
Chapter 3

Common Belief in Rationality in Standard
Games

For the remainder of this book we will concentrate on decision problems where the states involve
choices by other players. Such decision problems are called games. In these scenarios it becomes
important to reason about the decision problems of others. In this chapter we will discuss a central
line of reasoning, called common belief in rationality. We will show how this reasoning concept can be
defined formally, and how we can use an iterated elimination procedure to find those choices you can
rationally make under common belief in rationality. In Chapter 3 of the online appendix we discuss
some economic applications of the concepts and results we present here.

3.1 Games as Decision Problems

In Chapter 2 we have investigated decision problems under uncertainty, where the consequence of a
choice depends on events that are beyond your control. Such events have been summarized by states.
From now on we will concentrate on scenarios where the states involve choices of other people. These
scenarios will be called games. We will see that, by reasoning about the rationality of other people,
you can possibly eliminate some states, since these involve irrational choices by others. As will become
clear throughout this book, reasoning about the decision problems and rationality of other people is
really at the core of game theory.

3.1.1 When States Involve Choices of Others
In the leading example of Chapter 2, the events about which you were uncertain concerned the state
of the weather. Indeed, which location you would choose for your birthday party heavily depended
on your belief about the state of the weather. Without any weather forecast, or any other piece of
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You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

yellow 1 1 1 0

Barbara blue green red yellow
blue 0 2 2 2
green 1 0 1 1
red 4 4 0 4

yellow 3 3 3 0

Table 3.1.1 Decision problems for “Going to a party”

information that could give an indication about the likely state of the weather, every probabilistic
belief about the three states rainy, stormy and calm would, in principle, be reasonable.

This may no longer be the case, however, if the states involve choices by other people. If you
reason about the decision problems and rationality of these other people, then possibly some states
may be discarded, as they involve irrational choices by others. Consider, for instance, the following
example.

Example 3.1: Going to a party.

You and your friend Barbara have been invited to a party this evening. The problem is: What color
do you wear? Suppose you only have blue, green, red and yellow outfits in your wardrobe, and that
the same is true for Barbara. Of course, there are some colors you like more and other colors you like
less. It turns out that, in principle, you prefer blue to green, you prefer green to red, and you prefer
red to yellow.

However, you really dislike arriving at the party wearing the same color as Barbara. In that case
you would be very disappointed. If you believe, for instance, that Barbara will wear your favorite
color blue, then you would rather wear yellow than blue. The problem is that you are uncertain about
Barbara’s color choice.

In this scenario, your possible choices are thus blue, green, red and yellow, whereas the states
correspond to Barbara’s choices blue, green, red and yellow. Assume that your conditional preference
relation has the expected utility representation shown in the left-hand panel of Table 3.1.1. Hence,
the left-hand table summarizes your decision problem (C, S,%), where C is your set of choices {blue,
green, red, yellow}, the set of states S contains Barbara’s choices {blue, green, red, yellow}, and your
conditional preference relation % is given by the expected utility representation in that table.

Note that at the state green, that is, when Barbara wears green, the intensity by which you prefer
blue to red is twice the intensity by which you prefer red to yellow. Indeed, the utility differences
between blue and red and between red and yellow are 2 and 1, respectively, and we have seen in
Chapter 2 that the expected utility difference between two choices serves as a measure for the intensity
by which you prefer one choice to the other. Moreover, at state green the intensity by which you prefer
red to yellow is the same as the intensity by which you prefer yellow to green. In particular, green is
your least preferred choice if you believe Barbara wears green, since you strongly dislike wearing the
same color as Barbara. Similar properties hold at the other three states.

Recall from Chapter 2 that a choice is called rational if it is optimal for at least one belief. Now,
which colors are rational for you and which are not? Clearly, blue is optimal for the belief that assigns
probability 1 to Barbara wearing green, whereas green is optimal for the belief that assigns probability
1 to Barbara wearing blue.

Question 3.1.1 Consider the belief (0.6)· blue + (0.4)· green, that assigns probability 0.6 to Barbara
wearing blue, and probability 0.4 to Barbara wearing green. What is your preference relation over
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colors at that belief ?

In particular, we see that your choice red is optimal for this belief. But what about your choice
yellow ? It turns out that this choice is strictly dominated by a randomized choice.

Question 3.1.2 Find a randomized choice that strictly dominates your choice yellow for the expected
utility representation u in Table 3.1.1. Does it strictly dominate yellow for every expected utility
representation of % ?

By Theorem 2.6.1 we thus conclude that your choice yellow is never optimal for any belief about
Barbara’s choice, and is thus irrational. Summarizing, we see that your choices blue, green and red
are rational, whereas your choice yellow is irrational.

3.1.2 Games
But does this automatically mean that your choices blue, green and red are also plausible? Not
necessarily. The reason is that Barbara also holds a conditional preference relation over her choices,
and it may well be that some color is irrational for Barbara. But if some color is irrational for Barbara,
then it seems natural to assign probability 0 to that color, as you expect Barbara not to choose that
particular color. Such reasoning would impose restrictions on your beliefs, which may possibly rule
out some of the rational choices above.

To see how this works, suppose that Barbara’s preferences over colors are different from yours: In
principle, she prefers red to yellow, yellow to blue, and blue to green. Similarly to you, also Barbara
dislikes wearing the same color as you. This leads to the utility function in the right-hand panel of
Table 3.1.1, which represents Barbara’s conditional preference relation over the four colors. In that
table, we have put Barbara’s choices in the rows, and your choices in the columns. The reason is that
from Barbara’s perspective, the states of her decision problem consist of your choices. Indeed, she is
uncertain about your choice of color.

These two decision problems together — one for you and one for Barbara — constitute a game.
The two decision makers, you and Barbara in this case, are called players. Sometimes, we number
the players by 1, 2, ... . Important is that the states in player i’s decision problem involve the choices
of other players, because player i is uncertain about the choices of other players. At the same time,
the choices of i’s opponents influence the consequences of i’s choices, and thus shape the preference
relation that player i has about his own choices. In the example above, the states in your decision
problem are Barbara’s choices, and the states in Barbara’s decision problem are your own choices.

For the formal definition of a game below, we use the following pieces of notation: By Ci we denote
the set of choices for player i, whereas C−i denotes the set of choice combinations of players other than
i. If there are only two players, as in the example above, then there is only one other player, say j, and
hence C−i denotes the set of player j’s choices. If there are more than two players, then there is more
than one opponent for player i, and C−i contains the choice combinations of two or more opponents.
This will be illustrated later, when we study an example with three players.

Definition 3.1.1 (Game) A game specifies

(a) a finite set of players I,

(b) for every player i a finite set of choices Ci,

(c) for every player i a decision problem (Ci, C−i,%i), where the set of choices is Ci, the set of states is
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You blue red yellow
blue 0 4 4
green 3 3 3
red 2 0 2

yellow 1 1 0

Table 3.1.2 Reduced decision problem for “Going to a party”

the set C−i of opponents’choice combinations, and %i is a conditional preference relation for player i,
assigning to every belief pi ∈ ∆(C−i) about the opponents’choice combinations a preference relation
%i,pi over i’s choices.

Throughout the remainder of this book, we will assume that the players’conditional preference
relations %i will always have an expected utility representation ui. As such, their decision problems
can be summarized by (Ci, C−i, ui), where ui is a utility function that assigns to every choice ci ∈ Ci
and state c−i ∈ C−i some utility ui(ci, c−i).

The two panels in Table 3.1.1 thus constitute a game, where the set of players is I = {you, Barbara}
or, as an abbreviation, I = {1, 2}, where you are player 1 and Barbara is player 2. The sets of choices
are C1 = {blue, green, red, yellow} and C2 = {blue, green, red, yellow}, and the players’decision
problems are summarized by the expected utility representations in the two panels of Table 3.1.1.

3.1.3 Reasoning about Others’Decision Problems
Recall from above that your choices blue, green and red are all rational, and that your choice yellow
is not. We now turn to the question: Which of these rational choices are also plausible, in the light
of Barbara’s decision problem in Table 3.1.1? To answer this question, we must start to reason about
Barbara’s decision problem.

Note first the similarity between Barbara’s conditional preference relation and yours: Although
her preferences over colors are different from yours, many of the characteristics carry over from your
conditional preference relation to hers. Similarly to the analysis of your decision problem, it can be
shown that for Barbara, her choices red, yellow and blue are rational, whereas her choice green is
irrational. Can you explain why?

But if it is irrational for Barbara to choose green, then it seems natural for you to assign probability
0 to Barbara wearing green. Or, equivalently, to eliminate the state green from your consideration.
Indeed, if you take Barbara seriously as a decision maker, then you must believe that she will choose
rationally, and you must thus assign probability 0 to her making the irrational choice green.

From a mechanical perspective, this corresponds to eliminating the column with state green in
your decision problem in Table 3.1.1, leading to the reduced decision problem in Table 3.1.2. Note
that in this reduced decision problem, you will always prefer green to red. In other words, if you assign
probability 0 to Barbara wearing the irrational color green, that you will definitely prefer green to red.
This makes sense, since we know from the story above that you will always prefer green to red as long
as Barbara does not wear green also. In particular, the color red can no longer be optimal for you if
you believe in Barbara’s rationality, that is, believe that Barbara will not make the irrational choice
green.

But if Barbara anticipates on this type of reasoning by you —and why wouldn’t she —and believes
that you will choose rationally, then she must believe that you will not choose red. Or, more precisely,
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Barbara will assign probability 0 to you wearing red. In that case, in the light of Barbara’s conditional
preferences in Table 3.1.1, the only optimal choice for Barbara would be red.

Thus, if you anticipate on this type of reasoning by Barbara, and believe in Barbara’s rationality,
then you must assign probability 1 to Barbara wearing red. As a consequence, you would definitely
choose blue yourself.

The reasoning above, which led you to the unique choice blue, requires not only that you believe
that Barbara chooses rationally, but also that you believe that Barbara believes that you choose
rationally, and so on. This type of reasoning is called common belief in rationality. As we will see, it
will be the central mode of reasoning in this book.

3.2 Belief Hierarchies, Beliefs Diagrams and Types

The purpose of this and the following section will be to offer a formal definition of the central idea
of common belief in rationality. We will see that its definition naturally involves the idea of belief
hierarchies, which describe your belief about the opponents’ choices, your belief about what the
opponents believe about the choices of others, and so on. We start by formally exploring belief
hierarchies, and subsequently investigate how such (infinite) belief hierarchies can conveniently be
encoded by means of beliefs diagrams and epistemic models with types.

3.2.1 Belief Hierarchies
Recall the idea of common belief in rationality. In a game with two players, you and the opponent,
it means that you believe that the opponent chooses rationally, that you believe that the opponent
believes that you choose rationally yourself, and so on. If there are more than two players, then from
player i’s perspective it means that player i (i) believes that every opponent j chooses rationally, (ii)
believes that every opponent j believes that every other player k chooses rationally, and so on.

But what does it mean, precisely, that player i believes that opponent j chooses rationally? It
means that i believes that j chooses optimally, given what i believes that j believes about the other
players’choices. To express this formally, we need player i’s belief about j’s choice (a first-order belief),
together with i’s belief about j’s belief about the other players’choices (a second-order belief).

As an illustration, consider again the example “Going to a party”summarized by Table 3.1.1. If
you believe that Barbara chooses yellow (first-order belief), and believe that Barbara believes that
you choose red (second-order belief) then you believe that Barbara chooses rationally, because yellow
is an optimal choice for Barbara if she believes that you choose red. Here, when we say “believe”, we
actually mean “assign probability 1 to”.

However, if we would only say that you believe that Barbara chooses yellow, then on the basis of
this first-order belief alone we cannot conclude whether you believe in Barbara’s rationality or not.
Indeed, if you were to believe that Barbara believes that you choose blue, for instance, then yellow
would no longer be optimal for Barbara. Hence, to formally express the event that player i believes
in j’s rationality, we need i’s first-order belief about j’s choice, together with i’s second-order belief
about j’s belief about the other players’choices.

Similarly, what does it mean that player i believes that opponent j believes that player k chooses
rationally? It means that i believes that j believes that k chooses optimally, given what i believes that
j believes that k believes about the other players’choices. To express this formally, we thus need i’s
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belief about j’s belief about k’s choice (a second-order belief), together with i’s belief about j’s belief
about k’s belief about the other players’choices (a third-order belief).

By continuing in this fashion, we conclude that the idea of common belief in rationality can only
be formalized if we state, for every player i, (i) his belief about the choice of every opponent j (his
first-order belief), (ii) his belief about what every opponent j believes about the choice of every other
player k (his second-order belief), (iii) his belief about what every opponent j believes about what
every opponent k believes about the choice of every other player l (his third-order belief), and so
on, ad infinitum. Such infinite sequences of beliefs are called belief hierarchies, and constitute the
language of epistemic game theory — an approach to game theory that zooms in on the reasoning
of players before they make a choice. Indeed, throughout this book we will use belief hierarchies to
formally define common belief in rationality and other related concepts that are central to epistemic
game theory.

Definition 3.2.1 (Belief hierarchy) A belief hierarchy for player i specifies

(1) a first-order belief, which is a belief about the choices made by i’s opponents,

(2) a second-order belief, which is a belief about what every opponent j believes about the choices
made by j’s opponents,

(3) a third-order belief, which is a belief about what every opponent j believes about what each of
his opponents k believes about the choices made by k’s opponents,

and so on.

A practical problem with belief hierarchies, however, is that they contain infinitely many belief
levels, which makes it impossible to write them down explicitly. On the other hand, they are indis-
pensable for modelling common belief in rationality, and hence we must find a way to represent them
in an easy and compact way. How can this be done? We will see that there are at least two convenient
methods for representing belief hierarchies: A graphical representation by means of beliefs diagrams,
and a mathematical encoding by means of epistemic models with types. The first is easy to understand
and convenient for examples, whereas the latter is useful for formal definitions and proofs.

3.2.2 Beliefs Diagrams
As an illustration of a beliefs diagram, consider Figure 3.2.1 which has been designed for the example
“Going to a party”. The arrows represent beliefs. For example, the solid arrow from your choice blue
to Barbara’s choice red means that you believe that Barbara chooses red, and that your choice blue
is optimal for this belief. The solid forked arrow from your choice red to Barbara’s choices blue and
green, with probabilities 0.6 and 0.4, represents the probabilistic belief in which you assign probability
0.6 to Barbara choosing blue and probability 0.4 to Barbara choosing green. Moreover, your choice red
is optimal for this belief, as we have seen in the previous section. The dashed arrow from your choice
yellow to Barbara’s choice yellow means that you believe that Barbara chooses yellow, but that your
choice yellow is not optimal for this belief.

Hence, the difference between solid and dashed arrows is that with a solid arrow, the choice from
which the arrow starts is optimal for the belief represented by the arrow, whereas with a dashed arrow
this is not the case. Recall from the first section that your choice yellow is not optimal for any belief
about Barbara’s choice, and hence your choice yellow can never be the starting point of a solid arrow.
Similarly, the arrows from Barbara’s choices to your choices represent beliefs that Barbara has about
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Figure 3.2.1 A beliefs diagram for “Going to a party”

your choice. Summarizing, the arrows in the beliefs diagram represent first-order beliefs about the
opponent’s choice.

We can also group together two consecutive arrows to obtain second-order beliefs. Start, for
example, at your choice blue, and follow the arrow from your choice blue to Barbara’s choice red, and
the succeeding arrow from Barbara’s choice red to your choice blue. These two consecutive arrows
together represent the second-order belief in which you believe that Barbara believes that you choose
blue.

If we start at your choice red, then with probability 0.6 we arrive at Barbara’s choice blue, followed
by a forked arrow that points to your choice red with probability 0.6 and your choice yellow with
probability 0.4, and with probability 0.4 it leads to Barbara’s choice green followed by an arrow to
your choice green. This induces a more complicated second-order belief, in which you assign probability
0.6 to the event that Barbara believes that you choose red and yellow with probabilities 0.6 and 0.4,
respectively, and in which you assign probability 0.4 to the event that Barbara believes that you choose
green.

Question 3.2.1 Describe the second-order belief for you that is obtained if we start at your choice
green. Also, describe the second-order belief for Barbara that is obtained if we start at her choice
green, and the one that is obtained if we start at her choice blue.

In a similar fashion, we can also derive third-order beliefs from a beliefs diagram by grouping
together three consecutive arrows. If we start, for instance, at your choice yellow, then we first arrive
at Barbara’s choice yellow, with the next arrow leading to your choice red, followed by a forked arrow
that points to Barbara’s choices blue and green with probabilities 0.6 and 0.4, respectively. The
induced third-order belief is that you believe that Barbara believes that you assign probability 0.6 to
Barbara choosing blue and probability 0.4 to Barbara choosing green.

Question 3.2.2 Describe the third-order belief for you that is obtained if we start at your choice
blue. Also, describe the third-order belief for Barbara that is obtained if we start at her choice green.

Of course we could continue in this way, and derive fourth-order beliefs, fifth-order beliefs, and so
on. That is, by starting at an arbitrary choice for you in the beliefs diagram, and following the arrows
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ad infinitum, we can derive a full belief hierarchy for you. Similarly for Barbara. In that sense, a
beliefs diagram provides a convenient graphical representation of belief hierarchies.

In general, to derive a full belief hierarchy we must be able to follow the arrows ad infinitum when
we start at a given choice with an outgoing arrow. Therefore, in a beliefs diagram every choice with
an outgoing arrow should only point to opponents’choices that have outgoing arrows themselves, so
that we never “get stuck”when we follow the arrows. From the beliefs diagram of Figure 3.2.1, for
instance, we could create a smaller beliefs diagram by keeping only the arrow from your choice blue
to Barbara’s choice red, and the arrow from Barbara’s choice red to your choice blue. Then, the only
choices with an outgoing arrow would be your choice blue and Barbara’s choice red. Moreover, by
following the arrows when starting at your choice blue or Barbara’s choice red we would never get
stuck. From this smaller beliefs diagram, we can therefore derive a full belief hierarchy when we start
at your choice blue or Barbara’s choice red.

Question 3.2.3 Suppose that in the beliefs diagram from Figure 3.2.1 we would delete the arrow
from your choice blue to Barbara’s choice red, and the arrow from Barbara’s choice red to your choice
blue. Would the remaining collection of arrows qualify as a beliefs diagram? What if we additionally
delete the arrow from Barbara’s choice green to your choice green?

Beliefs diagrams can also be designed for games with more than two players, as the following
example will illustrate.

Example 3.2: When Chris joins the party.

It is now one year later, and the same party is organized again. Your friend Chris has heard many
nice stories about the party, and would therefore like to join. As before, the problem is what color to
wear. Since you have become tired of wearing blue all the time, you have decided to give away all your
blue clothes to charity. Hence, you can only choose between green, red and yellow outfits, and your
preferences over these three colors have remained the same as before. Barbara, on the other hand,
has expanded her wardrobe, but she still only has blue, green, red and yellow dresses. However, due
to new developments in fashion her preferences over these colors have changed. She now prefers green
to blue, blue to yellow and yellow to red. Chris, finally, only has blue and yellow outfits, and prefers
blue to yellow. Like before, everyone still dislikes wearing the same color as some of the friends. In
that case, the persons wearing the same color will be very disappointed.

Suppose that the decision problems for the three players, including their conditional preference
relations, are given by the utility matrices in Table 3.2.1. Note that in your decision problem, the states
correspond to the choice combinations by Barbara and Chris. For instance, state (g, b) indicates that
Barbara chooses green and Chris chooses blue. Similarly, the states in Barbara’s decision problem are
the choice combinations by you and Chris. As an example, state (g, b) in Barbara’s decision problem
specifies that you choose green and Chris chooses blue. Finally, the states in Chris’decision problem
are the choice combinations by you and Barbara, where, for instance, state (g, b) means that you
choose green and Barbara chooses blue.

For this story we can design a beliefs diagram as in Figure 3.2.2. In this diagram, b, g, r and
y represent the four colors. As before, the arrows represent beliefs. For instance, the arrow that
starts from your choice green, leading to the choice pair (b, y) by Barbara and Chris, represents the
belief in which you think that Barbara chooses blue and Chris chooses yellow. Note that your choice
green is optimal for this belief, and therefore we have drawn a solid instead of a dashed arrow here.
The upwards pointing arrows represent beliefs for Barbara, whereas the downwards pointing arrows
represent beliefs for Chris. Consider, for instance, the upwards pointing arrow from Barbara’s and
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You (b, b) (g, b) (r, b) (y, b) (b, y) (g, y) (r, y) (y, y)

green 3 0 3 3 3 0 3 3
red 2 2 0 2 2 2 0 2

yellow 1 1 1 0 0 0 0 0

Barbara (g, b) (r, b) (y, b) (g, y) (r, y) (y, y)

blue 0 0 0 3 3 3
green 0 4 4 0 4 4
red 1 0 1 1 0 1

yellow 2 2 0 0 0 0

Chris (g, b) (r, b) (y, b) (g, g) (r, g) (y, g) (g, r) (r, r) (y, r) (g, y) (r, y) (y, y)

blue 0 0 0 2 2 2 2 2 2 2 2 2
yellow 1 1 0 1 1 0 1 1 0 0 0 0

Table 3.2.1 Decision problems in “When Chris joins the party”

Figure 3.2.2 A beliefs diagram for “When Chris joins the party”
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Chris’choice combination (b, y) to your and Chris’choice combination (g, y). This represents Barbara’s
belief in which she thinks that you choose green and Chris chooses yellow. Note that in the choice
combination (b, y) that the arrow starts from, Barbara’s choice is blue. Since blue is optimal for
Barbara under the belief just described, the arrow leaving (b, y) is solid. Similarly, the downwards
pointing arrow from Barbara’s and Chris’ choice combination (b, y) to your and Barbara’s choice
combination (g, b) represents Chris’ belief in which he thinks that you choose green and Barbara
chooses blue. As Chris’choice in the starting point (b, y) is yellow, and yellow is optimal for Chris
under the belief just described, also this arrow is solid.

We can also use arrows that represent probabilistic beliefs. Consider the forked arrow that starts
at Barbara’s and Chris’choice combination (y, b), with the associated probabilities 0.3 and 0.7. This
arrow represents Barbara’s probabilistic belief in which she assigns probability 0.3 to the event that
you choose red and Chris chooses blue, and where she assigns probability 0.7 to the event that you
choose green and Chris chooses blue.

Question 3.2.4 Explain why Barbara’s choice yellow is optimal for the probabilistic belief above.

The other arrows in the diagram can be interpreted in a similar fashion. Moreover, the reader may
verify that for every choice with an outgoing arrow, the choice is optimal for the belief represented by
the arrow. This is the reason why we only use solid arrows in this beliefs diagram. Note finally that
from Barbara’s and Chris’choice combination (y, b), there is no downwards pointing arrow representing
a belief for Chris. The reason is that Chris’choice blue in this choice combination is already present
in Barbara’s and Chris’choice combination (g, b), which has a downwards pointing arrow. Since the
downwards pointing arrow leaving (g, b) serves as an explanation for why Chris could choose blue,
there is no need to repeat this arrow at Barbara’s and Chris’choice combination (y, b).

Similarly as in Figure 3.2.1, we can read the arrows consecutively and obtain full belief hierarchies
for every player in this game. Start, for instance, at your choice green and follow the consecutive arrows
step by step. The first arrow indicates that you believe that Barbara chooses blue and that Chris
chooses yellow. This is your first-order belief. From Barbara’s and Chris’choice combination (b, y) we
can follow Barbara’s arrow that points to your and Chris’choice combination (g, y). By putting these
two arrows together, we obtain a part of your second-order belief in which you believe that Barbara
believes that you choose green and that Chris chooses yellow. In your third-order belief, what do you
believe that Barbara believes that Chris believes that you will do? To answer this question, remember
that you believe that Barbara believes that Chris chooses yellow. From Chris’arrow leaving Barbara’s
and Chris’choice combination (b, y) we see that Chris chooses yellow because he believes that you
choose green and Barbara chooses blue. Hence, you believe that Barbara believes that Chris believes
that you choose green. By continuing in this fashion, we can also derive the fourth-order beliefs, and
all higher order beliefs, if we start at your choice green and keep following the consecutive arrows ad
infinitum. Note that you never get stuck by following the arrows in this way: Every outgoing arrow
always points to a choice that has an outgoing arrow itself.

In fact, the above is true no matter where we start in the beliefs diagram. Indeed, if we start at
any choice for you, Barbara or Chris, and keep following the consecutive arrows, then we never get
stuck. Therefore, we will always be able to derive a full belief hierarchy no matter where we start in
the beliefs diagram.

Question 3.2.5 Suppose we start at your choice red, and keep following the arrows. What is your
induced first-order belief about Barbara’s choice? In your second-order belief, what do you believe
that Chris believes about Barbara’s choice? In your third-order belief, what do you believe that Chris
believes that Barbara believes about her opponents’choices?
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Figure 3.2.3 A beliefs diagram for “Going to a party”

In the beliefs diagrams from Figures 3.2.1 and 3.2.2, we thus have solid or dashed arrows that
go from a choice of player i to choices of the opponent(s). Such arrows may be supplemented by
probabilities if they represent probabilistic beliefs. Moreover, to be able to derive full belief hierarchies,
we must make sure that we never get stuck if we keep following consecutive arrows in the diagram.
That is, every arrow must necessarily point to choices that have outgoing (solid or dashed) arrows
themselves. These properties give rise to the following general definition of a beliefs diagram.

Definition 3.2.2 (Beliefs diagram) A beliefs diagram consists of arrows, which point from a choice
of some player to choice combinations of his opponents. These arrows represent beliefs about the oppo-
nents’choices. If the arrow leaving a certain choice is forked, and reaches several choice combinations
by his opponents, then we speak of probabilistic arrows. In that case, the several branches of the arrow
must be supplemented with probabilities, and this will then represent a probabilistic belief. Moreover,
every arrow must only point to choices that have outgoing arrows themselves. If a choice ci is optimal
for the first-order belief induced by the outgoing arrow, then the outgoing arrow at ci must be solid.
Otherwise, the outgoing arrow at ci must be dashed.

In the beliefs diagram of Figure 3.2.1, for instance, the arrow leaving your choice red is a proba-
bilistic arrow since it reaches two of Barbara’s choices, blue and green. These two choices are supple-
mented with the probabilities 0.6 and 0.4. Similarly, in the beliefs diagram of Figure 3.2.2, Barbara’s
arrow leaving Barbara’s choice yellow is probabilistic as well, since it reaches two opponents’choice-
combinations, (r, b) and (g, b). The two branches of this arrow are supplemented with the probabilities
0.3 and 0.7. Here, when we mention “Barbara’s arrow leaving Barbara’s choice yellow”we mean Bar-
bara’s arrow leaving Barbara’s and Chris’choice combination (y, b), in which Barbara chooses yellow.

Note also that in a beliefs diagram, not every choice needs to have outgoing arrows, nor does every
choice need to be present. In the beliefs diagram of Figure 3.2.2, for instance, your choice yellow and
Barbara’s choice red are not present.

It may also happen that in a beliefs diagram, the same choice of a given player appears more than
once. Consider, for instance, the beliefs diagram in Figure 3.2.3 for “Going to a party”. There, the
choice red for Barbara appears twice. The second time it appears, it is denoted by red’ to distinguish
it from the first time it appears.
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Let us concentrate on your belief hierarchy that starts at your choice blue. With probability 0.5, the
arrow goes to Barbara’s choice red, after which it goes to your choice blue. Moreover, with probability
0.5 the arrow leaving your choice blue goes to Barbara’s choice red’, after which it goes to your choice
green. That is, in your belief hierarchy that starts at your choice blue, you assign probability 0.5 to
the event that Barbara chooses red while believing that you choose blue, and you assign probability
0.5 to the event that Barbara chooses red while believing that you choose green. You therefore explain
the same choice red for Barbara by two different first-order beliefs that Barbara can hold: the belief
that you choose blue, and the belief that you choose green.

In general, if we wish to visualize a belief hierarchy in which you explain the same choice of a
player by two, or more, first-order beliefs, we must use a beliefs diagram in which this particular
choice appears more than once.

3.2.3 Types
Beliefs diagrams are a very intuitive way to visualize belief hierarchies, and are especially important
for illustrative purposes. For rigorous statements and proofs, however, it is desirable to have a more
formal encoding of belief hierarchies within a precise mathematical language. This is what we will try
to achieve next.

Recall that in a belief hierarchy, player i has a belief about (a) the opponents’choices, (b) the
beliefs that the opponents have about their opponents’ choices, (c) the beliefs that the opponents
have about the beliefs that their opponents have about the other players’choices, and so on. Note
that the beliefs in (b) are the opponents’first-order beliefs, that the beliefs in (c) are the opponents’
second-order beliefs, and so on. Therefore, in a belief hierarchy player i holds a belief about the (a)
the opponents’choices, (b) the opponents’first-order beliefs, (c) the opponents’second-order beliefs,
and so on. However, the opponents’first-order beliefs, second-order beliefs, and higher-order beliefs
together constitute the opponents’ belief hierarchies. We thus reach the conclusion that in a belief
hierarchy, player i holds a probabilistic belief about the opponents’choices and the opponents’belief
hierarchies.

Now, let us call a belief hierarchy a type. Then, a type for player i holds a belief about the
opponents’choices and the opponents’ types. Formally, such a belief takes the form of a probability
distribution on the opponents’choice-type combinations. That is, a type for player i assigns to every
combination of opponents’choices and types some probability, and the sum of all these probabilities
must be one. This property leads to the following definition of an epistemic model with types.

Definition 3.2.3 (Epistemic model) An epistemic model M = (Ti, bi)i∈I specifies

(a) for every player i a finite set of types Ti, and

(b) for every player i and every type ti ∈ Ti, a probability distribution bi(ti) on the opponents’choice-
type combinations. This probability distribution bi(ti) represents ti’s belief about the opponents’
choices and types.

As an illustration, consider the epistemic model in Table 3.2.2 for the game “Going to a party”.
As before, you are player 1 and Barbara is player 2. There are four types for you, denoted by tblue1 ,

tgreen1 , tred1 and tyellow1 , and four types for Barbara, denoted by tblue2 , tgreen2 , tred2 and tyellow2 .

The expression b1(tblue1 ) = (red, tred2 ) indicates that your type tblue1 believes that Barbara chooses red
and that Barbara has type tred2 . Or, more precisely, your type tblue1 assigns probability 1 to Barbara’s
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Types T1 = {tblue1 , tgreen1 , tred1 , tyellow1 }, T2 = {tblue2 , tgreen2 , tred2 , tyellow2 }

b1(t
blue
1 ) = (red, tred2 )

Beliefs for you b1(t
green
1 ) = (blue, tblue2 )

b1(t
red
1 ) = (0.6) · (blue, tblue2 ) + (0.4) · (green, tgreen2 )

b1(t
yellow
1 ) = (yellow, tyellow2 )

b2(t
blue
2 ) = (0.6) · (red, tred1 ) + (0.4) · (yellow, tyellow1 )

Beliefs for b2(t
green
2 ) = (green, tgreen1 )

Barbara b2(t
red
2 ) = (blue, tblue1 )

b2(t
yellow
2 ) = (red, tred1 )

Table 3.2.2 Epistemic model for “Going to a party”

choice-type combination (red, tred2 ). The expression

b1(t
red
1 ) = (0.6) · (blue, tblue2 ) + (0.4) · (green, tgreen2 )

means that your type tred1 assigns probability 0.6 to Barbara’s choice-type combination (blue, tblue2 ),
where Barbara chooses blue and holds type tblue2 , and assigns probability 0.4 to Barbara’s choice-type
combination (green, tgreen2 ), where Barbara chooses green and holds type tgreen2 . In other words, your
type tred1 believes that, with probability 0.6, Barbara will choose blue while being of type tblue2 , and
that with probability 0.4 Barbara will choose green while being of type tgreen2 . The other beliefs in the
epistemic model should be read in a similar way.

Recall that in a beliefs diagram, we could derive a full belief hierarchy for a player if we start at a
choice for that player, and keep following the arrows in the diagram. Something similar is true for an
epistemic model: If we start at a type for player i, and “keep following the types”in the model, then
we will be able to derive the first-order belief, second-order belief, and all higher-order beliefs for that
type.

To see how that works, consider your type tgreen1 in the epistemic model above. Note that type
tgreen1 believes that Barbara chooses blue and is of type tblue2 . The induced first-order belief, which is
the belief about Barbara’s choice, is thus that Barbara chooses blue. What is the second-order belief
that your type tgreen1 has about what Barbara believes about your own choice? Observe that tgreen1

believes that Barbara is of type tblue2 , and Barbara’s type tblue2 assigns probability 0.6 to you choosing
red and probability 0.4 to you choosing yellow. Hence, tgreen1 believes that Barbara assigns probability
0.6 to you choosing red and probability 0.4 to you choosing yellow. This is tgreen1 ’s second-order belief.

Writing down tgreen1 ’s third-order belief already becomes rather complicated, but is still feasible.
As we saw, your type tgreen1 believes that Barbara is of type tblue2 . In turn, Barbara’s type tblue2 assigns
probability 0.6 to your type tred1 , which assigns probability 0.6 to Barbara choosing blue and probability
0.4 to Barbara choosing green, and tblue2 assigns probability 0.4 to your type tyellow1 , which believes
that Barbara chooses yellow. Summarizing, your type tgreen1 believes that Barbara assigns probability
0.6 to the event that “you assign probability 0.6 to Barbara choosing blue and probability 0.4 to
Barbara choosing green”, and tgreen1 believes that Barbara assigns probability 0.4 to the event that
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“you believe that Barbara chooses yellow”. This is the induced third-order belief. In a similar fashion
we can derive all higher-order beliefs, and hence the full belief hierarchy, for type tgreen1 within the
epistemic model.

Question 3.2.6 What are the induced first-order, second-order and third-order belief for your type
tblue1 ? And for Barbara’s type tgreen2 ?

For every type in the epistemic model, we can thus derive its full belief hierarchy by “following
the consecutive types”, much like we derived the belief hierarchies in beliefs diagrams by following the
arrows. As such, the epistemic model above —and, in fact, any epistemic model —may be viewed as
a formal mathematical encoding of belief hierarchies.

There is something special about the epistemic model above: It turns out that the belief hierarchies
we obtain in this epistemic model are exactly the same as the belief hierarchies from the beliefs diagram
in Figure 3.2.1. Indeed, if we start at your type tgreen1 in the epistemic model, and derive the belief
hierarchy by following the types, then we obtain exactly the same belief hierarchy as when we start
at your choice green in the beliefs diagram, and derive the belief hierarchy by following the arrows.
Similarly, if we start at Barbara’s choice tyellow2 in the epistemic model and derive the belief hierarchy
by following the types, then we obtain the same result as when we start at Barbara’s choice yellow
in the beliefs diagram and keep following the arrows. The same holds for the other types. This also
explains the labels we have chosen for the types in the epistemic model.

Since the epistemic model generates exactly the same belief hierarchies as the beliefs diagram
from Figure 3.2.1, we may consider the epistemic model above a mathematical translation of this
beliefs diagram. Or, put the other way, we may view the beliefs diagram as a visual translation
of the epistemic model. The underlying reason is that the beliefs about the opponents’choice-type
combinations in the epistemic model from Table 3.2.2 are exactly the same beliefs as those represented
by the arrows in the beliefs diagram from Figure 3.2.1.

To see this, consider, for instance, the belief b1(t
green
1 ) = (blue, tblue2 ) of your type tgreen1 in the

epistemic model. It states that you believe that Barbara chooses blue and that Barbara holds the
belief hierarchy generated by tblue2 . This, however, is exactly what the arrow leaving your choice green
in the beliefs diagram tells us. Indeed, this arrow states that you believe that Barbara chooses blue
and that Barbara holds the belief hierarchy that starts at her choice blue. In a similar fashion, it can
be verified that every belief in the epistemic model of Table 3.2.2 is copied by an arrow in the beliefs
diagram in Figure 3.2.1, and vice versa. Hence, the epistemic model and the beliefs diagram can be
viewed as equivalent representations of the same belief hierarchies.

As an illustration of an epistemic model for three players, consider the epistemic model we designed
for “When Chris joins the party” in Table 3.2.3 . You are player 1, Barbara is player 2 and Chris
is player 3. There are two types for you, tgreen1 and tred1 , there are three types for Barbara, tblue2 ,

tgreen2 and tyellow2 , and we have two types for Chris, tblue3 and tyellow3 . The belief b1(t
green
1 ) = ((blue,

tblue2 ), (yellow, tyellow3 )) for your type tgreen1 indicates that you assign probability 1 to the opponents’
choice-type combination ((blue, tblue2 ), (yellow, tyellow3 )) where Barbara chooses blue, Barbara has type
tblue2 , Chris chooses yellow, and Chris has type tyellow3 . In other words, your type tgreen1 believes that
Barbara chooses blue, Barbara has type tblue2 , Chris chooses yellow, and that Chris has type tyellow3 .
The probabilistic belief

b2(t
yellow
2 ) = (0.3) · ((red, tred1 ), (blue, tblue3 )) + (0.7) · ((green, tgreen1 ), (blue, tblue3 ))

for Barbara’s type tyellow2 assigns probability 0.3 to the choice-type combination
((red, tred1 ), (blue, tblue3 )) where you choose red, you have type tred1 , Chris chooses blue and Chris has
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Types T1 = {tgreen1 , tred1 }, T2 = {tblue2 , tgreen2 , tyellow2 }, T3 = {tblue3 , tyellow3 }

Beliefs for you b1(t
green
1 ) = ((blue, tblue2 ), (yellow, tyellow3 ))

b1(t
red
1 ) = ((green, tgreen2 ), (blue, tblue3 ))

b2(t
blue
2 ) = ((green, tgreen1 ), (yellow, tyellow3 ))

Beliefs for b2(t
green
2 ) = ((red, tred1 ), (blue, tblue3 ))

Barbara b2(t
yellow
2 ) = (0.3) · ((red, tred1 ), (blue, tblue3 ))+

+(0.7) · ((green, tgreen1 ), (blue, tblue3 ))

Beliefs for Chris b3(t
blue
3 ) = ((red, tred1 ), (yellow, tyellow2 ))

b3(t
yellow
3 ) = ((green, tgreen1 ), (blue, tblue2 ))

Table 3.2.3 Epistemic model for “When Chris joins the party”

type tblue3 , and assigns probability 0.7 to the choice-type combination ((green, tgreen1 ), (blue, tblue3 ))
where you choose green, you have type tgreen1 , Chris chooses blue and Chris has type tblue3 . That is,
Barbara’s type tyellow2 believes that, with probability 0.3, you choose red while having type tred1 and
Chris chooses blue while having type tblue3 , and tyellow2 believes that, with probability 0.7, you choose
green while having type tgreen1 and Chris chooses blue while having type tblue3 .

Similarly as in Table 3.2.2, we can derive for every type in the model its first-order belief, second-
order belief and all higher-order beliefs, by following the types in the epistemic model. Consider, for
instance, your type tred1 , with the belief b1(tred1 ) = ((green, tgreen2 ), (blue, tblue3 )). The first-order belief
for tred1 is that you believe that Barbara chooses green and Chris chooses blue. In the induced second-
order belief, what do you believe that Barbara believes about Chris’choice? Note that tred1 believes
that Barbara holds type tgreen2 , which believes that Chris chooses blue. Hence, your type tred1 believes
that Barbara believes that Chris chooses blue, which is part of the induced second-order belief. In the
induced third-order belief, what do you believe that Chris believes that Barbara believes about your
own choice? Observe that tred1 believes that Chris has type tblue3 , which believes that Barbara has type
tyellow2 , which in turn assigns probability 0.3 to you choosing red and probability 0.7 to you choosing
green. Therefore, your type tred1 believes that Chris believes that Barbara assigns probability 0.3 to
you choosing red and probability 0.7 to you choosing green, which is part of the induced third-order
belief.

Question 3.2.7 Consider your type tgreen1 .What is the induced first-order belief about Barbara’s and
Chris’choice? As part of the second-order belief, what do you believe that Barbara believes about
Chris’ choice? As part of the third-order belief, what do you believe that Chris believes that you
believe about Barbara’s choice?

In the same way, we can derive for every type in the epistemic model its full belief hierarchy by
following the types within the model. Note that, similarly as before, also this epistemic model can
be viewed as a mathematical translation of a beliefs diagram we saw earlier. Indeed, compare the
epistemic model from Table 3.2.3 with the beliefs diagram from Figure 3.2.2. Then, the beliefs of the
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types in the epistemic model correspond one-to-one to the arrows in the beliefs diagram. Consider,
for instance, the belief b1(t

green
1 ) = ((blue, tblue2 ), (yellow, tyellow3 )) of your type tgreen1 in the epistemic

model. It states that you believe that Barbara chooses blue, that Barbara holds the belief hierarchy
induced by tblue2 , that Chris chooses yellow and that Chris holds the belief hierarchy induced by tyellow3 .
This is exactly what the arrow starting at your choice green in the beliefs diagram tells us. Since every
belief in the epistemic model has an “equivalent”arrow in the beliefs diagram, and vice versa, we may
conclude that the epistemic model from Table 3.2.3 and the beliefs diagram from Figure 3.2.2 are
equivalent representations of the same belief hierarchies.

All this shows that beliefs diagrams and epistemic models can both be used to encode belief
hierarchies in a game. As noted before, beliefs diagrams are especially useful for illustrative purposes,
whereas epistemic models are more appropriate for formal statements, definitions and proofs. For that
reason, both representations will be extensively used throughout this book.

3.3 Common Belief in Rationality

Remember the idea of common belief in rationality, which states that you believe that every opponent
chooses rationally, that you believe that every opponent believes that every other player chooses
rationally, and so on. This is a property that pertains to a belief hierarchy. Indeed, if you hold a belief
hierarchy, then to believe that opponent j chooses rationally means that you believe that j makes
a choice which is optimal, given what you think that j believes about his opponents’choices. This
condition thus imposes restrictions on your first- and second-order belief. Similarly, to believe that j
believes that another player k chooses rationally imposes restrictions on your second- and third-order
belief, and so on.

In the previous section we have seen that belief hierarchies can formally be encoded by means
of types in an epistemic model. In this section we will use this encoding to formally define what
common belief in rationality means. We will do so in three steps. First, we define what it means
for a choice to be optimal for a type. Subsequently, we clarify what it means for a type to believe in
the opponents’rationality. Finally, we use these building blocks to formally state the idea of common
belief in rationality.

3.3.1 Optimal Choices for Types
We have seen that every type ti within an epistemic model holds a probabilistic belief about the
opponents’choices and types. In particular, it holds a first-order belief b1i (ti) about the opponents’
choices. We then say that a choice ci is optimal for the type ti if it is optimal for the first-order belief
b1i (ti).

Definition 3.3.1 (Optimal choice for a type) Consider a type ti with first-order belief b1i (ti) about
the opponents’choice combinations. A choice ci is optimal for a type ti if

ci %b1i (ti) c
′
i

for every choice c′i ∈ Ci. Or, equivalently, if

ui(ci, b
1
i (ti)) ≥ ui(c′i, b1i (ti))

for every choice c′i ∈ Ci.
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We often write ui(ci, ti) instead of ui(ci, b1i (ti)), as an abbreviation. As an illustration, consider the
epistemic model in Table 3.2.2 for “Going to a party”. Let us focus on your type tred1 for the moment,
with the belief

b1(t
red
1 ) = (0.6) · (blue, tblue2 ) + (0.4) · (green, tgreen2 )

about Barbara’s choice-type combinations. In particular, this type holds the first-order belief

b11(t
red
1 ) = (0.6) · blue+ (0.4) · green

about Barbara’s choices. We have seen in Question 3.1.1 that wearing red is optimal for this belief.
Therefore, choice red is optimal for your type tred1 .

Or consider the epistemic model in Table 3.2.3 for “When Chris joins the party”. Let us concentrate
on Barbara’s type tyellow2 with the belief

b2(t
yellow
2 ) = (0.3) · ((red, tred1 ), (blue, tblue3 )) + (0.7) · ((green, tgreen1 ), (blue, tblue3 ))

about the opponents’choice-type combinations. This type has the first-order belief

b12(t
yellow
2 ) = (0.3) · (red, blue) + (0.7) · (green, blue)

on the opponents’choices, assigning probability 0.3 to the event that you choose red and Chris chooses
blue, and assigning probability 0.7 to the event that you choose green and Chris chooses blue. We
have seen in Question 3.2.4 that wearing yellow is optimal for Barbara under this belief, and therefore
choice yellow is optimal for Barbara’s type tyellow2 .

In the same epistemic model from Table 3.2.3, it may be verified that for you the choices green
and red are optimal for your types tgreen1 and tred1 , respectively, that for Barbara the choices blue and
green are optimal for her types tblue2 and tgreen2 , respectively, and that for Chris the choices blue and
yellow are optimal for his types tblue3 and tyellow3 , respectively.

Question 3.3.1 Consider the epistemic model from Table 3.2.2, designed for “Going to a party”. For
each of the types in this model, determine the optimal choice(s).

The notion of an optimal choice for a type will enable us, in the following subsection, to formally
define what it means for a type to believe in the opponents’rationality. This will be the central piece
in the formal definition of common belief in rationality later.

3.3.2 Belief in the Opponents’Rationality
Intuitively, you believe that opponent j chooses rationally if you believe that j makes a choice that
is optimal, given what you think that j thinks that other players will do. How can this condition be
formalized within an epistemic model with types?

Consider a type ti for player i within an epistemic model, which has a probabilistic belief bi(ti)
about the opponents’ choice-type combinations. In particular, bi(ti) assigns to every choice-type
combination (cj , tj) by opponent j some probability. Such a combination (cj , tj) may be viewed as
an event where player j chooses cj while holding the belief hierarchy induced by tj . If type ti believes
in j’s rationality, then it must only deem possible events (cj , tj) where the choice cj is optimal for
the first-order belief induced by tj . In other words, bi(ti) must only assign positive probability to j’s
choice-type combinations (cj , tj) where the choice cj is optimal for the type tj . If we require this for
every opponent j, we obtain the following definition.
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Definition 3.3.2 (Belief in the opponents’rationality) A type ti believes in the opponents’
rationality if the belief bi(ti) on the opponents’choice-type combinations assigns, for every opponent
j, only positive probability to choice-type pairs (cj , tj) where the choice cj is optimal for the type tj .

Consider, for example, Barbara’s type tyellow2 in the epistemic model from Table 3.2.3, with the
belief

b2(t
yellow
2 ) = (0.3) · ((red, tred1 ), (blue, tblue3 )) + (0.7) · ((green, tgreen1 ), (blue, tblue3 )).

This type only assigns positive probability to your choice-type pairs (red, tred1 ) and (green, tgreen1 ),
and to Chris’choice-type pair (blue, tblue3 ). Since we have concluded above that red is optimal for your
type tred1 , green is optimal for your type tgreen1 and blue is optimal for Chris’type tblue3 , we see that
Barbara’s type tyellow2 believes in her opponents’rationality. In fact, it may be verified that all types
in this epistemic model believe in the opponents’rationality. Please check this.

This is not true for the epistemic model in Table 3.2.2, however, which has been designed for
“Going to a party”. Consider, for instance, your type tred1 with the belief

b1(t
red
1 ) = (0.6) · (blue, tblue2 ) + (0.4) · (green, tgreen2 ).

In particular, it assigns positive probability to Barbara’s choice-type pair (green, tgreen2 ). Since we
have seen in Question 3.3.1 that green is not optimal for Barbara’s type tgreen2 , we conclude that your
type tred1 does not believe in Barbara’s rationality.

Question 3.3.2 Which of the remaining types in the epistemic model from Table 3.2.2 believe in the
opponent’s rationality? Which do not?

The definition of belief in the opponents’rationality will now enable us to formally define common
belief in rationality.

3.3.3 Common Belief in Rationality
Above we have defined, in a rigorous way, what it means for a type to believe in the opponents’
rationality. Having established this definition, it is now surprisingly easy to formalize what it means
to believe that opponent j believes in his opponents’ rationality. Consider a type ti for player i
in an epistemic model, which has the belief bi(ti) on the opponents’ choice-type combinations. In
particular, bi(ti) assigns to every type tj by opponent j some probability. Such a type tj may be
viewed as the event where player j holds the belief hierarchy induced by tj . If you believe that j
believes in his opponents’rationality, you must only deem possible events tj where the type tj believes
in his opponents’rationality. In other words, bi(ti) must only assign positive probability to j’s types
tj where tj believes in his opponents’rationality. Hence, type ti believes that his opponents believe in
their opponents’rationality if bi(ti) only assigns positive probability to opponents’types that believe
in their opponents’rationality.

To simplify expressions like this, let us say that type ti expresses 1-fold belief in rationality if ti
believes in the opponents’rationality. Analogously, say that type ti expresses 2-fold belief in rationality
if ti believes that his opponents believe in their opponents’rationality. Within such terminology, we
can thus say that type ti expresses 2-fold belief in rationality if bi(ti) only assigns positive probability
to opponents’types that express 1-fold belief in rationality.
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Similarly, say that type ti expresses 3-fold belief in rationality if ti believes that every opponent
believes that each of his opponents believes in the other players’rationality. Following the pattern
above, the formal definition would be that a type ti expresses 3-fold belief in rationality if bi(ti) only
assigns positive probability to opponents’types that express 2-fold belief in rationality. By continuing
in this way, we can formally define 4-fold belief in rationality, 5-fold belief in rationality, and so on.

Remember that common belief in rationality means that you believe that every opponent chooses
rationally, that you believe that every opponent believes that every other player chooses rationally, and
so on, ad infinitum. Within our terminology above, this would mean that the type ti expresses 1-fold
belief in rationality, 2-fold belief in rationality, 3-fold belief in rationality, and so on, ad infinitum.
This naturally leads to the following formal definition of common belief in rationality.

Definition 3.3.3 (Common belief in rationality) A type ti expresses 1-fold belief in rationality
if ti believes in the opponents’rationality.

A type ti expresses 2-fold belief in rationality if bi(ti) only assigns positive probability to opponents’
types that express 1-fold belief in rationality.

A type expresses 3-fold belief in rationality if bi(ti) only assigns positive probability to opponents’
types that express 2-fold belief in rationality.

And so on.

A type ti expresses common belief in rationality if it expresses 1-fold belief in rationality, 2-fold
belief in rationality, 3-fold belief in rationality, and so on, ad infinitum.

As an illustration, consider the epistemic model from Table 3.2.3 for “When Chris joins the party”.
Consider Barbara’s type tyellow2 with the belief

b2(t
yellow
2 ) = (0.3) · ((red, tred1 ), (blue, tblue3 )) + (0.7) · ((green, tgreen1 ), (blue, tblue3 ))

on the opponents’choice-type combinations. We have already seen that tyellow2 believes in the oppo-
nents’rationality, and hence tyellow2 expresses 1-fold belief in rationality. But does tyellow2 also express
2-fold belief in rationality? Note that tyellow2 only assigns positive probability to your types tred1 and
tgreen1 , and to Chris’type tblue3 . Since we have seen that each of these latter types believe in the op-
ponents’rationality —and hence express 1-fold belief in rationality —we conclude that Barbara’s type
tyellow2 expresses 2-fold belief in rationality.

In fact, it may be verified that every type in this epistemic model expresses 2-fold belief in ratio-
nality. The reason is very simple. We have seen above that all types in this epistemic model believe in
the opponents’rationality, and hence all types in the model express 1-fold belief in rationality. Now
take an arbitrary type ti within the epistemic model. Since bi(ti) can only assign positive probability
to opponents’types within the model, which all express 1-fold belief in rationality, it automatically
follows that ti expresses 2-fold belief in rationality. This applies to all types, and hence every type
within the model will express 2-fold belief in rationality.

But then, all types in the model will also express 3-fold belief in rationality. Indeed, take an
arbitrary type ti within the model. As bi(ti) can only assign positive probability to opponents’types
within the model which, as we have seen, all express 2-fold belief in rationality, it automatically follows
that ti expresses 3-fold belief in rationality. Again, this applies to all types, and hence every type in
the model will express 3-fold belief in rationality.

If we continue in this way, we conclude that all types in the epistemic model from Table 3.2.3
express 4-fold belief in rationality, 5-fold belief in rationality, and so on. Hence, we see that all types
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in the epistemic model of Table 3.2.3 express common belief in rationality. The only thing we used to
reach this conclusion is that all types in the model believe in the opponents’rationality.

This logic does not only apply to this particular epistemic model, but carries over to every epistemic
model for every game where all types believe in the opponents’rationality. That is, if we take any
game, and any epistemic model for that game where all types believe in the opponents’rationality,
then the logic above guarantees that all types in the model will express common belief in rationality.
Since we will use this property very often throughout this book, we state it as a formal theorem.

Theorem 3.3.1 (Suffi cient condition for common belief in rationality) Consider an epistemic
model in which all types believe in the opponents’rationality. Then, all types in the epistemic model
will also express common belief in rationality.

This theorem will often simplify things for us. Indeed, if we design an epistemic model for a
given game, and show that every type believes in the opponents’rationality, then the theorem above
guarantees that all types will also express common belief in rationality. This is much easier, of course,
then explicitly checking for every type that it expresses 1-fold belief in rationality, 2-fold belief in
rationality, 3-fold belief in rationality, and so on.

The theorem above also has a counterpart for beliefs diagrams. Recall that a beliefs diagram can
be used as a visual representation of belief hierarchies. It consists of arrows, which go from a choice
ci of a certain player i to choices of the opponents. Such an arrow is solid if the choice ci is optimal
for the belief represented by the outgoing arrow, whereas it is dashed otherwise.

Suppose now that all arrows in the beliefs diagram are solid. Then, all arrows point to opponents’
choices that have solid outgoing arrows themselves. In other words, all arrows point to opponents’
choices that are optimal for the beliefs represented by their outgoing arrows. This means, in turn, that
in every belief hierarchy generated by the arrows, the corresponding player believes in his opponents’
rationality. But then, by the same logic as above, we can conclude that all belief hierarchies generated
by the beliefs diagram will express common belief in rationality. Hence, if we start from a beliefs
diagram that consists of solid arrows only, then all belief hierarchies generated by this diagram will
express common belief in rationality. This property may be viewed as the counterpart to Theorem
3.3.1 for beliefs diagrams, and is summarized by the theorem below.

Theorem 3.3.2 (Suffi cient condition for common belief in rationality) Consider a beliefs di-
agram that only contains solid arrows. Then, all belief hierarchies generated by this beliefs diagram
express common belief in rationality.

Consider, for instance, the beliefs diagram in Figure 3.2.2 that has been designed for “When Chris
joins the party”, and which represents the same belief hierarchies as the epistemic model from Table
3.2.3. Since all arrows in the beliefs diagram are solid, we conclude by the property above that all
belief hierarchies generated by the beliefs diagram express common belief in rationality.

Unfortunately, Theorem 3.3.1 above cannot be applied to the epistemic model of Table 3.2.2,
designed for “Going to a party”. Indeed, we have seen above and in Question 3.3.2 that your type
tred1 and Barbara’s type tblue2 do not believe in the opponent’s rationality, and hence the assumptions
in the theorem do not hold. Still we would like to know which types in this epistemic model express
common belief in rationality and which do not.

Since the types tred1 and tblue2 do not believe in the opponent’s rationality, and hence do not express
1-fold belief in rationality, we can immediately conclude that these two types do not express common
belief in rationality. But what about your type tgreen1 ? As tgreen1 believes that Barbara has type tblue2 ,
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Types T1 = {tblue1 }, T2 = {tred2 }

Beliefs for you b1(t
blue
1 ) = (red, tred2 )

Beliefs for Barbara b2(t
red
2 ) = (blue, tblue1 )

Table 3.3.1 Smaller epistemic model for “Going to a party”

and we have seen that tblue2 does not express 1-fold belief in rationality, we know that tgreen1 does not
express 2-fold belief in rationality, and hence does not express common belief in rationality either.

Question 3.3.3 Explain, by a similar argument, that also Barbara’s type tyellow2 does not express
2-fold belief in rationality.

Consider next your type tyellow1 , which believes that Barbara is of type tyellow2 . Since we have seen in
Question 3.3.3 that Barbara’s type tyellow2 does not express 2-fold belief in rationality, your type tyellow1

does not express 3-fold belief in rationality, and hence does not express common belief in rationality
either.

Question 3.3.4 Explain, by a similar argument, that also Barbara’s type tgreen2 does not express
3-fold belief in rationality.

We thus conclude that your types tgreen1 , tred1 and tyellow1 , and Barbara’s types tblue2 , tgreen2 and
tyellow2 , do not express common belief in rationality.

It remains to explore your type tblue1 and Barbara’s type tred2 . Observe that your type tblue1 believes
that Barbara is of type tred2 , and that Barbara’s type tred2 believes, in turn, that you are of type tblue1 .
Hence, a smaller epistemic model only with types tblue1 and tred2 would be suffi cient to encode the belief
hierarchies of types tblue1 and tred2 . Indeed, consider the smaller epistemic model in Table 3.3.1, where
only your type tblue1 and Barbara’s type tred2 are present. It can easily be verified that the types tblue1

and tred2 in this smaller epistemic model generate exactly the same belief hierarchies as the types tblue1

and tred2 in the larger epistemic model from Table 3.2.2. The reason is that in the larger model, only
the types tblue1 and tred2 —and no other —are needed to derive the belief hierarchies of tblue1 and tred2 .

Now, in the smaller epistemic model from Table 3.3.1, both types tblue1 and tred2 believe in the
opponent’s rationality. Please check this. Hence, by Theorem 3.3.1 we can conclude that both types
tblue1 and tred2 express common belief in rationality in the epistemic model from Table 3.3.1. Since in
the larger epistemic model from Table 3.2.2, the types tblue1 and tred1 generate exactly the same belief
hierarchies as in the smaller model from Table 3.3.1, it follows that also in the larger model from Table
3.2.2, both types tblue1 and tred2 express common belief in rationality.

Summarizing, we see that in the epistemic model from Table 3.2.2, designed for “Going to a party”,
your type tblue1 and Barbara’s type tred2 express common belief in rationality, whereas all other types
in this model do not.
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3.3.4 Rational Choice under Common Belief in Rationality
Intuitively, common belief in rationality describes a way of reasoning about the opponents in a game.
What we have done in this section so far is to formalize this way of reasoning within a rigorous mathe-
matical framework, relying on epistemic models with types to encode belief hierarchies. However, the
central question we wish to answer is: What choices can a player rationally make in a given game if
he reasons in accordance with common belief in rationality? In the remainder of this section we will
give a precise meaning to this sentence, again using epistemic models with types. In the next section
we will then develop an automated elimination procedure that can be used to find the choices a player
can rationally make under common belief in rationality, without having to resort to epistemic models.

What does it mean, exactly, when we say that in a given game, player i can rationally make a
choice ci if he reasons in accordance with common belief in rationality? It means that there is some
belief hierarchy for player i that expresses common belief in rationality, and such that the choice ci is
optimal for the first-order belief in this belief hierarchy. Since a belief hierarchy can be encoded by
a type in some epistemic model, this is equivalent to saying that there is some epistemic model, and
some type ti within that epistemic model, such that the type ti expresses common belief in rationality,
and the choice ci is optimal for the type ti.

Definition 3.3.4 (Rational choice under common belief in rationality) Player i can ratio-
nally make choice ci under common belief in rationality if there is some epistemic model
M = (Ti, bi)i∈I , and some type ti ∈ Ti for player i within that model, such that (a) type ti expresses
common belief in rationality, and (b) choice ci is optimal for the type ti.

Similarly, for every k ≥ 1, we say that player i can rationally make choice ci while expressing up to
k-fold belief in rationality if there is some epistemic model M = (Ti, bi)i∈I , and some type ti ∈ Ti for
player i within that model, such that (a) type ti expresses up to k-fold belief in rationality, and (b)
choice ci is optimal for the type ti. Here, by expressing up to k-fold belief in rationality we mean that
ti expresses 1-fold belief in rationality, 2-fold belief in rationality, up to and including k-fold belief in
rationality.

Let us return to the game “Going to a party”, summarized by Table 3.1.1. Which choices can you
and Barbara rationally make under common belief in rationality? In Section 3.1 we have argued that
under common belief in rationality, it can never be rational for you to wear green, red and yellow,
and it can never be rational for Barbara to wear blue, green and yellow. In turn, your choice blue
can be supported by some type that expresses common belief in rationality. Indeed, consider the
small epistemic model from Table 3.3.1. We have seen that your type tblue1 expresses common belief
in rationality within that model. Since choosing blue is optimal for your type tblue1 , we conclude that
you can rationally choose blue under common belief in rationality. Similarly, Barbara’s choice red can
also be supported by a type that expresses common belief in rationality. In the same epistemic model
from Table 3.3.1, Barbara’s type tred2 expresses common belief in rationality, as we have seen. As
choosing red is optimal for her type tred2 , we conclude that also Barbara’s choice red can rationally be
made under common belief in rationality. Altogether, we thus conclude that in the game “Going to
a party”, your choice blue and Barbara’s choice red are the only choices that can rationally be made
under common belief in rationality.

What about the variation of this game, “When Chris joins the party”? What choices can you,
Barbara and Chris rationally make under common belief in rationality in this new scenario? A large
part of the answer lies at the epistemic model from Table 3.2.3. We have seen that all types in this
epistemic model express common belief in rationality. Since for you, choosing green is optimal for your
type tgreen1 and choosing red is optimal for your type tred1 , you can rationally choose green and red
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Barbara (g, b) (r, b) (g, y) (r, y)

blue 0 0 3 3
green 0 4 0 4
red 1 0 1 0

yellow 2 2 0 0

Table 3.3.2 Reduced decision problem for Barbara in “When Chris joins the party”

under common belief in rationality. Similarly, for Barbara choosing blue is optimal for her type tblue2 ,

choosing green is optimal for her type tgreen2 and choosing yellow is optimal for her type tyellow2 . Hence,
Barbara can rationally choose blue, green and yellow under common belief in rationality. Finally, for
Chris choosing blue is optimal for his type tblue3 and choosing yellow is optimal for his type tyellow3 ,
which implies that Chris can rationally choose blue and yellow under common belief in rationality.

It remains to explore your choice yellow and Barbara’s choice red. These choices are not optimal
for any type in the epistemic model from Table 3.2.3. But can these choices perhaps be supported by
types in another epistemic model that express common belief in rationality?

The answer is “no”. To see this, note from your decision problem in Table 3.2.1 that your choice
yellow is strictly dominated by the randomized choice (0.4)· green + (0.6)· red. Please verify this.
Hence, we conclude from Theorem 2.6.1 that your choice yellow is never optimal for any belief.

Hence, if Barbara believes in your rationality, she will assign probability 0 to your choice yellow.
Or, equivalently, from Barbara’s decision problem in Table 3.2.1 we can eliminate the two states (y, b)
and (y, y) where you wear yellow, and obtain Barbara’s reduced decision problem in Table 3.3.2. In
this reduced decision problem, her choice red is strictly dominated by the randomized choice (0.4)·
blue + (0.6)· yellow. Please verify this. Thus, it follows from Theorem 2.6.1 that Barbara’s choice red
cannot be optimal for any belief within this reduced decision problem. In other words, wearing red
cannot be optimal for Barbara if she believes in your rationality.

Summarizing, we conclude that in the example “When Chris joins the party”, you can rationally
wear green and red, but not yellow, under common belief in rationality, Barbara can rationally wear
blue, green and yellow, but not red, under common belief in rationality, and Chris can rationally wear
blue and yellow under common belief in rationality.

3.4 Recursive Procedure

As stated earlier, an important question we investigate in this chapter is: What choices can a player
rationally make in a given game if he reasons in accordance with common belief in rationality? In the
previous section we have formally defined what we mean by this sentence. In this, and the following,
section we ask: How can we find these choices in an automated way, without having to design an
epistemic model with types? Is there some recursive procedure that we can use to easily compute
these choices? The answer, as we will see, is “yes”. The key to this procedure will be Theorem 2.6.1
from Chapter 2, which characterized those choices that are irrational.
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You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

yellow 1 1 1 0

Barbara blue green red yellow
blue 0 2 2 2
green 1 0 1 1
red 4 4 0 4

yellow 3 3 3 0

Table 3.4.1 Decision problems for you and Barbara in “Going to a party”

You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

Barbara blue green red yellow
blue 0 2 2 2
red 4 4 0 4

yellow 3 3 3 0

Table 3.4.2 1-fold reduced decision problems in “Going to a party”

3.4.1 One-Fold Belief in Rationality
We start with a more basic question: What choices can player i rationally make if he expresses 1-fold
belief in rationality, that is, believes in the opponents’rationality? In that case, player i will assign
probability 0 to the event that his opponents will make an irrational choice. Or, equivalently, player i
will eliminate, from his decision problem, all states that involve an irrational choice by an opponent.

Recall from Theorem 2.6.1 that the irrational choices are precisely the choices that are strictly
dominated. By this, we mean the choices that are either strictly dominated by another choice, or by
a randomized choice. Thus, if player i believes in his opponents’rationality, then he will eliminate
from his decision problem all states that involve strictly dominated choices by the opponents. We thus
obtain a reduced decision problem for player i.

If, subsequently, player i chooses rationally himself then, by the same Theorem 2.6.1, he will make
a choice that is not strictly dominated within his reduced decision problem. Hence, we can eliminate
from player i’s reduced decision problem all choices for player i that are strictly dominated.

By the arguments above, we thus see that the choices that player i can rationally make if he
expresses 1-fold belief in rationality are precisely the choices that survive the following procedure: In
round 1, we eliminate for all players all choices that are strictly dominated in their decision problems.
In round 2, we first eliminate in every decision problem those states that involve strictly dominated
choices by the opponents, and subsequently eliminate all choices that are strictly dominated within the
resulting reduced decision problem. This procedure is called two-fold elimination of strictly dominated
choices.

As an illustration, let us apply this procedure to the example “Going to a party”to find the choices
that can rationally be made under 1-fold belief in rationality there. The decision problems for you
and Barbara can be found in Table 3.1.1, but have been reproduced in Table 3.4.1 for convenience.

We have seen before that for you, yellow is strictly dominated by the randomized choice (0.5)· blue
+ (0.5)· green, whereas for Barbara the color green is strictly dominated by the randomized choice
(0.5)· red + (0.5)· yellow. Thus, in round 1 we can eliminate your choice yellow from your decision
problem, and Barbara’s choice green from her decision problem, leading to the 1-fold reduced decision
problems in Table 3.4.2.

In round 2, we start by eliminating from your decision problem the state green, as it involves an
irrational choice by Barbara. In the reduced decision problem that remains, your choice red is strictly
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You blue red yellow
blue 0 4 4
green 3 3 3

Barbara blue green red
red 4 4 0

yellow 3 3 3

Table 3.4.3 Two-fold elimination of strictly dominated choices in “Going to a party”

dominated by green, and thus we can eliminate your choice red in your decision problem.
Similarly, in Barbara’s decision problem we start by eliminating the state yellow, as it involves

an irrational choice by you. In the reduced decision problem that remains, Barbara’s choice blue is
strictly dominated by her choice yellow, and can thus be eliminated.

We finally arrive at the 2-fold reduced decision problems in Table 3.4.3. Thus, under 2-fold
elimination of strictly dominated choices, the colors blue and green survive for you, whereas the colors
red and yellow survive for Barbara. As such, under 1-fold belief in rationality, you can rationally
choose blue and green, and Barbara can rationally choose red and yellow.

3.4.2 Two-Fold Belief in Rationality
We now turn to the next question: What choices can player i rationally make if he expresses 1-fold
and 2-fold belief in rationality? That is, if he believes in the opponents’rationality, and believes that
the opponents express 1-fold belief in rationality?

We have seen above that if an opponent chooses rationally, and expresses 1-fold belief in rationality,
then he will only make choices that survive the 2-fold elimination of strictly dominated choices. Thus,
if player i believes in the opponents’rationality, and believes that the opponents express 1-fold belief
in rationality, then he will assign probability 0 to all opponents’choices that do not survive the 2-
fold elimination of strictly dominated choices. Or, equivalently, he will eliminate from his decision
problem all states that involve opponents’choices that do not survive the 2-fold elimination of strictly
dominated choices.

This may lead to an even smaller decision problem for player i, with less states than before. If
player i then chooses rationally himself, we know by Theorem 2.6.1 that player i will only make choices
that are not strictly dominated within this smaller decision problem.

By the arguments above, we conclude that the choices that player i can rationally make if he
expresses 1-fold and 2-fold belief in rationality are precisely the choices that survive the following
procedure: In rounds 1 and 2 we perform 2-fold elimination of strictly dominated choices. At the
beginning of round 3, we eliminate in every decision problem those states that involve opponents’
choices that have not survived round 2. In the reduced decision problem so obtained, we then eliminate
the choices that are strictly dominated.

Not surprisingly, this procedure is called three-fold elimination of strictly dominated choices. By
the arguments above, we thus see that the choices that a player can rationally make under 1-fold
and 2-fold belief in rationality are precisely the choices that survive the 3-fold elimination of strictly
dominated choices.

To see how this procedure works, let us return to the example “Going to a party”. We have seen
that the 2-fold elimination of strictly dominated choices led to the reduced decision problems in Table
3.4.3. In round 3, we start by eliminating from your decision problem the state blue, as Barbara’s
choice blue did not survive round 2. In the smaller decision problem so obtained, your choice green is
strictly dominated by blue, and can thus be eliminated.
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You red yellow
blue 4 4

Barbara blue green
red 4 4

Table 3.4.4 Three-fold elimination of strictly dominated choices in “Going to a party”

Similarly, we can eliminate from Barbara’s decision problem the state red, as your choice red did
not survive round 2. In the smaller decision problem so obtained, Barbara’s choice yellow is strictly
dominated by red, and can thus be eliminated.

This leads to the reduced decision problems in Table 3.4.4. As you can see, only the color blue
survives for you, and only the color red survives for Barbara. By the arguments above, we may
therefore conclude that under 1-fold and 2-fold belief in rationality, you can only rationally choose
blue and Barbara can only rationally choose red.

3.4.3 Common Belief in Rationality
We have seen above that (i) the choices a player can rationally make if he expresses 1-fold belief in
rationality are precisely the choices that survive the 2-fold elimination of strictly dominated choices,
and (ii) the choices a player can rationally make if he expresses 1-fold and 2-fold belief in rationality
are precisely the choices that survive the 3-fold elimination of strictly dominated choices. Of course,
we could continue in this fashion, and arrive at the general conclusion that the choices a player can
rationally make if he expresses up to k-fold belief in rationality are precisely the choices that survive
the k + 1-fold elimination of strictly dominated choices, for every k ∈ {1, 2, 3, ...}.

Here, k + 1-fold elimination of strictly dominated choices would be the procedure where we first
do the k-fold elimination of strictly dominated choices during the first k rounds. Subsequently, at the
beginning of round k + 1 we would eliminate from every decision problem those states that involve
opponents’choices that have not survived round k. This leads to reduced decision problems. Finally,
we would at every reduced decision problem eliminate those choices that are strictly dominated.

Since common belief in rationality amounts to k-fold belief in rationality for every k we conclude,
on the basis of these arguments, that the choices a player can rationally make under common belief
in rationality are precisely the choices that survive all rounds of the iterated elimination of strictly
dominated choices. By the latter, we mean the procedure where we keep eliminating in the way
described above until no further states and choices can be eliminated from the decision problems.

This procedure can formally be defined as follows.

Definition 3.4.1 (Iterated elimination of strictly dominated choices) Start by writing down
the decision problems for all players.

Round 1. From every decision problem, eliminate those choices that are strictly dominated. This
leads to the 1-fold reduced decision problems.

Round 2. From every 1-fold reduced decision problem, eliminate those states that involve opponents’
choices that did not survive round 1. Within the (possibly smaller) decision problem so obtained,
eliminate all choices that are strictly dominated. This leads to the 2-fold reduced decision problems.

Round 3. From every 2-fold reduced decision problem, eliminate those states that involve opponents’
choices that did not survive round 2. Within the (possibly smaller) decision problem so obtained,
eliminate all choices that are strictly dominated. This leads to the 3-fold reduced decision problems.

Continue like this until no further states and choices can be eliminated. The choices for a player that
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You red
blue 4

Barbara blue
red 4

Table 3.4.5 Iterated elimination of strictly dominated choices in “Going to a party”

eventually remain in his decision problem are said to survive the iterated elimination of strictly
dominated choices.

It should be clear that k-fold elimination of strictly dominated choices, for every k ∈ {1, 2, 3, ...},
corresponds to the first k rounds of this procedure. Based on our arguments above, we thus arrive at
the following characterization of the choices that are possible under common belief in rationality.

Theorem 3.4.1 (Procedure for common belief in rationality) (a) For every k ∈ {1, 2, 3, ...},
the choices that can rationally be made while expressing up to k-fold belief in rationality are precisely
the choices that survive the k + 1-fold elimination of strictly dominated choices.

(b) The choices that can rationally be made under common belief in rationality are exactly the choices
that survive all rounds of the iterated elimination of strictly dominated choices.

Let us illustrate the procedure and the result above by means of the two examples we have analyzed
so far. We first return to “Going to a party”. We have already seen that the first three rounds of
the procedure lead to the 3-fold reduced decision problems in Table 3.4.4. In round 4, we can still
eliminate from your decision problem the state yellow, since Barbara’s choice yellow did not survive
round 3. Similarly, from Barbara’s decision problem we can still eliminate state green, since your
choice green did not survive round 3 either. We thus arrive at the final decision problems in Table
3.4.5, after which the iterated elimination of strictly dominated choices terminates.

By our arguments above, we thus conclude that under common belief in rationality, you can only
rationally wear blue whereas Barbara can only rationally wear red. This can also be supported by
looking at the epistemic model in Table 3.3.1. We have seen that your type tblue1 and Barbara’s type
tred2 both express common belief in rationality. As your choice blue is optimal for your type tblue1 , and
Barbara’s choice red is optimal for her type tred2 , we see that you can indeed rationally choose blue
under common belief in rationality, and Barbara can rationally choose red under common belief in
rationality.

To further illustrate the procedure, let us apply it to the game “When Chris joins the party”, with
the decision problems as stated in Table 3.2.1. For convenience, we have reproduced these decision
problems in Table 3.4.6.

Round 1. In your decision problem, we have seen in Section 3.3.4 that your choice yellow is strictly
dominated by the randomized choice in which you choose green with probability 0.4 and red with
probability 0.6. For Barbara and Chris, no choices are strictly dominated in their respective decision
problems. In particular, Barbara’s choice red is optimal for her belief

(0.48) · (g, b) + (0.2) · (y, b) + (0.32) · (g, y)

in which she assigns positive probability to three different states. Please check this. Hence, by Theorem
2.6.1, Barbara’s choice red is not strictly dominated by any randomized choice in her decision problem.

We therefore eliminate your choice yellow from your decision problem. This gives rise to the 1-fold
reduced decision problems in Table 3.4.7.
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You (b, b) (g, b) (r, b) (y, b) (b, y) (g, y) (r, y) (y, y)

green 3 0 3 3 3 0 3 3
red 2 2 0 2 2 2 0 2

yellow 1 1 1 0 0 0 0 0

Barbara (g, b) (r, b) (y, b) (g, y) (r, y) (y, y)

blue 0 0 0 3 3 3
green 0 4 4 0 4 4
red 1 0 1 1 0 1

yellow 2 2 0 0 0 0

Chris (g, b) (r, b) (y, b) (g, g) (r, g) (y, g) (g, r) (r, r) (y, r) (g, y) (r, y) (y, y)

blue 0 0 0 2 2 2 2 2 2 2 2 2
yellow 1 1 0 1 1 0 1 1 0 0 0 0

Table 3.4.6 Decision problems in “When Chris joins the party”

You (b, b) (g, b) (r, b) (y, b) (b, y) (g, y) (r, y) (y, y)

green 3 0 3 3 3 0 3 3
red 2 2 0 2 2 2 0 2

Barbara (g, b) (r, b) (y, b) (g, y) (r, y) (y, y)

blue 0 0 0 3 3 3
green 0 4 4 0 4 4
red 1 0 1 1 0 1

yellow 2 2 0 0 0 0

Chris (g, b) (r, b) (y, b) (g, g) (r, g) (y, g) (g, r) (r, r) (y, r) (g, y) (r, y) (y, y)

blue 0 0 0 2 2 2 2 2 2 2 2 2
yellow 1 1 0 1 1 0 1 1 0 0 0 0

Table 3.4.7 One-fold reduced decision problems in “When Chris joins the party”
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You (b, b) (g, b) (r, b) (y, b) (b, y) (g, y) (r, y) (y, y)

green 3 0 3 3 3 0 3 3
red 2 2 0 2 2 2 0 2

Barbara (g, b) (r, b) (g, y) (r, y)

blue 0 0 3 3
green 0 4 0 4
yellow 2 2 0 0

Chris (g, b) (r, b) (g, g) (r, g) (g, r) (r, r) (g, y) (r, y)

blue 0 0 2 2 2 2 2 2
yellow 1 1 1 1 1 1 0 0

Table 3.4.8 Two-fold reduced decision problems in “When Chris joins the party”

You (b, b) (g, b) (y, b) (b, y) (g, y) (y, y)

green 3 0 3 3 0 3
red 2 2 2 2 2 2

Barbara (g, b) (r, b) (g, y) (r, y)

blue 0 0 3 3
green 0 4 0 4
yellow 2 2 0 0

Chris (g, b) (r, b) (g, g) (r, g) (g, y) (r, y)

blue 0 0 2 2 2 2
yellow 1 1 1 1 0 0

Table 3.4.9 Three—fold reduced decision problems in “When Chris joins the party”

Round 2. In Barbara’s decision problem, we start by eliminating the states (y, b) and (y, y) because
they involve your choice yellow that did not survive round 1. Subsequently, as we have seen in Section
3.3.4, Barbara’s choice red is strictly dominated by the randomized choice (0.4)· blue + (0.6)· yellow.
We can thus eliminate Barbara’s choice red from her decision problem.

In Chris’decision problem, we can eliminate the states (y, b), (y, g), (y, r) and (y, y) that involve
your choice yellow which did not survive round 1. But subsequently, no choice for Chris is strictly
dominated. We thus obtain the 2-fold reduced decision problems in Table 3.4.8.

Round 3. In your decision problem, we start by eliminating the states (r, b) and (r, y) that involve
Barbara’s choice red which did not survive round 2. Subsequently, no choice for you is strictly
dominated. Similarly, in Chris’decision problem we start by eliminating the states (g, r) and (r, r)
that involve Barbara’s choice red which did not survive round 2. After this, no choice for Chris is
strictly dominated. This leads to the 3-fold reduced decision problems in Table 3.4.9.

It can be verified that in each of the 3-fold reduced decision problems, every remaining choice
is optimal for some belief. Please check this. Therefore, by Theorem 2.6.1, no remaining choice is
strictly dominated, and hence no choices can be eliminated from this point onwards. The procedure
thus terminates at round 3, and the surviving choices are green and red for you, blue, green and yellow
for Barbara, and blue and yellow for Chris.
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We thus know that under common belief in rationality, the only choices that can be chosen ratio-
nally are green and red for you, blue, green and yellow for Barbara and blue and yellow for Chris.
Recall that, by means of the beliefs diagram in Figure 3.2.2 and the associated epistemic model of
Table 3.2.3, we already concluded that these choices can indeed be chosen rationally under common
belief in rationality. Therefore, the choices green and red for you, blue, green and yellow for Barbara
and blue and yellow for Chris are precisely the choices that can rationally be made under common
belief in rationality —no more and no less.

3.4.4 Common Belief in Rationality is Always Possible
As we have seen in Theorem 3.4.1, the choices that can rationally be made under common belief in
rationality are precisely those that survive the iterated elimination of strictly dominated choices. In
particular, for every choice ci that survives the procedure, we will always be able to construct an
epistemic model with a type ti such that (i) the type ti expresses common belief in rationality, and
(ii) the choice ci is optimal for the type ti.

It is easily seen that for every player there will be at least one choice that survives the iterated
elimination of strictly dominated choices. The reason is that at every round of this procedure, it will
never happen that all remaining choices for a given player are strictly dominated within his decision
problem.

To see this, suppose we are in round k of the procedure, and that player i’s current decision problem
is given by (Di, D−i, ui), where Di is the set of choices for player i that have survived so far, and D−i
the set of opponents’choice combinations that have survived so far. Now, fix an arbitrary belief pi for
player i on D−i, and let ci be a choice in Di that is optimal for this belief, among the choices in Di.
Then, by Theorem 2.6.1, this choice ci will not be strictly dominated in the current decision problem,
and hence will not be eliminated at round k.

We thus see that at every round k, and for every player i, there will be at least one choice that
survives this round. But since there are only finitely many choices to start with, there must for every
player be at least one choice that survives all the elimination rounds. Hence, for every player there is
at least one choice that survives the iterated elimination of strictly dominated choices.

This insight, together with Theorem 3.4.1, thus guarantees that for every player i there is a choice
ci, and a type ti within some epistemic model, such that (i) the type ti expresses common belief in
rationality, and (ii) the choice ci is optimal for the type ti. In particular, it will always be able to
construct an epistemic model that contains a type ti which expresses common belief in rationality.

We can actually say a little more: We can always construct an epistemic model where all types
express common belief in rationality. This is the content of the following theorem.

Theorem 3.4.2 (Common belief in rationality is always possible) For every game with finitely
many choices, we can always find an epistemic modelM = (Ti, bi)i∈I in which all types express common
belief in rationality.

In the following subsection we will show, by means of an example, how the procedure can be used
to construct an epistemic model where all types express common belief in rationality.

3.4.5 Using the Procedure to Construct Epistemic Models
Suppose we apply the iterated elimination of strictly dominated choices to a game. This results in a
final decision problem for each of the players. By construction of the procedure, every choice in a final
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decision problem will not be strictly dominated. Hence, by Theorem 2.6.1, every surviving choice will
be optimal for some belief over the remaining states in the final decision problem.

Moreover, the states in the final decision problems will only involve opponents’choices that are
not strictly dominated themselves in their respective final decision problems. In other words, these
states only contain choices for an opponent that are optimal for some belief within that opponent’s
final decision problem. And so on.

The situation above can be expressed by a beliefs diagram in which (i) the choices that appear are
precisely the choices that survive the procedure, and (ii) all arrows are solid. This beliefs diagram, in
turn, can be translated into an epistemic model where all types believe in the opponents’rationality.
By Theorem 3.3.1 we thus know that all types in this epistemic model will express common belief in
rationality.

To see how this works in practice, let us return to the example “When Chris joins the party”. In
Section 3.4.3 we applied the iterated elimination of strictly dominated choices to this game, and saw
that the final decision problems were given by Table 3.4.9.

Within your final decision problem, your choice green is optimal for the belief (blue, yellow) whereas
your choice red is optimal for the belief (green, blue).

Within Barbara’s final decision problem, her choice blue is optimal for the belief (green, yellow),
her choice green is optimal for the belief (red, blue), and her choice yellow is optimal for the belief
(0.3)· (red, blue) + (0.7)· (green, blue).

Within Chris’final decision problem, his choice blue is optimal for the belief (red, yellow), whereas
his choice yellow is optimal for the belief (green, blue).

These beliefs give rise to the beliefs diagram in Figure 3.2.2, which contains only solid arrows. This
beliefs diagram, in turn, can be translated into the epistemic model of Table 3.2.3, where all types
express common belief in rationality.

In this way we can always construct, for every game, (i) a beliefs diagram that involves precisely
those choices that survive the iterated elimination of strictly dominated choices, and where every
choice has a solid outgoing arrow, and (ii) an epistemic model where all types express common belief
in rationality, and that contains, for every choice surviving the procedure, a type for which that choice
is optimal.

3.5 Order of Elimination

By definition, the procedure of iterated elimination of strictly dominated choices requires us to elimi-
nate, at every round and at every decision problem, all states that involve opponents’choices which
did not survive the previous round, and, subsequently, all choices that are strictly dominated for that
player in his current decision problem. Suppose now that at some of the rounds, and at some of the
decision problems, we do not eliminate all states and choices that we could. Does it matter for the
final output of the procedure? We will see that the answer is “no”.

Before we explain why, let us first illustrate this issue by the example “Going to a party”with the
decision problems as given in Table 3.1.1. If we apply the iterated elimination of strictly dominated
choices at full speed —that is, always eliminate all states and choices that we can —then the following
eliminations will occur:
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Start

You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

yellow 1 1 1 0

Barbara blue green red yellow
blue 0 2 2 2
green 1 0 1 1
red 4 4 0 4

yellow 3 3 3 0

Round 1

You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

Barbara blue green red yellow
blue 0 2 2 2
green 1 0 1 1
red 4 4 0 4

yellow 3 3 3 0

Round 2

You blue green red yellow
blue 0 4 4 4
green 3 0 3 3
red 2 2 0 2

Barbara blue green red
red 4 4 0

yellow 3 3 3

Round 3
You red yellow
blue 4 4

Barbara blue green red
red 4 4 0

yellow 3 3 3

Round 4
You red yellow
blue 4 4

Barbara blue
red 4

Round 5
You red
blue 4

Barbara blue
red 4

Table 3.5.1 Changing the order of elimination in “Going to a party”

In round 1, we eliminate your choice yellow from your decision problem because it is strictly
dominated by a randomized choice that assigns probability 0.5 to blue and green, and for a similar
reason we eliminate Barbara’s choice green from her decision problem.

In round 2, we first eliminate state green from your decision problem, and subsequently eliminate
your choice red there because it has become strictly dominated by green. Similarly, in Barbara’s
decision problem we first eliminate the state yellow, after which we eliminate Barbara’s choice blue
there because it has become strictly dominated by her choice yellow.

In round 3, we first eliminate the state blue from your decision problem, and subsequently we
eliminate your choice green there because it is strictly dominated by blue. In Barbara’s decision
problem, we first eliminate the state red, after which we eliminate Barbara’s choice yellow because it
is strictly dominated by her choice red. After this round, no more states and choices can be eliminated
from the decision problems.

Suppose now that at round 1, we only eliminate your strictly dominated choice yellow, but not
Barbara’s strictly dominated choice green. Then, at round 2, the state green will still be present
in your decision problem. Therefore, we cannot eliminate your choice red in round 2, because it is
not strictly dominated in your current decision problem. In fact, none of your choices in the current
decision problem are strictly dominated.

Assume that from this moment on, we always eliminate everything we can. This gives rise to the
reduced decision problems in Table 3.5.1. We thus see that with this alternative order of elimination,
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in which we did not eliminate Barbara’s strictly dominated choice green at the first round, only the
choices blue for you and red for Barbara survive —exactly the same choices that survived under the
full speed elimination order above. However, with the alternative order of elimination it took five
rounds, instead of four, until the procedure terminated. But the eventual output is exactly the same.

Question 3.5.1 Describe an alternative order of elimination in “Going to a party”in which at every
round you only eliminate one strictly dominated choice in total. What choices survive this procedure?
How many rounds does it take for the procedure to terminate?

We will now see that this is not a coincidence: No matter which game we take, and no matter
which order of elimination we choose for the iterated elimination of strictly dominated choices, the
surviving choices will always be the same as under the full speed elimination order.

Theorem 3.5.1 (Order independence) Changing the order of elimination in the iterated elimina-
tion of strictly dominated choices does not change the sets of choices that survive the procedure at
the end.

This result has an important practical implication: If, for a given game, we apply the procedure,
and at some steps forget to eliminate some states or choices, then eventually we are still guaranteed
to end up with the correct result. Provided, of course, we do not forget to eliminate certain choices
or states forever.

However, part (a) of Theorem 3.4.1 may no longer hold if we replace the full speed elimination
procedure by an alterative order of elimination. Part (a) states that the choices that can rationally
be made while expressing up to k-fold belief in rationality are precisely the choices that survive the
first k+ 1 rounds of the iterated elimination of strictly dominated choices. This only holds for the full
speed elimination procedure, however. To see why, consider the game “Going to a party”with the
alternative elimination procedure presented above. Note that your choice red survives the first two
rounds of this alternative procedure. However, you cannot rationally choose red under 1-fold belief
in rationality. Indeed, if you believe in Barbara’s rationality, you must believe that Barbara will not
choose green, and hence your choice green will be better than your choice red.
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3.6 Proofs

3.6.1 Proofs of Section 3.3
Proof of Theorem 3.3.1. Consider an epistemic model M = (Ti, bi)i∈I in which all types believe
in the opponents’ rationality. We show, by induction on k, that all types express k-fold belief in
rationality for all k ≥ 1.

By definition, all types express 1-fold belief in rationality because they believe in the opponents’
rationality.

Take some k ≥ 2 and assume that all types express (k − 1)-fold belief in rationality. Since a
type ti can only assign positive probability to other types in the model M, it follows by the induction
assumption that every type ti only assigns positive probability to opponents’types that express (k−1)-
fold belief in rationality. Hence, every type ti in the model expresses k-fold belief in rationality. By
induction on k, we conclude that all types express k-fold belief in rationality for every k. That is, all
types in M express common belief in rationality. �

Proof of Theorem 3.3.2. Consider a beliefs diagram that only contains solid arrows. We show,
by induction on k, that all belief hierarchies generated by this beliefs diagram express k-fold belief in
rationality for all k ≥ 1.

For k = 1, consider the belief hierarchy that starts at some choice ci in the beliefs diagram.
Since the beliefs diagram only contains solid arrows, every arrow leaving ci points to an opponent’s
choice cj with solid outgoing arrows. That is, the belief hierarchy starting at ci only assigns positive
probability to combinations of choices cj and first-order beliefs for j where the choice cj is optimal for
the first-order belief. Hence, the belief hierarchy starting at ci expresses 1-fold belief in rationality.

Suppose now that k ≥ 2 and that every belief hierarchy generated within this beliefs diagram
expresses (k − 1)-fold belief in rationality. Consider the belief hierarchy that starts at some choice
ci in the beliefs diagram. Then, every arrow leaving ci points to some choice cj for some opponent
j. Since, by the induction assumption, the belief hierarchy starting at cj expresses (k − 1)-fold belief
in rationality, it follows that the belief hierarchy starting at ci only assigns positive probability to
opponents’belief hierarchies that express (k− 1)-fold belief in rationality. Hence, the belief hierarchy
starting at ci expresses k-fold belief in rationality. This holds for every belief hierarchy generated by
the beliefs diagram. Hence, it follows by induction on k that all belief hierarchies generated by the
beliefs diagram express common belief in rationality. �

3.6.2 Proofs of Section 3.4
To prove Theorem 3.4.1 we need a preparatory result. For every round k and every player i, let Ck−i be
the set of states that survive the first k rounds of the iterated elimination of strictly dominated choices
in player i’s decision problem. Moreover, let Cki denote the set of choices for player i that survive the
first k rounds of the procedure in i’s decision problem. Hence, if k ≥ 1, every choice ci ∈ Cki belongs
to Ck−1i and is not strictly dominated in the decision problem (Ck−1i , Ck−i, ui). By Theorem 2.6.1, we
thus know that every choice ci ∈ Cki is optimal for some belief bi in (Ck−1i , Ck−i, ui). That is,

ui(ci, bi) ≥ ui(c′i, bi) for all c′i ∈ Ck−1i .

We will show, however, that the inequality above holds for every c′i ∈ Ci, and not only for every
c′i ∈ Ck−1i . Hence, we will prove that for every choice ci ∈ Cki there is a belief bi in ∆(Ck−i) such that

ui(ci, bi) ≥ ui(c′i, bi) for all c′i ∈ Ci.
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Or, equivalently, every choice ci ∈ Cki is optimal for some belief bi in the larger decision problem
(Ci, C

k
−i, ui). This is the content of the following lemma.

Lemma 3.6.1 (Optimality property) For every player i and every round k ≥ 0, let Cki be the set
of choices for player i that survive the first k rounds of the iterated elimination of strictly dominated
choices, and let C∗i be the set of choices that survive all rounds, in player i’s decision problem. Similarly,
let Ck−i be the set of states that survive the first k rounds, and let C

∗
−i be the set of opponents’choice-

combinations that survive all rounds, in player i’s decision problem.

(a) For every k ≥ 1, a choice ci is in Cki if and only if ci is optimal for some belief in (Ci, C
k
−i, ui).

(b) A choice ci is in C∗i if and only if ci is optimal for some belief in (Ci, C
∗
−i, ui).

Proof of Lemma 3.6.1. (a) We prove the statement by induction on k. By definition, C1i contains
precisely those choices in Ci that are not strictly dominated in (Ci, C−i, ui) = (Ci, C

1
−i, ui). Hence,

by Theorem 2.6.1, ci ∈ C1i exactly when ci is optimal for some belief in (Ci, C
1
−i, ui). Therefore, the

statement is true for k = 1.
Suppose now that k ≥ 2 and that the statement is true for k − 1. To show the “only if”direction

for k, consider some choice ci ∈ Cki . Then, by definition, ci is in Ck−1i and is not strictly dominated
within (Ck−1i , Ck−i, ui). By Theorem 2.6.1, ci is optimal for some belief bi within the decision problem
(Ck−1i , Ck−i, ui). Hence,

ui(ci, bi) ≥ ui(c′i, bi) for all c′i ∈ Ck−1i . (3.6.1)

Let c∗i ∈ Ci be optimal for the belief bi within (Ci, C
k
i , ui). That is,

ui(c
∗
i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ci. (3.6.2)

As bi ∈ ∆(Ck−i) and C
k
−i ⊆ Ck−1−i , it follows that bi ∈ ∆(Ck−1−i ). Hence, c∗i is optimal for the belief bi

within (Ci, C
k−1
−i , ui). But then, we know by the induction assumption that that c

∗
i ∈ Ck−1i . By (3.6.1)

we thus conclude that
ui(ci, bi) ≥ ui(c∗i , bi). (3.6.3)

By combining (3.6.3) and (3.6.2) we see that

ui(ci, bi) ≥ ui(c∗i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ci,

and hence ci is optimal for the belief bi in (Ci, C
k
−i, ui). We thus have shown that every ci ∈ Cki is

optimal for some belief in (Ci, C
k
−i, ui). This establishes the “only if”part.

To show the “if”part, consider some choice ci that is optimal for some belief bi in (Ci, C
k
−i, ui).

Since bi ∈ ∆(Ck−i) and C
k
−i ⊆ Ck−1−i , it follows that bi ∈ ∆(Ck−1−i ). Hence, ci is optimal for the belief

bi within (Ci, C
k−1
−i , ui). By the induction assumption we conclude that ci ∈ C

k−1
i . Since ci is optimal

for bi in (Ci, C
k
−i, ui) and ci ∈ Ck−1i , it follows in particular that ci is optimal for bi in (Ck−1i , Ck−i, ui).

Hence, by Theorem 2.6.1, ci is not strictly dominated within (Ck−1i , Ck−i, ui). This means, in turn, that
ci ∈ Cki . We thereby have shown that every choice ci that is optimal for some belief in (Ci, C

k
−i, ui),

must be in Cki . This establishes the “if”’direction.
By combining the “only if”and “if”direction, the statement in (a) follows for k. By induction on

k, statement (a) holds for every k ≥ 1.

(b) Suppose that the procedure terminates at the end of round K. That is, C∗i = CKi = CK+1i and
C∗−i = CK−i = CK+1−i for every player i. Then, ci is in C∗i precisely when ci ∈ CK+1i . By applying (a) to
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k = K+ 1, we know that ci is in CK+1i precisely when ci is optimal for some belief in (Ci, C
K+1
−i , ui) =

(Ci, C
∗
−i, ui). Hence, ci is in C

∗
i if and only if ci is optimal for some belief in (Ci, C

∗
−i, ui). This completes

the proof. �

We can now use Lemma 3.6.1 to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. As an additional piece of notation, let BRki denote the set of choices that
player i can rationally make while expressing up to k-fold belief in rationality. Hence, to prove (a) in
Theorem 3.4.1 we must show that BRki = Ck+1i for every player i and every k ≥ 1. We show this in
two steps: (i) prove that BRki ⊆ Ck+1i for all k ≥ 1, and (ii) prove that Ck+1i ⊆ BRki for all k ≥ 1.

(i) Show that BRki ⊆ Ck+1i for all players i and all k ≥ 1.

We prove this by induction on k. For k = 1, take some ci ∈ BR1i . Then, there is some epistemic
model M = (Ti, bi)i∈I and some type ti ∈ Ti such that ti expresses 1-fold belief in rationality and ci
is optimal for ti. Suppose that bi(ti) assigns positive probability to some opponent’s choice-type pair
(cj , tj). Since ti expresses 1-fold belief in rationality, cj must be optimal for tj . Hence, cj is optimal
for tj’s first-order belief in the full decision problem (Cj , C−j , uj) which, by Lemma 3.6.1, implies
that cj ∈ C1j . Hence, ti’s first-order belief only assigns positive probability to opponents’choices cj
which are in C1j , and thus only assigns positive probability to states in C

2
−i. As ci is optimal for ti,

we conclude that ci is optimal for ti’s first-order belief in (Ci, C
2
−i, ui) which implies, by Lemma 3.6.1,

that ci is in C2i .We thus have shown that every choice ci ∈ BR1i must be in C2i , and hence BR1i ⊆ C2i
for all players i.

Now suppose that k ≥ 2 and that, by the induction assumption, BRk−1i ⊆ Cki for all players i.
Consider some player i and some ci ∈ BRki . Then, there is some epistemic model M = (Ti, bi)i∈I and
some type ti ∈ Ti such that ti expresses up to k-fold belief in rationality and ci is optimal for ti. Suppose
that bi(ti) assigns positive probability to some opponent’s choice-type pair (cj , tj). Since ti expresses
up to k-fold belief in rationality, the choice cj must be optimal for tj and tj must express up to (k−1)-
fold belief in rationality. Hence, cj ∈ BRk−1j . Since, by the induction assumption, BRk−1j ⊆ Ckj , we
know that cj ∈ Ckj . We thus conclude that ti’s first-order belief only assigns positive probability to
opponents’choices cj that are in Ckj , and hence only assigns positive probability to states in C

k+1
−i .

As ci is optimal for ti, we conclude that ci is optimal for ti’s first-order belief in (Ci, C
k+1
−i , ui), which

implies, by Lemma 3.6.1, that ci is in Ck+1i . We thus have shown that every choice ci ∈ BRki must be
in Ck+1i , and hence BRki ⊆ Ck+1i . By induction on k, we conclude that BRki ⊆ Ck+1i for all players i
and all k ≥ 1. This completes the proof of (i).

(ii) Show that Ck+1i ⊆ BRki for all players i and all k ≥ 1.

Hence, for every choice ci ∈ Ck+1i we must show that there is some epistemic model, and some type
tcii in it, such that t

ci
i expresses up to k-fold belief in rationality and ci is optimal for t

ci
i . We will now

construct a single epistemic model M = (Ti, bi)i∈I that contains all such types. For every player i,
define the set of types

Ti = {tcii | ci ∈ C
1
i }.

That is, for every choice ci that survives at least one round of the procedure, we define a type t
ci
i .

To define the beliefs of these types about the opponents’choice-type combinations we distinguish the
following three cases, assuming that the procedure terminates at the end of round K.
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Case 1. Suppose that ci ∈ C1i \C2i . Then, by Lemma 3.6.1, ci is optimal for some belief b
ci
i ∈ ∆(C−i)

within (Ci, C−i, ui). For every opponent j choose some arbitrary type t̂j ∈ Tj , and define

bi(t
ci
i )((cj , tj)j 6=i) :=

{
bcii ((cj)j 6=i), if tj = t̂j for all j 6= i

0, otherwise
(3.6.4)

for all (cj , tj)j 6=i in C−i × T−i.

Case 2. Suppose that ci ∈ Cki \Ck+1i for some k ∈ {2, ...,K − 1}. Then, by Lemma 3.6.1, ci is optimal
for some belief bcii ∈ ∆(Ck−1−i ) within (Ci, C

k
−i, ui). Define

bi(t
ci
i )((cj , tj)j 6=i) :=

{
bcii ((cj)j 6=i), if cj ∈ Ck−1j and tj = t

cj
j for all j 6= i

0, otherwise
(3.6.5)

for all (cj , tj)j 6=i in C−i × T−i.

Case 3. Suppose that ci ∈ CKi . As the procedure terminates at round K we have that ci ∈ C∗i . Hence,
by Lemma 3.6.1, ci is optimal for some belief b

ci
i ∈ ∆(C∗−i) within (Ci, C

∗
−i, ui). Define

bi(t
ci
i )((cj , tj)j 6=i) :=

{
bcii ((cj)j 6=i), if cj ∈ C∗j and tj = t

cj
j for all j 6= i

0, otherwise
(3.6.6)

for all (cj , tj)j 6=i in C−i×T−i. This completes the construction of the epistemic model M = (Ti, bi)i∈I .

Note that in this epistemic model, every type tcii holds the first-order belief b
ci
i . As, by definition,

ci is optimal for b
ci
i within (Ci, C−i, ui), we conclude that ci is optimal for t

ci
i , for every player i and

every ci ∈ C1i .

We now show that for every k ≥ 2 and every choice ci ∈ Cki , the associated type t
ci
i expresses up

to (k − 1)-fold belief in rationality. We show this by induction on k.
For k = 2, consider some choice ci ∈ C2i and the associated type t

ci
i with the belief given by (3.6.5)

or (3.6.6). By (3.6.5) and (3.6.6), the belief bi(t
ci
i ) only assigns positive probability to opponent’s

choice-type pairs (cj , t
cj
j ) where cj ∈ C1j . As cj is optimal for t

cj
j , the type t

ci
i only assigns positive

probability to opponent’s choice-type pairs (cj , t
cj
j ) where cj is optimal for t

cj
j . Hence, t

ci
i expresses

1-fold belief in rationality. This holds for every type tcii where ci ∈ C2i .
Suppose now that k ≥ 3 and that, by the induction assumption, tcii expresses up to (k − 2)-fold

belief in rationality for every ci ∈ Ck−1i and every player i. Consider some choice ci ∈ Cki and the
associated type tcii with the belief given by (3.6.5) or (3.6.6). By (3.6.5) and (3.6.6) it follows that
bi(t

ci
i ) only assigns positive probability to opponent’s choice-type pairs (cj , t

cj
j ) where cj ∈ Ck−1j . By

the induction assumption we know that tcjj expresses up to (k − 2)-fold belief in rationality. As cj is
optimal for tcjj , we conclude that t

ci
i only assigns positive probability to opponent’s choice-type pairs

(cj , t
cj
j ) where cj is optimal for t

cj
j , and t

cj
j expresses up to (k− 2)-fold belief in rationality. Hence, tcii

expresses up to (k − 1)-fold belief in rationality. This holds for every type tcii where ci ∈ Cki .
By induction on k, we conclude that for every k ≥ 2 and every choice ci ∈ Cki , the associated type

tcii expresses up to (k − 1)-fold belief in rationality.

We next show that for every ci ∈ CKi , the associated type t
ci
i expresses common belief in rationality.

Consider the smaller epistemic model M∗ = (T ∗i , bi)i∈I where the set of types for player i is

T ∗i := {tcii | ci ∈ C
∗
i },
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and the beliefs of the types are given by (3.6.6). Note that this is a well-defined epistemic model,
since by (3.6.6) every type tcii ∈ T ∗i with ci ∈ C∗i only assigns positive probability to opponent’s types
t
cj
j ∈ T ∗j where cj ∈ C∗j . We show that every type in M∗ believes in the opponents’rationality.
Consider a type tcii ∈ T ∗i where ci ∈ C∗i . By (3.6.6), type t

ci
i only assigns positive probability

to opponent’s choice-type pairs (cj , t
cj
j ) where cj ∈ C∗j . Since cj is optimal for t

cj
j , the type t

ci
i only

assigns positive probability to opponent’s choice-type pairs (cj , t
cj
j ) where cj is optimal for t

cj
j . Hence,

tcii ∈ T ∗i believes in the opponents’rationality. Since this holds for every type t
ci
i ∈ T ∗i , all types in

M∗ believe in the opponents’rationality. Hence, by Theorem 3.3.1, all types in M∗ express common
belief in rationality. Note that the types in M∗ are exactly the types tcii with ci ∈ CKi . Hence, for
every ci ∈ CKi , the associated type t

ci
i expresses common belief in rationality.

We can now prove that Ck+1i ⊆ BRki for all players i and all k ≥ 1. Take some ci ∈ Ck+1i where
k ≥ 1. Then we know from above that ci is optimal for the associated type t

ci
i , and that the type t

ci
i

expresses up to k-fold belief in rationality. Hence, by definition, ci ∈ BRki . As this holds for every
ci ∈ Ck+1i , we conclude that Ck+1i ⊆ BRki for all players i and all k ≥ 1.

Since in part (i) we have already seen that BRki ⊆ Ck+1i , we may conclude that BRki = Ck+1i for
all players i and all k ≥ 1. That is, a choice can rationally be made while expressing up to k-fold belief
in rationality precisely when the choice survives k+ 1 elimination rounds. This establishes part (a) of
Theorem 3.4.1.

We finally prove part (b) of Theorem 3.4.1. Suppose first that choice ci can rationally be made
under common belief in rationality. Then, in particular, for every k ≥ 1, the choice ci can rationally
be made while expressing up to k-fold belief in rationality. By part (a) we then know that ci survives
k + 1 rounds of elimination. Since this holds for every k ≥ 1, we conclude that ci survives all rounds
of elimination.

Suppose next that the choice ci survives all rounds of elimination. Then, ci ∈ CKi , where K is the
round at which the procedure of iterated elimination of strictly dominated choices terminates. From
the construction of the epistemic model M = (Ti, bi)i∈I above we know that the choice ci is optimal
for the type tcii and that the type t

ci
i expresses common belief in rationality. Hence, ci can rationally

be made under common belief in rationality. We thus conclude that a choice ci can rationally be made
under common belief in rationality precisely when the choice ci survives all rounds of elimination.
This completes the proof of part (b), and thereby the proof of this theorem. �

Proof of Theorem 3.4.2. We know that for every player there is at least one choice that survives
the procedure of iterated elimination of strictly dominated choices. For every player i, let C∗i be the
set of choices for player i that survive all rounds of the procedure, which contains at least one choice.
Then, we can construct the epistemic model M = (Ti, bi)i∈I as we did in the proof of Theorem 3.4.1
above. Consider the smaller epistemic model M∗ = (T ∗i , bi)i∈I contained in M in which

T ∗i := {tcii | ci ∈ C
∗
i },

and the beliefs of the types are given by (3.6.6). We already saw above that this is a well-defined
epistemic model, and that all types in M∗ express common belief in rationality. This completes the
proof. �

3.6.3 Proof of Section 3.5
Before we prove Theorem 3.5.1, we first introduce some additional definitions and results. We start by
defining general reduction operators, which assign to an object a smaller object by eliminating parts
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of it. As a next step, we define elimination orders for a given reduction operator, and state what it
means that the final outcome is independent of the elimination order. We then provide a condition
on reduction operators, called monotonicity, which guarantees that the final outcome is independent
of the elimination order.

Next, it is shown how the iterated elimination of strictly dominated choices can be identified
with the iterated application of a specific reduction operator. Finally, we show that the reduction
operator which characterizes the iterated elimination of strictly dominated choices is monotone. As
a consequence, the final outcome is independent of the elimination order, thus establishing Theorem
3.5.1.

3.6.3.1 Reduction Operators

Consider a finite set A. A reduction operator r on A assigns to every subset D ⊆ A a smaller set r(D) ⊆
D. For a given set D ⊆ A and a number k ∈ {1, 2, 3, ...}, we denote by rk(D) := r(r(...(r(D))...))︸ ︷︷ ︸

k times

the

k-fold application of the reduction operator r to D.
An elimination order for r is a finite sequence (D0, D1, ..., DK) where (a) D0 = A, (b) r(Dk) ⊆

Dk+1 ⊆ Dk for every k ∈ {0, ...,K−1}, and (c) r(DK) = DK . Here, condition (a) states that we start
with the full set A, condition (b) states that in round k+ 1 we eliminate at most as much from Dk as
is allowed by r, but possibly less, whereas condition (c) guarantees that DK cannot be reduced any
further, and hence the elimination procedure terminates there.

In an elimination order we thus start with the full set A, and during every consecutive round we
eliminate from the current set at most as much as is allowed by r, but possibly less, until we reach a
point where the set cannot be reduced any further.

One special elimination order is the full speed elimination order (D0, D1, ..., DK), where Dk+1 =
r(Dk) for every k ∈ {0, 1, ...,K−1}. In this elimination order, we always eliminate as much as possible
in every round.

3.6.3.2 Order Independence

Some reduction operators have the special property that the final outcome will always be the same,
no matter which elimination order is chosen. This property is called order independence.

Definition 3.6.1 (Order independence) A reduction operator r is order independent if for
every two elimination orders (D0, D1, ..., DK) and (E0, E1, ..., EL) we have that DK = EL.

We will now introduce a condition, called monotonicity, which guarantees that the reduction
operator is order independent.

Definition 3.6.2 (Monotonicity) A reduction operator r is monotone if for every two sets D,E
where r(E) ⊆ D ⊆ E, we have that r(D) ⊆ r(E).

Hence, monotonicity reveals the idea that smaller sets should have smaller reductions. The follow-
ing result shows that monotonicity implies order independence.

Lemma 3.6.2 (Monotonicity implies order independence) Every monotone reduction opera-
tor is order independent.
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Proof. Take a reduction operator r that is monotone, and a consider an arbitrary elimination order
(D0, D1, ..., DM ). For some m ∈ {0, 1, ...,M − 1}, consider the sets Dm and Dm+1. We show the
following property.

Claim. For every k ≥ 1, we have that rk+1(Dm) ⊆ rk(Dm+1) ⊆ rk(Dm).

Proof of claim. We prove the statement by induction on k. We start with k = 1. As (D0, D1, ..., DM )
is an elimination order for r, we know that r(Dm) ⊆ Dm+1 ⊆ Dm. By monotonicity of r it then follows
that r(Dm+1) ⊆ r(Dm). We thus have that r(Dm+1) ⊆ r(Dm) ⊆ Dm+1. By applying monotonicity of
r again, we conclude that r(r(Dm)) ⊆ r(Dm+1). Altogether, we see that r2(Dm) ⊆ r(Dm+1) ⊆ r(Dm),
which proves the statement for k = 1.

Take now some k ≥ 2, and assume that the statement is true for k − 1. That is, we know that
rk(Dm) ⊆ rk−1(Dm+1) ⊆ rk−1(Dm). Since rk(Dm) = r(rk−1(Dm)), it follows by monotonicity of r
that r(rk−1(Dm+1)) ⊆ r(rk−1(Dm)), and hence rk(Dm+1) ⊆ rk(Dm).

Thus, we know that rk(Dm+1) ⊆ rk(Dm) ⊆ rk−1(Dm+1), where rk(Dm+1) = r(rk−1(Dm+1)).
By monotonicity of r, we then conclude that r(rk(Dm)) ⊆ r(rk−1(Dm+1)), and hence rk+1(Dm) ⊆
rk(Dm+1). Altogether, we see that rk+1(Dm) ⊆ rk(Dm+1) ⊆ rk(Dm), which establishes the statement
for k.

By induction on k, the statement in the claim holds for every k. This completes the proof of the
claim.

Consider now an arbitrary elimination order (D0, D1, ..., DM ) for r. Let K be large enough such
that rK+1(Dm) = rK(Dm) for all m ∈ {0, 1, ...,M}. By applying the claim for m = 0, we get that
rk+1(D0) ⊆ rk(D1) ⊆ rk(D0) for all k. In particular, rK+1(D0) ⊆ rK(D1) ⊆ rK(D0). As rK+1(D0) =
rK(D0), it must be that rK(D1) = rK(D0). By applying the claim for all m ∈ {1, ...,M − 1}, we
conclude in a similar way that rK(Dm+1) = rK(Dm) for all m ∈ {1, ...,M − 1}. Hence, it follows in
particular that rK(DM ) = rK(D0). As r(DM ) = DM , we have that rK(DM ) = DM as well, and hence
DM = rK(D0) = rK(A).

As K has been chosen such that rK(D0) = rK+1(D0), it follows that rK(D0) = rK(A) is the
output of recursively applying the reduction operator r “at full speed”to the set D0 = A. Recall that
DM = rK(A) for every elimination order (D0, D1, ..., DM ) for r. Hence, no matter which elimination
order for r we choose, the output is the same as when we recursively apply the reduction operator r
“at full speed”to the set A. Hence, r is order independent. This completes the proof. �

3.6.3.3 Iterated Elimination of Strictly Dominated Choices

We now show how the iterated elimination of strictly dominated choices can be viewed as the iterated
application of a specific reduction operator. For a given game, let A = (Ci, C−i, ui)i∈I be the set that
assigns to every player i the (full) decision problem (Ci, C−i, ui). Since the utility function ui is fixed,
we just write A = (Ci, C−i)i∈I as an abbreviation. Consider two reduced decision problems (Di, D−i)
and (Ei, E−i), where Di, Ei ⊆ Ci, and D−i, E−i ⊆ C−i. We say that (Di, D−i) ⊆ (Ei, E−i) if Di ⊆ Ei
and D−i ⊆ E−i. Similarly, for two subsets D = (Di, D−i)i∈I and E = (Ei, E−i)i∈I of A, we write
D ⊆ E if (Di, D−i) ⊆ (Ei, E−i) for every player i.

Let sd be the reduction operator that assigns to every set of decision problems E = (Ei, E−i)i∈I a
smaller set of decision problems sd(E) = (Di, D−i)i∈I where, for all players i,

D−i := {(cj)j 6=i ∈ E−i | cj ∈ Ej for all j 6= i} and
Di := {ci ∈ Ei | ci not strictly dominated in (Ei, D−i, ui)}. (3.6.7)
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This reduction operator is called the strict dominance reduction operator.
For every round k, let Cki and C

k
−i be the set of choices and the set of states that survive round k

of the iterated elimination of strictly dominated choices in i’s decision problem. In the light of (3.6.7),
we then conclude that

sdk(A) = (Cki , C
k
−i)i∈I (3.6.8)

for every round k. In other words, the iterated elimination of strictly dominated choices is equivalent
to the iterated application of the strict dominance reduction operator at full speed.

Lemma 3.6.3 (Strict dominance operator is monotone) The strict dominance reduction oper-
ator is monotone.

Proof. Consider two sets of decision problems D = (Di, D−i)i∈I and E = (Ei, E−i)i∈I where sd(E) ⊆
D ⊆ E. We must show that sd(D) ⊆ sd(E). Let sd(D) = (D′i, D

′
−i)i∈I and sd(E) = (E′i, E

′
−i)i∈I .

Hence, we must show, for every player i, that D′i ⊆ E′i and D′−i ⊆ E′−i.
We start by showing that D′−i ⊆ E′−i. Take some (cj)j 6=i in D′−i. Then, by definition of the sd

operator, cj ∈ Dj for every j 6= i. As D ⊆ E we have that Dj ⊆ Ej for all j 6= i, and hence cj ∈ Ej
for all j 6= i. Thus, by definition of the sd operator, (cj)j 6=i is in E′−i. This shows that D

′
−i ⊆ E′−i.

We next prove that D′i ⊆ E′i. Take some ci ∈ D′i. By definition of the sd operator, we have that
ci is not strictly dominated in (Di, D

′
−i, ui). By Theorem 2.6.1 it follows that there is some belief

bi ∈ ∆(D′−i) such that
ui(ci, bi) ≥ ui(c′i, bi) for all c′i ∈ Di. (3.6.9)

Note that bi ∈ ∆(E′−i) since we have seen that D
′
−i ⊆ E′−i. Now, let c∗i ∈ Ei be such that

ui(c
∗
i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ei. (3.6.10)

By Theorem 2.6.1, we conclude that c∗i is not strictly dominated in (Ei, E
′
−i, ui), and hence c

∗
i ∈ E′i

by definition of the sd operator. Since sd(E) ⊆ D we know, in particular, that E′i ⊆ Di, and thus we
see that c∗i ∈ Di. By combining (3.6.9) and (3.6.10), and using the fact that c∗i ∈ Di, we conclude that

ui(ci, bi) ≥ ui(c∗i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ei.

By Theorem 2.6.1 it then follows that ci is not strictly dominated in (Ei, E
′
−i, ui), and hence ci is in

E′i. This shows that D
′
i ⊆ E′i.

Altogether, we see that D′−i ⊆ E′−i and D
′
i ⊆ E′i, and thus sd(D) ⊆ sd(E). Since this holds for

every two sets of decision problems D = (Di, D−i)i∈I and E = (Ei, E−i)i∈I where sd(E) ⊆ D ⊆ E, we
conclude that the strict dominance reduction operator sd is monotone. This completes the proof. �

We are now ready to prove Theorem 3.5.1.

Proof of Theorem 3.5.1. We have seen above that the iterated elimination of strictly dominated
choices is equivalent to the iterated application of the strict dominance reduction operator sd at full
speed. Moreover, we know by Lemma 3.6.3 that the sd operator is monotone. Together with Lemma
3.6.2, we conclude that sd is order independent. Hence, the final outcome of the iterated elimination
of strictly dominated choices does not depend on the specific elimination order we use. This completes
the proof. �
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Solutions to In-Chapter Questions

Question 3.1.1. At the belief p = (0.6)· blue + (0.4)· green, the expected utilities of the four colors
are

u(blue, p) = (0.6) · 0 + (0.4) · 4 = 1.6,

u(green, p) = (0.6) · 3 + (0.4) · 0 = 1.8,

u(red, p) = (0.6) · 2 + (0.4) · 2 = 2, and

u(yellow, p) = (0.6) · 1 + (0.4) · 1 = 1.

Hence, your preference relation at that belief is red �p green �p blue �p yellow.

Question 3.1.2. It may be verified that the randomized choice (0.5)· blue + (0.5)· green strictly
dominates your choice yellow under the expected utility representation u from Table 3.1.1.

To see that it strictly dominates yellow for every expected utility representation, note first that
there are preference reversals between every pair of choices. Moreover, there are beliefs where you
are indifferent between some, but not all, colors. We thus know by Theorem 2.5.1 that the relative
preference intensities are unique. But then, the randomized choice (0.5)· blue + (0.5)· green strictly
dominates yellow for every expected utility representation.

Question 3.2.1. If we start at your choice green, then you believe that Barbara assigns probability
0.6 to you choosing red and that Barbara assigns probability 0.4 to you choosing yellow. If we start
at Barbara’s choice green, then Barbara believes that you believe that Barbara chooses blue. If we
start at Barbara’s choice blue, then Barbara’s assigns probability 0.6 to the event that you believe
that Barbara chooses blue and green with probabilities 0.6 and 0.4, respectively, and Barbara assigns
probability 0.4 to the event that you believe that Barbara chooses yellow.

Question 3.2.2. If we start at your choice blue, then you believe that Barbara believes that you
believe that Barbara chooses red. If we start at Barbara’s choice green, then Barbara believes that you
believe that Barbara assigns probability 0.6 to you choosing red and probability 0.4 to you choosing
yellow.

Question 3.2.3. Suppose we delete the arrow from your choice blue to Barbara’s choice red, and
the arrow from Barbara’s choice red to your choice blue. Then, the only choices with outgoing arrows
would be your choices green, red and yellow, and Barbara’s choices blue, green and yellow. Moreover,
every choice with an outgoing arrow leads only to choices with outgoing arrows, and hence this qualifies
as a beliefs diagram. If, in addition, we delete the arrow from Barbara’s choice green to your choice
green, then the forked arrow starting at your choice red would lead, with probability 0.4, to Barbara’s
choice green, which does not have an outgoing arrow. Hence, we cannot derive the full belief hierarchy
if we start at your choice red, and this would therefore not qualify as a beliefs diagram.

Question 3.2.4. Under this probabilistic belief, Barbara’s expected utility from choosing blue, green,
red and yellow are

u2(blue) = 0, u2(green) = (0.3) · 4 = 1.2, u2(red) = (0.7) · 1 = 0.7 and u2(yellow) = 2.

Hence, yellow yields Barbara the highest expected utility under this belief.

Question 3.2.5. The first-order belief about Barbara is that you think that Barbara chooses green.
In your second-order belief, you believe that Chris believes that Barbara chooses yellow. In your
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third-order belief, you believe that Chris believes that Barbara assigns probability 0.3 to the event
that you choose red and Chris chooses blue, and that Barbara assigns probability 0.7 to the event that
you choose green and Chris chooses blue.

Question 3.2.6. Your type tblue1 believes that Barbara chooses red (first-order belief), that Barbara
believes that you choose blue (second-order belief), and that Barbara believes that you believe that
Barbara chooses red (third-order belief). Barbara’s type tgreen2 believes that you choose green (first-
order belief), that you believe that Barbara chooses blue (second-order belief), and that you believe
that Barbara assigns probability 0.6 to you choosing red and probability 0.4 to you choosing yellow
(third-order belief).

Question 3.2.7. You believe that Barbara chooses blue and Chris chooses yellow. You believe that
Barbara believes that Chris chooses yellow. You believe that Chris believes that you believe that
Barbara chooses blue.

Question 3.3.1. For you, blue is optimal for tblue1 , green is optimal for tgreen1 , red is optimal for tred1
and blue is optimal for tyellow1 . For Barbara, blue is optimal for tblue2 , red is optimal for tgreen2 , red is
optimal for tred2 and yellow is optimal for tyellow2 .

Question 3.3.2. Your types tblue1 , tgreen1 and tyellow1 believe in Barbara’s rationality. Barbara’s
types tgreen2 , tred2 and tyellow2 believe in your rationality. Barbara’s type tblue2 does not believe in your
rationality since it assigns positive probability to your choice-type pair (yellow, tyellow1 ), whereas yellow
is not optimal for your type tyellow1 .

Question 3.3.3. Barbara’s type tyellow2 believes that you hold the type tred1 , which does not express
1-fold belief in rationality.

Question 3.3.4. Barbara’s type tgreen2 believes that you hold the type tgreen1 , which does not express
2-fold belief in rationality.

Question 3.5.1. Here is an example: In round 1, only eliminate your choice yellow. In round
2, only eliminate Barbara’s choice green. In round 3, only eliminate your choice red. In round 4,
only eliminate Barbara’s choice blue. In round 5, only eliminate your choice green. In round 6, only
eliminate Barbara’s choice yellow. Then, only your choice blue and Barbara’s choice red survive.
It takes 6 rounds to terminate. There are also other orders of elimination where only one choice is
eliminated in every round. However, each of these elimination orders takes 6 rounds to terminate, and
the surviving choices will always be the same as here.
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Problems

Problem 3.1: The dancing competition.

You and Barbara are the jury members of a dancing competition. After every performance, you and
Barbara report an integer grade between 4 and 10, and the final grade for the candidate will just be
the average of the two reported grades.

You have just seen the first dancer, and you value her performance at 8, whereas Barbara values
the performance at 7. That is, your desired grade is an 8 and Barbara’s desired grade is a 7. Since
you are both loud and clear about your opinion, you both know the desired grade of the other person.
Now it is time for both of you to report a grade, which may well be different from your desired grade,
because the final grade also depends on the other person’s reported grade.

Suppose that the conditional preference relation for you is such that the closer the final grade is
to your desired grade, the higher your utility. More precisely, for every pair of reported grades your
utility is 4 minus the absolute difference between your desired grade and the final grade. For instance,
if you report a grade of 9 and Barbara a grade of 5, then the final grade is 7, and thus your utility is
4− |8− 7| = 4− 1 = 3. If you both report a grade of 10, then the final grade would be 10, and your
utility would be 4 − |8 − 10| = 4 − 2 = 2. The conditional preference relation for Barbara is similar,
but recall that her desired grade is a 7 instead of an 8.

(a) Formulate this story as a game, by specifying the decision problems for you and Barbara.

(b)Which choices (reported grades) are rational for you? For every rational choice, find a belief about
Barbara’s choice for which that choice is optimal. For every irrational choice, find another choice, or
randomized choice, that strictly dominates it.

(c) Which grades can you and Barbara rationally report while expressing up to 3-fold belief in ra-
tionality? Which grades can you and Barbara rationally report under common belief in rationality?
Which final grades are possible under common belief in rationality?

Barbara was shocked by the large difference in grades you both reported for the first dancer, and
it has made her rather insecure. Her preferences have changed because of this unpleasant experience.
From now on, her objective is to report the same grade as you. That is, if she reports the same grade
as you, her utility will be 1, whereas her utility will be 0 if she reports a grade different from yours.
Your conditional preference relation is similar as before: Your utility is 4 minus the absolute difference
between your desired grade and the final grade.

The second dancer in the competition is Chris, who danced the jive just like John Travolta in
Saturday Night Fever. Your desired grade for Chris’marvellous performance is therefore a 9.

(d) Which grades can you and Barbara rationally report under common belief in rationality? Which
final grades are possible under common belief in rationality?

(e) Make a beliefs diagram with solid arrows only that includes precisely the choices you found in
(d), but no other choices. Which of your belief hierarchies in the diagram expresses common belief in
rationality?

(f) Translate this beliefs diagram into an epistemic model. Which of the types express common belief
in rationality? Make sure that for every choice found in (d) there is a type that expresses common
belief in rationality and for which that choice is optimal.
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Problem 3.2: Selling ice cream on the beach.

Barbara, Chris and you are spending a lovely holiday on an island with many beaches. Today, you all
want to sell ice cream on the beach. There are five beaches close to the hotel: Acapulco Beach with
room for 1400 people, Bounty Beach with room for 1200 people, Cucaracha Beach with room for 1000
people, Dream Beach with room for 900 people, and El Dorado Beach with room for 600 people. You
expect all beaches to be packed today, since the weather is absolutely fantastic. Moreover, everybody
at the beach is expected to buy exactly one ice cream.

In the early morning, Barbara, Chris and you must independently decide to which beach you will
go to sell your ice cream. If you happen to go to the same beach as one of your friends, then you will
both sell to half of the people at that beach. If you all go to the same beach, then each of you will sell
to one third of the people at that beach. Of course, the objective for each of you is to sell as many ice
creams as possible. As such, the utility you obtain will always be equal to the number of customers
to which you sell.

(a) How many states does your decision problem contain?

(b) In (a) you have seen that there are many states — too many to write down your full decision
problem in a reasonable amount of time. To at least get an idea of how your decision problem looks
like, write down the reduced decision problem for you in which you can choose each of the five possible
locations, but where the states only contain Acapulco Beach, Bounty Beach and Cucaracha Beach for
Barbara and Chris.

(c) Which beaches are rational in your decision problem, and which are irrational? For every rational
beach, find a belief about Barbara’s and Chris’ choice for which that beach is optimal. For every
irrational beach, find another beach, or a randomized choice, that strictly dominates it.

(d) To which beaches can you, Barbara and Chris rationally go under common belief in rationality?

(e) Construct a beliefs diagram with solid arrows only that uses, for every player, precisely those
choices found in (d).

(f) Consider the belief hierarchy that supports your choice Cucaracha Beach. In your first-order belief,
what do you believe that Chris will do? In your second-order belief, what do you believe that Chris
believes that Barbara will do? Answer the same two questions for the belief hierarchy that supports
your choice Dream Beach.

(g) Translate this beliefs diagram into an epistemic model, where all types express common belief in
rationality, and where for every choice found in (d) there is a type for which that choice is optimal.

During breakfast Chris told you, quite surprisingly, that he will work as a life guard at Cucaracha
Beach today, and will therefore not be able to sell ice creams.

(h) To which beaches can you rationally go under common belief in rationality within this new
scenario? Compare your findings with (d), and explain the difference.

Problem 3.3: Deborah’s garden.

You have a friend, Deborah, with a magnificent garden. Tomorrow, she needs someone to help her
getting the garden ready for the evening party. Barbara, Chris and you are all interested in helping
her, but she only needs one person she said. To decide who will help her, you must all write a price
on a piece of paper and give it to Deborah. The person who writes down the lowest price will help her
tomorrow, and gets paid exactly the amount he or she wrote down. You can only write down prices of
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10 euros, 20 euros, 30 euros, up to 100 euros. If two persons write down the same lowest price, then
Deborah will toss a coin to decide who gets to help her. If you all three write down the same price,
she will throw a dice to determine the garden assistant. Of course, in that case you all have an equal
chance to become her assistant.

Assume that your conditional preference relation is represented by a utility function where, for
every price of yours, and every combination of prices by Barbara and Chris, your utility equals the
expected reward you obtain. Similarly for Barbara and Chris.

(a) How many states are there in your decision problem?

(b) You have seen in (a) that there are many states, and therefore writing down your complete decision
problem is a very cumbersome and boring task. To get an idea of how your decision problem would
look like, write down the reduced decision problem that only contains your choices 100, 90 and 10, and
that only contains states where Barbara and Chris choose 100, 90 or 80.

(c) Which prices are rational and which are irrational in your decision problem? For every rational
price, find a belief about Barbara’s and Chris’ choice for which that price is optimal. For every
irrational price, find another price, or randomized choice, that strictly dominates it.

(d) What prices can you rationally choose while expressing up to 4-fold belief in rationality? What
prices can you rationally choose under common belief in rationality?

It is now one day later, and Deborah again needs help from somebody, this time to help her clean
up the garden after the party. She proposes the same procedure as above. However, since Barbara,
Chris and you were very disappointed by the outcome of the procedure yesterday, you have decided
to do things differently this time. You have agreed that the person who is selected to help Deborah
will share his or her income equally with the other two friends. For instance, if Barbara is selected to
help Deborah at a price of 60 euros, everybody will obtain 20 euros at the end.

(e) What prices can you rationally choose under common belief in rationality?

(f) Construct an epistemic model where all types express common belief in rationality, and such that
for every price found in (e) there is a type for which that price is optimal.

A choice in a game is called weakly dominant if, whatever the opponents do, this choice is always
at least as good than any other choice, and sometimes strictly better.

(g) Find the unique weakly dominant price for you, Barbara and Chris in this new scenario. Compare
this to the outcome in (d), and explain the difference.
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Literature

Origins of game theory. Why is the field called “game theory” and not “multi-person decision
making under uncertainty”, for instance, which would be a more accurate description of its content?
The reason, as often, is historical. Some of the early developments, which later gave rise to the field,
were explicitly about recreational games.

More than a century ago, Zermelo (1913) proved that in the game of chess, every position is either
a winning position for White, or a winning position for Black, or a non-loosing position for both White
and Black. As a consequence, either White has a strategy that guarantees him a win, no matter what
Black does, or Black has a strategy that guarantees him a win, no matter what White does, or both
White and Black have a strategy that guarantee them at least a draw, no matter what the opponent
does. This result, which often is referred to as Zermelo’s Theorem, is generally regarded as the first
theorem in game theory,

During the next decade, Borel (1921, 1924, 1927) investigated symmetric two-person zero-sum
games involving chance, which are recreational games with two players where both players have
symmetric roles, and where the gain of x for one player results in the loss of the same amount x for
the other player. Borel starts his analysis with the iterated elimination of bad strategies, which are
strategies that give the player an expected payoff of at most 0. In Borel (1921) it is shown that, if
the reduced game obtained at the end contains three strategies for both players, then each player has
a randomization over strategies that gives him an expected payoff of exactly 0, no matter what the
opponent plays. The follow-up papers Borel (1924) and Borel (1927) extend this result to the case
where the reduced game contains five and seven strategies, respectively.

Borel’s findings were later generalized by von Neumann (1928) who studied general two-person
zero-sum games in which the players may have asymmetric roles. He proved that for every such game
there is a unique number v such that (a) player 1 has a randomization over strategies that gives him
an expected payoff of at least v, no matter what player 2 does, and (b) player 2 has a randomization
over strategies that gives him an expected payoff of at least −v, no matter what player 1 does. This
number v is called the value of the zero-sum game, and this result is known as von Neumann’s maxmin
theorem. Clearly, if the game is symmetric, as Borel assumes, than the value must be 0, and hence
Borel’s result follows.

Later it was recognized that the essential ingredients of a recreational game —that there are various
players involved, that every player chooses a strategy for how to play the game, and that the final
outcome depends on the strategies of all players —are also present in many scenarios in economics,
politics, and other environments where human decision making plays an important role. In that light,
the book Theory of Games and Economic Behavior by von Neumann and Morgenstern (1944) was
a true milestone, as it showed how many of such scenarios in economic theory can be modelled, and
analyzed, in a uniform way. The book thereby gave birth to the field of game theory as a scientific
discipline. The reader who wants to learn more about the influence that John von Neumann and
Oskar Morgenstern had on the creation of game theory may consult the book by Leonard (2010).

Games. The first to give a general and systematic definition of a game was von Neumann (1928). He
defined a dynamic game in which the players may have to make a sequence of choices during a finite
number of periods. At every period the players simultaneously make a choice, which moves the game
to the next period. He also allows for chance moves with commonly known objective probabilities.
If we take von Neumann’s definition and apply it to a scenario with one period only, we essentially
obtain the definition of a game in this chapter. The only difference is that we do not involve chance
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moves in our definition. In their book, von Neumann and Morgenstern (1944) build on von Neumann’s
(1928) definition.

Games as decision problems. We have seen that a game can be viewed as a combination of
decision problems —one for every player —in which the states correspond to the possible opponents’
choice combinations. As such, we explicitly take a one-person perspective in this book. This is also
reflected by the definitions, examples and exercises in which we always take the viewpoint of a single
player —be it player i or “you”—and reason about the game from the perspective of this single player.
Such a one-person approach to game theory is also present in Harsanyi (1967—1968) when he lays
out his framework for games with incomplete information, in which players are uncertain about the
opponents’utility functions.

Belief hierarchies. In a sense, belief hierarchies constitute the language of epistemic game theory.
They may be viewed as the end-product of a reasoning process that results in a belief about the
opponents’choices, a belief about the opponents’beliefs about the other players’choices, and so on.

The importance of belief hierarchies for economic theory has already been stressed by Morgenstern
(1935). In this paper he criticizes the common assumption in economics that all agents are correct
about everything in the model —the parameters of the model, but also the behavior of other agents.
But if this correctness assumption is dropped, it becomes important to model what an agent believes
about the parameters and the behavior of other agents, what an agent believes about the beliefs of
other agents, and so on.

Despite this, belief hierarchies have remained absent from game theory for many decades after
Morgenstern’s article. A possible reason is that the early achievements by Zermelo (1913), Borel
(1921, 1924, 1927), von Neumann (1928) and Nash (1950, 1951), but also the book by von Neumann
and Morgenstern (1944), have pushed game theory in a direction where the need for belief hierarchies
was heavily diminished. To see why, consider the early results by Zermelo, Borel and von Neumann
as discussed above. In each of these theorems, the focus is on a player who can choose a certain (ran-
domized) strategy that guarantees him a particular (expected) outcome, no matter what the opponent
does. Hence, to guarantee this outcome the player need not actively reason about the opponent’s
choices or beliefs, as the strategy is guaranteed to deliver this outcome, or more, independent of what
the opponent does. But if there is no need to reason about the opponent, the role of belief hierarchies,
as mathematical representations of the players’ reasoning, is heavily diminished. Later, the book
by von Neumann and Morgenstern (1944) adopted this “reasoning-free”approach to games, despite
Morgenstern’s (1935) arguments in favor of reasoning and belief hierarchies. As we will see in the fol-
lowing chapter, Nash’s (1950, 1951) influential equilibrium concept requires every player i to believe
that his opponents are correct about i’s beliefs, thereby imposing a correctness assumption similar to
the one criticized by Morgenstern (1935). This, again, led to an analysis that avoids the explicit use
of reasoning and belief hierarchies. Because Nash equilibrium would play a dominant role in game
theory for many decades, reasoning and belief hierarchies remained absent from the game-theoretic
picture for a long time.

To the best of my knowledge, Harsanyi (1962) was the first to explicitly incorporate belief hi-
erarchies into game theory, although he did so for the very specific context of bargaining situations
between two persons who face uncertainty about the opponent’s utility function. The belief hierarchies
he explored described the belief of party 1 about the best terms that party 2 is willing to accept, the
belief of party 1 about party 2’s belief about the best terms that party 1 is willing to accept, and so
on. He also restricted attention to probability 1 beliefs. Later, Harsanyi (1967—1968) extended the use
of belief hierarchies to general games with incomplete information (see Chapters 5 and 6 in this book)
in which players have uncertainty about the opponents’utility functions. For such games, he allowed
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for probabilistic belief hierarchies describing what a player believes about the opponents’choices and
utility functions, what he believes about the opponents’beliefs about the other players’choices and
utility functions, and so on.

Since Harsanyi showed how belief hierarchies can be incorporated into the analysis of games, he
deserves much of the credit for the transition from classical to epistemic game theory. The reader
who wants to know more about this transition, and why it took so long, may consult the historical
overview papers by Brandenburger (2010) and Perea (2014).

Beliefs diagrams. Beliefs diagrams have been introduced in the textbook Perea (2012) as a visual
representation of belief hierarchies.

Types. The use of types to mathematically encode belief hierarchies goes back to Harsanyi (1967—
1968). For games with incomplete information, where players face uncertainty about the opponents’
utility functions, Harsanyi introduced epistemic models with types to represent belief hierarchies in
a compact and convenient way. In Harsanyi’s framework, every type for a player prescribes a utility
function, a choice, and a probabilistic belief about the opponents’types. From this model we can then
derive, for every type, a full infinite belief hierarchy about the choices and utility functions for the
players, similarly to how we have derived belief hierarchies from types in this chapter.

The main difference with Harsanyi’s model is that we do not prescribe a choice for a type. In turn,
the types in our model hold a belief about the opponents’types and the opponents’choices, instead
of having a belief solely about the opponents’types. This is necessary in order to be able to derive a
belief hierarchy on choices from a type. Another difference, of course, is that we do not prescribe a
utility function for a type, since in this chapter we concentrate on games with complete information
in which players are informed about the opponents’utility functions.

In Harsanyi (1967—1968), special attention is paid to a scenario where the probabilistic beliefs
about the opponents’ types are derived from a common prior probability distribution on the type
combinations by the players. This assumption is often called the Harsanyi doctrine. We will come
back to the common prior in the next chapter.

The epistemic model we use in this chapter is essentially the one employed in Tan and Werlang
(1988).

Alternative encodings of belief hierarchies. Encoding belief hierarchies by means of types à
la Harsanyi is just one possible way of doing so. In the game-theoretic literature there are at least
two important alternative ways for describing a belief hierarchy. The first approach, which is based
on the models by Kripke (1963) and Aumann (1974, 1976), assumes that there is a set of states of
the world, and a function that assigns to every state of the world a choice for each of the players.
A player, however, has uncertainty about the true state of the world. This is modelled by assuming
that at every state, there is a set of states — typically containing more than one state —which the
player deems possible there. Moreover, at every state a player may hold a probabilistic belief about
the states of the world he deems possible. In a similar way as for types, we can then derive a full
infinite belief hierarchy about choices for every state and every player. We call this the state-based
approach. The second approach, which is often used by scientists from logic and computer science,
explicitly describes all levels in the belief hierarchy as formulae in some formal syntax. We call this
the syntactic approach.

Among others, Brandenburger and Dekel (1993), Tan and Werlang (1992) and Bach and Perea
(2023a) explicitly compare the type-based approach, as we use it in this book, with the state-based
approach described above. They show how to transform the encoding of a belief hierarchy in one
model into an “epistemically equivalent”encoding in the other model, thereby establishing that the
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two approaches are essentially equivalent. For the presentation and analysis of epistemic concepts it
does not really matter which language one uses for describing the belief hierarchies —the type-based
language, the state-based language or the syntactic language. What matters is the content of the
belief hierarchies, and the conditions we impose on these. Hence, we could as well have written this
book entirely by using one of the other two languages described above. In a sense, all these models
just provide different representations of the same primitive notion, which is the belief hierarchy of a
player.

Large epistemic models. In this chapter we have used epistemic models with types to encode
certain belief hierarchies we are interested in. In a sense, for every belief hierarchy of interest we could
construct a new epistemic model that encodes this particular belief hierarchy.

We say that the epistemic model is terminal if every possible belief hierarchy we can think of is
already contained in this single epistemic model. Since there are obviously infinitely many —and in
fact uncountably many —possible belief hierarchies, any terminal epistemic model must necessarily
contain infinitely many —in fact, uncountably many —types for every player.

An important —but diffi cult —question that has been addressed in the literature is whether we
can always construct a terminal epistemic model for every game. Armbruster and Böge (1979), Böge
and Eisele (1979) and Mertens and Zamir (1985) were the first to explicitly construct such terminal
epistemic models. Later, Brandenburger and Dekel (1993), Heifetz (1993) and Heifetz and Samet
(1998) extended the above constructions by relaxing the topological assumptions being made in the
model. Epstein and Wang (1996) show that a similar construction also works in a more general
framework in which the players hold hierarchies of preferences over acts, rather than hierarchies of
beliefs, satisfying certain regularity conditions.

The epistemic models we use in this book all contain finitely many types for every player, and are
therefore necessarily not terminal. The reason we do not use terminal epistemic models is that we
do not really need them for our purposes here. Moreover, epistemic models with finitely many types
have the advantage that they can more easily be represented in examples —something that we find
very important in this book.

Common knowledge and common belief. In the literature there is a distinction between knowl-
edge and belief. The fundamental difference is that you can only know an event if that event is true,
whereas you can believe an event which is not true. This is called the truth axiom of knowledge.

The notions of common knowledge and common belief have independently been defined by the
sociologist Friedell (1967, 1969), the philosopher Lewis (1969) and the game theorist Aumann (1976).
Both Friedell and Lewis use a syntactic approach, whereas Aumann employs a state-based approach
for the definition.

Friedell uses the term common opinion rather than common belief, and he defines his notion in
essentially the same way as how we define common belief in rationality in this chapter. He then
defines common knowledge in an event as the situation where the event is a matter of common opinion
between the persons involved, and where the event is true. Lewis (1969) defines common knowledge in
a fundamentally different way, as he proceeds by identifying suffi cient conditions that imply common
opinion (knowledge) in the sense of Friedell. Aumann’s (1976) definition of common knowledge is
similar to Friedell’s, but uses a state-based formulation instead of a syntactic one.

Common belief in rationality. As we have argued in this chapter, common belief in rationality
is the central concept in epistemic game theory. The idea of common belief in rationality already
appears in Friedell (1969) and Spohn (1982), although these two papers do not offer a fully rigorous
definition. The definition of common belief in rationality as we use it in this chapter is taken from Tan
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and Werlang (1988), who call it common knowledge of rationality instead. We have decided to use the
term common belief, because we think it better fits the reasoning of people in game-like situations. A
player in a game can never be fully certain of the opponents’choices or beliefs, and therefore knowledge
seems too strong a concept for such scenarios.

In the literature, some other papers identify suffi cient conditions that imply common belief in
rationality. Examples are Harsanyi (1967—1968), Böge and Eisele (1979), Armbruster and Böge (1979),
Aumann (1974, 1987) and Brandenburger and Dekel (1987). The first three papers consider Harsanyi-
style models with types, and require that for every type the prescribed choice is optimal for the
prescribed utility function and the induced belief about the opponents’choices. This property can be
shown to imply common belief in rationality. The latter three papers above impose a similar condition
in a state-based model.

The suffi cient condition for common belief in rationality above is often called universal rationality.
It is similar to the suffi cient condition studied in this chapter, stating that every type in the epistemic
model believes in the opponents’ rationality. Indeed, both this suffi cient condition and universal
rationality state that there is no irrationality in the system. We have shown in Theorem 3.3.1 that
under our suffi cient condition, all types in the epistemic model express common belief in rationality.
In a similar fashion it can be shown that also the universal rationality condition above implies common
belief in rationality.

The idea of common belief in rationality is also implicitly present in the concept of rationalizability,
as defined independently by Bernheim (1984) and Pearce (1984). Although these papers do not provide
a formal definition of common belief in rationality, they argue informally that rationalizability is really
based on this very idea.

Recursive procedure. In this chapter we have presented the recursive procedure known as the
iterated elimination of strictly dominated choices. It is very similar to procedures that appear in Böge
and Eisele (1979, Theorem 2), Armbruster and Böge (1979, Example 6.2), Pearce (1984, Definition 1)
and Tan and Werlang (1988, Definition 5.1).

Our Theorem 2.6.1, which states that, within a decision problem, a choice is optimal for some
belief precisely when it is not strictly dominated, is based on Pearce (1984, Lemma 3). This result is
crucial for showing that the iterated elimination of strictly dominated choices characterizes the choices
that can rationally be made under common belief in rationality.

Theorem 3.4.1, which shows that the iterated elimination of strictly dominated choices characterizes
precisely those choices that can rationally be made under common belief in rationality, is perhaps
the most important result in epistemic game theory. Brandenburger (2014) calls it the fundamental
theorem of epistemic game theory. Different versions of this theorem can be found in Böge and Eisele
(1979, Theorem 2), Brandenburger and Dekel (1987, Proposition 2.1) and Tan and Werlang (1988,
Theorems 5.2 and 5.3). Spohn (1982) provides an intuition for why this theorem holds.

Order of elimination. In Section 3.5 we have seen that the order of elimination does not matter for
the eventual output of the iterated elimination of strictly dominated choices. Papers that study the
order independence of general, or specific, iterated elimination procedures are, for instance, Gilboa,
Kalai and Zemel (1990), Apt (2004, 2011), Chen and Micali (2013), Luo, Qian and Qu (2020) and
Perea (2017, 2018). The monotonicity condition we use for proving the order independence coincides
with the condition of hereditarity (Apt (2011)) and is similar to, but stronger than, 1-monotonicity∗

(Luo, Qian and Qu (2020)).
Manili (2023) offers a different way of proving order independence of iterated elimination of strictly

dominated choices. This procedure can be written as the iterated application of some operator ρ that
assigns to every set of decision problems D a new set of decision problems ρ(D), where ρ(D) need not
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be smaller than D. That is, ρ need not be a reduction operator. Manili (2023) proposes the condition
of monotonicity, which states that ρ(D) ⊆ ρ(E) whenever D ⊆ E, and shows that every monotonic
operator induces an iterated elimination procedure that is order independent. Since the operator ρ
underlying the iterated elimination of strictly dominated choices is indeed monotonic, it follows that
this procedure is order independent.

Independent beliefs. In a game with three players or more, player i is said to have independent
beliefs about the opponents’choices if for every two opponents j and k, his belief about opponent
j’s choice is stochastically independent from his belief about opponent k’s choice. The concept of
rationalizability by Bernheim (1984) and Pearce (1984) assumes independent beliefs by the players. As
this concept is also based on the idea of common belief in rationality, rationalizability is more restrictive
than common belief in rationality. One way to see this more formally is that the recursive elimination
procedure by Pearce (1984, Definition 1), which constitutes Pearce’s definition of rationalizability,
is more restrictive than the iterated elimination of strictly dominated choices which, we have seen,
characterizes precisely those choices that can rationally be made under common belief in rationality.

Bernheim (1984) defends the independent beliefs assumption by arguing that the players typically
make their choices independently from each other, without any possibility of communication, and
that therefore a player’s belief about the opponents’ choices must be independent. In our view,
this conclusion is not entirely correct: Even if player i believes that his opponents j and k choose
independently, then it may still be that his belief about j’s belief hierarchy is correlated with his belief
about k’s belief hierarchy. As a consequence, his belief about j’s choice may well be correlated with
his belief about k’s choice, as these choices may arise as the optimal choices under different belief
hierarchies, about which player i holds correlated beliefs.

This is precisely the viewpoint taken by Brandenburger and Friedenberg (2008), who call the above
type of correlation between beliefs about different opponents’belief hierarchies intrinsic. They weaken
the independence assumption in Bernheim (1984) and Pearce (1984) by stating that in a game with
three players or more, the belief that player i has about opponent j’s choice must be stochastically
independent from his belief about opponent k’s choice, once we condition an a fixed belief hierarchy
for opponents j and k. They call this condition conditional independence. In other words, if we fix
two belief hierarchies of opponents j and k, then conditional on these belief hierarchies being the
actual belief hierarchies held by the opponents, the beliefs about the opponents’ choices must be
independent. This still reflects Bernheim’s viewpoint that the two opponents choose independently,
but recognizes that it does not automatically mean that the beliefs about the opponents’ choices
must be independent —only if we condition on some fixed belief hierarchies for the opponents it will.
This condition is obviously weaker than the independence condition in Bernheim (1984) and Pearce
(1984). Brandenburger and Friedenberg (2008) then take the concept of common belief in rationality
and additionally impose common belief in the event that types have conditionally independent beliefs.
The concept obtained is, in terms of choices selected, in between the concept of common belief in
rationality and the concept of rationalizability.


