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“Money equals utility” remains the benchmark across a vast range of economics-

and game theory-experiments. Subjecting this assumption to experimental test-

ing requires an empirically tractable theory of context-dependent preferences. This

paper presents novel foundations for expected utility based on context-dependent

preferences in games and other state-dependent decision problems. Crucially,

these behavioral foundations do not require empirically implausible comparisons

of alternatives across different states. Moreover, they substantially relax previous

diversity-type assumptions, significantly expanding the range of problems that can

be accommodated and paving the way for a general state-dependent expected utility

representation for any multi-act, multi-state context-dependent preference system.

A central application is to direct utility measurement in games, enabling a causal

understanding of how e.g. risk- and social-preferences affect strategic choice.

Experimental economics demonstrates that real-life agents systematically deviate from standard predic-

tions based on individual payoff maximization. Examples include cooperation in Prisoner’s dilemmas

(Cooper et al. 1996), equal splits in ultimatum games (Güth et al. 1982), and the frequent incidence of

payoff-dominant, non-risk-dominant coordination (Jagau 2024).

Importantly, these findings do not necessarily contradict game-theory’s central tenet of rational strate-

gic behavior. Since it is common practice in experiments to assume that individual monetary payoffs

approximate utility, most studies implicitly test a “money equals utility”-assumption in conjunction with

strategic rationality. This is problematic, not least since a long-standing line of research on social prefer-

ences (e.g. Andreoni and Miller 2002) suggests that experimental subjects do tend to maximize a fixed

preference over monetary allocations — just not one that depends on their individual payoffs alone.

Abandoning the ‘axiom’ that individual monetary payoff equal utility is not straightforward. The

classical ‘foundation’ for utility in games (von Neumann and Morgenstern 1953) simply assumes that

utility values in game matrices can be derived from preferences over lotteries implementing a game’s

monetary outcomes with known probabilities. If one wants to move beyond correlating behavior in

games with exogenously measured utility functions, a different approach is needed: To directly measure

utility over outcomes of strategic interactions, it must be derived from context-dependent preferences,

that is preference rankings conditional on different game situations.

This extended abstract develops an axiomatic theory of additive context-dependent preferences. To

define context-dependent preferences, let (A,X) be a decision problem with A = {a1, . . . , an} a finite set

of acts and X = {x1, . . . , xm} a finite set of states. Then, letting ∆(X) denote the set of probability

measures on X, a system of context-dependent preferences is a mapping ≿ ∈P(A ×A)∆(X). I.e.,

at each p = (p1, . . . , pm) ∈∆(X), ≿ induces a local preference ≿p⊆ A ×A. As usual, ∼p and ≻p will denote

symmetric and asymmetric parts of the local preference.
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In the context of game theory (the leading application considered in this paper), A represents pure

strategies of a player in a simultaneous-move game, X represents combinations of opponents’ pure strate-

gies, and ∆(X) represents all possible beliefs the considered player could have regarding his opponents’

pure-strategy combinations.1

We seek conditions on ≿ that characterize an expected utility representation.

Definition 0.1. (Expected Utility Representation)

The system ≿ has an expected-utility representation if there exists a function u ∶ A ×X → R such that

ai ≿p aj ⇔∑m
s=1 p

s[u(ai, xs) − u(aj , xs)] ≥ 0 for all ai, aj ∈ A and all p ∈∆(X).

In game theory, expected utility as above allows to elicit utility over game outcomes based on

belief-conditional rankings over strategies. Without assuming specific preferences over game outcomes

(e.g. “money = utility”), one can then empirically determine whether a player acts like a rational

expected-utility maximizer and, if yes, what utility function is maximized.2

Two previous papers study additive context-dependent preferences. Gilboa and Schmeidler (2003)

consider expected utility in games. For two acts, they prove a representation theorem like Theorem

2.6 below. For n > 2 acts, they impose a diversity restriction, demanding that, for each triple and each

quadruple of acts, every permutation of transitive rankings among the acts is observed at some p ∈∆(X).
By contrast, this article is working towards a globally applicable representation theorem without any

constraints on admissible datasets. Perea (2020) proves a general representation theorem for additive

context-dependent preferences as considered in this paper. His conditions rely on consistency of observed

preferences with a second, hypothetical preference system that uniformly increases the preference for one

act compared to all other acts. Similarly, Perea (2023) provides an alternative representation imposing

conditions on extended preference systems for any signed belief. By contrast, the conditions here rely

exclusively on the decision-maker’s observed behavior at standard beliefs in ∆(X).
The rest of this extended abstract proceeds as follows. Section 1 introduces a simplified representa-

tion of additive context-dependent preferences in terms of utility differences that will be used throughout

the investigation. Section 2 concerns pairwise comparisons, with Theorem 2.6 giving a representation of

preferences over a pair of acts in terms of a vector of utility differences. Section 3 considers multi-act

settings. Standard transitivity at all beliefs p together with two new conditions, called scaling transi-

tivity and transitive preference sensitivity, is shown to be necessary and sufficient for expected utility

in any three-act problem and expected utility in any multi-act problem, such that ≿ exhibits preference

reversals for every pair of acts. In addition, a decomposition of payoff matrices is developed to show that

representations for any two sets of acts that are not connected by preference reversals can be combined

into a global representation without further assumptions. Already these findings consider a significant

improvement over previous results.

1Context-dependent preferences also apply to other settings: E.g. for choice under uncertainty, one gets state-
dependent preferences. A represents alternatives for a decision maker (DM), X represents possible states of the world, and
∆(X) represents all possible beliefs the DM could have regarding the probabilities of different states. And for social choice,
one gets a social contract theory setting behind a veil of ignorance. I.e., A represents distributional policies considered by
a decision-maker, X represents possible resource allocations across a population of m individuals, and ∆(X) represents all
possible beliefs the decision-maker could attach to their chance of ending up in the shoes of each individual.

2For decision under uncertainty, expected utility as above is reminiscent of state-dependent expected utility in, e.g.,
Karni et al. (1987). Different from that paper, the model considered here does not require the DM to form empirically
implausible hypothetical preferences regarding act-state tuples. Instead, the DM need only form preferences over acts
conditional on each state. For social choice, expected utility yields a version of Harsanyi’s (1975) social contract theory
were the decision-maker assigns subjective ex-post preferences to each individual in society before committing to a belief
regarding their chance of ending up in each individual’s role.
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1 Difference Representations

Throughout, identify the states in X with m-dimensional standard unit vectors. The set of probability

distributions ∆(X) then corresponds to the standard simplex in Rm. In this view, ∆(X) lies in the

hyperplane of signed distributions H1(1) = {v ∈ Rm∣ v ⋅1 = 1} where 1 is the m-vector of ones. Every pair

v,w ∈H1(1) is related by a unique displacement vector v −w ∈H0(1) = {v ∈ Rm∣ v ⋅ 1 = 0}.
Furthermore, it will be easier to work with utility differences dsij = u(ai, xs)−u(aj , xs), ai, aj ∈ A, xs ∈

X rather than with utilities u(ai, xs), ai ∈ A, xs ∈X.

Definition 1.1. (Difference Representation)

≿ has a difference representation on (A,X) if, for each each pair ai, aj ∈ A, there are vectors dij ∈ Rm

such that

1. ai ≿p aj ⇔∑m
s=1 p

sdsij = p ⋅ dij ≥ 0, for all ai, aj ∈ A, p ∈∆(X) (Pairwise Representation)

2. dij + djk = dik, for all ai, aj , ak ∈ A (Strong Transitivity)

Note that the pairwise representation together with ai ≿p aj ⇔ aj ≾p ai automatically implies dij =
−dji for all ai, aj ∈ A and (in particular) dii = 0 for all ai ∈ A. So any given difference representation is

summarized by a matrix D = [d12, d13, . . . , d1n, d23, . . . , dn−1,n] ∈ Rm×(n2).

It easily shown that difference representations and expected-utility representations are equivalent.

(The proof is left to the reader.)

Observation 1.2. (Equivalence of Representations)

Let (A,X) be a decision problem and let ≿ be a system of context-dependent preference relations for

(A,X). Then ≿ admits an expected-utility representation iff it admits a difference representation.

Definition 1.1 reveals a central structural requirement enabling expected utility — strong transitivity

of difference vectors. Strong transitivity refines standard transitivity (Definition 3.1 below) in ways

reminiscent of distances on a line where, e.g., the distance from locality i to locality j plus the distance

from j to k must equal the distance from i to k. Saari (2014), (2021) shows that refining transitivity

in this way is crucial in order to avoid cyclical outcomes in multi-alternative settings whenever systems

of rankings are aggregated like in Definitions 0.1 and 1.1. Conditions ensuring strong transitivity are

explored in Sections 3. Before, Section 2 recaps difference representations for pairwise comparisons as in

(e.g.) Gilboa and Schmeidler (2003).

2 Pairwise Comparisons

It is useful to introduce some additional notation around pairwise comparisons. First, for any two acts

ai, aj ∈ A, let P 0
ij = {p ∈ ∆(X)∣ai ∼ aj}, P +ij = {p ∈ ∆(X)∣ai ≻ aj}, and P −ij = {p ∈ ∆(X)∣ai ≺ aj}.

Analogously, define X0
ij = {x ∈X ∣ai ∼x aj}, X+ij = {x ∈X ∣ai ≻x aj}, and X−ij = {x ∈X ∣ai ≺x aj}.

Throughout, ≿ is assumed to be complete at all p ∈∆(X).

Property 2.1. (Completeness)

≿ is complete if ai ≿p aj or aj ≿p ai for every ai, aj ∈ A and p ∈∆(X).
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By completeness, we must have ∆(X) = P 0
ij ∪P +ij ∪P −ij and X =X0

ij ∪X+ij ∪X−ij for all ai, aj ∈ A. Using

the sets P 0
ij , P

+
ij , P

−
ij , we can distinguish different types of pairwise comparisons in context-dependent

preference systems. They are familiar from game theory:

Definition 2.2. (Types of Pairwise Comparisons)

Let (A,X) be a decision problem, and let ≿ be a system of context-dependent preference relations ≿p for

(A,X). Consider any two acts ai, aj ∈ A. We can distinguish the following configurations:

• ai, aj are observationally equivalent given ≿ if P 0
ij =∆(X).

• ≿ exhibits preference reversals for ai, aj if both P +ij and P −ij are non-empty.

• ai weakly dominates aj if ∆(X) = P 0
ij ∪ P +ij and P +ij is non-empty.

Observational equivalence, preference reversals, and weak dominance are mutually exclusive and

jointly exhaustive of all possible pairwise comparisons for ai and aj given a complete preference ≿. Note

that observational equivalence includes the case of ii-reflexive comparisons. Also note that strict domi-

nance of ai over aj would correspond to the special case of weak dominance where P 0
ij is empty.

Three more properties are needed for pairwise comparisons to have a difference representation:

Property 2.3. (Continuity)

≿ is continuous if ai ≻p aj and aj ≻q ai for p, q ∈ ∆(X) implies that there exists λ ∈ (0,1) such that

ai ∼r aj for r = λp + (1 − λ)q.

Property 2.4. (Preservation of Indifference)3

≿ preserves indifference if ai ∼p aj and ai ∼q aj for p, q ∈ ∆(X) implies that ai ∼r aj for every r =
λp + (1 − λ)q, λ ∈ (0,1).

Property 2.5. (Preservation of Strict Preference)

≿ preserves strict preference if ai ≻p aj and ai ≿q aj for p, q ∈ ∆(X) implies that ai ≻r aj for every

r = λp + (1 − λ)q, λ ∈ (0,1).

Call a preference system ≿ satisfying Properties 2.1 and 2.3-2.5 pairwise linear. Now prove:

Theorem 2.6. Pairwise Representation

For every ai, aj ∈ A, ≿ admits a difference representation on ({ai, aj},X) iff it is pairwise linear.

For the proof, we need additional notation: For any set of vectors V ⊆ Rm, let ⟨V ⟩ denote the linear

span of V . Whenever V = {v}, slightly abuse notation and write ⟨v⟩ for the linear span of V . Furthermore,

for any ai, aj ∈ A we will write Πij ∶= ⟨P 0
ij⟩ for the span of the ij-indifference set.

Next, for any set of vectors U ⊆ Rm, O(⟨U⟩) = {v ∈ Rm∣ v ⋅ u = 0, ∀u ∈ U} will denote the orthogonal

complement of ⟨U⟩. Lastly, for any vector v ∈ Rm, H0(v) = O(⟨v⟩) denotes the unique hyperplane that is
orthogonal to v and that passes through the origin 0 ∈ Rm. Every hyperplane H0(v) separates two open

half spaces H+(v) = {u ∈ Rm∣ v ⋅ u > 0} and H−(v) = {u ∈ Rm∣ v ⋅ u < 0}.
The following Lemma is an important preparatory result.

Lemma 2.7. (Properties of Πij)
Let ≿ be pairwise linear. Then

3An implication of Property 2.4 is that r ∈ Conv(P ) implies ai ∼r aj , whenever P is a finite subset of P 0
ij . Here Conv(P )

denotes the convex hull of P . The straightforward inductive proof is left to the reader.
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1. Πij ∩∆(X) = P 0
ij for all ai, aj ∈ A,

2. if ≿ exhibits reversals for ai, aj ∈ A, then Πij is a hyperplane,

3. if ≿ exhibits no reversals for ai, aj ∈ A, then Πij is a subspace spanned by X0
ij.

Proof. (Lemma 2.7)

Part 1: The direction P 0
ij ⊆ Πij ∩ ∆(X) is clear. For Πij ∩ ∆(X) ⊆ P 0

ij , take any p ∈ Πij ∩ ∆(X).
There then exist pk ∈ P 0

ij , 1 ≤ k ≤ m and scalars λk, 1 ≤ k ≤ m such that p = ∑m
k=1 λkpk, where (using

p, pk ∈H1(1), ∀k) one has ∑m
k=1 λk = 1.

If λk ≥ 0, ∀k, then p ∈ P 0
ij with preservation of indifference.

Otherwise, define

p+ ∶=
1

∑k max{λk,0}
(∑

k

max{λk,0}pk) , p− ∶=
1

∑k min{λk,0}
(∑

k

min{λk,0}pk)

and let λ+ ∶= ∑k max{λk,0}. Note that λ+ > 1, ∑k min{λk,0} = 1−λ+, p+, p− ∈H1(1), ps+, ps− ≥ 0, ∀xs ∈
X, and p+ = 1

λ+
p+ (1 − 1

λ+
)p− by construction. Furthermore, using preservation of indifference, it follows

that p+, p− ∈ P 0
ij .

Now toward a contradiction, let p ∉ P 0
ij . Then, p ∈ P +ij ∪ P −ij using completeness. Assume p ∈ P +ij

(p ∈ P −ij). Since 0 < 1
λ+
< 1, preservation of strict preference implies p+ ∈ P +ij (p+ ∈ P −ij) – a contradiction.

So p ∈ P 0
ij , and it follows that Πij ∩∆(X) ⊆ P 0

ij .

Parts 2 and 3: Start by constructing a basis for Πij . Consider any pair of states x ∈ X+ij , y ∈ X−ij .
By continuity and preservation of strict preference, there exists a unique number wxy ∈ (0,1) such that

ai ∼pxy aj for pxy = wxyx + (1 −wxy)y ∈∆({x, y}). Now fix x ∈X+ij , y ∈X−ij , and consider the set

Bij ∶= {pxy} ∪ ⋃
z∈X−ij/{y}

{pxz} ∪ ⋃
z∈X+ij/{x}

{pzy} ∪X0
ij .

Observe that ∣Bij ∣ =m − 1 if X+ij ,X
−
ij are non-empty and ∣Bij ∣ = ∣X0

ij ∣ ≤m − 1 otherwise.

Furthermore, note that all vectors in Bij are linearly independent. To see this, consider the linear

combination

axypxy + ∑
z∈X−ij/{y}

αzpxz + ∑
z∈X+ij/{x}

αzpzy + ∑
z∈X0

ij

azz

with scalars axy, az ∈ R. By construction of the pxy, one may write

axypxy + ∑
z∈X−ij/{y}

αzpxz + ∑
z∈X+ij/{x}

αzpzy + ∑
z∈X0

ij

azz = ∑
z∈X−ij/{y}

αz(1 −wxz)z + ∑
z∈X+ij/{x}

αzwzyz + ∑
z∈X0

ij

azz

+
⎡⎢⎢⎢⎢⎣
axywxy + ∑

z∈X−ij/{y}
αzwxz

⎤⎥⎥⎥⎥⎦
x

+
⎡⎢⎢⎢⎢⎣
axy(1 −wxy) + ∑

z∈X+ij/{x}
αz(1 −wzy)

⎤⎥⎥⎥⎥⎦
y

Since X =X+ij ∪X−ij ∪X0
ij forms the standard basis of Rm and since wxy ∈ (0,1) for all (x, y) ∈X+ij ×X−ij ,

it follows that axy = 0 and az = 0 for all z ∈X/{x, y}. Hence the vectors in Bij are linearly independent.
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Now, for Part 2, suppose ≿ exhibits reversals for ai, aj . Then Bij ⊂ P 0
ij contains exactly m−1 linearly

independent vectors. And since Πij ∩∆(X) ≠∆(X), also dim(Πij) ≤m−1, and it follows that Bij spans

Πij . So, in particular, Πij is a hyperplane.

Next, for Part 3, suppose ≿ does not exhibit reversals for ai, aj and note that Bij = X0
ij in that

case. Wlog, assume that X−ij is empty (if not, relabel ai, aj). Since every p ∈ ∆(X) can then be written

as a convex combination of vectors in X+ij ∪X0
ij , preservation of indifference and preservation of strict

preference imply that p ∈ P 0
ij iff p ∈∆(X0

ij). Using Bij =X0
ij , this immediately implies Πij = ⟨X0

ij⟩.

Proof. (Theorem 2.6)

The direction ⇒ is easy to check and left to the reader.

⇐∶ To start, let ai and aj be observationally equivalent. Then dij = 0 represents ≿. Henceforth assume

that ai, aj are not observationally equivalent.

In case ≿ exhibits reversals for ai, aj , Lemma 2.7 implies that Πij is a hyperplane s.th. Πij∩∆(X) = P 0
ij .

Moreover, Πij separates P
+
ij and P −ij . (If this were not the case, wlog there would be p, p′ ∈ P +ij and λ ∈ (0,1)

such that λp + (1 − λ)p′ ∈ P 0
ij – contradicting preservation of strict preference.) In particular, there must

then exist dij ∈ O(Πij) such that dsij > 0 for all xs ∈ X+ij and ds < 0 for all xs ∈ X−ij . By construction, one

now has ⟨P 0
ij⟩ =H0(dij), P +ij ⊂H+(dij), and P −ij ⊂H−(dij).

Otherwise, Lemma 2.7 implies O(Πij) = {d ∈ Rm∣ ds = 0, ∀xs ∈ X0
ij}. Now wlog assume that P −ij

is empty, and take any dij such that dsij = 0 for all xs ∈ X0
ij and dsij > 0 for all xs ∈ X+ij . Then, since

dij ∈ O(Πij), H0(dij) is a hyperplane such that Πij ⊂H0(dij). And, recalling that P −ij is empty, we have

P +ij =∆(X)/∆(X0
ij) ⊂H+(dij).

In both cases, it follows that dij is a difference representation for ≿ on ({ai, aj},X).

Uniqueness properties of pairwise representations directly follow from the proof of Theorem 2.6.

Observation 2.8. (Uniqueness of Pairwise Difference Representation)

Let ≿ be a pairwise-linear system of context-dependent preference relations for (A,X). If dij ∈ Rm is a

difference representation for ≿ on ({ai, aj},X), then for any α > 0, αdij is a difference representation

for ≿ on ({ai, aj},X). Furthermore, if ai weakly dominates aj, then any d̃ij with sgn (d̃sij) = sgn(dsij) for
all xs ∈X is a difference representation for ≿ on ({ai, aj},X).

Theorem 2.6 is analogous to results in Gilboa and Schmeidler (2003) and Perea (2023). It ensures

that preferences over a pair of acts ai, aj describe a hyperplane in Rm that intersects ∆(X) at P 0
ij . The

difference representation dij is then an oriented normal vector to this hyperplane.

3 Multi-Act Representation

Theorem 2.6 ensures that pairwise linear preferences ≿ over a pair of acts ai, aj are represented by a

difference vector dij . For a full difference representation over n acts a1, . . . , an, it remains to determine

when differences can be chosen to satisfy strong transitivity dij + djk = dik for all triples of acts ai, aj , ak.

For n > 2 acts, strong transitivity implies that reversals between some pairs of alternatives may indirectly

constrain whether and where reversals among other pairs may be observed. Such indirect constraints can

then more fully determine the representation D for ≿ on (A,X) or preclude its existence — even where

pairs of acts exhibit weak (or strict) dominance.
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In line with qualitatively different constraints that arise, the multi-act measurement problem is sub-

divided into two parts. The first part concerns representations for preferences over three-act decision

problems. Two additional properties, transitivity and scaling transitivity, are needed to deliver a rep-

resentation in that case. Next, representations for preferences over n > 3-act decision problems are

considered. One additional property, transitive preference sensitivity, delivers a multi-act representation

whenever all pairs of acts exhibit preference reversals.

3.i Transitivity

Clearly, a necessary requirement for a difference representation with more than two acts will be that ≿ is
transitive at every p ∈∆(X).

Property 3.1. (Transitivity)

≿ is transitive if ai ≿p aj and aj ≿p ak implies ai ≿p ak for all p ∈∆(X) and all ai, aj , ak ∈ A.

As a first implication of transitivity, we may treat the representation of observationally equivalent

acts separately.

Observation 3.2. (Representation for Equivalent Acts)

Let (A,X) be a decision problem and let ≿ be a pairwise linear and transitive system of context-dependent

preference relations for (A,X). Let ai, aj ∈ A be observationally equivalent, and let D̂ be a difference

representation for ≿ on (A/{aj},X). Then D with dij = 0, dik = d̂jk for all k ≠ i, j, and dkℓ = d̂kℓ for all

ℓ, k ≠ i, j represents ≿ on (A,X).

Given Observation 3.2, the remainder of the treatment will disregard comparisons between observa-

tionally equivalent acts (including ii-reflexive comparisons).

A second, less obvious, implication considered next is that transitivity together with pairwise linearity

structures the measurement problem in terms of finitely many connected components.

Definition 3.3. Let (A,X) be a decision problem with context-dependent preference ≿. A non-empty set

C ⊆ A is a (connected) component (on (A,X) wrt ≿) if the following properties hold:

1. Take any a0, b ∈ C. Then defining b ∶= ak, there are acts a1, . . . , ak−1 s.th. ≿ exhibits reversals for

every ai, ai+1, 0 ≤ i ≤ k.

2. ≿ exhibits no reversals for any ai, aj s.th. ai ∈ C and aj ∈ A/C.

In words, within each component, any act is connected to any other act by a sequence of acts exhibiting

pairwise reversals. Furthermore, every act outside a component must either weakly dominate or be weakly

dominated by all acts within.

For future reference, the special case of a component C s.th. ≿ exhibits reversals for every distinct

pair ai, aj ∈ C will be called a fully connected component.

Once can now prove:

Observation 3.4. Let ≿ on (A,X) be pairwise linear and transitive and let C ⊆ A be a component. Then

there exists a partition C+,C−,C of A and s.th. ai weakly dominates aj and aj weakly dominates ak for

every ai ∈ C+, aj ∈ C, ak ∈ C− and every p ∈∆(X).
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Proof. Take any b ∉ C. We show that either b weakly dominates all a ∈ C or is weakly dominated by

every a ∈ C. The statement then follows with completeness and transitivity.

So, toward a contradiction, take any two distinct ai, aj ∈ C and wlog assume b is weakly dominated

by ai and weakly dominates aj . Then, by transitivity, ai weakly dominates aj .

Next, since C is a component, there must exist ai+1, . . . , ai+(n−1) connecting ai and aj ∶= ai+n via

pairwise reversals. Furthermore, since b ∈ A/C, it must weakly dominate or be weakly dominated by each

ai+1, . . . , ai+(n−1).

In particular, since ≿ exhibits reversals between ai, ai+1, it must be that b is weakly dominated by ai+1.

(Otherwise, ai would weakly dominate ai+1 using transitivity.) Then, by the same logic, ai+2 must weakly

dominate b since ≿ exhibits reversals between ai, ai+1 and ai+1 weakly dominates b. But continuing in this

fashion ai+(n−1) must weakly dominate b and, since ≿ exhibits reversals between ai+(n−1), ai+n, ai+n = aj
must weakly dominate b – a contradiction.

It follows that b either weakly dominates or is weakly dominated by every a ∈ C.

Observation 3.4 shows that any transitive and pairwise linear ≿ partitions the related decision problem

(A,X) into a finite number of sub-problems (C1,X), . . . , (Ck,X), where every (Ci,X), 1 ≤ i ≤ k is a

connected component. Furthermore, these components are in a weak dominance hierarchy. I.e., for

any two C,D ⊂ A, let C ⊵ D denote weak dominance of each act in C over each act in D, then wlog

C1 ⊵ ⋅ ⋅ ⋅ ⊵ Ck.

The following observation further structures the dominance hierarchy across sets.

Observation 3.5. Let B ⊵ C and let xs ∈X, ai ∈ B, aℓ ∈ C satisfy ai ∼s aℓ. Then

1. aj ≿s ai and aℓ ≿s ak for all aj ∈ B and ak ∈ C.

2. aj ∼s ak implies ak ∼s aℓ for any aj ∈ B and ak ∈ C.

Proof. 1) Suppose ai ≻s aj (ak ≻s aℓ). Then aℓ ≻s aj (ak ≻s ai) by transitivity, contradicting B ⊵ C.

2) Assume ak ≻s aℓ (ak ≺s aℓ). Then ak ≻s ai (aℓ ≻s aj) with transitivity, contradicting B ⊵ C.

Observation 3.5.2 shows that all pairwise indifferences at any state xs across ⊵-ranked sets must lie

in a total-indifference set IsB,C s.th. a ∼s b for all a, b ∈ IsB,C . By implication, we must have a ≻s b for any
a ∈ C/IsB,C and b ∈D/IsB,C . Finally, Observation 3.5.1 then implies that the acts in IsB,C ∩B are strictly

bottom-ranked in B at xs, whereas the acts in IsB,C ∩C are strictly top-ranked in C at xs.

We are now ready to prove that, for any decision problem (A,X) and any pairwise linear and transitive

preference ≿ on it, the existence of difference representations for each component of A implies the existence

of a global representation.

Lemma 3.6. (Component-wise construction of representation)

Let ≿ on (A,X) be pairwise linear and transitive and let B,C ⊆ A satisfy B ⊵ C. Then ≿ has a difference

representation on (B ∪C,X) if it has difference representations on (B,X) and (C,X).

Proof. Let DB and DC be difference representations for ≿ on, respectively, (B,X) and (C,X). Take any

aj ∈ B and ak ∈ C and select a pairwise representation djk in four steps.

1. For any state xs ∈ X+jk s.th. aj ∈ IsB,C and ak ∉ IsB,C , take any aℓ ∈ IsB,C ∩ C and fix dsjk = −dskℓ
(noting that xs ∈X−kl by transitivity).

8



2. For any state xs ∈ X+jk s.th. aj ∉ IsB,C and ak ∈ IsB,C , take any ai ∈ IsB,C ∩ B and fix dsjk = −dsij
(noting that xs ∈X−ij by transitivity).

3. For any state xs ∈ X+jk s.th. aj ∉ IsB,C , ak ∉ IsB,C , and IsB,C is non-empty, take any ai ∈ IsB,C ∩B,

aℓ ∈ IsB,C ∩C and fix dsjk = −(dsij + dskℓ) (noting that xs ∈ X−ij ∩X−kℓ by Observation 3.5.1 combined

with aj ∉ IsB,C , ak ∉ IsB,C).

4. For any state s.th. IsB,C is empty, choose dsjk > 0 large enough that dsjk > −(dsij + dskℓ) for all ai ∈ B
and all aℓ ∈ C.

Finally, for any ai ∈ B and aℓ ∈ C s.th. (ai, aℓ) ≠ (aj , ak), fix diℓ = dij + djk + dkℓ.
Let D denote the matrix of difference vectors resulting from this construction. Note that, by design,

the vectors in D satisfy strong transitivity and induce representations for ≿ on (B,X) and (C,X), and
({aj , ak},X). So it remains to show that D represents ≿ for any ({ai, aℓ},X) s.th. ai ∈ B, aℓ ∈ C, and

(ai, aℓ) ≠ (aj , ak).
To see this, proceed by states xs ∈X and distinguish three cases:

1. If ai, aℓ ∈ IsB,C , then dsiℓ = dsij +dsjk +dskℓ = dsjk −dsjk = 0, using steps (1)–(3) of the construction above

and noting dsij = 0 and dskℓ = 0 in, respectively, steps (1) and (2).

2. If ai, aℓ ∉ IsB,C and aj ∼s ak, then we have ai ≻s aj ∼s ak ≻s aℓ using Observation 3.5.1. And hence

diℓ = dsij + dsjk + dkℓ = dsij + dkℓ > 0 as needed.

3. Finally let ai, aℓ ∉ IsB,C and aj ≻s ak. If IsB,C is empty, then dsiℓ > 0 follows from case (4) above.

Otherwise, there exist ah ∈ B and am ∈ C s.th. ai ≻s ah ∼s am ≻s aℓ. We then have dshm = 0 using

case (1), and it follows that dsiℓ = dsih + dshm + dsmℓ = dsih + dsmℓ > 0 as needed.

Following Lemma 3.6, we may henceforth concentrate on preferences ≿ over decision problems (A,X)
such that A forms a connected component in the sense of Definition 3.3.

The proof of Lemma 3.6 also pins down the degrees of freedom left after one fixes representations for

each component wrt ≿. I.e., let ≿ induce the dominance hierarchy C1 ⊵ ⋅ ⋅ ⋅ ⊵ Ck on (A,X). Then for each

component Ci, 1 ≤ i ≤ k, we may choose any admissible difference representation. In addition, for every

pair of components Ci,Cj that are neighboring each other in the weak dominance hierarchy (i.e. Ci ⊵ Cj

and Ck ⊵ Ci or Cj ⊵ Ck for any Ck ≠ Ci,Cj) we may choose exactly one pairwise difference representation

djk, aj ∈ Ci, ak ∈ Cj connecting the two components.

A special case of Lemma 3.6 arises absent reversals between any two acts in (A,X). Then, each

component is singleton, and pairwise linearity and transitivity suffice for a difference representation.

Observation 3.7. (Difference Representation absent Reversals)

Let ≿ be pairwise linear, transitive, and exhibit no reversals on (A,X). Then ≿ admits a difference

representation on (A,X).

Furthermore, given the constant weak dominance ranking among choices a1 ≿p ⋅ ⋅ ⋅ ≿p an, ∀p ∈ ∆(X),
Lemma 3.6 implies that one may choose any pairwise representations (subject to the constraints from

Observation 2.8) for each neighboring pair (ai, ai+1), 1 ≤ i ≤ n. The full representation D is then uniquely

determined via dij + djk = dik, ai, aj , ak ∈ A.
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3.ii Scaling Transitivity

A third implication of transitivity is stated in the next observation: For triples of difference representations

(Theorem 2.6) over three acts, transitivity causes the inner products of difference vectors at any p ∈∆(X)
to be transitively related as well.

Observation 3.8. (Transitivity and Difference Representations)

≿ is pairwise linear and transitive iff it admits difference representations dij on ({ai, aj},X) for every

ai, aj ∈ A such that dij ⋅ p ≥ 0 and djk ⋅ p ≥ 0 implies dik ⋅ p ≥ 0 for every ai, aj , ak ∈ A and p ∈∆(X).

Generally (allowing for preference reversals) this is insufficient for a difference representation. Even

with transitivity, utility differences dij , djk, dik need not satisfy strong transitivity dij+djk = dik, ∀ai, aj , ak.
To illustrate, consider the preference in Figure 1 for a decision problem (A,X) = ({a1, a2, a3},{x1, x2, x3}).

Figure 1: A pairwise linear and transitive preference that admits no difference representation.

This preference is pairwise linear and transitive, but it does not admit a difference representation. To

see this, first use Theorem 2.6 to find pairwise representations. This yields

d12 ∈ {k12(−1,−1,1)T , k12 > 0}, d23 ∈ {k23(2,5,−1)T , k23 > 0}, d13 ∈ {k13(−5,−2,10)T , k13 > 0}.

One may now check that the vectors (−1,−1,1)T , (2,5,−1)T , and (−5,−2,10)T are linearly independent.

But then, no combination of weights k12, k23, k13 can ever satisfy strong transitivity d12+d23 = d13! Hence

there is no difference representation for this preference system.

To understand why the preference from Figure 1 has no difference representation, consider any three

points in the three indifference sets, e.g. p12 = ( 12 ,0
1
2
)T ∈ P 0

12, p23 = ( 13 ,0,
2
3
)T ∈ P 0

23 and P13 = ( 23 ,0,
1
3
)T ∈

P 0
13. If ≿ had a difference representation, then clearly it should be the case that

d12 ⋅ p12 = 0⇔ (d13 − d23) ⋅ p12 = 0⇔ d13 ⋅ (p12 − p13) = d23 ⋅ (p12 − p23)

where strong transitivity was used for the first equivalence. So once we know a2 ∼p23 a3 and a1 ∼p13 a3,

observing a1 ∼p12 a2 reveals that the d23-change associated with displacement p12 − p23 = ( 16 ,0,−
1
6
) and

the d13-change associated with displacement p12 − p13 = (− 1
6
,0, 1

6
) must be equal. And since d23 and d13

represent pairwise preferences for all p ∈ ∆(X), congruent displacements λ(p12 − p23) and λ(p12 − p13)
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for any λ ∈ R must imply equal d23- and d13-changes anywhere in the probability simplex. To see how

this causes constraints for triples of acts, reconsider points p12, p23, p13 as introduced above and any

p′23 ∈ P 0
23, p

′
13 ∈ P 0

13, and p ∈ ∆(X) such that p = p′23 + λ(p12 − p23) and p = p′13 + λ(p12 − p13) for some

λ ∈ R. To reach p, one travels λ(p12 − p23) from p′23 and λ(p12 − p13) from p′13 – displacements that

are known to cause equal 2,3-and 1,3-difference changes away from 0. It follows that the 2,3-and 1,3-

differences at p are equal and, hence, with strong transitivity d12 = d13 − d23 of utility differences, p must

be an 1,2-indifference point! In this sense, expected utility requires that triples of indifference points

across different acts are linearly scalable. Figure 2a below illustrates that the Figure 1-preference fails

the scalability test described above.

(a) A violation of scaling transitivity. (b) A preference satisfying scaling transitivity.

Figure 2: Scaling transitivity.

To check for existence of a difference representation in a three-act problem, consider all paths between

triples of indifference points for distinct pairs. Whenever two different triples of indifference points are

related by parallel displacements, the corresponding displacement vectors across the two triples must

scale linearly. This leads to the following property.

Definition 3.9. (Scaling Transitivity)

≿ is scaling-transitive if, for any pij , p
′
ij ∈ P 0

ij, tik, tjk ∈H0(1), and λ ∈ R s.th. pij+tik ∈ P 0
jk, pij+tjk ∈ P 0

ik,

and p′ij + λtik ∈ P 0
jk, one has p′ij + λtjk ∈ P 0

ik whenever p′ij + λtjk ∈∆(X).

Figure 2b above shows a preference that is scaling-transitive. As seen in the figure, p, q, and r are

related by scaled-down versions of the displacement vectors p12 −p23 and p13 −p23. Once it is known that

p23 ∈ P 0
23, p12 ∈ P 0

12 and p13 ∈ P 0
13, observing q ∈ P 0

23 and p ∈ P 0
12 implies that r ∈ P 0

13.
4

The following Theorem proves that pairwise linearity, transitivity, and scaling transitivity are neces-

sary and sufficient for a difference representation with three acts.

Theorem 3.10. Difference Representation for 3 Acts

For every pairwise distinct a1, a2, a3 ∈ A, ≿ admits a difference representation on ({a1, a2, a3},X) iff it

satisfies pairwise linearity, transitivity, and scaling transitivity.

4Given pairwise linearity and ∣X ∣ = 3, the reader may check that one such test among six points is enough to conclude
that the Figure 2b-preference is globally consistent with a one-step additive preference intensity. This is true because
two distinct indifference points for each pairwise comparison uniquely pin down indifference hyperplanes in the three-act,
three-state setting. Analogously, in an m-state setting, verifying scaling transitivity among three acts would require m − 2
six-point checks.
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In what follows, for any Y ⊆ X, let ∆+(Y ) = {p ∈ ∆(Y )∣ ps > 0, xs ∈ Y and ps = 0, ps ∈ X/Y }.
Thus, ∆+(Y ) denotes the relative interior of the probability simplex spanned by the states in Y (with

∆+(X) the interior of the entire simplex). For any distinct (not observationally equivalent) ai, aj , note

that P 0
ij ∩∆+(X) is non-empty iff ≿ exhibits reversals for that pair, and that P 0

ij ∩∆+(Y ) is empty for

all Y ⊂X iff P 0
ij is either empty or P 0

ij = {xs} for some xs ∈X.

Next, for a finite set of vectors V = {v1, . . . , vn} ⊂ Rm, ⟨V ⟩a = {u ∈ Rm∣ u = ∑n
k=1 λkvk, ∑n

k=1 λk = 1}
will denote the affine span of V .

Finally, for any ai, aj , ak ∈ A, define the space Πijk = Πij ∩Πik +Πij ∩Πjk +Πik ∩Πjk. Intuitively, for

each pair ai, aj , Πijk contains all information regarding pairwise preferences that is indirectly revealed

from aj , ak- and ai, ak-comparisons. It turns out that such implicit information on a triple precisely

arises when intersections of pairwise-indifference subspaces create “pseudo-indifference points” between

all three acts ai, aj , ak outside of the probability simplex.

To prove Theorem 3.10, a core ingredient is the following Lemma, which rules inconsistencies between

directly observed preference information that is revealed through pairwise comparisons and additional

indirect preference information that arises for triples of choices.

Lemma 3.11. (Properties of Πijk)
Let ≿ satisfy pairwise linearity, transitivity, and scaling transitivity. Then, for all ai, aj , ak ∈ A,

1. (Πijk +Πij) ∩∆(X) = P 0
ij,

2. if two distinct pairs ai, aj and aj , ak exhibit reversals, then there exists a representation dik for ≿
on ({ai, ak},X) such that Πijk ⊂H0(dik).

Proof. Part 1: Take any distinct ai, aj , ak. We show the statement for ai, aj , other pairs follow from

relabeling. Furthermore, since Πij ∩ Y ⊆ Πij for any Y ⊆ Rm, it will suffice to show (Πjk ∩Πik +Πij) ∩
∆(X) = P 0

ij .

First, consider the case that ≿ exhibits no reversals for aj , ak and ai, ak. Since (with Lemma 2.7), Πik

and Πjk are spanned by, respectively, X0
ik and X0

jk, and since any two distinct xs, xt ∈X are orthogonal

to each other, it follows that Πik ∩ Πjk = ⟨X0
jk ∩ X0

ik⟩. With transitivity, X0
ik ∩ X0

jk ⊂ X0
ij implies

Πik ∩Πjk ⊂ Πij , and the statement follows with Lemma 2.7.

Second, consider the case that ≿ exhibits reversals for aj , ak and that ∆+(Y ) ∩ P 0
ik is empty for all

Y ⊆ X. Since P 0
ik ⊂ X is then at most singleton, it again follows that Πik ∩Πjk = ⟨X0

jk ∩X0
ik⟩, and the

statement follows with transitivity and Lemma 2.7.

Finally, it remains to consider the case that ≿ exhibits reversals for aj , ak and that ∆+(Y ) ∩ P 0
ik is

non-empty for some Y ⊆X.

In case P 0
jk = P 0

ik, transitivity implies P 0
jk = P 0

ik = P 0
ij , and the statement follows.

Otherwise, take any v ∈ (Πjk ∩Πik)/Πij . We show that ⟨v, pij⟩ ∩∆(X) = {pij} for all pij ∈ P 0
ij . Since

v ∈Hk(1) implies v
k
∈H1(1) for any non-zero k, one may wlog assume that v ∈H0(1) ∪H1(1).

So let v ∈ H1(1) ∩ ((Πjk ∩Πik)/Πij) and, toward a contradiction, let pij ∈ P 0
ij be such that ⟨v, pij⟩ ∩

∆(X) ≠ {pij}. Then, there must exist λ∗ < 1 such that λv + (1 − λ)pij ∈ ∆(X) for all λ ∈ [0, λ∗].5

Now, recall that ≿ exhibits reversals for aj , ak and that P 0
ik ∩ ∆+(Y ) is non-empty for some Y ⊆ X.

It then follows that one can choose pjk ∈ P 0
jk ∩ ∆+(X), pik ∈ P 0

ik ∩ ∆+(Y ) and λ ∈ (0, µ∗] such that

p′ = λv + (1 − λ)pij ∈ ∆(X), p′jk = λv + (1 − λ)pjk ∈ P 0
jk, and p′ik = λv + (1 − λ)pik ∈ P 0

ik. Rewriting now

5Take note that the scaling parameter might be positive or negative.
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yields p′ik = p′jk +λ(pik −pjk) and p′ = p′ij +λ(pij −pjk), and scaling transitivity implies p′ ∈ P 0
12. But then

v ∈ Πij – a contradiction.

Now let v ∈ H0(1) ∩ ((Πjk ∩Πik)/Πij), and again assume pij ∈ P 0
ij such that ⟨v, pij⟩ ∩∆(X) ≠ {pij}.

Then there exists a scalar c∗ such that cv+pij ∈∆(X) for all c ∈ [0, c∗].5 Again since ≿ exhibits reversals
for aj , ak and since P 0

ik ∩ ∆+(Y ) is non-empty for some Y ⊆ X, one can choose pjk ∈ P 0
jk ∩ ∆+(X),

pik ∈ P 0
ik∩∆+(Y ) and c ∈ (0, c∗] such that p′ = pij +cv ∈∆(X), p′jk = pjk+cv ∈ P 0

jk, and p′ik = pik+cv ∈ P 0
ik,

and rewriting yields p′ik = p′jk + pik − pjk, p′ = p′jk + pij − pjk. But then again, scaling transitivity implies

p′ ∈ P 0
ij and, hence, v ∈ ⟨P 0

ij⟩ – a contradiction.

It follows that ⟨v, pij⟩ ∩∆(X) = {pij} for all v ∈ (Πjk ∩Πik)/Πij and pij ∈ P 0
ij , completing the proof.

Part 2: First consider the case that P 0
ij = P 0

jk or (wlog) P 0
ij = P 0

ik. Then P 0
ij = P 0

jk = P 0
ik by transitivity,

and the statement is trivial.

Henceforth assume that P 0
ij , P

0
jk, P

0
ik are pairwise distinct.

If ⟨P 0
ik⟩ is a hyperplane, (Πijk +Πik) ∩∆(X) ≠ ∆(X) from Part 1 immediately implies Πijk ⊂ Πik

and, hence, H0(dik) = Πik has the desired properties.

Otherwise, wlog let ai weakly dominate ak and consider the subspace O(Πik +Πijk) = {w ∈ Rm∣ ws =
0,∀xs ∈X0

ik and w ⋅ v = 0, ∀v ∈ Πijk}.
In case Πik + Πijk is a hyperplane, then we must have O(Πik + Πijk) = ⟨dik⟩ with dsik > 0 for all

xs ∈ X+ik. If not, for any xs, xt ∈ X+ik such that dsik > 0 > dtik, we would have w = − dt
ik

ds
ik
−dt

ik
∈ (0,1) and

pst = wxs + (1−w)xt ∈∆(X). But then ((Πik +Πijk) ∩∆(X)) /P 0
ik would be non-empty, a contradiction

with Part 1.

In case Πik +Πijk is not a hyperplane, take a basis B for Πik +Πijk and wlog assume B = X0
ik ∪ V

with vs = 0 for all xs ∈X0
ik and all v ∈ V . (If not, simply replace the elements of V by appropriate linear

combinations with elements of X0
ik.) Now furthermore, note that there cannot exist a non-zero vector

v ∈ ⟨V ⟩ such that vs ≥ 0 for all xs ∈ X+ik. Otherwise, one would have 1
∑xs

∈X vs v ∈ ∆(X), again causing

((Πik +Πijk) ∩∆(X)) /P 0
ik to be non-empty, and contradicting Part 1. Using Stiemke’s Theorem,6 it

follows that there exists dik ∈ O(Πik +Πijk) with dsik > 0 for all xs ∈X+ik.7

For both cases, it now follows that dik represents ≿ on ({ai, ak},∆(X)). And, by construction,

Πijk ⊂H0(dik), completing the proof.

One can now prove Theorem 3.10:

Proof. (Theorem 3.10)

⇒: Assuming that ≿ has a difference representation on ({ai, aj , ak},∆(X)), transitivity follows straight-

forwardly using strong transitivity dij + djk = dik. Next, for scaling transitivity, take pij , p
′
ij ∈ P 0

ij ,

tij , tjk ∈ H0(1), and λ ∈ R such that pij + tik, p′ij + λtik ∈ P 0
jk, pij + tjk ∈ P 0

ik, and p′ij + λtjk ∈ ∆(X). One

then has

dik ⋅ (p′ij + λtjk) = (dij + djk) ⋅ (p′ij + λtjk)

6Formally, for all v ∈ V , define the vectors ṽ ∶= (vs)xs∈X+
ik

and collect them in the set Ṽ . Since there is then no non-zero

ṽ ∈ ⟨Ṽ ⟩ such that ṽ ≥ 0, Stiemke’s Theorem implies that there exists a strictly positive vector d̃ ∈ R∣X
+

ik ∣ such that d̃ ⋅ ṽ = 0
for all ṽ ∈ Ṽ . dik ∈ Rm is then constructed by setting dsik = 0 for xs ∈ X0

ik and dsik = d̃
s
ik for xs ∈ X+ik.

7A basis for H0(dik) could now be constructed by adding the (up-to-scale) unique orthogonal complement of dik in
O(Πik +Πijk) to Πik +Πijk.
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= dij ⋅ λtjk + djk ⋅ λ(tjk − tik)

= dij ⋅ λ(pij + tjk) + djk ⋅ λ(pjk + tjk − tik)

= (dij + dik) ⋅ λpik = λdik ⋅ pik = 0

where strong transitivity dij + djk = dik was used for the first and fourth equalities and p′jk = p′ij − λtik
was used for the second one. It follows that p′ij + tjk ∈ P 0

ik.

⇐∶ Consider the case that ≿ exhibits reversals for two pairs ai, aj and aj , ak. (All other cases follow from

Theorem 2.6 and Lemma 3.6.)

First assume that P 0
ij = P 0

jk. Then P 0
ij = P 0

jk = P 0
ik =∶ P by transitivity. Now consider any p ∈

∆(X)/P . By transitivity, there is a strict local preference ai ≻p aj ≻p ak at p. Now take any difference

representation dik for ≿ on ({ai, ak},X), and take any scalar αij ∈ (0,1). Using Theorem 2.6 and noting

strong transitivity, [dij , dik, djk] = [αijdik, dik, (1 − αij)dik] is then a difference representation for ≿ on

({ai, aj , ak},X).
Henceforth, let P 0

ij ≠ P 0
jk and take any representations d̂ij , d̂jk for ≿ on, respectively, ({ai, aj},X), and

({aj , ak},X). Furthermore, using Lemma 3.11, Part 2, fix a representation dik for ≿ on ({ai, ak},X) such
that Πijk ⊂H0(dik). Since P 0

ij , P
0
jk,H

0(dik) are hyperplanes, H0(dik) ∩Πijk contains m− 2 independent

vectors. And hence, the null space of the matrix D̂T = [d̂ij , dik, d̂jk]
T
∈ R3×m (i.e. N(D̂T ) = {v ∈

Rm∣ d̂ij ⋅ v = dik ⋅ v = d̂jk ⋅ v = 0}) is m − 2-dimensional. Using the rank-nullity theorem, this implies

Rank (D̂T ) = 2. Since the row-rank of a finite matrix is equal to its column rank, it then follows (again

using the rank-nullity theorem) that N(D̂) = {α ∈ R3∣ α1dij + α2dik + α3djk = 0} is one-dimensional.

Hence, there are unique scalars αij , αjk such that αij d̂ij + αjkd̂jk = dik. Now consider any p ∈ P 0
ij ∩ P +ij

(such a p exists since P 0
ij ≠ P 0

jk and aj , ak exhibit reversals. By transitivity, p ⋅ dik = p ⋅ (dij + djk) =
p ⋅ (αjkd̂jk) > 0 and hence αjk > 0. Similarly, take any p ∈ P 0

jk ∩ P +ij to show that αij > 0, and it follows

that [dij , dik, djk] = [αij d̂ij , dik, αjkd̂jk] is a difference representation for ≿ on ({ai, aj , ak},X).

Together with Lemma 3.6, the proofs of Theorem 3.10 and Lemma 3.11 again give a clear-cut picture

regarding the uniqueness of difference representations for triples of acts.

Observation 3.12. (Uniqueness of Representation for 3 Acts)

Let (A,X) be a decision problem, and let ≿ be a system of context-dependent preference relations for

(A,X) that satisfies pairwise linearity, transitivity, and scaling transitivity. For any pairwise distinct

ai, aj , ak ∈ A, let D = [dij , djk, dik] represent ≿ on ({ai, aj , ak},X). Then, for any α > 0, αD represents

≿ on ({ai, aj , ak},X). For additional degrees of freedom, distinguish three cases (all other cases follow

from relabeling):

1) Let ≿ exhibit reversals for each of two distinct pairs ai, aj and aj , ak. Furthermore, let P 0
ik ⊆ P 0

ij ∩P 0
jk.

Take V ⊂ Rn such that ⟨V ⟩ = ⟨P 0
ij⟩ ∩ ⟨P 0

jk⟩ and w ∈ O(V ) such that ws = 0 for all xs ∈ X0
ik and such that

neither w ≥ 0 nor w ≤ 0.8 Then any matrix D′ = [dij , djk, d̃ik] with H0(d̃ik) = ⟨V ∪ w⟩ represents ≿ on

({ai, aj , ak},X).

2) Let ai, aj be the unique pair such that ≿ exhibits reversals. Furthermore, let aj weakly dominate ak.

Then any matrix D′ = [dij , d̃ik, d̃jk] with d̃sjk = −dsij for all xs ∈ X0
ik ∩ X−ij ∩ X+jk, d̃sjk > −dsji for all

8That such a w ∈ O⟨V ⟩ exists follows with Stiemke’s Theorem, see Lemma 3.11, Step 2.
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xs ∈X+ik ∩X−ij ∩X+jk, and d̃ik = dij + d̃jk represents ≿ on ({ai, aj , ak},X).

3) Let ≿ exhibit no reversals on ({ai, aj , ak},X). Then any matrix of pairwise representations D′ =
[d̃ij , d̃jk, d̃ij] with d̃ij + d̃jk = d̃ij represents ≿ on ({ai, aj , ak},X).

A special case of Theorem 3.10 arises for two-state decision problems. Since indifference sets are

singletons here, one trivially has consistency with scaling transitivity.

Corollary 3.13. (Representation for 3 Acts and 2 States)

For every pairwise distinct ai, aj , ak ∈ A and distinct xℓ, xm ∈X, ≿ admits a difference representation on

({ai, aj , ak},{xℓ, xm}) iff it is pairwise linear and transitive.

Before moving on to n > 3 acts, examine the logical relationship between transitivity (Definition 3.1)

and scaling transitivity (Definition 3.9). Lemma 3.11 and Figure 2b suggest a strong connection between

transitivity of the indifference relation ∼ and scaling transitivity. In fact, one may check that scaling

transitivity implies transitivity of ∼ whenever we observe reversals between all pairs of acts. However, as

seen in Figures 3a, 3b below, ≻ and/or ∼ can be intransitive even if ≿ is scaling transitive.

(a) Scaling transitivity, intransitive ≻. (b) Scaling transitivity, intransitive ∼.

Figure 3: Scaling transitive, intransitive preferences.

3.iii Transitive Preference Sensitivity

For n ≥ 4 acts, additional assumptions are needed for a difference representation. To see this, consider

the preference for a decision problem ({a1, a2, a3, a4},{x1, x2}) shown in Figure 4. This preference is

pairwise linear, transitive, and (trivially) scaling transitive. With Corollary 3.13, ≿ admits a representa-

tion on ({ai, aj , ak},{x1, x2}) for every ai, aj , ak ∈ {a1, a2, a3, a4}. However, there is no representation on

({a1, a2, a3, a4},{x1, x2}).

Figure 4: A pairwise linear and transitive preference that admits no difference representation
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To see this, first use Theorem 2.6 to find representations for pairwise comparisons. This yields

d̂12 = (
3

10
,− 7

10
) , d̂13 = (

1

2
,−1

2
) , d̂14 = (−

9

10
,
1

10
) , d̂23 = (−

1

10
,
9

10
) , d̂24 = (−

3

5
,
2

5
) , d̂34 = (−

4

5
,
1

5
) .

Note that each difference vector d̂ij is such that ∣∣d̂ij ∣∣1 = 1. This can be seen as a canonical pairwise

comparison, in the sense that pij ∈ ∆(X) is only rotated around 0 and not rescaled to arrive at the

representation d̂ij . I.e., using R(±π
2
) to denote the standard rotation matrix in R2 and identifying x1

with the horizontal axis, we have d̂ij = R(π2 )pij if ai ≻x1 aj and d̂ij = R(−π
2
)pij otherwise.

Whenever reversals occur for all pairs of acts in a 3-act, 2-state problems, canonical representations

make it easy to find triple representations as in Corollary 3.13. To see this, wlog assume d̂ij = R(−π
2
)pij

and take λijk ∈ R such that pij = λijkpik + (1 − λijk)pjk. Then the elementary representations satisfy

d̂ij = R(−π
2
)pij = R(−π

2
)λijkpik+R(−π

2
)(1−λijk)pjk. Now since the representation is unique up to scaling,

and since it must satisfy strong transitivity, one immediately gets that d̂ij = ∣λijk ∣d̂ik − ∣1 − λijk ∣d̂jk.
Back to the example, it is now easy to find representations for triples ai, aj , ak ∈ {a1, a2, a3, a4}.

d̂12 =
1

2
d̂13 −

1

2
d̂23, d̂12 = d̂14 − 2d̂24, d̂13 = 3d̂14 − 4d̂34, d̂23 =

7

2
d̂24 −

5

2
d̂34.

The weights are unique up to scaling, so a representation on ({a1, a2, a3, a4},{x1, x2}) would require

d̂14 − 2d̂24 = d̂12 =
1

2
d̂13 −

1

2
d̂23 =

3

2
d̂14 −

3

4
d̂34 −

7

4
d̂24

– a contradiction since different weights on d̂14, d̂24, d̂34 are necessary to express d̂12 and 1
2
d̂13 − 1

2
d̂23.

To intuitively see why the preference from Figure 4 is inconsistent with expected utility, examine

the relationship between displacement vectors and difference-shifts. Toward a contradiction, assume the

Figure-4 preference has a representation D = [d12, d13, d14, d23, d24, d34] and consider the displacement

p24 − p14. With strong transitivity, we must have d14 ⋅ (p24 − p14) = (d12 + d24) ⋅ p24 = d12 ⋅ (p24 − p12).
I.e., the a1, a4-change associated with p24−p14 is of equal magnitude as the a1, a2-change associated with

p24 − p12. Now, using that all indifference points are collinear for the present two-state decision problem,

let σ134 solve p23 − p12 = σ134(p24 − p12). Continuing the above derivation, we have

d14 ⋅ (p24 − p14) = d12 ⋅ (p24 − p12) =
1

σ134
d12 ⋅ (p23 − p12) =

1

σ134
d13 ⋅ (p23 − p13).

Proceeding in this way, while defining p23 − p13 = σ124(p34 − p13), p24 − p14 = σ123(p34 − p14), yields

d14 ⋅ (p24 − p14) = d12 ⋅ (p24 − p12) =
1

σ134
d12 ⋅ (p23 − p12) =

1

σ134
d13 ⋅ (p23 − p13)

= σ124

σ134
d13 ⋅ (p34 − p13) =

σ124

σ134
d14 ⋅ (p34 − p14) =

σ124

σ123σ134
d14 ⋅ (p24 − p14).

So the existence of a difference representation requires σ124 = σ123σ134. For the preference from Figure 4

however, straightforward calculations show that σ124 = − 4
3
≠ σ123σ134 = 3 ⋅ (− 2

3
).

The numbers σijk, ai, aj , ak ∈ A measure the sensitivity of ≿ for ai, aj-comparisons relative to ai, ak-

comparisons. In the setting with n ≥ 4 acts, such sensitivities are derived from conditional preferences

as follows. Given any fourth act aℓ ≠ ai, aj , ak, the ai, aj-difference over pjℓ − pij and the ai, ak-difference

over pkℓ − pik can be equated to the ai, aℓ-differences over (respectively) pjℓ − piℓ and pkℓ − piℓ. This way,
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comparisons with ai, aℓ-differences reveal the magnitude of ai, aj-differences relative ai, ak-differences.

Figure 5 illustrates how σ134 = − 2
3
is revealed for the preference from Figure 4.

Figure 5: Retrieving σ134 = − 2
3
for the preference from Figure 4.

In the figure, the (p23−p12)- and (p24−p12)-distances are associated with “d-levels” of utility differences.

(p23 − p12) = − 2
3
(p24 − p12) means that the positive a1, a2-difference on p23 − p12 corresponds to a 3

2
-larger

and negative a1, a2-difference on p24 − p12.
Figure 6 adds graphical derivations for σ123, σ124. As we see, fixing σ134 like in Figure 5, and fixing

σ124 based on (p23 − p13)- and (p34 − p13)-distances makes it impossible to assign a unique value to σ123

or, equivalently, a unique slope to a1, a4-differences (yellow lines).

Figure 6: The Figure-4 preference is inconsistent with σ123σ134 = σ124.

To find a preference that is consistent with σ123σ134 = σ124, relocate any of the six indifference points

in Figure 6, e.g. p14. With p14 = (0,1), we get σ123 = 2, so that σ123σ134 = 2 ⋅ (− 2
3
) = − 4

3
= σ124. The

modified preference is illustrated in Figure 7 below. As we see, σ123σ134 = σ124 guarantees unique slopes

for a1, a2-, a1, a3-, and a1, a4-differences.

Figure 7: A preference with transitive preference sensitivity (σ123σ134 = σ124).
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For general decision problems (A,X) and preferences ≿ exhibiting reversals for all distinct pairs of

acts ai, aj ∈ A, global consistency among preference sensitivities is necessary and sufficient for an n-act

representation based on triple representations. This motivates the following property.

Definition 3.14. (Transitive Preference Sensitivity)

For distinct acts ai, aj , ak, aℓ, let pij ∈ P 0
ij, pik ∈ P 0

ik, piℓ ∈ P 0
iℓ, pjk ∈ P 0

jk, pjℓ ∈ P 0
jℓ, pkℓ ∈ P 0

kℓ, and scalars

σijk, σikℓ, σijℓ satisfy

σijkpkℓ + (1 − σijk)piℓ = pjℓ, σikℓpjℓ + (1 − σikℓ)pij = pjk, and σijℓpkℓ + (1 − σijℓ)pik = pjk.

Then ≿ has transitive preference sensitivity if σijℓ = σijkσikℓ.

Transitive preference sensitivity extends intuitions from the two-state problems above to m > 2 states.

The difference with m states is that not all indifference points need be collinear. Since sensitivities σijk

must be derived from collinear points piℓ, pjℓ, pkℓ, it is easy to see that the six indifference points must

be colocated on an extended triangle as in Figure 8 below.

Figure 8: Transitive preference sensitivity σ123σ134 = σ124 on an extended triangle for m > 2 states.

The red line in Figure 8 shows an interesting consequence of Property 3.14: For six points on an extended

triangle satisfying Property 3.14, the equation σ123σ134 = σ124 is the one from Menelaus’s Theorem. I.e.,

p12, p13, p14 must be collinear whenever six indifference points for a quadruple {a1, a2, a3, a4} ∈ A satisfy

σ123σ134 = σ124.

The next Theorem proves that transitive preference sensitivity and the properties from Sections 2, 3.i,

and 3.ii are necessary and sufficient for a difference representation over n acts forming a fully connected

component.

In what follows, for any difference representation DA on a problem (A,X) and any B ⊆ A, use DA∣B

to denote the restriction of DA to acts in B.

Theorem 3.15. Difference Representation for n Undominated Acts

Let (A,X) be a decision problem, and let B ⊆ A be a fully connected component wrt ≿. Then ≿ admits a

difference representation on (B,X) iff it satisfies pairwise linearity, transitivity, scaling transitivity, and

transitive preference sensitivity.
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For the proof, we will need the following Lemma.

Lemma 3.16. (Line through Indifference Sets)

For a decision problem (A,X), let ≿ exhibit reversals for every pair of acts on B ⊆ A, and let H =
{⟨P 0

ij⟩∣ ai, aj ∈ B, ai ≠ aj} define a hyperplane arrangement of rank 2. Then there exists a Line L =
{v + λw∣ λ ∈ R, v,w ∈ Rm} such that L ∩ P 0

ij is non-empty for every pair of acts ai, aj ∈ B.

Proof. Throughout, write ⟨P ∗⟩ ∶= ⋂
ai,aj∈B

⟨P 0
ij⟩ for the center of H or, equivalently, the subspace of total

indifference between all acts in B. Since H has rank 2, it immediately follows that ⟨P ∗⟩ is m − 2-

dimensional. Also, let H∆ ∶= {P 0
ij ∣ ai, aj ∈ B, ai ≠ aj} collect the indifference sets induced by H. Now

distinguish two cases:

1) ⟨P ∗⟩ ∩∆+(X) is non-empty: Take any line L̃ ⊂ H1(1) intersecting all distinct hyperplanes in H
at different points, with some or all intersections possibly outside the simplex.9 Now, taking any total

indifference point p∗ ∈ ⟨P ∗⟩ ∩∆+(X), for any distinct pair of acts ai, aj ∈ B and qij ∈ L̃ ∩ ⟨P 0
ij⟩, we have

that ⟨p∗, qij⟩ ∈ ⟨P 0
ij⟩. In particular, for any α ∈ (0,1), L̃α = {αp∗ + (1 − α)(v + λw)} still intersects all

indifference hyperplanes at distinct points qij(α) = αp∗ + (1 − α)qij . Since qij(1) = p∗ ∈ ∆+(X) for all

distinct pairs of acts ai, aj ∈ B, there must then exist α ∈ [0,1) such that qij(α) ∈ P 0
ij = ⟨P 0

ij⟩ ∩∆(X) for
all distinct pairs of acts ai, aj ∈ B and all α ∈ (α,1].

2) ⟨P ∗⟩∩∆+(X) is empty: To start, recalling that ⟨P ∗⟩ is m−2-dimensional, note that no two distinct

indifference hyperplanes in H may intersect outside of ⟨P ∗⟩ (or else they would immediately be coplanar).

Now, since all distinct pairs ai, aj ∈ B exhibit reversals and since ⟨P ∗⟩ intersects at most the boundary of

∆(X), it follows that every indifference set P 0
ij ∈ H∆ splits the simplex into two convex polytopes ∆1

ij ,∆
2
ij .

Since this is true for all distinct pairs of acts ai, aj ∈ B and since no two indifference hyperplanes in H may

intersect outside ⟨P ∗⟩, for any distinct pair a1, a2 ∈ B and any other distinct ai, aj ∈ B with P 0
12 ≠ P 0

ij , we

must have either P 0
ij ⊂∆1

12 or P 0
ij ⊂∆2

12.

Use P1
12 to denote the set of indifference sets contained in ∆1

12 and similarly define P2
12. Now take

any P 0
ij ∈ P1

12 and define ∆1
ij ,∆

2
ij such that P 0

12 ∈ ∆2
ij . Letting P2

ij denote the set of indifference sets

contained in ∆2
ij , by construction we must have P2

12 ∪ {P 0
12} ⊂ P2

ij . An immediate implications is that

P1
ij ⊂ P1

12. Iterating this construction and recalling that H is finite, it is now easy to see that there exists

an indifference set P ∈ H∆ with associated convex polytopes ∆
1
, ∆

2
, such that all other indifference sets

P 0
ij ≠ P in H∆ are contained in ∆

2
.

Moreover, redoing the same construction but starting from P 0
ij ∈ P2

12 yields a second P ∈ H∆ with

associated convex polytopes ∆1, ∆2, such that all other indifference sets P 0
ij ≠ P in H∆ (including P )

are contained in ∆2.

In combination, the convex polytopes ∆
1
, ∆1, ∆

2 ∩ ∆2 are such that all P 0
ij ≠ P ,P , for distinct

ai, aj ∈ B are contained in ∆
2 ∩∆2. Now take any p ∈∆1

, p ∈∆1 and define L = {p + λ(p − p), λ ∈ R}.
By construction, for any distinct pair of acts ai, aj ∈ B, L ∩∆(X) intersects both halfspaces defined

by the indifference hyperplane ⟨P 0
ij⟩. Consequently, L ∩ ∆(X) must then also intersect each of the

hyperplanes ⟨P 0
ij⟩ inside the simplex.

The proof of Lemma 3.16 is now complete.

9Since each distinct indifference hyperplane defines a distinct affine hyperplane in Rm−1 when intersected with H1(1),
any line L̃ that is not parallel to any of these affine hyperplanes will feature the desired distinct intersections.
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Proof. (Theorem 3.15)

⇒∶ Take pij , pik, pjk, piℓ, pjℓ, pkℓ as in Definition 3.14. If ≿ has a difference representation on (B,X),
then

σijℓdik(pkℓ − pik) = dik(pjk − pik) = dij(pjk − pij)

= σikℓdij(pjℓ − pij) = σikℓdiℓ(pjℓ − piℓ)

= σijkσikℓdiℓ(pkℓ − piℓ) = σijkσikℓdik(pkℓ − pik)

where strong transitivity was used for the second, fourth, and sixth equalities.

It follows that σijℓ = σijkσikℓ.

⇐∶ First assume that P 0
ij = P 0

ik for some distinct pair ai, aj ∈ B and all ak ∈ B/{ai, aj}. By transitivity,

it then follows that there is P ⊂ ∆(X) such that P = P 0
kℓ for all distinct ak, aℓ ∈ B. Now take any

p ∈ ∆(X)/P . By completeness and transitivity, there must be a strict local ranking over all acts in B

at p. Wlog, let a1 ≻p ⋅ ⋅ ⋅ ≻p a∣B∣. Since P separates H+(dij) and H−(dij) for all distinct pairs ai, aj ∈ B,

it follows that H+(dij) = H+(dkℓ) and H−(dij) = H−(dkℓ) for all ai, aj , ak, aℓ such that i < j and k < ℓ.
Now take any difference representation d1,∣B∣ for ≿ on ({a1, a∣B∣},∆(X)). By construction, d1,∣B∣ also

represents ≿ on ({ai, aj},∆(X)) for any ai, aj ∈ B with 1 ≤ i < j ≤ ∣B∣. It then remains to find scalars αij

for every 1 ≤ i < j ≤ ∣B∣ such that each αijd1,∣B∣ represents ≿ on ({ai, aj},∆(X)), and such that all triples

of difference vectors satisfy strong transitivity. So let α1,∣B∣ = 1 and, for every ai ≠ a1, choose α1i > 0 such

that α12 < ⋅ ⋅ ⋅ < α1,∣B∣−1 < α1,∣B∣. Moreover, for any ai, aj ≠ a1, define αij = α1j − α1i. By construction, we

have αij > 0 for every ai, aj with i < j, and it follows that dij ∶= αijd1,∣B∣ represents ≿ on ({ai, aj},∆(X))
for every ai, aj ∈ B with 1 ≤ i < j ≤ ∣B∣. To show that strong transitivity is satisfied, first note that

d1i + dij = (α1i + αij)d1∣B∣ = α1jd1∣B∣ = d1j for all ai, aj ≠ a1. Next, using strong transitivity on triples

involving a1, we can observe that dij + djk = d1j − d1i + d1k − d1j = d1k − d1i = dik for all ai, aj , ak ≠ a1. It
now follows that D = [d12, . . . , d∣B∣−1,∣B∣] is a difference representation for ≿ on (B,∆(X)).

Henceforth assume that there exist distinct ai, aj ∈ B and ak ∈ B/{ai, aj} such that P 0
ij ≠ P 0

ik. Note

that by transitivity it then follows that P 0
ij , P

0
jk, P

0
ik is a triple of pairwise distinct indifference sets. By

Theorem 3.10, there then exist a difference representation for ≿ on ({ai, aj , ak},X) such that dij , djk, dik

are unique up to a common positive scalar.

The remainder of the proof proceeds by induction over ∣B∣ ≥ 3. The induction start is the previous

paragraph.

So let ∣B∣ ≥ 3 and suppose there is a difference representation DC on (C,X) for some C ⊂ B, ∣C ∣ =
∣B − 1∣. Let {aB} = C/B. Note that, since B is fully connected, there is a ratio-scale unique difference

vector d̃iB representing ≿ on any ({ai, aB},X), ai ∈ C.

Now consider any distinct ai, aj ∈ C. Using Theorem 3.10, there exist positive scalars αijB
iB , αijB

jB such

that

0 = dij + αijB
jB d̃jB − αijB

iB d̃iB .

Furthermore, take any ak ∈ C such that P 0
ij , P

0
jk, P

0
ik are pairwise distinct. Then, again using Theorem

3.10, there exist positive scalars αikB
iB , αikB

kB , αjkB
jB , αjkB

kB such that

0 = djk + αjkB
kB d̃kB − αjkB

jB d̃jB
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0 = dik + αikB
kB d̃kB − αikB

iB d̃iB

Adding the first and second equation and subtracting the third one yields:

0 = dij + djk − dik + (αijB
jB − α

jkB
jB ) d̃jB + (α

jkB
kB − α

ikB
kB ) d̃kB + (αikB

iB − α
ijB
iB ) d̃iB (1)

And using 0 = dij + djk − dik this further reduces to

0 = (αijB
jB − α

jkB
jB ) d̃jB + (α

jkB
kB − α

ikB
kB ) d̃kB + (αikB

iB − α
ijB
iB ) d̃iB .

Now distinguish the following cases:

1) P 0
mB = P 0

mℓ for some am, aℓ ∈ {ai, aj , ak}:
First, note that P 0

mB = P 0
mℓ only for one pair am, aℓ out of {ai, aj , ak}. Otherwise, using transitivity,

P 0
ij , P

0
jk, P

0
ik could not be pairwise distinct. Wlog let P 0

iB = P 0
ik = P 0

kB .

Since d̃iB and d̃kB are the linearly dependent, there exists a scalar β such that

0 = (αijB
jB − α

jkB
jB ) d̃jB + [(α

jkB
kB − α

ikB
kB )β + (αikB

iB − α
ijB
iB )] d̃iB .

Note that d̃jB and d̃iB must be linearly independent. (Otherwise, with transitivity, one would have

P 0
ik = P 0

ij .) It follows that αijB
jB = α

jkB
jB =∶ αjB .

Then, adding the second strong transitivity equation above to the first, one has

0 = dij + djk + (αjB − αjB)d̃jB − αijB
iB d̃iB + αjkB

kB d̃kB

= dik + αjkB
kB d̃kB − αijB

iB d̃iB .

Hence, αikB
iB = αijB

iB =∶ αiB and αjkB
kB = α

ikB
kB =∶ αkB yields a ratio-scale unique difference representation on

({ai, aj , ak, aB},X).

2) P 0
mB ≠ P 0

mℓ for all am, aℓ ∈ {ai, aj , ak}:
To begin, note that the matrix D̃ = [dij , dik, djk, d̃iB , d̃jB , d̃kB]. Must be of rank 2 or 3. If not, Rank(D̃) =
1 would imply P 0

ij = P 0
ik for all distinct ai, aj , ak ∈ B, whereas Rank(D̃) = 4 would require that the matrix

of difference vectors for one triple out of {ai, aj , ak, aB} be of rank larger than 2 – a contradiction with

Theorem 3.10.

Now, if Rank(D̃) = 3, then D̃ has a 3-dimensional null space using the rank-nullity theorem. Further-

more, since Rank([dij , dik, djk]]) = 2 by Theorem 3.10, d̃iB , dij , dik must be linearly independent. Hence,

the three strong transitivity equations involving aB are are linearly independent in N(D̃). Since the

fourth strong transitivity equation dij + djk − dik = 0 must then linearly depend on these other three in

N(D̃), and since equation 1 is the unique way one may express 0 = dij + djk − dik in terms of the three

other equations, it follows that αijB
iB = αikB

iB =∶ αiB , α
ijB
jB = α

jkB
jB =∶ αjB , α

ikB
kB = α

jkB
kB =∶ αkB , yielding a

ratio-scale unique difference representation on ({ai, aj , ak, aB},X).
Otherwise, if Rank(D̃) = 2, the hyperplane arrangement {⟨P 0

mℓ⟩∣ am, aℓ ∈ {ai, aj , ak, aB}, am ≠ aℓ} is
of rank 2 as well. So, using Lemma 3.16, fix a line L passing at distinct points through each distinct

indifference set. For each distinct am, an ∈ {ai, aj , ak, aB} let pmn ∈ P 0
mn be the corresponding intersection.

Using that all pmn lie on the same line, and that all pairwise indifference sets among {ai, aj , ak, aB} are
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pairwise distinct, there exist unique and non-zero σijk, σikB , σijB such that

pjB = σijk(pkB − piB) + piB , pjk = σikB(pjB − pij) + pij , pjk = σijB(pkB − pik) + pik.

Using strong transitivity among the triples, it now follows that

αijB
iB d̃iB ⋅ (pjB − piB) = dij ⋅ (pjB − pij)

= 1

σikB
dij ⋅ (pjk − pij) =

1

σikB
dik ⋅ (pjk − pik)

=
σijB

σikB
dik ⋅ (pkB − pik) =

σijB

σikB
αikB
iB d̃iB ⋅ (pkB − piB)

=
σijB

σijkσikB
αikB
iB d̃iB ⋅ (pjB − piB).

And using transitive preference sensitivity σijkσikB = σijB yields αijB
iB = α

ikB
iB =∶ αiB .

Further, like in case (1), it follows that αjB =∶ αijB
jB and αkB =∶ αikB

kB also solve the strong transitivity

equation for aj , ak, aB , again yielding a ratio-scale unique difference representation on ({ai, aj , ak, aB},X).
Since ai, aj , ak where arbitrary and since each case yielded a unique difference representation up to a

common positive scalar, it follows that the weights αiB for any ai ∈ B are independent of which other acts

aj , ak ∈ B are used in the construction. It follows that there exists a ratio-scale unique representation for

≿ on (B,X). The induction step and hence the proof is now complete.

Bibliography

Andreoni, J., and J. Miller, 2002: Giving according to GARP: An experimental test of the consistency

of preferences for altruism. Econometrica, 70, 737–753.

Cooper, R., D. V. DeJong, R. Forsythe, and T. W. Ross, 1996: Cooperation without reputation: Exper-

imental evidence from prisoner’s dilemma games. Games and Economic Behavior, 12, 187–218.

Gilboa, I., and D. Schmeidler, 2003: A derivation of expected utility maximization in the context of a

game. Games and Economic Behavior, 44, 184–194.
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