barbara's choice.
 - Open is optimal for *Barbara* given u_B^{for} and σ_y as belief about *your* choice.
 - Ignore is also optimal for *Barbara* given u_B^{for} and σ_y as belief about *your* choice.
- Therefore, (σ_v, σ_B) constitutes a GNE.
- Hence, Barbara can indeed also rationally ignore the doorbell under GNE if she is forgiving.

Generalized Nash Equilibrium

Characterization

Example: The Moonlight Serenade

The game in one-person perspective form:

- Can you also rationally play the moonlight serenade under GNE given your (unique) utility function?
- Towards a contradiction, let (σ_y, σ_B) be a GNE such that serenade is optimal for $(marg_{C_{Rarbara}} \sigma_B, u_y)$.
- Then, $\max_{C_{Barbara}} \sigma_B(open) > 0$, as serenade would otherwise be strictly worse than chocolate and Chris.
- As open can only possibly be optimal for *Barbara* if she is forgiving, $\sigma_B(open, u_B^{for}) > 0$ must hold.
- This implies that open must be optimal for $(\max_{C_{VOU}} \sigma_y, u_B^{for})$ and hence $\max_{C_{VOU}} \sigma_y(chocolate) > 0$.
- Consequently, chocolate must also be optimal for $(marg_{C_{Barbara}} \sigma_B, u_y)$.
- Serenade and chocolate can only both be optimal for (marg_{CBarbara} σ_B, u_y), if σ_B assigns probability 0.5 to open and 0.5 to ignore.
- Both serenade and chocolate would then yield an expected payoff of 2 which is strictly worse than the 3 that the choice of Chris induces contradicting the optimality of serenade and chocolate.
- Therefore, there does not exist a GNE in which you can rationally play the moonlight serenade given your (unique) utility function.

Generalized Nash Equilibrium

Characterization

э

Example: The Moonlight Serenade

The game in one-person perspective form:

- GISD and GNE give the same solution for Barbara:
 - $GISD_{Barbara} = \{(ignore, u_B^{an}), (open, u_B^{for}), (ignore, u_B^{for})\}$
 - Her rational choices under GNE are ignore only given u^{an}_B and ignore as well as open given u^{for}_B.
- GISD is strictly refined by GNE for you though:
 - GISD_{you} = {(serenade, u_y), (chocolate, u_y), (Chris, u_y)}
 - However, you can only rationally choose chocolate as well as Chris but not serenade under GNE given your (only) utility function uy.

・ロト ・ 雪 ト ・ ヨ ト