
Chapter 9

Correct and Symmetric Beliefs in Psychological
Games

In Chapter 4 we have formalized the ideas of correct and symmetric beliefs for standard games by
means of simple and symmetric belief hierarchies, respectively. It turns out that these two notions
can be applied without any change to the class of psychological games. We show that common belief
in rationality in combination with a simple belief hierarchy leads to the concept of psychological Nash
equilibrium, whereas combining common belief in rationality with a symmetric belief hierarchy yields
the concept of psychological correlated equilibrium. Similarly to Chapter 4 we will see that every
psychological game has at least one psychological Nash equilibrium and at least one psychological
correlated equilibrium. As a consequence, combining the conditions of common belief in rationality
with those of a simple, or symmetric, belief hierarchy never leads to logical contradictions. In Chapter
9 of the online appendix we discuss some economic applications.

9.1 Correct Beliefs

In Chapters 4 and 6 we have explored the idea of correct beliefs, which states that you believe that
your opponent is correct about the beliefs you hold. We have seen that this idea can be formalized by
the notion of a simple belief hierarchy. In a standard game, a simple belief hierarchy is fully generated
by a single belief about player 1’s choice, a single belief about player 2’s choice, and so on. This
definition of a simple belief hierarchy can be carried over without any change to psychological games.

We will see that if we combine the conditions of common belief in rationality with those of a simple
belief hierarchy, then we obtain the concept of psychological Nash equilibrium. This is similar to what
we have seen in Chapter 4, where common belief in rationality in combination with a simple belief
hierarchy led to Nash equilibrium in standard games, and also similar to Chapter 6 which revealed
that in games with incomplete information, common belief in rationality together with a simple belief
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You (·, n) (·, r) (·, b)
necklace 0 3 3

ring 2 0 2
bracelet 1 1 0

Barbara (n, ·) (r, ·) (b, ·)
necklace 1 0 0

ring 0 1 0
bracelet 0 0 1

Table 9.1.1 Decision problems for “Barbara’s birthday”

Figure 9.1.1 Beliefs diagram for “Barbara’s birthday”

hierarchy yields the notion of generalized Nash equilibrium.

9.1.1 Simple Belief Hierarchies
To illustrate the idea of correct beliefs in psychological games, let us go back to the example “Barbara’s
birthday”which we explored already in Section 8.6.

Example 9.1: Barbara’s birthday.

Recall the story from Section 8.6. For convenience, we have reproduced the decision problems for you
and Barbara in Table 9.1.1. Recall that (·, n) represents the collection of states in your decision problem
where you believe that Barbara believes that you buy a necklace, and that (n, ·) is the collection of
states in Barbara’s decision problem where Barbara believes that you buy a necklace. Similarly for
the other collections of states in the two decision problems.

We have seen in Section 8.6 that under common belief in rationality you can rationally buy a
necklace or a ring. This insight is supported by the beliefs diagram in Figure 9.1.1. Indeed, the belief
hierarchies that support your choices necklace and ring both express common belief in rationality. In
particular, under common belief in rationality you can rationally buy a necklace if you believe, with
probability 1, that Barbara believes, with probability 1, that you will buy a ring. In this case, you
believe to surprise Barbara with probability 1 by buying a necklace. Similarly, under common belief
in rationality you can also believe to surprise Barbara with probability 1 by buying a ring.

However, in both belief hierarchies you believe that Barbara is incorrect about your beliefs. Con-
sider, for instance, the belief hierarchy that supports your choice necklace. There, you believe that
Barbara believes that you will buy a ring, but at the same time you believe that Barbara believes
that you believe that Barbara believes that you will buy a necklace. That is, you believe that Barbara
is wrong about your second-order belief. Or, equivalently, your second-order belief and fourth-order
belief do not correspond to a single probabilistic belief σ1 about your choice.

Recall from Chapter 4 that in a two-player standard game, all higher-order beliefs in a simple
hierarchy are generated by a single belief σ1 about player 1’s choice, and a single belief σ2 about
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player 2’s choice. This will also be precisely the definition of a simple belief hierarchy for psychological
games.

Definition 9.1.1 (Simple belief hierarchy) Let σ1 be a probabilistic belief about player 1’s choice
and σ2 a probabilistic belief about player 2’s choice. The belief hierarchy for player i generated by
the beliefs (σ1, σ2) is defined as follows:

(1) in the first-order belief, player i assigns to every opponent’s choice cj the probability σj(cj),

(2) in the second-order belief, player i believes with probability 1 that opponent j assigns to every
choice ci for player i the probability σi(ci),

(3) in the third-order belief, player i believes with probability 1 that opponent j believes with proba-
bility 1 that player i assigns to every opponent’s choice cj the probability σj(cj), and so on.

A belief hierarchy is called simple if it is generated by a pair of such beliefs (σ1, σ2).

In order words, σj generates i’s first-order belief, third-order belief, and so on, whereas σi generates
i’s second-order belief, fourth-order belief, and so on.

In the beliefs diagram of Figure 9.1.1 it can thus be verified that none of your belief hierarchies
is simple, and that none of Barbara’s belief hierarchies is simple. Recall that in both of your belief
hierarchies, you believe you are able to surprise Barbara with probability 1. However, later in this
section we will see that if you hold a simple belief hierarchy that expresses common belief in rationality,
then you believe that you will only be able to surprise Barbara with probability at most 0.6.

9.1.2 Relation with Psychological Nash Equilibrium
Suppose we combine the property of a simple belief hierarchy with the conditions of common belief
in rationality. What can we say about the belief hierarchy in this case? That is the question we will
focus on next.

Consider a simple belief hierarchy for player i generated by the pair of beliefs (σ1, σ2). If player i
believes in j’s rationality, then in this belief hierarchy player i must only assign positive probability
to opponent j’s choices cj which are optimal for player j, given what i believes about j’s second-order
expectation.

By construction, i’s belief about j’s choice is given by the belief σj . Hence, the opponent’s choices
to which i assigns positive probability are precisely the choices cj with σj(cj) > 0.

But what does player i believe about j’s second-order expectation? By definition, i believes that
j’s first-order belief about i’s choice is given by σi. Moreover, i believes that j’s second-order belief
about the belief that i has about j’s choice is given by σj . Put together, i believes that j’s second-order
expectation assigns to every pair (ci, cj) ∈ Ci × Cj the probability

σi(ci) · σj(cj).

We say that this is j’s second-order expectation induced by (σ1, σ2). Here is the formal definition.

Definition 9.1.2 (Induced second-order expectation) Consider a pair of beliefs (σ1, σ2), where
σ1 is a probabilistic belief about 1’s choice, and σ2 is a probabilistic belief about 2’s choice. For
both players i, the second-order expectation ei[σ1, σ2] induced by (σ1, σ2) is the probability
distribution that assigns to every pair of choices (cj , ci) ∈ Cj × Ci the probability

σj(cj) · σi(ci).
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Question 9.1.1 In the example “Barbara’s birthday”, consider the pair of beliefs (σ1, σ2) where

σ1 = (0.2) · necklace + (0.5) · ring + (0.3) · bracelet

and
σ2 = (0.6) · necklace + (0.4) · bracelet.

Here, you are player 1 and Barbara is player 2. Find the induced second-order expectation e1[σ1, σ2]
for you and the induced second-order expectation e2[σ1, σ2] for Barbara.

Recall from above that if player i believes in j’s rationality, then i must only assign positive
probability to opponent j’s choices cj which are optimal for player j, given what i believes about j’s
second-order expectation. Combining this with the insights above, we conclude for every opponent’s
choice cj that

σj(cj) > 0 only if cj is optimal for the induced second-order expectation ej [σ1, σ2]. (9.1.1)

Suppose now that, in addition, player i also believes that j believes in i’s rationality. Then, i
believes that j will only assign positive probability to choices ci for player i that are optimal, given
what i believes that j believes about i’s second-order expectation. By construction, i’s belief about j’s
belief about i’s choice is σi.Moreover, i believes that j believes that i has the second-order expectation
ei[σ1, σ2] induced by (σ1, σ2). Putting all these insights together, we conclude that

σi(ci) > 0 only if ci is optimal for the induced second-order expectation ei[σ1, σ2]. (9.1.2)

Hence, if player i’s simple belief hierarchy is generated by the pair of beliefs (σ1, σ2), player i
believes in j’s rationality, and believes that j believes in i’s rationality, then the pair of beliefs (σ1, σ2)
must satisfy the properties (9.1.1) and (9.1.2) above. Such pairs of beliefs are called psychological
Nash equilibria.

Definition 9.1.3 (Psychological Nash equilibrium) Consider a probabilistic belief σ1 about
player 1’s choice and a probabilistic belief σ2 about player 2’s choice. The pair of beliefs (σ1, σ2) is a
psychological Nash equilibrium if for both players i, and for every choice ci ∈ Ci, we have that

σi(ci) > 0 only if ci is optimal for the induced second-order expectation ei[σ1, σ2].

We thus see that if player i’s simple belief hierarchy is generated by the pair of beliefs (σ1, σ2),
and player i expresses (the first two layers of) common belief in rationality, then (σ1, σ2) must be a
psychological Nash equilibrium.

We now show that the other direction is also true: If (σ1, σ2) is a psychological Nash equilibrium,
then the simple belief hierarchy generated by it will express common belief in rationality. To see
why, consider a psychological Nash equilibrium (σ1, σ2) and the simple belief hierarchy for player i
generated by it. To show that i believes in j’s rationality, suppose that i assigns a positive probability
to choice cj . As i’s belief about j’s choice is given by σj , it must be that σj(cj) > 0. By the definition
of a psychological Nash equilibrium, it must then be that cj is optimal for the induced second-order
expectation ej [σ1, σ2]. As i’s simple belief hierarchy is generated by (σ1, σ2), player i believes that
j’s second-order expectation is given by ej [σ1, σ2]. Hence, i only assigns a positive probability to j’s
choice cj if cj is optimal for j, given what i believes about j’s second-order expectation. In other
words, i believes in j’s rationality.
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Question 9.1.2 Explain, by a similar argument, that i also believes that j believes in i’s rationality.

If we continue in this fashion, we also conclude that player i expresses 3-fold belief in rationality, 4-
fold belief in rationality, and so on, ad infinitum. That is, player i’s belief hierarchy expresses common
belief in rationality. By combining all the insights above we arrive at the following general conclusion.

Theorem 9.1.1 (Relation with psychological Nash equilibrium) Consider the simple belief hi-
erarchy for player i generated by a belief pair (σ1, σ2). Then, this belief hierarchy expresses common
belief in rationality, if and only if, the belief pair (σ1, σ2) is a psychological Nash equilibrium.

In other words, combining the condition of a simple belief hierarchy with the conditions in com-
mon belief in rationality yields precisely the concept of psychological Nash equilibrium. Observe the
similarity with Theorem 4.1.1, which states that in a standard game the combination of common belief
in rationality with a simple belief hierarchy leads to Nash equilibrium. Or compare it with Theorem
6.1.1, which states that in a game with incomplete information the same conditions lead to generalized
Nash equilibrium.

We eventually want to characterize the choices that player i can rationally make if he holds a
simple belief hierarchy that expresses common belief in rationality. Theorem 9.1.1 is the key to
completing this task. Suppose that player i holds a simple belief hierarchy which is generated by
the belief pair (σ1, σ2) and expresses common belief in rationality, and assume that the choice ci is
optimal for this belief hierarchy. Then, the choice ci is optimal for the second-order expectation that
player i holds in this belief hierarchy. By construction, this second-order expectation is ei[σ1, σ2] —
the second-order expectation induced by (σ1, σ2). Since the simple belief hierarchy expresses common
belief in rationality, we know by Theorem 9.1.1 that the belief pair (σ1, σ2) is a psychological Nash
equilibrium. Altogether, we thus see that every choice which is optimal for a simple belief hierarchy
that expresses common belief in rationality must be optimal for the second-order expectation induced
by a psychological Nash equilibrium.

We now show that the other direction is also true: Every choice that is optimal for the second-order
expectation induced by a psychological Nash equilibrium is optimal for a simple belief hierarchy that
expresses common belief in rationality. To see this, consider a choice ci that is optimal for the second-
order expectation ei[σ1, σ2] induced by a psychological Nash equilibrium (σ1, σ2). Then, the choice
ci is optimal for the simple belief hierarchy generated by (σ1, σ2). Since (σ1, σ2) is a psychological
Nash equilibrium, we know by Theorem 9.1.1 that the simple belief hierarchy generated by (σ1, σ2)
expresses common belief in rationality. Hence, the choice ci is optimal for a simple belief hierarchy
that expresses common belief in rationality.

By combining the two insights above, we reach the following conclusion.

Theorem 9.1.2 (Relation with psychological Nash equilibrium choices) A choice is optimal
for a simple belief hierarchy that expresses common belief in rationality, if and only if, that choice is
optimal for the second-order expectation induced by a psychological Nash equilibrium.

This result has great practical value: Indeed, if we wish to find all choices that can rationally be
made with a simple belief hierarchy that expresses common belief in rationality, then it suffi ces to find
all psychological Nash equilibria in the game, and subsequently determine which choices are optimal
in these psychological Nash equilibria.
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9.1.3 Examples
We will now return to two examples we have introduced in Chapter 8, and use Theorems 9.1.1 and
9.1.2 to find all the simple belief hierarchies that express common belief in rationality, and all the
choices you can rationally make with such belief hierarchies.

Example 9.2: Barbara’s birthday.

Recall the decision problems in Table 9.1.1. We first wish to find all simple belief hierarchies for
you that express common belief in rationality. By Theorem 9.1.1 these are precisely the simple belief
hierarchies generated by a psychological Nash equilibrium (σ1, σ2). Hence, our first task is to find all
psychological Nash equilibria (σ1, σ2) in the game.

Question 9.1.3 Explain why in a psychological Nash equilibrium (σ1, σ2), the belief σ1 should assign
probability zero to your choice bracelet, and the belief σ2 should assign probability zero to Barbara’s
choice bracelet.

Let (σ1, σ2) be a psychological Nash equilibrium in the game. In view of Question 9.1.3 we know
that σ1(bracelet) = 0 and σ2(bracelet) = 0. We distinguish two cases: (1) σ1(necklace) > 0 and (2)
σ1(ring) > 0.

Case 1. Suppose that σ1(necklace) > 0. Then, necklace must be optimal for you under the induced
second-order expectation e1[σ1, σ2]. Note that your conditional preference relation only depends on
your second-order belief, which is given by σ1. Hence, your choice necklace must be optimal under
your second-order belief σ1. In view of your decision problem in Table 9.1.1, and given the fact
that σ1(bracelet) = 0, this is only possible if σ1(ring) > 0. We thus see that σ1(necklace) > 0 and
σ1(ring) > 0.

By definition of a psychological Nash equilibrium, this means that both necklace and ring must be
optimal for you under the same second-order belief σ1. In particular, the expected utilities for necklace
and ring must be the same under the second-order belief σ1. If we look at your decision problem in
Table 9.1.1, these expected utilities are given by

u1(necklace, σ1) = σ1(ring) · 3 and u1(ring, σ1) = σ1(necklace) · 2.

As both expected utilities must be equal, we have that

3 · σ1(ring) = 2 · σ1(necklace).

Since σ1(necklace) = 1− σ1(ring), we conclude that

3 · σ1(ring) = 2 · (1− σ1(ring)),

and hence
σ1(ring) = 0.4,

which implies that
σ1(necklace) = 0.6.

We thus see that
σ1 = (0.6) · necklace + (0.4) · ring.
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As Barbara’s preferences only depend on her first-order belief σ1, we conclude that Barbara’s
unique optimal choice is necklace. By definition of a psychological Nash equilibrium, the belief σ2
should therefore assign probability 1 to Barbara’s choice necklace.

Altogether, we see that in Case 1 the only psychological Nash equilibrium (σ1, σ2) is given by

σ1 = (0.6) · necklace + (0.4) · ring and σ2 = necklace.

Case 2. Suppose that σ1(ring) > 0. Then, ring must be optimal for you under your second-order
belief σ1. In view of your decision problem in Table 9.1.1, and given the fact that σ1(bracelet) = 0,
this is only possible if σ1(necklace) > 0.We thus see that σ1(necklace) > 0 and σ1(ring) > 0. But this
situation has been covered in Case 1 already, and led to the psychological Nash equilibrium above.

Hence, there is a unique psychological Nash equilibrium in this game, given by

σ1 = (0.6) · necklace + (0.4) · ring and σ2 = necklace.

In this psychological Nash equilibrium, you are indifferent between the choices necklace and ring,
whereas Barbara’s unique optimal choice is necklace. In view of Theorem 9.1.2 we thus conclude that
with a simple belief hierarchy that expresses common belief in rationality, you can rationally buy a
necklace or a ring, whereas Barbara can only rationally guess that you buy a necklace.

But we can say a bit more: Recall from above that under common belief in rationality, but without
insisting on a simple belief hierarchy, you can believe to surprise Barbara with probability 1 if you buy
a necklace or a ring. However, if we additionally require you to hold a simple belief hierarchy, then
you can only believe to surprise Barbara with probability at most 0.6. To see this, note that under
common belief in rationality with a simple belief hierarchy your second-order belief must be

(0.6) · necklace + (0.4) · ring.

That is, you must believe that Barbara assigns probabilities 0.6 and 0.4 to your choices necklace
and ring, respectively. But then, by buying a necklace you believe to surprise Barbara only with
probability 0.4, whereas by buying a ring you believe to surprise Barbara with probability 0.6. Hence,
you believe to surprise Barbara with probability 0.6 at most.

There is also a clear intuition for this phenomenon: By imposing a simple belief hierarchy, we
require you to believe that Barbara is correct about your second-order belief. This, in turn, heavily
restricts your possibilities of surprising Barbara.

Indeed, full surprise by buying a ring, for instance, would only be possible if you believe with prob-
ability 1 that Barbara believes with probability 1 that you make the other choice necklace. However, if
you believe that Barbara is correct about your second-order belief, and believe that Barbara believes
in your rationality, then you must believe that Barbara is correct about your actual choice ring as well.
But then, choosing ring would no longer be optimal, since you would not be able to surprise Barbara
by it. A similar argument tells us that full surprise by buying a necklace is not possible either.

Therefore, full surprise is ruled out if we insist on a simple belief hierarchy. In fact, it turns out
that under common belief in rationality with a simple belief hierarchy, surprising Barbara is only
possible up to a degree of 0.6.

Example 9.3: Surprising Barbara.

Recall the story from Section 8.1. For convenience, we reproduce the decision problems for you and
Barbara in Table 9.1.2. Note that your choice red is strictly dominated by the randomized choice



464 CHAPTER 9. CORRECT AND SYMMETRIC BELIEFS IN PSYCHOLOGICAL GAMES

You (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 3 3 3 6 6 3 6 6
green 4 2 4 2 0 2 4 2 4
red 2 2 1 2 2 1 1 1 0

Barbara (b, b) (b, g) (b, r) (g, b) (g, g) (g, r) (r, b) (r, g) (r, r)

blue 0 2 2 2 4 4 2 4 4
green 2 1 2 1 0 1 2 1 2
red 6 6 3 6 6 3 3 3 0

Table 9.1.2 Decision problems for “Surprising Barbara”

You (b, b) (b, g) (r, b) (r, g)

blue 0 3 3 6
green 4 2 4 2

Barbara (b, b) (b, r) (g, b) (g, r)

blue 0 2 2 4
red 6 3 6 3

Table 9.1.3 Reduced decision problems for “Surprising Barbara”

(0.4)· blue + (0.6)· green, and that Barbara’s choice green is strictly dominated by (0.6)· blue + (0.4)·
red. Therefore, your choice red and Barbara’s choice green are never optimal for any second-order
expectation. As a consequence, every belief hierarchy that expresses common belief in rationality must
assign, at each of its layers, probability zero to your choice red and Barbara’s choice green. We may
thus restrict ourselves to the reduced decision problems in Table 9.1.3.

We will first try to find all simple belief hierarchies for you that express common belief in rationality.
Consider a simple belief hierarchy for you generated by the pair of beliefs (σ1, σ2). If this belief hierarchy
expresses common belief in rationality, we know from above that it must assign probability zero to
your choice red and to Barbara’s choice green at each of its layers. This means that σ1 must assign
probability zero to your choice red, and that σ2 must assign probability zero to Barbara’s choice green.
That is, (σ1, σ2) operates entirely within the reduced decision problems of Table 9.1.3.

Moreover, we know from Theorem 9.1.1 that (σ1, σ2) must be a psychological Nash equilibrium.
We distinguish two cases: (1) σ1(blue) > 0, and (2) σ1(blue) = 0.

Case 1. Suppose that σ1(blue) > 0. Then, by definition of a psychological Nash equilibrium, your
choice blue must be optimal under the induced second-order expectation e1[σ1, σ2]. In view of your
decision problem in Table 9.1.3, this is only possible if σ1(green) > 0. We thus see that σ1(blue) > 0
and σ1(green) > 0, which means that both blue and green must be optimal for you under the same
second-order expectation e1[σ1, σ2]. In particular, your choices blue and green must yield the same
expected utility under e1[σ1, σ2]. These expected utilities are equal to

u1(blue, e1[σ1, σ2]) = σ2(b) · σ1(g) · 3 + σ2(r) · σ1(b) · 3 + σ2(r) · σ1(g) · 6

and

u1(green, e1[σ1, σ2]) = σ2(b) · σ1(b) · 4 + σ2(b) · σ1(g) · 2 + σ2(r) · σ1(b) · 4 + σ2(r) · σ1(g) · 2.
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Setting these two expected utilities equal leads to

σ1(b) · [4σ2(b) + σ2(r)] = σ1(g) · [σ2(b) + 4σ2(r)]. (9.1.3)

We distinguish two subcases: (1.1) σ2(blue) > 0 and (1.2) σ2(blue) = 0.

Case 1.1. Suppose that σ2(blue) > 0. Then, blue must be optimal for Barbara under the induced
second-order expectation e2[σ1, σ2]. From Barbara’s decision problem in Table 9.1.3 it then follows
that σ2(red) > 0. Thus, we see that σ2(blue) > 0 and σ2(red) > 0. This means that for Barbara,
her choices blue and red must both be optimal under the same second-order expectation e2[σ1, σ2]. In
particular, her choices blue and red must yield the same expected utility under e2[σ1, σ2]. These two
expected utilities are given by

u2(blue, e2[σ1, σ2]) = σ1(b) · σ2(r) · 2 + σ1(g) · σ2(b) · 2 + σ1(g) · σ2(r) · 4

and

u2(red, e2[σ1, σ2]) = σ1(b) · σ2(b) · 6 + σ1(b) · σ2(r) · 3 + σ1(g) · σ2(b) · 6 + σ1(g) · σ2(r) · 3.

By setting the two expected utilities equal we get

σ1(b) · [6σ2(b) + σ2(r)] = σ1(g) · [−4σ2(b) + σ2(r)]. (9.1.4)

Since σ1(b) > 0, σ1(g) > 0, σ2(b) > 0 and σ2(r) > 0, we conclude on the basis of (9.1.3) and (9.1.4)
that

σ1(g) · [−4σ2(b) + σ2(r)] = σ1(b) · [6σ2(b) + σ2(r)]

> σ1(b) · [4σ2(b) + σ2(r)] = σ1(g) · [σ2(b) + 4σ2(r)].

This implies that −4σ2(b) + σ2(r) > σ2(b) + 4σ2(r), which is impossible. Hence, we see that Case 1.1
leads to a contradiction, and therefore it cannot be that σ2(blue) > 0.

Case 1.2. Suppose that σ2(blue) = 0. This means that σ2(red) = 1. Substituting this into (9.1.3)
yields σ1(b) = 4σ1(g), and hence

σ1(blue) = 0.8 and σ1(green) = 0.2.

It may be verified that the belief pair (σ1, σ2), where σ1 is as above, and σ2(red) = 1, is a psychological
Nash equilibrium.

Indeed, from (9.1.3) we know that your choices blue and green yield the same expected utility
under e1[σ1, σ2], which is 3.6. As your choice red yields a lower expected utility under e1[σ1, σ2], we
conclude that both of your choices blue and green are optimal under e1[σ1, σ2]. It may also be verified
that Barbara’s choice red is optimal under the induced second-order expectation e2[σ1, σ2]. We thus
see that (σ1, σ2) is indeed a psychological Nash equilibrium.

Case 2. Suppose that σ1(blue) = 0. Then, it must be that σ1(green) = 1. Hence, your choice green
must be optimal under the induced second-order expectation e1[σ1, σ2]. From your decision problem
in Table 9.1.3 we see that this is only possible if σ1(blue) > 0, which is a contradiction. Hence, it
cannot be that σ1(blue) = 0.

Altogether, we conclude that there is only one psychological Nash equilibrium in this example,
which is given by

σ1(blue) = 0.8, σ1(green) = 0.2 and σ2(red) = 1.
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In this psychological Nash equilibrium your optimal choices are blue and green, whereas Barbara’s
unique optimal choice is red. By Theorem 9.1.2 we thus conclude that with a simple belief hierarchy
that expresses common belief in rationality, you can only rationally choose blue and green, whereas
Barbara can only rationally choose red.

Moreover, you can only surprise Barbara with probability at most 0.8, by wearing green, whereas
Barbara expects not to surprise you at all by wearing red. In contrast, if we would not insist on a
simple belief hierarchy, then under common belief in rationality both you and Barbara can expect
to surprise the other person with probability 1. This is seen most easily from the beliefs diagram in
Figure 8.1.3, in Section 8.1.

Also here there is a clear intuition for this phenomenon: With a simple belief hierarchy, a player
must believe that his opponent is correct about his actual first- and second-order belief. As his optimal
choice is based on his first- and second order belief, the correct beliefs assumption severely restricts
his possibilities of surprising the opponent. For Barbara it has rather drastic consequences: With the
correct beliefs assumption she is no longer in a position to surprise you, not even with the slightest of
probabilities.

9.1.4 Psychological Nash Equilibria Always Exist
So far we have been combining the notion of a simple belief hierarchy with the conditions of common
belief in rationality. Similarly to Chapters 4 and 6, we ask the question whether this combination is
always possible. That is, will there always be, for each of the players, a simple belief hierarchy that
expresses common belief in rationality?

As we will see, the answer is “yes”. In view of Theorem 9.1.1, the key lies in showing that a
psychological Nash equilibrium always exists for every psychological game. This is the content of the
following theorem.

Theorem 9.1.3 (Existence of psychological Nash equilibrium) For every psychological game
there is always at least one psychological Nash equilibrium.

In Theorem 9.1.1 we have seen that every simple belief hierarchy that is generated by a psycholog-
ical Nash equilibrium will express common belief in rationality. Since the theorem above guarantees
that such a psychological Nash equilibrium will always exist, it follows that we can always find simple
belief hierarchies that express common belief in rationality.

Theorem 9.1.4 (Simple belief hierarchies that express common belief in rationality) For
every psychological game, and every player i, there is always at least one simple belief hierarchy for
player i that expresses common belief in rationality.

In other words, combining the condition of correct beliefs with those of common belief in rationality
never leads to logical contradictions in a psychological game.

9.2 Symmetric Beliefs

In this section we combine the conditions of common belief in rationality with the notion of a symmetric
belief hierarchy. It turns out that the definition of a symmetric belief hierarchy, as defined in Section
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4.2.1 for standard games, can also be used for psychological games. As a consequence, we inherit the
result from Section 4.2.2 which states that the symmetric belief hierarchies are precisely those belief
hierarchies that are induced by a common prior on choice-type combinations. We then introduce the
concept of psychological correlated equilibrium, selecting those common priors that satisfy an optimality
condition similar to that of correlated equilibrium, but now adapted to the class of psychological games.
It is shown that a symmetric belief hierarchy expresses common belief in rationality precisely when it is
induced by a psychological correlated equilibrium. In that sense, psychological correlated equilibrium
is the counterpart to correlated equilibrium for the class of psychological games. We conclude by
observing that every psychological Nash equilibrium induces a psychological correlated equilibrium.
Since we know that a psychological Nash equilibrium always exists, the existence of a psychological
correlated equilibrium is guaranteed as well.

9.2.1 Symmetric Belief Hierarchies and Common Prior
In Section 4.2.1 we have discussed, and formalized, the idea of a symmetric belief hierarchy for standard
games. The intuitive idea is that, within a given beliefs diagram, there is a certain symmetry between
the beliefs you have about the opponent, and the beliefs you believe the opponent to have about you.
This idea, and its formalization, can be carried over without any change to psychological games. For
completeness, we repeat the definition of a symmetric belief hierarchy here, adapted to the case of two
players.

Definition 9.2.1 (Symmetric belief hierarchy) (a) A weighted beliefs diagram starts from a
beliefs diagram, removes the probabilities at the forked arrows (if there are any), and assigns to every
arrow a from a choice ci to an opponent’s choice cj some positive weight, which we call w(a).

(b) Consider an arrow a from a choice ci to an opponent’s choice cj . The symmetric counterpart
to a is the arrow from the choice cj to the choice ci.

(c) A weighted beliefs diagram is symmetric if for every arrow a, the symmetric counterpart is also
part of the diagram, and carries the same weight as a.

(d) The weighted beliefs diagram induces a (normal) beliefs diagram in which the probability of an
arrow a leaving a choice ci is equal to

p(a) =
w(a)∑

arrows a′ leaving ci
w(a′)

.

(e) A belief hierarchy is symmetric if it is part of a beliefs diagram that is induced by a symmetric
weighted beliefs diagram.

In Section 4.2.2 it was shown that for standard games, the symmetric belief hierarchies are exactly
those that are induced by a common prior on choice-type combinations. Since the belief hierarchies
in psychological games are exactly the same as in two-player standard games, this result will hold
for psychological games as well. For completeness, we repeat the definition of a common prior on
choice-type combinations here, adapted to the case of two players.

Definition 9.2.2 (Common prior on choice-type combinations) Consider a beliefs diagram in
choice-type representation, with associated sets of types Ti for every player i. Let C × T be the
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You (b, b) (b, w) (w, b) (w,w)

black 0 0 0 8
white 2 2 2 2

Barbara (b, b) (b, w) (w, b) (w,w)

black 2 2 2 2
white 8 0 0 0

Table 9.2.1 Decision problems for “Dinner with a huge preference for surprise”

corresponding set of all choice-type combinations.

(a) A common prior on choice-type combinations is a probability distribution π that assigns to
every choice-type combination (c, t) in C × T a probability π(c, t).

(b) The beliefs diagram is induced by a common prior π on choice-type combinations, if for every
choice-type combination ((ci, ti), (cj , tj)) and every player i, the corresponding arrow a from (ci, ti) to
(cj , tj) is present exactly when π((ci, ti), (cj , tj)) > 0, and the probability of this arrow a is equal to

p(a) =
π((ci, ti), (cj , tj))

π(ci, ti)
.

(c) A belief hierarchy is induced by a common prior π on choice-type combinations if it is part of
a beliefs diagram that is induced by π.

Theorem 4.2.1 stated that in every standard game, the symmetric belief hierarchies are precisely
those that are induced by a common prior on choice-type combinations. Since the definitions of a
symmetric belief hierarchy and common prior remain exactly the same when we move to psychological
games, Theorem 4.2.1 applies to psychological games as well.

9.2.2 Relation with Psychological Correlated Equilibrium
Consider a symmetric belief hierarchy induced by a common prior π on choice-type combinations.
Suppose we impose, in addition, the conditions of common belief in rationality. What conditions does
this impose on the common prior π? This is the question we wish to answer in this subsection.

Consider a symmetric belief hierarchy βi for player i induced by the common prior π on choice-
type combinations. Suppose that, within a beliefs diagram in choice-type representation, the belief
hierarchy βi starts at some choice-type pair (c∗i , t

∗
i ). Assume, in addition, that βi expresses common

belief in rationality. Then, in particular, the belief hierarchy βi believes in opponent j’s rationality.
That is, if βi’s first-order belief assigns a positive probability to an opponent’s choice-type pair (c∗j , t

∗
j ),

then c∗j must be optimal for j, given what i believes is j’s second-order expectation conditional on
(c∗j , t

∗
j ).
But what is j’s second-order expectation induced by the belief hierarchy βi when we condition on

(c∗j , t
∗
j ) ? To illustrate this, let us go back to the example “Dinner with a huge preference for surprise”

from Section 8.4.7. For convenience, we reproduce the decision problems for you and Barbara in Table
9.2.1. Consider the common prior π on choice-type combination given by

π((black, tb1), (black, t
b
2)) = 0.2, π((black, tb1), (white, t

w
2 )) = 0.2,

π((white, tw1 ), (black, tb2)) = 0.4 and π((white, tw1 ), (white, tw2 )) = 0.2. (9.2.1)

It may be verified that this common prior is induced by the symmetric weighted beliefs diagram in
choice-type representation in the upper half of Figure 9.2.1, which in turn induces the symmetric
beliefs diagram in choice-type representation in the lower half of that figure.
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Figure 9.2.1 Symmetric beliefs diagram for “Dinner with a huge preference for surprise”

Consider your symmetric belief hierarchy that starts at your choice-type pair (black, tb1). In your
first-order belief, you assign probability 1/2 to Barbara’s choice-type pair (black, tb2). If you believe in
Barbara’s rationality, then Barbara’s choice black must be optimal for her, given what you believe is
Barbara’s second-order expectation conditional on (black, tb2). By following the arrows for two steps,
starting at her choice-type pair (black, tb2), we see that Barbara’s second-order expectation on choice-
type combinations conditional on her choice-type pair (black, tb2) is given by e2(· | π, (black2, tb2))
where

e2((black1, tb1), (black2, tb2) | π, (black2,tb2)) = 1/3 · 1/2 = 1/6,

e2((black1, tb1), (white2, tw2 ) | π, (black2,tb2)) = 1/3 · 1/2 = 1/6,

e2((white1, tw1 ), (black2, tb2) | π, (black2,tb2)) = 2/3 · 2/3 = 4/9 and

e2((white1, tw1 ), (white2, tw2 ) | π, (black2,tb2)) = 2/3 · 1/3 = 2/9. (9.2.2)

Here, the subindices 1 and 2 indicate whether the choice belongs to you (player 1) or to Barbara
(player 2).

Concentrate, for the moment, on the conditional probability

e2((white1, tw1 ), (white2, tw2 ) | π, (black2,tb2)) = 2/3 · 1/3 = 2/9.

By looking at the beliefs diagram, we see that

2/3 = π((white1, tw1 ) | (black2,tb2))

and that
1/3 = π((white2, tw2 ) | (white1, tw1 )).

Thus,

e2((white1, tw1 ), (white2, tw2 ) | π, (black2,tb2)) = π((white1, tw1 ) | (black2,tb2))·π((white2, tw2 ) | (white1, tw1 )).

This makes intuitive sense: Conditional on (black2,tb2), the probability that Barbara assigns to the
event that your choice-type pair is (white1, tw1 ) and that you believe that her choice-type pair is
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(white2, tw2 ) consists of the conditional probability that she assigns to your choice-type pair (white1, tw1 ),
multiplied by the probability that you assign to Barbara’s choice-type pair (white2, tw2 ) conditional on
your choice-type pair being (white1, tw1 ).

This expression can be generalized: Consider a common prior π on choice-type combinations, a
player i and some choice-type pair (c∗i , t

∗
i ) for player i to which π assigns positive probability. Then,

the induced second-order expectation (on choice-type combinations) for player i conditional on (c∗i , t
∗
i )

is given by ei(· | π, (c∗i , t∗i )) where

ei((cj , tj), (ci, ti) | π, (c∗i , t∗i )) := π((cj , tj) | (c∗i , t
∗
i )) · π((ci, ti) | (cj , tj))

for every choice-type pair (cj , tj) for player j and every choice-type pair (ci, ti) for player i.
Now, consider again a symmetric belief hierarchy βi for player i, induced by a common prior π on

choice-type combinations. Suppose that in the first-order belief, βi assigns positive probability to j’s
choice-type pair (cj , tj). If player i believes in j’s rationality, then the choice cj must be optimal for
player j given the induced second-order expectation ej(· | π, (cj , tj)). Indeed, within the symmetric
belief hierarchy βi induced by π, player i believes that j chooses cj because i believes that j holds the
second-order expectation ej(· | π, (cj , tj)).

Suppose next that i also believes that j believes in i’s rationality. Assume that in the second-order
belief, i believes that j assigns a positive probability to (ci, ti). Then, by a similar argument as above,
the choice ci must be optimal for player i given the induced second-order expectation ei(· | π, (ci, ti)).

A common prior π on choice-type combinations with these properties is called a psychological
correlated equilibrium.

Definition 9.2.3 (Psychological correlated equilibrium) A common prior π on choice-type com-
binations is a psychological correlated equilibrium if for every player i, and every choice-type
pair (ci, ti) with π(ci, ti) > 0, the choice ci is optimal for the induced second-order expectation ei(· |
π, (ci, ti)) of player i conditional on his choice-type pair (ci, ti).

Note the similarity with the definition of a correlated equilibrium for standard games in Definition
4.2.3. The only difference is that in a correlated equilibrium for standard games, the choice ci must
be optimal for the induced (first-order) belief π(· | (ci, ti)) about player j’s choice-type pair, whereas
in a psychological correlated equilibrium the choice ci must be optimal for the induced second-order
expectation ei(· | π, (ci, ti)) about player j’s choice-type pair and player i’s choice-type pair. The
reason is that in a psychological game, player i’s preferences depend on his second-order expectation,
and not only on his first-order belief.

To illustrate the definition, let us return to the example “Dinner with a huge preference for sur-
prise”, and the common prior π on choice-type combinations as given by (9.2.1) above. We will show
that π is a psychological correlated equilibrium.

Note that π assigns positive probability to the choice-type pairs (black1, tb1), (white1, t
w
1 ), (black2, tb2)

and (white2, tw2 ). We first show that Barbara’s choice black2 is optimal for the induced second-order
expectation e2(· | π, (black2, tb2)). Recall that this second-order expectation is given by (9.2.2) above.
The expected utilities for Barbara of choosing black2 and white2 are therefore given by

u2(black2, e2(· | π, (black2, tb2)) = 2 and

u2(white2, e2(· | π, (black2, tb2)) = 1
6 · 8 + 1

6 · 0 + 4
9 · 0 + 2

9 · 0 = 8
6 ,

which implies that her choice black2 is indeed optimal for the induced second-order expectation e2(· |
π, (black2, tb2)).
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Question 9.2.1 Show that Barbara’s choice white2 is optimal for the induced second-order expecta-
tion e2(· | π, (white2, tw2 )).

In a similar fashion it can be shown that your choice black1 is optimal for the second-order expec-
tation e1(· | π, (black1, tb1)) and that your choice white1 is optimal for the second-order expectation
e1(· | π, (white1, tw1 )). As such, we conclude that the common prior π is a psychological correlated
equilibrium.

We have seen above that if a symmetric belief hierarchy is induced by a common prior π on choice-
type combinations, and the belief hierarchy expresses common belief in rationality, then π must be
a psychological correlated equilibrium. We will now show that the other direction is also true: If
a symmetric belief hierarchy is induced by a psychological correlated equilibrium, then the belief
hierarchy will always express common belief in rationality.

To see this, consider, within a beliefs diagram in choice-type representation, a symmetric belief
hierarchy βi for player i induced by a psychological correlated equilibrium π. We first show that βi
believes in j’s rationality. Assume that βi assigns a positive probability to j’s choice-type pair (cj , tj).
Then, in particular, π(cj , tj) > 0. Since π is a psychological correlated equilibrium, choice cj must be
optimal for the induced second-order expectation ej(· | π, (cj , tj)). By construction, player i believes
in βi that, conditional on j’s choice-type pair (cj , tj), player j’s second-order expectation is given by
ej(· | π, (cj , tj)). Thus, if βi assigns a positive probability to (cj , tj), then the choice cj is optimal,
given what player i believes about j’s second-order expectation. As such, βi believes in j’s rationality.

We next show that βi believes that j believes in i’s rationality. Suppose that βi assigns, in its
second-order belief, a positive probability to the choice-type pair (ci, ti). Then, βi’s first-order belief
assigns a positive probability to some choice-type pair (cj , tj), and the conditional belief π(· | (cj , tj))
assigns a positive probability to (ci, ti). In particular, π(ci, ti) > 0. Since π is a psychological correlated
equilibrium, the choice ci is optimal for the induced second-order expectation ei(· | (ci, ti)). Now, player
j believes that, conditional on (ci, ti), player i’s second-order expectation is given by ei(· | (ci, ti)).
Thus, player i believes that player j believes that the choice ci is optimal, given what player i believes
that player j believes about i’s second-order expectation, conditional on (ci, ti)). In other words, player
i believes that player j believes in i’s rationality.

In a similar way, it can be shown that βi also expresses 3-fold belief in rationality and higher, and
thus that βi expresses common belief in rationality. By putting all our insights together, we arrive at
the following conclusion.

Theorem 9.2.1 (Relation with psychological correlated equilibrium) A belief hierarchy is
symmetric and expresses common belief in rationality, if and only if, the belief hierarchy is induced
by a psychological correlated equilibrium.

Eventually, we are interested in the choices you can rationally make if you hold a symmetric belief
hierarchy that expresses common belief in rationality. Suppose you hold a symmetric belief hierarchy
βi that expresses common belief in rationality. Then, we know from Theorem 9.2.1 that the belief
hierarchy βi is induced by a psychological correlated equilibrium π. If the belief hierarchy starts at
the choice-type pair (ci, ti), then your second-order expectation is given by ei(· | π, (ci, ti)). Hence,
the choices that are optimal for you are precisely the choices that are optimal for the induced second-
order expectation ei(· | π, (ci, ti)). Such choices are said to be optimal in a psychological correlated
equilibrium.

Definition 9.2.4 (Choice optimal in a psychological correlated equilibrium ) A choice c∗i is
optimal in a psychological correlated equilibrium if there is a psychological correlated equi-
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librium π, and a choice-type pair (ci, ti) with π(ci, ti) > 0, such that the choice c∗i is optimal for the
induced second-order expectation ei(· | π, (ci, ti)).

By the argument above, we thus know that every choice that is optimal for a symmetric belief
hierarchy that expresses common belief in rationality must be optimal in a psychological correlated
equilibrium.

The converse is also true: Take a choice c∗i that is optimal in a psychological correlated equilibrium.
Then, there is a psychological correlated equilibrium π, and a choice-type pair (ci, ti) with π(ci, ti) > 0,
such that c∗i is optimal for the induced second-order expectation ei(· | π, (ci, ti)). Now, consider the
belief hierarchy βi induced by the psychological correlated equilibrium π that starts at (ci, ti). By
Theorem 9.2.1 we know that βi is symmetric and expresses common belief in rationality. Moreover,
by construction, the second-order expectation induced by βi is ei(· | π, (ci, ti)). Thus, the choice c∗i
is optimal for the belief hierarchy βi that is symmetric and expresses common belief in rationality.
These two insights lead to the following result.

Theorem 9.2.2 (Relation with psychological correlated equilibrium choices) A choice is op-
timal for a symmetric belief hierarchy that expresses common belief in rationality, if and only if, the
choice is optimal in a psychological correlated equilibrium.

An important question is whether we can always find a symmetric belief hierarchy that expresses
common belief in rationality. The answer is “yes”, and the reason is simple: In Theorem 9.1.4 we
have seen that there is always a simple belief hierarchy that expresses common belief in rationality.
Moreover, we know from Theorem 4.3.5 that every simple belief hierarchy is symmetric. It therefore
follows that we can always find a symmetric belief hierarchy that expresses common belief in rationality.
By combining this insight with Theorem 9.2.1, we conclude moreover that in every psychological game
there is at least one psychological correlated equilibrium.

Theorem 9.2.3 (Existence) For every psychological game there is at least one psychological corre-
lated equilibrium. Moreover, for every player there is at least one belief hierarchy that is symmetric
and expresses common belief in rationality.

That is, combining the condition of a symmetric belief hierarchy with the conditions of common
belief in rationality never leads to logical contradictions.

9.2.3 Relation with Canonical Psychological Correlated Equilibrium
Recall from Section 4.3 that a belief hierarchy uses one theory per choice if it is generated by a beliefs
diagram where every choice of a player only appears once. That is, for every choice there is exactly
one belief hierarchy, or theory, that is used to support that choice. We have seen in Theorem 4.3.2
that a belief hierarchy is symmetric and uses one theory per choice, precisely when it is induced by
a common prior on choice combinations. For convenience, we repeat here the definition of a common
prior on choice combinations, and what it means for a belief hierarchy to be induced by a common
prior on choice combinations. All is adapted to the case of two players.

Definition 9.2.5 (Common prior on choice combinations) (a) A common prior on choice
combinations is a probability distribution π̂ that assigns to every choice pair (c1, c2) a probability
π̂(c1, c2).
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(b) A beliefs diagram is induced by the common prior on choice combinations π̂ if every choice
only appears once, if for every choice ci and opponent’s choice cj , the arrow a from ci to cj is present
exactly when π̂(ci, cj) > 0, and this arrow a has probability

p(a) =
π̂(ci, cj)

π̂(ci)
.

(c) A belief hierarchy is induced by a common prior on choice combinations π̂ if it is part of a
beliefs diagram induced by π̂.

For instance, all belief hierarchies in the beliefs diagram of Figure 9.2.1 are symmetric and use one
theory per choice.

In general, consider a symmetric belief hierarchy βi that uses one theory per choice. Then, we
know from Theorem 4.3.2 that βi is generated by a common prior on choice combinations. Suppose
that, in addition, we impose that the belief hierarchy expresses common belief in rationality. What
conditions does this put on the common prior on choice combinations?

From Theorem 9.2.1 we know that βi is generated by a psychological correlated equilibrium π,
which is a common prior on choice-type combinations. Moreover, as βi uses one theory per choice, we
know that for every choice ci there is exactly one type t

ci
i such that (ci, t

ci
i ) enters the beliefs diagram

that generates βi. But then, the psychological correlated equilibrium π can naturally be transformed
into the common prior π̂ on choice combinations where

π̂(c1, c2) := π((c1, t
c1
1 ), (c2, t

c2
2 ))

for every choice pair (c1, c2).

Now, suppose that π̂(c∗i ) > 0. Then, π(c∗i , t
c∗i
i ) > 0. Since π is a psychological correlated equilibrium,

c∗i must be optimal for the second-order expectation ei(· | π, (c∗i , t
c∗i
i )) induced by π. Recall that this

is a second-order expectation on choice-type combinations. This second-order expectation naturally
induces the second-order expectation ei(· | π̂, c∗i ) on choice pairs (without types) generated by π̂, given
by

ei((cj , ci) | π̂, ci) := π̂(cj | c∗i ) · π̂(ci | cj).

Then, stating that c∗i is optimal for ei(· | π, (c∗i , t
c∗i
i )) is equivalent to saying that c∗i is optimal for ei(·

| π̂, c∗i ).
We thus see that the belief hierarchy βi is induced by a common prior π̂ on choice combinations,

with the property that π̂(ci) > 0 only if the choice ci is optimal for the induced second-order expec-
tation ei(· | π̂, ci). Such a common prior is called a canonical psychological correlated equilibrium.

Definition 9.2.6 (Canonical psychological correlated equilibrum) A common prior π̂ on choice
combinations is a canonical psychological correlated equilibrium if for every player i, and every
choice ci with π̂(ci) > 0, the choice ci is optimal for the induced second-order expectation ei(· | π̂, ci)
of player i conditional on his choice ci.

As an illustration, consider the example “Dinner with a huge preference for surprise”, and the
common prior π̂ on choice combinations given by

π̂(black1, black2) = 0.2, π̂(black1, white2) = 0.2,

π̂(white1, black2) = 0.4 and π̂(white1, white2) = 0.2. (9.2.3)
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Note that this common prior π̂ on choice combinations is induced by the common prior π on choice-
type combinations as given in (9.2.1). As π only assigns positive probability to choice-type pairs where
the same choice is never assigned to two different types, the common prior π induces symmetric belief
hierarchies that use one theory per choice. In fact, it induces the same belief hierarchies as π̂. We
have seen above that π is a psychological correlated equilibrium. By using similar arguments, it can
be shown that the common prior π̂ on choice combinations is a canonical psychological correlated
equilibrium.

Above we have argued that every symmetric belief hierarchy that uses one theory per choice and
expresses common belief in rationality is induced by a canonical psychological correlated equilibrium.
By using the same type of arguments as in Section 9.2.2, it can be shown that the converse is also
true: Every belief hierarchy that is induced by a canonical psychological correlated equilibrium is
symmetric, uses one theory per choice, and expresses common belief in rationality. By putting these
two insights together we obtain the following characterization.

Theorem 9.2.4 (Relation with canonical psychological correlated equilibrium) A belief hi-
erarchy is symmetric, uses one theory per choice and expresses common belief in rationality, if and
only if, the belief hierarchy is induced by a canonical psychological correlated equilibrium.

As in Section 9.2.2, it is now easy to characterize the choices that can rationally be made with a
symmetric belief hierarchy that uses one theory per choice and expresses common belief in rationality.
These are precisely the choices that are optimal in a canonical psychological correlated equilibrium,
which is defined as follows.

Definition 9.2.7 (Choice optimal in a canonical psychological correlated equilibrium ) A
choice c∗i is optimal in a canonical psychological correlated equilibrium if there is a canonical
psychological correlated equilibrium π̂, and a choice ci with π̂(ci) > 0, such that the choice c∗i is
optimal for the induced second-order expectation ei(· | π̂, ci).

By similar arguments as those used in Section 9.2.2, we arrive at the following conclusion.

Theorem 9.2.5 (Relation with canonical psychological correlated equilibrium choices) A
choice is optimal for a symmetric belief hierarchy that uses one theory per choice and expresses
common belief in rationality, if and only if, the choice is optimal in a canonical psychological correlated
equilibrium.

Finally, it can be shown that we can always find, for every player, a symmetric belief hierarchy
that uses one theory per choice and expresses common belief in rationality. Indeed, in Theorem 9.1.4
we have seen that there is always a simple belief hierarchy that expresses common belief in rationality.
Since we know from Theorem 4.3.5 that every simple belief hierarchy is symmetric and uses one theory
per choice, it follows that we can always find a symmetric belief hierarchy that uses one theory per
choice and expresses common belief in rationality. If we combine this result with Theorem 9.2.4,
it follows that in every psychological game there is at least one canonical psychological correlated
equilibrium.

Theorem 9.2.6 (Existence) For every psychological game there is at least one canonical psycho-
logical correlated equilibrium. Moreover, for every player there is at least one belief hierarchy that is
symmetric, uses one theory per choice and expresses common belief in rationality.

As such, we can always combine the restrictions of a symmetric belief hierarchy, the one theory
per choice condition, and the conditions of common belief in rationality without arriving at logical
contradictions.
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9.2.4 Examples
We will now identify, for each of the examples we have explored so far in this and the previous
chapter, those choices you and Barbara can rationally make if you hold a symmetric, or simple, belief
hierarchy that expresses common belief in rationality. For convenience, we will restrict attention to
belief hierarchies that use one theory per choice. In the examples “The black and white dinner”, “The
black and white dinner with a twist”and “Dinner with a strong preference for surprise”the answer is
clear: For each of these examples we have shown in Chapter 8 that under common belief in rationality
you can only rationally choose to dress in white and that Barbara can only rationally choose to dress
in black. This will still be the case if, in addition, we require you to have a symmetric, or simple,
belief hierarchy. The same applies to the example “Exceeding Barbara’s expectation” from Section
8.5.3, where we have shown that under common belief in rationality you and Barbara can only decide
to practice for 1 week. Insisting on a symmetric, or simple, belief hierarchy will still single out this
unique choice for you and Barbara.

Example 9.4: Dinner with a huge preference for surprise.

The decision problems for you and Barbara can be found in Table 9.2.1. Consider the beliefs diagram
in the lower half of Figure 9.2.1. All belief hierarchies in this beliefs diagram are symmetric, use one
theory per choice, and are induced by the canonical psychological correlated equilibrium π̂ given by
(9.2.3). By Theorem 9.2.4 we thus know that all these belief hierarchies express common belief in
rationality. Since your choice black is optimal for the belief hierarchy that starts at (black1, tb1) and
your choice white is optimal for the belief hierarchy that starts at (white1, tw1 ), it follows that under
common belief in rationality with a symmetric belief hierarchy that uses one theory per choice, you
can rationally choose black or white. Similarly for Barbara.

What if we insist on a simple belief hierarchy? Consider the pair of beliefs (σ1, σ2) where

σ1 = (0.5) · black + (0.5) · white and σ2 = (0.5) · black + (0.5) · white.

Question 9.2.2 Explain why (σ1, σ2) is a psychological Nash equilibrium.

In the solution to this question, you have shown that both black and white are optimal for you in
the psychological Nash equilibrium (σ1, σ2). Thus, by Theorem 9.1.2, you can rationally choose black
and white under common belief in rationality with a simple belief hierarchy. Similarly for Barbara.

*Example 9.5: Barbara’s birthday.

Recall the decision problems for you and Barbara in Table 9.1.1. We have seen in Chapter 8 that
under common belief in rationality you can only rationally buy a necklace or a ring and that Barbara
can only rationally guess necklace or ring. Moreover, we have shown in Section 9.1.3 that you can
also rationally buy these two items under common belief in rationality with a simple belief hierarchy.
Since every simple belief hierarchy is symmetric and uses one theory per choice, we conclude that you
can rationally buy a necklace or a ring under common belief in rationality with a symmetric belief
hierarchy that uses one theory per choice.

For Barbara, however, the condition of imposing a simple belief hierarchy does rule out some of
the choices she could rationally make under common belief in rationality. Indeed, in Chapter 8 we
have seen that under common belief in rationality Barbara can rationally guess necklace or ring. In
Section 9.1.3, however, we have shown that the unique psychological Nash equilibrium in this game is
given by

σ1 = (0.6) · necklace + (0.4) · ring and σ2 = necklace.
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In this psychological Nash equilibrium, Barbara assigns probabilities 0.6 and 0.4 to you buying a
necklace or a ring, respectively. Therefore, the only optimal choice for Barbara in a psychological
Nash equilibrium is to guess that you buy a necklace. By Theorem 9.1.2 we thus know that under
common belief in rationality with a simple belief hierarchy, she can only rationally guess necklace.

The question remains: Which choice(s) can Barbara rationally make under common belief in
rationality with a symmetric belief hierarchy that uses one theory per choice? In view of Theorem
9.2.5 these are precisely the choices that are optimal for Barbara in a canonical psychological correlated
equilibrium.

We will show that there is a unique canonical psychological correlated equilibrium π̂, and that π̂
corresponds to the Nash equiibrium above. To make the calculations more compact, we denote the
choices necklace, ring and bracelet by n, r and b from now on.

Suppose that π̂ is a canonical psychological correlated equilibrium. Since the choices b1 and
b2 cannot rationally be made under common belief in rationality, we conclude that π̂(b1) = 0 and
π̂(b2) = 0.

We first show that π̂(r2) = 0. Assume, on the contrary, that π̂(r2) > 0. Then, r2 must be optimal
for e2(· | π̂, r2). As Barbara’s preferences only depend on her first-order belief, this means that r2 must
be optimal for π̂(· | r2). This, in turn, implies that

π̂(r1|r2) ≥ 0.5 and hence π̂(r1, r2) > 0. (9.2.4)

In particular, π(r1) > 0, which means that r1 must be optimal for e1(· | π̂, r1). The expected utilities
for you of choosing n1 and r1 under this second-order expectation are

u1(n1, e1(· | π̂, r1)) = 3 · [π̂(n2|r1) · π̂(r1|n2) + π̂(r2|r1) · π̂(r1|r2)] and
u1(r1, e1(· | π̂, r1)) = 2 · [π̂(n2|r1) · π̂(n1|n2) + π̂(r2|r1) · π̂(n1|r2)]. (9.2.5)

Since r1 is optimal for e1(· | π̂, r1) we must have that u1(r1, e1(· | π̂, r1)) ≥ u1(n1, e1(· | π̂, r1)).
Moreover, it may be verified that

π̂(n2|r1) · π̂(r1|n2) + π̂(r2|r1) · π̂(r1|r2) = 1− π̂(n2|r1) · π̂(n1|n2)− π̂(r2|r1) · π̂(n1|r2). (9.2.6)

By combining (9.2.5) and (9.2.6) and using the fact that u1(r1, e1(· | π̂, r1)) ≥ u1(n1, e1(· | π̂, r1)), we
arrive at the conclusion that

π̂(n2|r1) · π̂(n1|n2) + π̂(r2|r1) · π̂(n1|r2) ≥ 0.6. (9.2.7)

We know by (9.2.4) that π̂(n1|r2) ≤ 0.5. Moreover, by (9.2.4), it holds that π̂(r1, r2) > 0 and hence
π̂(r2|r1) > 0. As π̂(n2|r1) + π̂(r2|r1) = 1, inequality (9.2.7) can only hold if

π̂(n2|r1) > 0 and π̂(n1|n2) > 0.6. (9.2.8)

This implies that
π̂(r1, n2) > 0 and π̂(n1, n2) > 0. (9.2.9)

In particular, π̂(n1) > 0. As such, n1 must be optimal for e1(· | π̂, n1). The expected utilities of
choosing n1 and r1 under e1(· | π̂, n1) are given by

u1(n1, e1(· | π̂, n1)) = 3 · [π̂(n2|n1) · π̂(r1|n2) + π̂(r2|n1) · π̂(r1|r2)] and
u1(r1, e1(· | π̂, n1)) = 2 · [π̂(n2|n1) · π̂(n1|n2) + π̂(r2|n1) · π̂(n1|r2)]. (9.2.10)
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Since n1 is optimal for e1(· | π̂, n1) we must have that u1(n1, e1(· | π̂, n1)) ≥ u1(r1, e1(· | π̂, n1)).
Moreover, it may be verified that

π̂(n2|n1) · π̂(n1|n2) + π̂(r2|n1) · π̂(n1|r2) = 1− π̂(n2|n1) · π̂(r1|n2)− π̂(r2|n1) · π̂(r1|r2). (9.2.11)

By combining (9.2.10) and (9.2.11) and using the fact that u1(n1, e1(· | π̂, n1)) ≥ u1(r1, e1(· | π̂, n1)),
we arrive at the conclusion that

π̂(n2|n1) · π̂(r1|n2) + π̂(r2|n1) · π̂(r1|r2) ≥ 0.4. (9.2.12)

By (9.2.8) we know that π̂(n1|n2) > 0.6 and hence π̂(r1|n2) < 0.4. As π̂(n2|n1) + π̂(r2|n1) = 1, it
follows that (9.2.12) can only hold if π̂(r2|n1) > 0, and hence

π̂(n1, r2) > 0. (9.2.13)

Let us go back to (9.2.7). If we multiply both sides with π̂(r1) · π̂(n2) · π̂(r2), and use the fact that

π̂(n2|r1) · π̂(r1) = π̂(r1, n2), π̂(n1|n2) · π̂(n2) = π̂(n1, n2),

π̂(r2|r1) · π̂(r1) = π̂(r1, r2) and π̂(n1|r2) · π̂(r2) = π̂(n1, r2),

it follows that

π̂(r1, n2) · π̂(n1, n2) · π̂(r2) + π̂(r1, r2) · π̂(n1, r2) · π̂(n2)

≥ 0.6 · π̂(r1) · π̂(n2) · π̂(r2)

= 0.6 · [π̂(r1, n2) + π̂(r1, r2)] · π̂(n2) · π̂(r2)

= 0.6 · π̂(r1, n2) · π̂(n2) · π̂(r2) + 0.6 · π̂(r1, r2) · π̂(n2) · π̂(r2).

This can be simplied to

π̂(r1, n2) · π̂(r2) · [π̂(n1, n2)− 0.6 · π̂(n2)] + π̂(r1, r2) · π̂(n2) · [π̂(n1, r2)− 0.6 · π̂(r2)] ≥ 0. (9.2.14)

By definition,

π̂(n1, n2)− 0.6 · π̂(n2) = π̂(n1, n2)− 0.6 · [π̂(n1, n2) + π̂(r1, n2)]

= 0.4 · π̂(n1, n2)− 0.6 · π̂(r1, n2),

and

π̂(n1, r2)− 0.6 · π̂(r2) = π̂(n1, r2)− 0.6 · [π̂(n1, r2) + π̂(r1, r2)]

= 0.4 · π̂(n1, r2)− 0.6 · π̂(r1, r2).

Substituting this into (9.2.14) yields

π̂(r1, n2) · π̂(r2) · [0.4 · π̂(n1, n2)− 0.6 · π̂(r1, n2)]+

+π̂(r1, r2) · π̂(n2) · [0.4 · π̂(n1, r2)− 0.6 · π̂(r1, r2)] ≥ 0. (9.2.15)

Recall from (9.2.8) that π̂(n1|n2) > 0.6. By definition,

π̂(n1|n2) =
π̂(n1, n2)

π̂(n2)
=

π̂(n1, n2)

π̂(n1, n2) + π̂(r1, n2)
> 0.6
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which implies that
π̂(n1, n2) > 0.6 · [π̂(n1, n2) + π̂(r1, n2)]

and hence
0.4 · π̂(n1, n2)− 0.6 · π̂(r1, n2) > 0. (9.2.16)

Moreover, we know from (9.2.4) that π̂(r1|r2) ≥ 0.5. By definition,

π̂(r1|r2) =
π̂(r1, r2)

π̂(r2)
=

π̂(r1, r2)

π̂(r1, r2) + π̂(n1, r2)
≥ 0.5

which implies that
π̂(r1, r2) ≥ 0.5 · [π̂(r1, r2) + π̂(n1, r2)]

and hence
0.5 · π̂(n1, r2)− 0.5 · π̂(r1, r2) ≤ 0.

Since we have seen in (9.2.4) that π̂(r1, r2) > 0, it follows from the inequality above that

0.4 · π̂(n1, r2)− 0.6 · π̂(r1, r2) < 0. (9.2.17)

In view of (9.2.16) and (9.2.17), inequality (9.2.15) can be reformulated as

π̂(r1, n2)

π̂(r1, r2)
≥ π̂(n2) · [0.6 · π̂(r1, r2)− 0.4 · π̂(n1, r2)]

π̂(r2) · [0.4 · π̂(n1, n2)− 0.6 · π̂(r1, n2)]
. (9.2.18)

Note that π̂(r1, r2) > 0 by (9.2.4), and hence both fractions are well-defined.
Let us now return to (9.2.12). If we multiply both sides with π̂(n1) · π̂(n2) · π̂(r2), and use the fact

that

π̂(n2|n1) · π̂(n1) = π̂(n1, n2), π̂(r1|n2) · π̂(n2) = π̂(r1, n2),

π̂(r2|n1) · π̂(n1) = π̂(n1, r2) and π̂(r1|r2) · π̂(r2) = π̂(r1, r2),

it follows that

π̂(n1, n2) · π̂(r1, n2) · π̂(r2) + π̂(n1, r2) · π̂(r1, r2) · π̂(n2)

≥ 0.4 · π̂(n1) · π̂(n2) · π̂(r2)

= 0.4 · [π̂(n1, n2) + π̂(n1, r2)] · π̂(n2) · π̂(r2)

= 0.4 · π̂(n1, n2) · π̂(n2) · π̂(r2) + 0.4 · π̂(n1, r2) · π̂(n2) · π̂(r2).

This can be simplied to

π̂(n1, n2) · π̂(r2) · [π̂(r1, n2)− 0.4 · π̂(n2)] + π̂(n1, r2) · π̂(n2) · [π̂(r1, r2)− 0.4 · π̂(r2)] ≥ 0. (9.2.19)

By definition,

π̂(r1, n2)− 0.4 · π̂(n2) = π̂(r1, n2)− 0.4 · [π̂(n1, n2) + π̂(r1, n2)]

= 0.6 · π̂(r1, n2)− 0.4 · π̂(n1, n2),

and

π̂(r1, r2)− 0.4 · π̂(r2) = π̂(r1, r2)− 0.4 · [π̂(n1, r2) + π̂(r1, r2)]

= 0.6 · π̂(r1, r2)− 0.4 · π̂(n1, r2).
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Substituting this into (9.2.19) yields

π̂(n1, n2) · π̂(r2) · [0.6 · π̂(r1, n2)− 0.4 · π̂(n1, n2)]+

+π̂(n1, r2) · π̂(n2) · [0.6 · π̂(r1, r2)− 0.4 · π̂(n1, r2)] ≥ 0. (9.2.20)

Recall from (9.2.16) and (9.2.17) that

0.6 · π̂(r1, n2)− 0.4 · π̂(n1, n2) < 0 and 0.6 · π̂(r1, r2)− 0.4 · π̂(n1, r2) > 0.

Hence, inequality (9.2.20) can be reformulated as

π̂(n1, n2)

π̂(n1, r2)
≤ π̂(n2) · [0.6 · π̂(r1, r2)− 0.4 · π̂(n1, r2)]

π̂(r2) · [0.4 · π̂(n1, n2)− 0.6 · π̂(r1, n2)]
. (9.2.21)

Note that π̂(n1, r2) > 0 by (9.2.13), and hence the two fractions are well-defined.
By combining (9.2.18) and (9.2.21) we conclude that

π̂(r1, n2)

π̂(r1, r2)
≥ π̂(n1, n2)

π̂(n1, r2)

and hence
π̂(r1, n2)

π̂(n1, n2)
≥ π̂(r1, r2)

π̂(n1, r2)
. (9.2.22)

Recall from (9.2.4) and (9.2.8) that π̂(r1|r2) ≥ 0.5 and π̂(n1|n2) > 0.6. Since

π̂(r1, n2)

π̂(n1, n2)
=
π̂(r1, n2)/π̂(n2)

π̂(n1, n2)/π̂(n2)
=
π̂(r1|n2)
π̂(n1|n2)

and
π̂(r1, r2)

π̂(n1, r2)
=
π̂(r1, r2)/π̂(r2)

π̂(n1, r2)/π̂(r2)
=
π̂(r1|r2)
π̂(n1|r2)

this implies that
π̂(r1, n2)

π̂(n1, n2)
< 1 and

π̂(r1, r2)

π̂(n1, r2)
≥ 1.

This, however, contradicts (9.2.22). We thus conclude that π̂(r2) > 0 is impossible in a canonical
psychological correlated equilibrium.

We therefore conclude that π̂(r2) = 0, and hence π̂(n2) = 1. Then, n2 must be optimal for Barbara
under π̂(· | n2), which implies that π̂(n1|n2) ≥ 0.5. In particular, π̂(n1) > 0, and hence n1 must be
optimal for you under e1(· | π̂, n1). As π̂(r2) = 0, we must have that π̂(n2|n1) = 1, and hence e1(· |
π̂, n1) is given by

e1((n2, n1)|π̂, n1) = π̂(n1|n2) and e1((n2, r1)|π̂, n1) = π̂(r1|n2),

whereas e1(· | π̂, n1) assigns probability zero to the other two choice pairs. Thus, the expected utilities
of choosing n1 and r1 under this second-order expectation are

u1(n1, e1(·|π̂, n1)) = π̂(r1|n2) · 3 and
u1(r1, e1(·|π̂, n1)) = π̂(n1|n2) · 2. (9.2.23)
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As n1 must be optimal for you under e1(· | π̂, n1), we must have that u1(n1, e1(· | π̂, n1)) ≥ u1(r1,
e1(· | π̂, n1)), which is only possible if π̂(r1|n2) > 0. In particular, π̂(r1) > 0, which means that r1
must be optimal for you under e1(· | π̂, r1). As π̂(r2) = 0, we must have that π̂(n2|r1) = 1, and hence
e1(· | π̂, r1) is given by

e1((n2, n1)|π̂, r1) = π̂(n1|n2) and e1((n2, r1)|π̂, r1) = π̂(r1|n2),

whereas e1(· | π̂, r1) assigns probability zero to the other two choice pairs. This means, however, that
e1(· | π̂, r1) = e1(· | π̂, n1). Since r1 must be optimal for you under e1(· | π̂, r1), we conclude that u1(r1,
e1(· | π̂, n1)) ≥ u1(n1, e1(· | π̂, n1)).

Since we have seen above that u1(n1, e1(· | π̂, n1)) ≥ u1(r1, e1(· | π̂, n1)), it must be that u1(n1,
e1(· | π̂, n1)) = u1(r1, e1(· | π̂, n1)). In view of (9.2.23) this can only be if

π̂(r1|n2) · 3 = π̂(n1|n2) · 2.

Since π̂(r1|n2) = 1− π̂(n1|n2), this yields π̂(n1|n2) = 0.6, and hence π̂(r1|n2) = 0.4. As π̂(r2) = 0, we
conclude that π̂ must be given by

π̂(n1, n2) = 0.6 and π̂(r1, n2) = 0.4. (9.2.24)

It may indeed be verified that this is a canonical psychological correlated equilibrium.
Hence, the only canonical psychological correlated equilibrium is given by (9.2.24). Note that it

corresponds precisely to the unique psychological Nash equilibrium in this game. Since Barbara’s
unique first-order belief assigns probability 0.6 to you buying a necklace, Barbara can only rationally
guess necklace with a symmetric belief hierarchy that uses one theory per choice and expresses common
belief in rationality.

Example 9.6: Surprising Barbara.

Recall the decision problems for you and Barbara in Table 9.1.2. We have seen in Chapter 8 that
under common belief in rationality you can only rationally wear the colors blue and green. In addition,
we explained in Section 9.1.3 why under common belief in rationality with a simple belief hierarchy,
you can still rationally wear these two colors. Since every simple belief hierarchy is symmetric and
uses one theory per choice, we conclude that under common belief in rationality with a symmetric
belief hierarchy that uses one theory per choice you can also rationally wear blue and green.

Let us now turn to Barbara. In Chapter 8 we saw that Barbara can rationally wear the colors blue
and red under common belief in rationality. In Section 9.1.3 we argued, however, that under common
belief in rationality with a simple belief hierarchy, Barbara can only rationally wear red. Now, what
color(s) can she rationally wear under common belief in rationality with a symmetric belief hierarchy
that uses one theory per choice?

To answer this question, consider the common prior π̂ on choice combinations given by

π̂(blue1, blue2) = 1/130, π̂(blue1, red2) = 100/130,

π̂(green1, blue2) = 4/130 and π̂(green1, red2) = 25/130.

Question 9.2.3 Show that π̂ is a canonical psychological correlated equilibrium.

As π̂(blue2) > 0 and π̂(red2) > 0, it follows by the definition of a canonical psychological correlated
equilibrium that Barbara’s choice blue2 is optimal for the induced second-order expectation e2(· | π̂,
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Common belief in rationality with ... Optimal choices are those that ...
... survive iterated elimination of

choices and second-order expectations
symmetric belief hierarchy are optimal in a psychological correlated equilibrium
symmetric belief hierarchy using are optimal in a canonical psychological
one theory per choice correlated equilibrium

simple belief hierarchy are optimal in a psychological Nash equilibrium

Table 9.3.1 Comparison of the concepts in Chapters 8 and 9

blue2), and that Barbara’s choice red2 is optimal for the induced second-order expectation e2(· | π̂,
red2). Hence, Barbara’s choices blue and red are both optimal in a canonical psychological correlated
equilibrium. By Theorem 9.2.5 we thus conclude that Barbara can rationally wear blue and red under
common belief in rationality with a symmetric belief hierarchy that uses one theory per choice.

In particular, if we assume common belief in rationality, and move from imposing a symmetric
belief hierarchy that uses one theory per choice to imposing a simple belief hierarchy, then Barbara
can no longer rationally choose blue.

9.3 Comparison of the Concepts

Like we did in Chapters 4 and 6, we will compare the various concepts we have discussed in this and the
previous chapter. In Chapter 8 we discussed the conditions of common belief in rationality, whereas
in Chapter 9 we supplemented these with the condition of a simple belief hierarchy, a symmetric belief
hierarchy and a symmetric belief hierarchy that uses one theory per choice. Table 9.3.1 characterizes,
for each of these sets of conditions on the belief hierarchy, the choices that can rationally be made by
the players. By comparing this table with Table 4.4.1 in Chapter 4 we see that the iterated elimination
of choices and second-order expectations, psychological correlated equilibrium, canonical psychological
correlated equilibrium and psychological Nash equilibrium are the psychological games counterparts
to the iterated elimination of strictly dominated choices, correlated equilibrium, canonical correlated
equilibrium and Nash equilibrium, respectively. Indeed, the conditions on the belief hierarchies un-
derlying these concepts are essentially the same. The only difference lies in what it means for a choice
to be optimal: In standard games the optimality of a choice is defined relative to the first-order belief,
whereas in psychological games the optimality is defined relative to the second-order expectation.
Apart from this difference, the conditions on the belief hierarchies are really the same.

We next compare which choices these different concepts induce for each of the examples we have
explored in this and the previous chapter. We focus both on the choices for you and the choices
for Barbara. An overview can be found in Table 9.3.2. The section in the first column indicates
the section where the example has been introduced. In the other columns, Y means “you” and B
means “Barbara”. The sections in these columns indicate the section where it has been shown that
these specific choices can rationally be made by you and Barbara under these conditions on the belief
hierarchy. For some rows and columns these sections have not been specified, because the result
follows from other columns. For instance, if it has been shown that common belief in rationality
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Choices you can rationally make under
common belief in rationality with ...

a symmetric
a symmetric belief hierarchy using a simple

Example ... belief hierarchy one theory per choice belief hierarchy

Surprising Barbara Y: blue, green Y: blue, green Y: blue, green Y: blue, green
(Section 8.1) B: blue, red B: blue, red B: blue, red B: red

(Section 8.1) (Section 9.2.4) (Section 9.1.3)
The black and white Y: white Y: white Y: white Y: white

dinner B: black B: black B: black B: black
(Section 8.4.2) (Section 8.4.2)

The black and white Y: white Y: white Y: white Y: white
dinner with a twist B: black B: black B: black B: black

(Section 8.4.3) (Section 8.4.3)
Dinner with a strong Y: white Y: white Y: white Y: white
preference for surprise B: black B: black B: black B: black

(Section 8.4.7) (Section 8.4.7)
Dinner with a huge Y: white, black Y: white, black Y: white, black Y: white, black

preference for surprise B: white, black B: white, black B: white, black B: white, black
(Section 8.4.7) (Section 8.4.7) (Section 9.2.4)

Exceeding Barbara’s Y: 1 Y: 1 Y: 1 Y: 1
expectation B: 1 B: 1 B: 1 B: 1

(Section 8.5.3) (Section 8.5.3)
Barbara’s birthday Y: neckl, ring Y: neckl, ring Y: neckl, ring Y: neckl, ring

(Section 8.6.2) B: neckl, ring B: ? B: neckl B: neckl
(Section 8.6.2) (Section 9.2.4) (Section 9.1.3)

Table 9.3.2 The four concepts in the various examples
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already yields a unique choice for you and Barbara, then it follows that the same applies for the other
columns as well. Or, if it has been shown that common belief in rationality yields the same choices as
common belief in rationality with a simple belief hierarchy, then these same choices will also result if
we impose common belief in rationality with a symmetric belief hierarchy (with or without one theory
per choice). And so on.

For the example “Barbara’s birthday”, we do not know what choices Barbara can rationally make
under common belief in rationality with a symmetric belief hierarchy (without insisting on one theory
per choice). Under these conditions, it is possible that Barbara can only rationally guess that you buy
a necklace, or that she can rationally guess that you buy a necklace or a ring. We do not know at this
moment. In the table we have left out the example “Your birthday”from Section 8.6.2, because it is
essentially the same as the example “Barbara’s birthday”after exchanging the roles of Barbara and
you.
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9.4 Proofs

9.4.1 Proofs of Section 9.1
Proof of Theorem 9.1.1. See the arguments in Section 9.1.2. �

Proof of Theorem 9.1.2. See the arguments in Section 9.1.2. �

Proof of Theorem 9.1.3. Like in Chapter 4, we use Kakutani’s fixed point theorem (Theorem 4.5.1)
to prove this theorem. For both players i, let ∆(Ci) denote the set of probability distributions on Ci.
So, every pair of beliefs (σ1, σ2) belongs to the set ∆(C1)×∆(C2). By

A := ∆(C1)×∆(C2)

we denote the set of all such belief pairs. Hence, A is a subset of some linear space RX . Moreover, it
may easily be verified that the set A is nonempty, compact and convex.

For every (σ1, σ2) ∈ A and both players i, let Copti (σ1, σ2) be the set of choices ci ∈ Ci that
are optimal for player i under the induced second-order expectation ei[σ1, σ2]. By ∆(Copti (σ1, σ2)) we
denote the set of probability distributions in ∆(Ci) that only assign positive probability to choices
in Copti (σ1, σ2). Define now the correspondence Copt from A to A, which assigns to every belief pair
(σ1, σ2) ∈ A the set of belief pairs

Copt(σ1, σ2) := ∆(Copt1 (σ1, σ2))×∆(Copt2 (σ1, σ2)),

which is a subset of ∆(C1)×∆(C2), and hence is a subset of A.
It may easily be verified that the set Copt(σ1, σ2) is nonempty and convex for every (σ1, σ2). It thus

follows that the correspondence Copt is convex-valued. We now show that the correspondence Copt is
upper-semicontinuous. That is, we must show that for every sequence (σk1, σ

k
2)k∈N converging to some

(σ1, σ2), and every sequence (σ̂k1, σ̂
k
2)k∈N converging to some (σ̂1, σ̂2) with (σ̂k1, σ̂

k
2) ∈ Copt(σk1, σk2) for

every k, it holds that (σ̂1, σ̂2) ∈ Copt(σ1, σ2).
Suppose, contrary to what we want to prove, that (σ̂1, σ̂2) /∈ Copt(σ1, σ2). Then, there is some

player i such that σ̂i assigns positive probability to some ci, whereas ci is not optimal under ei[σ1, σ2].
But then, if k is large enough, σ̂ki assigns positive probability to ci, and ci is not optimal under
ei[σ

k
1, σ

k
2]. However, this contradicts the assumption that (σ̂k1, σ̂

k
2) ∈ Copt(σk1, σk2). So, we conclude that

(σ̂1, σ̂2) ∈ Copt(σ1, σ2), and hence the correspondence Copt is upper-semicontinuous.
Summarizing, we see that the set A = ∆(C1) × ∆(C2) is nonempty, compact and convex, and

that the correspondence Copt from A to A is upper-semicontinuous and convex-valued. By Kakutani’s
fixed point theorem (Theorem 4.5.1) it then follows that Copt has at least one fixed point (σ∗1, σ

∗
2) ∈ A.

That is, there is some (σ∗1, σ
∗
2) ∈ A with

(σ∗1, σ
∗
2) ∈ Copt(σ∗1, σ∗2).

By definition of Copt this means that for every player i, we have that σ∗i ∈ ∆(Copti (σ∗1, σ
∗
2)). So, for

every player i, the probability distribution σ∗i only assigns positive probability to choices ci that are
optimal under the induced second-order expectation ei[σ∗1, σ

∗
2]. This means, however, that (σ∗1, σ

∗
2) is

a psychological Nash equilibrium. So, a psychological Nash equilibrium always exists. �

Proof of Theorem 9.1.4. See the arguments in Section 9.1.4. �
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9.4.2 Proofs of Section 9.2
Proof of Theorem 9.2.1. (a) Suppose first that the belief hierarchy βi is symmetric and expresses
common belief in rationality. Then, we know by Theorem 4.2.1 that the belief hierarchy βi is induced
by a common prior π∗ on choice-type combinations. Suppose that, within a beliefs diagram in choice-
type representation, βi starts at the choice-type pair (c∗i , t

∗
i ). We say that a choice-type pair (cj , tj)

can be reached within one step from (c∗i , t
∗
i ) if π((cj , tj) | (c∗i , t

∗
i )) > 0. Say that a choice-type pair

(ci, ti) can be reached within two steps from (c∗i , t
∗
i ) if there is a pair (cj , tj) that can be reached within

one step from (c∗i , t
∗
i ) such that π((ci, ti) | (cj , tj)) > 0. For k ≥ 3, we inductively define reachability

within k steps as follows: If k is even, then say that a choice-type pair (ci, ti) can be reached within
k steps from (c∗i , t

∗
i ) if there is a pair (cj , tj) that can be reached within k − 1 steps from (c∗i , t

∗
i ) such

that π((ci, ti) | (cj , tj)) > 0. If k is odd, then say that a choice-type pair (cj , tj) can be reached within
k steps from (c∗i , t

∗
i ) if there is a pair (ci, ti) that can be reached within k − 1 steps from (c∗i , t

∗
i ) such

that π((cj , tj) | (ci, ti)) > 0.
Let (Ci × Ti)∗ and (Cj × Tj)∗ be the sets of choice-type pairs that can be reached within finitely

many steps from (c∗i , t
∗
i ). Then, π

∗(ci, ti) > 0 for every (ci, ti) ∈ (Ci × Ti)∗ and π∗(cj , tj) > 0 for every
(cj , tj) ∈ (Cj × Tj)∗. Moreover, let π be the restriction of π∗ to (Ci × Ti)∗ and (Cj × Tj)∗ given by

π((ci, ti), (cj , tj)) :=
π∗((ci, ti), (cj , tj))∑

(c′i,t
′
i)∈(Ci×Ti)∗, (c′j ,t′j)∈(Cj×Tj)∗

π∗((c′i, t
′
i), (c

′
j , t
′
j))

for every (ci, ti) ∈ (Ci × Ti)∗ and (cj , tj) ∈ (Cj × Tj)∗, and let π((ci, ti), (cj , tj)) := 0 otherwise.
Then, it may be verified that the belief hierarchy βi is induced by the common prior π. We show

that π is a psychological correlated equilibrium.
Let T ∗i be the set types that enter in (Ci × Ti)∗, and similarly for player j. Assume, without loss

of generality, that for every two choice-type pairs (ci, ti), (c
′
i, t
′
i) ∈ (Ci× Ti)∗ with ci 6= c′i we have that

ti 6= t′i. Then, for every type ti ∈ T ∗i there is a unique choice ci[ti] ∈ C∗i such that (ci[ti], ti) ∈ (Ci×Ti)∗.
Similarly for player j.

We create an epistemic model with sets of types T ∗i and T
∗
j , and where the beliefs of the types are

given by
bi(ti)(cj , tj) := π((cj , tj) | (ci[ti], ti)) (9.4.1)

for every ti ∈ T ∗i , and every (cj , tj) ∈ (Cj × Tj)∗. Note that π((cj , tj) | (ci[ti], ti)) is well-defined since
π∗(ci[ti], ti) > 0. Similarly for player j’s types.

Recall that the belief hierarchy βi starts at the choice-type pair (c∗i , t
∗
i ) = (ci[t

∗
i ], t
∗
i ). Then, by

construction, the belief hierarchy βi is the belief hierarchy induced by the type t
∗
i within this epistemic

model. We can always select the choice c∗i such that c
∗
i is optimal for t

∗
i , as this does not affect the

belief hierarchy βi. Let us therefore assume, without loss of generality, that c
∗
i is optimal for t

∗
i . In

other words, ci[t∗i ] is optimal for t
∗
i .

We will now show that for every ti ∈ Ti∗, the choice ci[ti] is optimal for ti. If ti = t∗i then we know
this from our assumption above. Assume now that ti 6= t∗i . Then, (ci[ti], ti) ∈ (Ci × Ti)∗. In view of
(9.4.1), there is a choice-type pair (cj , tj) reachable from (c∗i , t

∗
i ) such that bj(tj)(ci[ti], ti) > 0. As the

belief hierarchy βi expresses common belief in rationality, and βi is the belief hierarchy held by the
type t∗i , we conclude that t

∗
i expresses common belief in rationality. Since (cj , tj) is reachable from

(c∗i , t
∗
i ), it follows that tj believes in i’s rationality. As bj(tj)(ci[ti], ti) > 0, it must thus be that ci[ti]

is optimal for ti. In a similar way, it can be shown that cj [tj ] is optimal for tj for every type tj ∈ T ∗j .
Now, take some (ci, ti) ∈ Ci × T ∗i with π(ci, ti) > 0. Then, ci = ci[ti]. By our insights above, we

thus know that ci[ti] is optimal for ti. By (9.4.1), the second-order expectation of type ti is ei(· |
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π, (ci, ti)). As ci is optimal for ti, it follows that ci is optimal for the induced second-order expectation
ei(· | π, (ci, ti)). As the same can be shown for choice-type pairs (cj , tj) ∈ Cj × T ∗j with π(cj , tj) > 0,
we conclude that π is a psychological correlated equilibrium. Hence, the belief hierarchy βi is induced
by a psychological correlated equilibrium.

(b) Assume next that the belief hierarchy βi is induced by a psychological correlated equilibrium π.
As π is a common prior on choice-type combinations, it follows by Theorem 4.2.1 that βi is symmetric.
It remains to show that βi expresses common belief in rationality.

Suppose that βi is generated within a beliefs diagram in choice-type representation, and that βi
starts at the choice-type pair (c∗i , t

∗
i ). Let (Ci×Ti)∗ and (Cj×Tj)∗ be the sets of choice-type pairs that

enter in this beliefs diagram. Moreover, let T ∗i and T
∗
j be the sets of types that enter in the beliefs

diagram. Similarly to part (a), we assume that for every ti ∈ T ∗i there is a unique choice ci[ti] such
that (ci[ti], ti) ∈ (Ci × Ti)∗, and similarly for player j.

We construct an epistemic model with sets of types T ∗i and T
∗
j , and where the beliefs of the types

are given by
bi(ti)(cj , tj) := π((cj , tj) | (ci[ti], ti)) (9.4.2)

for every ti ∈ T ∗i , and every (cj , tj) ∈ (Cj×Tj)∗. Note that π(ci[ti], ti) > 0 for all (ci[ti], ti) ∈ (Ci×Ti)∗,
and hence π((cj , tj) | (ci[ti], ti)) is well-defined. Similarly for player j’s types.

Recall that the belief hierarchy βi is induced by the psychological correlated equilibrium π and
starts at the choice-type pair (c∗i , t

∗
i ). In view of (9.4.2), the belief hierarchy βi is precisely the belief

hierarchy held by the type t∗i . We will now show that t
∗
i expresses common belief in rationality. For

this, it is suffi cient to show that every type in the epistemic model above believes in the opponent’s
rationality.

Take a type ti ∈ T ∗i and a choice-type pair (cj , tj) ∈ Cj × T ∗j with bi(ti)(cj , tj) > 0. Then, we
know by (9.4.2) that π((cj , tj) | (ci[ti], ti)) > 0. This implies that π(cj , tj) > 0. As π is a psychological
correlated equilibrium, we know that cj is optimal for the induced second-order expectation ej(· |
π, (cj , tj)). By (9.4.2) we know that tj’s second-order expectation is ej(· | π, (cj , tj)). Therefore, cj is
optimal for the type tj .We thus conclude that ti believes in j’s rationality. In a similar fashion, it can
be shown that every type tj ∈ T ∗j believes in i’s rationality.

As such, every type in the epistemic model believes in the opponent’s rationality. This, in turn,
implies that every type expresses common belief in rationality. In particular, type t∗i expresses common
belief in rationality, which means that belief hierarchy βi expresses common belief in rationality. This
completes the proof. �

Proof of Theorem 9.2.2. Follows from the arguments in Section 9.2.2. �

Proof of Theorem 9.2.3. Follows from the arguments in Section 9.2.2. �

Proof of Theorem 9.2.4. Follows from the arguments in Section 9.2.3. �

Proof of Theorem 9.2.5. Follows from the arguments in Section 9.2.3. �

Proof of Theorem 9.2.3. Follows from the arguments in Section 9.2.3. �
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Solutions to In-Chapter Questions

Question 9.1.1. The induced second-order expectation e1[σ1, σ2] for you is given by

e1[σ1, σ2] = (0.6) · (0.2) · (n, n) + (0.4) · (0.2) · (b, n) + (0.6) · (0.5) · (n, r)
+(0.4) · (0.5) · (b, r) + (0.6) · (0.3) · (n, b) + (0.4) · (0.3) · (b, b)

= (0.12) · (n, n) + (0.08) · (b, n) + (0.3) · (n, r)
+(0.2) · (b, r) + (0.18) · (n, b) + (0.12) · (b, b),

whereas the induced second-order expectation e2[σ1, σ2] for Barbara is given by

e2[σ1, σ2] = (0.2) · (0.6) · (n, n) + (0.5) · (0.6) · (r, n) + (0.3) · (0.6) · (b, n)

+(0.2) · (0.4) · (n, b) + (0.5) · (0.4) · (r, b) + (0.3) · (0.4) · (b, b)
= (0.12) · (n, n) + (0.3) · (r, n) + (0.18) · (b, n)

+(0.08) · (n, b) + (0.2) · (r, b) + (0.12) · (b, b).

Question 9.1.2. Suppose that i believes that j assigns a positive probability to i’s choice ci. As i’s
second-order belief is given by σi, we conclude that σi(ci) > 0. By the definition of a psychological
Nash equilibrium, choice ci is optimal for the induced second-order expectation ei[σ1, σ2]. Since the
simple belief hierarchy is generated by (σ1, σ2), player i believes that j believes that i’s second-order
expectation is ei[σ1, σ2]. Hence, i believes that j assigns a positive probability to i’s choice ci only if
ci is optimal for player i, given what i believes that j believes about i’s second-order expectation. In
other words, i believes that j believes in i’s rationality.

Question 9.1.3. Suppose, on the contrary, that σ1(bracelet) > 0. Then, bracelet must be optimal
for you under the second-order expectation e1[σ1, σ2 ]̇. However, we have seen in Section 8.6 that
your choice bracelet is strictly dominated in your decision problem, and therefore not optimal for any
second-order expectation. Thus, σ1(bracelet) = 0.

Assume, on the contrary, that σ2(bracelet) > 0. Then, bracelet must be optimal for Barbara under
the second-order expectation e2[σ1, σ2]. Since Barbara’s conditional preference relation only depends
on her first-order belief, we must have that bracelet is optimal for Barbara under the first-order
belief σ1. However, since σ1(bracelet) = 0, Barbara’s choice bracelet can never be optimal under the
first-order belief σ1. We thus conclude that σ2(bracelet) = 0.

Question 9.2.1. By looking at the beliefs diagram in Figure 9.2.1 we see that the second-order
expectation e2(· | (white2, tw2 )) is given by

e2((black1, tb1), (black2, tb2) | (white2, tw2 )) = 1
2 ·

1
2 = 1

4 ,

e2((black1, tb1), (white2, tw2 ) | (white2, tw2 )) = 1
2 ·

1
2 = 1

4 ,

e2((white1, tw1 ), (black2, tb2) | (white2, tw2 )) = 1
2 ·

2
3 = 1

3 and

e2((white1, tw1 ), (white2, tw2 ) | (white2, tw2 )) = 1
2 ·

1
3 = 1

6 .

The expected utilities for Barbara of choosing black2 and white2 are thus given by

u2(black2, e2(· | (white2, tw2 )) = 2 and

u2(white2, e2(· | (white2, tw2 )) = 1
4 · 8 + 1

4 · 0 + 1
3 · 0 + 1

6 · 0 = 2,
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which implies that white2 (but also black2) is optimal for e2(· | (white2, tw2 )).

Question 9.2.2. The induced second-order expectations are

e1[σ1, σ2] = (0.25) · (black2, black1) + (0.25) · (black2, white1)
+(0.25) · (white2, black1) + (0.25) · (white2, white1)

and

e2[σ1, σ2] = (0.25) · (black1, black2) + (0.25) · (black1, white2)
+(0.25) · (white1, black2) + (0.25) · (white1, white2).

For you, the expected utilities of choosing black or white under the second-order expectation e1[σ1, σ2]
are both 2. Hence, both black and white are optimal for you under the second-order expectation
e1[σ1, σ2]. Similarly, both black and white are optimal for Barbara under the second-order expectation
e2[σ1, σ2]. This implies that (σ1, σ2) is a psychological Nash equilibrium.

Question 9.2.3. To make the calculations more compact, we denote the colors by b, g and r. Consider
your choice b1 with π̂(b1) > 0. In the induced second-order expectation e1(· | π̂, b1) we have that

e1((b2, b1) | π̂, b1) = π̂(b2 | b1) · π̂(b1 | b2) =
π̂(b1, b2)

π̂(b1)
· π̂(b1, b2)

π̂(b2)

=
1/130

101/130
· 1/130

5/130
=

1

101
· 1

5
=

1

505
.

In a similar way it can be verified that

e1((b2, g1) | π̂, b1) =
1

101
· 4

5
=

4

505
,

e1((r2, b1) | π̂, b1) =
100

101
· 4

5
=

400

505
and

e1((r2, g1) | π̂, b1) =
100

101
· 1

5
=

100

505
.

Thus, the expected utilities of choosing b1 and g1 under e1(· | π̂, b1) are

u1(b1, e1(· | π̂, b1)) =
1

505
· 0 +

4

505
· 3 +

400

505
· 3 +

100

505
· 6 =

1812

505

and
u1(g1, e1(· | π̂, b1)) =

1

505
· 4 +

4

505
· 2 +

400

505
· 4 +

100

505
· 2 =

1812

505
.

Hence, u1(b1, e1(· | π̂, b1)) = u1(g1, e1(· | π̂, b1)), which means that, in particular, u1(b1, e1(· | π̂, b1)) ≥
u1(g1, e1(· | π̂, b1)).

Next, consider your choice g1 with π̂(g1) > 0. The induced second-order expectation e1(· | π̂, g1) is
given by

e1((b2, b1) | π̂, g1) =
4

29
· 1

5
=

4

145

e1((b2, g1) | π̂, g1) =
4

29
· 4

5
=

16

145
,

e1((r2, b1) | π̂, g1) =
25

29
· 4

5
=

100

145
and

e1((r2, g1) | π̂, g1) =
25

29
· 1

5
=

25

145
.
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Thus, the expected utilities of choosing g1 and b1 under e1(· | π̂, g1) are

u1(g1, e1(· | π̂, g1)) =
4

145
· 4 +

16

145
· 2 +

100

145
· 4 +

25

145
· 2 =

498

145

and
u1(b1, e1(· | π̂, g1)) =

4

145
· 0 +

16

145
· 3 +

100

145
· 3 +

25

145
· 6 =

498

145
.

Hence, u1(g1, e1(· | π̂, g1)) = u1(b1, e1(· | π̂, g1)), which means that, in particular, u1(g1, e1(· |
π̂, g1)) ≥ u1(b1, e1(· | π̂, g1)).

Now, consider Barbara’s choice b2 with π̂(b2) > 0. The induced second-order expectation e2(· |
π̂, b2) is given by

e2((b1, b2) | π̂, b2) =
1

5
· 1

101
=

1

505
,

e2((b1, r2) | π̂, b2) =
1

5
· 100

101
=

100

505
,

e2((g1, b2) | π̂, b2) =
4

5
· 4

29
=

16

145
and

e2((g1, r2) | π̂, b2) =
4

5
· 25

29
=

100

145
.

Thus, the expected utilities of choosing b2 and r2 under e2(· | π̂, b2) are

u2(b2, e2(· | π̂, b2)) =
1

505
· 0 +

100

505
· 2 +

16

145
· 2 +

100

145
· 4 ≈ 3.38.

and
u2(r2, e2(· | π̂, b2)) =

1

505
· 6 +

100

505
· 3 +

16

145
· 6 +

100

145
· 3 ≈ 3.34.

Hence, u2(b2, e2(· | π̂, b2)) ≥ u2(r2, e2(· | π̂, b2)).
We finally turn to Barbara’s choice r2 with π̂(r2) > 0. The induced second-order expectation e2(·

| π̂, r2) is given by

e2((b1, b2) | π̂, r2) =
4

5
· 1

101
=

4

505
,

e2((b1, r2) | π̂, r2) =
4

5
· 100

101
=

400

505
,

e2((g1, b2) | π̂, r2) =
1

5
· 4

29
=

4

145
and

e2((g1, r2) | π̂, r2) =
1

5
· 25

29
=

25

145
.

Thus, the expected utilities of choosing r2 and b2 under e2(· | π̂, r2) are

u2(r2, e2(· | π̂, r2)) =
4

505
· 6 +

400

505
· 3 +

4

145
· 6 +

25

145
· 3 ≈ 3.11.

and
u2(b2, e2(· | π̂, r2)) =

4

505
· 0 +

400

505
· 2 +

4

145
· 2 +

25

145
· 4 ≈ 2.33.

Hence, u2(r2, e2(· | π̂, r2)) ≥ u2(b2, e2(· | π̂, r2)).
In view of all this, we conclude that π̂ is a canonical psychological correlated equilibrium.
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Problems

Problem 9.1: High jump.

In a few weeks from now there will be the regional athletics championships. Both Barbara and you
would like to participate, and high jump is the favorite discipline for the two of you. From experience,
you know that by practicing very hard you will be able to jump 2.20 meters, whereas you can easily
jump 1.80 meters with very little practice. The question is: What height will you practice for during
the next few weeks?

Suppose you can choose to practice for 1.80 meters, 1.90 meters, 2.00 meters, 2.10 meters or 2.20
meters. Clearly, jumping higher requires more practice. More precisely, if you aim to jump a height
of h, then your mental and physical cost of practicing for that height will be h2/400, where the height
h is expressed in centimeters.

Moreover, you would like to meet, or even exceed, Barbara’s expectations: If you jump a height
of h, and Barbara believes that you will jump a height of h′, then your mental bonus of meeting, or
exceeding, Barbara’s expectation will be 2 if h ≥ h′ and 0 otherwise.

Your utility is given by the height h you aim to jump (expressed in centimeters), minus the cost of
practicing for the height of h, plus, possibly, the mental bonus from meeting, or exceeding, Barbara’s
expectation. The choices and the utilities for Barbara are similar to yours.

(a) Model this situation as a psychological game by writing down the decision problem for you. The
decision problem for Barbara is similar, by symmetry.

(b) Perform the iterated elimination of choices and states. Which heights survive for you and Barbara?
Can you guarantee, on the basis of Theorem 8.6.1, that this procedure yields precisely those choices
you can rationally make under common belief in rationality? Explain your answer.

(c) Create a beliefs diagram, with solid arrows only, that uses all the heights for you and Barbara
that have survived the procedure in (b). Translate this beliefs diagram into an epistemic model, and
explain why all types express common belief in rationality.

(d) Find the heights that you can rationally practice for under common belief in rationality with a
simple belief hierarchy.

(e) Consider the beliefs diagram in Figure 9.4.1. Show that all belief hierarchies in the beliefs diagram
are symmetric, by finding a symmetric weighted beliefs diagram that induces this beliefs diagram.

(f) Translate the symmetric weighted beliefs diagram from (e) into a common prior on choice combi-
nations, and show that this common prior is a canonical psychological correlated equilibrium.

Throughout the week, your preferences have changed: From now on, you only care about exceeding
Barbara’s preferences. That is, if you jump a height of h, and Barbara believes that you would jump a
hight of h′, then the mental bonus from exceeding Barbara’s preferences is 2 if h > h′, and 0 otherwise.
Apart from this, your utilities are built up in the same way as above. Similarly for Barbara.

(g) Model this new situation as a psychological game, by writing down the decision problem for you.

(h) Which heights can you rationally aim for under common belief in rationality?

(i) Create a beliefs diagram, with solid arrows only, that uses all the heights for you and Barbara that
you found in (h). Under common belief in rationality, what is the highest probability by which you
can believe to exceed Barbara’s expectations?
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Figure 9.4.1 Beliefs diagram for Problem 9.1 (e)

*(j) Find the unique psychological Nash equilibrium. What heights can you rationally aim for under
common belief in rationality with a simple belief hierarchy? Under common belief in rationality with
a simple belief hierarchy, what is the highest probability by which you can believe to exceed Barbara’s
expectations?

Problem 9.2: The Cooper test.

As a preparation for the athletics championships, you and Barbara have hired Chris as a personal
coach. The first thing Chris proposes is that you both do the Cooper test: Within 12 minutes you
must run the largest possible distance. You and Barbara know that, in principle, you would both be
able to run a distance of 2300 meters, 2500 meters or 2700 meters. The question is: Which of these
three distances are you and Barbara planning to run?

Obviously, running a larger distance comes at a larger physical and mental cost. Suppose that the
cost of running d meters is d2/5000.

You care both about beating Barbara and exceeding Barbara’s expectations. More precisely, if
you run a distance of d1, Barbara runs a distance of d2, and Barbara believes that you run a distance
of d′1, then your mental bonus of beating Barbara is 0.1 · (d1 − d2) if d1 > d2 and 0 otherwise, and
your mental bonus of exceeding Barbara’s expectation is 0.1 · (d1 − d′1) if d1 > d′1 and 0 otherwise.

On the other hand, Barbara’s only cares about exceeding your expectation. Her mental bonus for
exceeding your expectation is similarly to yours.

Your utility is given by the distance you run in meters, minus the cost of running this distance, plus
(possibly) the mental bonus from beating Barbara, plus (possibly) the mental bonus from exceeding
Barbara’s expectation. Barbara’s utility is the distance she runs in meters, minus the cost of running
this distance, plus (possibly) the mental bonus from exceeding your expectation.

(a) Do the preferences over your choices depend only on your first-order belief, only on your second-
order belief, or on both? Answer the same question for Barbara.

(b) Set up the decision problems for you and Barbara.

(c) Perform the iterated elimination of choices and states. Which distances survive for you and
Barbara? Can you guarantee, on the basis of Theorem 8.6.1, that this procedure yields precisely those
choices you can rationally make under common belief in rationality? Explain your answer.
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(d) Show that each of the distances for you and Barbara found in (c) can indeed rationally be chosen
under common belief in rationality. To this purpose, construct a beliefs diagram with solid arrows
only that contains all the choices found in (c). What is the highest probability by which you believe
you can beat Barbara under common belief in rationality? What is the highest probability by which
you believe you can exceed Barbara’s expectations under common belief in rationality? Translate
this beliefs diagram into an epistemic model, and explain why all types express common belief in
rationality.

*(e) Find the unique psychological Nash equilibrium. What distances can you and Barbara rationally
choose under common belief in rationality with a simple belief hierarchy? What is the highest prob-
ability by which you believe you can beat Barbara under common belief in rationality with a simple
belief hierarchy? What is the highest probability by which you believe you can exceed Barbara’s
expectations under common belief in rationality with a simple belief hierarchy?

(f) What distances can you and Barbara rationally choose under common belief in rationality with
a symmetric belief hierarchy? What distances can you and Barbara rationally choose under common
belief in rationality with a symmetric belief hierarchy that uses one theory per choice? Explain your
answer.

Problem 9.3: How many disciplines?

Remember from Problem 9.1 that soon there will be the yearly regional athletics championships. Both
you and Barbara want to participate, and now it is time to decide at how many different disciplines
you would like to compete. According to the rules, you can subscribe for at most four disciplines.
Needless to say that you must subscribe for at least one discipline. Of course, the more disciplines you
choose, the more you will have to practice. Suppose that the mental and physical cost of practicing
for d disciplines is d2, and similarly for Barbara.

The utility you derive from participating at the championship is 4. Moreover, you would like to
exceed Barbara’s expectations by the number of disciplines you choose. More precisely, if you choose
d1 disciplines, and Barbara believes that you choose d′1 disciplines, then the mental bonus of exceeding
Barbara’s expectations is 4 if d1 > d′1, and it is 0 otherwise.

Your total utility is 4 from participating at the championship, minus the cost of practicing, plus
(possibly) the bonus from exceeding Barbara’s expectation.

Also for Barbara, the utility she derives from participating at the championship is 4. However,
rather than trying to exceed your expectations, Barbara would like to choose more disciplines than
you do. More concretely, if she chooses more disciplines than you do, then her mental bonus will
be 6. Barbara’s total utility is therefore 4 from participating at the championship, minus the cost of
practicing, plus (possibly) the bonus from choosing more disciplines than you do.

(a) Model this story as a psychological game, by specifying the decision problems for you and Barbara.

(b) Suppose we would like to find the choices you can rationally make under common belief in
rationality. Explain, on the basis of Theorem 8.6.1, why it is suffi cient to apply the iterated elimination
of choices and states.

(c) How many disciplines can you and Barbara rationally choose under common belief in rationality?

(d) Based on the outcome in (c), create a beliefs diagram with solid arrows only that uses all the
choices that you and Barbara can rationally make under common belief in rationality. Translate this
beliefs diagram into an epistemic model where all the types express common belief in rationality.
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Explain why under common belief in rationality, you can expect to exceed Barbara’s expectations
with probability 1.

(e) Find the unique psychological Nash equilibrium. How many disciplines can you and Barbara
rationally choose under common belief in rationality with a simple belief hierarchy?

(f) Suppose your belief hierarchy is simple and expresses common belief in rationality. What, then,
is the unique probability by which you can expect to exceed Barbara’s expectations?

(g) How many different disciplines can you rationally choose under common belief in rationality with
a symmetric belief hierarchy using one theory per choice?

*(h) Show that under common belief in rationality with a symmetric belief hierarchy that uses one
theory per choice, you can only expect to exceed Barbara’s expectations with probability 3/4.

(Hint to (h): Consider a canonical psychological correlated equilibrium π̂. Show the following steps.

Step 1. Show that π̂(11, 22) > 0.

Step 2. Show that π̂(21, 22) > 0.

Step 3. Show that π̂(11, 22) > 0, π̂(21, 22) > 0 and π̂(21, 12) = 0 is only possible if π̂(11, 22) = 3/4,
π̂(21, 22) = 1/4, π̂(11, 12) = 0 and π̂(21, 12) = 0. In this case, conclude that you expect to exceed
Barbara’s expectation with probability 3/4 by choosing 2 disciplines.

Step 4. Show that π̂(11, 22) > 0, π̂(21, 22) > 0 and π̂(21, 12) > 0 is impossible. To do so, assume that
π̂(11, 22) > 0, π̂(21, 22) > 0 and π̂(21, 12) > 0 and prove the following substeps:

Step 4.1. Show that 3 ≥ 4 · [π̂(12 | 11) · π̂(11 | 12) + π̂(22 | 11) · π̂(11 | 22)].

Step 4.2. Based on Step 4.1, show that 4 · π̂(12 | 11) · [π̂(11 | 22)− π̂(11 | 12)] ≥ 4 · π̂(11 | 22)− 3.

Step 4.3. Show that 3 ≤ 4 · [π̂(12 | 21) · π̂(11 | 12) + π̂(22 | 21) · π̂(11 | 22)].

Step 4.4. Based on Step 4.3, show that 4 · π̂(12 | 21) · [π̂(11 | 22)− π̂(11 | 12)] ≤ 4 · π̂(11 | 22)− 3.

Step 4.5. Show that π̂(11 | 12) ≤ 1/2.

Step 4.6. Based on Steps 4.3 and 4.5, show that π̂(11 | 22) ≥ 3/4.

Step 4.7. On the basis of Steps 4.2, 4.4, 4.5 and 4.6, show that π̂(12 | 11) ≥ π̂(12 | 21).

Step 4.8. Of the basis of Step 4.7, show that π̂(11 | 12) ≥ π̂(11 | 22). This, however, is a contradiction
to Steps 4.5 and 4.6. Hence, it follows by Step 3 that you expect to exceed Barbara’s expectation with
probability 3/4 by choosing 2 disciplines.)
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Literature

Psychological Nash equilibrium and psychological correlated equilibrium. The concept of
psychological Nash equilibrium has been introduced by Geanakoplos, Pearce and Stacchetti (1989).
Their definition is equivalent to ours, although they do not use the label of simple belief hierarchies.
To the best of our knowledge, the concepts of psychological correlated equilibrium and canonical
psychological correlated equilibrium as proposed in this chapter are new.

In addition, Geanakoplos, Pearce and Stacchetti (1989) introduce equilibrium concepts for dynamic
psychological games, such as subgame perfect psychological equilibrium, trembling hand perfect psy-
chological equilibrium and sequential psychological equilibrium. Also Battigalli and Dufwenberg (2009)
consider a version of sequential psychological equilibrium which they call sequential equilibrium.

How psychological Nash equilibrium limits surprise. We have seen in several examples in this
chapter that insisting on a simple belief hierarchy in combination with common belief in rationality
—that is, insisting on psychological Nash equilibrium —can severely limit the ability to surprise the
other person. See, for instance, the examples “Barbara’s birthday”and “Surprising Barbara”.

Mourmans (2017) shows that this is also true for the famous surprise exam paradox, where a
teacher tries to surprise the student by the day on which he poses the exam. Indeed, if we merely
use common belief in rationality without insisting on a simple belief hierarchy, then Mourmans (2017)
shows that the teacher is able to fully surprise the student. However, if we additionally insist on a
simple belief hierarchy, then it is shown that the teacher is only able to partially surprise the student,
that is, to surprise the student with a probability that is substantially less than 1.

Geanakoplos (1996) comes to a similar conclusion if we model the hangman paradox, which is
similar to the surprise exam paradox, as a psychological game and subsequently use the concept of
psychological Nash equilibrium. In that case, the judge can at best only partially surprise the prisoner
by the day on which the sentence will be executed. The reason, as above, is that the simple belief
hierarchy, in combination with common belief in rationality, severely limits the ability of surprising
the other person.


