
Chapter 7

Common Belief in Rationality with Unaware-
ness

In the previous two chapters we have investigated scenarios where the decision makers are uncertain
about the decision problems of others. Remember that a decision problem for you in a game consists
of the following three ingredients: (i) the choices that you believe are available to your opponents, (ii)
the choices that you believe are available to yourself, and (iii) your conditional preference relation,
which assigns to every belief about the opponents’choices a preference relation over your own choices.

To be precise, the uncertainty we considered in the previous two chapters only concerned the third
component, not the first two components. Indeed, we implicitly assumed that everybody involved
knew exactly which choices were available to every decision maker, including himself.

In this chapter we turn to situations where a player may be unaware of some choices that are
actually available to his opponents, and may even be unaware of certain choices that are actually
available to himself. The crucial difference with uncertainty is that being unaware of an event precludes
you to even reason about this event —the event is simply not in your dictionary, and you cannot even
contemplate the possibility of this particular event.

More concretely, if you can actually make the choice a, but believe that the opponent is unaware
of a, then you believe that the opponent cannot even reason about the possibility that you could ever
choose a. You believe that the choice a is not in the vocabulary of the opponent.

For a given player, the choices he believes are available to his opponents, together with the choices
he believes are available to himself, constitute the view of that player. In particular, if you hold a
certain view, you may well believe that your opponents hold a view different from yours.

In this chapter we start by an example that illustrates the notion of unawareness in games, and
show informally how a player can reason in accordance with common belief in rationality there. Next,
we explain that belief hierarchies must satisfy the following condition: If you are unaware of a choice a,
then you cannot believe that an opponent is aware of the same choice a. Similarly, if you believe that
an opponent is unaware of a choice a, then you must believe that this opponent cannot believe that
somebody else is aware of a, and so on. This condition, which we refer to as the awareness principle,
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makes the analysis fundamentally different from that of games with incomplete information.
Once the awareness principle is being imposed, the concept of common belief in rationality can be

defined analogously to how we did it for games with incomplete information. We introduce a recursive
procedure, iterated strict dominance for unawareness, that yields precisely those choices that can
rationally be made under common belief in rationality. As you will see, the procedure is very similar
to the generalized iterated strict dominance procedure we used for games with incomplete information.

Subsequently, we impose fixed beliefs on views, similarly to how we imposed fixed beliefs on utilities
in games with incomplete information. More precisely, we fix a belief hierarchy that you may hold
about the players’ views in the games, and explore which choices you can rationally make under
common belief in rationality with this particular belief hierarchy on views.

Finally, it is shown that additionally imposing simple, or even symmetric, belief hierarchies nec-
essarily leads to trivial cases of unawareness, where you believe that it is commonly believed that
everybody holds exactly the same view of the game. That is, we would essentially be back to the
case of standard games, where all players hold the same view of the game. For that reason, we do not
devote a seperate chapter to the case of correct and symmetric beliefs here.

In Chapter 7 of the online appendix we discuss some economic applications of games with un-
awareness.

7.1 Unawareness

We first present an example, illustrating the notion of unawareness in games. Based on this example,
we then provide a general definition of a game with unawareness.

7.1.1 Example
As already announced above, we will study situations where a player may be unaware of some choices
that are available to others, or even to himself. This new phenomenon will be illustrated by the
following example.

Example 7.1: A day at the beach.

You and Barbara spend the holiday on a small island, where there are four beaches: Nextdoor Beach,
Closeby Beach, Faraway Beach and Distant Beach. The first two beaches are close to the hotel, and
both you and Barbara are aware of these beaches. Moreover, both of you know this. The other two
beaches are really far away, and very diffi cult to find. Even your phone is not able to find these
beaches.

However, yesterday, when making a long and nice walk, you discovered these two beaches by
accident. The problem is that you do not know whether Barbara is aware of these two beaches or
not. You will also not ask her because you had another fierce discussion yesterday, and therefore you
would rather not see Barbara today. The same holds for Barbara.

At the same time, you would like to go to the beach this morning, because the weather is simply
splendid. But which beach should you go to?

You have seen all four beaches, and although all of them are nice, you prefer Faraway Beach to
Distant Beach, you prefer Distant Beach to Nextdoor Beach, and Nextdoor Beach to Closeby Beach.
But remember that you want to avoid Barbara today.
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You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3
Nextdoor 2 2 0 2
Closeby 1 1 1 0

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Distant 1 0 1 1
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.1.1 Decision problems for “A day at the beach”

Yesterday, before the fight, Barbara told you that she likes Nextdoor Beach better than Closeby
Beach. Moreover, you believe that Barbara prefers Closeby Beach to Faraway Beach, and prefers
Faraway Beach to Distant Beach, in case she is aware of the last two beaches. But, as stated above,
you do not know whether Barbara is aware of these two beaches or not. Similarly to you, also Barbara
prefers to avoid your presence today.

This situation can be represented by the decision problems in Table 7.1.1. Here, vall2 represents
Barbara’s state of mind where she is aware of all four beaches, whereas vtwo2 is her state of mind where
she is only aware of the two beaches close to the hotel. We refer to vall2 and vtwo2 as the possible views
for Barbara. You are thus uncertain about the view that Barbara has: She could either have view vall2
or view vtwo2 .

Similarly, vall1 and vtwo1 represent your views where you are aware of all beaches, and where you
are only aware of the two beaches close to the hotel, respectively. Remember from the story that your
actual view is vall1 . Why, then, do we include your smaller view vtwo1 in the table?

Well, if you believe that Barbara holds the small view vtwo2 , then you must necessarily believe
that Barbara believes that your view is vtwo1 , and not your actual view vall1 . Indeed, if you believe
that Barbara is only aware of the two closest beaches, then you think that Barbara is unaware of the
existence of any other beaches on the island. Therefore, you must believe that Barbara believes that
you are only aware of the two closest beaches as well, because the other two beaches are simply not
in Barbara’s vocabulary.

7.1.2 Reasoning about Others’Decision Problems
Which beaches can you rationally go to under common belief in rationality? To start with, note
that in your decision problem with view vall1 , the choice Closeby Beach is strictly dominated by the
randomized choice where you select Faraway Beach and Distant Beach with probability 0.5. Therefore,
by Theorem 2.6.1, going to Closeby Beach can never be optimal for you for any belief, and can thus
be eliminated.

Similarly, at Barbara’s view vall2 , her choice Distant Beach can be eliminated because it is strictly
dominated by the randomized choice that selects Nextdoor Beach and Closeby Beach with probability
0.5. This yields the one-fold reduced decision problems in Table 7.1.2.
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You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3
Nextdoor 2 2 0 2

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.1.2 One-fold reduced decision problems for “A day at the beach”

You Faraway Nextdoor Closeby
Faraway 0 4 4
Distant 3 3 3

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.1.3 Two-fold reduced decision problems for “A day at the beach”

If you believe in Barbara’s rationality, then you think that Barbara will definitely not choose
Distant Beach. Indeed, if Barbara’s view is vall2 then Barbara is aware of Distant Beach, but going
there would not be rational for her. On the other hand, if Barbara’s view is vtwo2 then she would not
even be aware of Distant Beach, and hence she could not go there in the first place. We can thus
eliminate the state Distant Beach at your view vall1 , but not at your view vtwo1 , because with the latter
view you are unaware of the state Distant Beach. Consequently, at your view vall1 you would never
choose Nextdoor Beach since Distant Beach is always better.

Now turn to Barbara’s one-fold reduced decision problems. One would be tempted to say that
we can eliminate the state Closeby Beach at her view vall2 , because Closeby Beach is not rational for
you if your view is vall1 . However, this reasoning is false: If Barbara’s view is vall2 , then she may very
well believe that you are unaware of the two more distant beaches, and hence that your view is vtwo1 .
But going to Closeby Beach is a rational choice for you if your view is vtwo1 , as can be seen from
the decision problem at vtwo1 . Since Barbara cannot exclude your view vtwo1 , she cannot exclude your
choice Closeby Beach either, and hence the state Closeby Beach cannot be eliminated at vall2 or vtwo2 .
As such, no additional choices can be eliminated for Barbara either. This gives rise to the two-fold
reduced decision problems in Table 7.1.3.

Question 7.1.1 Explain why, from this moment on, no states can be eliminated at Barbara’s view
vall2 .
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Figure 7.1.1 Beliefs diagram for “A day at the beach”

In view of the question above, no further eliminations are possible. Indeed, we will show, by means
of a beliefs diagram, that all remaining choices can rationally made under common belief in rationality
for the respective views. Consider the beliefs diagram in Figure 7.1.1.

It should be read as follows. Let us start at your choice-view pair (Distant, vall1 ). In your first-order
belief, you believe that Barbara chooses Faraway Beach while having the view vall2 . In your second-
order belief you believe that Barbara believes that, with probability 0.6, you choose Nextdoor Beach
while having the view vtwo1 , and that with probability 0.4 you choose Closeby Beach while having the
view vtwo1 . Hence, in your second-order belief you believe that Barbara believes that your view is vtwo1 ,
different from your actual view vall1 .

Question 7.1.2 Consider the belief hierarchy that starts at your choice-view pair (Faraway, vall1 ).
Describe, in words, the first, second and third-order belief. What do you believe that Barbara believes
about your view?

It may be verified that for each choice-view pair with an outgoing arrow in the beliefs diagram, the
choice is optimal for the respective view and the belief that is given by the arrow. For that reason, all
arrows are solid. Consider, for instance, the choice-view pair (Distant, vall1 ), with the arrow that goes
to (Faraway, vall2 ). If your view is v

all
1 and you believe that Barbara goes to Faraway Beach, then it

is indeed optimal to go to Distant Beach. Therefore, all the belief hierarchies in the beliefs diagram
express common belief in rationality.

Now, consider the choices Faraway Beach and Distant Beach that survived the procedure for you
at your view vall1 . Since Faraway Beach is optimal for the belief hierarchy that starts at (Faraway,
vall1 ), Distant Beach is optimal for the belief hierarchy that starts at (Distant, v

all
1 ), and both belief

hierarchies express common belief in rationality, it follows that you can rationally go to Faraway Beach
and Distant Beach under common belief in rationality with the view vall1 .

Question 7.1.3 What choices can you rationally make under common belief in rationality with the
view vtwo1 ?

From the procedure above and the beliefs diagram, it can similarly be concluded that under
common belief in rationality, Barbara can rationally go to Faraway Beach, Nextdoor Beach and Closeby
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Beach if her view is vall2 , whereas she can rationally go to Nextdoor Beach and Closeby Beach if her
view is vtwo2 . Can you explain why?

7.1.3 Games with Unawareness
With the example at hand, we are now able to provide a general definition of a game with unawareness.
Recall that for a given player, the choices he believes to be available to his opponents, together with
the choices he believes to be available to himself, constitute the view of that player. Formally, this
leads to the following definition.

Definition 7.1.1 (Views) A view vi for player i specifies for every player j (including player i
himself) a set Cj(vi) of choices.

We say that a view vi for player i is contained in a view vk for player k, if for every player j, every
choice in Cj(vi) is also in Cj(vk).

Hence, if the view vi is contained in the view vk, then player k with view vk is aware of all the choices
that player i with view vi is aware of. But not necessarily vice versa. Consider, as an illustration, the
views vall1 , vtwo1 , vall2 , vtwo2 in the example “A day at the beach”. Then, Barbara’s view vtwo2 is contained
in your view vall1 , but not vice versa. Can you explain why?

Question 7.1.4 Consider the example “A day at the beach”. List all the views for you and Barbara
that are contained in vall1 , and all the views for you and Barbara that are contained in vtwo1 .

Suppose now that player i holds the view vi. That is, player i is, for every player j, only aware
of the choices in Cj(vi), and no other. But then, he must believe that every opponent k is, for every
player j, only aware of the choices in Cj(vi), but possibly less. Indeed, since he is only aware of
the choices in Cj(vi), he cannot even imagine an opponent reasoning about player j’s choices outside
Cj(vi). In other words, player i must believe that every opponent k holds a view that is contained in
vi. We call this the awareness principle.

Definition 7.1.2 (Awareness principle) A player with view v must believe that every opponent
holds a view that is contained in v.

This principle plays a key role in the present chapter, as we will see. A consequence of the awareness
principle is that, for every view vi that is considered for player i in the game, we must consider for
every opponent j a view vj that is contained in vi.

In the definition of games with unawareness that we will employ in this chapter, we assume that
a player may be unaware of some of the actual choices in the game, or that he may be aware of
more choices than some of his opponents, but that otherwise he will be correct about the opponents’
conditional preference relations. That is, we do not allow for incomplete information in the game.

This may be formalized as follows: Consider two views vi and v′i for the same player i, with their

respective conditional preference relations %vii and %v
′
i
i . Then, for every belief bi that is possible in

both vi and v′i, and for every two choices ci, c
′
i that are present in both vi and v

′
i, the induced preference

relation between ci and c′i must be the same in %
vi
i as in %

v′i
i .

In terms of expected utility representations, this means the following: Suppose the conditional
preference relations for vi and v′i are represented by the utility functions ui and u

′
i, respectively. Then,
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for every opponents’choice combination c−i that is present in both vi and v′i, and for every choice ci
that is present in both vi and v′i, we must have that ui(ci, c−i) = u′i(ci, c−i).

By gathering all the elements above, we arrive at the following general definition of a game with
unawareness.

Definition 7.1.3 (Game with unawareness) A game with unawareness specifies

(a) a finite set of players I,

(b) for every player i a finite collection Vi of possible views, and

(c) for every view vi in Vi a utility function u
vi
i that assigns to every choice ci and every opponents’

choice combination c−i in the view vi some utility u
vi
i (ci, c−i).

Moreover, for every player i the following properties must hold:

(d) for every view vi in Vi and every opponent j, there is a view vj in Vj that is contained in vi, and

(e) for two different views vi, v′i in Vi, it must be that

uvii (ci, c−i) = u
v′i
i (ci, c−i)

for every choice ci and opponents’choice combination c−i that is present in both vi and v′i.

Here, condition (d) guarantees that for every view vi that is being considered for player i, there is
for every opponent j some view vj that player i can reason about while having the view vi. Indeed,
by the awareness principle, a player with view vi can only reason about opponent’s views vj that are
contained in vi.

On the other hand, condition (e) states that a player may be unaware of some of the actual choices
in the game, or may be aware of more choices than some of his opponents, but otherwise he will
always be correct about the opponents’ conditional preference relations. See our discussion above.
Thus, condition (e) rules out elements of incomplete information in the game.

As an illustration of the definition, consider the example “A day at the beach”. The sets of views
for you and Barbara are V1 = {vall1 , vtwo1 } and V2 = {vall2 , vtwo2 }, respectively. Moreover, the sets of
choices that you are aware of at both of your views are given by

C1(v
all
1 ) = {Faraway, Distant, Nextdoor, Closeby}, C2(vall1 ) = {Faraway, Distant, Nextdoor, Closeby}

C1(v
two
1 ) = {Nextdoor, Closeby}, C2(vtwo1 ) = {Nextdoor, Closeby},

and similarly for Barbara. The utility functions uv
all
1
1 , u

vtwo1
1 , u

vall2
2 and u

vtwo2
2 are given by the four

decision problems in Table 7.1.1.

Question 7.1.5 Explain why condition (d) is satisfied in this example.

To see that condition (e) is satisfied, consider your decision problems in Table 7.1.1 for the views
vall1 and vtwo1 . Note that your choices Nextdoor and Closeby, and the states —that is, Barbara’s choices
—Nextdoor and Closeby, are present in both views vall1 and vtwo1 . Moreover, the utilities for these

choices and states are the same in the associated utility functions uv
all
1
1 and uv

two
1
1 . As the same holds

for Barbara, we conclude that condition (e) is satisfied.
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7.2 Belief Hierarchies, Beliefs Diagrams and Types

To formally define the concept of common belief in rationality for games with unawareness, we need
to talk about the belief hierarchies that the players have about the choices and views of the various
players in the game. We will see that such belief hierarchies can be visualized by means of beliefs
diagrams, and encoded mathematically by means of epistemic models with types. Moreover, the way
to do so is very similar to what we have seen for games with incomplete information. It essentially boils
down to replacing beliefs about utility functions by beliefs about views, and imposing the awareness
principle that we have seen in the previous section.

7.2.1 Belief Hierarchies
If we wish to formalize the idea of common belief in rationality for games with unawareness, we must
first specify what it means for player i to believe in opponent j’s rationality. Intuitively, this means
that player i believes that player j makes an optimal choice, given what i believes that j believes
about the other players’choices, and given what i believes is player j’s view of the game. Hence, we
need (i) player i’s first-order belief about j’s choice, (ii) player i’s first-order belief about j’s view, and
(iii) player i’s second-order belief about player j’s belief about the choices of others.

Suppose next that we want to formally define what it means for player i to believe that player j
believes in some opponent k’s rationality. Intuitively, it means that player i believes that j believes
that k chooses optimally, given what i believes that j believes that k believes about his opponents’
choices, and given what i believes that j believes is k’s view. For this we thus need (iv) player
i’s second-order belief about j’s belief about k’s choice, (v) player i’s second-order belief about j’s
belief about k’s view, and (vi) player i’s third-order belief about j’s belief about k’s belief about his
opponents’choices.

If we continue like this, we arrive at the following definition of a belief hierarchy for games with
unawareness.

Definition 7.2.1 (Belief hierarchies) A belief hierarchy for player i specifies

(1) a first-order belief, which is a belief about the choices and views of i’s opponents,

(2) a second-order belief, which is a belief about what every opponent j believes about the choices
and views of j’s opponents,

(3) a third-order belief, which is a belief about what every opponent j believes about what each of
his opponents k believes about the choices and views of k’s opponents,

and so on.

Moreover, the second-order and higher-order beliefs must satisfy the awareness principle:

If player i believes that player j chooses cj and has view vj , then cj must be part of the view vj , and
player i must believe that j believes that every opponent has a view contained in vj .

If player i believes that player j believes that player k chooses ck and has view vk, then ck must be
part of the view vk, and i must believe that j believes that k believes that every opponent has a view
contained in vk.

And so on.
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Note that the awareness principle consists of two parts: First, it requires that if you believe that
the opponent chooses cj and believe that the opponent has the view vj , then cj must be part of vj .
Indeed, player j can only choose cj if he has a view vj with which he is aware of his own choice cj .

The second part states that if you believe that the opponent has view vj , then you must believe that
the opponent believes that everybody else has a view contained in vj . This is exactly the awareness
principle as discussed in the previous section.

As an illustration, consider the beliefs diagram from Figure 7.1.1. It may be verified that all belief
hierarchies generated by this beliefs diagram satisfy the awareness principle above.

7.2.2 Beliefs Diagrams
For the case of incomplete information, we have seen that belief hierarchies can be visualized by means
of beliefs diagrams where the arrows go from a choice-utility pair of a certain player i to choice-utility
pairs for the players other than i. In games with unawareness the same is true if we replace choice-
utility pairs by choice-view pairs. That is, we can visualize belief hierarchies for unawareness by beliefs
diagrams where the arrows always go from a choice-view pair of a player i to opponents’choice-view
pairs.

In fact, we have already seen such a beliefs diagram in Figure 7.1.1 for the example “A day at the
beach”. There, we have arrows from your choice-view pairs to Barbara’s choice-view pairs, and vice
versa. As to guarantee that the awareness principle holds for the induced belief hierarchies, we must
make sure that an arrow from a choice-view pair (ci, vi) will only go to opponents’choice-view pairs
(cj , vj) where (i) the choice cj is part of the view vj , and (ii) the view vj is contained in the view vi.

Question 7.2.1 Suppose that the beliefs diagram satisfies the conditions (i) and (ii) above. Consider
an arrow from a choice-view pair (ci, vi) to an opponents’choice-view pair (cj , vj). Explain why the
opponent’s choice cj must be part of the own view vi.

It may be verified that all the arrows in the beliefs diagram of Figure 7.1.1 satisfy the conditions
(i) and (ii) of the awareness principle.

7.2.3 Types
We have seen above that a belief hierarchy for a game with unawareness specifies (i) a first-order
belief about the opponents’ choice-view pairs, (ii) a second-order belief about the opponents’first-
order beliefs, (iii) a third-order belief about the opponents’second-order beliefs, and so on. In other
words, a belief hierarchy for player i specifies, for every opponent j, a belief about j’s choice, j’s belief
hierarchy and j’s view.

Similarly to what we have done for the case of incomplete information, the pair consisting of a
belief hierarchy and a view for player j will be called a type. With this new terminology, a type ti for
player i will specify a view wi(ti) and, for every opponent j, a belief bi(ti) about j’s choice and j’s
type. This naturally leads to the following definition of an epistemic model with types.

Definition 7.2.2 (Epistemic model) Consider a game with unawareness with sets of views Vi for
every player i. An epistemic model M = (Ti, wi, bi)i∈I specifies

(a) for every player i a finite set of types Ti,

(b) for every player i and every type ti ∈ Ti, a view wi(ti) from Vi,
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Types T1 = {tall,F1 , tall,D1 , ttwo,N1 , ttwo,C1 }, T2 = {tall,F2 , tall,N2 , tall,C2 , ttwo,N2 , ttwo,C2 }

w1(t
all,F
1 ) = vall1 b1(t

all,F
1 ) = (Nextdoor , tall,N2 )

Views and w1(t
all,D
1 ) = vall1 b1(t

all,D
1 ) = (Faraway , tall,F2 )

beliefs for you w1(t
two,N
1 ) = vtwo1 b1(t

two,N
1 ) = (Closeby , ttwo,C2 )

w1(t
two,C
1 ) = vtwo1 b1(t

two,C
1 ) = (Nextdoor , ttwo,N2 )

w2(t
all,F
2 ) = vall2 b2(t

all,F
2 ) = (0.6) · (Nextdoor , ttwo,N1 )

Views and +(0.4) · (Closeby , ttwo,C1 )

beliefs for w2(t
all,N
2 ) = vall2 b2(t

all,N
2 ) = (Faraway , tall,F1 )

Barbara w2(t
all,C
2 ) = vall2 b2(t

all,C
2 ) = (Nextdoor , ttwo,N1 )

w2(t
two,N
2 ) = vtwo2 b2(t

two,N
2 ) = (Closeby , ttwo,C1 )

w2(t
two,C
2 ) = vtwo2 b2(t

two,C
2 ) = (Nextdoor , ttwo,N1 )

Table 7.2.1 Epistemic model for “A day at the beach”

(c) for every player i and every type ti ∈ Ti, a probability distribution bi(ti) on the opponents’choice-
type combinations. This probability distribution bi(ti) represents ti’s belief about the opponents’
choices and types.

Moreover, every type ti must satisfy the awareness principle:

If bi(ti) assigns positive probability to an opponents’choice-type pair (cj , tj), then the choice cj must
be part of the view wj(tj), and the view wj(tj) must be contained in the view wi(ti).

Note that the awareness principle in the definition of an epistemic model is nothing more than a
translation of the awareness principles we have discussed for belief hierarchies and beliefs diagrams.
Indeed, the first part states that if you believe that the opponent chooses cj and has the type tj , then
the choice cj must be in the view held by tj . The second part states that if you hold the view wi(ti),
then you must believe that every opponent j holds a view that is contained in your own view.

Similarly to Question 7.2.1, it can be shown that the awareness principle implies the following: If
the type ti assigns positive probability to an opponent’s choice cj , then the choice cj must be part of
the view wi(ti) held by ti. Can you explain why? Thus, a type will only consider opponent’s choices
that he is actually aware of.

This definition of an epistemic model with types is almost identical to the one we have seen for
the case of incomplete information. The only difference is that utility functions have been substituted
by views, and that we have imposed, in addition, the awareness principle.

As an illustration, consider again the beliefs diagram from Figure 7.1.1. This beliefs diagram can
be translated into the epistemic model of Table 7.2.1. It may be verified that this epistemic model
satisfies the awareness principle above.
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7.3 Common Belief in Rationality

Now that we know how to encode belief hierarchies by means of epistemic models with types, we are
ready to formally define the central idea of common belief in rationality for games with unawareness.
Like for the case with incomplete information, we do so in three steps: We first define what it means
for a choice to be optimal for a type, after which we formally state what it means to believe in the
opponents’rationality. Finally, we use this to formalize common belief in rationality.

7.3.1 Optimal Choices for Types
Consider a type ti for player i within an epistemic model. Recall that the type ti specifies the view
wi(ti) that ti has, and the belief bi(ti) that ti has about the opponents’choices and types. Intuitively,
a choice ci is optimal for the type ti if it is optimal for the belief that ti holds about the opponents’
choices, within the bounds set by ti’s view of the game.

Definition 7.3.1 (Optimal choice for a type) Consider a type ti with the view wi(ti), the utility
function uwi(ti)i , and the first-order belief b1i (ti) on the opponents’choices. Take a choice ci that is
part of the view wi(ti). Then, the choice ci is optimal for the type ti if

u
wi(ti)
i (ci, b

1
i (ti)) ≥ u

wi(ti)
i (c′i, b

1
i (ti))

for all choices c′i that are part of the view wi(ti).

That is, given the belief about the opponent’s choices, the choice ci is at least as good as all
other choices for himself that the type ti is aware of. In the epistemic model from Table 7.2.1, it
may be verified that your choices Faraway, Distant, Nextdoor and Closeby are optimal for your types
tall,F1 , tall,D1 , ttwo,N2 and ttwo,C2 , respectively. Can you explain why? Moreover, the optimal choices for
Barbara’s types tall,F2 , tall,N2 , tall,C2 , ttwo,N2 and ttwo,C2 are Faraway, Nextdoor, Closeby, Nextdoor and
Closeby, respectively. Again, can you explain why?

7.3.2 Common Belief in Rationality
Recall that common belief in rationality states that you believe that the opponents choose rationally,
you believe that every opponent believes that every other player chooses rationally, and so on. The
crucial step towards formally defining this notion is to formalize what we mean by “believing that
the opponent chooses rationally”. Like for the case of standard games and games with incomplete
information, it means that you only assign positive probability to opponent’s choice-type pairs where
the choice is optimal for the type. In fact, the definition of belief in the opponent’s rationality is
literally the same as for standard games in Chapter 3 and games with incomplete information in
Chapter 5.

Definition 7.3.2 (Belief in the opponents’rationality) Type ti believes in the opponents’
rationality if the belief bi(ti) on the opponents’choice-type combinations assigns, for every opponent
j, only positive probability to choice-type pairs (cj , tj) where the choice cj is optimal for the type tj .

With this definition, it is now easy to define common belief in rationality. In fact, the definition is
exactly the same as for standard games in Chapter 3, and for games with incomplete information in
Chapter 5.
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Definition 7.3.3 (Common belief in rationality) A type ti expresses 1-fold belief in rationality
if ti believes in the opponents’rationality.

A type ti expresses 2-fold belief in rationality if bi(ti) only assigns positive probability to opponents’
types that express 1-fold belief in rationality.

A type ti expresses 3-fold belief in rationality if bi(ti) only assigns positive probability to opponents’
types that express 2-fold belief in rationality.

And so on.

A type ti expresses common belief in rationality if it expresses 1-fold belief in rationality, 2-fold
belief in rationality, 3-fold belief in rationality, and so on, ad infinitum.

An easy way to check that all types in an epistemic model express common belief in rationality
is to check that all types believe in the opponents’ rationality. If this is the case, then it follows by
arguments similar to those in Chapter 3 that all types will automatically express common belief in
rationality as well. As an illustration, consider the epistemic model in Table 7.2.1. It may be verified
that all types believe in the opponents’rationality. Can you explain why? Therefore, all types in the
epistemic model express common belief in rationality.

Similarly to Chapters 3 and 5, we say that a choice ci can rationally be made under common
belief in rationality with a certain view vi if there is a belief hierarchy that expresses common belief
in rationality, such that the choice ci is optimal for this particular belief hierarchy under the view vi.

Definition 7.3.4 (Rational choice under common belief in rationality) Player i can ratio-
nally make choice ci under common belief in rationality with the view vi if there is some
epistemic modelM = (Ti, wi, bi)i∈I , and some type ti ∈ Ti for player i within that model, such that (a)
type ti expresses common belief in rationality, (b) type ti has the view vi and (c) choice ci is optimal
for the type ti.

Consider again the epistemic model from Table 7.2.1. Recall that your choices Faraway, Distant,
Nextdoor and Closeby are optimal for your types tall,F1 , tall,D1 , ttwo,N2 and ttwo,C2 , respectively. As all of
these types express common belief in rationality, the first two types have the view vall1 , and the last two
types have the view vtwo1 , we conclude that under common belief in rationality with the view vall1 you
can rationally go to Faraway Beach and Distant Beach, whereas under common belief in rationality
with the view vtwo1 you can rationally go to Nextdoor Beach and Closeby Beach. Moreover, as we
have seen in Section 7.1, these are the only choices you can rationally make under common belief in
rationality for each of these two views.

7.4 Recursive Procedure

In this section we will develop a recursive elimination procedure, iterated strict dominance for unware-
ness, that yields for every player, and each of his possible views, the choices that he can rationally make
under common belief in rationality. We have seen that the treatments of games with unawareness and
games with incomplete information are quite similar, and it should therefore not be surprising that
the procedure of this section bears some resemblance with the generalized iterated strict dominance
procedure for games with incomplete information. As we have done in Chapters 3 and 5, we build the
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procedure up in steps: We first characterize the choices that can rationally be made at the different
views under 1-fold belief in rationality, and then characterize the choices that can rationally be made
under 2-fold belief in rationality. These two steps will be suffi cient to indicate how the full procedure
looks like. The procedure will be illustrated by a new example. We will also show that at every view,
at least one choice will survive the procedure. This, in turn, will imply that reasoning in accordance
with common belief in rationality will always be possible. We finally show how to use the procedure
for constructing an epistemic model where all types express common belief in rationality.

7.4.1 One-fold Belief in Rationality
We start with the most basic question: How can we characterize, for a given view vi, the choices that
player i can rationally make at this view? Recall that the view vi corresponds to a decision problem
(Ci(vi), C−i(vi), u

vi
i ), where Ci(vi) are the choices for himself that player i is aware of, C−i(vi) are

the opponents’choice combinations (states) that player i is aware of, and uvii is an expected utility
representation of his conditional preference relation. By Theorem 2.6.1 we thus know that the choices
that player i can rationally make with the view vi are precisely the choices that are not strictly
dominated in vi’s decision problem. In round 1 we can thus eliminate, for every view, those choices
that are strictly dominated within that view. This leads to the one-fold reduced decision problems.
As an illustration, consider the example “A day at the beach”, where the one-fold reduced decision
problems have been represented in Table 7.1.2.

Now suppose that player i holds the view vi and expresses 1-fold belief in rationality. What choices
can he rationally make then? Remember, by the awareness principle, that player i can only reason
about opponents’views vj that are contained in vi. Hence, to express 1-fold belief in rationality means
that for every opponent’s view vj contained in vi, player i should only assign positive probability
to choices cj that are rational for player j in vj . By the insight above, this is equivalent to saying
that for every opponent’s view vj contained in vi, player i should only assign positive probability to
choices cj that are not strictly dominated within the view vj . Or, in other words, player i must assign
probability zero to opponent’s choices cj that are strictly dominated for every view vj that is contained
in vi. That is, within the view vi we eliminate those states that involve opponents’choices that are
strictly dominated within every view that is contained in vi. But then, by construction of round 1,
we eliminate at vi those states that involve opponents’choices that have not survived round 1 at any
view that is contained in vi.

By eliminating these states at vi, we obtain a reduced decision problem at vi. The remaining states
are precisely those states that you can assign positive probability to at vi if you express 1-fold belief in
rationality. But then, by Theorem 2.6.1, the choices that you can rationally make at vi under 1-fold
belief in rationality are precisely those choices that are not strictly dominated in this reduced decision
problem at vi. By eliminating those choices that are strictly dominated within the reduced decision
problem at vi we obtain the two-fold reduced decision problem at vi. It contains precisely those choices
for player i that he can rationally make with the view vi if he expresses 1-fold belief in rationality.

To illustrate this second round, consider again the example “A day at the beach”, and the one-
fold reduced decision problems from Table 7.1.2. Consider the view vall1 . Note that Barbara’s choice
Distant did not survive round 1 at any view for Barbara that is contained in vall1 . Indeed, Barbara’s
choice Distant got eliminated in round 1 at her view vall2 , which is contained in vall1 , and was not even
present from the beginning at her view vtwo2 , contained in vall1 , because Barbara is not aware of Distant
Beach if her view is vtwo2 . Therefore, at vall1 we can eliminate the state Distant. In the reduced decision
problem so obtained, your choice Nextdoor becomes strictly dominated by Distant, and can therefore
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be eliminated. This yields your two-fold reduced decision problem at view vall1 as represented in Table
7.1.3.

Consider next Barbara’s one-fold reduced decision problem at the view vall2 in Table 7.1.2. Note
that each of your choices survived round 1 at some view that is contained in vall2 . Indeed, your choices
Faraway, Distant and Nextdoor survived round 1 at your view vall1 , which is contained in vall2 , whereas
your choice Closeby survived round 1 at your view vtwo1 , which is also contained in vall2 . Therefore,
no state can be eliminated for Barbara at vall2 , and hence no additional choice for Barbara can be
eliminated there either in round 2. For every view, the two-fold reduced decision problems for “A day
at the beach”can be found in Table 7.1.3.

7.4.2 Two-fold Belief in Rationality
Consider player i with view vi, and suppose he expresses one-fold and two-fold belief in rationality.
What choices can he rationally make then? Recall that player i can only consider opponent’s views
vj that are contained in vi. If he expresses one-fold and two-fold belief in rationality, then for each
of these opponent’s views vj he must believe that player j makes a choice cj that is rational for him
under one-fold belief in rationality at that view vj .We have just seen that these choices cj are precisely
player j’s choices in his two-fold reduced decision problem at vj . That is, if you hold the view vi and
express one-fold and two-fold belief in rationality, you must, for every opponent’s view vj contained
in vi, only assign positive probability to choices cj that survived round 2 at vj . In other words, you
must assign probability zero to all opponent’s choices cj that did not survive round 2 at any view vj
that is contained in vi. That is, from your decision problem at vi you must eliminate all states that
involve opponents’choices that did not survive round 2 at any view that is contained in vi. This leads
to a reduced decision problem at vi.

Therefore, by Theorem 2.6.1, the choices you can rationally make at vi under one-fold and two-fold
belief in rationality are precisely the choices that are not strictly dominated in this reduced decision
problem. By eliminating the choices for player i that are strictly dominated at this reduced decision
problem, we arrive at the three-fold reduced decision problem at vi. It contains precisely those choices
that player i can rationally make with the view vi if he expresses one-fold and two-fold belief in
rationality.

Note that in the example “A day at the beach”, the three-fold reduced decision problems are the
same as the two-fold reduced decision problems. Consider, for instance, Barbara’s two-fold reduced
decision problem at her view vall2 in Table 7.1.3. Note that each of your choices survives round 2 at
some view that is contained in vall2 . Indeed, your choices Faraway and Distant survived round 2 at your
view vall1 , contained in vall2 , whereas your choices Nextdoor and Closeby survived round 2 at your view
vtwo1 , which is also contained in vall2 . Therefore, no state can be eliminated from the two-fold reduced
decision problem at view vall2 . Similarly for the other three views. In the example, the procedure thus
terminates at round 2.

7.4.3 Common Belief in Rationality
The arguments above naturally lead to a procedure that yields, for every view, precisely those choices
that can rationally be made under common belief in rationality. This procedure will be called iterated
strict dominance for unawareness.

We have already seen above that the choices that can rationally be made under one-fold belief in
rationality at a particular view are those that survive the first two rounds of eliminations at that view.
Moreover, the choices that can rationally be made under one-fold and two-fold belief in rationality
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at a particular view are those that survive the first three rounds of eliminations at that view. By
extending the arguments above, it can similarly be shown that for every view, the choices that can
rationally be made if you express up to k-fold belief in rationality are those that survive the first k+ 1
rounds of eliminations at that view.

Definition 7.4.1 (Iterated strict dominance for unawareness) Start by writing down the de-
cision problems for every player i and every view vi in Vi.

Round 1. From every decision problem, eliminate those choices that are strictly dominated. This
leads to the 1-fold reduced decision problems.

Round 2. For every player i and every view vi , eliminate those states that involve opponents’choices
that did not survive round 1 at any view contained in vi. Within the (possibly smaller) decision prob-
lem so obtained, eliminate all choices that are strictly dominated. This leads to the 2-fold reduced
decision problems.

Round 3. For every player i and every view vi , eliminate those states that involve opponents’choices
that did not survive round 2 at any view contained in vi. Within the (possibly smaller) decision prob-
lem so obtained, eliminate all choices that are strictly dominated. This leads to the 3-fold reduced
decision problems.

Continue like this until no further states and choices can be eliminated. The choices for a player i
that eventually remain in his decision problem at a certain view vi are said to survive iterated strict
dominance for unawareness at vi.

By extending the arguments we have been using above, we conclude that this procedure yields, for
every view, precisely those choices that can rationally be made under common belief in rationality. As
we have done in Chapters 3 and 5, this result can be fine-tuned by stating that for every k ∈ {1, 2, 3, ...},
the first k+ 1 rounds of the procedure yield precisely those choices that can rationally be made if the
players express up to k-fold belief in rationality.

Theorem 7.4.1 (Procedure for common belief in rationality) (a) For every k ∈ {1, 2, 3, ...},
the choices that player i can rationally make with view vi while expressing up to k-fold belief in
rationality are precisely the choices that survive the first k+ 1 rounds of iterated strict dominance for
unawareness at vi.

(b) The choices that player i can rationally make with view vi under common belief in rationality are
exactly the choices that survive all rounds of iterated strict dominance for unawareness at vi.

It is not diffi cult to see that the procedure will always terminate within finitely many rounds.
Indeed, since there are finitely many views in the game with unawareness, and finitely many choices
and states within every view, there must be a round after which no further choices and states can be
eliminated. This is where the procedure will terminate.

Similarly to the elimination procedures in Chapters 3 and 5, the output of this elimination proce-
dure also does not depend on the specific order by which we eliminate the choices and states at the
various rounds.

Theorem 7.4.2 (Order independence) Changing the order of elimination in iterated strict dom-
inance for unawareness does not change the sets of choices that survive the procedure at each of the
decision problems.
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In Section 7.5 we will use this order independence property to present an alternative elimination
procedure, the bottom-up procedure, which yields exactly the same output as the procedure above, but
is somewhat easier to use. In the alternative procedure we start by looking at the “minimal”views
in the game, and do the eliminations there until we can go no further. Afterwards, we look at the
“slightly larger”views v that only contain v itself and “minimal”views, and do the eliminations there
until we can go no further. We proceed like this, by considering larger and larger views, until we have
convered all the views in the game. For the details the reader will have to wait until Section 7.5.

7.4.4 Example
We will now illustrate the procedure above by means of a new example.

Example 7.2: Too much wine.

Yesterday evening Barbara and you had a party at Chris’house while Chris was away. Chris’house
heavily suffered from the party because you both had too much wine. Early in the evening you both
started dancing on the table, which broke the table in two. Later you played football in the living
room and broke one of the windows. Afterwards you climbed on the roof and started jumping, which
severly damaged the roof. Towards the end of the evening you painted the front door in the color
pink.

The morning after, Chris comes home and remains in a state of shock for an hour after seeing all
the damage. To find out what happened, he wakes you and Barbara up, and you both must whisper
in his ear what has happened during the party.

Despite the wine you remember everything, and you can whisper five different stories into Chris’
ear:

Innocent : You tell Chris that none of this was your or Barbara’s fault, and that all the damage was
caused by others.

Table: You tell Chris that Barbara and you danced on the table, but that you do not know what
happened to the window, roof and door.

Window : You tell Chris about the dancing and the football, which broke the table and the window,
but state that you do not know what happened to the roof and door.

Roof : You tell Chris about the dancing, the football and the jumping on the roof, which broke the
table and the window and damaged the roof, but state that you do not know what happened to the
door.

Door : You tell Chris about the dancing, the football, the jumping on the roof and painting the door,
which broke the table and the window, damaged the roof and ruined the door.

However, you are not certain that Barbara remembers everything, because of the wine. You are
quite confident that Barbara remembers breaking the table and the window, but you are not sure
whether she remembers the events that followed. As such, you think that Barbara may have three
different views of the evening: The view vwindow2 where she only remembers breaking the table and the
window, the view vroof2 where she only remembers breaking the table and the window, and damaging
the roof, and the view vdoor2 where she remembers everything.

If her view is vwindow2 she can only whisper the stories innocent, table and window into Chris’ear,
since she cannot even imagine that you could ever have been jumping on the roof or painting the door
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You innocent table window
innocent 0 −550 −800

table 50 −250 −800
window −200 −200 −500

vwindow1

You innocent table window roof
innocent 0 −550 −800 −1050

table 50 −250 −800 −1050
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

You innocent table window roof door
innocent 0 −550 −800 −1050 −1300

table 50 −250 −800 −1050 −1300
window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

Table 7.4.1 Decision problems for “Too much wine”

in the color pink. In that case, she can only imagine your view vwindow1 where you only remember
breaking the table and the window.

Similarly, if her view is vroof2 she can only whisper the stories innocent, table, window and roof
into Chris’ear, and she can only imagine your views vwindow1 and vroof1 .

Finally, if her view is vdoor2 she can whisper all five stories into Chris’ear, and she can imagine
each of your views vwindow1 , vroof1 and vdoor1 .

Now, for each of the four damages caused yesterday evening it will cost 500 euros to repair the
damage, and Chris will let you and Barbara pay evenly for the damages he believes you have caused.
More precisely, when you and Barbara have both whispered a story into Chris’ear, then Chris will
believe the most detailed story of the two. Moreover, if you both tell different stories, then he will
reward the person with the most detailed story with a bonus of 300 euros for being so honest, and
punish the other person with a penalty of 300 euros for lying to him. If you both tell the same story,
then there will be no bonus or penalty.

For instance, if you tell the story roof and Barbara tells the story window, then Chris will believe
your story, and hence he believes that you and Barbara broke the table, the window and the roof.
Since the total cost is 1500 euros you must both pay 750 euros. However, you earn a bonus of 300
euros whereas Barbara incurs a penalty of 300 euros, which makes your net payment 450 euros, and
Barbara’s net payment 1050 euros.

This story can be translated into the game with unawareness as shown in Table 7.4.1. In this
game there are three possible views for you and three possible views for Barbara, which are vwindow1 ,

vroof1 , vdoor1 and vwindow2 , vroof2 , vdoor2 , respectively. We only wrote down the decision problems for your
views, since the decision problems for Barbara’s views are similar, by symmetry.

Note that we need your views vwindow1 and vroof1 , despite the fact that your true view is vdoor1 . The
reason is that you are uncertain about Barbara’s view, and uncertain about what Barbara believes
about your view. For instance, if you believe that Barbara’s view is vroof2 , then you must believe that
Barbara can only imagine your views vwindow1 and vroof1 , and not your true view vdoor1 .

The question is: Which story, or stories, can you rationally whisper into Chris’ear under common
belief in rationality given your actual view vroof1 ? To answer this question we use the procedure iterated
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You innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow1

You innocent table window roof
table 50 −250 −800 −1050

window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

You innocent table window roof door
table 50 −250 −800 −1050 −1300

window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

Table 7.4.2 One-fold reduced decision problems in “Too much wine”

strict dominance for unawareness.

Round 1. At your view vwindow1 , your choice innocent is strictly dominated by the randomized choice
(0.9)· table + (0.1)· window, and can therefore be eliminated. Similarly, at your views vroof1 and vdoor1 ,
your choice innocent is strictly dominated by the randomized choice (0.95)· table + (0.05)· roof and
the randomized choice (0.95)· table + (0.05)· door, respectively, and can therefore be eliminated at
these two views also. Similarly for Barbara. This results in the one-fold reduced decision problems
from Table 7.4.2.

Round 2. At your view vwindow1 you can only imagine Barbara’s view vwindow2 at which her choice
innocent did not survive. We can thus eliminate the state innocent at your view vwindow1 . Afterwards,
your choice table becomes strictly dominated by window at your view vwindow1 , and can thus be
eliminated there.

At your view vroof1 you can only imagine Barbara’s views vwindow2 and vroof2 , at which her choice
innocent did not survive. We can thus eliminate the state innocent at your view vroof1 . Afterwards,
your choice table becomes strictly dominated by the randomized choice (0.95)· window + (0.05)· roof
at your view vroof1 , and can thus be eliminated there.

At your view vdoor1 you can imagine Barbara’s views vwindow2 , vroof2 and vdoor2 , at which her choice
innocent did not survive. We can thus eliminate the state innocent at your view vdoor1 . Afterwards,
your choice table becomes strictly dominated by the randomized choice (0.95)· window + (0.05)· door
at your view vdoor1 , and can thus be eliminated there.

Similarly for Barbara. This results in the two-fold reduced decision problems from Table 7.4.3.

Round 3. At your view vwindow1 you can only imagine Barbara’s view vwindow2 at which her choice
table did not survive. We can thus eliminate the state table at your view vwindow1 .

At your view vroof1 you can only imagine Barbara’s views vwindow2 and vroof2 , at which her choice
table did not survive. We can thus eliminate the state table at your view vroof1 . Afterwards, your
choice window becomes strictly dominated by roof at your view vroof1 , and can thus be eliminated
there.

At your view vdoor1 you can imagine Barbara’s views vwindow2 , vroof2 and vdoor2 , at which her choice
table did not survive. We can thus eliminate the state table at your view vdoor1 . Afterwards, your
choice window becomes strictly dominated by the randomized choice (0.95)· roof + (0.05)· door at
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You table window
window −200 −500

vwindow1

You table window roof
window −200 −500 −1050
roof −450 −450 −750

vroof1

You table window roof door
window −200 −500 −1050 −1300
roof −450 −450 −750 −1300
door −700 −700 −700 −1000

vdoor1

Table 7.4.3 Two-fold reduced decision problems in “Too much wine”

You window
window −500

vwindow1

You window roof
roof −450 −750

vroof1

You window roof door
roof −450 −750 −1300
door −700 −700 −1000

vdoor1

Table 7.4.4 Three-fold reduced decision problems in “Too much wine”

your view vdoor1 , and can thus be eliminated there.
Similarly for Barbara. This results in the three-fold reduced decision problems from Table 7.4.4.
Afterwards, no more states or choices can be eliminated, and hence the procedure terminates in

Round 3. In particular, we see that at your actual view vdoor1 , you can rationally whisper the stories
roof and door into Chris’ear under common belief in rationality.

7.4.5 Common Belief in Rationality is Always Possible
It is not diffi cult to see that the procedure will always eventually leave at least one choice and state at
each of the decision problems. To see why, consider first the full decision problems at the beginning
of the procedure. At a given decision problem for player i, associated with a view vi, fix an arbitrary
belief on the states, and consider a choice that is optimal for this belief. By Theorem 2.6.1 we know
that this choice will not be strictly dominated within the decision problem, and will thus survive the
first round at that decision problem. Hence, for every decision problem there is at least one choice
that survives the first round.

We next turn to Round 2. Consider a one-fold reduced decision problem for player i that is
associated with a view vi. For every opponent j, consider a view vj in Vj that is contained in vi. Note
that such views vj exist, by condition (d) in Definition 7.1.3. By our argument above, there is for every
such view vj a choice cj that is still present in the one-fold reduced decision problem at vj . Hence,
by construction, the state (cj)j 6=i survives Round 2 in the decision problem at vi. As such, there is at
every one-fold reduced decision problem at least one state that survives Round 2.

Now, consider the one-fold reduced decision problem at view vi and eliminate the states according
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to the rules of Round 2. We know from above that some states must remain. Fix an arbitrary belief
on the remaining states, and a choice ci that is optimal for this belief within the remaining decision
problem at vi. Then, by Theorem 2.6.1, the choice ci is not strictly dominated within the remaining
decision problem at vi, and thus survives Round 2 at vi. As such, we know that for every view vi there
must be at least one state and one choice that survives Round 2 at vi.

By repeating this argument we conclude that for every round k, and every view vi, there must
be at least one state and one choice that survives round k at vi. Since we have seen earlier that the
procedure must terminate within finitely many rounds, we know that for every view there must be at
least one choice that survives the procedure at this view.

On the other hand, we know by Theorem 7.4.1 that for every view vi and every choice ci that
survives the procedure at vi, there is an epistemic model and a type ti with view vi within it, such
that ti expresses common belief in rationality and the choice ci is optimal for ti. In particular, for
every player i and every view vi, there is an epistemic model and a type ti with view vi within it, such
that ti expresses common belief in rationality.

As in earlier chapters, we can say a little more: From the proof of Theorem 7.4.1 it follows that
there is a single epistemic model M such that for every player i and every view vi, there is a type ti
within M with view vi such that ti expresses common belief in rationality. We have thus established
the following result.

Theorem 7.4.3 (Common belief in rationality is always possible) Consider a game with
unawareness which, for every player i, contains finitely many views and finitely many choices and
states per view. Then, there is an epistemic model M such that for every player i and every view
vi ∈ Vi, there is a type ti in M such that wi(ti) = vi and ti expresses common belief in rationality.

In the following subsection we will show how we can use the output of the procedure to generate
such an epistemic model M.

7.4.6 Using the Procedure to Construct Epistemic Models
Consider a game with unawareness, and suppose that after running the procedure we are left with
some choices and states at every possible view. Take a view vi, and a choice ci that has survived at
that view. Then, by construction of the procedure, the choice ci is not strictly dominated within the
final reduced decision problem at vi. Hence, by Theorem 2.6.1, the choice ci is optimal for a belief on
the surviving states in the final reduced decision problem at vi. Therefore, within a beliefs diagram
the choice ci at view vi can be supported by solid outgoing arrows.

By construction, every surviving state at vi only contains opponents’choices cj that (a) are part
of the view vi, and (b) for which there is a view vj contained in vi such that cj is optimal for some
belief within the final reduced decision problem at vj . Hence, every solid outgoing arrow that supports
choice ci at view vi leads to a choice-view pair (cj , vj) where vj is contained in vi, and cj is optimal for
some belief within the view vj . That is, the choice cj at vj can be supported by solid arrows as well.

By continuing this argument, we can build a beliefs diagram where every choice ci that survives
at a view vi can be supported by an infinite chain of solid arrows. Recall that such an infinite chain of
solid arrows gives rise to a belief hierarchy that expresses common belief in rationality. By translating
this beliefs diagram into an epistemic model M, we thus obtain an epistemic model with the desired
properties of Theorem 7.4.3.

As an illustration, consider the example “Too much wine”and the final reduced decision problems
from Table 7.4.4. Within the final reduced decision problem at vwindow1 , the only surviving choice
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Figure 7.4.1 Beliefs diagram for “Too much wine”

window is optimal if you believe that Barbara has view vwindow2 and chooses window. At vroof1 , the
only surviving choice roof is optimal if you believe, for instance, that Barbara has view vwindow1 and
chooses window. Finally, at the view vdoor1 , your choice roof is optimal if you believe that Barbara has
view vwindow1 and chooses window, whereas your choice door is optimal if you believe that Barbara
has view vroof1 and chooses roof. Similarly for Barbara.

These insights give rise to the beliefs diagram in Figure 7.4.1. Note that in this beliefs diagram,
every choice that survives at a given view is always supported by a belief hierarchy that expresses
common belief in rationality, and that satisfies the awareness principle. Moreover, in each of your
belief hierarchies present, you always believe that Barbara believes that your view is vwindow1 —that is,
that you were too drunk to remember what happened after crushing the window. Even though you
actually remember everything that happened.

Question 7.4.1 Translate the beliefs diagram from Figure 7.4.1 into an epistemic model.

Note that each of the types in your model satisfies the awareness principle, and expresses common
belief in rationality. Moreover, for every player i, every view vi and every choice ci that survives the
procedure at vi, there is a type ti within the epistemic model that has the view vi, expresses common
belief in rationality, and for which the choice ci is optimal.

7.5 Bottom-Up Procedure

In Theorem 7.4.2 we have seen that, for the eventual output of iterated strict dominance for un-
wareness, it does not matter in which order we eliminate states and choices at the various decision
problems. This result will allow us to use a very convenient order of elimination, which we will call
the bottom-up procedure.

Within that order we start with the smallest views in the game, and recursively eliminate choices
and states there until we can go no further. The smallest views are said to have rank 1. Subsequently,
we move to the views that only contain themselves or the smallest views as subviews. Such views are
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said to have rank 2. For all views of rank 2 we recursively eliminate choices and states until we can go
no further. And so on, until we have covered all views in the game. As our examples will demonstrate,
this order of elimination is very effi cient. Moreover, by Theorem 7.4.2, it will deliver exactly the same
output as the original procedure, and will therefore also characterize those choices that can rationally
be made under common belief in rationality.

Before we define the bottom-up procedure, we first formalize the ranking of the views as discussed
above. Afterwards, we introduce the bottom-up procedure, and show that it yields the same output
as the original procedure.

7.5.1 Ranking of Views
We start by introducing the ranking of views, where views with rank 1 are the “smallest”views around,
the views with rank 2 are the “smallest”amongst the views that do not have rank 1, the views with
rank 3 are the “smallest”amongst the views that do not have rank 1 or 2, and so on. Before doing
so, we first define what it means for a view to be smallest amongst a given set of views.

Definition 7.5.1 (Smallest view) Consider a set V of views for possibly different players, which
may not contain all views that are present in the game with unawareness. A view v in V is smallest
amongst the views in V if v does not contain any view v′ in V that has less choices than v for some
player.

As an illustration, consider the example “Too much wine”, and consider the set V that contains
all six views in the game. Then the views that are smallest amongst the views in V are vwindow1 and
vwindow2 .

Question 7.5.1 Now consider the set V ′ of views that contains all views except vwindow1 and vwindow2 .
Which views are smallest amongst the views in V ′? What if we consider the set V ′′ of views that
contains the views vroof1 , vdoor1 and vdoor2 ?

It can easily be seen that for every set of views V, there is always at least one view that is smallest
amongst the views in V. Indeed, consider a view v in V where the total number of choices for all
players is minimal amongst all views in V. Suppose that v contains a view v′ in V. Then, by definition,
Ci(v

′) ⊆ Ci(v) for all players i. Now suppose, contrary to what we want to show, that v′ contains less
choices than v for some of the players i. Then, the total number of choices in v′ would be less than
the total number of choices in v, which cannot be. Therefore, v does not contain a view v′ in V with
less choices than in v, which means that the view v is smallest amongst the views in V.

Views with rank 1, 2, 3, ... can now be formalized as follows.

Definition 7.5.2 (Rank of a view) Consider a game with unawareness, where V is the set of all
views for all the players in that game.

Rank 1. A view v has rank 1 if it is smallest amongst the views in V.

Rank 2. A view v has rank 2 if it does not have rank 1, and it is smallest amongst the views that do
not have rank 1.

Rank 3. A view v has rank 3 if it does not have rank 1 or 2, and it is smallest amongst the views
that do not have rank 1 or 2.

And so on.
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Intuitively, the views with rank 1 are the smallest possible views in the game, the views with rank
2 are the second to smallest views, the views with rank 3 the third to smallest views, and so on. As
an illustration, let us go back to the example “Too much wine”, where the set of all possible views is

V = {vwindow1 , vroof1 , vdoor1 , vwindow2 , vroof2 , vdoor2 }.

We have seen above that the smallest views amongst the views in V are vwindow1 and vwindow2 , and
hence these are the views with rank 1. Amongst the views that do not have rank 1, the smallest views
are vroof1 and vroof2 , and hence these are the views with rank 2. Finally, amongst the views that do
not have rank 1 or 2, which are only the views vdoor1 and vdoor2 , the smallest views are vdoor1 and vdoor2 .
These are thus the views with rank 3. There are no views with a rank higher than 3.

Question 7.5.2 Consider the example “A day at the beach”. Classify the four possible views in
terms of their rank.

Recall that within every collection of views there is always at least one smallest view. As such,
we can conclude that for every game with unawareness with finitely many views, there is always a
number K ∈ {1, 2, 3, ...} such that (i) for every k ∈ {1, ...,K} there is at least one view with rank k,
and (ii) every view has some rank k ∈ {1, ...,K}.

Moreover, the views with rank 1 are very special in the following sense: Every player i has at least
one view vi with rank 1, and every such view vi can only contain views with exactly the same choices
as vi itself. In other words, if you have a view of rank 1, then you must necessarily believe that all
your opponents share your view.

To see why every player i must have a view with rank 1, consider some arbitrary view v for some
player j with rank 1. Fix some player i 6= j. By Definition 7.1.3 (d), the view v must contain a view
vi ∈ Vi for player i. But then, vi must necessarily have rank 1 itself. Therefore, every player i has at
least one view with rank 1.

Now take some view vi for player i with rank 1, and suppose that vi contains some view vj ∈ Vj for
player j. As vi has rank 1, the view vj cannot contain less choices than vi. But then, vj must contain
exactly the same choices as vi, since Ck(vj) ⊆ Ck(vi) for every player k. Thus, every view contained
in vi must display the same choices as vi itself.

As an illustration, consider the example “Too much wine”. Note that both you and Barbara have
a view with rank 1, which are vwindow1 and vwindow2 , respectively. Moreover, your view vwindow1 only
contains Barbara’s view vwindow2 , which contains the same choices as vwindow1 , and similarly for vwindow2 .
Hence, with the view vwindow1 you believe that Barbara shares your view, and similarly for Barbara’s
view vwindow2 .

7.5.2 Bottom-Up Procedure
We have seen in Theorem 7.4.2 that the order of elimination does not matter for the eventual output
of iterated strict dominance for unawareness. In particular, we can always use the following, very
convenient, order of elimination: We first recursively eliminate the choices and states at all views with
rank 1, according to the criteria of the original procedure. Note that for the eliminations of states at
views with rank 1 it is suffi cient to only concentrate on views with rank 1, and not any larger views,
as a player with a view of rank 1 can only reason about opponents’views of rank 1.

Subsequently we turn to the views of rank 2, and recursively eliminate the choices and states there,
taking into account the eliminations we have already performed at views of rank 1. Note that for the
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You innocent table window
innocent 0 −550 −800

table 50 −250 −800
window −200 −200 −500

vwindow1

−→

You innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow1

−→

−→
You table window

window −200 −500
vwindow1

−→
You window

window −500
vwindow1

Table 7.5.1 Bottom-up procedure for “Too much wine for Barbara”at views of rank 1’

eliminations of states at views of rank 2 it is suffi cient to only concentrate on views of rank 1 and 2,
as a player with a view of rank 2 can only reason about views that have rank 2 or 1.

Afterwards we turn to the views of rank 3, and so on, until we have covered all views in the game.
This procedure will be called the bottom-up procedure. To see how the bottom-up procedure works,
let us apply it to a variation of the example “Too much wine”.

Example 7.3: Too much wine for Barbara.

The events are the same as in the original example “Too much wine”. However, now you are convinced
that Barbara was too drunk to remember what happened to the door, and you are convinced that
Barbara is convinced that you were too drunk to remember what happened after breaking the window.
In terms of views, this means that only Barbara’s views vwindow2 and vroof2 are present, but not vdoor2 ,
because you believe that Barbara had too much wine to hold the view vdoor2 . On the other hand, for
our story it is suffi cient to only consider your views vwindow1 and vdoor1 . The reason is that vdoor1 is
your actual view, with which you remember everything. At the same time, according to the story, you
believe with the view vdoor1 that Barbara believes that your view is vwindow1 .

Hence, the only views present are vwindow1 , vdoor1 , vwindow2 and vroof2 . The views of rank 1 are vwindow1

and vwindow2 , the only view of rank 2 is Barbara’s view vroof2 , and the only view of rank 3 is your view
vdoor1 .

We will now apply the bottom-up procedure to this scenario. We start with the analysis of the
views of rank 1, which are vwindow1 and vwindow2 . The full decision problem for your view vwindow1 is the
first matrix of Table 7.5.1, and the full decision problem for Barbara’s view vwindow2 is similar.

At vwindow1 , your choice innocent is strictly dominated by the randomized choice that assigns
probability 0.9 to table and probability 0.1 to window, and can thus be eliminated. This yields the
one-fold reduced decision problem at vwindow1 as represented by the second matrix in Table 7.5.1, and
similarly for Barbara.

In the one-fold reduced decision problem at vwindow1 , you can only reason about Barbara’s view
vwindow2 at which her choice innocent is no longer present. We can thus eliminate the state innocent at
vwindow1 . In the resulting reduced decision problem at vwindow1 , your choice table is strictly dominated
by window, and can thus be eliminated. This leads to the two-fold reduced decision problem at vwindow1

as represented by the third matrix in Table 7.5.1, and similarly for Barbara.
In the two-fold reduced decision problem at vwindow1 , you can only reason about Barbara’s view

vwindow2 at which her choice table is no longer present. We can thus eliminate the state table at vwindow1 ,
which leads to the three-fold reduced decision problem at vwindow1 as represented by the fourth matrix
in Table 7.5.1. Similarly for Barbara. This completes the analysis of the views with rank 1 in the
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Barbara innocent table window roof
innocent 0 −550 −800 −1050

table 50 −250 −800 −1050
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof2

−→
Barbara window

roof −450

vroof2

Table 7.5.2 Bottom-up procedure for “Too much wine for Barbara”at view of rank 2

You innocent table window roof door
innocent 0 −550 −800 −1050 −1300

table 50 −250 −800 −1050 −1300
window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

−→

You window roof
roof −450 −750
door −700 −700

vdoor1

Table 7.5.3 Bottom-up procedure for “Too much wine for Barbara”at view of rank 3

bottom-up procedure.

We next turn to the only view of rank 2, which is Barbara’s view vroof2 . The full decision problem at
vroof2 is the first matrix in Table 7.5.2. Note that Barbara, with view vroof2 , can only reason about your
view vwindow1 of rank 1, at which only your choice window is left. We can therefore eliminate the states
innocent, table and roof from vroof2 . In fact, the states innocent and table can be eliminated because
the associated choices have been eliminated at vwindow1 , whereas the state roof can be eliminated
because the associated choice is not even present at vwindow1 . Afterwards, Barbara’s choices innocent,
table and window are strictly dominated by roof, and can thus be eliminated. This yields the reduced
decision problem represented by the second matrix in Table 7.5.2. The analysis of the view vroof2 of
rank 2 is hereby complete.

We finally turn to the only view of rank 3, which is your view vdoor1 . The full decision problem at
vdoor1 is the first matrix in Table 7.5.3. With the view vdoor1 you can only reason about Barbara’s views
vwindow2 and vroof2 , at which only her choices window and roof are left. We can thus eliminate the states
innocent, table and door at vdoor1 . In fact, we can eliminate the states innocent and table because the
associated choices have been eliminated at both vwindow2 and vroof2 , whereas we can eliminate the state
door because the associated choice is not even present at the views vwindow2 and vroof2 . Afterwards,
the choices innocent, table and window are strictly dominated by the choice roof and can thus be
eliminated. The resulting reduced decision problem is the second matrix in Table 7.5.3. This completes
the analysis of the view with rank 3.

The bottom-up procedure terminates here, because we have covered all the views in the game.
The choices that are left for you at the view vdoor1 are roof and door. As you will show in the next
question, these are precisely the stories you can rationally whisper into Chris’ear under common belief
in rationality when your actual view is vdoor1 .

Question 7.5.3 Consider the example “Too much wine for Barbara”. Apply the original procedure,
iterated strict dominance for unawareness, to this example. What choices can you rationally make
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under common belief in rationality if your view is vdoor1 ? Which procedure is easier to use: The
bottom-up procedure, or the original procedure?

You have probably noted that the bottom-up procedure was easier to use, and shorter, in this
case. This will typically be the case when all views of rank 2 or higher only contain views that have
a strictly lower rank, as is the case in this example. In such situations, the analysis of a view of rank
k ≥ 2 becomes relatively easy in the bottom-up procedure, because a player with a view of rank k only
deems possible views of lower ranks, for which the surviving choices have already been determined by
the previous rounds of the bottom-up procedure.

We are now ready to formally introduce the bottom-up procedure.

Definition 7.5.3 (Bottom-up procedure) Start by writing down the decision problem for every
view.

For all views with rank 1 we apply the following procedure:

Round 1. From every view with rank 1, eliminate those choices that are strictly dominated. This
leads to the 1-fold reduced decision problems.

Round 2. From every view v with rank 1, eliminate those states that involve opponents’choices that
did not survive round 1 at any view contained in v. Within the (possibly smaller) decision problem so
obtained, eliminate all choices that are strictly dominated. This leads to the 2-fold reduced decision
problems.

Continue until no further eliminations are possible at views with rank 1.

Subsequently, for all views with rank 2 we apply the following procedure:

Round 1. From every view v with rank 2 that only contains opponents’views of rank 1, eliminate
those states that involve opponents’choices that did not survive the previous rounds at any rank 1
view contained in v. Subsequently, from every view with rank 2, eliminate those choices that are
strictly dominated. This leads to the 1-fold reduced decision problems.

Round 2. From every view v with rank 2, eliminate those states that involve opponents’choices that
did not survive the previous rounds at any view contained in v. Within the (possibly smaller) decision
problem so obtained, eliminate all choices that are strictly dominated. This leads to the 2-fold reduced
decision problems.

Continue until no further eliminations are possible at views with rank 2.

In the same way we go over the views with rank 3, 4, ... until all views have been covered.

To further illustrate this procedure, let us go back to the example “A day at the beach”. We start
with the views of rank 1, which are vtwo1 and vtwo2 , with their full decision problems as depicted in Table
7.1.1. Since no choice is strictly dominated at vtwo1 or vtwo2 , there is nothing that can be eliminated at
these two views.

We then turn to the views of rank 2, which are vall1 and vall2 . The associated decision problems can be
found in Table 7.1.1. Recall that at vall1 , your choice Closeby is strictly dominated by the randomized
choice where you select Faraway and Distant with probability 0.5. We can thus eliminate your choice
Closeby at vall1 in Round 1. Similarly, at vall2 , Barbara’s choice Distant is strictly dominated by the
randomized choice that selects Nextdoor and Closeby with probability 0.5. We can thus eliminate
Barbara’s choice Distant at view vall2 in Round 1. This yields the one-fold reduced decision problems
at vall1 and vall2 as depicted in Table 7.5.4.
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You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3
Nextdoor 2 2 0 2

vall1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Table 7.5.4 Bottom-up procedure for “A day at the beach”, Round 1 at views of rank 2

You Faraway Nextdoor Closeby
Faraway 0 4 4
Distant 3 3 3

vall1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Table 7.5.5 Bottom-up procedure for “A day at the beach”, Round 2 at views of rank 2

We now turn to Round 2 at vall1 and vall2 . At vall1 you can only reason about Barbara’s views
vall2 and vtwo2 , at which her choice Distant does not appear. Indeed, we have eliminated Barbara’s
choice Distant at her view vall2 in Round 1, whereas her choice Distant was not even present from the
beginning at her view vtwo2 . Therefore, we can eliminate the state Distant at your view vall1 . Afterwards,
your choice Nextdoor becomes strictly dominated by Distant at vall1 , and can thus be eliminated there.
This leads to the two-fold reduced decision problem at vall1 , as depicted in Table 7.5.5. At Barbara’s
view vall2 she can reason about your views vall1 and vtwo1 . As each of your choices is still present, either
at vall1 or vtwo1 , we cannot eliminate any state at her view vall2 .

After this round, no more states or choices can be eliminated at the views of rank 2, which are vall1
and vall2 . Thus, the bottom-up procedure ends here.

7.5.3 Equivalence with Original Procedure
The bottom-up procedure may be viewed as a particular order of elimination within the original
procedure, iterated strict dominance for unawareness. Indeed, at the beginning we would only perform
the required eliminations at the views of rank 1, until we can go no further. Afterwards we would
turn to the views of rank 2 and perform the required eliminations there until we can go no further.
And so on, until we have covered all the views in the game.

Note than when we do the eliminations at views of rank k, we can solely concentrate on views of
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rank k or less, since a player with a view of rank k can only reason about opponents’views of rank k
or less. In that sense, the bottom-up procedure is well-defined, and corresponds to a specific order of
elimination in iterated strict dominance for unawareness.

Since we have seen in Theorem 7.4.2 that the specific order of elimination does not matter for the
output of iterated strict dominance for unawareness, we conclude that the bottom-up procedure must
always deliver the same output at the end as iterated strict dominance for unawareness.

Theorem 7.5.1 (Equivalence with original procedure) The bottom-up procedure always yields
the same final output as iterated strict dominance for unawareness.

In particular, it follows from Theorems 7.4.1 and 7.5.1 that the bottom-up procedure, for every view
vi, eventually selects exactly those choices that player i can rationally make under common belief in
rationality with view vi.

However, the bottom-up procedure must be handled with care, for the following reason: In Theorem
7.4.1 (a) we have seen that for every view vi and every number k, the choices that player i can rationally
make with view vi while expressing up to k-fold belief in rationality are precisely those choices that
survive the first k + 1 rounds of iterated strict dominance for unwareness at vi. This result, however,
is not true for the bottum-up procedure.

To see this, let us go back to the example “Too much wine for Barbara” and the bottom-up
procedure we applied to this example. Recall that during the first three rounds, we only performed
eliminations at the views of rank 1, which are vwindow1 and vwindow2 . In particular, your choice innocent
is still present at the view vdoor1 after the third round of the procedure. However, your choice innocent
is not optimal for any belief at the view vdoor1 and hence, in particular, you cannot rationally choose
innocent with the view vdoor1 while expressing up to 2-fold belief in rationality. In turn, your choice
innocent would already be eliminated in the first round of iterated strict dominance for unawareness
at the view vdoor1 .

7.6 *Fixed Beliefs on Views

Recall that a player with view v can only reason about views that are contained in v. In particular,
in his belief this player can only assign positive probability to opponent’s views that are contained in
v. But apart from this condition, we have not yet put any restrictions on the particular probabilities
that this player can assign to the various opponents’views. However, within a given story some beliefs
about the opponents’views may be much more reasonable than others. In this section we implement
this idea in a rather extreme way, by imposing for every player, and each of his views, a fixed belief
on the opponents’views. That is, we think that these beliefs stand out as the most plausible beliefs,
and we require the players to adhere to these specific beliefs.

This is very similar to how we modelled fixed beliefs on utilities in games with incomplete informa-
tion —see Section 5.5. There is one crucial difference, however: For games with incomplete information
we imposed, for a given player i, the same belief on the opponents’utility functions, irrespective of
the utility function ui that player i has himself. If we translate this to games with unawareness, then
we would be imposing on player i the same belief on the opponents’views, irrespective of the view vi
that player i has himself. The problem is that this cannot work. To see this, consider, for instance, the
example “Too much wine”, and suppose we would impose on you the belief that assigns probability
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Figure 7.6.1 Fixed beliefs on views in “A day at the beach”

0.5 to Barbara’s views vroof2 and vdoor2 , irrespective of your own view. This belief, however, will only
be possible if your own view is vdoor1 , since otherwise it would violate the awareness principle. As such,
the belief on the opponents’views we impose on a player must necessarily depend on his own view.

In this section we start with an example which illustrates what we mean by fixed beliefs on views,
and how we can combine this with the concept of common belief in rationality. Afterwards, we give a
formal definition of common belief in rationality with fixed beliefs on views, and present a recursive
elimination procedure, similar to iterated strict dominance for unawareness, that characterizes the
choices that are possible under this concept. We finally present a bottom-up version of this procedure,
and argue why it yields exactly the same output.

7.6.1 Example
Let us go back to the example “A day at the beach”, with the views and decision problems as depicted
in Table 7.1.1. Clearly, if your view is vtwo1 , then you can only hold one possible belief about Barbara’s
view, which is to believe with probability 1 that Barbara’s view is vtwo2 . Similarly for Barbara.

But suppose now that your view is vall1 , that is, that you are aware also of the two remote beaches
on the island. Since you have discovered these beaches by making a nice, long walk, and you know that
Barbara likes walking too, you deem it likely that also Barbara will be aware of these two beaches. A
reasonable belief in this case would be to assign probability 0.8 to the event that Barbara is also aware
of these two beaches, and to assign probability 0.2 to the event that she is not. Or, in terms of views,
we would be imposing the belief that assigns probability 0.8 to Barbara’s view vall2 and probability 0.2
to Barbara’s view vtwo2 . If we impose the same belief for Barbara when her view is vall2 , the imposed
beliefs can be visualized by the beliefs diagram in Figure 7.6.1.

In fact, for each of your views we are not only imposing a fixed belief of views, but a fixed belief
hierarchy on views. For instance, if your view is vall1 , we are imposing the belief hierarchy in which
(i) you assign probability 0.8 to Barbara’s view vall2 and probabability 0.2 to Barbara’s view vtwo2 ,
(ii) you assign probability 0.8 to the event that Barbara assigns probability 0.8 to your view vall1 and
probability 0.2 to your view vtwo1 , and you assign probability 0.2 to the event that Barbara assigns
probability 1 to your view vtwo1 , and so on.

Question 7.6.1 Consider the belief hierarchy on views we impose when your view is vtwo1 . Describe
the first- and second-order belief of this belief hierarchy.
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You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3
Nextdoor 2 2 0 2
Closeby 1 1 1 0

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Distant 1 0 1 1
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.6.1 Decision problems for “A day at the beach”

You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3
Nextdoor 2 2 0 2

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Faraway 0 2 2 2
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.6.2 One-fold reduced decision problems for “A day at the beach”with fixed beliefs on utilities

Which beaches can you rationally go to under common belief in rationality with these fixed beliefs
on views, if your actual view is vall1 ? To answer this question we start with the decision problems at
the various views, as reproduced in Table 7.6.1.

Round 1. Recall that at the view vall1 , your choice Closeby is never optimal for any belief, and can
thus be eliminated there. Similarly, at the view vall2 Barbara’s choice Distant is never optimal for any
belief, and can thus be eliminated there. This leads to the one-fold reduced decision problems in Table
7.6.2.

Round 2. At your view vall1 you will assign probability 0 to Barbara choosing Distant, because
Distant was eliminated at her view vall2 in Round 1, whereas she is not even aware of this choice at
her view vtwo2 . But then, your choice Nextdoor can no longer be optimal at vall1 because Distant will
always be better. Hence, we can eliminate your choice Nextdoor at your view vall1 .

Consider next Barbara’s view vall2 . Recall that we impose the belief where Barbara assigns proba-
bility 0.8 to your view vall1 and probability 0.2 to your view vtwo1 . As your choice Closeby only survived
Round 1 at your view vtwo1 , Barbara must assign probability at most 0.2 to you choosing Closeby. But
then, Barbara’s expected utility by choosing Closeby is at least (0.8) · 3 = 2.4, which means that it
can no longer be optimal for Barbara to choose Faraway. We can therefore eliminate Barbara’s choice
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You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4
Distant 3 0 3 3

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Nextdoor 4 4 0 4
Closeby 3 3 3 0

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.6.3 Two-fold reduced decision problems for “A day at the beach”with fixed beliefs on utilities

You Faraway Distant Nextdoor Closeby
Faraway 0 4 4 4

vall1

You Nextdoor Closeby
Nextdoor 0 2
Closeby 1 0

vtwo1

Barbara Faraway Distant Nextdoor Closeby
Nextdoor 4 4 0 4

vall2

Barbara Nextdoor Closeby
Nextdoor 0 4
Closeby 3 0

vtwo2

Table 7.6.4 Three-fold reduced decision problems for “A day at the beach”with fixed beliefs on utilities

Faraway at her view vall2 . This leads to the two-fold reduced decision problems in Table 7.6.3.

Round 3. At your view vall1 you must now assign probability 0 to Barbara choosing Faraway or
Distant, as both of these choices did not survive Round 2 at Barbara’s view vall2 , and Barbara is not
even aware of these choices at her view vtwo2 . But then, your choice Distant can no longer be optimal
at vall1 , because Faraway will always be better. We can thus eliminate your choice Distant at vall1 .

At her view vall2 , Barbara must assign probability 0.8 to your view vall1 and probability 0.2 to your
view vtwo1 . As only your choices Faraway and Distant survived round 2 at your view vall1 , Barbara must
assign probability 0.8 to your choices Faraway and Distant together. But then, Barbara’s expected
utility from choosing Nextdoor is at least (0.8) · 4 = 3.2, which means that her choice Closeby can
no longer be optimal. We thus eliminate Barbara’s choice Closeby at her view vall2 . This leads to the
three-fold reduced decision problems in Table 7.6.4.

Since only your choice Faraway survives at your view vall1 , we conclude that under common belief
in rationality with these fixed beliefs on views, you can only rationally go to Faraway Beach if your
view is vall1 . Recall that without any restrictions on the beliefs on views, you could rationally go to
either Faraway Beach or Distant Beach under common belief in rationality with this view.

To support this finding, consider the beliefs diagram in Figure 7.6.2. It may be verified that all
belief hierarchies on choices and views express common belief in rationality, and respect the fixed
beliefs on views as stated above. As the choice Faraway is optimal for the view vall1 under the belief
hierarchy that starts at (Faraway, vall1 ), we indeed conclude that you can rationally choose Faraway
at the view vall1 under common belief in rationality with the fixed beliefs on views above.
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Figure 7.6.2 Beliefs diagram for “A day at the beach”with fixed beliefs on views

7.6.2 Definition
We will now provide a formal definition of fixed beliefs on views, and show how this can be combined
with the conditions of common belief in rationality.

Definition 7.6.1 (Fixed beliefs on views) A fixed belief combination on views
p = (pi(vi))i∈I,vi∈Vi assigns to every player i and every view vi ∈ Vi a probabilistic belief pi(vi) on
the opponents’view combinations, where pi(vi) only assigns positive probability to opponents’views
vj ∈ Vj that are contained in vi.

For instance, the fixed belief combination p on views considered above in the example “A day at
the beach”contains the beliefs

p1(v
two
1 ) = vtwo2 and p1(vall1 ) = (0.8) · vall2 + (0.2) · vtwo2

for you, and the beliefs

p2(v
two
2 ) = vtwo1 and p2(vall2 ) = (0.8) · vall1 + (0.2) · vtwo1

for Barbara.
Such a fixed belief combination on views can always be visualized by a beliefs diagram on views,

like we did in Figure 7.6.1. Moreover, we have seen above that if we start from a view vi in this beliefs
diagram and follow the arrows, we obtain a belief hierarchy on views. In that sense, a fixed belief
combination on views p induces, for every player i and every view vi ∈ Vi, a belief hierarchy on views.

Now, consider a type within an epistemic model, prescribing a view and generating a belief hi-
erarchy on choices and views. We say that this type expresses common belief in the fixed belief
combination p on views if its belief hierarchy on views is exactly the one prescribed by p. But we can
also define up to k-fold belief in p, for every k.

Definition 7.6.2 (Type respecting fixed beliefs on views) Consider a fixed belief combination
on views p, and an epistemic model (Ti, wi, bi)i∈I .

A type ti with view vi expresses 1-fold belief in p if ti’s belief about the opponents’views is given by
pi(vi).

A type ti expresses 2-fold belief in p if ti only assigns positive probability to opponents’types tj that



7.6. *FIXED BELIEFS ON VIEWS 345

express 1-fold belief in p.

A type ti expresses 3-fold belief in p if ti only assigns positive probability to opponents’types tj that
express 2-fold belief in p.

And so on.

A type ti expresses common belief in p if it expresses k-fold belief in p for every k ∈ {1, 2, 3, ...}.

In a similar way as in Section 5.5.2, we can now define what it means that you can rationally make
a choice under common belief in rationality and common belief in a fixed belief combination on views.

Definition 7.6.3 (Rational choice with fixed beliefs on views) Let p be a fixed belief combi-
nation on views, and vi ∈ Vi a view. Then, player i can rationally make the choice ci with view
vi under common belief in rationality and common belief in p, if there is an epistemic model
(Ti, wi, bi)i∈I and a type ti ∈ Ti such that (a) ti expresses common belief in rationality, (b) ti expresses
common belief in p, (c) ti has view vi, and (d) ci is optimal for ti.

In the following subsection we will present an elimination procedure, similar to iterated strict
dominance for unawareness, that yields for every view precisely those choices you can rationally make
under common belief in rationality and common belief in a fixed belief combination p on views.

7.6.3 Recursive Procedure
Consider a fixed belief combination on views p, which prescribes for every player i and every view
vi ∈ Vi a probabilistic belief pi(vi) about the opponents’views. Can we design a recursive elimination
procedure, similar to iterated strict dominance for unawarenss, that selects for every player and view
exactly those choices he can rationally make with this view under common belief in rationality and
common belief in p?

As before, we start with a more basic question: For a given player i and view vi, which choices
can this player rationally make with some belief that satisfies the awareness principle, but without
yet imposing any other restrictions on the belief? We know from the first round of the iterated
strict dominance procedure for unawareness that these are precisely the choices that are not strictly
dominated within the decision problem at vi. This yields the one-fold reduced decision problem at
view vi.

Next, we ask: At a given view vi, what choices can player i rationally make if he expresses 1-fold
belief in p and 1-fold belief in rationality? That is, at the view vi player i’s first-order belief about
the opponents’choice-view pairs must be such that (i) the induced belief about the opponents’views
is pi(vi), and (ii) it only assigns positive probability to opponent’s choice-view pairs (cj , vj) where the
choice cj is in the one-fold reduced decision problem at view vj . Thus, we only keep those choices for
player i at view vi that are optimal for some first-order belief b1i about the opponents’choices and
views that satisfy the properties (i) and (ii) above. This yields the two-fold reduced decision problem
at view vi.

Afterwards, we wish to identify those choices that player i can rationally make with view vi if
he expresses up to 2-fold belief in p and up to 2-fold belief in rationality? That is, at the view vi
player i’s first-order belief about the opponents’choice-view pairs must be such that (i) the induced
belief about the opponents’views is pi(vi), and (ii) it only assigns positive probability to opponent’s
choice-view pairs (cj , vj) where the choice cj is in the two-fold reduced decision problem at view vj .
Thus, we only keep those choices for player i at view vi that are optimal for some first-order belief b1i
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about the opponents’choices and views that satisfy the properties (i) and (ii) above. This yields the
three-fold reduced decision problem at view vi.

By continuing in this way, we arrive at the recursive elimination procedure stated below. Like
in Section 5.5.3, we say that a choice ci is optimal at a view vi for a first-order belief b1i about the
opponents’choices and views if it is optimal for the induced belief about the opponents’choices.

Definition 7.6.4 (Procedure with fixed beliefs on views) Let p be a fixed belief combination
on views. Start by writing down the decision problems for every player i and every view vi in Vi.

Round 1. At every view vi, eliminate from the associated decision problem those choices that are
strictly dominated. This leads to the 1-fold reduced decision problems.

Round 2. At every view vi, keep at the associated 1-fold reduced decision problem only those choices
ci which are optimal for a first-order belief b1i on opponents’ choices and views where (i) b

1
i ’s belief

about the opponents’views is pi(vi), and (ii) b1i only assigns positive probability to pairs (cj , vj) where
cj is in the 1-fold reduced decision problem at vj . This leads to the 2-fold reduced decision problems.

Round 3. At every view vi, keep at the associated 2-fold reduced decision problem only those choices
ci which are optimal for a first-order belief b1i on opponents’ choices and views where (i) b

1
i ’s belief

about the opponents’views is pi(vi), and (ii) b1i only assigns positive probability to pairs (cj , vj) where
cj is in the 2-fold reduced decision problem at vj . This leads to the 3-fold reduced decision problems.

Continue like this until no further choices can be eliminated. The choices for a player i that eventually
remain in his decision problem at a certain view vi are said to survive the iterated strict dominance
procedure for unawareness with fixed beliefs p on the views.

In view of our arguments above, we can conclude that this procedure will always yield precisely
those choices that can rationally be made under common belief in rationality with fixed beliefs on p.

Theorem 7.6.1 (Procedure for common belief in rationality with fixed beliefs on views)
Consider a fixed belief combination p on views.

(a) For every k ∈ {1, 2, 3, ...}, the choices that player i can rationally make with a view vi ∈ Vi while
expressing up to k-fold belief in rationality and up to k-fold belief in p are precisely the choices that
survive the first k + 1 rounds of the iterated strict dominance procedure for unawareness with fixed
beliefs p on views at vi.

(b) The choices that player i can rationally make with view vi ∈ Vi under common belief in rationality
and common belief in p are exactly the choices that survive all rounds of the iterated strict dominance
procedure for unawareness with fixed beliefs p on views at vi.

Similarly to what we saw for other procedures so far, also this procedure terminates within finitely
many rounds, and for every view vi there is at least one choice for player i that survives the procedure
at this view. If we combine this insight with Theorem 7.6.1 it follows that there will always be, for
every player, a belief hierarchy that expresses common belief in rationality and common belief in a
fixed belief combination p on views.

Theorem 7.6.2 (Common belief in rationality with fixed beliefs on views is possible) Consider
a game with unawareness which, for every player i, contains finitely many views and finitely many
choices per view. Consider a fixed belief combination p on views. Then, there is an epistemic model
M such that for every player i and every view vi ∈ Vi, there is a type ti in M such that wi(ti) = vi
and ti expresses common belief in rationality and common belief in p.
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Figure 7.6.3 Fixed beliefs on views for “Too much wine”

We have seen that for all the procedures discussed so far the order of elimination did not matter
for the eventual output. The same is true for the procedure discussed in this section.

Theorem 7.6.3 (Order independence) Changing the order of elimination in the iterated strict
dominance procedure for unawareness with fixed beliefs on views does not change the sets of choices
that survive the procedure at each of the decision problems.

That is, even if we do not eliminate, at some of the rounds and some of the views, all the choices
that we can, we are still guaranteed to eventually end up with the choices that can rationally be made
under common belief in rationality and common belief in the fixed belief combination on views.

7.6.4 Illustration of the Procedure
To illustrate the procedure with fixed beliefs on views, let us return to the original story of “Too much
wine”in Example 7.2. The decision problems can be found in Table 7.4.1.

Now suppose that, whenever you remember what happened to the roof or door, you are quite
confident that Barbara was too drunk to remember this. More precisely, if your view is vroof1 , then
you believe that with probability 0.7 Barbara’s view is vwindow2 and that with probability 0.3 her view
is vroof2 . If your view is vdoor1 , then you assign probability 0.5 to Barbara holding the view vwindow2 ,

probability 0.3 to her holding the view vroof2 and probability 0.2 to her holding the view vdoor2 . Similarly
for Barbara. This fixed combination p of beliefs can be visualized by the beliefs diagram in Figure
7.6.3. With these fixed beliefs on views, what stories can you rationally tell to Chris if you remember
everything that happened? To answer this question we use the iterated strict dominance procedure
for unawareness with the fixed beliefs p on views.

Round 1. We have seen in Section 7.4.4 that your choice innocent is strictly dominated in the
decision problems for your views vwindow1 , vroof1 and vdoor1 . We can thus eliminate your choice innocent
at these three views, and similarly for Barbara. This yields the one-fold reduced decision problems in
Table 7.6.5.
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You innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow1

You innocent table window roof
table 50 −250 −800 −1050

window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

You innocent table window roof door
table 50 −250 −800 −1050 −1300

window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

Table 7.6.5 One-fold reduced decision problems in “Too much wine”

Round 2. At each of your views you believe that Barbara will not choose innocent. We have seen
in Section 7.4.4 that under these circumstances, it can no longer be optimal to choose table at any of
your three views. Hence, we can eliminate the choice table at each of your three views.

However, we will see that at your view vdoor1 we can also eliminate your choice door. Compare
your choices roof and door at this view vdoor1 . Then, the difference in expected utility between the two
choices is

u1(roof )− u1(door) = (b1(table) + b1(window)) · (−450− (−700)) + b1(roof ) · (−750− (−700)) +

+b1(door) · (−1300− (−1000))

= (b1(table) + b1(window)) · 250− b1(roof ) · 50− b1(door) · 300, (7.6.1)

where b1(table), b1(window), b1(roof ) and b1(door) denote the probabilities you assign to these four
choices.

Note that Barbara is only able to choose roof if her view is either vroof2 or vdoor2 , and that she is only
able to choose door if her view is vdoor2 . Also recall that at the view vdoor1 you only assign probability
0.3 to Barbara having the view vroof2 and probability 0.2 to Barbara holding the view vdoor2 . Therefore,
you can assign at most probability 0.2 to Barbara choosing door. Moreover, if you assign probability
0.2 to Barbara choosing door, you can assign at most probability 0.3 to Barbara choosing roof.

Thus, in view of (7.6.1), the beliefs that are most favorable for your choice door compared to the
choice roof are the beliefs where b1(door) = 0.2, b1(roof ) = 0.3 and b1(table) + b1(window) = 0.5. But
even for these most favorable beliefs we have that

u1(roof )− u1(door) = (0.5) · 250− 0.3 · 50− 0.2 · 300 > 0,

which means that roof is still better than door. Hence, with the fixed beliefs on views it can no longer
be optimal to choose door when your view is vdoor1 . We thus eliminate your choice door at vdoor1 . This
leads to the two-fold reduced decision problems in Table 7.6.6.

Round 3. At your views vroof1 and vdoor1 you believe that Barbara will not choose innocent or table.
But then, at the view vroof1 it can no longer be optimal to choose window since roof will always be
better. We can thus eliminate window at your view vroof1 .

At the view vdoor1 you will assign probability 0.2 to Barbara having the view vdoor2 . Since Barbara
is only able to choose door if her view is vdoor2 , you can assign probability at most 0.2 to Barbara
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You innocent table window
window −200 −200 −500

vwindow1

You innocent table window roof
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

You innocent table window roof door
window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300

vdoor1

Table 7.6.6 Two-fold reduced decision problems in “Too much wine”

You innocent table window
window −200 −200 −500

vwindow1

You innocent table window roof
roof −450 −450 −450 −750

vroof1

You innocent table window roof door
roof −450 −450 −450 −750 −1300

vdoor1

Table 7.6.7 Three-fold reduced decision problems in “Too much wine”

choosing door. As roof is better than window for you when Barbara chooses window or roof, and
both choices are equally good when Barbara chooses door, it follows that for all the beliefs you can
hold at Round 3, choosing roof is better than choosing window. We can thus eliminate your choice
window at your view vdoor1 as well. This yields the three-fold reduced decision problems in Table 7.6.7.

Clearly, these decision problems cannot be reduced any further, and thus the procedure terminates
here. In particular, we see that under common belief in rationality with the fixed beliefs on views
from Figure 7.6.3, you can only rationally tell the story roof if your view is vdoor1 .

That is, even when you remember everything, it is optimal not to reveal what happened with the
door. The reason is that you deem it quite likely that Barbara does not remember what happened to
the roof or the door. But then, it is better for you to only reveal what happened to the roof, but not
what happened to the door.

Recall from Section 7.4.4 that without any restrictions on the beliefs on the views, you could
rationally tell the whole truth if you remember everything. The reason is clear: Without any further
restrictions on the beliefs on the views, you could possibly deem it very likely that Barbara also
remembers what happened to the door, making it optimal for you to tell the whole truth.

7.6.5 Bottom-Up Procedure
In Theorem 7.6.3 we have seen that the order of elimination is not important for the output of the
iterated strict dominance procedure for unawareness with fixed beliefs on views. Similarly to the
case without restrictions on the beliefs on views, we could thus go for a “bottom-up”version of the
procedure without changing the final outcome. That is, we could start by analyzing the smallest
views in the game, followed by the second to smallest views, and so on, until we have covered all the
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You innocent table window
innocent 0 −550 −800

table 50 −250 −800
window −200 −200 −500

vwindow1

−→

You innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow1

−→

−→
You innocent table window

window −200 −200 −500
vwindow1

Table 7.6.8 Bottom-up procedure with fixed beliefs on views for “Too much wine”at views of rank 1

You innocent table window roof
innocent 0 −550 −800 −1050

table 50 −250 −800 −1050
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

−→

You innocent table window roof
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof1

−→

−→
You innocent table window roof
roof −450 −450 −450 −750

vroof1

Table 7.6.9 Bottom-up procedure with fixed beliefs on views for “Too much wine”at views of rank 2

views in the game. In many cases, this specific order of elimination will be easier than the “standard”
order prescribed by the original procedure. Instead of providing a formal definition of the bottom-up
procedure, we illustrate it by means of an example. This will probably be enough for the reader to
understand how the bottom-up version would work in general.

Let us return to the example “Too much wine”with the fixed beliefs on views from Figure 7.6.3.
We start with the views of rank 1 which —remember —are the smallest views in the game. That is,
we start with vwindow1 and vwindow2 . The full decision problem that corresponds to your view vview1 is
represented by the first matrix in Table 7.6.8. Note that at your view vwindow1 you must believe that
Barbara’s view is vwindow2 . Your choice innocent is strictly dominated by the randomized choice where
you choose table and window with probabilities 0.9 and 0.1, respectively. We can therefore eliminate
your choice innocent, leading to the second matrix in Table 7.6.8. The same applies to Barbara.

Since you believe that Barbara’s view is vwindow2 , you will believe that Barbara does not choose
innocent. But then, choosing window will always be better than choosing table, and we can thus
eliminate your choice table. This leads to the third matrix in Table 7.6.8, after which the analysis of
your view vwindow1 stops. The same holds for Barbara.

We then move to the views with rank 2 —the second to smallest views —which are vroof1 and vroof2 .

The full decision problem for you at the view vroof1 is represented by the first matrix in Table 7.6.9.
Recall that with the view vroof1 you believe that, with probability 0.7, Barbara has the view vwindow1

and that with probability 0.3 she holds the view vroof2 . Since we have seen that Barbara must choose
window if her view is vwindow2 , you must assign probability at least 0.7 to Barbara choosing window.
But then, it can no longer be rational for you to choose innocent or table.



7.6. *FIXED BELIEFS ON VIEWS 351

You innocent table window roof door
innocent 0 −550 −800 −1050 −1300

table 50 −250 −800 −1050 −1300
window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

−→

−→
You innocent table window roof door
roof −450 −450 −450 −750 −1300

vdoor1

Table 7.6.10 Bottom-up procedure with fixed beliefs on views for “Too much wine”at views of rank 3

To see this, recall first that your choice innocent cannot be optimal for any belief. To see why
table cannot be optimal for any of the beliefs above, compare the choices table and window, and the
expected utilities induced by these two choices. Then,

u1(window)− u1(table) = b1(innocent) · (−200− 50) + b1(table) · (−200− (−250)) +

+b1(window) · (−500− (−800)) + b1(roof ) · (−1050− (−1050))

= −250 · b1(innocent) + 50 · b1(table) + 300 · b1(window).

where b1(innocent), b1(table), b1(window) and b1(roof ) denote the probabilities you assign to these
choices of Barbara. As b1(window) ≥ 0.7 we conclude that u1(window) − u1(table) > 0, and hence
choosing window will always better than choosing table. By eliminating the choices innocent and table
we arrive at the second matrix in Table 7.6.9. Similarly for Barbara.

Hence, you believe that Barbara will choose window if her view is vwindow2 and you believe that
she will choose window or roof if her view is vroof2 . Since you only deem possible Barbara’s views
vwindow2 and vroof2 at your view vroof1 , you will believe that Barbara only chooses window or roof. But
then, your choice window can no longer be optimal as choosing roof is always better. Eliminating
your choice window leads to the last matrix in Table 7.6.9. Similarly for Barbara. This concludes the
analysis of the views of rank 2.

We finally move to the views of rank 3 —the largest views —which are vdoor1 and vdoor2 . The full
decision problem at your view vdoor1 is represented by the first matrix in Table 7.6.10. Recall that
with the view vdoor1 you assign probability 0.5 to Barbara having the view vwindow2 , probability 0.3 to
her holding the view vroof2 and probability 0.2 to her having the view vdoor2 . Moreover, based on the
eliminations above, you believe that Barbara will choose window if her view is vwindow2 and that she
will choose roof if her view is vroof2 . As a consequence, you assign probability at least 0.5 to Barbara
choosing window and probability at least 0.3 to her choosing roof. But then, your only optimal choice
is roof.

To see this, recall first that your choice innocent cannot be optimal for any belief. To see why
table cannot be optimal for any of the beliefs above, compare the choices table and roof. Then,

u1(roof )− u1(table) = b1(innocent) · (−450− 50) + b1(table) · (−450− (−250)) +

+b1(window) · (−450− (−800)) + b1(roof ) · (−750− (−1050))

+b1(door) · (−1300− (−1300))

= −500 · b1(innocent)− 200 · b1(table) + 350 · b1(window) + 300 · b1(roof ).
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As b1(window) ≥ 0.5 and b1(roof ) ≥ 0.3, it follows that u1(window) − u1(table) > 0, and hence
choosing roof is always better than choosing table.

To see why window cannot be optimal for any of the beliefs above, compare the choices window
and roof. Then,

u1(roof )− u1(window) = b1(innocent) · (−450− (−200)) + b1(table) · (−450− (−200)) +

+b1(window) · (−450− (−500)) + b1(roof ) · (−750− (−1050))

+b1(door) · (−1300− (−1300))

= −250 · b1(innocent)− 250 · b1(table) + 50 · b1(window) + 300 · b1(roof ).

Since b1(window) ≥ 0.5 and b1(roof ) ≥ 0.3 we have that b1(innocent) + b1(table) ≤ 0.2. But then,
u1(roof )− u1(window) > 0, which means that roof is always better than window.

Finally, to verify that door cannot be optimal for any of the beliefs above, compare the choices
door and roof. Then,

u1(roof )− u1(door) = b1(innocent) · (−450− (−700)) + b1(table) · (−450− (−700)) +

+b1(window) · (−450− (−700)) + b1(roof ) · (−750− (−700))

+b1(door) · (−1300− (−1000))

= 250 · b1(innocent) + 250 · b1(table) + 250 · b1(window)

−50 · b1(roof )− 300 · b1(door).

Since b1(window) ≥ 0.5 and b1(roof ) ≥ 0.3 we have that b1(door) ≤ 0.2. But then, the least favorable
belief for choosing roof compared to choosing door is the belief b1 that assigns probability 0.5 to
Barbara choosing window, probability 0.3 to her choosing roof and probability 0.2 to her choosing
door. Even under this least favorable belief, we have that u1(roof ) − u1(door) > 0. Hence, choosing
roof is always better than choosing door.

By eliminating the choices innocent, table, window and door we arrive at the second matrix in
Table 7.6.7. Similarly for Barbara. This completes the analysis of the largest views vdoor1 and vdoor2 .
The bottom-up procedure thereby terminates.

According to the outcome of the procedure, you can only rationally tell the story window if your
view is vwindow1 , and you can only rationally tell the story roof to Chris if your view if vroof1 or vdoor1 .
This is precisely the conclusion we drew based on the original procedure from Section 7.6.4.

This must be the case: The bottom-up procedure can be viewed as a special order of elimination
in the original procedure. Moreover, by Theorem 7.6.3, the outcome of the original procedure is inde-
pendent of the specific order of elimination chosen. This then implies that the bottom-up procedure
must always yield the same outcome as the original procedure, also in the case of fixed beliefs on
views.

7.7 Correct and Symmetric Beliefs

In Parts II and III of this book, where we discussed standard games and games with incomplete
information, respectively, we have combined the restrictions of common belief in rationality with those
of a simple, or symmetric, belief hierarchy. In principle we could do this for games with unawareness
as well. However, it turns out that imposing symmetric belief hierarchies necessarily leads to trivial
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cases of unawareness, where you believe that everybody else shares your view of the game, believe
that every opponent believes that everybody else shares his view of the game, and so on. That is, we
would be back to a standard game where every player holds the same view of the game. Since every
simple belief hierarchy is symmetric, the same holds if we would impose a simple belief hierarchy.

To see why a symmetric belief hierarchy leads to trivial cases of unawareness, consider a symmetric
belief hierarchy for a player. By definition, such a symmetric belief hierarchy would be induced by a
symmetric weighted beliefs diagram, containing arrows from choice-view pairs to opponents’choice-
view combinations. Consider two different players, i and j, and suppose that in this symmetric
weighted beliefs diagram there would be an arrow from player i’s choice-view pair (ci, vi) to the
opponents’choice-view combinations, containing player j’s choice-view pair (cj , vj). By symmetry of
the weighted beliefs diagram, there must also be an arrow from the choice-view pair (cj , vj) to (ci, vi).

Hence, in the belief hierarchy starting at (ci, vi), player i believes that, with some positive proba-
bility, player j has the view vj while believing, with some positive probability, that player i has the
view vi. By the awareness principle, the view vi must thus be contained in vj , since otherwise player
j with view vj could not reason about the view vi.

At the same time, player i believes in this belief hierarchy that, with some positive probability,
player j believes that, with some positive probability, that player i has the view vi while believing,
with some positive probability, that j’s view is vj . Again, by the awareness principle, it would follow
that the view vj must be contained in the view vi, since otherwise player i with view vi could not
reason about the view vj .

Hence, we conclude that vi must be included in vj and that vj must be included in vi. This,
however, is only possible if the views vi and vj are equal. As such, we see that whenever there is an
arrow from a view vi to an opponent’s view vj in a symmetric weighted beliefs diagram, then the two
views must equal.

But then, all views that enter a symmetric belief hierarchy induced by this symmetric weighted
beliefs diagram must be equal as well. We thus conclude that for every symmetric belief hierarchy
there is a single view v such that the player believes, with probability 1, that (i) all opponents have the
view v, (ii) that all opponents believe with probability 1 that all other players have the view v, and so
on. But then, we are back to the situation of a standard game with a unique view v shared by all the
players. Since every simple belief hierarchy is symmetric, the same would hold if we impose a simple
belief hierarchy instead. For this reason, we do not treat correct and symmetric beliefs in a separate
chapter in the part on unawareness, because it would bring us back to the analysis of standard games.
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7.8 Proofs

7.8.1 Proofs of Section 7.4
To prove Theorem 7.4.1 we need the following optimality property, similar to the one from the proof
sections of Chapters 3 and 5. In the statement of this lemma we denote by C−i(vi) the set of opponents’
choice-combinations in the view vi.

Lemma 7.8.1 (Optimality property) For every player i, every view vi ∈ Vi and every round k ≥ 0,
let Cki (vi) be the set of choices for player i that survive the first k rounds of the iterated strict dom-
inance procedure for unawareness at vi, and let C∗i (vi) be the set of choices that survive all rounds
there. Similarly, let Ck−i(vi) be the set of states that survive the first k rounds, and let C

∗
−i(vi) be the

set of states that survive all rounds, at vi.

(a) For every k ≥ 1, a choice ci is in Cki (vi) if and only if ci is optimal for some belief in (Ci(vi), C
k
−i(vi), ui).

(b) A choice ci is in C∗i (vi) if and only if ci is optimal for some belief in (Ci(vi), C
∗
−i(vi), ui).

The proof of this lemma is essentially identical to the one for Lemma 3.6.1 and is therefore omitted.

Proof of Theorem 7.4.1. (a) For every player i and view vi ∈ Vi, let BRki (vi) denote the set of
choices that player i can rationally make while expressing up to k-fold belief in rationality with view
vi. Recall from above that Cki (vi) and Ck−i(vi) denote the set of choices and set of states, respectively,
that survive the first k rounds of the procedure at view vi. We will show that BRki (vi) = Ck+1i (vi)
for every player i, every view vi ∈ Vi and every k ≥ 1. We show this in two steps: (i) prove that
BRki (vi) ⊆ Ck+1i (vi) for all k ≥ 1, and (ii) prove that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1.

(i) Show that BRki (vi) ⊆ Ck+1i (vi) for all k ≥ 1.

We prove this by induction on k. For k = 1, take some ci ∈ BR1i (vi). Then, there is some epistemic
model M = (Ti, wi, bi)i∈I and some type ti ∈ Ti such that ti expresses 1-fold belief in rationality,
wi(ti) = vi and ci is optimal for ti. Suppose that bi(ti) assigns positive probability to some opponent’s
choice-type pair (cj , tj) with wj(tj) = vj . Then, vj is contained in vi. Moreover, since ti expresses
1-fold belief in rationality, cj must be optimal for tj . Hence, cj is optimal for tj’s first-order belief
in the full decision problem (Cj(vj), C−j(vj), uj) which, by Lemma 7.8.1, implies that cj ∈ C1j (vj).
Hence, ti’s first-order belief only assigns positive probability to opponents’ choices cj which are in
C1j (vj) for some vj contained in vi, and thus only assigns positive probability to states in C2−i(vi). As
ci is optimal for ti, we conclude that ci is optimal for ti’s first-order belief in (Ci(vi), C

2
−i(vi), ui) which

implies, by Lemma 7.8.1, that ci is in C2i (vi). We thus have shown that every choice ci ∈ BR1i (vi)
must be in C2i (vi), and hence BR1i (vi) ⊆ C2i (vi).

Now suppose that k ≥ 2 and that, by the induction assumption, BRk−1i (vi) ⊆ Cki (vi) for all players
i and all views vi. Consider some player i and some ci ∈ BRki (vi). Then, there is some epistemic model
M = (Ti, wi, bi)i∈I and some type ti ∈ Ti such that ti expresses up to k-fold belief in rationality,
wi(ti) = vi and ci is optimal for ti. Suppose that bi(ti) assigns positive probability to some opponent’s
choice-type pair (cj , tj) with wj(tj) = vj . Then, vj is contained in vi.Moreover, since ti expresses up to
k-fold belief in rationality, the choice cj must be optimal for tj and tj must express up to (k− 1)-fold
belief in rationality. Hence, cj ∈ BRk−1j (vj). Since, by the induction assumption, BRk−1j (vj) ⊆ Ckj (vj),

we know that cj ∈ Ckj (vj).We thus conclude that ti’s first-order belief only assigns positive probability
to opponents’choices cj that are in Ckj (vj) for some view vj that is contained in vi, and hence only
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assigns positive probability to states in Ck+1−i (vi). As ci is optimal for ti, we conclude that ci is
optimal for ti’s first-order belief in (Ci(vi), C

k+1
−i (vi), ui), which implies, by Lemma 7.8.1, that ci is

in Ck+1i (vi). We thus have shown that every choice ci ∈ BRki (vi) must be in Ck+1i (vi), and hence
BRki (vi) ⊆ Ck+1i (vi). By induction on k, we conclude that BRki (vi) ⊆ Ck+1i (vi) for all players i, all
views vi ∈ Vi, and all k ≥ 1. This completes the proof of (i).

(ii) Show that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1.

Hence, for every choice ci ∈ Ck+1i (vi) we must show that there is some epistemic model, and some
type tvi,cii in it, such that tvi,cii expresses up to k-fold belief in rationality, wi(t

vi,ci
i ) = vi, and ci is

optimal for tvi,cii . We will now construct a single epistemic model M = (Ti, wi, bi)i∈I that contains all
such types. For every player i, define the set of types

Ti = {tvi,cii | vi ∈ Vi, ci ∈ C1i (vi)}

where wi(t
vi,ci
i ) = vi. To define the beliefs of these types about the opponents’choice-type combinations

we distinguish the following three cases, assuming that the procedure terminates at the end of round
K.

Case 1. Suppose that ci ∈ C1i (vi)\C2i (vi). Then, by Lemma 7.8.1, ci is optimal for some belief
bvi,cii ∈ ∆(C−i(vi)) within (Ci(vi), C−i(vi), ui). For every opponent j choose some arbitrary type t̂j ∈ Tj
with a view wj(t̂j) contained in vi, and define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj)j 6=i), if tj = t̂j for all j 6= i

0, otherwise
(7.8.1)

for all (cj , tj)j 6=i in C−i × T−i.

Case 2. Suppose that ci ∈ Cki (vi)\Ck+1i (vi) for some k ∈ {2, ...,K − 1}. Then, by Lemma 7.8.1,
ci is optimal for some belief b

vi,ci
i ∈ ∆(Ck−i(vi)) within (Ci(vi), C

k
−i(vi), ui). By construction of the

procedure, for every (cj)j 6=i ∈ Ck−i(vi) and every j 6= i, there is some view vk−1j [cj ] ∈ Vj contained in
vi such that cj ∈ Ck−1j (vk−1j [cj ]). Define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj)j 6=i), if cj ∈ Ck−1j (vi) and tj = t

vk−1j [cj ],cj
j for all j 6= i

0, otherwise
(7.8.2)

for all (cj , tj)j 6=i in C−i × T−i.

Case 3. Suppose that ci ∈ CKi (vi). As the procedure terminates at round K we have that ci ∈ C∗i (vi).
Hence, by Lemma 7.8.1, ci is optimal for some belief b

vi,ci
i ∈ ∆(C∗−i(vi)) within (Ci(vi), C

∗
−i(vi), ui).

By construction of the procedure, for every (cj)j 6=i ∈ C∗−i and every j 6= i, there is some view v∗j [cj ]
contained in vi such that cj ∈ C∗j (v∗j [cj ]). Define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj)j 6=i), if cj ∈ C∗j (vi) and tj = t

v∗j [cj ],cj
j for all j 6= i

0, otherwise
(7.8.3)

for all (cj , tj)j 6=i in C−i × T−i.
By (7.8.1), (7.8.2) and (7.8.3) it follows that every type satisfies the awareness principle. This

completes the construction of the epistemic model M = (Ti, wi, bi)i∈I .
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Note that in this epistemic model, every type tvi,cii holds the first-order belief bvi,cii on choices. As,
by definition, ci is optimal for b

vi,ci
i within (Ci(vi), C−i(vi), ui), we conclude that ci is optimal for t

vi,ci
i ,

for every player i and every ci ∈ C1i (vi).

We now show that for every k ≥ 2 and every choice ci ∈ Cki (vi), the associated type t
vi,ci
i expresses

up to (k − 1)-fold belief in rationality. We show this by induction on k.
For k = 2, consider some choice ci ∈ C2i (vi) and the associated type t

vi,ci
i with the belief given

by (7.8.2) or (7.8.3). By (7.8.2) and (7.8.3), the belief bi(t
vi,ci
i ) only assigns positive probability to

opponent’s choice-type pairs (cj , t
v1j [cj ],cj
j ) where cj ∈ C1j (v1j [cj ]). In particular, bi(t

vi,ci
i ) only assigns

positive probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj ∈ C1j (vj). As cj is optimal for

t
vj ,cj
j , the type tvi,cii only assigns positive probability to opponent’s choice-type pairs (cj , t

vj ,cj
j ) where

cj is optimal for t
vj ,cj
j . Hence, tvi,cii expresses 1-fold belief in rationality. This holds for every type tvi,cii

where ci ∈ C2i (vi).

Suppose now that k ≥ 3 and that, by the induction assumption, tvi,cii expresses up to (k − 2)-fold
belief in rationality for every ci ∈ Ck−1i (vi) and every player i. Consider some choice ci ∈ Cki (vi) and
the associated type tvi,cii with the belief given by (7.8.2) or (7.8.3). By (7.8.2) and (7.8.3) it follows

that bi(t
vi,ci
i ) only assigns positive probability to opponent’s choice-type pairs (cj , t

vk−1j [cj ],cj
j ) where

cj ∈ Ck−1j (vk−1j [cj ]). In particular, bi(t
vi,ci
i ) only assigns positive probability to opponent’s choice-type

pairs (cj , t
vj ,cj
j ) where cj ∈ Ck−1j (vj). By the induction assumption we know that t

vj ,cj
j expresses up to

(k− 2)-fold belief in rationality. As cj is optimal for t
vj ,cj
j , we conclude that tvi,cii only assigns positive

probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj is optimal for t

vj ,cj
j , and tvj ,cjj expresses

up to (k − 2)-fold belief in rationality. Hence, tvi,cii expresses up to (k − 1)-fold belief in rationality.
This holds for every type tvi,cii where ci ∈ Cki (vi).

By induction on k, we conclude that for every k ≥ 2 and every choice ci ∈ Cki (vi), the associated
type tvi,cii expresses up to (k − 1)-fold belief in rationality.

We next show that for every ci ∈ CKi (vi), the associated type t
vi,ci
i expresses common belief in

rationality. Consider the smaller epistemic modelM∗ = (T ∗i , wi, bi)i∈I where the set of types for player
i is

T ∗i := {tvi,cii | vi ∈ Vi and ci ∈ C∗i (vi)},

and the beliefs of the types are given by (7.8.3). Note that this is a well-defined epistemic model,
since by (7.8.3) every type tvi,cii ∈ T ∗i with ci ∈ C∗i (vi) only assigns positive probability to opponent’s

types t
v∗j [cj ],cj
j ∈ T ∗j where cj ∈ C∗j (v∗j [cj ]). We show that every type in M

∗ believes in the opponents’
rationality.

Consider a type tvi,cii ∈ T ∗i where ci ∈ C∗i (vi). By (7.8.3), type t
vi,ci
i only assigns positive probability

to opponent’s types t
v∗j [cj ],cj
j ∈ T ∗j where cj ∈ C∗j (v∗j [cj ]). In particular, t

vi,ci
i only assigns positive

probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj ∈ C∗j (vj). Since cj is optimal for t

vj ,cj
j ,

the type tvi,cii only assigns positive probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj is

optimal for tvj ,cjj . Hence, tvi,cii ∈ T ∗i believes in the opponents’rationality. Since this holds for every
type tvi,cii ∈ T ∗i , all types in M∗ believe in the opponents’rationality. Hence, it follows that all types
in M∗ express common belief in rationality. Note that the types in M∗ are exactly the types tvi,cii

with ci ∈ CKi (vi). Hence, for every ci ∈ CKi (vi), the associated type t
vi,ci
i expresses common belief in

rationality.
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We can now prove that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1. Take some ci ∈ Ck+1i (vi) where k ≥ 1.
Then we know from above that ci is optimal for the associated type t

vi,ci
i , and that the type tvi,cii

expresses up to k-fold belief in rationality. Hence, by definition, ci ∈ BRki (vi). As this holds for every
ci ∈ Ck+1i (vi), we conclude that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1.

Since in part (i) we have already seen that BRki (vi) ⊆ Ck+1i (vi), we may conclude that BRki (vi) =
Ck+1i (vi) for all k ≥ 1. That is, a choice can rationally be made while expressing up to k-fold belief
in rationality with view vi precisely when the choice survives k + 1 elimination rounds at vi. This
establishes part (a) of Theorem 7.4.1.

(b) We finally prove part (b) of Theorem 7.4.1. Suppose first that choice ci can rationally be made
under common belief in rationality with view vi. Then, in particular, for every k ≥ 1, the choice ci
can rationally be made while expressing up to k-fold belief in rationality with view vi. By part (a)
we then know that ci survives k + 1 rounds of elimination at vi. Since this holds for every k ≥ 1, we
conclude that ci survives all rounds of elimination at vi.

Suppose next that the choice ci survives all rounds of elimination at vi. Then, ci ∈ CKi (vi), where
K is the round at which the iterated strict dominance procedure for unawareness terminates. From the
construction of the epistemic modelM = (Ti, wi, bi)i∈I above we know that the choice ci is optimal for
the type tvi,cii and that the type tvi,cii expresses common belief in rationality. Hence, ci can rationally
be made under common belief in rationality with view vi.

We thus conclude that a choice ci can rationally be made under common belief in rationality with
view vi precisely when the choice ci survives all rounds of elimination at vi. This completes the proof
of part (b), and thereby the proof of this theorem. �

Proof of Theorem 7.4.2. Recall the definitions and results for reduction operators from Sections
3.6.3.1 and 3.6.3.2. We first show that the iterated strict dominance procedure for unawareness can
be characterized by the iterated application of a reduction operator sdu, and subsequently prove that
this reduction operator sdu is monotone. By Lemma 3.6.2 it would then follow that sdu, and thereby
the procedure, is order independent.

Let A = (Ci(vi), C−i(vi), ui)i∈I,vi∈Vi be the set that assigns to every player i and view vi ∈ Vi the
(full) decision problem (Ci(vi), C−i(vi), ui). The subsets of A we are interested in have the form D =
(Di(vi), D−i(vi), ui)i∈I,vi∈Vi , where Di(vi) ⊆ Ci(vi) and D−i(vi) ⊆ C−i(vi) for every player i and every
vi ∈ Vi. For two such subsets D = (Di(vi), D−i(vi), ui)i∈I,vi∈Vi and E = (Ei(vi), E−i(vi), ui)i∈I,vi∈Vi
we write that D ⊆ E if Di(vi) ⊆ Ei(vi) and D−i(vi) ⊆ E−i(vi) for every player i and vi ∈ Vi.

Let sdu be the reduction operator that assigns to every set E = (Ei(vi), E−i(vi), ui)i∈I,vi∈Vi the
subset D = (Di(vi), D−i(vi), ui)i∈I,vi∈Vi where, for every player i and vi ∈ Vi,

D−i(vi) := {(cj)j 6=i ∈ E−i(vi) | for every j 6= i, cj ∈ Ej(vj) for some vj ∈ Vj contained in vi}

and
Di(vi) := {ci ∈ Ei(vi) | ci not strictly dominated in (Ei(vi), D−i(vi), ui)}.

Then, by construction,
sduk(A) = (Cki (vi), C

k
−i(vi), ui)i∈I,vi∈Vi

for every k ∈ {1, 2, 3, ...}, and hence the iterated strict dominance procedure for unawareness can
be characterized by the iterated application of the reduction operator sdu. We call sdu the strict
dominance operator for unawareness.

We next show that sdu is monotone. Take some sets D,E of the form above with sdu(E) ⊆ D ⊆ E.
We show that sdu(D) ⊆ sdu(E).
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Let sdu(D) = (D′i(vi), D
′
−i(vi), ui)i∈I,vi∈Vi and sdu(E) = (E′i(vi), E

′
−i(vi), ui)i∈I,vi∈Vi . Take some

player i and view vi.We start by showing that D′−i(vi) ⊆ E′−i(vi). Take some (cj)j 6=i ∈ D′−i(vi). Then,
for every player j, we have that cj ∈ Dj(vj) for some vj contained in vi. Since Dj(vj) ⊆ Ej(vj), we
conclude that cj ∈ Ej(vj) for some vj contained in vi. As this applies to every j 6= i, we conclude that
(cj)j 6=i ∈ E′−i(vi). Thus, we see that D′−i(vi) ⊆ E′−i(vi).

Next, we show that D′i(vi) ⊆ E′i(vi). Take some ci ∈ D′i(vi). Then, ci is not strictly dominated in
(Di(vi), D

′
−i(vi), ui). By Theorem 2.6.1 it follows that there is some belief bi ∈ ∆(D′−i(vi)) such that

ui(ci, bi) ≥ ui(c′i, bi) for all c′i ∈ Di(vi). (7.8.4)

Note that bi ∈ ∆(E′−i(vi)) since we have seen that D
′
−i(vi) ⊆ E′−i(vi). Now, let c∗i ∈ Ei(vi) be such

that

ui(c
∗
i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ei(vi). (7.8.5)

By Theorem 2.6.1, we conclude that c∗i is not strictly dominated in (Ei(vi), E
′
−i(vi), ui), and hence

c∗i ∈ E′i(vi) by definition of the sdu operator. Since sdu(E) ⊆ D we know, in particular, that
E′i(vi) ⊆ Di(vi), and thus we see that c∗i ∈ Di(vi). By combining (7.8.4) and (7.8.5), and using the
fact that c∗i ∈ Di(vi), we conclude that

ui(ci, bi) ≥ ui(c∗i , bi) ≥ ui(c′i, bi) for all c′i ∈ Ei(vi).

By Theorem 2.6.1 it then follows that ci is not strictly dominated in (Ei(vi), E
′
−i(vi), ui), and hence

ci is in E′i(vi). This shows that D
′
i(vi) ⊆ E′i(vi).

Altogether, we conclude that sdu(D) ⊆ sdu(E). Hence, sdu is monotone. By Lemma 3.6.2 it then
follows that the reduction operator sdu is order independent. As the iterated strict dominance proce-
dure for unawareness coincides with the iterated application of sdu, we conclude that the procedure
is order independent. This completes the proof. �

Proof of Theorem 7.4.3. We first show that the iterated strict dominance procedure for unawareness
leaves, for every player i and every view vi ∈ Vi, at least one choice and one state in the associated
decision problem after the procedure has terminated. To show this, we prove, by induction on k, that
Cki (vi) and Ck−i(vi) are always non-empty for every k ∈ {1, 2, 3, ...}.

For k = 1 we know, by construction, that C1−i(vi) = C−i(vi), which is non-empty. Now, take
some belief bi ∈ ∆(C1−i(vi)) and some choice ci that is optimal for bi in (Ci(vi), C

1
−i(vi), ui). Then,

by Theorem 2.6.1, ci is not strictly dominated in (Ci(vi), C
1
−i(vi), ui), which means that ci ∈ C1i (vi).

Thus, C1i (vi) is non-empty.
Now, take some k ≥ 2, and assume that Ck−1−i (vi) and Ck−1i (vi) is non-empty for every player i and

every vi. Consider a player i and a view vi. Let (cj)j 6=i be such that, for every player j, the choice cj
is in Ck−1j (vj) for some vj contained in vi. Then, by construction, (cj)j 6=i ∈ Ck−i(vi), and thus Ck−i(vi)
is non-empty.

Next, take some belief bi ∈ ∆(Ck−i(vi)) and let ci be optimal for bi in (Ci(vi), C
k
−i(vi), ui). Then, it

follows by Lemma 7.8.1 that ci ∈ Cki (vi), and hence Cki (vi) is non-empty.
By induction on k it follows that Ck−i(vi) and C

k
i (vi) are non-empty for all k. As the procedure

terminates withinK rounds, the sets CK−i(vi) and C
K
i (vi) that remain at the end must all be non-empty.

But then, we can construct an epistemic model M∗ as in the proof of Theorem 7.4.1. Since this
epistemic model has all the properties stated in Theorem 7.4.3, the proof is complete. �
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7.8.2 Proof of Section 7.5
Proof of Theorem 7.5.1. From Theorem 7.4.2 and its proof we know that the iterated strict
dominance procedure for unawareness is obtained by the iterated application of the reduction operator
sdu, and that the operator sdu is order independent. To prove Theorem 7.5.1 it is therefore suffi cient
to show that the bottom-up procedure corresponds to a specific elimination order of sdu.

As in the proof of Theorem 7.4.2, let A = (Ci(vi), C−i(vi), ui)i∈I,vi∈Vi be the set that assigns to
every player i and view vi ∈ Vi the (full) decision problem (Ci(vi), C−i(vi), ui). Suppose that M is the
highest rank that a view can achieve. Let

(D0, D1.1, ..., D1.K1 , D2.1, ..., D2.K2 , ..., DM.1, ..., DM.KM )

be the sequence of nested subsets of A induced by the bottom-up procedure, where D0 = A,
sdu(DM.KM ) = DM.KM , where D1.1, ..., D1.K1 correspond to the elimination rounds for the views of
rank 1, D2.1, ..., D2.K2 correspond to the elimination rounds for the views of rank 2, and so on.

We will now show that this sequence of nested subsets is an elimination order for sdu. Since D0 = A
and sdu(DM.KM ) = DM.KM , the properties (a) and (c) in the definition of an elimination order (see
Section 3.6.3.1) are satisfied. It remains to prove property (b) there. That is, for two subsequent
rounds m.k and m′.k′ we must show that

sdu(Dm.k) ⊆ Dm′.k′ ⊆ Dm.k. (7.8.6)

As, by construction, Dm′.k′ ⊆ Dm.k, it only remains to show that

sdu(Dm.k) ⊆ Dm′.k′ .

We distinguish two cases: (1) m′.k′ = m.k + 1, and (2) m′.k′ = m+ 1.1.

Case 1. Suppose that m′.k′ = m.k + 1. By definition, we have that

Dm.k+1 = (Dm.k+1
i (vi), D

m.k+1
−i (vi), ui)i∈I,vi∈Vi

where, for every player i and every vi ∈ Vi with rank m

Dm.k+1
−i (vi) := {(cj)j 6=i ∈ Dm.k

−i (vi) | for every j 6= i, cj ∈ Dm.k
j (vj) for some vj ∈ Vj contained in vi},

and

Dm.k+1
i (vi) := {ci ∈ Dm.k

i (vi) | ci not strictly dominated in (Dm.k
i (vi), D

m.k+1
−i (vi), ui)}.

For every view vi that does not have rank m we have

Dm.k+1
−i (vi) = Dm.k

−i (vi) and Dm.k+1
i (vi) = Dm.k

i (vi).

Moreover, by definition, sdu(Dm.k) = (Em.k+1i (vi), E
m.k+1
−i (vi), ui)i∈I,vi∈Vi where

Em.k+1−i (vi) := {(cj)j 6=i ∈ Dm.k
−i (vi) | for every j 6= i, cj ∈ Dm.k

j (vj) for some vj ∈ Vj contained in vi}

and

Em.k+1i (vi) := {ci ∈ Dm.k
i (vi) | ci not strictly dominated in (Dm.k

i (vi), E
m.k+1
−i (vi), ui)}.
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By construction, it holds that Em.k+1−i (vi) ⊆ Dm.k+1
−i (vi) for every player i and every vi ∈ Vi.

We now show that Em.k+1i (vi) ⊆ Dm.k+1
i (vi) for every player i and every vi ∈ Vi. Take some ci ∈

Em.k+1i (vi). Then, ci ∈ Dm.k
i (vi) and ci is not strictly dominated in (Dm.k

i (vi), E
m.k+1
−i (vi), ui). Hence,

by Theorem 2.6.1, ci is optimal in (Dm.k
i (vi), E

m.k+1
−i (vi), ui) for some belief bi ∈ ∆(Em.k+1−i (vi)). As

Em.k+1−i (vi) ⊆ Dm.k+1
−i (vi), it follows that bi ∈ ∆(Dm.k+1

−i (vi) also. Thus, the choice ci is optimal in
(Dm.k

i (vi), D
m.k+1
−i (vi), ui) for some belief bi ∈ ∆(Dm.k+1

−i (vi). But then, by Theorem 2.6.1, the choice
ci is not strictly dominated in (Dm.k

i (vi), D
m.k+1
−i (vi), ui), and hence ci ∈ Dm.k+1

i (vi) by definition. As
this holds for every ci ∈ Em.k+1i (vi), we conclude that Em.k+1i (vi) ⊆ Dm.k+1

i (vi) for every player i and
every vi ∈ Vi.

As we have already seen that Em.k+1−i (vi) ⊆ Dm.k+1
−i (vi) for every player i and every vi ∈ Vi it

follows that sdu(Dm.k) ⊆ Dm.k+1. This, in turn, establishes (7.8.6).

Case 2. Suppose that m′.k′ = m+1.1. Then, we have that m.k = m.Km. By definition, we have that

Dm+1.1 = (Dm+1.1
i (vi), D

m+1.1
−i (vi), ui)i∈I,vi∈Vi

where, for every player i and every vi ∈ Vi with rank m+ 1,

Dm+1.1
−i (vi) := {(cj)j 6=i ∈ Dm.Km

−i (vi) | for every j 6= i,

cj ∈ Dm.Km
j (vj) for some vj ∈ Vj contained in vi},

and

Dm+1.1
i (vi) := {ci ∈ Dm.Km

i (vi) | ci not strictly dominated in (Dm.Km
i (vi), D

m+1.1
−i (vi), ui)}.

For every view vi that does not have rank m+ 1 we have that

Dm+1.1
−i (vi) = Dm.Km

−i (vi) and Dm+1.1
i (vi) = Dm.Km

i (vi).

Moreover, by definition, sdu(Dm.k) = (Em+1.1i (vi), E
m+1.1
−i (vi), ui)i∈I,vi∈Vi where

Em+1.1−i (vi) := {(cj)j 6=i ∈ Dm.Km
−i (vi) | for every j 6= i,

cj ∈ Dm.Km
j (vj) for some vj ∈ Vj contained in vi}

and

Em+1.1i (vi) := {ci ∈ Dm.Km
i (vi) | ci not strictly dominated in (Dm.Km

i (vi), E
m+1.1
−i (vi), ui)}.

In a similar way as for Case 1 it can be shown that sdu(Dm.Km) ⊆ Dm+1.1. This, in turn, implies
(7.8.6). This completes Case 2.

By (7.8.6) we thus conclude that the sequence of nested subsets above is an elimination order for
sdu. As this sequence of nested subsets is induced by the bottom-up procedure, we conclude that the
bottom-up procedure corresponds to a specific elimination procedure for sdu. Since we know, from
Theorem 7.4.2, that the reduction operator sdu is order independent, we conclude that the bottom-up
procedure yields the same output as the original procedure. This completes the proof. �
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7.8.3 Proofs of Section 7.6
To prove Theorem 7.6.1 we need the following optimality property, similar to Lemma 5.6.2 in the
proof section of Chapter 5.

Lemma 7.8.2 (Optimality property) For every player i, every view vi ∈ Vi and every round k ≥ 0,
let Cki (vi) be the set of choices for player i that survive the first k rounds of the iterated strict domi-
nance procedure for unawareness with fixed beliefs p on views at vi, and let C∗i (vi) be the set of choices
that survive all rounds there.

(a) A choice ci is in C1i (vi), if and only if, ci is optimal in (Ci(vi), C−i(vi), ui) for some first-order belief
b1i on opponents’choices and views.

(b) For every k ≥ 2, a choice ci is in Cki (vi), if and only if, ci is optimal in (Ci(vi), C−i(vi), ui) for
some first-order belief b1i on opponents’choices and views where (i) b

1
i ’s belief about the opponents’

views is pi(vi) and (ii) b1i only assigns positive probability to pairs (cj , vj) where cj ∈ Ck−1j (vj).

(c) A choice ci is in C∗i (vi), if and only if, ci is optimal in (Ci(vi), C−i(vi), ui) for some first-order belief
b1i on opponents’choices and views where (i) b

1
i ’s belief about the opponents’views is pi(vi) and (ii)

b1i only assigns positive probability to pairs (cj , vj) where cj ∈ C∗j (vj).

Proof. (a) and (b). We prove the statements (a) and (b) by induction on k. We start by showing
the statement in (a) for k = 1. Recall that C1i (vi) contains precisely those choices in Ci(v) that are not
strictly dominated in (Ci(vi), C−i(vi), ui). By Theorem 2.6.1 these are precisely the choices that are
optimal in (Ci(vi), C−i(vi), ui) for some first-order belief b1i on opponents’choices and views. Hence,
the statement in (a) follows.

Suppose now that k ≥ 2 and that the statement in (a) or (b) is true for k − 1. To show the “only
if”direction for k, consider some choice ci ∈ Cki (vi). Then, by definition, there is a first-order belief b1i
on opponents’choices and views such that (i) b1i ’s belief on views is pi(vi), (ii) b

1
i only assigns positive

probability to pairs (cj , vj) where cj ∈ Ck−1j (vj), and

ui(ci, b
1
i ) ≥ ui(c′i, b1i ) for all c′i ∈ Ck−1i (vi). (7.8.7)

Let c∗i ∈ Ci be optimal for the belief b1i within (Ci(vi), C−i(vi), ui). That is,

ui(c
∗
i , b

1
i ) ≥ ui(c′i, b1i ) for all c′i ∈ Ci(vi). (7.8.8)

As Ck−1j (vj) ⊆ Ck−2j (vj) for all vj , we conclude that b1i only assigns positive probability to pairs

(cj , vj) where cj ∈ Ck−2j (vj). But then, by the induction assumption, c∗i ∈ Ck−1i (vi). By (7.8.7) we
thus conclude that

ui(ci, b
1
i ) ≥ ui(c∗i , b1i ). (7.8.9)

By combining (7.8.9) and (7.8.8) we see that

ui(ci, b
1
i ) ≥ ui(c∗i , b1i ) ≥ ui(c′i, b1i ) for all c′i ∈ Ci,

and hence ci is optimal for the belief b1i in (Ci(vi), C−i(vi), ui). This establishes the “only if”part.
To show the “if” part, consider some choice ci that is optimal in (Ci(vi), C−i(vi), ui) for some

first-order belief b1i on opponents’choices and views where b
1
i ’s belief on views is pi(vi) and b

1
i only
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assigns positive probability to pairs (cj , vj) where cj ∈ Ck−1j (vj). Then, in particular, ci is optimal for

this belief in (Ck−1i (vi), C−i(vi), ui), and hence ci ∈ Cki (vi). This establishes the “if”’direction.
By combining the “only if”and “if”direction, the statement in (b) follows for k. By induction on

k, statements (a) and (b) hold for every k ≥ 1.

(c) Suppose that the procedure terminates at the end of round K. That is, C∗i (vi) = CKi (vi) =
CK+1i (vi) for every player i and view vi. Then, ci is in C∗i (vi) precisely when ci ∈ CK+1i (vi). By
applying (b) to k = K + 1, we know that ci is in CK+1i (vi) precisely when ci is optimal with the view
vi for some first-order belief b1i on opponents’choices and views where b

1
i ’s belief on views is pi(vi)

and b1i only assigns positive probability to pairs (cj , vj) where cj ∈ CKj (vj). As CKj (vj) = C∗j (vj), this
completes the proof. �

Proof of Theorem 7.6.1. (a) For every player i and view vi ∈ Vi, let BRki (vi) denote the set of
choices that player i can rationally make while expressing up to k-fold belief in rationality and up to
k-fold belief in p with view vi. Recall from above that Cki (vi) denotes the set of choices that survive
the first k rounds at vi. We will show that BRki (vi) = Ck+1i (vi) for every player i, every view vi ∈ Vi
and every k ≥ 1. We show this in two steps: (i) prove that BRki (vi) ⊆ Ck+1i (vi) for all k ≥ 1, and (ii)
prove that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1.

(i) Show that BRki (vi) ⊆ Ck+1i (vi) for all k ≥ 1.

We prove this by induction on k. For k = 1, take some ci ∈ BR1i (vi). Then, there is some epistemic
model M = (Ti, wi, bi)i∈I and some type ti ∈ Ti such that ti expresses 1-fold belief in rationality
and 1-fold belief in p, where wi(ti) = vi and ci is optimal for ti. Suppose that bi(ti) assigns positive
probability to some opponent’s choice-type pair (cj , tj) with wj(tj) = vj . Since ti expresses 1-fold
belief in rationality, cj must be optimal for tj . Hence, cj is optimal for tj’s first-order belief in the
full decision problem (Cj(vj), C−j(vj), uj) which, by Lemma 7.8.2, implies that cj ∈ C1j (vj). Thus, ti’s
first-order belief b1i (ti) only assigns positive probability to pairs (cj , vj) with cj ∈ C1j (vj). Moreover,
as ti expresses 1-fold belief in p, we know that b1i (ti)’s belief about the views is pi(vi). Finally, as ci is
optimal for ti, we conclude that ci is optimal for b1i (ti) in (Ci(vi), C−i(vi), ui). This implies, by Lemma
7.8.2, that ci is in C2i (vi). We thus have shown that every choice ci ∈ BR1i (vi) must be in C2i (vi), and
hence BR1i (vi) ⊆ C2i (vi).

Now suppose that k ≥ 2 and that, by the induction assumption, BRk−1i (vi) ⊆ Cki (vi) for all players
i and all views vi. Consider some player i and some ci ∈ BRki (vi). Then, there is some epistemic model
M = (Ti, wi, bi)i∈I and some type ti ∈ Ti such that ti expresses up to k-fold belief in rationality, ti
expresses up to k-fold belief in p, where wi(ti) = vi and ci is optimal for ti. Suppose that bi(ti) assigns
positive probability to some opponent’s choice-type pair (cj , tj) with wj(tj) = vj . Since ti expresses
up to k-fold belief in rationality and up to k-fold belief in p, the choice cj must be optimal for tj
and tj must express up to (k − 1)-fold belief in rationality and up to (k − 1)-fold belief in p. Hence,
cj ∈ BRk−1j (vj). Since, by the induction assumption, BRk−1j (vj) ⊆ Ckj (vj), we know that cj ∈ Ckj (vj).

We thus conclude that ti’s first-order belief b1i only assigns positive probability to pairs (cj , vj) where
cj ∈ Ckj (vj). Morever, as ti expresses 1-fold belief in p, the belief that b1i has about the views is
pi(vi). Finally, as ci is optimal for ti, we conclude that ci is optimal for ti’s first-order belief b1i in
(Ci(vi), C−i(vi), ui). This implies, by Lemma 7.8.2, that ci is in Ck+1i (vi). We thus have shown that
every choice ci ∈ BRki (vi) must be in Ck+1i (vi), and hence BRki (vi) ⊆ Ck+1i (vi). By induction on k,
we conclude that BRki (vi) ⊆ Ck+1i (vi) for all players i, all views vi ∈ Vi, and all k ≥ 1. This completes
the proof of (i).

(ii) Show that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1.
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Hence, for every choice ci ∈ Ck+1i (vi) we must show that there is some epistemic model, and some
type tvi,cii in it, such that tvi,cii expresses up to k-fold belief in rationality, expresses up to k-fold belief
in p, that wi(t

vi,ci
i ) = vi, and ci is optimal for t

vi,ci
i . We will now construct a single epistemic model

M = (Ti, wi, bi)i∈I that contains all such types. For every player i, define the set of types

Ti = {tvi,cii | vi ∈ Vi, ci ∈ C1i (vi)}

where wi(t
vi,ci
i ) = vi. To define the beliefs of these types about the opponents’choice-type combinations

we distinguish the following three cases, assuming that the procedure terminates at the end of round
K.

Case 1. Suppose that ci ∈ C1i (vi)\C2i (vi). Then, by Lemma 7.8.2 (a), ci is optimal for some belief
bvi,cii ∈ ∆(C−i(vi)) within (Ci(vi), C−i(vi), ui). For every opponent j choose some arbitrary type t̂j ∈ Tj
such that its view wj(t̂j) is contained in vi, and define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj)j 6=i), if tj = t̂j for all j 6= i

0, otherwise
(7.8.10)

for all (cj , tj)j 6=i in C−i × T−i.

Case 2. Suppose that ci ∈ Cki (vi)\Ck+1i (vi) for some k ∈ {2, ...,K − 1}. Then, by Lemma 7.8.2 (b),
ci is optimal within (Ci(vi), C−i(vi), ui) for some first-order belief b

vi,ci
i ∈ ∆(C−i × V−i) which has the

belief pi(vi) on views, and only assigns positive probability to pairs (cj , vj) where cj ∈ Ck−1j (vj) and
vj is contained in vi. Define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj , vj)j 6=i), if cj ∈ Ck−1j (vj) and tj = t

vj ,cj
j for all j 6= i

0, otherwise
(7.8.11)

for all (cj , tj)j 6=i in C−i × T−i.

Case 3. Suppose that ci ∈ CKi (vi). As the procedure terminates at round K we have that ci ∈ C∗i (vi).
Hence, by Lemma 7.8.2 (c), ci is optimal within (Ci(vi), C−i(vi), ui) for some first-order belief b

vi,ci
i ∈

∆(C−i×V−i) that has the belief pi(vi) on views, and only assigns positive probability to pairs (cj , vj)
where cj ∈ C∗j (vj) and vj is contained in vi. Define

bi(t
vi,ci
i )((cj , tj)j 6=i) :=

{
bvi,cii ((cj , vj)j 6=i), if cj ∈ C∗j (vj) and tj = t

vj ,cj
j for all j 6= i

0, otherwise
(7.8.12)

for all (cj , tj)j 6=i in C−i×T−i. By construction, all types satisfy the awareness principle. This completes
the construction of the epistemic model M = (Ti, wi, bi)i∈I .

Note that in this epistemic model, every type tvi,cii holds the first-order belief bvi,cii . As, by definition,
ci is optimal for b

vi,ci
i within (Ci(vi), C−i(vi), ui), we conclude that ci is optimal for t

vi,ci
i , for every

player i, every view vi and every choice ci ∈ C1i (vi).

We now show that for every k ≥ 2 and every choice ci ∈ Cki (vi), the associated type t
vi,ci
i expresses

up to (k− 1)-fold belief in rationality and up to (k− 1)-fold belief in p. We show this by induction on
k.

For k = 2, consider some choice ci ∈ C2i (vi) and the associated type t
vi,ci
i with the belief given by

(7.8.11) or (7.8.12). By (7.8.11) and (7.8.12), the belief bi(t
vi,ci
i ) only assigns positive probability to

opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj ∈ C1j (vj). As cj is optimal for t

vj ,cj
j , the type tvi,cii only
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assigns positive probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj is optimal for t

vj ,cj
j .

Hence, tvi,cii expresses 1-fold belief in rationality. This holds for every type tvi,cii where ci ∈ C2i (vi).
Moreover, as tvi,cii holds the first-order belief bvi,cii on opponents’choices and views, which induces the
belief pi(vi) on views, it follows that t

vi,ci
i expresses 1-fold belief in p.

Suppose now that k ≥ 3 and that, by the induction assumption, tvi,cii expresses up to (k − 2)-fold
belief in rationality and up to (k − 2)-fold belief in p for every player i, every vi ∈ Vi and every
ci ∈ Ck−1i (vi). Consider some choice ci ∈ Cki (vi) and the associated type t

vi,ci
i with the belief given by

(7.8.11) or (7.8.12). By (7.8.11) and (7.8.12) it follows that bi(t
vi,ci
i ) only assigns positive probability

to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj ∈ Ck−1j (vj). By the induction assumption we know

that tvj ,cjj expresses up to (k − 2)-fold belief in rationality and up to (k − 2)-fold belief in p. As cj
is optimal for tvj ,cjj , we conclude that tvi,cii only assigns positive probability to opponent’s choice-type
pairs (cj , t

vj ,cj
j ) where cj is optimal for t

vj ,cj
j , and tvj ,cjj expresses up to (k− 2)-fold belief in rationality

and up to (k− 2)-fold belief in p. Hence, tvi,cii expresses up to (k− 1)-fold belief in rationality and up
to (k − 1)-fold belief in p. This holds for every type tvi,cii where ci ∈ Cki (vi).

By induction on k, we conclude that for every k ≥ 2 and every choice ci ∈ Cki (vi), the associated
type tvi,cii expresses up to (k − 1)-fold belief in rationality and up to (k − 1)-fold belief in p.

We next show that for every ci ∈ CKi (vi), the associated type t
vi,ci
i expresses common belief in

rationality and common belief in p. Consider the smaller epistemic model M∗ = (T ∗i , wi, bi)i∈I where
the set of types for player i is

T ∗i := {tvi,cii | vi ∈ Vi and ci ∈ C∗i (vi)},

and the beliefs of the types are given by (7.8.12). Note that this is a well-defined epistemic model, since
by (7.8.12) every type tvi,cii ∈ T ∗i with ci ∈ C∗i (vi) only assigns positive probability to opponent’s types
t
vj ,cj
j ∈ T ∗j where cj ∈ C∗j (vj). We show that every type in M∗ believes in the opponents’rationality.
Consider a type tvi,cii ∈ T ∗i where ci ∈ C∗i (vi). By (7.8.12), type t

vi,ci
i only assigns positive probabil-

ity to opponents ’choice-type pairs (cj , t
vj ,cj
j ) where cj ∈ C∗j (vj). Since cj is optimal for t

vj ,cj
j , the type

tvi,cii only assigns positive probability to opponent’s choice-type pairs (cj , t
vj ,cj
j ) where cj is optimal

for tvj ,cjj . Hence, tvi,cii ∈ T ∗i believes in the opponents’rationality. Moreover, we have seen that t
vi,ci
i

expresses 1-fold belief in p.
Since this holds for every type tvi,cii ∈ T ∗i , all types in M∗ believe in the opponents’rationality and

express 1-fold belief in p. Hence, it follows that all types in M∗ express common belief in rationality
and common belief in p. Note that the types in M∗ are exactly the types tvi,cii with ci ∈ CKi (vi).
Hence, for every ci ∈ CKi (vi), the associated type t

vi,ci
i expresses common belief in rationality and

common belief in p.

We can now prove that Ck+1i (vi) ⊆ BRki (vi) for all k ≥ 1. Take some ci ∈ Ck+1i (vi) where
k ≥ 1. Then we know from above that ci is optimal for the associated type t

vi,ci
i , and that the type

tvi,cii expresses up to k-fold belief in rationality and up to k-fold belief in p. Hence, by definition,
ci ∈ BRki (vi). As this holds for every ci ∈ Ck+1i (vi), we conclude that Ck+1i (vi) ⊆ BRki (vi) for all
k ≥ 1.

Since in part (i) we have already seen that BRki (vi) ⊆ Ck+1i (vi), we may conclude that BRki (vi) =
Ck+1i (vi) for all k ≥ 1. That is, a choice can rationally be made while expressing up to k-fold belief in
rationality and up to k-fold belief in p with view vi precisely when the choice survives k+1 elimination
rounds at vi. This establishes part (a) of Theorem 7.6.1.

(b) We finally prove part (b) of Theorem 7.6.1. Suppose first that choice ci can rationally be made
under common belief in rationality and common belief in p with view vi. Then, in particular, for every
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k ≥ 1, the choice ci can rationally be made while expressing up to k-fold belief in rationality and up to
k-fold belief in p with view vi. By part (a) we then know that ci survives k + 1 rounds of elimination
at vi. Since this holds for every k ≥ 1, we conclude that ci survives all rounds of elimination at vi.

Suppose next that the choice ci survives all rounds of elimination at vi. Then, ci ∈ CKi (vi), where
K is the round at which the iterated strict dominance procedure for unawareness with fixed beliefs
p on views terminates. From the construction of the epistemic model M = (Ti, wi, bi)i∈I above we
know that the choice ci is optimal for the type t

vi,ci
i and that the type tvi,cii expresses common belief

in rationality and common belief in p. Hence, ci can rationally be made under common belief in
rationality and common belief in p with view vi. We thus conclude that a choice ci can rationally
be made under common belief in rationality and common belief in p with view vi precisely when the
choice ci survives all rounds of elimination at vi. This completes the proof of part (b), and thereby
the proof of this theorem. �

Proof of Theorem 7.6.2. We first show that the iterated strict dominance procedure for unawareness
with fixed beliefs p on views leaves, for every player i and every view vi ∈ Vi, at least one choice in the
associated decision problem after the procedure has terminated. To show this, we prove, by induction
on k, that Cki (vi) is always non-empty for every k ∈ {1, 2, 3, ...}.

Start with k = 1. Take a player i, a view vi, and take a first-order belief b1i on opponents’choices
and views. Select a choice ci that is optimal for b1i in (Ci(vi), C−i(vi), ui). Then, by Lemma 7.8.2 (a),
ci ∈ C1i (vi). In particular, C1i (vi) is non-empty.

Now, take some k ≥ 2, and assume that Ck−1i (vi) is non-empty for every player i and every vi.
Consider a player i and a view vi. Take a first-order belief b1i ∈ ∆(C−i × V−i) that has the belief
pi(vi) on views, and only assigns positive probability to pairs (cj , vj) where cj ∈ Ck−1j (vj). Clearly,

such a belief can be found since these sets Ck−1j (vj) are all non-empty. Let ci be optimal for b1i
in (Ci(vi), C−i(vi), ui). Then, it follows by Lemma 7.8.2 (b) that ci ∈ Cki (vi), and hence Cki (vi) is
non-empty.

By induction on k it follows that Cki (vi) is non-empty for all k. As the procedure terminates within
K rounds, the sets CKi (vi) that remain at the end must all be non-empty.

But then, we can construct an epistemic model M∗ as in the proof of Theorem 7.6.1. Since this
epistemic model has all the properties stated in Theorem 7.6.2, the proof is complete. �

Proof of Theorem 7.6.3. Recall again the definitions and results for reduction operators from
Sections 3.6.3.1 and 3.6.3.2. We first show that the iterated strict dominance procedure for unawareness
with fixed beliefs p on views can be characterized by the iterated application of a reduction operator
sdup, and subsequently prove that this reduction operator sdup is monotone. By Lemma 3.6.2 it
would then follow that sdup, and thereby the procedure, is order independent.

Let A = (Ci(vi))i∈I,vi∈Vi be the set that assigns to every player i and view vi ∈ Vi the (full) set
of choices Ci(vi) = Ci. The subsets of A we are interested in have the form D = (Di(vi))i∈I,vi∈Vi ,
where Di(vi) ⊆ Ci for every player i and every vi ∈ Vi. For two such subsets D = (Di(vi))i∈I,vi∈Vi and
E = (Ei(vi))i∈I,vi∈Vi we write that D ⊆ E if Di(vi) ⊆ Ei(vi) for every player i and vi ∈ Vi.

Let sdup be the reduction operator that assigns to the full set (Ci(vi ))i∈I,vi∈Vi the subset D =
(Di(vi))i∈I,vi∈Vi where, for every player i and vi ∈ Vi,

Di(vi) = {ci ∈ Ci(vi) | ci optimal in (Ci(vi), C−i(vi), ui) for a first-order belief b1i ∈ ∆(C−i × V−i)},
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and let sdup assign to every other set E = (Ei(vi))i∈I,vi∈Vi 6= (Ci(vi ))i∈I,vi∈Vi the subset D =
(Di(vi))i∈I,vi∈Vi where, for every player i and vi ∈ Vi,

Di(vi) = {ci ∈ Ei(vi) | ci optimal in (Ei(vi), C−i(vi), ui) for a first-order belief b1i ∈ ∆(C−i × V−i)
that has belief pi(vi) on views

and only assigns positive probability to pairs (cj , vj) where cj ∈ Ej(vj)}.

Recall from Lemma 7.8.2 (a) that C1i (vi) contains precisely those choices in Ci(v) that are optimal
in (Ci(vi), C−i(vi), ui) for a first-order belief b1i ∈ ∆(C−i × V−i).

Then, we have that
sdupk(A) = (Cki (vi))i∈I,vi∈Vi

for every k ∈ {1, 2, 3, ...}, and hence the iterated strict dominance procedure for unawareness with
fixed beliefs p on views corresponds to the iterated application of the reduction operator sdup. We
call sdup the strict dominance operator for unawareness with fixed beliefs p on views.

We next show that sdup is monotone. Take some sets D,E of the form above with sdup(E) ⊆
D ⊆ E. We show that sdup(D) ⊆ sdup(E).

Suppose first that D = E. Then, sdup(D) = sdup(E), and hence it trivially holds that sdup(D) ⊆
sdup(E).

Assume next that D 6= E which implies, in particular, that D 6= (Ci(vi ))i∈I,vi∈Vi . Let sdup(D) =
(D′i(vi))i∈I,vi∈Vi and sdup(E) = (E′i(vi))i∈I,vi∈Vi . Take some player i and view vi. We show that
D′i(vi) ⊆ E′i(vi). Take some ci ∈ D′i(vi). Then, ci is optimal in (Di(vi), C−i(vi), ui) for a first-order
belief b1i ∈ ∆(C−i × V−i) that has the belief pi(vi) on views and only assigns positive probability to
pairs (cj , vj) where cj ∈ Dj(vj). That is,

ui(ci, b
1
i ) ≥ ui(c′i, b1i ) for all c′i ∈ Di(vi). (7.8.13)

Since Dj(vj) ⊆ Ej(vj) for all opponents j and views vj , we conclude that p only assigns positive
probability to pairs (cj , vj) where cj ∈ Ej(vj). Now, let c∗i ∈ Ei(vi) be such that

ui(c
∗
i , b

1
i ) ≥ ui(c′i, b1i ) for all c′i ∈ Ei(vi). (7.8.14)

Then, by definition of the sdup operator, we have that c∗i ∈ E′i(vi). Since sdup(E) ⊆ D we know, in
particular, that E′i(vi) ⊆ Di(vi), and thus we see that c∗i ∈ Di(vi). By combining (7.8.13) and (7.8.14),
and using the fact that c∗i ∈ Di(vi), we conclude that

ui(ci, b
1
i ) ≥ ui(c∗i , b1i ) ≥ ui(c′i, b1i ) for all c′i ∈ Ei(vi).

Hence, it follows that ci is in E′i(vi). This shows that D
′
i(vi) ⊆ E′i(vi).

Altogether, we conclude that sdup(D) ⊆ sdup(E). Hence, sdup is monotone. By Lemma 3.6.2 it
then follows that the reduction operator sdup is order independent. As the iterated strict dominance
procedure for unawareness with fixed beliefs p on views corresponds to the iterated application of
sdup, we conclude that the procedure is order independent. This completes the proof. �
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Solutions to In-Chapter Questions

Question 7.1.1. If Barbara believes that you have the view vall1 , then she believes that you could
choose Faraway Beach and Distant Beach. If Barbara believes that you have the view vtwo1 , then she
believes that you could choose Nextdoor Beach and Closeby Beach.

Question 7.1.2. In your first-order belief, you believe that Barbara chooses Nextdoor Beach while
having the view vall2 . In your second-order belief, you believe that Barbara believes that you choose
Faraway Beach while having the view vall1 . In your third-order belief, you believe that Barbara believes
that you believe that Barbara chooses Nextdoor Beach while having the view vall2 . In particular, you
believe that Barbara believes that your view is vall1 —your actual view.

Question 7.1.3. Consider the beliefs diagram from Figure 7.1.1. Note that your choice Nextdoor
Beach is optimal for the belief hierarchy that starts at (Nextdoor, vtwo1 ), that Closeby Beach is optimal
for the belief hierarchy that starts at (Closeby, vtwo1 ), and that both belief hierarchies express common
belief in rationality. Hence, with the view vtwo1 you can rationally go to Nextdoor Beach and Closeby
Beach under common belief in rationality.

Question 7.1.4. All the views for you and Barbara are contained in vall1 , whereas only the views vtwo1

and vtwo2 are contained in vtwo1 .

Question 7.1.5. Your view vall1 contains Barbara’s views vall2 and vtwo2 , whereas your view vtwo1

contains Barbara’s view vtwo2 . Similarly for Barbara.

Question 7.2.1. By the conditions (i) and (ii), the choice cj must be part of the view vj , and the
view vj must be contained in vi. Hence, the choice cj must be contained in vi as well.

Question 7.4.1. Your set of types is

T1 = {twindow,window1 , troof,roof1 , troof,door1 , tdoor,door1 }

and similarly for Barbara. The views and beliefs of the types are

w1(t
window,window
1 ) = window, w1(t

roof,roof
1 ) = roof,

w1(t
roof,door
1 ) = w1( t

door,door
1 ) = door,

b1(t
window,window
1 ) = (window, twindow,window2 ),

b1(t
roof,roof
1 ) = (window, twindow,window2 ),

b1( t
roof,door
1 ) = (window, twindow,window2 ),

b1(t
door,door
1 ) = (roof, troof,roof2 ),

and similarly for Barbara.

Question 7.5.1. The views that are smallest amongst the views in V ′ are vroof1 and vroof2 . In turn,
the only view that is smallest amongst the views in V ′′ is vroof1 . Note that vdoor2 is not smallest amongst
the views in V ′′, since it contains the view vroof1 which contains less choices for you and Barbara than
vdoor2 .

Question 7.5.2. The set of all views is V = {vall1 , vtwo1 , vall2 , vtwo2 }. The smallest views amongst the
views in V are vtwo1 and vtwo2 , and these are thus the views with rank 1. Amongst the views which do
not have rank 1, the smallest views are vall1 and vall2 , and these are therefore the views of rank 2.

Question 7.5.3. The full decision problems at the four different views are given by
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You innocent table window
innocent 0 −550 −800

table 50 −250 −800
window −200 −200 −500

vwindow1

Barbara innocent table window
innocent 0 −550 −800

table 50 −250 −800
window −200 −200 −500

vwindow2

Barbara innocent table window roof
innocent 0 −550 −800 −1050

table 50 −250 −800 −1050
window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof2

You innocent table window roof door
innocent 0 −550 −800 −1050 −1300

table 50 −250 −800 −1050 −1300
window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

.

Round 1. At your view vwindow1 , your choice innocent is strictly dominated by the randomized choice
(0.9)· table + (0.1)· window, and can therefore be eliminated. Similarly for Barbara’s view vwindow2 .

At Barbara’s view vroof2 , her choice innocent is strictly dominated by the randomized choice (0.95)·
table + (0.05)· roof and can therefore be eliminated. Finally, at your view vdoor1 , your choice innocent
is strictly dominated by the randomized choice (0.95)· table + (0.05)· door, and can therefore be
eliminated. This leads to the following one-fold reduced decision problems:

You innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow1

Barbara innocent table window
table 50 −250 −800

window −200 −200 −500
vwindow2

Barbara innocent table window roof
table 50 −250 −800 −1050

window −200 −200 −500 −1050
roof −450 −450 −450 −750

vroof2

You innocent table window roof door
table 50 −250 −800 −1050 −1300

window −200 −200 −500 −1050 −1300
roof −450 −450 −450 −750 −1300
door −700 −700 −700 −700 −1000

vdoor1

.

Round 2. At your view vwindow1 you can only reason about Barbara’s view vwindow2 at which her
choice innocent is no longer present. We can therefore eliminate the state innocent from your view
vwindow1 . Afterwards, your choice table becomes strictly dominated by window at vwindow1 and can thus
be eliminated there. The same applies to Barbara’s view vwindow2 .
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At the view vroof2 Barbara can only reason about your view vwindow1 at which your choice innocent is
no longer present and the choice roof was not present from the beginning. We can therefore eliminate
the states innocent and roof at view vroof2 . Afterwards, her choice table becomes strictly dominated
by the choice window, and can thus be eliminated there.

At your view vdoor1 you can imagine Barbara’s views vwindow2 and vroof2 , at which her choice innocent
did not survive and her choice door was not present from the beginning. We can thus eliminate the
states innocent and door at your view vdoor1 . Afterwards, your choice table becomes strictly dominated
by the randomized choice (0.95)· window + (0.05)· door at your view vdoor1 , and can thus be eliminated
there.

This leads to the following two-fold reduced decision problems:

You table window
window −200 −500

vwindow1

Barbara table window
window −200 −500

vwindow2

Barbara table window
window −200 −500
roof −450 −450

vroof2

You table window roof
window −200 −500 −1050
roof −450 −450 −750
door −700 −700 −700

vdoor1

Round 3. At your view vwindow1 you can only imagine Barbara’s view vwindow2 at which her choice table
did not survive. We can thus eliminate the state table at your view vwindow1 . Similarly for Barbara’s
view vwindow2 .

At her view vroof2 Barbara only deems possible your view vwindow1 at which your choice table did
not survive. We can thus eliminate the state table at her view vroof2 . Afterwards, her choice window
becomes strictly dominated by roof at her view vroof2 , and can thus be eliminated there.

At your view vdoor1 you only deem possible Barbara’s views vwindow2 and vroof2 , at which her choice
table did not survive. We can thus eliminate the state table at your view vdoor1 . Afterwards, your
choice window becomes strictly dominated by the choice roof, and can thus be eliminated there.

This leads to the following three-fold reduced decision problems:

You window
window −500

vwindow1

Barbara window
window −500

vwindow2

Barbara window
roof −450

vroof2

You window roof
roof −450 −750
door −700 −700

vdoor1

This is where the procedure terminates. Hence, with the view vdoor1 you can rationally whisper the
stories roof and door into Chris’ear under common belief in rationality. But note that the bottom-up
procedure was easier to use in this case, and more time effi cient.

Question 7.6.1. In your first-order belief, you believe that Barbara’s view is vtwo2 . In your second-
order belief, you believe that Barbara believes that your view is vtwo1 .
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Figure 7.8.1 Map for Problem 7.1

Problems

Problem 7.1: The big discovery.

You and Barbara spend an adventurous holiday in a rain forest, somewhere in South America. By
accident you discover the village of a previously unknown indigenous tribe, which you call village a.
You decide to walk further, along the river, to see whether there are more villages of this tribe. During
this walk you enter into a fierce discussion with Barbara, who claims to have seen the village a first,
but you strongly disagree. You get angry at each other, and decide to go your separate ways. During
your walk you discover six other villages of the tribe, which you call b, c, d, e, f and g, and you decide
to spend the night at village g. The locations of the villages are depicted in Figure 7.8.1.

As a result of your discoveries, you are aware of these seven villages. At the same time, you are
uncertain whether Barbara is also aware of these villages, because she may have taken a shorter walk,
and may be spending the night at some of the villages before g. During you walk you have noticed
that the people were very hostile at villages b, d and f, and for that reason you deem it unlikely that
Barbara would spend the night there. But she could spend the night at village c, in which case she
would only be aware of the villages a, b or c. But she could also spend the night at village e, in which
case she would be aware of the villages a , b, c, d and e, or at village g, in which case she would be
aware of all seven villages. Since you are convinced that Barbara will at least make it to village c,
you deem it impossible that she spends the night at village a. Hence, there are three possible views
for Barbara.

Barbara reasons similarly about you: If Barbara spends the night at village c, then she will
definitely believe that you also spend the night at c. If she spends the night at e, she believes that you
either spend the night at c or at e. If she spends the night at g, she believes that you either spend the
night at c, e or g. Hence, there are three possible views for you.

Before the walk, you agreed with Barbara that you would spend the next day in one of the villages
you would discover, to learn about the habits of the indigenous tribe. The question is: Which village
do you go to? And which village do you believe Barbara will go to?

Because of the fight you had yesterday, Barbara wants to be as far away from you as possible.
More precisely, the distance between every two neighbouring villages on the map is one kilometer, and
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Figure 7.8.2 Fixed belief combination on views in Problem 7.1

the utility for Barbara is given by

u2 = (distance between Barbara and you)2.

That is, if Barbara believes that you will be at village a, then the intensity by which she prefers b to
a is lower than the intensity by which she prefers c to b, and so on.

For you, things are different. You would really like to make things up with Barbara, and therefore
you would like to be as close to her as possible. More precisely, your utility is given by

u1 = −
√
distance between Barbara and you .

That is, if you believe that Barbara is at village a, then the intensity by which you prefer a to b is
higher than the intensity by which you prefer b to c, and so on.

(a) Translate this story into a game with unawareness, by specifying the possible views for you and
Barbara, and by writing down the decision problem for each of the possible views.

(b) Find the villages that you can rationally go to under common belief in rationality. Which procedure
do you use?

(c) Create a beliefs diagram with solid arrows only, that uses for each of the possible views all the
choices that survive for that view in the procedure of part (b).

(d) Translate this beliefs diagram into an epistemic model where every type expresses common belief
in rationality.

Now suppose that you and Barbara believe that, with a high probability, the other person has
made a shorter walk whenever your own walk passed beyond village c. More precisely, assume that
your belief hierarchy about the views is given by the fixed belief combination on views p in Figure
7.8.2. Here, vg1 represents the view where you are aware of all seven villages, v

e
1 is the view where you

are aware of the villages a, b, c, d and e, whereas vc1 is the view where you are only aware of the villages
a, b and c. Similarly for Barbara.

*(e) What villages can you rationally go to under common belief in rationality and common belief in
p?
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*(f) Create an epistemic model that contains, for every player i, every view vi and every choice ci
you found for view vi in (e), a type t

vi,ci
i that (i) has this view vi, (ii) expresses common belief in

rationality and common belief in p, and (iii) for which ci is optimal. In order to do so, try to make a
beliefs diagram first, and translate it into an epistemic model.

Problem 7.2: Learning a new language.

Recall the story from Problem 7.1. Barbara and you have now been staying with the indigenous tribe
for a few days, and you are both trying to learn their language. As a start, you both try to learn
pronouncing the numbers. So far you have learned how to pronounce the numbers 1 until 40. Since
you are not aware of the pronunciation of numbers above 40, you simply cannot imagine Barbara
pronouncing these numbers either.

On the other hand, you are free to believe that Barbara has learned less numbers than you have.
To keep things easy, suppose you either believe that Barbara has learned the numbers 1 to 20, or the
numbers 1 to 30, or the numbers 1 to 40. If you believe that Barbara has only learned the numbers 1
until k then, like you, she cannot imagine that you have learned how to pronounce any number above
k. But she is free to believe that you have learned less numbers than k.

Barbara and you have agreed to compete with each other this evening, to see who is able to
pronounce most numbers. The rules are as follows: The person who is able to correctly pronounce
the highest amount of numbers wins 70 euros. In case of a tie, there will be a toin coss to decide who
gets the 70 euros. However, to correctly pronounce the numbers 1 until k, you must first have learned
these numbers during the last few days, and you must practice the pronunciation of these numbers
today. Assume that the mental cost of practicing the numbers 1 to k, translated in terms of euros, is
simply k.

The question is: How many numbers will you practice today? To keep things easy, suppose that
you can choose between practicing the numbers 1 to 10, the numbers 1 to 20, the numbers 1 to 30,
or the numbers 1 to 40. Similarly, if Barbara has learned the numbers 1 to k · 10, where k ∈ {2, 3, 4},
then for every m ∈ {1, ..., k} she can choose to practice the numbers 1 to m · 10.

(a) Translate this story into a game with unawareness, by specifying the possible views for you and
Barbara, and by writing down the decision problem for each of the possible views.

(b) Specify for every view its rank. Afterwards, use the bottom-up procedure to find the amounts of
numbers you can rationally practice today under common belief in rationality.

(c) Create a beliefs diagram with solid arrows only, that uses for each of the possible views all the
choices that survive for that view in the procedure of part (b).

(d) Translate this beliefs diagram into an epistemic model where every type expresses common belief
in rationality.

It is now two days later, and you have learned, in addition, the numbers 41 to 50. You are free
to believe that Barbara has learned these new numbers as well, but you cannot imagine that she has
learned how to pronounce any number above 50.

(e) Use the bottom-up procedure to find the amounts of numbers you can rationally practice today
under common belief in rationality.

Suppose now that if you have learned 10 · k numbers, where k ≥ 3, then you believe that there is a
50% chance that Barbara has learned these numbers as well, and there is a 50% chance that Barbara
has learned 10 numbers less. That is, we assume the fixed belief hierarchy on views p given by the
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Figure 7.8.3 Fixed beliefs on views in Problem 7.2

beliefs diagram in Figure 7.8.3. Here, v501 is the view you have when you have learned the numbers 1
until 50. Similarly for the other views.

*(f) Use the bottom-up procedure to find the amounts of numbers you can rationally practice today
under common belief in rationality and common belief in p.

*(g) Create an epistemic model that contains, for every player i, every view vi and every choice ci
you found for view vi in (f), a type t

vi,ci
i that (i) has this view vi, (ii) expresses common belief in

rationality and common belief in p, and (iii) for which ci is optimal. In order to do so, try to make a
beliefs diagram first, and translate it into an epistemic model.

*Problem 7.3: The temple.

Recall the stories from Problems 7.1 and 7.2. After a few weeks of studying the language and the
habits of the indigenous tribe, you and Barbara continue your journey through the forest. Within
two days you discover a beautiful, old temple, completely covered by trees and plants. Indeed, you
and Barbara are the first to see this temple since many centuries. Of course, you and Barbara cannot
resist the temptation to enter the temple. There is only one, small entrance, and the corridor is so
tiny that only person can get in at the time. Moreover, it is extremely diffi cult to walk, or should we
say crawl, through the corridor, because it is completely dark, and full of bats who constantly attack
your head. Luckily you have your smartphone with you to shine a light.

While crawling through the corridor you discover the most amazing treasures: Some beautifully
decorated vases, a splendid carriage, a gorgeous silver altar, and an astonishing golden tomb. Of
course you leave the treasures where they are, since you have the utmost respect for ancient cultures.
However, after discovering the tomb your phone went out of battery, and you had to crawl back to
the entrance in the dark. In Figure 7.8.4 you find a map of the corridor and the treasures you found.

Barbara, who was desperately waiting outside for you, immediately jumps in after you come back.
Apparently, the news of the ancient temple spread fast, because two journalists arrive at the moment
Barbara returns from her journey in the temple. One journalist comes to you, whereas the other
journalist turns to Barbara for an interview. Of course, they both ask what you have seen in the
temple, and the question is: How many of your discoveries do you reveal to the journalist? And how
many discoveries do you believe that Barbara reveals to the other journalist?
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Figure 7.8.4 Map of the temple in Problem 7.3

You face a dilemma here: On the one hand you would like to reveal as little as possible about your
discoveries, because more information will attract more robbers. On the other hand, you do not want
to reveal less discoveries than Barbara, because you would feel embarrassed. More precisely, if you
reveal at least as many discoveries as Barbara, then your utility will be the number of discoveries you
believe not to reveal, given the total number of treasures you discovered. If, on the other hand, you
reveal less discoveries than Barbara, then your utility will be the number of discoveries you believe
not to reveal minus a disutility of 3.5 for feeling embarrassed. The same applies to Barbara. Note
that both you and Barbara can also decide not to reveal any discoveries to the journalists.

Of course, you can only reveal the treasures you truly discovered, and the same applies to Barbara.
However, you are uncertain about the treasures that Barbara discovered, because she could have
returned earlier than you did. That is, you either believe that Barbara returned (i) after discovering
the vases, (ii) after discovering the carriage, (iii) after discovering the altar, or (iv) after discovering
the tomb, like you did.

(a) Translate this story into a game with unawareness, by specifying the possible views for you and
Barbara, and by writing down the decision problem for each of the possible views.

Suppose that you and Barbara have little faith in the crawling capabilities of the other person,
especially after discovering the altar or the tomb. More precisely, we assume the fixed beliefs on
views p given by the beliefs diagram in Figure 7.8.5. Here, vtomb1 is the view you hold when you have
discovered the tomb. Similarly for the other views.

(b) Find the numbers of discoveries you can rationally reveal to the journalist under common belief
in rationality and common belief in p.

(c) Create an epistemic model that contains, for every player i, every view vi and every choice ci
you found for view vi in (b), a type t

vi,ci
i that (i) has this view vi, (ii) expresses common belief in

rationality and common belief in p, and (iii) for which ci is optimal.

Suppose now that you and Barbara start to have more faith in the crawling capabilities of the
other person. This results in the fixed beliefs on views p′ given by the beliefs diagram in Figure 7.8.6.
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Figure 7.8.5 Fixed beliefs on views in Problem 7.3 (b)

Figure 7.8.6 Fixed beliefs on views in Problem 7.3 (d)
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(d) Find the numbers of discoveries you can rationally reveal to the journalist under common belief
in rationality and common belief in p.

(e) Can you intuitively explain the difference in your answers to parts (b) and (d)?
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Unawareness in logic. The first papers on unawareness explored its logical foundations, without
an explicit reference to games. See, for instance, Fagin and Halpern (1988), Dekel, Lipman and
Rustichini (1998), Modica and Rustichini (1999), Halpern (2001), Heifetz, Meier and Schipper (2006,
2008, 2013a), Halpern and Rêgo (2008) and Li (2009). An important question being addressed by these
papers is how unawareness can be modeled in a meaningful way, both syntactically and semantically.
A general conclusion in this literature is that in a multi-agent setting, every agent must be endowed
with his own, subjective state space that only contains those objects he is aware of, and which therefore
may be substantially smaller than the full state space. This principle is also reflected in our definition
of a game with unawareness, and how we set up an epistemic model to encode belief hierarchies about
choices and views.

To model a game with unawareness, we assume for every player a finite collection of possible views
on the game. The implicit understanding is that a player with a certain view only has mental access
to those choices that are part of his view, and to those views in the model that are smaller than his
own. In other words, the subjective state space for a player with view vi only contains the choices
inside vi, and the views for the opponents and himself that are contained in vi.

Unawareness in games. The models of unawareness proposed by the papers above, and especially
those that involve more than one agent, can in particular be applied to games. See, for instance,
Feinberg (2004, 2021), Čopič and Galeotti (2006), Rêgo and Halpern (2012), Heifetz, Meier and
Schipper (2013b), Grant and Quiggin (2013), Halpern and Rêgo (2014), Meier and Schipper (2014),
Schipper (2021) and Perea (2022). See Schipper (2014) for an overview of this literature.

Most of these papers, except Čopič and Galeotti (2006) and Meier and Schipper (2014), impose
a unique belief hierarchy on views, and thus follow the approach that we have called “fixed beliefs
on views”in this chapter. Moreover, the papers Feinberg (2021), Čopič and Galeotti (2006), Heifetz,
Meier and Schipper (2013b), Grant and Quiggin (2013) and Schipper (2021) restrict to deterministic
beliefs (that is, probability 1 beliefs) on views, whereas we allow for truly probabilistic beliefs on views
and choices in this chapter. We find such probabilistic beliefs on views important, as they allow for
cases where a player is truly uncertain about the precise view held by an opponent.

Epistemic analysis of games with unawareness. Up until now, there are not so many papers
that offer an epistemic analysis of games with unawareness. Among these few papers are Perea (2022)
and Guarino (2020). Whereas Perea (2022) focuses on the epistemic concept of common belief in
rationality, Guarino (2020) concentrates on the concept of extensive-form rationalizability (Pearce
(1984), Battigalli (1997), Heifetz, Meier and Schipper (2013b)) for dynamic games with unawareness.

Also Heifetz, Meier and Schipper (2013b) and Feinberg (2021) investigate the implications of
common (strong) belief in rationality by studying the concepts of rationalizability and extensive-
form rationalizability, respectively. One difference with our approach is that the latter papers do not
investigate these concepts on an epistemic basis.

Recursive elimination procedures. The recursive elimination procedures presented in this chapter
—that is, iterated strict dominance for unawareness with and without fixed beliefs on views, and the
bottom-up procedure —appear in Perea (2022). Also the various theorems in this chapter, which show
that these procedures characterize precisely those choices that the players can rationally make under
common belief in rationality (with and without fixed beliefs on views) have been proven in Perea
(2022).


