Common Belief in Rationality with Unawareness

Stephan Jagau

EPICENTER Research Center for Epistemic Game Theory

July 8, 2024

- Previous two lectures: Uncertainty regarding others' utility functions/conditional preferences.
- This lecture: What if players are unaware of (some) choices available to opponents?
- Characteristic feature of unawareness:
 Players cannot reason about events that they are unaware of.
 (Different from and complementary to incomplete information.)
 - New tool in this lecture: Players hold potentially different views of the game, specifying what choices they believe are available to themselves and opponents.

Introductory Example

Day at the Beach

- You and Barbara each choose to go to one of four beaches: Nextdoor, Closeby, Faraway, Distant.
- Personally, you prefer Faraway to Distant to Nextdoor to Closeby. In addition and more importantly, you seek to avoid Barbara.
- You know that Barbara is aware of Nextdoor and Closeby, but she may be unaware of Faraway and Distant.
- You know that Barbara also wants to avoid you and personally prefers Nextdoor to Closeby.
- Also, subject to her awareness, you believe Barbara prefers Closeby to Faraway to Distant.

Introductory Example: Views

vall .

		·1 ·					
You	Faraway	Distant	Nextdoor	Closeby		v_1^{two} :	
Faraway	0	4	4	4	You	Nextdoor	Closeby
Distant	3	0	3	3	Nextdoor	0	2
Nextdoor	2	2	0	2	Closeby	1	0
Closeby	1	1	1	0			

 v_2^{all} :

Barbara	Faraway	Distant	Nextdoor	Closeby		v_2^{two} :	
Faraway	0	2	2	2	Barbara	Nextdoor	Closeby
Distant	1	0	1	1	Nextdoor	0	4
Nextdoor	4	4	0	4	Closeby	3	0
Closeby	3	3	3	0			

Note: v_1^{two} is needed here. At v_2^{two} , Barbara believes v_1^{two} is your view. Also, she may believe v_1^{two} is your view at v_2^{all} .

EPICENTER Summer Course 2024: Unawareness

Introductory Example: Rationality

all

		v_1^{an} :					
You	Faraway	Distant	Nextdoor	Closeby		v_1^{two} :	
Faraway	0	4	4	4	You	Nextdoor	Closeby
Distant	3	0	3	3	Nextdoor	0	2
Nextdoor	2	2	0	2	Closeby	1	0
Closeby	1	1	1	0			

Proceed by eliminating strictly dominated choices at each view.

- At v_1^{all} , Closeby strictly dominated by (e.g.) $1/2 \cdot Faraway + 1/2 \cdot Distant$.
- No choice dominated at v_1^{two} .
- Analogously for v_2^{all} , *Distant* strictly dominated by (e.g.) $1/2 \cdot Nextdoor + 1/2 \cdot Closeby$ and no choice dominated at v_2^{two} .

Introductory Example: 1-Fold Strict Dominance

		v_1^{all} :				,two .	
You	Faraway	Distant	Nextdoor	Closeby	Veu	V ₁ .	Classie
Faraway	0	4	4	4	fou	Nexiaoor	Closeby
Distant	3	0	3	3	Nextdoor	0	2
N / I	0	0	0	0	Closeby	1	0
Ivextdoor	2	2	U	2			

all	
12000	٠
V 2	

Barbara	Faraway	Distant	Nextdoor	Closeby		v_2 :	
F	1 araway	Distant	0		Barbara	Nextdoor	Closeby
Faraway	0	2	2	2	Nextdoor	0	4
Nextdoor	4	4	0	4	al l	0	т 0
Closeby	3	3	3	0	Closeby	3	0

.two .

Introductory Example: Belief in Rationality

- Which choices can Barbara and you consider under belief in rationality?
- First consider Barbara's choice *Distant*:
 - At v_2^{all} , *Distant* is never rational for her.
 - At v_2^{two} , she is unaware of *Distant*.
 - \Rightarrow You discard *Distant* at v_1^{all} if you believe in Barbara's rationality.
- Now consider your choice *Closeby*:
 - At v_1^{all} , *Closeby* is never rational for you.
 - But at v_1^{two} , *Closeby* is optimal against (e.g.) *Nextdoor*.
 - \Rightarrow Barbara does not discard *Closeby* at v_2^{all} !

Introductory Example: Belief in Rationality

	v_1^{al}	¹¹ :			,two .	
You	Faraway	Nextdoor	Closeby	Vou	V ₁ .	Classby
Faraway	0	4	4	100	Nexidoor	Closeby
Distant	3	3	3	Nextdoor	0	2
Nextdoor	2	0	2	Closeby	1	0

 v_2^{all} :

	1	2				v ^{two} ·	
Barbara	Faraway	Distant	Nextdoor	Closeby	Parhara	Northern	Classie
Faraway	0	2	2	2	Darbara	Nexiaoor	Closeby
1 ana may	Ũ	-	-	-	Nextdoor	0	4
Nextdoor	4	4	0	4			•
Closeby	3	3	3	0	Closeby	3	0

Introductory Example: Rationality & Belief in Rat.

	v_1^{al}	<i>'</i> :			.two .	
You	Faraway	Nextdoor	Closeby	Vau		Classie
Faraway	0	4	4	tou	Nexiaoor	Closeby
Distant	2	2	3	Nextdoor	0	2
Disiuni	5	5	5	Closeby	1	0
Nextdoor	2	0	2	5	I	

• At v_1^{all} , *Nextdoor* strictly dominated by *Distant*.

All remaining choices consistent with common belief in rationality.

Intuition:

- Barbara cannot discard v^{two}₁.
- Hence, excluding *Nextdoor* and *Closeby* for you at v₁^{all} does not change her decision problems.

Barbara

Farawav

Nextdoor

Closebv

Introductory Example: Rationality & Belief in Rat.

	v_1^{a}	<i>u</i> :		v_1^{two} :			
You	Faraway	Nextdoor	Closeby	You	Nextdoor	Closeby	
Faraway	0	4	4	Nextdoor	0	2	
Distant	3	3	3	Closeby	1	0	

2

4

0

v_2^{all}	:
Dist	ant

2

4

3

a
1/2
- 10

Nextdoor

2

0

3

Closeby	
	Barbar

Closeby

	v_2^{two} :	
Barbara	Nextdoor	Closeby
Nextdoor	0	4

3

EPICENTER	Summer	Course 2024	: Unawareness	

Faraway

0

4

3

0

Correctness + Symmetry

Introductory Example: Beliefs Diagram

How does *Nextdoor* and *Closeby* being (iteratively) strictly dominated for you at v_1^{all} affect Barbara's beliefs at v_2^{all} ?

Games with Unawareness and Common Belief in Rationality

- Procedural Characterization
- Possibility
- Variants of the Procedure
- Correct and Symmetric Beliefs

Views and Awareness Principle

Definition

A *view* for player *i* specifies a set of choices $C_j(v_i)$ for every player *j* (including *i*). If two views v_i , v_k satisfy $C_j(v_i) \subseteq C_j(v_k)$ for all players *j*, then v_i is contained in v_k .

Important: Players can only reason about choices they are aware of at their view. Hence, any player must believe opponent views are contained in their own view!

Definition

A player with view *v* satisfies the *awareness principle* if they believe that every opponent holds a view contained in *v*.

Games with Unawareness

Definition

A game with unawareness specifies

a) finite set I of players,

b) finite collection V_i of views for each player *i*,

c) utility function $u_i^{v_i} : \bigotimes_i C_j(v_i) \to \mathbb{R}$ for every view v_i ,

where, for all players i, j,

1) if $v_i \in V_i$, then there is $v_j \in V_j$ such that v_j is contained in v_i ,

2) if
$$(c_i, c_{-i}) \in \bigotimes_j C_j(v_i) \cap \bigotimes_j C_j(v'_i)$$
, then $u_i^{v_i}(c_i, c_{-i}) = u_i^{v'_i}(c_i, c_{-i})$.

Notes:

- (1) ensures reasoning can satisfy awareness principle.
- (2) constant utility across views (henceforth write u_i iso $u_i^{v_i}$).

Under unawareness, players form beliefs about two things:

- 1) opponents' views,
- 2) opponents' choices given a view.

(Similar to incomplete info, w. views instead of utilities.)

Formally, **belief hierarchy** for *i* under unawareness specifies:

- first-order belief b_i^1 about opponents' choice-view combinations (c_{-i}, v_{-i}) ,
- **second-order belief** b_i^2 about opponents' combinations of choices, views, and first-order beliefs $(c_{-i}, v_{-i}, b_{-i}^1)$,

ŝ

Epistemic Models

Definition

Take a game with unawareness Γ . An *epistemic model* $M^{\Gamma} = (T_i, w_i, b_i)_{i \in I}$ specifies

- a) finite set of types T_i for every player i,
- **b)** a view $w_i(t_i)$ for every type t_i ,
- c) a description map $b_i: T_i \to \Delta(C_{-i} \times T_{-i}),$

where, for every players $i \neq j$ and types t_i, t_j ,

- **1)** t_i only assigns positive probability to (c_j, t_j) if $c_j \in C_j(w_j(t_j))$,
- **2)** t_i only assigns positive prob. to t_j if $w_j(t_j)$ is contained in $w_i(t_i)$.

Note: (1) + (2) ensure awareness principle holds for every type.

Epistemic Model for Introductory Example

Types:
$$T_1 = \{t_1^{all,F}, t_1^{all,D}, t_1^{two,N}, t_1^{two,C}\}, T_2 = \{t_2^{all,F}, t_2^{all,N}, t_2^{all,C}, t_2^{two,N}, t_2^{two,C}\}$$

Views for You: $w_1(t_1) = \begin{cases} v_1^{two}, \text{ if } t_1 \in \{t_1^{two,N}, t_1^{two,C}\}, \\ v_1^{all}, \text{ else.} \end{cases}$

Views for *Barbara*:
$$w_2(t_2) = \begin{cases} v_2^{hvo}, \text{ if } t_2 \in \{t_2^{hvo,N}, t_2^{hvo,C}\}, \\ v_2^{all}, \text{ else.} \end{cases}$$

Beliefs for You: $b_1(t_1^{all,F}) = (Nextdoor, t_2^{all,N}), b_1(t_1^{all,D}) = (Faraway, t_2^{all,F}),$ $b_1(t_1^{two,N}) = (Closeby, t_2^{two,C}), b_1(t_1^{two,C}) = (Nextdoor, t_2^{two,N}).$

■ Beliefs for Barbara: $b_2(t_2^{all,F}) = 0.6 \cdot (Nextdoor, t_1^{two,N}) + 0.4 \cdot (Closeby, t_1^{two,C}),$ $b_2(t_2^{all,N}) = (Faraway, t_1^{all,F}), b_2(t_2^{all,C}) = (Nextdoor, t_1^{two,N}),$ $b_2(t_2^{two,N}) = (Closeby, t_1^{two,C}), b_2(t_2^{two,C}) = (Nextdoor, t_1^{two,N}).$

Optimal and Rational Choices

Main change under unawareness: optimality is view-dependent.

Definition

Take type t_i with view $w_i(t_i)$, utility $u_i^{w_i(t_i)}$, and first-order belief $b_i^1(t_i)$. Choice $c_i \in C_i(w_i(t_i))$ is *optimal* for t_i if

$$u_i(c_i, b_i^1(t_i)) = \sum_{c_{-i} \in C_{-i}(w_i(t_i))} b_i^1(t_i)(c_{-i})u_i(c_i, c_{-i}) \ge u_i(c_i', b_i^1(t_i))$$

for all $c'_i \in C_i(w_i(t_i))$.

- Hence, choice c_i is rational for player *i* and view v_i if there is an epistemic model *M* such that a type t_i in *M* with $w_i(t_i) = v_i$ can rationally choose c_i .
- Analogous for up to *k*-fold/common belief in rationality.

(Common) Belief in Rationality

Up to *k*-fold/common belief in rationality now defined like w/o unawareness:

Definition		
Type t_i ,		

- believes in the opponents' rationality if $b_i(t_i)$ only deems possible (c_j, t_j) where c_j is optimal for t_j ,

- expresses up to k-fold belief in rationality for $k \ge 1$ if $b_i(t_i)$ only deems possible (c_j, t_j) where c_j is optimal for t_j expressing up to (k-1)-fold belief in rationality,
- *expresses common belief in rationality* if *b_i(t_i)* expresses up to *k*-fold belief in rationality for all *k* ≥ 1.

- Games with Unawareness and Common Belief in Rationality
- Procedural Characterization
- Possibility
- Variants of the Procedure
- Correct and Symmetric Beliefs

Strict Dominance and Unawareness

- To find all choices consistent with common belief in rationality under unawareness, we generalize iterated strict dominance.
- Similar to incomplete information and generalized iterated strict dominance, *iterated strict dominance for unawareness* will proceed view by view at each step of the procedure.
- Crucially, we may only discard an opponent *j*'s choice c_j at some view v_i if c_j is strictly dominated at **all** opponent's views v_j contained in v_i such that $c_j \in C_j(v_j)$.

Strict Dominance for Unawareness

Strict dominance straightforwardly generalizes to unawareness:

Definition

Let Γ be a game with unawareness and take any player *i* and view $v_i \in V_i$. A choice c_i is *strictly dominated* at v_i if there exists $r \in \Delta(C_i(v_i))$ such that

$$u_i(c_i, c_{-i}) < \sum_{c'_i \in \operatorname{Supp}(r)} r(c'_i) u_i(c'_i, c_{-i})$$

for all $c_{-i} \in C_{-i}(v_i)$.

Using Pearce's Lemma from Chapter 2, we then have:

Theorem

A choice c_i is rational for player *i* at view v_i iff it is not strictly dominated at v_i .

Reduced Decision Problems

- As defined above, belief in rationality requires you to only consider opponent (c_j, t_j) combinations s.th. c_j is optimal for t_j.
- But recall that optimality depends on t_i 's view $w_i(t_i)$.
- Hence, for any view v_i, we can rule out a choice c_j only if **no** type t_j such that w_j(t_j) is contained in v_i can optimally choose c_j.
- Consequently, eliminating c_j at some view v_i requires that c_j be strictly dominated at **all** views v_j contained in v_i.
- Note: Like in introductory example, we allow for player *j* not being aware of c_j at some of the v_j.

Iterated Strict Dominance for Unawareness

Definition

Round 1. For every player *i* and every view v_i , eliminate all choices c_i that are strictly dominated.

Round $k \ge 1$. For every player *i* and every view v_i , eliminate all opponent choice combinations c_{-i} ($\hat{=}$ states) s.th. some c_j in c_{-i} did not survive round k - 1 for *j* at all views v_j contained in v_i . Within the resulting decision problems, for any player *i* and any view v_i , eliminate all choices c_i that are strictly dominated.

Proceed until no further choices c_i or states c_{-i} can be eliminated at any view v_i of any player *i*.

Theorem

For any $k \ge 1$, choice c_i is rational for player i at view v_i under up to k-fold (common) belief in rationality iff c_i survives (k + 1)-fold (iterated) strict dominance for unawareness at v_i .

Example: "Too much Wine"

- *You* and *Barbara* have drunk too much and (in chronological order) ruined Chris's *table*, *window*, *roof*, and *door*. Fixing each item will cost \$500.
- Both of you are separately interviewed by Chris to determine responsibility for the damage. Each of you can claim to be *innocent*, or admit to all damages that happened up to destruction of the *table*, *window*, *roof*, and *door*.
- Chris will go with the story admitting to more damages. In addition, if you or Barbara admit to less damages than the other you have to pay an extra \$300, which is used to reward the other player for their honesty.
- You are aware of everything that happened. But, due to the wine, you are unsure whether Barbara is aware of anything that happened after destruction of the window.

"Too much Wine": Views

	window /,,windo			v_1^{roof}/v_2^{roof} :						
Vou/Barbara	$ / v_2$	tabla	window	You/Barbara	innocent	table	window	roof		
Iou/Daibaia	innoceni	luble	window	innocent	0	-550	-800	-1,050		
innocent	0	-550	-800	table	50	-250	-800	-1.050		
table	50	-250	-800	window	-200	-200	-500	-1,050		
window	-200	-200	-500	roof	-450	-450	-450	-750		

 v_1^{door}/v_2^{door} :

You/Barbara	innocent	table	window	roof	door
innocent	0	-550	-800	-1,050	-1,300
table	50	-250	-800	-1,050	-1,300
window	-200	-200	-500	-1,050	-1,300
roof	-450	-450	-450	-750	-1,300
door	-700	-700	-700	-700	-1,000

"Too much Wine": Rationality

, roof 1, roof									v_1^{door}/v_2^{door} :					
$v_1^{window}/v_2^{window}$:					You/Barbara	innocent	table	window	roof	door				
You/Barbara	innocent	table	window	fou/Baibaia	innoceni	Table 550	winaow	1.050	innocent	0	-550	-800	-1,050	-1,300
innocent	0	-550	-800	innocent	0	-550	-800	-1,050	table	50	-250	-800	-1,050	-1,300
table	50	-250	-800	table	50	-250	-800	-1,050	window	-200	-200	-500	-1,050	-1,300
window	-200	-200	-500	window	-200	-200	-500	-1,050	roof	-450	-450	-450	-750	-1,300
	1			roof	-450	-450	-450	-750	door	-700	-700	-700	-700	-1,000

innocent strictly dominated by $0.9 \cdot table + 0.1 \cdot window$ at v_1^{window} .

- innocent strictly dominated by $0.95 \cdot table + 0.05 \cdot roof$ at v_1^{roof} .
- innocent strictly dominated by $0.95 \cdot table + 0.05 \cdot door$ at v_1^{door} .
- By symmetry, the same is true for Barbara.
- Since innocent was eliminated at all views for both players, can eliminate that state from all decision problems.

"Too much Wine": Belief in Rationality

				roof 1 ro	oof			v_1^{ao}	v_2^{aoor} :		
$v_1^{window}/v_2^{window}$:			· :	C.	You/Barbara table window roof						
You/Barbara	table	window	tou/barbara	table	winaow	roof	table	-250	-800	-1,050	-1,300
table	-250	-800	table	-250	-800	-1,050	window	-200	-500	-1,050	-1,300
window	-200	-500	window	-200	-500	-1,050	roof	-450	-450	-750	-1,300
			roof	-450	-450	-750	door	-700	-700	-700	-1,000

- *table* strictly dominated by window at v_1^{window} .
- *table* strictly dominated by $0.95 \cdot window + 0.05 \cdot roof$ at v_1^{roof} .
- *table* strictly dominated by $0.95 \cdot window + 0.05 \cdot door$ at v_1^{door} .
- By symmetry, the same is true for Barbara.
- Since *table* was eliminated at all views for both players, can eliminate that state from all decision problems.

"Too much Wine": Up to 2-fold Belief in Rationality

		roof	roof			v_1^{door}/v_2^{door}	:	
v_1^{window}/v_2^{win}	dow :	Vau/Barbara	/V ₂ · :		You/Barbara	window	roof	door
You/Barbara	window	Tou/Barbara	winaow	1 050	window	-500	-1,050	-1,300
window	-500	window		-1,050	roof	-450	-750	-1,300
		roof	-450	-750	door	-700	-700	-1,000

- window strictly dominated by roof at v_1^{roof} .
- window strictly dominated by $0.95 \cdot roof + 0.05 \cdot door$ at v_1^{door} .
- By symmetry, the same is true for Barbara.
- However, *window* will remain a state in each decision problem since it cannot be eliminated at the least expressive views $v_1^{window}/v_2^{window}$!
- Hence, the procedure stops here.

"Too much Wine": Common Belief in Rationality

,window /,win	v_1^{door}/v_2^{door} :							
Vou/Porboro	·	Vou/Parbara	v ₂ .	noof	You/Barbara	window	roof	door
	FOO		450	750	roof	-450	-750	-1,300
window	-500	roof	-450	-750	door	-700	-700	-1,000

- At your view v₁^{door}, you can rationally choose *roof* and *door* under common belief in rationality.
- Note that rationality of *roof* under CBR is driven by differential awareness. If you were sure that Barbara is aware of the roof's or the door's destruction, then you could only rationally choose *door*.

- Games with Unawareness and Common Belief in Rationality
- Procedural Characterization
- Possibility
- Variants of the Procedure
- Correct and Symmetric Beliefs

Possibility of Common Belief in Rationality

- An important question is whether games with unawareness are always consistent with common belief in rationality.
- In other words, for any such game Γ , can we find a model M^{Γ} such that some type t_i for every *i* expresses common belief in rationality?
- A new variant of this question is whether any view in a game is consistent with common belief in rationality.
- In other words, for any Γ , any player *i*, and any $v_i \in V_i$, can we find a model M^{Γ} such that some t_i with $w_i(t_i) = v_i$ expresses common belief in rationality?
- We now argue that the answer to both questions is yes.

Possibility: Sketch of Proof

Step 1:

- For every player *i* and every view v_i , take any $c_{-i} \in C_{-i}(v_i)$.
- Since $C_i(v_i)$ is finite, there is $c_i^1 \in C_i(v_i)$ s.th. c_i is optimal for $b_i^1 = c_{-i}$.
- Hence, c_i^1 survives 1-fold str. dominance at v_i .

■ **Step** *k* ≥ 1:

- Using Step k 1 and awareness principle, for every view v_i and player i, take $c_{-i} \in C_{-i}(v_i)$ s.th. every c_j in c_{-i} is in j's reduced dec. problem after (k 1)-fold str. dominance for some v_j contained in v_i .
- Since $C_i(v_i)$ is finite, there is $c_i^k \in C_i(v_i)$ s.th. c_i is optimal for $b_i^1 = c_{-i}$.
- Furthermore, since each c_j in c_{-i} is in *j*'s reduced dec. problem after (k-1)-fold strict dominance for some v_j contained in v_i , c_{-i} is a state in *i*'s dec. problem at v_i after (k-1)-fold str. dominance.
- Hence, c_i^k survives k-fold strict dominance at v_i .
- Now since there are finitely views and choices, procedure terminates in finitely many steps. Hence, for any view, there must be a choice consistent with common belief in rationality.

Beliefs Diagrams for Common Belief in Rationality

Similarly, we can find a beliefs diagram supporting any choice c_i that survives iterated strict dominance at some v_i under common belief in rationality:

- Take any view v_i and choice c_i surviving iterated strict dominance at v_i .
- By construction, there is a belief over states in the final reduced problem at v_i that makes c_i optimal. Use this belief for an arrow supporting c_i in the beliefs diagram.
- Again by construction, the arrow only reaches opponent v_j's contained in v_i and c_j's surviving iterated strict dominance at v_j.
- Thus, for each (c_j, v_j) reached by initial arrow, can find belief over states in final reduced decision problem at v_j s.th. c_j is optimal. This yields support arrow for c_j only reaching v_k contained in $v_j + c_k$ surviving iterated str.dom. at v_k .
- Iterating, we arrive at infinite chain of arrows supporting c_i, giving rise to belief hierarchy expressing common belief in rationality.

Example: Beliefs Diagram for "Too much Wine"

- Games with Unawareness and Common Belief in Rationality
- Procedural Characterization
- Possibility
- Variants of the Procedure
- Correct and Symmetric Beliefs

Order Independence

- Similar to standard iterated strict dominance, iterated strict dominance for unawareness is order-independent.
- Intuitively, this is true for two reasons:
 - 1) If a choice is strictly dominated in a decision problem, it is also strictly dominated in any reduced version of that problem.
 - 2) If a state is not eliminated because strict dominance at some view was overlooked, it can still be eliminated as soon as the necessary strict dominance relationship is detected.
- As a consequence, we can vary the order eliminating choices and states while preserving the **final** output of iterated strict dominance for unawareness.

Important: Correct **intermediate** outputs (*k*-fold str.dom., $k \ge 1$) only found when eliminating **full-speed** in the **original order**.

- A computationally convenient order of elimination goes from "smallest" to "largest" views.
- I.e., say that view *v* strictly contains view *w* if *v* contains *w* and $C_j(w) \subsetneq C_j(v)$ for some player *j*.
- We now rank views in $V = X_i V_j$ from "smallest" to "largest" as follows:
 - $v \in V$ has rank 1 if no view is strictly contained in v,
 - $v \in V$ has rank 2 if only views of rank 1 are strictly contained in v,
 - *v* ∈ *V* has rank *k* ≥ 1 if only views up to rank *k* − 1 are strictly contained in *v*.

"Too much Wine": Ranked Views

					_roof /					١	$\frac{door}{1}/v_2^{doo}$	<i>r</i> :		
$v_1^{svindow}/v_2^{window}$:					You/Barbara	innocent	table	window	roof	door				
You/Barbara	innocent	table	window	in the second se	nnoceni	EEO	800	1.050	innocent	0	-550	-800	-1,050	-1,300
innocent	0	-550	-800	innoceni	50	-550	-800	-1,050	table	50	-250	-800	-1,050	-1,300
table	50	-250	-800	table	50	-250	-800	-1,050	window	-200	-200	-500	-1,050	-1,300
window	-200	-200	-500	window	-200	-200	-500	-1,050	roof	-450	-450	-450	-750	-1,300
				roof	-450	-450	-450	-750	door	-700	-700	-700	-700	-1,000

- v_1^{window} is rank 1 for you, v_1^{roof} is rank 2 for you, and v_1^{door} is rank 3 for you.
- The same ranking holds for Barbara.
- More generally, multiple views of different sizes may occupy the same rank (and then they are incomparable).

Bottom-up Procedure

The following procedure is output-equivalent to the original one:

Definition

Round 1. To all views of rank 1 apply iterated strict dominance for unawareness.

Round $k \ge 1$. For every player *i* and every view v_i of rank *k* containing only opponent views of rank k - 1, eliminate all states involving opponent choices that did not survive step k - 1 at any view contained in v_i . Now apply iterated strict dominance for unawareness to all views of rank *k*.

Proceed until all views have been covered.

Theorem

The bottom-up procedure always yields the same final output as iterated strict dominance for unawareness.

Fixed Beliefs on Views

- An important special case arises from fixing beliefs on views.
- I.e., a player with view v may entertain a fixed probability distribution over opponents' views contained in v, rather than considering any possible distribution over those views.
- Formally within an epistemic model, this becomes a **restriction on the** description map.
- I.e., for all players *i* and views v_i , let $V_{-i}(v_i) \subseteq V_{-i}$ be opponent views contained in v_i and take a vector $p = (p_i(v_i))_{i \in I, v_i \in V_i}$ s.th. $p_i(v_i) \in \Delta(V_{-i}(v_i))$.
- We can now model **common belief in** *p* analogous to CBR (i.e., every type believes *p*, every type believes every type believes *p*,...). Details in Section 7.6.
- Additional restrictions (e.g., "reverse Bayesianism") or weaker forms (sets of admissible beliefs) can be modeled as well.

Procedures for Fixed Beliefs on Views

- A simple modification to iterated strict dominance delivers choices consistent with CBR **and** common belief in some *p*.
- Intuitively, the only difference is how decision problems are weighted given beliefs in *p*.
- As seen in Definition 7.6.4., this leads to a procedure, where for every step k > 1, choices survive only if they are optimal for a belief on opponents' choices and views respecting p.
- Otherwise, the procedure stays exactly the same. Also the bottom-up procedure continues to work, subject to the same modification.

Introductory Example with Fixed Beliefs on Views

		v_1^{all} :					
You	Faraway	Distant	Nextdoor	Closeby		v_1^{two} :	
Faraway	0	4	4	4	You	Nextdoor	Closeby
Distant	3	0	3	3	Nextdoor	0	2
Nextdoor	2	2	0	2	Closeby	1	0
Closeby	1	1	1	0			
		all					
		v_2^{m} :					
Barbara	Faraway	Distant	Nextdoor	Closeby		v_2^{two} :	
Faraway	0	2	2	2	Barbara	Nextdoor	Closeby
Distant	1	0	1	1	Nextdoor	0	4
Nextdoor	4	4	0	4	Closeby	3	0
Closeby	3	3	3	0			

- Suppose you assign $p_1(v_1^{all}) = 0.8 \cdot v_2^{all} + 0.2 \cdot v_2^{two}$ and that Barbara assigns the same weighting to v_1^{all} , v_1^{two} at v_2^{all} .
- Clearly, this does not matter for rationality. I.e., *Closeby* at v_1^{all} and *Distant* at v_2^{all} remain the only strictly dominated choices.

Introductory Example: Belief in Rationality

- Which choices can Barbara and you make under belief in rationality, given the belief restriction?
- Nextdoor will still be eliminated for you, given that Distant was eliminated at all of Barbara's views.
- Now consider Barbara's choice *Faraway* at v_2^{all} :
 - At v_2^{all} , Barbara must believe you do not choose *Closeby*.
 - Hence, at v_2^{all} , Barbara believes you choose *Closeby* with probability at most 0.2 (if your view is v_1^{two}).
 - But then, Barbara expects at least 0.8 * 3 = 2.4 when choosing *Closeby* and at most 2 when choosing *Faraway*.
 - So Faraway is eliminated for Barbara!

Fixed Beliefs: Up to 2-fold Belief in Rationality

		v_1^{all} :						
_	You	Nextdoor	Closeby	You	Nextdoor	· Closeby	_	
	Faraway	4	4	Nextdoo	r 0	2		
	Distant	3	3	Closeby	1	0		
		v_2^{all} :			v_2^{two} :			
Barbara	Faraway	Distant	Nextdoor	Closeby	Barbara	Nextdoor	Closeby	
Nextdoor	4	4	0	4	Nextdoor	0	4	
Closeby	3	3	3	0	Closeby	3	0	

- Distant strictly dominated for you at v_1^{all} .
- Moreover, at v_2^{all} , Barbara must assign probability 0.8 to $\{Faraway, Distant\}$.
- But then, *Nextdoor* yields at least 3.2 and *Closeby* at most 3. So *Closeby* is eliminated.

Fixed Beliefs: Common Belief in Rationality

		, all .	v_1^{two} :						
		<i>v</i> ₁ .	<i>.</i>	You	Nextdoor	Closeby			
-	You	Nextdoor	Closeby	Nextdoor	0	2	-		
	Faraway	4	4	Closeby	1	0			
all				v_2^{two} :					
Barbara	Farmen	v_2^{uu} :	Nartdoor	Closeby -	Barbara	Nextdoor	Closeby		
	Faraway	Distant	Nexidoor	closeby	Nextdoor	0	4		
Nextdoor	4	4	0	4	Closeby	3	0		

So *Faraway* is your unique choice under common belief in rationality and in the belief restriction!

- Games with Unawareness and Common Belief in Rationality
- Procedural Characterization
- Possibility
- Variants of the Procedure
- Correct and Symmetric Beliefs

Correct and Symmetric Beliefs

- Similar to (in)complete information, one may wonder about unawareness analogous of Nash- and correlated-equilibrium.
- It turns out that both concepts are trivially equivalent to their complete information counterparts here.
- To see this, suppose type *t_i* with view *w_i(t_i)* has symmetric beliefs over choices and views. Then, for any (*c_j*, *v_j*) deemed possible by *t_i*, *t_i* must believe that some (*c_i*, *w_i(t_i)* is deemed possible by player *j* at *v_j*.
- But then, v_j must contain w_i(t_i). Since we started from an arbitrary view and arbitrary players, this means that **all** views must contain each other under symmetric beliefs.
- ⇒ Back to standard games!

Outlook: Weaker Equilibrium Notions

- Note: The previous does not preclude weaker forms of equilibria with differential awareness.
- **E**.g., take "Day at the Beach" with v_1^{two} and v_2^{all} :

- Here, you express CBR and you are correct about Barbara's choice (and vice versa for Barbara). But you may wrongly believe in v₂^{nvo}.
- Crucially, this happens because Barbara has no incentive to take any of her choices that you are unaware of.

EPICENTER Summer Course 2024: Unawareness