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Abstract

A focus function in a dynamic game describes, for every player and each of his information sets, the
collection of opponents’information sets he reasons about. Every focus function induces a rationalizability
procedure in which a player believes, whenever possible, that his opponents choose rationally at those
information sets he reasons about. Under certain conditions, we show that if the players start reasoning
about more information sets, then the set of outcomes induced by the associated rationalizability procedure
becomes smaller or stays the same. This result does not hold on the level of strategies, unless the players
only reason about present and future information sets. The monotonicity result enables us to derive
existing theorems, such as the relation in terms of outcomes between forward and backward induction
reasoning, but also paves the way for new results.
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Figure 1: Reasoning about more information sets may not be more restrictive in terms of strategies

1 Introduction

To reach a meaningful decision in a dynamic game it is important to reason, at each of your information
sets, about the opponents’rationality at some, or all, of their information sets. This is reflected in many
equilibrium and rationalizability concepts for dynamic games. Consider, for instance, the forward induction
concept of strong rationalizability (Pearce (1984), Battigalli (1997)), also known as extensive-form rational-
izability, in which a player must believe, whenever possible, that his opponents choose rationally at all of
their information sets. It thus requires the player to always reason about all the opponents’ information
sets. Compare this to the backward induction concepts of backward dominance (Perea (2014)) and backwards
rationalizability1 (Penta (2015), Catonini and Penta (2022), Perea (2014)) in which a player must always
believe that his opponents will choose rationally at all present and future information sets. It only requires
a player to actively reason about the present and future information sets of his opponents.

As strong rationalizability requires reasoning about more information sets than backward dominance,
does this mean that the former concept will also be more restrictive than the latter? A partial answer is:
not in terms of strategies.

To see this, consider the game in Figure 1, which is an adaptation of Figure 3 in Reny (1992). Acccording
to strong rationalizability, player 2 must believe at h2 that player 1 has chosen rationally at h1, which is
only possible if player 1 chooses the strategy (b, f). Indeed, amongst the player 1 strategies that reach h2,
only (b, f) can yield player 1 more than 3 —a utility he could have guaranteed by choosing a at h1. As such,
player 2 will choose the strategy (d, g). Player 1, anticipating on this, will choose a at the beginning.

In the backward dominance procedure, player 2 must believe at h2 (i) that player 1 will choose rationally
at h′1, and (ii) that player 1 believes at h

′
1 that player 2 will choose rationally at h

′
2. Therefore, player

2 believes at h2 that player 1 chooses (b, e), which leaves c as the optimal strategy for player 2. Player
1, anticipating on this, will again choose a at the beginning. We thus see that strong rationalizability
and backward dominance lead to a unique, yet distinct, strategy for player 2, despite the fact that strong
rationalizability requires the players to reason about more information sets. However, both concepts lead
to the same outcome in the game, which is the unique backward induction outcome.

1The difference between the two concepts is that the latter requires the beliefs to satisfy forward consistency (also referred
to as Bayesian updating), whereas the former does not.
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Battigalli (1997) has shown that the latter is true for all games with perfect information where there are
no relevant ties.2 Later, the result has been generalized in Perea (2017) and Catonini (2020) by showing that
in every dynamic game with observed past choices3 the set of outcomes induced by strong rationalizability
is always included in the set of outcomes induced by the backward dominance procedure4. For this specific
scenario we can thus say that reasoning about more information sets leads to less (or possibly the same)
outcomes.

In this paper we generalize this finding by showing that, under certain conditions, reasoning about more
information sets always leads to a smaller (or equal) set of outcomes. To this purpose we introduce a family
of rationalizability procedures parametrized by the collections of opponents’information sets that the players
reason about at their various information sets. Formally, the parameter is a focus function f (Perea and
Tsakas (2019)) which specifies for every player, and each of his information sets, the collection of opponents’
information sets he reasons about. The associated belief restriction is that every player believes, whenever
possible, that his opponents choose rationally at those information sets he reasons about. By iterating this
condition we obtain a recursive reduction procedure that we call f -rationalizability.

It turns out that many of the existing rationalizability concepts in the literature, including strong ra-
tionalizability, backward dominance, and the Ben-Porath procedure (Ben-Porath (1997)), can be phrased
as f -rationalizability concepts with an appropriately chosen focus function f . In our definition of the focus
function f, the collection of opponents’information sets that a player reasons about is allowed to depend on
the strategies that have already been eliminated at the various information sets. This enables us to model
rationalizability procedures like forward and backward rationalizability (Meier and Perea (2023)) where dif-
ferent collections of opponents’information sets enter at different stages of the procedure, according to some
given epistemic priority ordering.

In Theorem 4.1 we prove the existence of f -rationalizable strategies under appropriate conditions on the
focus function f. The conditions are the following: (a) f must be individually forward decreasing, which
means that as the game moves on, a player should not start to reason about information sets he did not
reason about before; (b) f must individually preserve focus on past information sets, which means that if
a player reasons, at a particular information set, about a past information set h, then he will still reason
about h at all future information sets; and (c) f must be monotone, which means that a player can only
start reasoning about more, or the same, information sets if more strategies get eliminated at the various
information sets in the game. The conditions above rule out the possibility of dynamically inconsistent
beliefs, which would endanger the existence of f -rationalizable strategies. Many rationalizability concepts
for dynamic games in the literature satisfy these conditions, and their existence is thus guaranteed by
Theorem 4.1.

Under the same conditions, we show in Theorem 4.2 that additionally imposing forward consistency5

(often referred to as Bayesian updating) on beliefs does not alter the sets of f -rationalizable strategies.
More precisely, we define f -rationalizability as an iterated strict dominance procedure where beliefs do not

2No relevant ties means that for every player, different actions always lead to different utilities for that player.
3That is, there may be simultaneous moves, but a player always knows which actions have been chosen in the past.
4Catonini (2020) shows this result for the stronger concept of backwards rationalizability.
5We adopt this terminology from Battigalli, Catonini and Manili (2023).
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explicitly enter the picture. But in the light of Lemma 3 in Pearce (1984) it can equivalently be phrased
as an iterated never-a-best-reply procedure in which at every information set we remove strategies that are
not optimal for any belief that is allowed at that information set. Theorem 4.2 then shows that under
the conditions (a), (b) and (c) above, the output of f -rationalizability would not change if we additionally
require every player’s beliefs to be forward consistent, and to require that every player believes that his
opponents’beliefs are forward consistent at those information sets he reasons about. However, imposing the
stronger requirement that a player must believe that his opponents satisfy forward consistency also at those
information sets he does not reason about, may alter the sets of f -rationalizable strategies. At the same
time, this stronger condition would force a player to reason about information sets that are not prescribed
by f, and would thus go against the nature of the focus function f.

Our main result, Theorem 5.1, compares two focus functions f and g such that f requires reasoning
about more information sets than g, and shows that under certain conditions every outcome induced by
a combination of f -rationalizable strategies is also induced by a combination of g-rationalizable strategies.
The proof is constructive, as it explicitly shows how to transform a combination of f -rationalizable strategies
into a combination of g-rationalizable strategies that yields the same outcome. The theorem also shows that
if in f the players only reason about present and future information sets, then every f -rationalizable strategy
is g-rationalizable. That is, in this case the set inclusion even holds on the level of strategies.

In fact, Theorem 5.1 states something stronger than the above monotonicity result, by showing that the
outcomes induced by combinations of f -rationalizable strategies are the same as the outcomes that result
if we first apply the g-rationalizability procedure and then the f -rationalizability procedure. In the latter
combined procedure we thus give epistemic priority to reasoning according to g above reasoning according to
f. This result therefore highlights that in terms of outcomes it does not matter whether we stick to reasoning
in line with f all the way, or whether we first give epistemic priority to reasoning in line with g before we
start reasoning in line with f. Again, the proof is constructive as it shows how to transform a combination
of strategies surviving the first procedure into a combination of strategies surviving the second combined
procedure yielding the same outcome, and vice versa.

The conditions under which the theorem holds are the following: (a) the focus functions f and g must
be individually forward decreasing, individually preserving focus on past information sets, and monotone —
the conditions needed to guarantee the existence of f - and g-rationalizable strategies; (b) f must be collec-
tively forward decreasing, which means that as the game proceeds a player will never start reasoning about
information sets that players before him (including himself) did not reason about; (c) f must collectively
preserve focus on past information sets, which means that if a player reasons, at a particular information
set, about a past information set h, then the players at later information sets will still reason about h; (d) f
must be transitively closed, which means that if a player reasons at information set h about an information
set h′ where the player reasons about a third information set h′′, then the player at h must reason about
h′′ as well; and (e) the focus function f is monotone with respect to g, which means that if we start from
applying g-rationalizability for some rounds followed by applying f -rationalizability for some rounds, then
either applying g-rationalizability for one more round, or applying g-rationalizability by one round less fol-
lowed by applying f -rationalizability for one more round, should lead the players to reason about more, or
the same, information sets as before.
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The last property (e) is automatically satisfied if in f the collection of opponents’ information sets
that a player reasons about does not depend upon the strategies that have been eliminated at the various
information sets in the game. Note that conditions (b) and (c) are interactive versions of their individual
counterparts in (a), and state that the reasoning patterns of the different players should be “suffi ciently
aligned”.

On the basis of Theorem 5.1 we can derive many existing results in the literature, such as the theorems
by Battigalli (1997), Perea (2017) and Catonini (2020) mentioned above. But we can also use Theorem 5.1
to prove new relevant results. For instance, it can be shown that for every focus function f satisfying the
properties (a) —(d) above, the computationally convenient backwards order of elimination, in which we first
perform the required eliminations at the last information sets, then perform the required eliminations at
the last and second-to-last information sets, and so on, will lead to the same set of outcomes as the original
f -rationalizability procedure.6

Or compare two collections of “focal”information sets H1 ⊆ H2 and consider the focus mappings f1, f2

where all players, at every information set, only reason about opponents’information sets in H1 and H2,
respectively. Then, the f1- and f2-rationalizability procedure may be considered restricted forms of forward
induction reasoning in which a player only evaluates the opponents’optimality at past focal information
sets in H i, and uses this to form a belief about the opponents’present, future and unobserved past actions
at the focal information sets in H i. As H1 ⊆ H2, the f2-rationalizability procedure may be considered the
more fine-grained forward induction procedure of the two. It then immediately follows from Theorem 5.1
that f2-rationalizability is more, or equally, restrictive in terms of outcomes than f1-rationalizability.

We believe that Theorem 5.1 may be important for implementation theory and mechanism design,
where a planner wishes to design a game form in order to achieve a certain goal with respect to a specific
rationalizability concept. In the light of our theorem, the set of induced outcomes will become smaller, or
stay the same, if the planner assumes that the agents start reasoning about more information sets. Within
this context, Battigalli and Catonini (2024) prove an outcome-monotonicity result that is similar, in spirit,
to ours: In the realm of incomplete information it is shown that when the planner evaluates the agents’
behavior by strong rationalizability, then imposing more restrictions on the players’ initial beliefs about
types leads to less, or the same, outcomes.

The outline of the paper is as follows: In Section 2 we present our model of a dynamic game, together
with some derived objects such as strategies, strict dominance, beliefs, and expected utility. In Section 3 we
lay out the notion of a focus function, explain how it gives rise to a family of rationalizability procedures, and
show how many of the existing rationalizability procedures can be modelled as members of this family. In
Section 4 we present the conditions under which we can guarantee the existence of rationalizable strategies,
and such that the output of the rationalizability procedure will remain unchanged if we additionally impose
the abovementioned forward consistency requirement. In Section 5 we present our main result, Theorem
5.1, and provide a sketch of the proof. In Section 6 we show how this theorem can be used to prove existing
and new results. In Section 7 we provide some concluding remarks. All the proofs can be found in Section
8.

6To be precise, we also need that f is monotone with respect to this backwards order of elimination.
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2 Games, Strategies and Strict Dominance

In this section we lay out the model of a dynamic game, together with some derived objects such as strategies,
strict dominance, beliefs, expected utility, and optimality of strategies.

2.1 Dynamic Games

In this paper we consider finite dynamic games that allow for simultaneous moves and imperfect information.
Formally, a dynamic game is a tuple D = (I, P, Ia, (Ai, Hi)i∈I , Z, (ui)i∈I), where

(a) I is the finite set of players;
(b) P is the finite set of past action profiles, or histories;
(c) the mapping Ia assigns to every non-terminal history p ∈ P the (possibly empty) set of active players

Ia(p) ⊆ I who must choose after history p. If Ia(p) contains more than one player, there are simultaneous
moves after p. If Ia(p) is empty, the game terminates after p. We say that p is a terminal history, or an
outcome, if Ia(p) = ∅, and p is called a non-terminal history otherwise. By Pi we denote the set of histories
p ∈ P with i ∈ Ia(p);

(d) for every player i, the mapping Ai assigns to every history p ∈ Pi the finite set of actions Ai(p)
from which player i can choose after history p. By ∅ we denote the empty history, marking the beginning
of the game. It is also the unique history of length 0. For every k ≥ 1, the histories of length k can then
inductively be defined as the pairs p′ = (p, (ai)i∈Ia(p)) where p is a non-terminal history of length k− 1, and
such that for every i ∈ Ia(p) we have that ai ∈ Ai(p). We assume that the objects P, Ia and (Ai)i∈I are
such that the histories in P are precisely those that are histories of length k for some k ≥ 0;

(e) for every player i there is a partition Hi of the set of histories Pi where i is active. Every partition
element hi ∈ Hi is called an information set for player i. In case hi contains more than one history, the
interpretation is that player i does not know at hi which history in hi has been realized. The objects Ai
and Hi must be such that for every information set hi ∈ Hi and every two histories p, p′ in hi, we have that
Ai(p) = Ai(p

′). We can thus write Ai(hi) for the unique set of available actions at hi. Moreover, it must be
that Ai(hi) ∩Ai(h′i) = ∅ for every two distinct information sets hi, h′i ∈ Hi;

(f) Z ⊆ P is the collection of terminal histories or outcomes;
(g) for every player i there is a utility function ui : Z → R.

This definition follows Osborne and Rubinstein (1994). We say that a history p precedes a history p′ (or
p′ follows p) if p′ results by adding some action profiles after p. Let H := ∪i∈IHi be the collection of all
information sets for all players. For every two information sets h, h′ ∈ H, we say that h precedes h′ (or h′
follows h) if there is a history p ∈ h and a history p′ ∈ h′ such that p precedes p′. Two information sets h, h′
are simultaneous if there is some history p which belongs to both h and h′.We say that h weakly precedes h′

(or h′ weakly follows h) if either h precedes h′, or h, h′ are simultaneous. The game has a cycle-free ordering
of information sets if there are no information sets h1, h2, ..., hK such that hk weakly precedes hk+1 for all
k ∈ {1, ...,K − 1} and hK precedes h1.

For a player i, an information set hi ∈ Hi, and a player j (possibly equal to i) we denote by H+
j (hi) the

collection of information sets in Hj that weakly follow hi, and by H−j (hi) the collection of information sets
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in Hj that precede hi. For a collection Ĥi ⊆ Hi we denote by Ĥ
first
i the collection of information sets in

Ĥi that are not preceded by any other information set in Ĥi. We say that Ĥi is closed under weak followers
(closed under precedessors) if for every hi ∈ Ĥi we have that H+

i (hi) ⊆ Ĥi (H−i (hi) ⊆ Ĥi).
The dynamic game satisfies perfect recall (Kuhn (1953)) if every player always remembers which actions

he chose in the past, and which information he had about the opponents’past actions. Formally, for every
player i, information set hi ∈ Hi, and histories p, p′ ∈ hi, the sequence of player i actions in p and p′ must
be the same (and consequently, the collection of player i information sets that precede p and p′ must be
the same). In the sequel we will always assume that the dynamic game under consideration satisfies perfect
recall and has a cycle-free ordering of information sets.

2.2 Strategies

A strategy for player i assigns an available action to every information set at which player i is active, and
that is not excluded by earlier actions in the strategy. Formally, let s̃i be a mapping that assigns to every
information set hi ∈ Hi some action s̃i(hi) ∈ Ai(hi). We call s̃i a complete strategy. Then, a history p ∈ P
is excluded by s̃i if there is some information set hi ∈ Hi, with some history p′ ∈ hi preceding p, such that
s̃i(hi) is different from the unique player i action at p′ leading to p. An information set h ∈ H is excluded
by s̃i if all histories in h are excluded by s̃i. The strategy induced by s̃i is the restriction of s̃i to those
information sets in Hi that are not excluded by s̃i. A mapping si : H̃i → ∪h∈H̃iAi(h), where H̃i ⊆ Hi, is
a strategy for player i if it is the strategy induced by a complete strategy.7 By Si we denote the set of
strategies for player i, and by S−i := ×j 6=iSj the set of strategy combinations for i’s opponents.

Consider a strategy profile s = (si)i∈I in ×i∈ISi. Then, s induces a unique outcome z(s). We say that
the strategy profile s reaches a history p if p precedes z(s). Similarly, the strategy profile s is said to reach
an information set h if s reaches a history in h.

For a given information set h ∈ H and player i we define the sets

S(h) := {s ∈ ×i∈ISi | s reaches h},
Si(h) := {si ∈ Si | there is some s−i ∈ S−i such that (si, s−i) ∈ S(h)}, and
S−i(h) := {s−i ∈ S−i | there is some si ∈ Si such that (si, s−i) ∈ S(h)}.

It is well-known that under perfect recall we have, for every player i and every information set hi ∈ Hi,
that S(hi) = Si(hi) × S−i(hi). For a given strategy si ∈ Si we denote by Hi(si) := {hi ∈ Hi | si ∈ Si(hi)}
the collection of information sets for player i that the strategy si allows to be reached.

A decision problem for player i at an information set hi ∈ Hi is a pair (Di(hi), D−i(hi)), where Di(hi) ⊆
Si(hi) and D−i(hi) ⊆ S−i(hi).

7What we call a “strategy” is sometimes called a “plan of action” in the literature (Rubinstein (1991)), and what we call a
“complete strategy” is often called a “strategy”.
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2.3 Strict Dominance and Optimal Strategies

For a given player i and information set hi ∈ Hi, let (Di(hi), D−i(hi)) be a decision problem for player i
at hi. A strategy si ∈ Di(hi) is said to be strictly dominated in (Di(hi), D−i(hi)) if there is a randomized
strategy µi ∈ ∆(Di(hi)) for player i such that∑

s′i∈Di(hi)
µi(s

′
i) · ui(z(s′i, s−i)) > ui(z(si, s−i)) for all s−i ∈ D−i(hi).

From Pearce (1984) it is well-known that a strategy is not strictly dominated in a decision problem
precisely when it is optimal for some probabilistic belief there. Formally, a (probabilistic) belief for player
i is a probability distribution bi ∈ ∆(S−i) on the opponents’strategy combinations. Here, ∆(X) denotes
the set of probability distributions on a finite set X. For a given strategy si ∈ Si and belief bi ∈ ∆(S−i), we
denote by

ui(si, bi) :=
∑

s−i∈S−i

bi(s−i) · ui(z(si, s−i))

the expected utility induced by strategy si under the belief bi. Now, consider a player i, an information set
hi ∈ Hi, a decision problem (Di(hi), D−i(hi)) at hi, and a belief bi ∈ ∆(D−i(hi)). A strategy si ∈ Di(hi) is
said to be optimal in Di(hi) for the belief bi if ui(si, bi) ≥ ui(s

′
i, bi) for all s

′
i ∈ Di(hi). The following result

corresponds to Lemma 3 in Pearce (1984).

Lemma 2.1 (Pearce’s lemma) Consider a player i, an information set hi ∈ Hi, and a decision problem
(Di(hi), D−i(hi)) for player i at hi. Then, a strategy si ∈ Di(hi) is not strictly dominated in (Di(hi), D−i(hi)),
if and only if, si is optimal in Di(hi) for some belief bi ∈ ∆(D−i(hi)).

The proof follows from a simple adaptation of the proof in Pearce (1984), and is therefore omitted.

3 Rationalizability Procedures

In this section we present a family of rationalizability procedures parametrized by a focus function —a map-
ping that specifies for every player, and each of his information sets, the collection of opponents’information
sets he reasons about.

3.1 Collections of Decision Problems

A collection of decision problems is a profile D = (Di(hi), D−i(hi))i∈I,hi∈Hi where for every player i and
information set hi ∈ Hi, the pair (Di(hi), D−i(hi)) is a decision problem for player i at hi. If we write D,
then for the remainder of this paper it will be understood that the induced decision problem for player i
at hi ∈ Hi is (Di(hi), D−i(hi)). By Dfull we denote the collection of full decision problems, specifying for
every player i and information set hi ∈ Hi the full decision problem (Si(hi), S−i(hi)). For two collections of
decision problems D,E we write D ⊆ E if for every player i and every information set hi ∈ Hi we have that
Di(hi) ⊆ Ei(hi) and D−i(hi) ⊆ E−i(hi).
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3.2 Reduction Operators

A reduction operator r assigns to every collection of decision problems D a collection of reduced decision
problems r(D) ⊆ D. For a given D we set r0(D) := D, and for every k ≥ 1 we inductively define by
rk(D) := r(rk−1(D)) the k-fold application of the reduction operator r to D. Suppose that K is such that
rK+1(D) = rK(D). Then, we denote by r∞(D) := rK(D) the iterated application of the reduction operator
r to D. For two reduction operators r and t, and two numbers k and m, we denote by (tm ◦ rk)(D) the
collection of decision problems obtained by first performing the k-fold application of r to D, followed by the
m-fold application of t to rk(D). Similarly, (t∞ ◦ r∞)(D) is the collection of decision problems obtained by
first performing the iterated application of r to D, followed by the iterated application of t to r∞(D).

3.3 Focus-Based Rationalizability Procedures

We will now consider some special reduction operators for dynamic games in which a player, at each of
his information sets, reasons about the rationality of his opponents at certain — but not necessarily all —
information sets. Based on Perea and Tsakas (2019) we formalize this type of reasoning by a focus function.

Definition 3.1 (Focus function) A focus function f assigns to every player i, information set hi ∈ Hi,
opponent j 6= i and collection of decision problems D a collection of information sets fij(hi, D) ⊆ Hj .

Intuitively, fij(hi, D) contains the player j information sets that player i reasons about when being at
information set hi and when the current collection of decision problems is D.8 For two focus functions f, g
we write f ⊆ g if for every player i, information set hi ∈ Hi, opponent j 6= i and collection of decision
problems D, we have that fij(hi, D) ⊆ gij(hi, D).

Every focus function f induces a focus based reduction operator rf as follows. For every collection of
decision problems D, the output will be the collection of reduced decision problems E = rf(D) where

D+
−i(hi, f) := {(sj)j 6=i ∈ D−i(hi) | for all j 6= i, sj ∈ Dj(hj) for all hj ∈ fij(hi, D) ∩Hj(sj)},

E−i(hi) :=

{
D+
−i(hi, f), if D+

−i(hi, f) 6= ∅
D−i(hi), if D+

−i(hi, f) = ∅ , and

Ei(hi) := {si ∈ Di(hi) | si not strictly dominated in (Di(hi), E−i(hi))}

for all players i and information sets hi ∈ Hi. By definition of E−i(hi) player i believes, whenever possible,
at hi that every opponent is “currently rational” at all opponents’ information sets that i reasons about
at hi. Here, we say that opponent j is “currently rational” at information set hj if he chooses a strategy
sj ∈ Dj(hj).

8Our notion of a focus function is more general than that used in Perea and Tsakas (2019). In the latter framework, the
collection of opponents’ information sets a player focuses on does not depend on the collection of decision problems at hand.
Moreover, within our notion it is possible that for a given information set h where two opponents j, k 6= i are active, player i
reasons at a certain information set hi ∈ Hi about the rationality of opponent j, but not about the rationality of opponent k,
at h. This is not possible in Perea and Tsakas (2019).
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For a given collection of decision problemsD we call (rfk(D))∞k=0 the f -rationalizability procedure starting
atD. Let (Dk)∞k=0 be the f -rationalizability procedure starting atD

full, and letK be such thatDK = DK+1.
Then, for every player i, a strategy si ∈ Si is called f -rationalizable if si ∈ DK

i (hi) for all hi ∈ Hi(si). An
outcome z ∈ Z is called f -rationalizable if for every player i there is an f -rationalizable strategy si such
that z = z((si)i∈I).

For two focus functions g, f we define the combined focus function (g, f) by

(g, f)ij(hi, D) :=

{
fij(hi, D), if D ⊆ rg∞(Dfull)
gij(hi, D), otherwise

for all players i, opponents j 6= i, information sets hi ∈ Hi and collections of decision problems D. Hence,
in (g, f) we give epistemic priority to g, and only resort to f once all eliminations under g have been
exhausted. By construction, (rf∞ ◦ rg∞)(Dfull) = r(g, f)∞(Dfull). For three or more focus functions
f1, ..., fk we inductively define the combined focus function (f1, ..., fk) by (f1, ..., fk) := ((f1, ..., fk−1), fk).
By construction we then have that (rf∞k ◦ ... ◦ rf∞1 )(Dfull) = r(f1, ..., fk)

∞(Dfull). Hence, in (f1, ..., fk) we
give the highest epistemic priority to the focus function f1 until all reductions of rf1 have been exhausted,
after which we give the second highest epistemic priority to f2 until all reductions of rf2 have been exhausted,
and so on.

In view of Lemma 2.1, the sets Ei(hi) above in the definition of rf(D) can equivalently be defined as

Ei(hi) := {si ∈ Di(hi) | si optimal in Di(h) for some belief bi ∈ ∆(E−i(hi))}.

With our definition above, the f -rationalizability procedure is phrased as an iterated strict dominance pro-
cedure, whereas the latter definition of Ei(hi) would describe it as an iterated never-a-best-reply procedure.9

3.4 Special Cases

We will show that many of the existing rationalizability concepts for dynamic games can be modelled as an
f -rationalizability procedure for some focus function f, and that our framework can also be used to define
new, natural rationalizability procedures.

3.4.1 Iterated Conditional Dominance Procedure

In the iterated conditional dominance procedure (Shimoji and Watson (1998)) a player, whenever possible,
believes that his opponents choose optimally at each of their information sets. This procedure can be
phrased as the fall-rationalizability procedure where fall is the focus function given by

fallij (hi, D) = Hj

9The elimination procedure in Perea and Tsakas (2019) is formulated as an iterated never-a-best-reply procedure. Another
difference is that Perea and Tsakas (2019) allow players to entertain belief hierarchies about focus functions in which they, or
their opponents, are (believed to be) wrong about the players’actual focus functions, whereas we implicitly assume that the
players’actual focus functions are transparent to everyone.
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for every two players i 6= j, information set hi ∈ Hi, and collection of decision problems D. That is, a player
always reasons about the opponents’optimality at each of their information sets.

In Shimoji and Watson (1998) it is shown that this procedure yields the same strategies as the strong
rationalizability procedure (Pearce (1984), Battigalli (1997)). Battigalli and Siniscalchi (2002) show, in
turn, that strong rationalizability can be characterized epistemically by common strong belief in rationality,
which means that a player believes, whenever possible, that his opponents choose optimally at all of their
information sets (i.e. strongly believes in the opponents’ rationality), that a player believes, whenever
possible, that his opponents choose optimally at all of their information sets while strongly believing in their
opponents’rationality, and so on. This resembles the nature of the focus function fall.

3.4.2 Backward Dominance Procedure

In the backward dominance procedure (Perea (2014)) a player always believes, at each of his information sets
h, that his opponents choose optimally at all of their information sets that weakly follow h. Since believing
so is always possible, this is equivalent to requiring that a player, at each of his information sets h, believes
whenever possible that his opponents choose optimally at all information sets that weakly follow h. We can
describe this procedure as the ffuture-rationalizability procedure where

ffutureij (hi, D) = {hj ∈ Hj | hj weakly follows hi}

for all i, j, hi and D.
Perea (2014) has epistemically characterized the strategies surviving the backward dominance procedure

by common belief in future rationality, which states that a player always believes that his opponents choose
optimally at all information sets that weakly follow (i.e. believes in the opponents’future rationality), always
believes that his opponents believe in their opponents’future rationality, and so on. These conditions are
reflected by the focus function ffuture.

3.4.3 Ben-Porath Procedure

Ben-Porath (1997) proposes a procedure for generic10 dynamic games with perfect information11 in which
we first eliminate all strategies that are weakly dominated at the beginning of the game, followed by the
iterated elimination of strategies that are strictly dominated at the beginning of the game.12 In that paper,
the strategies surviving the procedure are epistemically characterized by common certainty of rationality
at the beginning, which means that a player believes, at the beginning of the game, that all opponents
choose optimally at all information sets (i.e. the player is certain of rationality at the beginning), that a
player believes, at the beginning of the game, that all opponents are certain of rationality at the beginning,
and so on. For general dynamic games, these epistemic conditions characterize the procedure where at the

10This means that for every player, all outcomes yield different utilities.
11That is, there is only one active player at every information set, and this player knows which actions have been chosen in

the past.
12This procedure is also called the Dekel-Fudenberg procedure (Dekel and Fudenberg (1990)).
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beginning of the game we first eliminate the strategies that are strictly dominated at some information set
in the game, followed by the iterated elimination of strategies that are strictly dominated at the beginning
of the game. We refer to this procedure as the Ben-Porath procedure.13

Consider a dynamic game in which all players are active at ∅ —the beginning of the game.14 Then, the
Ben-Porath procedure is the f initial-rationalizability procedure, where

f initialij (∅, D) = Hj and f initialij (hi, D) = ∅ for all hi ∈ Hi\{∅},

for all i, j andD. The focus function f initial reflects precisely the reasoning in common certainty of rationality
at the beginning.

3.4.4 Forward and Backward Rationalizability

The reasoning in forward and backward rationalizability (Meier and Perea (2023)) is as follows: To start,
a player believes, whenever possible, that his opponents choose optimally at the last information sets (i.e.
strongly believes in the opponents’rationality at the last information sets), believes, whenever possible, that
his opponents choose optimally at the last information sets and that the opponents’strongly believe in their
opponents’rationality at the last information sets, and so on. On top of that, a player believes, whenever
possible, that his opponents choose optimally at the last and second-to-last information sets (i.e. strongly
believes in the opponents’ rationality at the last and second-to-last information sets), believes, whenever
possible, that his opponents choose optimally at the last and second-to-last information sets and that the
opponents’strongly believe in their opponents’rationality at the last and second-to-last information sets,
and so on. By following this pattern we finally arrive at the last stages of the procedure where a player
believes, whenever possible, that his opponents choose optimally at all information sets, and so on.

In a sense, this procedure applies the iterated conditional dominance procedure in a backward fashion, by
first applying it to the last information sets, then applying it to the last and second-to-last information sets,
and so on, until we reach the beginning of the game. To formulate this procedure as an f -rationalizability
procedure we denote by H1 the collection of information sets that are only followed by terminal histories,
and for every k ≥ 2 we recursively define Hk as the collection of information sets that are only followed by
terminal histories or information sets in Hk−1. Then, Hk ⊆ Hk+1 for every k ≥ 1. Since we assume that the
game has a cycle-free ordering of information sets, it may be verified that there is some K with HK = H.15

We call (H1, H2, ...,HK) the backwards ordering of the information sets.
13This procedure corresponds to weak ∆-rationalizability in Battigalli (2003).
14This can be assumed without loss of generality, since for the players who are not really active at ∅ we can add a “dummy”

set of actions at ∅ consisting of one action only.
15Here is the argument: First, it can be shown that H1 6= ∅. Indeed, if H1 = ∅ then for every h ∈ H there is some h′ ∈ H

that follows h. Hence, starting from an arbitrary h1 ∈ H we can find an infinite sequence h1, h2, ... where hk+1 follows hk for
every k. As there are only finitely many information sets, there must be some k,m ≥ 1 such that hk = hk+m. This, however,
would contradict the assumption that we have a cycle-free ordering of information sets. Next, if H1 6= H it can be shown that
H2\H1 6= ∅. Indeed, if H2\H1 = ∅ then for every h ∈ H\H1 there is some h′ ∈ H\H1 that follows h. In the same way as
above it can be shown that this contradicts the assumption that the ordering of information sets is cycle-free. By repeating this
argument it can be shown that Hk+1\Hk 6= ∅ whenever H 6= Hk, for every k ≥ 1. As H is finite, there must be some K with
HK = H.
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For every k ∈ {1, ...,K} let fallk be the focus function where

fallk,ij(hi, D) = Hj ∩Hk

for all i, j, hi andD. Then, forward and backward rationalizability matches the (fall1 , fall2 , ..., fallK )-rationalizability
procedure, provided we drop the forward consistency assumption in the former concept.

Hence, the highest epistemic priority is given to reasoning about the last information sets, the second-
highest epistemic priority is given to reasoning about the last and second-to-last information sets, and so
on. This reflects precisely the logic of forward and backward rationalizability outlined above.

3.4.5 Epistemic Priority

The forward and backward rationalizability procedure above prioritizes backward induction reasoning over
forward induction reasoning. This can be seen from the structure of the procedure, the fact that it is
governed by the focus function (fall1 , fall2 , ..., fallK ) above, and the result in Meier and Perea (2023) that
every forward and backward rationalizable strategy survives the backward dominance procedure —a pure
backward induction procedure.

One could also opt for a more extreme epistemic priority between backward induction and forward in-
duction by first performing the backward dominance procedure until no further eliminations are possible,
followed by the iterated conditional dominance procedure which represents pure forward induction rea-
soning. In light of the above, such a procedure amounts to the (ffuture, fall)-rationalizability procedure
where epistemic priority is given to reasoning about the opponents’rationality at future information sets.
Alternatively, it can be viewed as an instance of strong ∆-rationalizability (Battigalli (2003), Battigalli
and Siniscalchi (2003)) where ∆ represents the restriction on first-order beliefs embodied by the backward
dominance procedure.

One can also turn the epistemic priority between backward and forward induction around, by first
performing the iterated conditional dominance procedure followed by the backward dominance procedure.
This would result in the (fall, ffuture) rationalizability procedure. It is comparable to the concept of selective
rationalizability (Catonini (2019)) in that it refines the strategies delivered by strong rationalizability by
imposing additional restrictions on first-order beliefs afterwards.16 Catonini (2019) explains how selective
rationalizability represents a mode of reasoning in which epistemic priority is given to the eliminations in
strong rationalizability above those imposed by the restrictions on first-order beliefs.

3.4.6 Restricted Forward Induction Reasoning

The iterated conditional dominance procedure represents a pure form of forward induction reasoning in
which a player, whenever possible, believes that his opponents choose optimally at all of their information
sets. In particular, a player will base his belief about the opponents’present, future, and unobserved past
actions on the past actions he observed —a typical forward induction argument. One could also imagine a
16The difference is that in selective rationalizability the additional restrictions come in the form of exogenous restrictions on

first-order beliefs.
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situation where there are certain “focal”information sets in the game, and where players base their forward
induction reasoning on the opponents’observed past actions at these focal information sets only. Also this
can be modeled as an f -rationalizability procedure. Let H∗ ⊆ H be the collection of “focal” information
sets in the game, and define the focus function fH

∗
by

fH
∗

ij (hi, D) = Hj ∩H∗

for all i, j, hi and D. In the fH
∗
-rationalizability procedure a player thus believes, whenever possible, that

his opponents have chosen optimally at the past information sets in H∗ and will choose optimally at all
present and future information sets in H∗. As such, it represents a restricted form of forward induction in
which the beliefs about an opponent’s present, future and unobserved past actions at the focal information
sets in H∗ are solely based on his observed past actions at the focal information sets in H∗.

The idea of “focal”information sets is also present in the concept of jointly rational belief systems (Reny
(1993)) in which, for a given collection of “focal” information sets H∗, every player believes at each of
his information sets in H∗ that all opponents choose rationally at all of their information sets, every player
believes at each of his information sets in H∗ that all other players believe at each of their information sets in
H∗ that all opponents choose rationally at all of their information sets, and so on. Battigalli and Siniscalchi
(1999) provide a procedural characterization of the largest jointly rational belief systems. However, there
are dynamic games in which jointly rational belief systems for a given collection H∗ of focal information
sets do not exist, for instance because it will be impossible to believe at certain information sets that the
opponents are choosing rationally at all of their information sets.

Suppose we modify the conditions above to requiring that a player, at each of his information sets in
H∗, believes whenever possible that his opponents choose rationally at all of their information sets, and so
on. Then this procedure would correspond to f̂H

∗
-rationalizability, where

f̂H
∗

ij (hi, D) =

{
Hj , if hi ∈ H∗
∅, if hi /∈ H∗

for all i, j, hi and D. Note that f̂H
∗
can be viewed as the “dual” to fH

∗
: in fH

∗
a player believes at

every information set, whenever possible, that his opponents choose rationally at all information sets in H∗,
whereas in f̂H

∗
a player believes at every information set in H∗, whenever possible, that his opponemts

choose rationally at all information sets.

4 Existence and Forward Consistency

4.1 Existence

We will show that, under some conditions on the focus function f, there will always be at least one f -
rationalizable strategy for every player.

Definition 4.1 (Conditions on focus functions) (a) A focus function f is monotone if for every two
collections of decision problems D,E with D ⊆ E we have that fij(hi, E) ⊆ fij(hi, D) for every two players
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Figure 2: When f -rationalizable strategies fail to exist

i 6= j and every information set hi ∈ Hi.

(b) A focus function f is individually forward decreasing if for every collection of decision problems
D, every two players i 6= j, and every two information sets hi, h′i ∈ Hi where h′i follows hi, it holds that
fij(h

′
i, D) ⊆ fij(hi, D).

(c) A focus function f individually preserves focus on past information sets if for every collection of
decision problems D, every two players i 6= j, and every two information sets hi, h′i ∈ Hi where h′i follows
hi, it holds that fij(hi, D) ∩H−j (hi) ⊆ fij(h′i, D).

Note that monotonicity is automatically satisfied if fij(hi, D) is always independent of D. The individual
forward decreasing property states that a player must not start reasoning about new information sets as the
game proceeds, whereas individual preservation of focus on past information sets requires a player to always
reason about all past information sets he focused on before.

The following result states that under the conditions above, the existence of f -rationalizable strategies
is guaranteed.

Theorem 4.1 (Existence) Let f be a focus function that is monotone, individually forward decreasing
and individually preserving focus on past information sets. Then, for every player there is at least one
f -rationalizable strategy.

To show that f -rationalizable strategies may fail to exist if some of the conditions are dropped, consider
the game in Figure 2. This game is obtained by adding the “dummy moves” i and j for player 2 to the
game in Figure 1. Let f be the focus function where

f12(h1, D) = f12(h′1, D) = H2, f21(h2, D) = H1, f21(h′2, D) = {h′1} and f21(h′′2, D) = ∅

for all D. Note that f does not individually preserve focus on past information sets since h1 ∈ f21(h2, D) ∩
H−1 (h2) but h1 /∈ f21(h′2, D). It is, however, individually forward decreasing and monotone.

To run the f -rationalizability procedure we start from the full decision problems in Table 1, where we put
the active player’s strategies in the rows, the opponent’s strategies in the columns, and the active player’s

15



h1 i (j, c) (j, d, g) (j, d, h)

a 3 3 3 3
(b, e) 0 2 1 1
(b, f) 0 2 0 4

h2 (b, e) (b, f)

i 0 0
(j, c) 2 2

(j, d, g) 1 4
(j, d, h) 1 0

h′2 (b, e) (b, f)

(j, c) 2 2
(j, d, g) 1 4
(j, d, h) 1 0

h′1 (j, d, g) (j, d, h)

(b, e) 1 1
(b, f) 0 4

h′′2 (b, f)

(j, d, g) 4
(j, d, h) 0

Table 1: Full decision problems for the game in Figure 2

utilities in the associated cells. In round 1 we eliminate the strictly dominated strategy (b, e) at h1, the
strictly dominated strategy i at h2, and the strictly dominated strategy (j, d, h) at h2, h

′
2 and h

′′
2. In round

2, at h1, we first eliminate 2’s strategies i and (j, d, h), after which we eliminate 1’s strictly dominated
strategy (b, f). At h2 we first eliminate 1’s strategy (b, e), because h1 ∈ f21(h2, D), after which we eliminate
2’s strictly dominated strategy (j, c). At h′2 we cannot eliminate anything as h1 /∈ f21(h′2, D). At h′1 we
first eliminate 2’s strategy (j, d, h), after which we eliminate 1’s strictly dominated strategy (b, f). At h′′2
nothing can be eliminated in round 2. In round 3, at h1, we eliminate 2’s strategy (j, c). At h′2 we start by
eliminating 1’s strategy (b, f), as h′1 ∈ f21(h′2, D), after which we eliminate 2’s strictly dominated strategy
(j, d, g). Then, the procedure terminates.

We thus see that only strategy (j, d, g) is left for player 2 at h2, whereas only (j, c) is left at h′2. As
such, there is no f -rationalizable strategy for player 2. The reason is that the focus function f leads to
dynamically inconsistent beliefs for player 2: at h2 player 2 must believe that player 1 will choose f in the
future, whereas at h′2 he must believe that player 1 chooses e in the future.

In a similar way it can be shown that also the individual forward decreasing property is indispensable
for existence. To see this, consider the alternative focus function g where

g12(h1, D) = g12(h′1, D) = H2, g21(h2, D) = {h′1}, g21(h′2, D) = H1 and g21(h′′2, D) = H1

for all D. Then, g is not individually forward decreasing as h1 /∈ g21(h2, D) but h1 ∈ g21(h′2, D). However, g
is monotone and individually preserves focus on past information sets. In a similar way as above it can be
shown that in the g-rationalizability procedure, only the strategy (j, c) is left for player 2 at h2 whereas only
the strategy (j, d, g) is left at h′2. Therefore, there is no g-rationalizable strategy for player 2. The problem,
again, is caused by dynamically inconsistent beliefs: at h2 player 2 must believe that player 1 will choose e
in the future, whereas at h′2 he must believe that player 1 will choose f in the future.
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In general, the conditions in Theorem 4.1 guarantee that a player never ends up with dynamically
inconsistent beliefs (see Lemma 8.6 in the proofs section) which in turn allows the player to have an f -
rationalizable strategy. At this stage we do not know whether monotonicity can be dropped without losing
existence.

It may be verified that all of the focus functions discussed in Sections 3.4.1—3.4.6, except (fall, ffuture)
and f̂H

∗
, satisfy the conditions in Theorem 4.1. In particular, it may be verified that the focus function

(fall1 , fall2 , ..., fallK ), associated with forward and backward rationalizability, is monotone since fall1 ⊆ fall2 ⊆
... ⊆ fallK .17 As such, Theorem 4.1 implies that all of the associated rationalizability procedures always
provide non-empty strategy sets.

4.2 Forward Consistency

In Section 3.3 we have seen that f -rationalizability can alternatively be phrased as an iterated never-a-
best-reply procedure by requiring, at every information set hi, that player i must choose a strategy that is
optimal for some belief that only assigns positive probability to opponents’strategy combinations that have
remained so far at hi. But we did not require these beliefs to be forward consistent. At the same time, most
rationalizability concepts in the literature do require forward consistency. This raises the question: What
happens to f -rationalizability if we add the forward consistency condition?

We will see that under the conditions of Theorem 4.1 the set of f -rationalizable strategies will not change
if we require a player to have forward consistent beliefs, and to believe, at each of his information sets, that
his opponents will have forward consistent beliefs at those information sets he reasons about.

Consider for player i a belief vector b̃i = (bi(hi))hi∈Hi , where bi(hi) ∈ ∆(S−i(hi)) for all hi ∈ Hi, and
a collection Ĥi ⊆ Hi of information sets. We say that b̃i is forward consistent on Ĥi if for every two
information sets hi, h′i ∈ Ĥi where h′i follows hi and bi(hi)(S−i(h

′
i)) > 0, it holds that

bi(h
′
i)(s−i) =

bi(hi)(s−i)

bi(hi)(S−i(h′i))

for all s−i ∈ S−i(h′i).
For a given focus function f we will now introduce a reduction procedure (Dbu,k)∞k=0 that incorporates

forward consistency. Set Dbu,0 := Dfull, Dbu,1 := rf(Dfull), and for every k ≥ 2 we inductively define Dbu,k

by

Dbu,k−1+
−i (hi, f) := {(sj)j 6=i ∈ Dbu,k−1

−i (hi) | for all j 6= i there is a belief vector (bj(hj))hj∈Hj

that is forward consistent on fij(hi, Dbu,k−1) such that for all hj ∈ fij(hi, Dbu,k−1) ∩Hj(sj),

bj(hj) ∈ ∆(Dbu,k−1
−j (hj)), sj ∈ Dbu,k−2

j (hj) and sj is optimal in D
bu,k−2
j (hj) for bj(hj)},

Dbu,k
−i (hi) :=

{
Dbu,k−1+
−i (hi, f), if Dbu,k−1+

−i (hi, f) 6= ∅
Dbu,k−1
−i (hi), if Dbu,k−1+

−i (hi, f) = ∅
, and

17Formally, it follows from a repeated application of Lemma 8.8 in the proofs section.
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Figure 3: When forward consistency matters

Dbu,k
i (hi) := {si ∈ Dbu,k−1

i (hi) | si is optimal in Dbu,k−1
i (hi) for some bi ∈ ∆(Dbu,k

−i (hi))}

for all players i and information sets hi ∈ Hi. We call (Dbu,k)∞k=0 the f -rationalizability procedure under
forward consistency that starts at Dfull.

Let K be such that Dbu,K = Dbu,K+1. Then, a strategy si ∈ Si is called f -rationalizable under forward
consistency if there is a belief vector (bi(hi))hi∈Hi that is forward consistent on Hi such that for every
hi ∈ Hi(si) we have that bi(hi) ∈ ∆(Dbu,K

−i (hi)), si ∈ Dbu,K
i (hi) and si is optimal in D

bu,K
i (hi) for bi(hi).

The following theorem states that the new procedure, which incorporates forward consistency, will induce
the same output as the original f -rationalizability procedure.

Theorem 4.2 (Forward consistency) Let f be a focus function that is monotone, individually for-
ward decreasing and individually preserving focus on past information sets, and let (Dbu,k)∞k=0 be the
f -rationalizability procedure under forward consistency that starts at Dfull. Then,

(a) Dbu,k = rfk(Dfull) for all k ≥ 0, and

(b) for every player, the f -rationalizable strategies are precisely the strategies that are f -rationalizable under
forward consistency.

Important in this theorem is that we only require a player to believe that his opponent satisfies forward
consistency at those information sets he reasons about. If we impose the stronger requirement that a player
must believe that his opponents satisfy forward consistency at all information sets, the equivalence result
may break down. To see this, consider the game in Figure 3 which is taken from Perea (2012, 2014). Here,
player 1’s actions are in the rows and player 2’s actions in the columns. Player 1’s information set h′1
indicates that at this stage player 1 does not know whether player 2 has chosen c or d at the beginning.
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Consider the focus function ffuture from Section 3.4.2, inducing the backward dominance procedure. It
can be shown that strategy (c, h) for player 2 is ffuture-rationalizable. However, it is no longer ffuture-
rationalizable if we additionally require player 2 to believe at h′2 that player 1 satisfies forward consistency
at h1 and h′1. To see this, note that player 1 will believe at h1 that player 2 chooses either (c, g) or (c, h),
as choosing d will always yield him a lower utility. Hence, if player 1 is forward consistent when the game
moves from h1 to h′1, he must still believe at h

′
1 that player 2 chooses (c, g) or (c, h), which implies that

player 1 must choose e when h′1 is reached. Thus, if player 2 believes at h
′
2 that player 1 is forward consistent

at h1 and h′1, he must believe that player 1 chooses e at h
′
1, and he must therefore choose (c, g) himself.

The concept that combines the backward dominance procedure with common belief in forward consis-
tency at all information sets is the backwards rationalizability procedure (Penta (2015), Catonini and Penta
(2022), Perea (2014)). The example above thus shows that strategy (c, h) survives the backward dominance
procedure but is not backwards rationalizable. The reason was that player 2 is now required to believe at
h′2 that player 1 is forward consistent at h1 and h′1. However, this forces player 2 at h

′
2 to reason about

h1 —contrary to what the associated focus function ffuture prescribes. This argument holds in general:
Requiring a player to believe that his opponent is forward consistent at information sets he does not reason
about goes against the spirit of the focus functions.

If instead we take the focus function fall from Section 3.4.1, inducing the iterated conditional dominance
procedure, then the fall-rationalizability procedure under forward consistency already requires a player to
believe that his opponents are forward consistent at all information sets. That is, the latter procedure
imposes common belief in forward consistency at all information sets. Theorem 4.2 above then guarantees
that this does not matter for the output of the iterated conditional dominance procedure (and hence of the
strong rationalizability procedure) —a result that has already been shown in Shimoji and Watson (1998).

5 Monotonicity Result

Consider two focus functions f and g where g ⊆ f. We will show that, under certain conditions, every
f -rationalizable outcome is also g-rationalizable.

5.1 Theorem

To formulate these conditions we need some new definitions. For a given focus function f, collection of
decision problems D, player i and information set hi ∈ Hi we define the set

fii(hi, D) := {hi} ∪ {h′i ∈ Hi | there is some j 6= i and hj ∈ fij(hi, D) such that h′i ∈ fji(hj , D)}.

It thus represents the collection of own information sets that player i indirectly reasons about while being
at hi.

Consider two focus functions f, g, and two collections of decision problems D,E where E = (rfk ◦
rgm)(Dfull) for some k,m ≥ 0. We say that D is a (g, f)-semi reduction of E if either D = (rfk ◦
rgm+1)(Dfull), or D = (rfk+1 ◦ rgm−1)(Dfull) (provided m ≥ 1).
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Definition 5.1 (Conditions on focus functions) (a) A focus function f is collectively forward de-
creasing if for every collection of decision problems D, every three players i, j, k (where some of these
players may be equal), and every two information sets hi ∈ Hi, hj ∈ Hj where hj weakly follows hi, it holds
that fjk(hj , D) ⊆ fik(hi, D).

(b) A focus function f collectively preserves focus on past information sets if for every collection of
decision problems D, every three players i, j, k (where some of these players may be equal), and every two
information sets hi ∈ Hi, hj ∈ Hj where hj weakly follows hi, it holds that fik(hi, D)∩H−k (hi) ⊆ fjk(hj , D).

(c) A focus function f is transitively closed if for every collection of decision problems D, every three
players i, j, k (where some of these players may be equal), and every three information sets hi ∈ Hi, hj ∈ Hj

and hk ∈ Hk with hj ∈ fij(hi, D) and hk ∈ fjk(hj , D), it holds that hk ∈ fik(hi, D).

(d) A focus function f is monotone with respect to another focus function g if for every two col-
lections of decision problems D,E where E = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0 and D is a (g, f)-semi
reduction of E, we have that fij(hi, E) ⊆ fij(hi, D) for every two players i 6= j and every information set
hi ∈ Hi.

Conditions (a) and (b) require that the focus functions of the different players should not only be
individually forward decreasing and individually preserving focus on past information sets (as defined in
Section 4.1), but should satisfy these requirements collectively. As such, the various focus functions of the
different players should be “appropriately aligned”. It may be verified that (a) and (b) imply that f is
individually forward decreasing, and individually preserving focus on past information sets, respectively.
Condition (c) states that whenever a player indirectly reasons about an information set h, by reasoning
about an information set where the respectively player reasons about h, he should also directly reason
about h.18 Condition (d) states that if we first apply g-rationalizability for some rounds followed by f -
rationalizability for some rounds, then applying one more round of g-rationalizability, or applying one round
less of g-rationalizability followed by one more round of f -rationalizability, should induce the players to
reason about more, or the same, information sets. Note that this condition is automatically satisfied if
fij(hi, D) is always independent of D.

To state part (c) of the theorem below we need the following definition: We say that a focus function f
is future oriented if fij(hi, D) ⊆ H+

j (hi) for every two players i 6= j, every information set hi ∈ Hi and every
collection of decision problems D. That is, players only reason about information sets that weakly follow
(but not necessarily all of these).

Theorem 5.1 (Monotonicity theorem) Let f, g be two focus functions with g ⊆ f that are monotone,
individually forward decreasing and individually preserving focus on past information sets. Assume moreover
that f is collectively forward decreasing, collectively preserving focus on past information sets, transitively
closed, and monotone with respect to g. Then,

(a) the set of f -rationalizable outcomes is the same as the set of (g, f)-rationalizable outcomes,

18Perea and Tsakas (2019) also make this assumption.
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(b) every f -rationalizable outcome is g-rationalizable, and

(c) if f is future oriented, then every f -rationalizable strategy is g-rationalizable.

Part (a) thus reveals that, under the conditions of the theorem, it does not matter for the induced
outcomes whether we only use the focus function f, or first iteratedly use g and then f, thereby giving
epistemic priority to g over f . Part (b) immediately follows from (a) as, by construction, every (g, f)-
rationalizable outcome is in particular g-rationalizable. Part (c) states that the monotonicity property
in (b) even holds in terms of strategies if f only involves backward induction reasoning, and no forward
induction reasoning.

An immediate consequence of this theorem is that amongst the focus functions that satisfy the conditions
above, fall yields the most restrictive rationalizability procedure in terms of outcomes.

5.2 Proof Sketch

The proof of part (a) is constructive: We explicitly show how to transform a combination (si)i∈I of f -
rationalizable strategies into a combination (σi(si))i∈I of (g, f)-rationalizable strategies that induces the
same outcome, and vice versa. Here, σi represents a transformation mapping for every player i, transforming
an f -rationalizable strategy si into a (g, f)-rationalizable strategy σi(si) that preserves the behavior of si
at those information sets that can be reached under (sj)j∈I .

To formally describe σi(si) we need some new terminology. By

D+
i (hi, f) := {si ∈ Si(hi) | si ∈ Di(h

′
i) for all h

′
i ∈ fii(hi, D) ∩Hi(si)}

we denote the set of strategies for player i that are “currently rational”at all of i’s information sets that
player i indirectly reasons about while being at hi. Recall the definition of D+

−i(hi, f) in Section 3.3. Then,

He
i (D, f) := {hi ∈ Hi | D+

i (hi, f) 6= ∅ and D+
−i(hi, f) 6= ∅}

denotes the collection of explicable information sets for player i at the collection of decision problems D and
focus function f. In words, these are the information sets at which it is possible for player i to believe that
(i) the opponents believe that player i is “currently rational”at all information sets they reason about, and
(ii) the opponents are “currently rational”at all information sets player i reasons about.

Let Df,∞ := rf∞(Dfull) and D(g,f),∞ := r(g, f)∞(Dfull) be the collection of decision problems that
results from the f -rationalizability procedure, and the (g, f)-rationalizability procedure, respectively. Then,
the transformation mapping σi transforms every strategy si into a strategy σi(si) that

coincides with si at the information sets in He
i (Df,∞, f) and (5.1)

coincides at every information set hi outside He
i (Df,∞, f) with a strategy in D(g,f),∞

i (hi). (5.2)

See the left-hand panel of Figure 4 for an illustration.
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Figure 4: Strategy transformations in proof of Theorem 5.1

It is shown that σi transforms every f -rationalizable strategy si into a (g, f)-rationalizable strategy
σi(si). Moreover, by construction, the combination (σi(si))i∈I of (g, f)-rationalizable strategies yields the
same outcome as the combination (si)i∈I of f -rationalizable strategies. To see this, it can be verified that
every information set h reached by (si)i∈I is in He

j (Df,∞, f) for every player j that is active at h, and
therefore, by (5.1) above, (σi(si))i∈I leads to the same outcome as (si)i∈I .

To show that σi transforms every f -rationalizable strategy si into a (g, f)-rationalizable strategy σi(si)
it suffi ces, in view of (5.2) above, to show the following property:

if hi ∈ He
i (Df,∞, f) and si ∈ Df,∞+

i (hi, f) then σi(si) ∈ D(g,f),∞+
i (hi, f). (5.3)

This property is shown in steps: Let M be such that rgM (Dfull) = rgM+1(Dfull), and for every m ∈
{0, ...,M} let D(g≤m,f),∞ be the collection of decision problems obtained if we first apply rg duringm rounds,
after which we iteratedly apply rf. For every m ∈ {0, ...,M − 1} and strategy si, let σmi (si) be the strategy
given by the right-hand panel of Figure 4, where D′ := D(g≤m,f),∞ and E := D(g≤m+1,f),∞. Then, we show
the following property:

if hi ∈ He
i (D(g≤m,f),∞, f) and si ∈ D(g≤m,f),∞+

i (hi, f) then σmi (si) ∈ D(g≤m+1,f),∞+
i (hi, f). (5.4)

Since σi = (σM−1
i ◦...◦σ0

i ) is the consecutive application of the transformations σ
0
i , σ

1
i , ..., σ

M−1
i , (5.3) follows

from a repeated application of (5.4).
Also property (5.4) is shown in steps: Let K be such that r(g≤m, f)K(Dfull) = r(g≤m, f)K+1(Dfull) for

every m. For every m ∈ {0, ...,M} and k ∈ {0, ...,K}, let D(g≤m,f),k be the collection of decision problems
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obtained if we start at rgm(Dfull) and subsquently apply k rounds of rf. Now, let either

(D = D(g≤m+1,f),k and E = D(g≤m,f),k) or (D = D(g≤m,f),k+1 and E = D(g≤m+1,f),k). (5.5)

Let D′ = Dfull if D = D(g≤m+1,f),0, let D′ = D(g≤m+1,f),k−1 if k ≥ 1 and D = D(g≤m+1,f),k, and let
D′ = D(g≤m,f),k if k ≥ 0 and D = D(g≤m,f),k+1. For every strategy si let σ

k,m
i (si) be the strategy given by

the right-hand panel of Figure 4. Then, by induction on k we show the following property:

if hi ∈ He
i (D′, f) and si ∈ D+

i (hi, f) then σk,mi (si) ∈ E+
i (hi, f). (5.6)

This property is shown in Lemma 8.12 and Lemma 8.13, which constitute the heart of our proof. By
induction on k we then conclude that (5.6) holds for D′ = D = D(g≤m,f),∞ and E = D(g≤m+1,f),∞, which is
equivalent to (5.4) since σmi = σK,mi .19

Hence, we can construct transformation mappings σi such that for every combination (si)i∈I of f -
rationalizable strategies, (σi(si))i∈I is a combination of (g, f)-rationalizable strategies that yields the same
outcome. By (5.5) and (5.6) above we can also show the converse: For every combination (si)i∈I of (g, f)-
rationalizable strategies there is a combination (τ i(si))i∈I of f -rationalizable strategies that yields the same
outcome. This completes the proof of (a).

As we have seen, (a) implies (b). To prove (c) we show that in the construction above, He
i (Df,∞, f) = Hi

whenever f is future oriented. Then, by (5.1) above, σi is the identity mapping, which implies part (c).

6 Implications

We now show how Theorem 5.1 can be used to prove some existing results in the literature, but also how it
generates new results.

6.1 Forward versus Backward Induction Reasoning

Perea (2017) and Catonini (2020) have shown, for dynamic games with observed past choices, that every
outcome induced by strong rationalizability is also induced by the backward dominance procedure. It also
follows from the arguments in Chen and Micali (2013). This property is an immediate consequence of
Theorem 5.1: It may be verified that f := fall and g := ffuture satisfy all the conditions in Theorem
5.1. In particular, fall is monotone with respect to ffuture since it is constant across collections of decision
problems. As such, by Theorem 5.1 (b), every fall-rationalizable outcome is ffuture-rationalizable. Since
fall-rationalizability and ffuture-rationalizability correspond to strong rationalizability and the backward
dominance procedure, respectively, we obtain the following corollary.

Corollary 6.1 (Forward versus backward induction reasoning) Every outcome induced by strong
rationalizability is also induced by the backward dominance procedure.
19Battigalli and Catonini (2024) use a similar argument in the proof of their main theorem. Also Perea’s (2018) proof of

Battigalli’s theorem proceeds along these lines.
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As this property holds also for games with non-observed past choices, it generalizes the results in Perea
(2017) and Catonini (2020). On the basis of Theorem 5.1 (a) we can say even more:

Corollary 6.2 (Epistemic priority) The outcomes induced by strong rationalizability are the same as
those induced by first applying the backward dominance procedure, followed by applying strong rationaliz-
ability.

That is, for the induced outcomes it does not matter whether we give epistemic priority to the backward
induction concept of backward dominance over the forward induction concept of strong rationalizability,
or whether we restrict ourselves to strong rationalizability all the way. This result is similar, in spirit, to
Catonini (2020) where it is shown that under certain conditions, first imposing exogenous restrictions on
the first-order beliefs and then applying the strong rationalizability procedure yields the same outcomes as
reversing this order. Hence, under these conditions the epistemic priority between the exogenous restrictions
on first-order beliefs and the rationality restrictions of strong rationalizability does not matter for the induced
outcomes.

Finally, let us apply Corollary 6.1 to a game with perfect information without relevant ties. As the
backward dominance procedure leads to the unique backward induction strategies (see Perea (2014)), and
hence to the unique backward induction outcome, and strongly rationalizable strategies always exist, we
obtain the following result which has first been shown by Battigalli (1997).

Corollary 6.3 (Battigalli’s theorem) Consider a dynamic game with perfect information and without
relevant ties. Then, strong rationalizability uniquely induces the backward induction outcome.

Alternative proofs can be found in Heifetz and Perea (2015) and Perea (2018). Reny (1992), in Propo-
sition 3, has shown a similar result for the alternative forward induction concept of explicable equilibrium.

6.2 Forward and Backward Rationalizability

Recall from Section 3.4.4 that the concept of forward and backward rationalizability (Meier and Perea
(2023)), if we drop the forward consistency assumption,20 can be phrased as the (fall1 , fall2 , ..., fallK )-rationalizability
procedure. Here, the focus function fk requires a player to reason about the information sets in Hk, and
H1, H2, ...,HK is the backwards ordering of the information sets. As such, it applies forward induction rea-
soning in a backward inductive fashion, thereby giving epistemic priority to backward induction reasoning.
This is also reflected by a result in Meier and Perea (2023) which shows that the concept refines backward
dominance in terms of strategies.

It may be verified that all conditions in Theorem 5.1 are satisfied by f := fall and g := (fall1 , fall2 , ..., fallK ).
As fallK = fall it follows that (g, f)-rationalizability is the same as g-rationalizability in this case. Hence, we
reach the following conclusion on the basis of part (a) of Theorem 5.1.

20To be more precise, forward and backward rationalizability imposes common belief in forward consistency at all information
sets, also at those that players are not required to reason about according to the focus function at hand.
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Corollary 6.4 (Forward and backward rationalizability) The outcomes induced by the strong ratio-
nalizability procedure are the same as those induced by the forward and backward rationalizability procedure
(if we drop the forward consistency assumption).

Meier and Perea (2023) show the same result for the version with forward consistency.

6.3 Backwards Order of Elimination

From a computational point of view it is often convenient to use a backwards order of elimination, in which
we first perform the eliminations at the last information sets in the game, after which we turn to performing
the eliminations at the last and second-to-last information sets, and so on, until we reach the beginning of
the game. We can use Theorem 5.1 to show that this will not alter the outcomes of the rationalizability
procedure.

To see this, take a focus function f that satisfies the conditions in Theorem 5.1, except the monotonicity
with respect to g. Let H1, H2, ...,HK be the backwards ordering of the information sets as defined in Section
3.4.4. For every k ∈ {1, ...,K} let fk be the focus function given by

fk,ij(hi, D) = fij(hi, D) ∩Hk

for all i, j, hi and D. Then, (f1, f2, ..., fK) is the focus mapping in which f is applied according to the
backwards order of elimimination. By means of Theorem 5.1 (a) we can show the following result.

Corollary 6.5 (Backwards order of elimination) Let f be a focus mapping that is monotone, col-
lectively forward decreasing, collectively preserving focus on past information sets, transitively closed,
and monotone with respect to (f1, f2, ..., fK). Then, the f -rationalizable outcomes are the same as the
(f1, f2, ..., fK)-rationalizable outcomes.

Indeed, it may be verified that f and g := (f1, f2, ..., fK) satisfy all the conditions in Theorem 5.1. In
particular, since f1 ⊆ f2 ⊆ ... ⊆ fK , it follows from Lemma 8.8 that (f1, f2, ..., fK) is monotone. As fK = f
we see that (g, f)-rationalizability is the same as g-rationalizability in this case. By part (a) of Theorem 5.1
we thus obtain the result above.

Corollary 6.4 thus represents a special case where f = fall. By part (c) of Theorem 5.1 we can con-
clude that if f is future oriented, then the f -rationalizable strategies are the same as the (f1, f2, ..., fK)-
rationalizable strategies. That is, the backwards order of elimination yields the same strategies as the original
procedure.

6.4 Restricted Forward Induction Reasoning

Recall from Section 3.4.6 the focus function fH
∗
, for some collection H∗ ⊆ H of “focal” information sets.

It induces a restricted form of forward induction reasoning in which a player, at every information set,
only evaluates the opponents’past optimality at focal information sets in H∗, and uses it to form a belief
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about the opponents’present, future, and unobserved past actions at the focal information sets in H∗. Now,
compare two collections of focal information sets H1, H2 ⊆ H where H1 ⊆ H2. Then, it may be verified
that f := fH

2
and g := fH

1
satisfy all the conditions in Theorem 5.1. In light of part (b) of that theorem

we thus reach the following conclusion.

Corollary 6.6 (Restricted forward induction reasoning) Consider two collections of focal informa-
tion sets H1, H2 ⊆ H with H1 ⊆ H2. Then, every fH

2
-rationalizable outcome is fH

1
-rationalizable.

That is, if we expand the collection of information sets on which the players perform forward induction
reasoning, then the set of induced outcomes can only become smaller. Also this set inclusion only holds
in terms of outcomes, not in terms of strategies. To see this, consider the game in Figure 1 while setting
H1 := {h2, h

′
1, h
′
2} and H2 := H. Then, the only fH

2
-rationalizable strategy for player 2 is (d, g), whereas

the only fH
1
-rationalizable strategy for player 2 is c. However, both concepts lead to the same outcome

since a is the unique fH
1
- and fH

2
-rationalizable strategy for player 1.

7 Concluding Remarks

Epistemic characterization. In this paper we have presented a family of rationalizability procedures
parametrized by a focus function f, describing for every player, and at each of his information sets, the
collection of opponents’information sets he reasons about. The key requirement is that a player, at each of
his information sets, believes whenever possible that his opponents choose optimally at the information sets
he reasons about. By iterating this condition we arrive at the f -rationalizability procedure.

Perea and Tsakas (2019) provide an epistemic characterization for the concept of f -rationalizability by
means of common strong belief in rationality with respect to f, similarly to how Battigalli and Siniscalchi
(2002) have epistemically characterized strong rationalizability by means of common strong belief in ra-
tionality.21 Unlike Perea and Tsakas (2019), we allow the collection of opponents’information sets that a
player reasons about to depend on the particular collection of decision problems at hand. As we have seen
in Sections 3.4.4 and 3.4.5, this enables us to model rationalizability procedures in which the player gives
epistemic priority to one mode of reasoning over another. A natural question that remains to be investigated
is whether, and how, we can provide an epistemic chacterization of such rationalizability procedures that
involve epistemic priority.

Order independence. Recall Corollary 6.1, in which it is shown that every strongly rationalizable outcome
is also induced by the backward dominance procedure. Perea (2017) and Catonini (2020) prove this result
by showing that the strong rationalizability procedure is order independent with respect to outcomes, which
means that every “slow” elimination order of strong rationalizability leads to the same outcomes as the
original procedure. Chen and Micali (2013) also prove this property. As the backward dominance procedure

21As mentioned earlier, the framework in Perea and Tsakas (2019) allows players to hold belief hierarchies about the focus
functions of the players, where players may well be wrong about the opponents’actual focus functions. As such, their epistemic
characterization is really based on the players’belief hierarchies about the focus functions.
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can be phrased as a “slow”, unfinished elimination order of the strong rationalizability procedure, the result
obtains.

This raises the question whether Theorem 5.1, for the special case of f = fall, can be shown on the
basis of the order independence with respect to outcomes of strong rationalizability, and hence of the fall-
rationalizability procedure. The answer is “no”. The reason is that for many focus functions g ⊆ fall, the
g-rationalizability procedure does not correspond to a “slow” (finished or unfinished) elimination order of
fall.

To see this, consider the game from Figure 1, let H∗ = {h2, h
′
1, h
′
2}, and let fH

∗
be the associated focus

function as defined in Section 3.4.6. In the first round of fH
∗
-rationalizability we eliminate at h1 player 1’s

strictly dominated strategy (b, e), and at h2 and h′2 player 2’s strictly dominated strategy (d, h). In round
2 we eliminate at h1 and h′1 player 2’s strategy (d, h), after which we can eliminate at h1 and h′1 player 1’s
strictly dominated strategy (b, f). In round 3 we eliminate at h2 player 1’s strategy (b, f) (since player 2
reasons at h2 about h′1), after which we can eliminate player 2’s strictly dominated strategy (d, g) there.

However, if at round 3 we would use the reduction operator rfall instead of rfH
∗
then, since in fall

player 2 reasons at h2 about h1, we cannot eliminate any strategy for player 1 at h2 as both of player
1’s strategies (b, e) and (b, f) that reach h2 have already been eliminated at h1. As a result, we cannot
eliminate any more strategies for player 2 at h2 under rfall. But recall that under rfH

∗
we can eliminate

player 2’s strategy (d, g) at h2 at this stage. As such, fH
∗
-rationalizability eliminates in round 3 more at

h2 than fall-rationalizability would for that particular collection of decision problems. This means that
fH
∗
-rationalizability does not correspond to a “slow”elimination order of fall-rationalizability.

Incomplete information. A route that remains to be explored is how to extend our analysis to games
with incomplete information. Many of the rationalizability concepts, such as strong ∆-rationalizability
(Battigalli (2003)), which includes strong rationalizability as a special case, and backwards rationalizability
(Penta (2015), Catonini and Penta (2022)), have already been defined for games with incomplete informa-
tion. Extending the monotonicity-result to the context of incomplete information may be very valuable for
implementation theory and mechanism design, for instance.

Cautious reasoning. The analysis could also be extended to capture cautious reasoning, in which a
player never discards any opponent’s strategy completely from consideration. Rationalizability concepts
for dynamic games that incorporate cautious reasoning are, for instance, the iterated elimination of weakly
dominated strategies in the normal form, the Dekel-Fudenberg procedure (Dekel and Fudenberg (1990)),
quasi-perfect rationalizability (Asheim and Perea (2005)) and perfect backwards rationalizability (Meier and
Perea (2024)).

An important step in this direction has been taken in Catonini (2024) by showing that there are dynamic
games where not every outcome induced by the iterated elimination of weakly dominated strategies in the
normal form is induced by strong rationalizability. This is remarkable, as the first step in the iterated
elimination of weakly dominated strategies (eliminating all weakly dominated strategies from the full game)
is more restrictive than the first step in strong rationalizability (eliminating all strategies that are not
optimal, at some information set, for any belief in the full game). However, since both concepts are non-
monotonic, this property does not necessarily carry over at further elimination steps.
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Non-monotonicity. It is exactly this non-monotonicity that makes the analysis of forward induction
concepts so diffi cult, and yet so interesting at the same time. This also applies to our paper, where the
non-monotonic rationalizability concepts are exactly those that correspond to a focus function in which the
players are required to reason about the opponents’rationality at some of the past information sets. One
could categorize those as the forward induction concepts within the family of f -rationalizability procedures.
The non-monotonicity of these forward induction concepts heavily complicated the analysis in this paper,
and is largely responsible for the long proof we needed to show the monotonicity result.

8 Proofs

8.1 Proofs of Section 4

8.1.1 Preparatory Results

For a focus function f, collection of decision problems D, player i and information set hi ∈ Hi we define the
set

D∗i (hi) := {si ∈ Si(hi) | si not strictly dominated in (Si(hi), D−i(hi))}.

Lemma 8.1 (Optimal strategies in rationalizability procedure) Let f be a focus function, and let
D = rfk(Dfull) for some k ≥ 1. Then, Di(hi) = D∗i (hi).

Proof. Let D = rfk(Dfull). We prove, by induction on k ≥ 1, that Di(hi) = D∗i (hi).

Induction start. Let k = 1, which means that D = rf(Dfull). By definition,

Di(hi) = {si ∈ Si(hi) | si not strictly dominated in (Si(hi), D−i(hi))} = D∗i (hi).

Induction step. Suppose next that k ≥ 2, and that the statement holds for k − 1. Then, D = rf(Dk−1),
where Dk−1 := rfk−1(Dfull). We start by showing that Di(hi) ⊆ D∗i (hi). Take some si ∈ Di(hi). Then, by
definition, si ∈ Dk−1

i (hi) and si is not strictly dominated in (Dk−1
i (hi), D−i(hi)). By Lemma 2.1 we then

know that si is optimal in Dk−1
i (hi) for a belief bi ∈ ∆(D−i(hi)).

We will show that si is optimal in Si(hi) for bi. Suppose not. Then, there is some s∗i ∈ Si(hi) such that

ui(si, bi) < ui(s
∗
i , bi) (8.1)

and s∗i is optimal in Si(hi) for bi. As D−i(hi) ⊆ Dk−1
−i (hi) it follows that bi ∈ ∆(Dk−1

−i (hi)). Hence, we
conclude by Lemma 2.1 that s∗i is not strictly dominated in (Si(hi), D

k−1
−i (hi)), and thus s∗i ∈ Dk−1∗

i (hi).

Since, by the induction assumption, Dk−1∗
i (hi) = Dk−1

i (hi) it follows that s∗i ∈ Dk−1
i (hi). However, together

with (8.1) this would contradict the fact that si is optimal in Dk−1
i (hi) for bi. We thus conclude that si is

optimal in Si(hi) for bi. Since bi ∈ ∆(D−i(hi)) we know by Lemma 2.1 that si is not strictly dominated in
(Si(hi), D−i(hi)), and hence si ∈ D∗i (hi). As this holds for every si ∈ Di(hi) we see that Di(hi) ⊆ D∗i (hi).
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We next show that D∗i (hi) ⊆ Di(hi). Take some si ∈ D∗i (hi). Then, by definition, si is not strictly
dominated in (Si(hi), D−i(hi)). As D−i(hi) ⊆ Dk−1

−i (hi) it follows that si is not strictly dominated in
(Si(hi), D

k−1
−i (hi)) and hence si ∈ Dk−1∗

i (hi). By the induction assumption we know that Dk−1∗
i (hi) =

Dk−1
i (hi) and hence si ∈ Dk−1

i (hi). We thus see that si ∈ Dk−1
i (hi) and si is not strictly dominated

in (Si(hi), D−i(hi)). In particular, si is not strictly dominated in (Dk−1
i (hi), D−i(hi)), which implies that

si ∈ Di(hi). As this holds for every si ∈ D∗i (hi) we conclude that D∗i (hi) ⊆ Di(hi).
Together with the insight above that Di(hi) ⊆ D∗i (hi) we conclude that Di(hi) = D∗i (hi). By induction

on k, the proof is complete. �

For a collection of decision problems D, focus function f, player i and information set hi ∈ Hi, recall
that

D+
−i(hi, f) := {(sj)j 6=i ∈ D−i(hi) | for all j 6= i, sj ∈ Dj(hj) for all hj ∈ fij(hi, D) ∩Hj(sj)}.

We define

D+∗
−i (hi, f) := {(sj)j 6=i ∈ S−i(hi) | for all j 6= i, sj ∈ Dj(hj) for all hj ∈ fij(hi, D) ∩Hj(sj)}.

Hence, D+
−i(hi, f) = D+∗

−i (hi, f) ∩D−i(hi).

Lemma 8.2 (Opponents’strategies in rationalizability procedure) Consider a monotone focus func-
tion f and let D = rfk(Dfull) for some k ≥ 0. Then, D+∗

−i (hi, f) = D+
−i(hi, f) for every player i and

information set hi ∈ Hi.

Proof. Let D = rfk(Dfull).We show, by induction on k ≥ 0, that D+∗
−i (hi, f) = D+

−i(hi, f) for every player
i and information set hi ∈ Hi.

Induction start. For k = 0 we have that D−i(hi) = S−i(hi), and therefore D+
−i(hi, f) = D+∗

−i (hi, f) ∩
D−i(hi) = D+∗

−i (hi, f).

Induction step. Suppose next that k ≥ 1 and that the property holds for k− 1. Note that D = rf(Dk−1),
where Dk−1 := rfk−1(Dfull). Since, by construction, D+

−i(hi, f) ⊆ D+∗
−i (hi, f) it only remains to show that

D+∗
−i (hi, f) ⊆ D+

−i(hi, f). To show this, take some s−i = (sj)j 6=i ∈ D+∗
−i (hi, f). Then, s−i ∈ S−i(hi) and for

all j 6= i we have that
sj ∈ Dj(hj) for all hj ∈ fij(hi, D) ∩Hj(sj). (8.2)

Note that D ⊆ Dk−1. By (8.2) we thus conclude that sj ∈ Dk−1
j (hj) for all hj ∈ fij(hi, D) ∩ Hj(sj).

As f is monotone and D ⊆ Dk−1 we know that fij(hi, Dk−1) ⊆ fij(hi, D). Therefore, sj ∈ Dk−1
j (hj)

for all hj ∈ fij(hi, D
k−1) ∩ Hj(sj), which means that s−i ∈ Dk−1+∗

−i (hi, f). By the induction assumption
we then know that s−i ∈ Dk−1+

−i (hi, f). Hence, Dk−1+
−i (hi, f) 6= ∅. Since D = rf(Dk−1) we know that

D−i(hi) = Dk−1+
−i (hi, f), and thus s−i ∈ D−i(hi). Recall the assumption above that s−i ∈ D+∗

−i (hi, f).
Hence, s−i ∈ D+∗

−i (hi, f) ∩D−i(hi) = D+
−i(hi, f). As this holds for every s−i ∈ D+∗

−i (hi, f) we conclude that
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D+∗
−i (hi, f) ⊆ D+

−i(hi, f). Together with the fact that D+
−i(hi, f) ⊆ D+∗

−i (hi, f) we see that D+
−i(hi, f) =

D+∗
−i (hi, f). By induction on k the proof is complete. �

Consider a player i, an information set hi ∈ Hi, a belief bi ∈ ∆(S−i(hi)), and an information set h′i ∈ Hi

following hi with bi(S−i(h′i)) > 0. Then, the belief b′i ∈ ∆(S−i(h′i)) given by

b′i(s−i) :=
bi(hi)(s−i)

bi(hi)(S−i(h′i))

for all s−i ∈ S−i(h′i) is called the forward consistent update of bi at h′i.

Lemma 8.3 (Preservation of optimality) Consider a player i, an information set hi ∈ Hi, a belief
bi ∈ ∆(S−i(hi)), a strategy si that is optimal in Si(hi) for bi, and an information set h′i ∈ Hi(si) following
hi with bi(S−i(h′i)) > 0. Let b′i be the forward consistent update of bi at h

′
i. Then, si is optimal in Si(h

′
i) for

b′i.

The proof can be found in Perea (2012), proof of Lemma 8.14.9.

We say that a collection of decision problems D is dynamically consistent if for every player i and every
two information sets hi, h′i ∈ Hi where hi precedes h′i, it holds that D−i(hi)∩S−i(h′i) ⊆ D−i(h′i). For a given
history p and player i, let

H−i (p) := {hi ∈ Hi | there is some history p′ ∈ hi that precedes p}.

For a given strategy si ∈ Si and a collection of information sets Ĥ ⊆ H, let

si|Ĥ := (si(hi))hi∈Hi(si)∩Ĥ

be its restriction to information sets in Ĥ.

Lemma 8.4 (Perfectionating a strategy) Consider a dynamically consistent collection of decision prob-
lems D, a player i, a strategy si ∈ Si and a history p such that si selects all player i actions in p.
Let H∗i ⊆ H−i (p) be such that si ∈ D∗i (hi) for all hi ∈ H∗i . Then, there is some strategy s

∗
i such that

s∗i |H−i (p) = si|H−i (p) and s
∗
i ∈ D∗i (hi) for all hi ∈ H∗i ∪ (Hi(s

∗
i )\H−i (p)). Moreover, if p ∈ hi for some hi ∈ Hi

and bi ∈ ∆(D−i(hi)), then s∗i can be constructed such that s
∗
i is optimal in Si(hi) for bi.

Proof. Let H+
i (p) be the collection of information sets hi ∈ Hi such that either p ∈ hi or there is some

history p′ ∈ hi that follows p.We first define collections of information sets H1
i , H

2
i , ..., and associated beliefs

bi(hi) for hi ∈ H1
i ∪H2

i ∪ ..., as follows. Let h1
i be the first information set, if any, in H

∗
i . By assumption,

si ∈ D∗i (h1
i ). Hence, by definition, si is not strictly dominated in (Si(h

1
i ), D−i(h

1
i )). By Lemma 2.1 there is

a belief bi(h1
i ) ∈ ∆(D−i(h1

i )) such that si is optimal in Si(h
1
i ) for bi(h

1
i ). Let

H1
i := {hi ∈ H+

i (h1
i )\H+

i (p) | bi(h1
i )(S−i(hi)) > 0}.
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For every hi ∈ H1
i \{h1

i } let bi(hi) be the forward consistent update of bi(h1
i ). Then, we know from Lemma

8.3 that for every hi ∈ H1
i ∩Hi(si) the strategy si is optimal in Si(hi) for bi(hi).

Moreover, we can show that bi(hi) ∈ ∆(D−i(hi)) for every hi ∈ H1
i \{h1

i }. To see this, take some hi ∈
H1
i \{h1

i } and recall that bi(hi) is the forward consistent update of bi(h1
i ) at hi. Then, by construction,

bi(hi) ∈ ∆(D−i(h1
i ) ∩ S−i(hi)). As hi follows h1

i and D is dynamically consistent, we know that D−i(h1
i ) ∩

S−i(hi) ⊆ D−i(hi), and thus bi(hi) ∈ ∆(D−i(hi)).
Let h2

i be the first information set, if any, in H
∗
i \H1

i . By assumption, si ∈ D∗i (h2
i ). Hence, by a similar

argument as above, there is a belief bi(h2
i ) ∈ ∆(D−i(h2

i )) such that si is optimal in Si(h
2
i ) for bi(h

2
i ). Set

H2
i := {hi ∈ H+

i (h2
i )\H+

i (p) | bi(h2
i )(S−i(hi)) > 0}.

For every hi ∈ H2
i \{h2

i } let bi(hi) be the forward consistent update of bi(h2
i ) at hi. Then, we know from

Lemma 8.3 that for every hi ∈ H2
i ∩Hi(si) the strategy si is optimal in Si(hi) for bi(hi). In the same way

as above it can be shown that bi(hi) ∈ ∆(D−i(hi)).
We would then select h3

i as the first information set, if any, in H
∗
i \(H1

i ∪H2
i ), and so on. We continue

this construction, by defining collections of information sets Hk
i and associated beliefs bi(hi) ∈ ∆(D−i(hi))

for every hi ∈ Hk
i , until we arrive at a collection H

K
i where H∗i \(H1

i ∪ ... ∪HK
i ) is empty. We then set

s∗i (hi) := si(hi) for all hi ∈ (H1
i ∪ ... ∪HK

i ) ∩Hi(si). (8.3)

Moreover, we define
s∗i (hi) := si(hi) for all hi ∈ H−i (p)\H∗i . (8.4)

We then set
Ĥ1
i := (Hi\(H−i (p) ∪H1

i ∪ ... ∪HK
i ))first.

For every h1
i ∈ Ĥ1

i we select a belief bi(h
1
i ) ∈ ∆(D−i(h1

i )), and let si[h
1
i ] ∈ Si(h

1
i ) be a strategy that is

optimal in Si(h1
i ) for bi(h

1
i ). We define

Ĥ1+
i := {hi ∈ Hi | hi weakly follows some h1

i ∈ Ĥ1
i with bi(h

1
i )(S−i(hi)) > 0}.

Take some hi ∈ Ĥ1+
i \Ĥ1

i , and let h
1
i ∈ Ĥ1

i be the unique information set in Ĥ
1
i that precedes hi. Define

bi(hi) to be the forward consistent update of bi(h1
i ) at hi. Then, we know from Lemma 8.3 that strategy

si[h
1
i ] is optimal in Si(hi) for bi(hi) whenever hi ∈ Hi(si[h

1
i ]). Moreover, it can be shown similarly as above

that bi(hi) ∈ ∆(D−i(hi)).
We then set

Ĥ2
i := (Hi\(Ĥ1

i ∪H−i (p) ∪H1
i ∪ ... ∪HK

i ))first.

For every h2
i ∈ Ĥ2

i we select a belief bi(h
2
i ) ∈ ∆(D−i(h2

i )), and let si[h
2
i ] ∈ Si(h

2
i ) be a strategy that is

optimal in Si(h2
i ) for bi(h

2
i ). We define

Ĥ2+
i := {hi ∈ Hi | hi weakly follows some h2

i ∈ Ĥ2
i with bi(h

2
i )(S−i(hi)) > 0}.
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Take some hi ∈ Ĥ2+
i \Ĥ2

i , and let h
2
i ∈ Ĥ2

i be the unique information set in Ĥ
2
i that precedes hi. Define

bi(hi) to be the forward consistent update of bi(h2
i ) at hi. Then, we know from Lemma 8.3 that strategy

si[h
2
i ] is optimal in Si(hi) for bi(hi) whenever hi ∈ Hi(si[h

2
i ]). Moreover, it can be shown similarly as above

that bi(hi) ∈ ∆(D−i(hi)).
We continue this construction until we reach a set ĤM

i such that

Hi = Ĥ1+
i ∪ ... ∪ Ĥ

M+
i ∪H−i (p) ∪H1

i ∪ ... ∪HK
i .

On Ĥ1+
i ∪ ... ∪ ĤM+

i define the strategy s∗i such that for every m ∈ {1, ...,M}, every hmi ∈ Ĥm
i , and

every hi ∈ Ĥm+
i weakly following hmi ,

s∗i (hi) := (si[h
m
i ])(hi) whenever hi ∈ Hi(s

∗
i ). (8.5)

This completes the construction of the strategy s∗i .

By (8.3) and (8.4) it follows that s∗i |H−i (p) = si|H−i (p). We will now show that s∗i ∈ D∗i (hi) for all

hi ∈ H∗i ∪ (Hi(s
∗
i )\H−i (p)). We separate two cases: (1) hi ∈ Hk

i ∩ Hi(s
∗
i ) for some k ∈ {1, ...,K}, and (2)

hi ∈ Ĥm+
i ∩Hi(s

∗
i ) for some m ∈ {1, ...,M}.

Case 1. Suppose that hi ∈ Hk
i ∩ Hi(s

∗
i ) for some k ∈ {1, ...,K}. Then, by (8.3), s∗i coincides with si on

Hk
i ∩Hi(s

∗
i ). Recall from above that strategy si is optimal in Si(hi) for bi(hi). As, by construction of H

k
i , the

expected utility ui(s∗i , bi(hi)) only depends on the behavior of s
∗
i at information sets in H

k
i , it follows that

s∗i is optimal in Si(hi) for bi(hi) as well. Since we have seen above that bi(hi) ∈ ∆(D−i(hi)), we conclude by
Lemma 2.1 that s∗i is not strictly dominated in (Si(hi), D−i(hi)). That is, s∗i ∈ D∗i (hi), which was to show.
Case 2. Suppose that hi ∈ Ĥm+

i ∩Hi(s
∗
i ) for some m ∈ {1, ...,M}. Let hmi be the unique information set

in Ĥm
i that weakly precedes hi. Then, we know from (8.5) that s∗i coincides with si[h

m
i ] on Ĥm+

i . Recall
from above that si[hmi ] is optimal in Si(hi) for bi(hi). As, by construction of Ĥm+

i , the expected utility
ui(s

∗
i , bi(hi)) only depends on the behavior of s

∗
i at information sets in Ĥ

m+
i , it follows that s∗i is optimal

in Si(hi) for bi(hi) as well. Since we have seen above that bi(hi) ∈ ∆(D−i(hi)), we conclude by Lemma 2.1
that s∗i is not strictly dominated in (Si(hi), D−i(hi)). That is, s∗i ∈ D∗i (hi), which was to show.

Suppose now that p ∈ hi for some hi ∈ Hi, and that the belief bi ∈ ∆(D−i(hi)) is given. Then, hi will be
included in Ĥ1

i , and we can define bi(hi) := bi. As s∗i |H−i (p) = si|H−i (p) and si selects all the player i actions
in p, it follows that s∗i selects all player i actions in p as well, and hence s

∗
i ∈ Si(hi). Since, by construction,

s∗i is optimal for bi(hi) on Si(hi), it follows that s
∗
i is optimal for bi on Si(hi). Hereby, the proof is complete.

�

Lemma 8.5 (Optimal planning) Consider a dynamically consistent collection of decision problems D.
Then, for every player i,

(a) there is a strategy si such that si ∈ D∗i (hi) for every hi ∈ Hi(si), and

(b) for every information set hi ∈ Hi there is a strategy si ∈ Si(hi) such that si ∈ D∗i (h
′
i) for every

h′i ∈ Hi(si)\H−i (hi).
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Proof. (a) By Lemma 8.4 applied to the history p = ∅ marking the beginning of the game, there is a
strategy s∗i such that s

∗
i ∈ D∗i (hi) for all hi ∈ Hi(s

∗
i ).

(b) Consider an information set hi ∈ Hi, a history p ∈ hi and a strategy si ∈ Si such that si selects all player
i actions in p. Then, by Lemma 8.4 there is some strategy s∗i such that s

∗
i |H−i (p) = si|H−i (p) and s

∗
i ∈ D∗i (h′i)

for all h′i ∈ Hi(s
∗
i )\H−i (p). By perfect recall we have that H−i (p) = H−i (hi), and hence s∗i ∈ D∗i (h′i) for all

h′i ∈ Hi(s
∗
i )\H−i (hi). Moreover, since s∗i |H−i (p) = si|H−i (p) and si selects all player i actions in p, it follows

that s∗i selects all player i actions in p as well. Since p ∈ hi we conclude that s∗i ∈ Si(hi). This completes
the proof. �

Lemma 8.6 (Suffi cient conditions for dynamic consistency) Consider a focus function f that is
monotone, individually forward decreasing and individually preserving focus on past information sets, and
let D = rfk(Dfull) for some k ≥ 0. Then, D is dynamically consistent.

Proof. Let D = rfk(Dfull) for some k ≥ 0. We show the statement by induction on k.

Induction start. For k = 0 we have that D = Dfull. It can easily be verified that Dfull is dynamically
consistent.

Induction step. Now take some k ≥ 1, and suppose that Dk−1 := rfk−1(Dfull) is dynamically consistent.
Note that D = rf(Dk−1). Take some player i and some information sets hi, h′i where hi precedes h

′
i. We

will show that D−i(hi) ∩ S−i(h′i) ⊆ D−i(h′i). We distinguish two cases: (1) D
k−1+
−i (hi, f) 6= ∅, and (2)

Dk−1+
−i (hi, f) = ∅.

Case 1. Suppose that Dk−1+
−i (hi, f) 6= ∅. Take some (sj)j 6=i ∈ D−i(hi) ∩ S−i(h′i). Then, in particular,

(sj)j 6=i ∈ Dk−1
−i (hi) ∩ S−i(h′i). Since, by the induction assumption, Dk−1 is dynamically consistent, we

conclude that (sj)j 6=i ∈ Dk−1
−i (h′i).

As Dk−1+
−i (hi, f) 6= ∅ we have that D−i(hi) = Dk−1+

−i (hi, f), and hence (sj)j 6=i ∈ Dk−1+
−i (hi, f) ∩ S−i(h′i).

Thus, for every j 6= i we have that sj ∈ Dk−1
j (hj) for all hj ∈ fij(hi, Dk−1) ∩Hj(sj). As f is individually

forward decreasing we know that fij(h′i, D
k−1) ⊆ fij(hi, D

k−1). Hence, for every j 6= i we have that sj ∈
Dk−1
j (hj) for all hj ∈ fij(h

′
i, D

k−1) ∩ Hj(sj). Since we have seen above that (sj)j 6=i ∈ Dk−1
−i (h′i), and

D = rf(Dk−1), it follows that (sj)j 6=i ∈ D−i(h′i). Thus, D−i(hi) ∩ S−i(h′i) ⊆ D−i(h′i).

Case 2. Suppose that Dk−1+
−i (hi, f) = ∅. We show that Dk−1+

−i (h′i, f) = ∅ as well. Suppose not. Then,
there is some (sj)j 6=i ∈ Dk−1+

−i (h′i, f). Hence, for every j 6= i we have that sj ∈ Dk−1
j (hj) for all hj ∈

fij(h
′
i, D

k−1) ∩ Hj(sj). Fix a player j 6= i. As f individually preserves focus on past information sets,
fij(hi, D

k−1) ∩H−j (hi) ⊆ fij(h′i, Dk−1). Therefore,

sj ∈ Dk−1
j (hj) for all hj ∈ fij(hi, Dk−1) ∩H−j (hi) ∩Hj(sj). (8.6)
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Take some si ∈ Si(h
′
i). As (sm)m6=i ∈ Dk−1+

−i (h′i, f), we know in particular that (sm)m 6=i ∈ S−i(h′i),
and hence (si, (sm)m6=i) reaches h′i. As hi precedes h

′
i and the game satisfies perfect recall, we know that

(si, (sm)m6=i) reaches hi as well. Let p be the history in hi reached by (si, (sm)m 6=i). Then, H
−
j (p) ⊆ H−j (hi),

and hence by (8.6) we know that sj ∈ Dk−1
j (hj) for all hj ∈ fij(hi, Dk−1) ∩H−j (p) ∩Hj(sj). By Lemma 8.1

we know that Dk−1
j (hj) = Dk−1∗

j (hj), and hence sj ∈ Dk−1∗
j (hj) for all hj ∈ fij(hi, Dk−1)∩H−j (p)∩Hj(sj).

Moreover, by the induction assumption, we know that Dk−1 is dynamically consistent. Using Lemma 8.4,
choosing H∗j := fij(hi, D

k−1)∩H−j (p), we then know that there is some s∗j with s
∗
j |H−j (p) = sj |H−j (p) such that

s∗j ∈ Dk−1∗
j (hj) for all hj ∈ fij(hi, Dk−1)∩Hj(s

∗
j ). Since, by Lemma 8.1, we know thatD

k−1
j (hj) = Dk−1∗

j (hj),
it follows that

s∗j ∈ Dk−1
j (hj) for all hj ∈ fij(hi, Dk−1) ∩Hj(s

∗
j ). (8.7)

As (si, (sj)j 6=i) reaches p and s∗j |H−j (p) = sj |H−j (p) for every j 6= i, it follows that (si, (s
∗
j )j 6=i) reaches p

as well. Since p ∈ hi we conclude that (s∗j )j 6=i ∈ S−i(hi). Together with (8.7) we conclude that (s∗j )j 6=i ∈
Dk−1+∗
−i (hi, f). Recall that f is monotone. By Lemma 8.2 it then follows that Dk−1+∗

−i (hi, f) = Dk−1+
−i (hi, f),

and thus (s∗j )j 6=i ∈ Dk−1+
−i (hi, f). This, however, is a contradiction, since Dk−1+

−i (hi, f) = ∅.
We must therefore conclude that Dk−1+

−i (h′i, f) = ∅ as well. As D = rf(Dk−1) we must have, by
definition, that D−i(hi) = Dk−1

−i (hi) and D−i(h′i) = Dk−1
−i (h′i). Hence,

D−i(hi) ∩ S−i(h′i) = Dk−1
−i (hi) ∩ S−i(h′i) ⊆ Dk−1

−i (h′i) = D−i(h
′
i),

where the set inclusion follows from the induction assumption that Dk−1 is dynamically consistent.
By combining Case 1 and Case 2 we conclude that Dk is dynamically consistent. By induction on k, the

proof is complete. �

8.1.2 Proof of Theorem 4.1

Proof of Theorem 4.1. Let (Dk)∞k=0 be the f -rationalizability procedure starting at D
full, and let K be

such that DK+1 = DK . By Lemma 8.6 we know that DK is dynamically consistent. As such, Lemma 8.5
(a) guarantees that for every player i there is a strategy si such that si ∈ DK∗

i (hi) for all hi ∈ Hi(si). Since,
by Lemma 8.1, DK∗

i (hi) = DK
i (hi) for all players i and all hi ∈ Hi, we conclude that si ∈ DK

i (hi) for all
hi ∈ Hi(si). That is, si is f -rationalizable. This completes the proof. �

8.1.3 Proof of Theorem 4.2

To prove Theorem 4.2 we need the following preparatory result.

Lemma 8.7 (Forward consistency) Consider a collection of decision problems D that is dynamically
consistent, a player i, a strategy si, and a collection of information sets Ĥi ⊆ Hi. Suppose that for every
hi ∈ Ĥi ∩Hi(si) there is a belief bi(hi) ∈ ∆(D−i(hi)) such that si is optimal in Si(hi) for bi(hi). Then, there
is a belief vector (b̃i(hi))hi∈Hi that is forward consistent on Ĥi such that for all hi ∈ Ĥi ∩ Hi(si) we have
that b̃i(hi) ∈ ∆(D−i(hi)) and si is optimal in Si(hi) for b̃i(hi).
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Proof. We construct the conditional belief vector (b̃i(hi))hi∈Hi as follows. Let H
1
i := Ĥfirst

i , and define

b̃i(h
1
i ) := bi(h

1
i ) for all hi ∈ H1

i .

Let
H1+
i := {hi ∈ Ĥi | hi weakly follows some h1

i ∈ H1
i with bi(h

1
i )(S−i(hi)) > 0}.

For every hi ∈ H1+
i \H1

i , let h
1
i [hi] be the unique information set in H

1
i that precedes hi. We then define

b̃i(hi) as the forward consistent update of bi(h1
i [hi]) at hi.

Next, let H2
i := (Ĥi\H1+

i )first and define

b̃i(h
2
i ) := bi(h

2
i ) for all hi ∈ H2

i .

Let
H2+
i := {hi ∈ Ĥi | hi weakly follows some h2

i ∈ H2
i with bi(h

2
i )(S−i(hi)) > 0}.

For every hi ∈ H2+
i \H2

i , let h
2
i [hi] be the unique information set in H

2
i that precedes hi. We then define

b̃i(hi) as the forward consistent update of bi(h2
i ) at hi.

We next define H3
i := (Ĥi\(H1+

i ∪H
2+
i ))first, and so on. We continue this construction until we reach

some K with H1+
i ∪ ... ∪ H

K+
i = Ĥi. We finally define b̃i(hi) ∈ ∆(S−i(hi)) arbitrarily for all hi ∈ Hi\Ĥi.

Then, by construction, the belief vector b̃i = (b̃i(hi))hi∈Hi is forward consistent on Ĥi.
We will now show, for all hi ∈ Ĥi, that b̃i(hi) ∈ ∆(D−i(hi)) and that si is optimal in Si(hi) for b̃i(hi).

Take some hi ∈ Ĥi, and let hi ∈ Hk+
i for some k ∈ {1, ...,K}. Let hki [hi] be the unique information set in

Hk
i that weakly precedes hi.
If hi = hki [hi] then, by construction, b̃i(hi) = bi(hi) ∈ ∆(D−i(hi)). Moreover, we know by assumption

that si is optimal in Si(hi) for bi(hi), and hence si is optimal in Si(hi) for b̃i(hi).
If hi 6= hki [hi] then, by construction, b̃i(hi) is the forward consistent update of bi(h

k
i [hi]) at hi. As

bi(h
k
i [hi]) ∈ ∆(D−i(hki [hi])) it follows, by the definition of the forward consistent update, that b̃i(hi) ∈

∆(D−i(hki [hi])) ∩ S−i(hi)). Since, by assumption, D is dynamically consistent, we know that D−i(hki [hi]) ∩
S−i(hi) ⊆ D−i(hi), and thus b̃i(hi) ∈ ∆(D−i(hi)).

To show that si is optimal in Si(hi) for b̃i(hi) note that, by assumption, si is optimal in Si(hki [hi]) for
bi(h

k
i [hi]). As b̃i(hi) is the forward consistent update of bi(h

k
i [hi]) at hi, it follows from Lemma 8.3 that si is

optimal in Si(hi) for b̃i(hi). We thus see, for all hi ∈ Ĥi, that b̃i(hi) ∈ ∆(D−i(hi)) and that si is optimal in
Si(hi) for b̃i(hi). This completes the proof. �

Proof of Theorem 4.2. (a) Let (Dk)∞k=0 be the f -rationalizability procedure that starts at D
full. We

show, by induction on k ≥ 0, that (i) Dbu,k = Dk and (ii) Dbu,k+
−i (hi) = Dk+

−i (hi) whenever k ≥ 1, for all
players i, and all hi ∈ Hi.

Induction start. For k = 0 we have by definition that Dbu,0 = D0, and hence (i) is satisfied. Also, (ii) is
vacuously satisfied since k < 1.
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Induction step. Let k ≥ 1, and suppose that (i) and (ii) hold for k − 1. We start by showing (i), that is,
we must show that Dbu,k = Dk. If k = 1 then we have, by definition, that Dbu,1 = D1. Assume next that
k ≥ 2. Take some player i and information set hi ∈ Hi.We distinguish two cases: (1) D

bu,k−1+
−i (hi) 6= ∅, and

(2) Dbu,k−1+
−i (hi) = ∅.

Case 1. Suppose that Dbu,k−1+
−i (hi) 6= ∅. Then, by definition, Dbu,k

−i (hi) = Dbu,k−1+
−i (hi). By the induction

assumption we know that Dbu,k−1+
−i (hi) = Dk−1+

−i (hi), and thus Dk−1+
−i (hi) 6= ∅ as well. We then have that

Dbu,k
−i (hi) = Dbu,k−1+

−i (hi) = Dk−1+
−i (hi) = Dk

−i(hi).

Case 2. Suppose that Dbu,k−1+
−i (hi) = ∅. Then, by definition, Dbu,k

−i (hi) = Dbu,k−1
−i (hi). By the induction

assumption we know thatDbu,k−1+
−i (hi) = Dk−1+

−i (hi), and thusDk−1+
−i (hi) = ∅ as well. By definition, we then

have that Dk
−i(hi) = Dk−1

−i (hi). We also know, by the induction assumption, that D
bu,k−1
−i (hi) = Dk−1

−i (hi).

Hence, we see that Dbu,k
−i (hi) = Dbu,k−1

−i (hi) = Dk−1
−i (hi) = Dk

−i(hi).

We next show (ii). Hence, we must show that Dbu,k+
−i (hi) = Dk+

−i (hi) for all players i and all hi ∈ Hi.

Fix a player i and an information set hi ∈ Hi. We first show that Dbu,k+
−i (hi) ⊆ Dk+

−i (hi). Take some

(sj)j 6=i ∈ Dbu,k+
−i (hi). Then, (sj)j 6=i ∈ Dbu,k

−i (hi) and for every j 6= i there is a belief vector (bj(hj))hj∈Hj
that is forward consistent on fij(hi, Dbu,k), and such that for all hj ∈ fij(hi, Dbu,k) ∩Hj(sj) we have that
bj(hj) ∈ ∆(Dbu,k

−j (hj)), sj ∈ Dbu,k−1
j (hj) and sj is optimal in D

bu,k−1
j (hj) for bj(hj).

We have shown in (i) that Dbu,k = Dk and we know by the induction assumption that Dbu,k−1 = Dk−1.
Hence, (sj)j 6=i ∈ Dk

−i(hi) and for every j 6= i there is a belief vector (bj(hj))hj∈Hj that is forward consistent on
fij(hi, D

k), and such that for all hj ∈ fij(hi, Dk)∩Hj(sj) we have that bj(hj) ∈ ∆(Dk
−j(hj)), sj ∈ Dk−1

j (hj)

and sj is optimal inDk−1
j (hj) for bj(hj). By Lemma 2.1 it then follows that for every hj ∈ fij(hi, Dk)∩Hj(sj),

strategy sj is in Dk−1
j (hj) and is not strictly dominated in (Dk−1

j (hj), D
k
−j(hj)), and hence sj ∈ Dk

j (hj).

Put together, we conclude that (sj)j 6=i ∈ Dk
−i(hi) and for every j 6= i and every hj ∈ fij(hi, Dk)∩Hj(sj) we

know that sj ∈ Dk
j (hj). Hence, by definition, (sj)j 6=i ∈ Dk+

−i (hi). As this holds for every (sj)j 6=i ∈ Dbu,k+
−i (hi)

we conclude that Dbu,k+
−i (hi) ⊆ Dk+

−i (hi).

We next show that Dk+
−i (hi) ⊆ Dbu,k+

−i (hi). Take some (sj)j 6=i ∈ Dk+
−i (hi). Then, by definition, (sj)j 6=i ∈

Dk
−i(hi) and for every j 6= i we have that sj ∈ Dk

j (hj) for all hj ∈ fij(hi, Dk) ∩Hj(sj). Fix a player j 6= i.

By Lemma 8.1 we know that Dk
j (hj) = Dk∗

j (hj). Hence, for all hj ∈ fij(hi, D
k) ∩ Hj(sj) we have that

sj ∈ Dk∗
j (hj), and thus sj is not strictly dominated in (Sj(hj), D

k
−j(hj)). By Lemma 2.1 we then conclude

that for every hj ∈ fij(hi, Dk) ∩Hj(sj), strategy sj is optimal in Sj(hj) for some bj(hj) ∈ ∆(Dk
−j(hj)).

Recall that f is monotone, individually forward decreasing and individually preserves focus on past
information sets. By Lemma 8.6 it then follows that Dk = rfk(Dfull) is dynamically consistent. Hence,
by Lemma 8.7 we can find a belief vector (b̃j(hj))hj∈Hj that is forward consistent on fij(hi, D

k) and such
that for every hj ∈ fij(hi, D

k) ∩ Hj(sj) we have that b̃j(hj) ∈ ∆(Dk
−j(hj)) and strategy sj is optimal in

Sj(hj) for b̃j(hj). This holds for every j 6= i. Recall that (sj)j 6=i ∈ Dk
−i(hi). Since we have seen in (i) that
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Dk = Dbu,k, we conclude that (sj)j 6=i ∈ Dbu,k
−i (hi) and for every j 6= i there is a belief vector (b̃j(hj))hj∈Hj

that is forward consistent on fij(hi, Dbu,k) and such that for every hj ∈ fij(hi, D
bu,k) ∩ Hj(sj) we have

that b̃j(hj) ∈ ∆(Dbu,k
−j (hj)) and strategy sj is optimal in Sj(hj) for b̃j(hj). Recall that sj ∈ Dk

j (hj) for all

hj ∈ fij(hi, Dk) ∩Hj(sj). As Dk = Dbu,k we conclude that sj ∈ Dbu,k
j (hj) for all hj ∈ fij(hi, Dk) ∩Hj(sj)

and hence, in particular, sj ∈ Dbu,k−1
j (hj) for all hj ∈ fij(hi, Dk)∩Hj(sj). Together with our insight above,

we see that for every hj ∈ fij(hi, Dbu,k) ∩Hj(sj) we have that b̃j(hj) ∈ ∆(Dbu,k
−j (hj)), sj ∈ Dbu,k−1

j (hj) and

strategy sj is optimal in Sj(hj) for b̃j(hj). Then, by definition, (sj)j 6=i ∈ Dbu,k+
−i (hi).

As this holds for every (sj)j 6=i ∈ Dk+
−i (hi) we conclude that Dk+

−i (hi) ⊆ Dbu,k+
−i (hi).We have already seen

that Dbu,k+
−i (hi) ⊆ Dk+

−i (hi), and hence D
bu,k+
−i (hi) = Dk+

−i (hi). We have thus shown property (ii).
By induction on k, the proof of (a) is complete.

(b) Let K be such that Dbu,K = Dbu,K+1. Then, we know from (a) that DK = DK+1. We first show
that every f -rationalizable strategy is f -rationalizable under forward consistency. Consider a player i and
a strategy si ∈ Si that is f -rationalizable. Then, si ∈ DK

i (hi) for all hi ∈ Hi(si). By Lemma 8.1 we know
that DK

i (hi) = DK∗
i (hi), and hence si ∈ DK∗

i (hi) for all hi ∈ Hi(si). As DK = DK+1, this means that for
all hi ∈ Hi(si) the strategy si is not strictly dominated in (Si(hi), D

K
−i(hi)). Hence, by Lemma 2.1, for all

hi ∈ Hi(si) there is a belief bi(hi) ∈ ∆(DK
−i(hi)) such that si is optimal in Si(hi) for bi(hi).

Recall that f is monotone, individually forward decreasing and individually preserves focus on past
information sets. By Lemma 8.6 it then follows that DK = rfK(Dfull) is dynamically consistent. Hence,
by Lemma 8.7 we can find a belief vector (b̃i(hi))hi∈Hi that is forward consistent on Hi such that for all
hi ∈ Hi(si) we have that b̃i(hi) ∈ ∆(DK

−i(hi)) and si is optimal in Si(hi) for b̃i(hi). Recall that D
K = Dbu,K .

Hence, the belief vector (b̃i(hi))hi∈Hi is forward consistent on Hi and for all hi ∈ Hi(si) we have that
b̃i(hi) ∈ ∆(Dbu,K

−i (hi)) and si is optimal in Si(hi) for b̃i(hi). As si ∈ DK
i (hi) = Dbu,K

i (hi) for all hi ∈ Hi(si),

we conclude for all hi ∈ Hi(si) that b̃i(hi) ∈ ∆(Dbu,K
−i (hi)), si ∈ Dbu,K

i (hi) and si is optimal in D
bu,K
i (hi) for

b̃i(hi). Thus, by definition, si is f -rationalizable under forward consistency.
We now show that every strategy which is f -rationalizable under forward consistency is also f -rationalizable.

Consider a player i and a strategy si ∈ Si that is f -rationalizable under forward consistency. Then, there
is a belief vector (bi(hi))hi∈Hi that is forward consistent on Hi and such that for all hi ∈ Hi(si) we have
that bi(hi) ∈ ∆(Dbu,K

−i (hi)), si ∈ Dbu,K
i (hi) and si is optimal in D

bu,K
i (hi) for bi(hi). In particular, for every

hi ∈ Hi(si) the strategy si is in D
bu,K
i (hi). As Dbu,K = DK we conclude that for every hi ∈ Hi(si) the

strategy si is in DK
i (hi). That is, si is f -rationalizable.

We thus conclude that a strategy is f -rationalizable precisely when it is f -rationalizable under forward
consistency. This completes the proof. �
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8.2 Proof of Section 5

8.2.1 Preparatory Results

Consider two focus functions f, g and some m ≥ 0. Then, we denote by (g≤m, f) the focus function given by

(g≤m, f)ij(hi, D) :=

{
fij(hi, D), if D ⊆ rgm(Dfull)
gij(hi, D), otherwise

for every player i, opponent j 6= i, and information set hi ∈ Hi. By construction we then have that
r(g≤m, f)∞(Dfull) = (rf∞ ◦ rgm)(Dfull). We can say a bit more: Let m∗ ≤ m be the smallest num-
ber such that rgm

∗
(Dfull) = rgm(Dfull). Then, r(g≤m, f)k(Dfull) = rgk(Dfull) for all k ≤ m∗, and

r(g≤m, f)m
∗+k(Dfull) = (rfk ◦ rgm)(Dfull) for all k ≥ 1.

Lemma 8.8 (Combination of monotone focus mappings) Consider two monotone focus functions f, g
with g ⊆ f. Then, for every m ≥ 0, the focus function (g≤m, f) is monotone.

Proof. Take two collections of decisions problems D ⊆ E. We distinguish three cases: (1) D,E *
rgm(Dfull), (2) D ⊆ rgm(Dfull) and E * rgm(Dfull), and (3) D,E ⊆ rgm(Dfull).

Case 1. Suppose that D,E * rgm(Dfull). Then, for every player i, opponent j 6= i and information set
hi ∈ Hi we have

(g≤m, f)ij(hi, E) = gij(hi, E) ⊆ gij(hi, D) = (g≤m, f)ij(hi, D),

where the set inclusion follows from the monotonicity of g.

Case 2. Suppose that D ⊆ rgm(Dfull) and E * rgm(Dfull). Then, for every player i, opponent j 6= i and
information set hi ∈ Hi we have

(g≤m, f)ij(hi, E) = gij(hi, E) ⊆ gij(hi, D) ⊆ fij(hi, D) = (g≤m, f)ij(hi, D),

where the first set inclusion follows from the monotonicity of g, and the second set inclusion follows from
g ⊆ f.
Case 3. Suppose that D,E ⊆ rgm(Dfull). Then, for every player i, opponent j 6= i and information set
hi ∈ Hi we have

(g≤m, f)ij(hi, E) = fij(hi, E) ⊆ fij(hi, D) = (g≤m, f)ij(hi, D),

where the set inclusion follows from the monotonicity of f.
By Cases 1—3 we conclude that (g≤m, f) is monotone. This completes the proof. �

For a focus function f, collection of decision problems D, player i and information set hi ∈ Hi we define
the sets

D+
i (hi, f) := {si ∈ Si(hi) | si ∈ Di(h

′
i) for all h

′
i ∈ fii(hi, D) ∩Hi(si)} and

D++
−i (hi, f) := {(sj)j 6=i ∈ D−i(hi) | for all j 6= i, sj ∈ D+

j (hj , f) for all hj ∈ fij(hi, D) ∩Hj(sj)}.
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In the proof of the following lemma we use a new definition: Fix a focus function f, a collection of
decision problems D, two players i and j (where i = j is allowed) and two information set hi ∈ Hi and
hj ∈ Hj . Then, hj is called reachable from hi under f and D if either hj = hi, or there are players i1, i2, ..., iK

with associated information sets h1 ∈ Hi1 , h
2 ∈ Hi2 , ..., h

K ∈ HiK such that (i) i1 = i, h1 = hi, i
K = j,

hK = hj , (ii) ik 6= ik+1 for all k ∈ {1, ...,K − 1} and (iii) hk+1 ∈ fikik+1(hk, D) for all k ∈ {1, ...,K − 1}.
Hence, if hj is reachable from hi then player i either directly, or indirectly, reasons about hj while being at
hi. If hj is reachable from hi under f and D, and f is transitively closed, then it follows that hj ∈ fij(hi, D).

Lemma 8.9 (Decision problems for transitively closed focus function) Consider a transitively
closed focus function f, a collection of decision problems D, a player i and an information set hi ∈ Hi. Then,
D+
−i(hi, f) = D++

−i (hi, f).

Proof. If D+
−i(hi, f) = ∅ then we have that D++

−i (hi, f) = ∅ also, since D++
−i (hi, f) ⊆ D+

−i(hi, f). Suppose
now that D+

−i(hi, f) 6= ∅. Since D++
−i (hi, f) ⊆ D+

−i(hi, f) it remains to show that D+
−i(hi, f) ⊆ D++

−i (hi, f).
Take some (sj)j 6=i ∈ D+

−i(hi, f). Then, (sj)j 6=i ∈ D−i(hi) and for all j 6= i,

sj ∈ Dj(hj) for all hj ∈ fij(hi, D) ∩Hj(sj). (8.8)

Consider some hj ∈ fij(hi, D) ∩ Hj(sj). We will show that sj ∈ D+
j (hj , f). To see this, choose some

h′j ∈ fjj(hj , D) ∩ Hj(sj). Then, either (i) h′j = hj or (ii) there is some k 6= j and some hk ∈ fjk(hj , D)
such that h′j ∈ fkj(hk, D). If hj = h′j then sj ∈ Dj(h

′
j) since we have, by (8.8), that sj ∈ Dj(hj). Suppose

now that h′j 6= hj . As hj ∈ fij(hi, D) we conclude from (ii) that hk is reachable from hi under f and D.
Since f is transitively closed, we conclude that fkj(hk, D) ⊆ fij(hi, D). As h′j ∈ fkj(hk, D) it follows that
h′j ∈ fij(hi, D). Since h′j ∈ Hj(sj) also, we see that h′j ∈ fij(hi, D)∩Hj(sj). Together with (8.8) this implies
that sj ∈ Dj(h

′
j). Since this holds for every h

′
j ∈ fjj(hj , D) ∩Hj(sj) we conclude that sj ∈ D+

j (hj , f).

Thus, we see that sj ∈ D+
j (hj , f) for all hj ∈ fij(hi, D) ∩ Hj(sj). As this holds for every j 6= i, and

since (sj)j 6=i ∈ D−i(hi), we conclude that (sj)j 6=i ∈ D++
−i (hi, f). This is true for every (sj)j 6=i ∈ D+

−i(hi, f),
and hence D+

−i(hi, f) ⊆ D++
−i (hi, f). Together with the fact that D++

−i (hi, f) ⊆ D+
−i(hi, f) this completes the

proof. �

For a given collection of decision problems D, focus function f and player i we define the set

He
i (D, f) := {hi ∈ Hi | D+

i (hi, f) 6= ∅ and D+
−i(hi, f) 6= ∅},

and we refer to He
i (D, f) as the collection of explicable information sets for player i under D and f.

For a set of strategy combinations D ⊆ ×i∈ISi we define

H(D) := {h ∈ H | there is some s ∈ D that reaches h}.

Consider a focus function f, two collections of decision problems D,E and a profile of transformation
mappings σ = (σi)i∈I where σi : Si → Si for every player i. For some collection of decision problems D′ we
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write D ⊆σ,f,D′ E if either D′ = Dfull or D = rf(D′), and if for every player i and every strategy si ∈ Si
the following three properties hold:

(T1) σi(si)|He
i (D′,f) = si|He

i (D′,f),

(T2) σi(si) ∈ E+
i (hi, f) whenever hi ∈ He

i (D′, f) ∩Hi(σi(si)) and si ∈ D+
i (hi), and

(T3) σi(si) ∈ Ei(hi) whenever hi ∈ Hi(σi(si))\He
i (D′, f).

Lemma 8.10 (Explicable information sets) Consider two focus functions f, g with g ⊆ f that are
monotone, individually forward decreasing and individually preserving focus on past information sets. As-
sume moreover that f is collectively forward decreasing, collectively preserving focus on past information
sets, transitively closed and monotone with respect to g. Then, the following three properties hold:

(a) For every collection of decision problems D = (rfk ◦rgm)(Dfull) for some k,m ≥ 0, every player i, every
information set hi ∈ He

i (D, f), and every player j, it holds that

H(D+
i (hi, f)×D+

−i(hi, f)) ∩Hj ⊆ He
j (D, f).

(b) For every collection of decision problems D = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0, and every player i,
the set He

i (D, f) is closed under predecessors.

(c) Suppose that either D = (rfk+1◦rgm)(Dfull) and E = (rfk◦rgm+1)(Dfull), or D = (rfk◦rgm+1)(Dfull)
and E = (rfk ◦ rgm)(Dfull), for some k,m ≥ 0, and let D ⊆σ,f,D′ E for some σ and D′. Then, He

i (D, f) ⊆
He
i (E, f) for every player i.

Proof. (a) Let D = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0. Let m∗ ≤ m be the smallest number such that
rgm

∗
(Dfull) = rgm(Dfull). Then, D = r(g≤m, f)m

∗+k(Dfull). Moreover, as f, g are monotone and g ⊆ f we
know by Lemma 8.8 that (g≤m, f) is monotone.

Take some player i, some information set hi ∈ He
i (D, f), some player j, and some h′j ∈ H(D+

i (hi, f) ×
D+
−i(hi, f)) ∩Hj . Hence, there is some si ∈ D+

i (hi, f) and some (sn)n6=i ∈ D+
−i(hi, f) such that (si, (sn)n6=i)

reaches h′j . Moreover, (si, (sn)n6=i) reaches hi as well since D
+
i (hi, f) ⊆ Si(hi), D

+
−i(hi, f) ⊆ S−i(hi) and,

by perfect recall, S(hi) = Si(hi)× S−i(hi). Let p and p′ be the histories in hi and h′j , respectively, reached
by (si, (sn)n6=i). Then, either p′ weakly follows p (that is, either p′ follows p or p′ = p) or p′ precedes p.
We will show that p′ is reached by some strategy profile in D+

j (h′j , f) × D+
−j(h

′
j , f), thereby showing that

h′j ∈ He
j (D, f). To do so we distinguish four cases: (1) p′ weakly follows p and j = i, (2) p′ precedes p and

j = i, (3) p′ weakly follows p and j 6= i, and (4) p′ precedes p and j 6= i.

Case 1. Suppose that p′ weakly follows p and j = i. We will show that si ∈ D+
i (h′i, f) and (sn)n6=i ∈

D+
−i(h

′
i, f). Since si ∈ D+

i (hi, f) we know, by definition, that si ∈ Di(h
′′
i ) for every h

′′
i ∈ fii(hi, D) ∩Hi(si).

As h′i weakly follows hi and f is collectively forward decreasing we know that fii(h
′
i, D) ⊆ fii(hi, D). As such,

si ∈ Di(h
′′
i ) for every h

′′
i ∈ fii(h′i, D) ∩Hi(si). Since (si, (sn)n6=i) reaches p′ we also know that si ∈ Si(h′i).

Therefore, si ∈ D+
i (h′i, f).
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Take some n 6= i. As (sn)n6=i ∈ D+
−i(hi, f) we know, by definition, that sn ∈ Dn(hn) for every hn ∈

fin(hi, D)∩Hn(sn). As h′i weakly follows hi and f is collectively forward decreasing we know that fin(h′i, D) ⊆
fin(hi, D). As such, sn ∈ Dn(hn) for every hn ∈ fin(h′i, D) ∩ Hn(sn). Since (si, (sn)n 6=i) reaches p′ we
also know that (sn)n 6=i ∈ S−i(h′i). We therefore conclude that (sn)n6=i ∈ D+∗

−i (h
′
i, f). Recall that D =

r(g≤m, f)m
∗+k(Dfull) and that (g≤m, f) is monotone. By Lemma 8.2 we then know that

D+∗
−i (h

′
i, f) = D+∗

−i (h
′
i, (g

≤m, f)) = D+
−i(h

′
i, (g

≤m, f)) = D+
−i(h

′
i, f)

and hence (sn)n 6=i ∈ D+
−i(h

′
i, f). Thus, we see that si ∈ D+

i (h′i, f) and (sn)n6=i ∈ D+
−i(h

′
i, f), and hence

h′i ∈ He
i (D, f).

Case 2. Suppose that p′ precedes p and j = i.We show that we can construct s∗i ∈ D+
i (h′i, f) and (s∗n)n6=i ∈

D+
−i(h

′
i, f). Since si ∈ D+

i (hi, f) we know, by definition, that si ∈ Di(h
′′
i ) for every h

′′
i ∈ fii(hi, D) ∩Hi(si).

As we know, by Lemma 8.1, that Di(h
′′
i ) = D∗i (h

′′
i ), we see that

si ∈ D∗i (h′′i ) for every h′′i ∈ fii(hi, D) ∩Hi(si). (8.9)

Recall that D = r(g≤m, f)m
∗+k(Dfull) and that (g≤m, f) is monotone. Moreover, as f, g are individually

forward decreasing and individually preserve focus on past information sets, the focus function (g≤m, f)
inherits these properties. It then follows by Lemma 8.6 that D is dynamically consistent. But then, it follows
from (8.9) and Lemma 8.4, setting H∗i := fii(hi, D)∩H−i (p′), that there is some s∗i with s

∗
i |H−i (p′) = si|H−i (p′)

such that s∗i ∈ D∗i (h′′i ) for every h′′i ∈ (Hi(s
∗
i )\H−i (p′))∪ (fii(hi, D)∩H−i (p′)). By Lemma 8.1 we know that

D∗i (h
′′
i ) = Di(h

′′
i ), and hence s

∗
i ∈ Di(h

′′
i ) for every h

′′
i ∈ (Hi(s

∗
i )\H−i (p′)) ∪ (fii(hi, D) ∩H−i (p′)).

As h′i precedes hi and f collectively preserves focus on past information sets, we conclude that fii(h
′
i, D)∩

H−i (p′) ⊆ fii(hi, D), and hence s∗i ∈ Di(h
′′
i ) for every h

′′
i ∈ (Hi(s

∗
i )\H−i (p′)) ∪ (fii(h

′
i, D) ∩ H−i (p′)). In

particular, s∗i ∈ Di(h
′′
i ) for every h

′′
i ∈ fii(h′i, D)∩Hi(s

∗
i ). Moreover, as s

∗
i |H−i (p′) = si|H−i (p′) and si selects all

player i actions in p′, we see that s∗i selects all player i actions in p
′ as well, which means that s∗i ∈ Si(h′i).

Altogether, we conclude that s∗i ∈ D+
i (h′i, f).

Take some n 6= i. As (sn)n6=i ∈ D+
−i(hi, f) we know, by definition, that sn ∈ Dn(hn) for every hn ∈

fin(hi, D) ∩Hn(sn). As we know, by Lemma 8.1, that Dn(hn) = D∗n(hn), we see that

sn ∈ D∗n(hn) for every hn ∈ fin(hi, D) ∩Hn(sn). (8.10)

Recall from above that D is dynamically consistent. But then, it follows from (8.10) and Lemma 8.4, setting
H∗n := fin(hi, D)∩H−n (p′), that there is some s∗n with s

∗
n|H−n (p′) = sn|H−n (p′) such that s

∗
n ∈ D∗n(hn) for every

hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fin(hi, D) ∩H−n (p′)). By Lemma 8.1 we know that D∗n(hn) = Dn(hn), and hence
s∗n ∈ Dn(hn) for every hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fin(hi, D) ∩H−n (p′)).

As h′i precedes hi and f collectively preserves focus on past information sets, we conclude that fin(h′i, D)∩
H−n (p′) ⊆ fin(hi, D), and hence s∗n ∈ Dn(hn) for every hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fin(h′i, D) ∩ H−n (p′)). In
particular, s∗n ∈ Dn(hn) for every hn ∈ fin(h′i, D) ∩ Hn(s∗n). Moreover, as s∗n|H−n (p′) = sn|H−n (p′) and sn
selects all player n actions in p′, we see that s∗n selects all player n actions in p

′ as well. As this holds for
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all n 6= i we conclude that (s∗n)n6=i ∈ S−i(h′i). Altogether, we conclude that (s∗n)n6=i ∈ D+∗
−i (h

′
i, f). Since we

have seen above that D+∗
−i (h

′
i, f) = D+

−i(h
′
i, f), we then know that (s∗n)n 6=i ∈ D+

−i(h
′
i, f). We thus see that

s∗i ∈ D+
i (h′i, f) and (s∗n)n6=i ∈ D+

−i(h
′
i, f) and hence h′i ∈ He

i (D, f).

Case 3. Suppose that p′ weakly follows p and j 6= i. We will show that sj ∈ D+
j (h′j , f) and (sn)n6=j ∈

D+
−j(h

′
j , f). Since (sn)n 6=i ∈ D+

−i(hi, f) and j 6= i we know, by definition, that sj ∈ Dj(hj) for every
hj ∈ fij(hi, D) ∩ Hj(sj). As h′j weakly follows hi and f is collectively forward decreasing we know that
fjj(h

′
j , D) ⊆ fij(hi, D). As such, sj ∈ Dj(hj) for every hj ∈ fjj(h′j , D) ∩Hj(sj). Since (sj , (sn)n 6=j) reaches

p′ we also know that sj ∈ Sj(h′j). Therefore, sj ∈ D+
j (h′j , f).

Take some n 6= j. We distinguish two subcases: (3.1) n = i, and (3.2) n 6= i.

Case 3.1. Suppose that n = i. As si ∈ D+
i (hi, f) we know, by definition, that si ∈ Di(h

′′
i ) for every

h′′i ∈ fii(hi, D) ∩ Hi(si). As h′j weakly follows hi and f is collectively forward decreasing we know that
fji(h

′
j , D) ⊆ fii(hi, D). As such, si ∈ Di(h

′′
i ) for every h

′′
i ∈ fji(h′j , D) ∩Hi(si).

Case 3.2. Suppose that n 6= i. As (sn)n6=i ∈ D+
−i(hi, f) we know, by definition, that sn ∈ Dn(hn) for every

hn ∈ fin(hi, D) ∩ Hn(sn). As h′j weakly follows hi and f is collectively forward decreasing we know that
fjn(h′j , D) ⊆ fin(hi, D). As such, sn ∈ Dn(hn) for every hn ∈ fjn(h′j , D) ∩Hn(sn).

By Cases 3.1 and 3.2 we conclude, for every n 6= j, that sn ∈ Dn(hn) for every hn ∈ fjn(h′j , D) ∩
Hn(sn). Since (sj , (sn)n 6=j) reaches p′ we also know that (sn)n6=j ∈ S−j(h′j). We therefore conclude that
(sn)n6=j ∈ D+∗

−j (h
′
j , f). It can be shown in the same was as above that D+∗

−j (h
′
j , f) = D+

−j(h
′
j , f), and hence

(sn)n6=j ∈ D+
−j(h

′
j , f). Thus, we see that sj ∈ D+

j (h′j , f) and (sn)n6=j ∈ D+
−j(h

′
j , f), and hence h′j ∈ He

j (D, f).

Case 4. Suppose that p′ precedes p and j 6= i. We show that we can construct s∗j ∈ D+
j (h′j , f) and

(s∗n)n 6=j ∈ D+
−j(h

′
j , f). Since (sn)n6=i ∈ D+

−i(hi, f) and j 6= i we know, by definition, that sj ∈ Dj(hj) for
every hj ∈ fij(hi, D) ∩Hj(sj). By Lemma 8.1 we know that D∗j (hj) = Dj(hj), and hence

sj ∈ D∗j (hj) for every hj ∈ fij(hi, D) ∩Hj(sj). (8.11)

Recall from above that D is dynamically consistent. Then, it follows from (8.11) and Lemma 8.4, setting
H∗j := fij(hi, D) ∩H−j (p′), that there is some s∗j with s

∗
j |H−j (p′) = sj |H−j (p′) such that s

∗
j ∈ D∗j (hj) for every

hj ∈ (Hj(s
∗
j )\H−j (p′)) ∪ (fij(hi, D) ∩ H−j (p′)). By Lemma 8.1 we know that D∗j (hj) = Dj(hj), and hence

s∗j ∈ Dj(hj) for every hj ∈ (Hj(s
∗
j )\H−j (p′)) ∪ (fij(hi, D) ∩H−j (p′)).

As h′j precedes hi and f collectively preserves focus on past information sets, we conclude that fjj(h
′
j , D)∩

H−j (p′) ⊆ fij(hi, D), and hence s∗j ∈ Dj(hj) for every hj ∈ (Hj(s
∗
j )\H−j (p′)) ∪ (fjj(h

′
j , D) ∩ H−j (p′)). In

particular, s∗j ∈ Dj(hj) for every hj ∈ fjj(h′j , D) ∩Hj(s
∗
j ). Moreover, as s

∗
j |H−j (p′) = sj |H−j (p′) and sj selects

all player j actions in p′, we see that s∗j selects all player j actions in p
′ as well, which means that s∗j ∈ Sj(h′j).

Altogether, we conclude that s∗j ∈ D+
j (h′j , f).

Take some n 6= j. We distinguish two subcases: (4.1) n = i, and (4.2) n 6= i.
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Case 4.1. Suppose that n = i. As si ∈ D+
i (hi, f) we know, by definition, that si ∈ Di(h

′′
i ) for every

hi ∈ fii(hi, D) ∩Hi(si). Since we know, by Lemma 8.1, that D∗i (h
′′
i ) = Di(h

′′
i ), it follows that

si ∈ Di(h
′′
i ) for every hi ∈ fii(hi, D) ∩Hi(si). (8.12)

Recall from above that D is dynamically consistent. But then, it follows from (8.12) and Lemma 8.4, setting
H∗i := fii(hi, D) ∩H−i (p′), that there is some s∗i with s

∗
i |H−i (p′) = si|H−i (p′) such that s

∗
i ∈ D∗i (h′′i ) for every

h′′i ∈ (Hi(s
∗
i )\H−i (p′)) ∪ (fii(hi, D) ∩ H−i (p′)). By Lemma 8.1 we know that D∗i (h

′′
i ) = Di(h

′′
i ), and hence

s∗i ∈ Di(h
′′
i ) for every h

′′
i ∈ (Hi(s

∗
i )\H−i (p′)) ∪ (fii(hi, D) ∩H−i (p′)).

As h′j precedes hi and f collectively preserves focus on past information sets, we conclude that fji(h
′
j , D)∩

H−i (p′) ⊆ fii(hi, D), and hence s∗i ∈ Di(h
′′
i ) for every h

′′
i ∈ (Hi(s

∗
i )\H−i (p′)) ∪ (fji(h

′
j , D) ∩ H−i (p′)). In

particular, s∗i ∈ Di(h
′′
i ) for every h

′′
i ∈ fji(h′j , D) ∩Hi(s

∗
i ).

Case 4.2. Suppose that n 6= i. As (sn)n6=i ∈ D+
−i(hi, f) we know, by definition, that sn ∈ Dn(hn) for every

hn ∈ fin(hi, D) ∩Hn(sn). Since we know, by Lemma 8.1, that D∗n(hn) = Dn(hn), it follows that

sn ∈ D∗n(hn) for every hn ∈ fin(hi, D) ∩Hn(sn). (8.13)

Recall from above that D is dynamically consistent. But then, it follows from (8.13) and Lemma 8.4, setting
H∗n := fin(hi, D)∩H−n (p′), that there is some s∗n with s

∗
n|H−n (p′) = sn|H−n (p′) such that s

∗
n ∈ D∗n(hn) for every

hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fin(hi, D) ∩H−n (p′)). By Lemma 8.1 we know that D∗n(hn) = Dn(hn), and hence
s∗n ∈ Dn(hn) for every hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fin(hi, D) ∩H−n (p′)).

As h′j precedes hi and f collectively preserves focus on past information sets, we conclude that fjn(h′j , D)∩
H−n (p′) ⊆ fin(hi, D), and hence s∗n ∈ Dn(hn) for every hn ∈ (Hn(s∗n)\H−n (p′)) ∪ (fjn(h′j , D) ∩ H−n (p′)). In
particular, s∗n ∈ Dn(hn) for every hn ∈ fjn(h′j , D) ∩Hn(s∗n).

From Cases 4.1 and 4.2 we conclude, for every n 6= j, that s∗n ∈ Dn(hn) for every hn ∈ fjn(h′j , D)∩Hn(s∗n).
Moreover, as for all n 6= j we have that s∗n|H−n (p′) = sn|H−n (p′) and sn selects all player n actions in p

′,

we see that s∗n selects all player n actions in p′ as well. As this holds for all n 6= j we conclude that
(s∗n)n6=j ∈ S−j(h′j). Altogether, we conclude that (s∗n)n 6=j ∈ D+∗

−j (h
′
j , f). In the same was as above it can be

shown that D+∗
−j (h

′
j , f) = D+

−j(h
′
j , f), and hence (s∗n)n 6=j ∈ D+

−j(h
′
j , f). We thus see that s∗j ∈ D+

j (h′j , f) and
(s∗n)n6=j ∈ D+

−j(h
′
j , f) and hence h′j ∈ He

j (D, f).

From Cases 1—4 we thus conclude, for all j, that h′j ∈ He
j (D, f) for all h′j ∈ H(D+

i (hi, f)×D+
−i(hi, f))∩Hj .

The proof of (a) is hereby complete.

(b) Take a collection of decision problems D = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0, a player i, an
information set hi ∈ He

i (D, f) and a predecessor h′i ∈ H−i (hi). Take some si ∈ D+
i (hi, f) and some s−i ∈

D+
−i(hi, f). Since si ∈ Si(hi) and s−i ∈ S−i(hi), we conclude that (si, s−i) reaches hi. As h′i precedes hi

and the game satisfies perfect recall, the strategy combination (si, s−i) must reach h′i as well. Recall that
si ∈ D+

i (hi, f) and s−i ∈ D+
−i(hi, f), which implies that h′i ∈ H(D+

i (hi, f) × D+
−i(hi, f)). By (a) we then

conclude that h′i ∈ He
i (D, f). As such, He

i (D, f) is closed under predecessors.
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(c) Suppose that either D = (rfk+1◦rgm)(Dfull) and E = (rfk◦rgm+1)(Dfull), or D = (rfk◦rgm+1)(Dfull)
and E = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0, and let D ⊆σ,f,D′ E for some σ and D′.

Take a player i. To show that He
i (D, f) ⊆ He

i (E, f) take some hi ∈ He
i (D, f). Then, D+

i (hi, f) 6= ∅
and D+

−i(hi, f) 6= ∅. Take some si ∈ D+
i (hi, f) and some (sj)j 6=i ∈ D+

−i(hi, f). We will show that σi(si) ∈
E+
i (hi, f) and (σj(sj))j 6=i ∈ E+

−i(hi, f), which would imply that hi ∈ He
i (E, f).

We start by showing that σi(si) ∈ E+
i (hi, f). As hi ∈ He

i (D, f) and, by (b), He
i (D, f) is closed under

predecessors, it follows that H−i (hi) ⊆ He
i (D, f). Note that either D = rf(D′) or D′ = Dfull. In either case

we have thatD ⊆ D′, which implies thatHe
i (D, f) ⊆ He

i (D′, f), and henceH−i (hi) ⊆ He
i (D′, f). By property

(T1) of σ it then follows that σi(si)|H−i (hi)
= si|H−i (hi)

. Since si ∈ Si(hi) we conclude that σi(si) ∈ Si(hi)
as well. We thus conclude that hi ∈ He

i (D, f) ∩ Hi(σi(si)). Since He
i (D, f) ⊆ He

i (D′, f) we have that
hi ∈ He

i (D′, f) ∩Hi(σi(si)). As si ∈ D+
i (hi, f), it follows by property (T2) of σ that σi(si) ∈ E+

i (hi, f).
We next show that (σj(sj))j 6=i ∈ E+

−i(hi, f). Recall that (sj)j 6=i ∈ D+
−i(hi, f). By Lemma 8.9 we know that

D+
−i(hi, f) = D++

−i (hi, f), and thus (sj)j 6=i ∈ D++
−i (hi, f). Hence, for every j 6= i we have that sj ∈ D+

j (hj , f)
for all hj ∈ fij(hi, D)∩Hj(sj). By properties (T2) and (T3) of σ we then conclude that σj(sj) ∈ Ej(hj) for
all hj ∈ fij(hi, D) ∩Hj(σj(sj)).

Recall that either D = (rfk+1 ◦ rgm)(Dfull) and E = (rfk ◦ rgm+1)(Dfull), or D = (rfk ◦ rgm+1)(Dfull)
and E = (rfk ◦rgm)(Dfull) for some k,m ≥ 0. As f is monotone with respect to g we know that fij(hi, E) ⊆
fij(hi, D), and hence

σj(sj) ∈ Ej(hj) for all hj ∈ fij(hi, E) ∩Hj(σj(sj)). (8.14)

To show that (σj(sj))j 6=i ∈ E+∗
−i (hi, f) we need to verify that (σj(sj))j 6=i ∈ S−i(hi). Take some hj ∈

Hj(σj(sj)) preceding hi such that (si, (sn)n 6=i) reaches hj . As si ∈ D+
i (hi, f) and (sn)n6=i ∈ D+

−i(hi, f) we
conclude that hj ∈ H(D+

i (hi, f)×D+
−i(hi, f))∩Hj . As hi ∈ He

i (D, f) it follows from (a) that hj ∈ He
j (D, f).

Moreover, as D ⊆ D′ we have that He
j (D, f) ⊆ He

j (D′, f), and hence it follows that hj ∈ He
j (D′, f). By

property (T1) of σ it follows that for every hj ∈ Hj(σj(sj)) preceding hi such that (si, (sn)n6=i) reaches hj we
have that (σj(sj))(hj) = sj(hj). Since this holds for every j 6= i, and since (si, (sj)j 6=i) reaches hi, we conclude
that (si, (σj(sj))j 6=i) reaches hi as well. As such, (σj(sj))j 6=i ∈ S−i(hi). Together with (8.14) it follows that
(σj(sj))j 6=i ∈ E+∗

−i (hi, f). Recall that either E = (rfk ◦rgm+1)(Dfull) or E = (rfk ◦rgm)(Dfull). In the same
way as in the proof of (a) it can be shown that E+∗

−i (hi, f) = E+
−i(hi, f), and hence (σj(sj))j 6=i ∈ E+

−i(hi, f).
We thus see that σi(si) ∈ E+

i (hi, f) and (σj(sj))j 6=i ∈ E+
−i(hi, f), which implies that E+

i (hi, f) 6= ∅ and
E+
−i(hi, f) 6= ∅. As such, hi ∈ He

i (E, f). As this holds for every hi ∈ He
i (D, f) it follows that He

i (D, f) ⊆
He
i (E, f), which completes the proof. �

Consider two profiles of transformation mappings τ = (τ i)i∈I and ρ = (ρi)i∈I where τ i, ρi : Si → Si for
every player i. Then, ρ ◦ τ denotes the profile of transformation mappings that defines for every player i the
transformation mapping ρi ◦ τ i : Si → Si.

Lemma 8.11 (Transitivity of inclusion operator) Consider two focus functions f, g with g ⊆ f that
are monotone, individually forward decreasing and individually preserving focus on past information sets.
Assume moreover that f is collectively forward decreasing, collectively preserving focus on past information
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sets, transitively closed and monotone with respect to g. Consider three collections of decision problems
D,E, F where D = (rfk ◦ rgm)(Dfull) for some k,m ≥ 0 such that D ⊆τ ,f,D′ E ⊆ρ,f,E′ F for some τ , ρ and
D′, E′ with He

i (D′, f) = He
i (E′, f) for all players i. Then, D ⊆ρ◦τ ,f,D′ F.

Proof. Let σ := ρ ◦ τ . Hence, σi = ρi ◦ τ i for every player i. In order to prove that D ⊆σ,f,D′ F we will now
show that σi satisfies the properties (T1), (T2) and (T3).

(T1) As D ⊆τ ,f,D′ E ⊆ρ,f,E′ F we have, for every player i and every strategy si, that τ i(si)|He
i (D′,f) =

si|He
i (D′,f) and ρi(si)|He

i (E′,f) = si|He
i (E′,f). SinceHe

i (D′, f) = He
i (E′, f), it follows that (ρi◦τ i)(si)|He

i (D′,f) =
si|He

i (D′,f) for every strategy si, which implies property (T1) for σi.

(T2) Take some player i, some strategy si, and some hi ∈ He
i (D′, f) ∩Hi(σi(si)) with si ∈ D+

i (hi). Since,
by Lemma 8.10 (b), the collection He

i (D′, f) is closed under predecessors, we have that H−i (hi) ⊆ He
i (D′, f).

Since D ⊆τ ,f,D′ E ⊆ρ,f,E′ F we conclude that τ i(si)|He
i (D′,f) = si|He

i (D′,f) and ρi(si)|He
i (E′,f) = si|He

i (E′,f). As
He
i (D′, f) = He

i (E′, f) it follows that σi(si)|He
i (D′,f) = τ i(si)|He

i (D′,f) and hence σi(si)|H−i (hi)
= τ i(si)|H−i (hi)

.

Since hi ∈ Hi(σi(si)) we conclude that hi ∈ Hi(τ i(si)) as well.
Thus, hi ∈ He

i (D′, f)∩Hi(τ i(si)) and si ∈ D+
i (hi). Since, by the assumption, D ⊆τ ,f,D′ E, it follows from

(T2) of τ that τ i(si) ∈ E+
i (hi). Hence, we see that hi ∈ He

i (D′, f)∩Hi(σi(si)) and τ i(si) ∈ E+
i (hi). As σi =

ρi ◦τ i it follows that hi ∈ He
i (D′, f)∩Hi(ρi(τ i(si))) and τ i(si) ∈ E+

i (hi). Recall that He
i (D′, f) = He

i (E′, f),
and hence hi ∈ He

i (E′, f) ∩ Hi(ρi(τ i(si))) and τ i(si) ∈ E+
i (hi). Since, by the assumption, E ⊆ρ,f,E′ F, it

follows from (T2) of ρ that ρi(τ i(si)) ∈ F+
i (hi). That is, σi(si) ∈ F+

i (hi). As this holds for every strategy
si, and every hi ∈ He

i (D′, f) ∩Hi(σi(si)) with si ∈ D+
i (hi), property (T2) for σi follows.

(T3) Take some player i, some strategy si, and some hi ∈ Hi(σi(si))\He
i (D′, f). Since σi = ρi ◦ τ i and

He
i (D′, f) = He

i (E′, f), we have that hi ∈ Hi(ρi(τ i(si)))\He
i (E′, f). As E ⊆ρ,f,E′ F it follows from (T3) of

ρ that ρi(τ i(si)) ∈ Fi(hi). That is, σi(si) ∈ Fi(hi). This holds for every strategy si and every
hi ∈ Hi(σi(si))\He

i (D′, f), and as such (T3) holds.
Thus, (T1), (T2) and (T3) hold for σ, which implies that D ⊆σ,f,D′ F. �

Lemma 8.12 (Monotonicity on explicable information sets) Consider two focus functions f, g with
g ⊆ f that are monotone, individually forward decreasing and individually preserving focus on past infor-
mation sets. Assume moreover that f is collectively forward decreasing, collectively preserving focus on
past information sets, transitively closed and monotone with respect to g. Suppose that E = (rfk ◦ rgm)
for some k,m ≥ 0, that D is a (g, f)-semi reduction of E, and let

rf(E) ⊆τ ,f,E D ⊆ρ,f,D′ E

for some τ , ρ and D′. Then,
rf(D) ⊆σ,f,D rf(E)

for some σ.
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Proof. Set Drf := rf(D) and Erf := rf(E). Hence, we must show that Drf ⊆σ,f,D Erf for some σ.
We first show that Erf is dynamically consistent. To see this, recall that E = (rfk ◦ rgm)(Dfull). Then,
Erf = (rfk+1 ◦ rgm)(Dfull). Let m∗ ≤ m be the smallest number such that rgm

∗
(Dfull) = rgm(Dfull).

Then, Erf = (g≤m, f)m
∗+k+1(Dfull). As f, g are monotone and g ⊆ f it follows by Lemma 8.8 that (g≤m, f)

is monotone as well. Moreover, (g≤m, f) is individually forward decreasing and individually preserves focus
on past information sets since it inherits these properties from g and f. By Lemma 8.6 it then follows that
Erf is dynamically consistent.

For every player i we construct the mapping σi : Si → Si as follows. Since Erf is dynamically consistent,
we know by Lemma 8.5 (b) that there is for every information set hi ∈ (Hi\He

i (D, f))first a strategy sEi [hi]

such that sEi [hi] ∈ Erf∗i (h′i) for all h
′
i ∈ Hi(s

E
i [hi])\H−i (hi). Hence, in particular, sEi [hi] ∈ Erf∗i (h′i) for

all h′i ∈ Hi(s
E
i [hi]) ∩ H+

i (hi). Moreover, as Erf = (g≤m, f)m
∗+k+1(Dfull) we know from Lemma 8.1 that

Erf∗i (h′i) = Erfi (h′i) for all h
′
i ∈ Hi. Thus, sEi [hi] ∈ Erfi (h′i) for all h

′
i ∈ Hi(s

E
i [hi]) ∩H+

i (hi).
For every strategy si ∈ Si we define σi(si) to be the unique strategy where

σi(si)|He
i (D,f) = si|He

i (D,f) and (8.15)

σi(si)|H+
i (hi)

= sEi [hi]|H+
i (hi)

for all hi ∈ (Hi\He
i (D, f))first. (8.16)

This construction is well-defined since, by Lemma 8.10 (b), the collection He
i (D, f) is closed under prede-

cessors, and hence the collection Hi\He
i (D, f) is closed under weak followers.

In view of (8.15) we conclude that σ satisfies property (T1). It remains to prove properties (T2) and
(T3).

(T3) Take a strategy si and an information set h∗i ∈ Hi(σi(si))\He
i (D, f). We must show that σi(si) ∈

Erfi (h∗i ). Let hi be the information set in (Hi\He
i (D, f))first that weakly precedes h∗i . Then, by (8.16),

σi(si)|H+
i (hi)

= sEi [hi]|H+
i (hi)

. As h∗i weakly follows hi we know that σi(si)|H+
i (h∗i ) = sEi [hi]|H+

i (h∗i ). Moreover,

by construction, sEi [hi] ∈ Erfi (h′i) for all h
′
i ∈ Hi(s

E
i [hi]) ∩ H+

i (hi), which implies, in particular, that
sEi [hi] ∈ Erfi (h∗i ). As, by Lemma 8.1, E

rf
i (h∗i ) = Erf∗i (h∗i ) we know that s

E
i [hi] ∈ Erf∗i (h∗i ). That is, s

E
i [hi] is

not strictly dominated in (Si(h
∗
i ), E

rf
−i(h

∗
i )). By Lemma 2.1 we then know that s

E
i [hi] is optimal in Si(h∗i ) for

some belief bi ∈ ∆(Erf−i(h
∗
i )). Since the expected utility induced by s

E
i [hi] under the belief bi only depends on

the behavior of sEi [hi] on H+
i (h∗i ), and σi(si)|H+

i (h∗i ) = sEi [hi]|H+
i (h∗i ), we conclude that also σi(si) is optimal

in Si(h∗i ) for the belief bi. As bi ∈ ∆(Erf−i(h
∗
i )), it follows by Lemma 2.1 that σi(si) is not strictly dominated

in (Si(h
∗
i ), E

rf
−i(h

∗
i )). That is, σi(si) ∈ E

rf∗
i (h∗i ). Since, by Lemma 8.1, E

rf
i (h∗i ) = Erf∗i (h∗i ), it follows that

σi(si) ∈ Erfi (h∗i ). As this holds for all strategies si and all information sets h
∗
i ∈ Hi(σi(si))\He

i (D, f), we
see that (T3) holds.

(T2) Take a strategy si and some h∗i ∈ He
i (D, f) ∩Hi(σi(si)) with si ∈ Drf+

i (h∗i , f). We must show that
σi(si) ∈ Erf+

i (h∗i , f). Assume, on the contrary, that σi(si) /∈ Erf+
i (h∗i , f). Then, σi(si) /∈ Erfi (hi) for some

hi ∈ fii(h∗i , Erf )∩Hi(σi(si)). Let hi ∈ fii(h∗i , Erf )∩Hi(σi(si)) be such σi(si) /∈ Erfi (hi), and σi(si) ∈ Erfi (h′i)

for all h′i ∈ fii(h∗i , Erf ) preceding hi. As σi(si) /∈ Erfi (hi) it follows by (T3) that hi ∈ He
i (D, f).
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We will show that si ∈ Drf+
i (hi, f). To prove this, we first show that fii(h∗i , E

rf ) ⊆ fii(h
∗
i , D

rf ). Take
some h′i ∈ fii(h∗i , Erf ). Then, there is some j 6= i and some hj ∈ fij(h∗i , Erf ) such that h′i ∈ fji(hj , Erf ).
Recall that E = (rfk ◦ rgm)(Dfull) and that D is a (g, f)-semi reduction of E. It may be verified that Drf

is then a (g, f)-semi reduction of Erf . Since f is monotone with respect to g we know that fij(h∗i , E
rf ) ⊆

fij(h
∗
i , D

rf ) and fji(hj , Erf ) ⊆ fji(hj , D
rf ). Thus, hj ∈ fij(h∗i , Drf ) and h′i ∈ fji(hj , Drf ), which implies

that h′i ∈ fii(h∗i , Drf ). Thus, fii(h∗i , E
rf ) ⊆ fii(h

∗
i , D

rf ). In particular, since hi ∈ fii(h∗i , Erf ), we conclude
that hi ∈ fii(h∗i , Drf ).

To show that si ∈ Drf+
i (hi, f), take some h′ı́ ∈ fii(hi, D

rf ) ∩ Hi(si). Hence, either (i) h′i = hi or (ii)
there is some player j 6= i and some hj ∈ fij(hi, Drf ) such that h′i ∈ fji(hj , Drf ). If h′i = hi we see that
si ∈ Drf

i (h′i), since si ∈ D
rf+
i (h∗i , f) and hi ∈ fii(h∗i , Drf ). Now, suppose that h′i 6= hi. Then, by (ii) and the

fact that hi ∈ fii(h∗i , Drf ) we conclude that hj is reachable from h∗i under D
rf and f. Since f is transitively

closed we know that hj ∈ fij(h∗i , Drf ). Since h′i ∈ fji(hj , Drf ) we conclude that h′i ∈ fii(h∗i , Drf ). From the
fact that si ∈ Drf+

i (h∗i , f) it follows that si ∈ Drf
i (h′i). As this holds for every h

′
ı́ ∈ fii(hi, Drf ) ∩Hi(si) we

conclude that si ∈ Drf+
i (hi, f).

As hi ∈ fii(hi, Drf ) it follows that si ∈ Drf
i (hi). Thus, by definition, si ∈ Di(hi) and si is not strictly

dominated in (Di(hi), D
rf
−i(hi)). As hi ∈ He

i (D, f) we know that D+
−i(hi, f) 6= ∅ and thus, by definition,

Drf
−i(hi) = D+

−i(hi, f). Moreover, by Lemma 8.9 we know that D+
−i(hi, f) = D++

−i (hi, f), and hence si is not
strictly dominated in (Di(hi), D

++
−i (hi, f)). Thus, by Lemma 2.1 there is a belief bDi ∈ ∆(D++

−i (hi, f)) such
that si is optimal in Di(hi) for bDi .

Recall that that D ⊆ρ,f,D′ E for some ρ and D′, where ρ = (ρi)i∈I . For every opponents’ strategy
combination s−i = (sj)j 6=i we define ρ−i(s−i) := (ρj(sj))j 6=i. Define the belief b

E
i by

bEi (s−i) :=
∑

s′−i∈S−i:ρ−i(s′−i)=s−i

bDi (s′−i). (8.17)

We show that bEi ∈ ∆(E+
−i(hi, f)), and that σi(si) is optimal in Si(hi) for bEi .

To show that bEi ∈ ∆(E+
−i(hi, f)), take some s−i ∈ S−i with bEi (s−i) > 0. By (8.17) there is some s′−i ∈ S−i

with ρ−i(s
′
−i) = s−i such that bDi (s′−i) > 0. Since bDi ∈ ∆(D++

−i (hi, f)) it must be that s′−i ∈ D++
−i (hi, f). Let

s′−i = (s′j)j 6=i. As s
′
−i ∈ D++

−i (hi, f) we have, for every j 6= i, that s′j ∈ D+
j (hj) for all hj ∈ fij(hi, D)∩Hj(s

′
j).

By properties (T2) and (T3) of ρ it follows that ρj(s
′
j) ∈ Ej(hj) for all hj ∈ fij(hi, D) ∩Hj(ρj(s

′
j)).

Recall that D is a (g, f)-semi reduction of E. Since f is monotone with respect to g we have that
fij(hi, E) ⊆ fij(hi, D), and hence we conclude, for all j 6= i, that

ρj(s
′
j) ∈ Ej(hj) for all hj ∈ fij(hi, E) ∩Hj(ρj(s

′
j)). (8.18)

As (s′j)j 6=i ∈ S−i(hi) and hi ∈ He
i (D, f) ⊆ He

i (D′, f) it can be shown, on the basis of (T1) for ρ, that
(ρj(s

′
j))j 6=i ∈ S−i(hi). Together with (8.18) we conclude that (ρj(s

′
j))j 6=i ∈ E+∗

−i (hi, f). Recall that E =

r(g≤m, f)m
∗+k(Dfull) for some m∗ and that (g≤m, f) is monotone. By Lemma 8.2 we then know that

E+∗
−i (hi, f) = E+∗

−i (hi, (g
≤m, f)) = E+

−i(hi, (g
≤m, f)) = E+

−i(hi, f),
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and hence (ρj(s
′
j))j 6=i ∈ E+

−i(hi, f). Since s−i = ρ−i(s
′
−i) = (ρj(s

′
j))j 6=i it follows that s−i ∈ E+

−i(hi, f). As
this holds for every s−i ∈ S−i with bEi (s−i) > 0, we see that bEi ∈ ∆(E+

−i(hi, f)).

Recall that σi(si) /∈ Erfi (hi). By Lemma 8.1 we know that Erfi (hi) = Erf∗i (hi), and hence σi(si) /∈
Erf∗i (hi). As hi ∈ Hi(σi(si)) it follows that σi(si) ∈ Si(hi). Since σi(si) /∈ Erf∗i (hi) it must be that σi(si) is
strictly dominated in (Si(hi), E

rf
−i(hi)). As we have seen above that b

E
i ∈ ∆(E+

−i(hi, f)) it follows in particular

that E+
−i(hi, f) 6= ∅, and hence Erf−i(hi) = E+

−i(hi, f). Thus, σi(si) is strictly dominated in (Si(hi), E
+
−i(hi, f)).

By Lemma 2.1 we then know that σi(si) is not optimal in Si(hi) for any belief bi ∈ ∆(E+
−i(hi, f)). As we

have seen that bEi ∈ ∆(E+
−i(hi, f)), we conclude that σi(si) is not optimal in Si(hi) for bEi .

Recall that σi(si) ∈ Erfi (h′i) for all h
′
i ∈ fii(h∗i , Erf ) preceding hi. As hi ∈ fii(h∗i , Erf ) we know that

hi is reachable from h∗i under E
rf and f. Hence, every h′i ∈ fii(hi, E

rf ) is reachable from h∗i under E
rf

and f. Since f is transitively closed it follows that fii(hi, Erf ) ⊆ fii(h
∗
i , E

rf ). As such, we conclude that
σi(si) ∈ Erfi (h′i) for all h

′
i ∈ fii(hi, Erf ) preceding hi.

By Lemma 8.1 we know that Erfi (h′i) = Erf∗i (h′i) for all h
′
i ∈ Hi, and hence σi(si) ∈ Erf∗i (h′i) for all

h′i ∈ fii(hi, Erf ) preceding hi. Set H∗i := fii(hi, E
rf ) ∩ H−i (hi) and choose some history p ∈ hi. Then, by

perfect recall, H−i (hi) = H−i (p), which implies that H∗i ⊆ H−i (p), and σi(si) ∈ Erf∗i (h′i) for all h
′
i ∈ H∗i .

Recall that Erf is dynamically consistent, and that bEi ∈ ∆(E+
−i(hi, f)) = ∆(Erf−i(hi)). By Lemma 8.4 there

is thus a strategy s∗i such that s
∗
i |H−i (p) = σi(si)|H−i (p) and s

∗
i ∈ E

rf∗
i (h′i) for all h

′
i ∈ H∗i ∪ (Hi(s

∗
i )\H−i (p)),

and such that s∗i is optimal for b
E
i on Si(hi). By the definition of H

∗
i we thus conclude that

s∗i ∈ E
rf∗
i (h′i) for all h

′
i ∈ fii(hi, Erf ) ∩Hi(s

∗
i ). (8.19)

As, by Lemma 8.1, Erf∗i (h′i) = Erfi (h′i) for all h
′
i, it follows that s

∗
i ∈ E

rf
i (h′i) for all h

′
i ∈ fii(hi, Erf )∩Hi(s

∗
i ).

Moreover, since hi ∈ Hi(σi(si)) we know that σi(si) selects all player i actions in p. As s∗i |H−i (p) = σi(si)|H−i (p)

we see that s∗i selects all player i actions in p as well, which implies that s
∗
i ∈ Si(hi). Together with (8.19)

we conclude that s∗i ∈ E
rf+
i (hi, f).

We have thus found a strategy s∗i ∈ E
rf+
i (hi, f) that is optimal in Si(hi) for bEi . As σi(si) is not optimal

in Si(hi) for bEi we conclude that
ui(σi(si), b

E
i ) < ui(s

∗
i , b

E
i ). (8.20)

Recall thatD ⊆ρ,f,D′ E. By Lemma 8.10 (c) it then follows thatHe
i (D, f) ⊆ He

i (E, f). Since we have seen
above that hi ∈ He

i (D, f) we conclude that hi ∈ He
i (E, f). Recall also that Erf ⊆τ ,f,E D. As hi ∈ He

i (E, f)

and s∗i ∈ E
rf+
i (hi, f) it follows by property (T2) of τ that

τ i(s
∗
i ) ∈ D+

i (hi, f). (8.21)

We next show that
ui(s

∗
i , b

E
i ) = ui(τ i(s

∗
i ), b

D
i ). (8.22)
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By definition,

ui(s
∗
i , b

E
i ) =

∑
s−i∈S−i

bEi (s−i) · ui(z(s∗i , s−i))

=
∑

s−i∈S−i

∑
s′−i∈S−i:ρ−i(s′−i)=s−i

bDi (s′−i) · ui(z(s∗i , s−i)), (8.23)

where the second equality follows from the definition of bEi in (8.17). Take some s−i, s′−i ∈ S−i with
ρ−i(s

′
−i) = s−i and bDi (s′−i) > 0. Since bDi ∈ ∆(D++

−i (hi, f)) we know that s′−i ∈ D++
−i (hi, f). As, by

definition, D++
−i (hi, f) ⊆ D+

−i(hi, f) we conclude that s′−i ∈ D+
−i(hi, f). Moreover, we have seen in (8.21)

that τ i(s∗i ) ∈ D+
i (hi, f). Hence, (τ i(s

∗
i ), s

′
−i) ∈ D+

i (hi, f) × D+
−i(hi, f). As hi ∈ He

i (D, f) it follows from
Lemma 8.10 (a) that H(D+

i (hi, f)×D+
−i(hi, f)) ∩Hj ⊆ He

j (D, f) for every player j, and thus

(τ i(s
∗
i ), s

′
−i) only reaches information sets in H

e
j (D, f) for every player j. (8.24)

As Erf ⊆τ ,f,E D we know by property (T1) of τ that τ i(s∗i )|He
i (E,f) = s∗i |He

i (E,f). Since D ⊆ρ,f,D′ E for
some D′ it follows from Lemma 8.10 (c) that He

i (D, f) ⊆ He
i (E, f). Hence, we conclude that

τ i(s
∗
i )|He

i (D,f) = s∗i |He
i (D,f). (8.25)

Recall that D ⊆ρ,f,D′ E. Let s′−i = (s′j)j 6=i. By property (T1) of ρ it follows that ρj(s
′
j)|He

i (D′,f) =

s′j |He
i (D′,f) for every j 6= i. Recall that D = rf(D′) or D′ = Dfull. In either case we have that D ⊆ D′, which

implies that He
i (D, f) ⊆ He

i (D′, f), and hence

ρj(s
′
j)|He

i (D,f) = s′j |He
i (D,f) for every j 6= i. (8.26)

By combining (8.24), (8.25) and (8.26), we see that

z(τ i(s
∗
i ), s

′
−i) = z(s∗i , s−i) whenever ρ−i(s

′
−i) = s−i and bDi (s′−i) > 0. (8.27)

By combining (8.23) and (8.27) we get

ui(s
∗
i , b

E
i ) =

∑
s−i∈S−i

∑
s′−i∈S−i:ρ−i(s′−i)=s−i

bDi (s′−i) · ui(z(τ i(s∗i ), s′−i))

=
∑

s′−i∈S−i

bDi (s′−i) · ui(z(τ i(s∗i ), s′−i)) = ui(τ i(s
∗
i ), b

D
i ),

which was to show.
We next prove that

ui(σi(si), b
E
i ) = ui(si, b

D
i ). (8.28)
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By definition,

ui(σi(si), b
E
i ) =

∑
s−i∈S−i

bEi (s−i) · ui(z(σi(si), s−i))

=
∑

s−i∈S−i

∑
s′−i∈S−i:ρ−i(s′−i)=s−i

bDi (s′−i) · ui(z(σi(si), s−i)), (8.29)

where the second equality follows from the definition of bEi in (8.17). Take some s−i, s′−i ∈ S−i with
ρ−i(s

′
−i) = s−i and bDi (s′−i) > 0. In the same way as above we then conclude that s′−i ∈ D+

−i(hi, f).

Moreover, we have seen above that si ∈ Drf+
i (hi, f). As Drf = rf(D) ⊆ D it then follows that si ∈

D+
i (hi, f). Hence, (si, s

′
−i) ∈ D+

i (hi, f)×D+
−i(hi, f). As hi ∈ He

i (D, f) it follows from Lemma 8.10 (a) that
H(D+

i (hi, f)×D+
−i(hi, f)) ∩Hj ⊆ He

j (D, f) for all players j, and thus

(si, s
′
−i) only reaches information sets in H

e
j (D, f) for all players j. (8.30)

By (8.15) we know that
σi(si)|He

i (D,f) = si|He
i (D,f). (8.31)

Let s′−i = (s′j)j 6=i. In the same way as above we conclude that

ρj(s
′
j)|He

i (D,f) = s′j |He
i (D,f) for every j 6= i. (8.32)

By combining (8.30), (8.31) and (8.32), we see that

z(si, s
′
−i) = z(σi(si), s−i) whenever ρ−i(s

′
−i) = s−i and bDi (s′−i) > 0. (8.33)

By combining (8.29) and (8.33) we get

ui(σi(si), b
E
i ) =

∑
s−i∈S−i

∑
s′−i∈S−i:ρ−i(s′−i)=s−i

bDi (s′−i) · ui(z(si, s′−i))

=
∑

s′−i∈S−i

bDi (s′−i) · ui(z(si, s′−i)) = ui(si, b
D
i ),

which was to show.
By combining (8.20), (8.22) and (8.28) we conclude that

ui(si, b
D
i ) = ui(σi(si), b

E
i ) < ui(s

∗
i , b

E
i ) = ui(τ i(s

∗
i ), b

D
i ).

However, since we know by (8.21) that τ i(s∗i ) ∈ D+
i (hi, f) and D+

i (hi, f) ⊆ Di(hi), this contradicts the
assumption that si is optimal in Di(hi) for the belief bDi . Hence, we must conclude that σi(si) ∈ E

rf+
i (h∗i , f).

Since this holds for every player i, every strategy si, and every h∗i ∈ He
i (D, f) ∩ Hi(σi(si)) with si ∈

Drf+
i (h∗i , f), we see that (T2) is satisfied. As such, (T1), (T2) and (T3) hold, which implies that Drf ⊆σ,f,D

Erf . This completes the proof. �
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Lemma 8.13 (Sandwich lemma) Consider two focus functions f, g with g ⊆ f that are monotone, indi-
vidually forward decreasing and individually preserving focus on past information sets. Assume moreover
that f is collectively forward decreasing, collectively preserving focus on past information sets, transitively
closed and monotone with respect to g. For a given m ≥ 0 let (Ek)∞k=0 be the f -rationalizability procedure
that starts at rgm(Dfull), and (Dk)∞k=0 be the f -rationalizability procedure that starts at rg

m+1(Dfull).
Then,

E1 ⊆τ ,f,E0 D0 ⊆ρ,f,Dfull E0

for some τ and ρ, and for every k ≥ 1 we have that

Dk ⊆σ,f,Dk−1 Ek and Ek+1 ⊆σ̃,f,Ek Dk

for some σ and σ̃.

Proof. Fix the number m.

(a) We start by showing that D0 ⊆ρ,f,Dfull E0 for some ρ. Note that D0 = rg(E0) ⊆ E0, which implies that
D0+
i (hi, f) ⊆ E0+

i (hi, f) for every player i and information set hi ∈ Hi. We can thus use, for every player i,
the identity mapping ρi : Si → Si with ρi(si) := si for every strategy si. Then, for every strategy si ∈ Si we
have that properties (T1), (T2) and (T3) hold. In fact, (T3) is trivially satisfied since He

i (Dfull, f) = Hi,
and hence Hi(σi(si))\He

i (Dfull, f) is always empty. Thus, D0 ⊆ρ,f,Dfull E0, which was to show.

(b) We next show that E1 ⊆τ ,f,E0 D0 for some τ . Recall that E1 = rf(E0) and D0 = rg(E0). Set E := E0,
Erf := rf(E) and Erg := rg(E). Hence, we must show that Erf ⊆τ ,f,E Erg.

We first show that Erg is dynamically consistent. To see this, recall that E0 = rgm(Dfull), and hence
Erg = rg(E0) = rgm+1(Dfull). As g is monotone, individually forward decreasing and individually preserves
focus on past information sets, it follows from Lemma 8.6 that Erg is dynamically consistent.

For every player i we construct the mapping τ i : Si → Si as follows. Since Erg is dynamically consistent
we know by Lemma 8.5 (b) that there is for every information set hi ∈ (Hi\He

i (E, f))first a strategy si[hi]
such that si[hi] ∈ Erg∗i (h′i) for all h

′
i ∈ Hi(si[hi])\H−i (hi). Hence, in particular, si[hi] ∈ Erg∗i (h′i) for all

h′i ∈ Hi(si[hi])∩H+
i (hi). Moreover, we know from Lemma 8.1 that E

rg∗
i (h′i) = Ergi (h′i) for all h

′
i ∈ Hi. Thus,

si[hi] ∈ Ergi (h′i) for all h
′
i ∈ Hi(si[hi]) ∩H+

i (hi).
For every strategy si ∈ Si we define τ i(si) to be the unique strategy where

τ i(si)|He
i (E,f) = si|He

i (E,f) and (8.34)

τ i(si)|H+
i (hi)

= si[hi]|H+
i (hi)

for all hi ∈ (Hi\He
i (E, f))first. (8.35)

This construction is well-defined since, by Lemma 8.10 (b), the collection He
i (E, f) is closed under prede-

cessors, and hence the collection Hi\He
i (E, f) is closed under weak followers.

In view of (8.34) we conclude that τ satisfies property (T1). It remains to prove properties (T2) and
(T3).

51



(T3) Take a strategy si and an information set h∗i ∈ Hi(τ i(si))\He
i (E, f). We must show that τ i(si) ∈

Ergi (h∗i ). Let hi be the information set in (Hi\He
i (E, f))first that weakly precedes h∗i . Then, by (8.35),

τ i(si)|H+
i (hi)

= si[hi]|H+
i (hi)

. As h∗i weakly follows hi we know that τ i(si)|H+
i (h∗i ) = si[hi]|H+

i (h∗i ). Moreover,

by construction, si[hi] ∈ Ergi (h′i) for all h
′
i ∈ Hi(si[hi]) ∩H+

i (hi). Recall that h∗i ∈ Hi(τ i(si)) ∩H+
i (hi). As

τ i(si)|H+
i (hi)

= si[hi]|H+
i (hi)

we conclude that h∗i ∈ Hi(si[hi]) ∩H+
i (hi) as well, and hence si[hi] ∈ Ergi (h∗i ).

As, by Lemma 8.1, Ergi (h∗i ) = Erg∗i (h∗i ) we know that si[hi] ∈ Erg∗i (h∗i ). That is, si[hi] is not strictly
dominated in (Si(h

∗
i ), E

rg
−i(h

∗
i )). By Lemma 2.1 we then know that si[hi] is optimal in Si(h

∗
i ) for some

belief bi ∈ ∆(Erg−i(h
∗
i )). Since the expected utility induced by si[hi] under the belief bi only depends on the

behavior of si[hi] on H+
i (h∗i ), and τ i(si)|H+

i (h∗i ) = si[hi]|H+
i (h∗i ), we conclude that also τ i(si) is optimal in

Si(h
∗
i ) for the belief bi. As bi ∈ ∆(Erg−i(h

∗
i )) it follows by Lemma 2.1 that τ i(si) is not strictly dominated

in (Si(h
∗
i ), E

rg
−i(h

∗
i )). That is, τ i(si) ∈ E

rg∗
i (h∗i ). Since, by Lemma 8.1, E

rg
i (h∗i ) = Erg∗i (h∗i ) it follows that

τ i(si) ∈ Ergi (h∗i ). As this holds for all strategies si and all information sets h
∗
i ∈ Hi(τ i(si))\He

i (E, f), we see
that (T3) holds.

(T2) Take some strategy si and some information set h∗i ∈ He
i (E, f) ∩ Hi(τ i(si)) with si ∈ Erf+

i (h∗i , f).
We must show that τ i(si) ∈ Erg+i (h∗i , f). Assume, on the contrary, that τ i(si) /∈ Erg+i (h∗i , f). Then, τ i(si) /∈
Ergi (hi) for some hi ∈ fii(h∗i , Erg) ∩Hi(τ i(si)). It follows by (T3) that hi ∈ He

i (E, f).

We will now show that si ∈ Erf+
i (hi, f). Recall that Erg = rg(E) and Erf = rf(E). Then, Erf is a

(g, f)-semi reduction of Erg. As f is monotone with respect to g it follows that fii(h∗i , E
rg) ⊆ fii(h∗i , Erf ).

Since hi ∈ fii(h∗i , Erg) we conclude that hi ∈ fii(h∗i , Erf ). To show that si ∈ Erf+
i (hi, f) take some h′i ∈

fii(hi, E
rf ) ∩Hi(si). Hence, either (i) h′i = hi, or (ii) there is some player j 6= i and some hj ∈ fij(hi, Erf )

such that h′i ∈ fji(hj , E
rf ). If h′i = hi then si ∈ Erfi (h′i) since si ∈ Erf+

i (h∗i , f) and hi ∈ fii(h
∗
i , E

rf ). If
h′i 6= hi then we conclude, from (ii) and the fact that hi ∈ fii(h∗i , Erf ), that hj is reachable from h∗i under
Erf and f. Since f is transitively closed we know that hj ∈ fij(h∗i , Erf ). As such, h′i ∈ fii(h∗i , Erf ). From
the fact that si ∈ Erf+

i (h∗i , f) it follows that si ∈ Erfi (h′i). As this holds for every h
′
i ∈ fii(hi, Erf ) ∩Hi(si)

we conclude that si ∈ Erf+
i (hi, f).

As Erf+
i (hi, f) ⊆ Erfi (hi) we see, in particular, that si ∈ Erfi (hi). By Lemma 8.1 we know that E

rf
i (hi) =

Erf∗i (hi), and hence si ∈ Erf∗i (hi). Thus, by definition, si is not strictly dominated in (Si(hi), E
rf
−i(hi)). By

Lemma 2.1 there is thus a belief bi ∈ ∆(Erf−i(hi)) such that si is optimal in Si(hi) for bi.

We now show that bi ∈ ∆(Erg−i(hi)). To show this we prove that E
rf
−i(hi) ⊆ E

rg
−i(hi). Take some (sj)j 6=i ∈

Erf−i(hi). As we have seen above that hi ∈ He
i (E, f) we know that E+

−i(hi, f) 6= ∅, which means that
Erf−i(hi) = E+

−i(hi, f). Thus, (sj)j 6=i ∈ E+
−i(hi, f), which means that (sj)j 6=i ∈ E−i(hi), and for every j 6= i it

holds that sj ∈ Ej(hj) for all hj ∈ fij(hi, E)∩Hj(sj). Since g ⊆ f it follows, for every j 6= i, that sj ∈ Ej(hj)
for all hj ∈ gij(hi, E)∩Hj(sj). But then, (sj)j 6=i ∈ Erg−i(hi). Hence, it follows that E

rf
−i(hi) ⊆ E

rg
−i(hi). Since

bi ∈ ∆(Erf−i(hi)) we conclude that bi ∈ ∆(Erg−i(hi)).
Recall that τ i(si) /∈ Ergi (hi). By Lemma 8.1 we know that Ergi (hi) = Erg∗i (hi), and hence τ i(si) /∈

Erg∗i (hi). As hi ∈ Hi(τ i(si)) it follows that τ i(si) ∈ Si(hi). Since τ i(si) /∈ Erg∗i (hi), it must be that τ i(si) is
strictly dominated in (Si(hi), E

rg
−i(hi)). By Lemma 2.1 we then know that τ i(si) is not optimal in Si(hi) for
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any belief b′i ∈ ∆(Erg−i(hi)). As we have seen that bi ∈ ∆(Erg−i(hi)), we conclude that τ i(si) is not optimal in
Si(hi) for bi. Hence, there is some strategy s∗i such that

ui(τ i(si), bi) < ui(s
∗
i , bi). (8.36)

We now prove that
ui(τ i(si), bi) = ui(si, bi). (8.37)

Recall that bi ∈ ∆(Erf−i(hi)) and that hi ∈ He
i (E, f). Hence, E+

−i(hi, f) 6= ∅ and thus, by definition,
Erf−i(hi) = E+

−i(hi, f). We therefore conclude that bi ∈ ∆(E+
−i(hi, f)).

By definition,
ui(τ i(si), bi) =

∑
s−i∈S−i

bi(s−i) · ui(z(τ i(si), s−i)). (8.38)

Take some s−i ∈ S−i with bi(s−i) > 0. As bi ∈ ∆(E+
−i(hi, f)) it follows that s−i ∈ E+

−i(hi, f). Moreover,

we know from above that si ∈ Erf+
i (hi, f) ⊆ E+

i (hi, f). Hence, (si, s
′
−i) ∈ E+

i (hi, f) × E+
−i(hi, f). As

hi ∈ He
i (E, f) it follows from Lemma 8.10 (a) that H(E+

i (hi, f)× E+
−i(hi, f)) ∩Hi ⊆ He

i (E, f), and thus

(si, s−i) only reaches information sets in He
i (E, f). (8.39)

By (8.34) we know that
τ i(si)|He

i (E,f) = si|He
i (E,f). (8.40)

By combining (8.39) and (8.40) we see that

z(si, s−i) = z(τ i(si), s−i) whenever bi(s−i) > 0. (8.41)

By combining (8.38) and (8.41) we get

ui(τ i(si), bi) =
∑

s−i∈S−i

bi(s−i) · ui(z(si, s−i)) = ui(si, bi),

which was to show.
By combining (8.36) and (8.37) we conclude that

ui(si, bi) = ui(τ i(si), bi) < ui(s
∗
i , bi).

However, this contradicts the fact that si is optimal in Si(hi) for the belief bi. Hence, we must conclude that
τ i(si) ∈ Erg+i (h∗i , f).

Since this holds for every player i, every strategy si, and every information set h∗i ∈ He
i (E, f)∩Hi(τ i(si))

with si ∈ Erf+
i (h∗i , f), we see that (T2) is satisfied. By the properties (T1), (T2) and (T3) above we thus

conclude that Erf ⊆τ ,f,E Erg, and hence E1 ⊆τ ,f,E0 D0, which was to show.
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(c) We finally show, by induction on k, that properties

(k.1) Dk ⊆σ,f,Dk−1 Ek and (k.2) Ek+1 ⊆σ̃,f,Ek Dk

hold for every k ≥ 1.

Induction start. We start with property (1.1). Recall that E1 = rf(E0). In (a) and (b) we have
shown that rf(E0) ⊆τ ,f,E0 D0 ⊆ρ,f,Dfull E0 for some τ and ρ. It then follows from Lemma 8.12 that
rf(D0) ⊆σ,f,D0 rf(E0) for some σ. Hence, D1 ⊆σ,f,D0 E1 for some σ, which was to show.

We next show property (1.2). Recall that D1 = rf(D0). By (1.1) and (b) we know that rf(D0) ⊆σ,f,D0

E1 ⊆τ ,f,E0 D0. It then follows by Lemma 8.12 that rf(E1) ⊆σ̃,f,E1 rf(D0) for some σ̃. Hence, E2 ⊆σ̃,f,E1 D1

for some σ̃, which was to show.

Induction step. Suppose that k ≥ 2 and that properties (k − 1.1) and (k − 1.2) hold. We first show
that (k.1) holds. Recall that Ek = rf(Ek−1). By (k − 1.2) and (k − 1.1) we know that rf(Ek−1) ⊆τ ,f,Ek−1
Dk−1 ⊆ρ,f,Dk−2 Ek−1 for some τ , ρ. By Lemma 8.12 it then follows that rf(Dk−1) ⊆σ,f,Dk−1 rf(Ek−1) for
some σ. Hence, Dk ⊆σ,f,Dk−1 Ek, which was to show.

We next show that (k.2) holds. Recall that Dk = rf(Dk−1). By (k.1) and (k − 1.2) we know that
rf(Dk−1) ⊆τ ,f,Dk−1 Ek ⊆ρ,f,Ek−1 Dk−1 for some τ , ρ. By Lemma 8.12 it then follows that rf(Ek) ⊆σ,f,Ek
rf(Dk−1) for some σ. Hence, Ek+1 ⊆σ,f,Ek Dk for some σ, which was to show. By induction on k we then
conclude that (k.1) and (k.2) hold for every k ≥ 1. This completes the proof. �

8.2.2 Proof of Theorem 5.1

Proof of Theorem 5.1. (a) Let M be such that rgM (Dfull) = rgM+1(Dfull). For every m ∈ {0, ...,M}
let (Dm,k)∞k=0 be the f -rationalizability procedure that starts at rg

m(Dfull). Let K be such that Dm,K =
Dm,K+1 for all m ∈ {0, ...,M}. Then, by construction, Dm,K = r(g≤m, f)∞(Dfull) for every m ∈ {0, ...,M}
and DM,K = r(g, f)∞(Dfull).

By Lemma 8.13 we know, for every m ∈ {0, ...,M − 1}, that Dm,K+1 ⊆σm,f,Dm,K Dm+1,K and
Dm+1,K+1 ⊆τm,f,Dm+1,K Dm,K+1 for some σm, τm. As Dm,K+1 = Dm,K and Dm+1,K+1 = Dm+1,K it follows
that

Dm,K ⊆σm,f,Dm,K Dm+1,K ⊆τm,f,Dm+1,K Dm,K (8.42)

for some σm, τm. By Lemma 8.10 (c) we then know that He
i (Dm,K) ⊆ He

i (Dm+1,K) ⊆ He
i (Dm,K) for all

players i. That is, He
i (Dm,K) = He

i (Dm+1,K) for all m ∈ {0, 1, ...,M − 1} and all players i. By (8.42) and a
repeated application of Lemma 8.11 we then conclude that

D0,K ⊆(σM−1◦...◦σ0),f,D0,K DM,K and DM,K ⊆(τ0◦...◦τM−1),f,D0,K D0,K . (8.43)

Moreover, we have seen in the proof of Lemma 8.12 that we can construct these transformation mappings
σ0, ..., σM−1 and τ0, ..., τM−1 on the basis of (8.15) and (8.16). Suppose that the transformation mappings
above have this specific construction.
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Set σ∗ := σM−1 ◦ ... ◦ σ0 and τ∗ := τ0 ◦ ... ◦ τM−1. We will show that σ∗ transforms every combination
(si)i∈I of f -rationalizable strategies into a combination (σ∗i (si))i∈I of (g, f)-rationalizable strategies yielding
the same outcome. Let σ∗ = (σ∗i )i∈I . Then, by construction of the transformation mappings σ

0, ..., σM−1,
for every player i the mapping σ∗i : Si → Si transforms every strategy si into the unique strategy σ∗i (si)
that satisfies

σ∗i (si)|He
i (D0,K ,f) = si|He

i (D0,K ,f) and (8.44)

σ∗i (si)|H+
i (hi)

= sM,K
i [hi]|H+

i (hi)
for all hi ∈ (Hi\He

i (D0,K , f))first, (8.45)

where sM,K
i [hi] ∈ DM,K

i (h′i) for all h
′
i ∈ H+

i (hi) ∩Hi(s
M,K
i [hi]).

Now, take for every player i an f -rationalizable strategy si. As rf∞(Dfull) = D0,K we must have,
for every player i, that si ∈ D0,K

i (hi) for every hi ∈ Hi(si). Then, for every player j, every information
set in Hj that is reached by (si)i∈I is in He

j (D0,K , f). To see this, consider an information set hj ∈ Hj

that is reached by (si)i∈I . As sj ∈ D0,K
j (h′j) for every h

′
j ∈ Hj(sj) we see that sj ∈ D0,K+

j (hj) and thus

D0,K+
j (hj , f) 6= ∅. Moreover, for every i 6= j we have that si ∈ D0,K

i (hi) for every hi ∈ Hi(si) which

implies that (si)i 6=j ∈ D0,K+∗
−j (hj , f). Recall that D0,K = rfK(Dfull). As f is monotone it follows from

Lemma 8.2 that D0,K+∗
−j (hj , f) = D0,K+

−j (hj , f), and hence it follows that (si)i 6=j ∈ D0,K+
−j (hj , f). As such,

D0,K+
−j (hj , f) 6= ∅. Since we have seen that D0,K+

j (hj , f) 6= ∅ also, we conclude that hj ∈ He
j (D0,K , f). Thus,

for every player j, every information set in Hj that is reached by (si)i∈I is in He
j (D0,K , f). By (8.44) it then

follows that z((si)i∈I) = z(σ∗i (si))i∈I .
We next show that σ∗i (si) is (g, f)-rationalizable for every player i. Take some player i. As si is f -

rationalizable and rf∞(Dfull) = D0,K , we conclude that si ∈ D0,K
i (hi) for every hi ∈ Hi(si). This implies

that si ∈ D0,K+
i (hi, f) for all hi ∈ Hi(si). Since, by (8.43), D0,K ⊆σ∗,f,D0,K DM,K , we know that σ∗

satisfies conditions (T2) and (T3). As si ∈ D0,K+
i (hi, f) for all hi ∈ Hi(si) it follows by (T2) and (T3)

that σ∗i (si) ∈ DM,K
i (hi) for all hi ∈ Hi(σ

∗
i (si)). As D

M,K = r(g, f)∞(Dfull) we conclude that σ∗i (si) is
(g, f)-rationalizable.

We thus see that σ∗ transforms every combination of f -rationalizable strategies (si)i∈I into a com-
bination of (g, f)-rationalizable strategies (σ∗i (si))i∈I such that z((si)i∈I) = z((σ∗i (si))i∈I). That is, both
combinations of strategies yield the same outcome. In a similar fashion it can be shown that τ∗ transforms
every combination of (g, f)-rationalizable strategies (si)i∈I into a combination of f -rationalizable strategies
(σ∗i (si))i∈I yielding the same outcome. As such, the set of f -rationalizable outcomes is the same as the set
of (g, f)-rationalizable outcomes.

(b) Take an f -rationalizable outcome z. Then, by (a), the outcome z is also (g, f)-rationalizable. That is,
there is a combination (si)i∈I of (g, f)-rationalizable strategies with z((si)i∈I) = z. Since, by construction,
r(g, f)∞(Dfull) ⊆ rg∞(Dfull), every (g, f)-rationalizable strategy is also g-rationalizable, and thus the
outcome z is g-rationalizable. As such, every f -rationalizable outcome is g-rationalizable.

(c) Suppose that f is future oriented. We first show that fii(hi, D0,K) ⊆ Hi\H−i (hi) for all players i and
hi ∈ Hi. To see this, consider some h′i ∈ fii(hi, D

0,K). Then, there is some j 6= i and hj ∈ fij(hi, D
0,K)

55



such that h′i ∈ fji(hj , D0,K). Since f is future oriented we have that hi weakly precedes hj and hj weakly
precedes h′i. As the game has a cycle-free ordering of information sets, h

′
i cannot precede hi, and hence

h′i ∈ Hi\H−i (hi). Thus, fii(hi, D0,K) ⊆ Hi\H−i (hi).
Now consider, for every player i, the mapping σ∗i : Si → Si we constructed in (a). We will show that

σ∗i is the identity mapping, by proving that H
e
i (D0,K , f) = Hi. To see this, consider some hi ∈ Hi. As f

is monotone, individually forward decreasing and individually preserves focus on past information sets, we
know from Lemma 8.6 that D0,K is dynamically consistent. Hence, we conclude from Lemma 8.5 (b) that
there is a strategy s∗i ∈ Si(hi) such that s∗i ∈ D0,K∗

i (h′i) for all h
′
i ∈ Hi(s

∗
i )\H−i (hi). Since we have seen

above that fii(hi, D0,K) ⊆ Hi\H−i (hi) we conclude that s∗i ∈ D
0,K∗
i (h′i) for all h

′
i ∈ fii(hi, D0,K) ∩Hi(s

∗
i ).

As, by Lemma 8.1, D0,K∗
i (h′i) = D0,K

i (h′i), we see that s
∗
i ∈ D0,K

i (h′i) for all h
′
i ∈ fii(hi, D

0,K) ∩ Hi(s
∗
i ).

Hence, s∗i ∈ D
0,K+
i (hi, f), which implies that D0,K+

i (hi, f) 6= ∅.
To show that D0,K+

−i (hi, f) 6= ∅ choose some history p ∈ hi. For a fixed player j 6= i choose some strategy
sj that selects all player j actions in p. As D0,K is dynamically consistent we know, by Lemma 8.4, that
there is some strategy s∗j with s

∗
j |H−j (p) = sj |H−j (p) such that s

∗
j ∈ D

0,K∗
j (hj , f) for all hj ∈ Hj(s

∗
j )\H−j (p).

In particular, s∗j ∈ D
0,K∗
j (hj , f) for all hj ∈ H+

j (hi) ∩Hj(s
∗
j ). Since f is future oriented we must have that

fij(hi, D
0,K) ⊆ H+

j (hi). Hence,

s∗j ∈ D
0,K∗
j (hj , f) for all hj ∈ fij(hi, D0,K) ∩Hj(s

∗
j ). (8.46)

Moreover, since s∗j |H−j (p) = sj |H−j (p) and sj selects all player j actions in p, we know that s
∗
j selects all player

j actions in p as well. Since this holds for all j 6= i we conclude that (s∗j )j 6=i ∈ S−i(hi). Together with (8.46)
we see that (s∗j )j 6=i ∈ D0,K+∗

−i (hi, f). On the basis of Lemma 8.2 it can be shown, in a similar way as in

the proof of Lemma 8.10 (a), that D0,K+∗
−i (hi, f) = D0,K+

−i (hi, f), and thus (s∗j )j 6=i ∈ D
0,K+
−i (hi, f). Hence,

D0,K+
−i (hi, f) 6= ∅. As we have already seen that D0,K+

i (hi, f) 6= ∅ we conclude that hi ∈ He
i (D0,K , f). As

this holds for every hi ∈ Hi we see that He
i (D0,K , f) = Hi.

But then, it follows from the construction of σ∗i in (8.44) and (8.45) that σ
∗
i is the identity mapping from

Si to Si. Now, take some f -rationalizable strategy si for player i. By our proof of (a) we know that si = σ∗i (si)
is (g, f)-rationalizable and hence, in particular, si is g-rationalizable. That is, every f -rationalizable strategy
is g-rationalizable. This completes the proof. �
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