Chapter 2

Decision Problems

In this chapter of the online appendix, we first provide an axiomatic characterization for expected
utility in Sections 2.8, 2.9 and 2.10. That is, we will impose a list of conditions — or axioms — on
a conditional preference relation that is both necessary and sufficient for the conditional preference
relation having an expected utility representation. Like for the utility design procedure, we build
up our characterization in three steps: In Section 2.8 we restrict to the case of two choices, and
show that some very basic axioms — the reqularity axioms — characterize those conditional preference
relations that have an expected utility representation. In Section 2.9 we move to the case with more
than two choices, but where there are preference reversals for every pair choices. We introduce two
new axioms, three choice linear preference intensity and four choice linear preference intensity, and
show that these axioms, together with the regularity axioms, characterize expected utility. The two
new axioms reveal the idea that the intensity by which the DM prefers a choice to another choice
changes linearly with the belief he holds. In Section 2.10 we move to the general case, where there
may be no preference reversals for some pairs of choices. That is, some choices may be weakly or
strictly dominated by other choices. The axioms above are extended to signed conditional preference
relations, where we consider so-called signed beliefs which possibly assign negative “probabilities” to
states. These extended axioms, together with some additional axioms that concern cases where there
is constant preference intensity between two choices, are shown to characterize expected utility for the
general case. In Section 2.11 we discuss some economic applications for decision problems. All proofs
can be found in Section 2.12.

2.8 Case of Two Choices

In this section we explore the situation where there are only two choices. We start by presenting
some axioms, called the reqularity axioms, which are required for an expected utility representation.
Subsequently, we present a theorem which shows that these axioms are not only necessary but also
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Figure 2.8.1 When an expected utility representation does not exist

sufficient for an expected utility representation. That is, if the conditional preference relation satisfies
the regularity axioms, then we can find a utility matrix that represents it.

2.8.1 Regularity Axioms

Suppose the DM can only choose between two options, a and b. What properties should the conditional
preference relation 7~ have such that it can be represented by a utility matrix? Figure 2.8.1 presents
a few instances where an expected utility representation does not exist, and these instances will give
rise to our reqularity axioms.

In each of the three instances we assume that the set of states is S = {x,y, z}. Consider first the
conditional preference relation in panel (a). Hence, for all beliefs above the line the DM prefers a to
b, for all beliefs on the line he still prefers a to b, whereas for all beliefs below the line he prefers b to
a. Such a conditional preference relation cannot have an expected utility representation. For suppose
it would be represented by a utility function. Then, at the belief p the expected utility for a must be
greater than that for b, whereas at the belief ¢ the expected utility for b must greater than that for a.
But then, there must be a belief on the line segment between p and ¢ where the two expected utilities
are the same, and hence where the DM is indifferent between a and b. However, there is no belief
where the DM is indifferent between a and b, and therefore we reach a contradiction. Thus, there is
no expected utility representation. The reason is that this conditional preference relation violates the
axiom of continuity.

Axiom 2.8.1 (Continuity) If the beliefs p,q are such that a >, b and b >4 a, then there is a belief
r = (1 — A)p+ Aq on the line segment between p and q with A € (0,1), such that a ~; b.

That is, if at the belief p the DM prefers a to b, and at the belief ¢ he prefers b to a, then there
must be a belief on the line segment between a and b where the DM is indifferent between a and b. In
the formulation of the axiom, by r = (1 — A\)p + Aq we denote the belief that assigns to every state s
the probability r(s) = (1 — A) - p(s) + A - ¢(s). For instance, if p = (0.2,0.3,0.5), ¢ = (0.4,0.4,0.2) and
A = 0.4 then

r=(1—Xp-+ Ag=(0.28,0.34,0.38).
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Indeed, the probability that r assigns to = (the first state) is (0.6)-(0.2) + (0.4) - (0.4) = 0.28. Similarly
for the other two probabilities. Please verify this.

Geometrically, = (1 — \)p + Aq is the belief on the line between p and ¢ where the ratio between
the distance to p and the distance to ¢ is A/(1 — A). In particular, when A = 0.5 then r is exactly
halfway between p and ¢, and if A < 0.5 then r is closer to p than to ¢.

Consider now the conditional preference relation in panel (b) of Figure 2.8.1. Also here an expected
utility representation will not be possible. To see why, suppose the conditional preference relation
would be represented by a utility function. Then, at the beliefs p and ¢ the DM is indifferent between
a and b, and hence the expected utilities for a and b must be the same at p and ¢q. But then, the
expected utilities for a and b must also be the same for every belief on the line segment between ¢ and
b, which is not the case. Hence, we reach a contradiction, and thus an expected utility representation
is not possible. The reason is that the conditional preference relation violates the axiom preservation
of indifference.

Axiom 2.8.2 (Preservation of indifference) If the beliefs p,q are such that a ~, b and a ~ b,
and r = (1 — A\)p+ Aq is a belief on the line segment between p and q with A € (0,1), then a ~, b.

In other words, if the DM is indifferent between a and b at two beliefs p and ¢, then the indifference is
preserved if we vary the belief on the line segment between p and ¢. To formally see why preservation of
indifference must hold if we have an expected utility representation, assume that - is represented by a
utility function u. Then, at the beliefs p and ¢ we must have that u(a, p) = u(b, p) and u(a, q) = u(b, q).
Consider the belief r = (1 — A)p + Ag, for some A € (0, 1). Then,

w(a,r) —u(b,r) = wu(a,(1—=XN)p+ Aq) —u(b, (1 —N)p+ \q)

(L=A)-ula,p) + A-ula,q) = (1= A) - u(b,p) — A-u(b,q)
= (1= (u(a,p) —u(b,p)) + A~ (u(a, q) — u(b,q))
(I1=X)-0+X-0=0,

and hence u(a,r) = u(b,r). That is, the DM must be indifferent between a and b at r.

Finally, consider the conditional preference relation in panel (c¢) of Figure 2.8.1. An expected
utility representation will also not be possible here. To see this, suppose there would be an expected
utility representation. Then, at the beliefs p and ¢ the expected utility for a must be larger than for
b. As a consequence, the expected utility for a must be larger than that for b for all beliefs on the line
segment between p and ¢, and as such the DM must prefer a to b for all beliefs on that line segment.
This, however, is not the case, as there are beliefs on this line where the DM is indifferent between a
and b. This conditional preference relation violates the axiom preservation of strict preference.

Axiom 2.8.3 (Preservation of strict preference) If the beliefs p,q are such that a 7, b and
a >4 b, and r = (1 — A\)p+ Aq is a belief on the line segment between p and ¢ with A € (0,1), then
a >, b.

Thus, if the DM weakly prefers a to b at the belief p, and prefers a to b at the belief ¢, then the
preference between a and b will be preserved if we vary the belief on the line segment between p and
q. Similarly as above, we can show that preservation of strict preference must necessarily hold if we
have an expected utility representation. Indeed, suppose that 7 is represented by a utility function wu.
Then, we must have that u(a,p) > u(b,p) and u(a, q) > u(b, q). Consider the belief r = (1 — X\)p + Aq,
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for some A € (0,1). Then,

u(a,r) —u(b,r) = wula,(1—=A)p+Ag) —u(b, (1 —N)p+ Aq)

(1 =A)-ula,p) + A-u(a,q) — (1 = A) - u(b,p) — A - u(b,q)
= (1=X)(u(a,p) —u(b,p)) + A+ (u(a,q) —u(b,q))
(1—=X)-0+X-0=0,

and hence u(a,r) > u(b,r). That is, the DM must prefers a to b at r.

The three axioms above are called the regularity axioms. By our arguments above we know that
every conditional preference relation with an expected utility representation must necessarily satisfy
the three regularity axioms. However, the other direction is also true if there are only two choices: In
the case of two choices, every conditional preference relation that satisfies the three regularity axioms
will have an expected utility representation. We thus obtain the following characterization.

Theorem 2.8.1 (Expected utility for two choices) Suppose there are only two choices. Then,
a conditional preference relation has an expected utility representation, if and only if, it satisfies
continuity, preservation of indifference and preservation of strict preference.

With our arguments above we have already proven one direction of the theorem: If the conditional
preference relation has an expected utility representation, then it must satisfy the three regularity
axioms. In the remainder of this section we will sketch how to prove the other direction.

2.8.2 Why Axioms are Sufficient

We will now discuss, on an intuitive level, why the regularity axioms are enough to guarantee an
expected utility representation. In Section 2.4 of the book we have seen the utility design procedure
for two choices with preference reversals. With this procedure we can derive a utility function wu,
provided there are preference reversals between the two choices. Suppose now that the conditional
preference relation satisfies the regularity axioms, and that there are preference reversals between
the two choices. We will explain, without diving too much into technical details, why the utilities
generated by this procedure will represent the conditional preference relation at hand.

To make our argument easier and more visual, let us assume there are three states, x,y and z.
Suppose, moreover, that a =, b, b =, a and b >, a. Then, the conditional preference relation will look
like the one in Figure 2.8.2 if it satisfies the regularity axioms.

Now, suppose we apply the utility design procedure, resulting in a utility function u. Recall that
we set u(b,y) > u(a,y), and that we obtain u(b, x) and u(b, z) by the utility difference property with
respect to the beliefs p; and py. This will make sure that u(a,p;) = u(b,p1) and u(a,p2) = u(b, p2).
But then, u(a,p) = u(b, p) for every belief p on the line segment L between p; and p2. Thus, the beliefs
at which a and b yield the same expected utility are precisely the beliefs where the DM is indifferent
between a and b.

Moreover, since u(b,y) > u(a,y), the expected utility for b will be higher than the expected utility
for a in the area to the right of L. This is precisely the area of beliefs for which the DM prefers b
to a. Similarly, the expected utility for a will be higher than the expected utility for b in the area to
the left of L. This, in turn, is precisely the area of beliefs for which the DM prefers a to b. As such,
the utilities generated by the utility design procedure represent the conditional preference relation at
hand.
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Figure 2.8.2  Why the utility design procedure works
2.9 Case of Preference Reversals

In this section we move from two choices to three choices or more. We start by showing that the
regularity axioms from the previous section are no longer sufficient to guarantee an expected utility
representation if there are three choices or more. In response, we introduce two additional axioms,
three choice linear preference intensity and four choice linear preference intensity, which both reveal
the idea that the intensity by which you prefer a choice to another choice must change linearly with the
belief. We show that these new axioms, together with the regularity axioms, guarantee an expected
utility representation if there are preference reversals for every pair of choices.

2.9.1 Why Regularity Axioms are Not Sufficient

In the previous section we have seen that for the case of two choices, the regularity axioms were
sufficient to guarantee an expected utility representation. However, if we move to three choices or
more, this is no longer true. To see this, consider the conditional preference relation in Figure 2.9.1
for the example “The birthday party”. At first sight, there seems nothing wrong with this conditional
preference relation. It may be verified that all the regularity axioms are satisfied, and that for every
belief p the preference relation /7, on choices is transitive. Such conditional preference relations, where
the preference relation 77, on choices is transitive for every belief p, are said to satisfy the transitivity
axiom.

Axiom 2.9.1 (Transitivity) For every belief p, the preference relation 77, on choices is transitive.

However, as we will demonstrate, the conditional preference relation in Figure 2.9.1 does not have
an expected utility representation.

To see this, consider a general conditional preference relation 2~ with an expected utility repre-
sentation u, and a line of beliefs [. For an example of a line of beliefs, see the grey line in Figure
2.9.2. Consider three choices a, b and ¢, and suppose that pgp, pec and py. are beliefs on that line where
the DM is indifferent between a and b, between a and ¢, and between b and c¢, respectively. Assume
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Figure 2.9.1 Regularity axioms are not sufficient for an expected utility representation
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Figure 2.9.2  Line of beliefs
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u(a,p) —u(b,p) u(a,p) —u(cp)

line [
Pbc ¢ Pac

Figure 2.9.3 Expected utility difference on a line of beliefs with three choices

moreover that pp. is in between pgp and pg., and that the DM prefers a to b, and a to ¢, at the belief
pre- Then, the expected utility differences between a and b, and between a and ¢, on the line [ must
behave as in Figure 2.9.3.

Note that at the belief py, the expected utility difference between a and b must be 0. Similarly, at
the belief p,. the expected utility difference between a and ¢ must be 0. At the belief py., the expected
utility of b must be the same as the expected utility of c¢. Hence, at the belief ps. the expected utility
difference between a and b must be the same as the expected utility difference between a and c. This
results in the two triangles in Figure 2.9.3.

From the first triangle we can derive the constant rate at which the expected utility difference
between a and b changes on the line /. Indeed,

A(u(a,p) —u(b,p)) A
e =%, (2.9.1)

where Ap is an arbitrary change of the belief p on the line [, and A(u(a,p) — u(b,p)) is the induced
change in expected utility difference between a and b. The lengths A and B are as given in the figure.

Similarly, from the second triangle we can derive the change rate of the expected utility difference
between a and ¢ through the equation

Ap -

A(u(a,p) —u(e,p)) A (2.9.2)

Indeed, note that u(a,p) — u(c, p) gets smaller if we move to the right on the line {. For that reason,
the change rate above is negative. By combining (2.9.1) and (2.9.2) we get

Aula,p) = u(b,p)) _ Alula,p) —u(b,p)/Ap _ A/B __C 293

A(u(a,p) —ule,p))  Alula,p) —ule,p))/Ap  —A/C B

Here, the ratio
A(u(a,p) — u(b, p))
A(u(a, p) — u(c, p))
expresses how quickly the expected utility difference between a and b changes, compared to the change
rate of the expected utility difference between a and c.
Fix a state s. Then, the length C' in the figure is proportional to the difference pac(s) — ppe(s),
whereas the length B is proportional to ppe(s) — pas(s). As such,

C o pac(s) - Pbc(S)

B B pab(s) - pbc(s) .



10 CHAPTER 2. DECISION PROBLEMS
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Figure 2.9.4 Why regularity axioms are not sufficient for an expected utility representation

Together with (2.9.3) this leads to

A(u(a,p) - u(b,p)) _ pac(s) _pbc(s)
A(U‘(avp) - U(C, p)) pab(s) - pr(S) .

(2.9.4)

Now, consider a line I’ of beliefs that is parallel to the line [, like in Figure 2.9.4.

Let pl,,p,. and p;. be beliefs on the new line I’ where the DM is indifferent between a and b,
between a and ¢, and between b and ¢, respectively. Then, (2.9.4) also applies to this new line and
these new beliefs.

Since the expected utility difference between any two choices changes linearly with the beliefs, the
change rate ratio

A(u(a,p) = u(b,p))
A(u(a,p) —u(c,p))

must be the same on the line [ as on the parallel line I’. In view of (2.9.4) we then conclude that

pac(s) - pbc(s) . pac(s) —pgc(s)
Pab(8) — Doc(s)  Ply(s) — ph(s) (2.9.5)

However, equation (2.9.5) is violated for the conditional preference relation in Figure 2.9.1. To see
that, consider the parallel lines [ and I’ in Figure 2.9.4. Indeed, if we choose rainy for the state s, then
we have that

Pgt(r) —pgn(r)  0.7—0.5
pht(r) —pgn(r) 0.3 —-10.5

-1

whereas
Pye(r) = Pg(r) — 0.64 —0.35
Phe(r) = P (1) 0-0.35

As such, the conditional preference relation from Figure 2.9.1 cannot have an expected utility repre-
sentation.

£ 1.
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Figure 2.9.5 Preference intensities on a line of beliefs for three choices

2.9.2 Three Choice Linear Preference Intensity

This raises the question: What is wrong with the conditional preference relation in Figure 2.9.17
Consider again the parallel lines of beliefs [ and I’ in Figure 2.9.4. Along those lines, the DM changes
his belief in exactly the same direction, while departing from different initial beliefs. Intuitively,
changing the belief in the same direction should change the intensity by which the DM prefers one
choice to another by the same rate. But, as we will show, the conditional preference relation in Figure
2.9.1 is not compatible with this principle.

To see this, consider an arbitrary conditional preference relation, a line [ of beliefs, and three
choices a,b and c. Assume that pgp, pac and py. are beliefs on this line where the DM is indifferent
between a and b, between a and ¢, and between b and ¢, respectively. As before, suppose that pg. is in
between py, and pue, and that the DM prefers a to b, and a to ¢, at the belief py.. If we assume that
the preference intensity between any two choices changes linearly on the line [, then the preference
intensities must behave as in Figure 2.9.5.

The picture looks exactly the same as the one in Figure 2.9.3. This should not come as a surprise,
since we have seen that expected utility differences can be identified with preference intensities. By
using the same arguments as above for expected utility differences, we can then conclude, for any state
s, that

A(z’nta>b(p)) _ pac(s) - pbc(s)
A(intw-c(p)) pab(s) - pbc(s) ‘

(2.9.6)

Here, int,.(p) denotes the intensity by which the DM prefers choice a to choice b at the belief p, and
similarly for intq..(p). As such, the ratio

A(inta-b(p))
A(intasc(p))

describes how quickly the preference intensity between a and b changes on the line [, compared to the
change rate of the preference intensity between a and c.

Now, consider a second line of beliefs I that is parallel to I. Suppose that p!,, p/,. and pj,. are beliefs
on the new line " where the DM is indifferent between a and b, between a and ¢, and between b and
¢, respectively. If we assume that the preference intensities change linearly with the belief then, in
particular, the change rate of the preference intensities on I’ must be the same as on . We can then
conclude, by (2.9.6), that

Pac(s) = Pe($) _ Pac(s) = Phe(5) (2.9.7)

pab(s) _pbc(s) p;b(s) —péc<8)
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for every state s. By cross-multiplication, this is equivalent to

(Pab(5) = Poe(s)) * (Plc(s) = Phe()) = (i (8) = Phe(s)) - (Pac(s) — poc(s))- (2.9.8)

This property, which is a consequence of the preference intensity between three choices changing
linearly with the belief, will be called three choice linear preference intensity.

To define the property formally, we must first explain more precisely what we mean by parallel
lines of beliefs. Consider two beliefs p1,ps and a number A such that (1 — X) - p; + X\ - pa is again a
belief. Then, the belief

p=1-=XN p1+Ap

lies on the line that goes through p; and po.
A line of beliefs is a set of beliefs [ for which there are two beliefs p1, po such that

Il={peA(S)|p=(1—=X) p1+ X p2 for some number \}.

That is, | contains exactly those beliefs that are on the line through p; and ps. In this case, we say
that [ is the line that goes through p; and pe. In Figure 2.9.4, for instance, the line [ goes through the
beliefs pg¢ and py,.

Now, consider two lines of beliefs [ and ', where [ goes through the beliefs p; and py, and I’ goes
through the beliefs p} and p). We say that the lines [ and I’ are parallel if there is a number A such
that p1 — p2 = X - (p] — pbh)-

We are now ready to introduce the new axiom three choice linear preference intensity.

Axiom 2.9.2 (Three choice linear preference intensity) For every three choices a,b,c, every
two parallel lines of beliefs | and I containing beliefs where the DM is not indifferent between any of
these three choices, every triple of beliefs pup, Pac, Pbe On | where the DM is indifferent between the
respective choices, and every triple of beliefs pl,,, i, D},. on I where the DM is indifferent between the
respective choices, it holds for every state s that

(Pab(5) = Poe(5))  (Pac(s) = Phe()) = (0 (8) = Phe($)) - (Pac(s) — poc(s))-

We have thus verified above that the conditional preference relation in Figure 2.9.1 violates the ax-
iom of three choice linear preference intensity. In particular, this means that the conditional preference
relation cannot be based on preference intensities that change linearly with the belief.

2.9.3 Geometric Characterization

In a decision problem with three states or more, it may be quite demanding to verify that three choice
linear preference intensity holds. In this case, we would have to check the formula above for every
two parallel lines [ and I’. And if there are at least three states, there are many — indeed, infinitely
many — of such parallel lines. In this light, it would be nice to find an easier way of checking for linear
preference intensity. This is precisely what we will do in this subsection.

Consider the conditional preference relation in Figure 2.9.6, which is a copy from Figure 2.3.1 in
the book. It turns out that it satisfies three choice linear preference intensity. The easiest argument
is to use the fact that it has an expected utility representation, as we have seen in Section 2.3 of the
book. Therefore, the preference intensities are given by the differences in expected utility, and will
thus vary linearly with the belief. This, in turn, guarantees three choice linear preference intensity, as
we have seen above.
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Figure 2.9.6 Conditional preference relation that satisfies three choice linear preference intensity
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Figure 2.9.7 Geometric characterization of three choice linear preference intensity

But suppose we would not know whether the conditional preference relation in Figure 2.9.6 has an
expected utility representation or not. How would we then show that it satisfies three choice linear
preference intensity? The key lies in extending the sets of beliefs where you are indifferent between
two choices to the area outside the belief triangle. Consider, for instance, the set of beliefs where you
are indifferent between house and tent. This is a line segment that goes through the beliefs (0.3,0,0,7)
and (0,0.15,0.85). If we would extend this line segment outside the belief triangle, we would get the
dotted line in Figure 2.9.7.

Note that this line goes through the point (0.7,—0.2,0.5) outside the belief triangle. To see this,
observe that

(0.7,-0.2,0.5) = (1 — \) - (0.3,0,0.7) + A - (0,0.15,0.85)

for A = —4/3. The reason that (0.7, —0.2,0.5) is outside the belief triangle is that its second coordinate
is negative. Hence, these three numbers do not correspond to the probabilities in a belief, because
probabilities must always be non-negative.
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[x] a~b [v]

Figure 2.9.8 Geometric characterization of three choice linear preference intensity

Similarly, we can also extend the line segment of beliefs where you are indifferent between garden
and house, and the line segment of beliefs where you are indifferent between garden and tent, outside
the belief triangle. This results in the other two dotted lines in Figure 2.9.7.

As can be observed, the three dotted lines meet at the same point (0.7, —0.2,0.5) outside the
belief triangle. This, as we will demonstrate now, is not a coincidence if three choice linear preference
intensity is satisfied.

Consider a conditional preference relation with three choices a,b and ¢, as shown in Figure 2.9.8.
Suppose that it satisfies three choice linear preference intensity. Then, equation (2.9.7) guarantees
that the ratio between the lengths A and B on the line [ is the same as the ratio between A’ and B’
on any parallel line I’. This means that there must be some fixed number « such that B’ = - A" on
every line I’ that is parallel to .

Consider now the dotted line through the beliefs where the DM is indifferent between a and c,
and the dotted line through the beliefs where the DM is indifferent between b and c. Suppose that
these two lines meet at some point g, possibly outside the belief triangle, and consider the line I” that
is parallel to [ and goes through this point ¢q. See Figure 2.9.8 for an illustration. Then, on the line
I it must be that the corresponding length A” is equal to 0. Since we have seen that B” = a - A”
for every line I” that is parallel to I, we then know that also B” must be equal to 0. This, however,
means that the line through the beliefs where the DM is indifferent between b and ¢ must meet the
line through the beliefs where the DM is indifferent between a and b at this point g. In other words,
the three dotted lines must meet at the same point q.

The other direction is also true: If the three dotted lines meet at the same point, then three choice
linear preference intensity must be satisfied. To see this, consider two arbitrary parallel lines of beliefs,
like the lines [ and I’ in Figure 2.9.8. Then, it must be that the ratio between A and B is the same as
the ratio between A’ and B’. This, in turn, implies that three choice linear preference intensity must
hold at the lines [ and I’

Thus, we see that for the case of three states, three choice linear preference intensity is satisfied
precisely when the linear extensions of the three indifference sets — that is, the sets of beliefs where
the DM is indifferent between two choices — all meet at the same point, possibly outside the belief
triangle.
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A similar result can be shown for an arbitrary number of states. To state this result formally, we
must first define more precisely what we mean by the linear extension of a set of beliefs. Consider the
set of beliefs P, where the DM is indifferent between the choices a and b. Take a point ¢, possibly
outside the set of beliefs. Then, we say that ¢ is in the linear extension of P,.p if there are beliefs
p1,p2 in Py, and a number A, such that

g=1—=X) -p1+ A po.

In other words, the point ¢ is on the line through two beliefs in P,.;. By (P,~) we denote the set of
all points ¢ that are in the linear extension of P,.;, and (P,) is simply called the linear extension
of PaNb-

In Figure 2.9.7, for instance, (P;~¢) contains all the points, inside and outside the belief triangle,
that are on the line through the beliefs (0.7,0,0.3) and (0.7,0.3,0) in P;;. In particular, the point
(0.7,-0.2,0.5) outside the belief triangle is in (Py~;) .

By using an argument like the one above, one can show that if three choice linear preference
intensity is satisfied, then every point that is in both (P,.) and (P..) will also be in (Py~c). In
Figure 2.9.7, for instance, the point (0.7,—0.2,0.5), which is in both (Py.;) and (Py¢), is also in
(P, g~t> :

Proposition 2.9.1 (Geometric characterization of three choice linear preference intensity)
Consider a conditional preference relation - that has preference reversals on every pair of choices,
and satisfies the regularity axioms and transitivity. Then, - satisfies three choice linear preference
intensity, if and only if, for every three choices a,b, ¢, every point that is both in (P,p) and (Pp)
will also be in (Pyc) .

The latter condition, that every point which is in (P,.;) and (Py..) will also be in (P,~.), is in
general easy to check. By the result above, verifying this condition is sufficient for checking whether
three choice linear preference intensity is satisfied. From a practical viewpoint this is a very useful
result.

Proposition 2.9.1 can be applied to show more easily that the conditional preference relation in
Figure 2.9.1 violates three choice linear preference intensity. To see this, consider Figure 2.9.9. It can
be seen that the linear extensions of Py, Pyp, and Pj,~; do not meet at the same point. Indeed, the
point ¢, outside the belief triangle, is in both (Py~¢) and (Py.p) , but not in (Pp) .

Conceptually, the condition in Proposition 2.9.1 may be viewed as an extension of transitivity
outside the set of beliefs. Indeed, by Question 2.1.2 (d) in the book we know that if the conditional
preference relation is transitive, then every belief that is in both P, and P, will also be in P,..
The condition in Proposition 2.9.1 states that this must also be true for the linear extensions of these
three indifference sets.

2.9.4 Four Choice Linear Preference Intensity
Suppose now that there are at least four choices at the disposal of the DM. If the DM’s preference
intensities between these four choices change linearly with the belief, then this has another consequence
which is different from three choice linear preference intensity. This new property will be called four
choice linear preference intensity.

To see what it says, consider a line of beliefs [, and four choices a,b,c and d. Suppose that
Dabs Pacs Pad» Poes Pbd and peg are beliefs on the line [ where the DM is indifferent between the respective
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Figure 2.9.9 Violation of three choice linear preference intensity

choices. If the preference intensities change linearly with the beliefs, then we have seen in the previous

section that )
A(znta>b(p)) . p(zc(s) —pr(S)

. - 2.9.9
A('Lnta>-c(p)) pab(s) - pbc(s) ( )
In fact, the same holds for the triples of choices a, b, d and a, ¢, d, and thus we know that
A(inta-b(P)) _ Pad(s) — Pea(s)
: = 2.9.10
Alintara®) ~ panls) — puals) (2:0:10)
and Alint
(inta-c(p)) _ Pad(8) — Ped(s) (2.9.11)

A(inta>d(p)) pac(s) - pcd(s)

as well. Clearly,
A(intgsp(p A(Znta>-b(p)) A(intasc(p))

)
A(inte-a(p))  Alinta-o(p)) Alintaya(p))’
If we combine this equation with (2.9.9), (2.9.10) and (2.9.11) we obtain
pad( pbd( ) pac( ) c(s) pad(s) —Pcd(S)
Pab(5) = Pba(5) — Dab(5) = Poe(8)  Pac(s) — peals)
By cross-multiplication, this leads to the condition

(Pab(8) = Poc(8)) + (Pac(s) — Ped(8)) - (Pad(s) — Poa(s))
= (Pab(8) = Ped(8)) - (Pac(s) — Pbe(8)) * (Pad(s) — Ped(s))-

This property is called four choice linear preference intensity.

Axiom 2.9.3 (Four choice linear preference intensity) For every line of beliefs [, for every four
choices a, b, c,d such that there is a belief on this line where the DM is not indifferent between any
pair of choices in {a,b,c,d}, and for every six beliefs pap, Dacs Pads Pbes Pbd and peq on the line | where
the DM is indifferent between the respective choices, it holds for every state s that

(Pab(8) = Pbe(8)) * (Pac(s) — Pea(s)) - (Paa(s) — poa(s))
= (Pab(8) — Pea(8)) - (Pac(s) — Poe($)) + (Pad(s) — pea(s))-
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Figure 2.9.10 The birthday party with two states and four choices

To illustrate this axiom, suppose that in the example “The birthday party” you replace the states
stormy and calm by the “summary” state dry, like we did in Figure 2.4.7 of the book. At the same
time, you thought about another possible location for your party, which is a nice square close to your
house. Assume that your conditional preference relation is given by Figure 2.9.10, which should be
read in the same way as Figure 2.4.7 of the book.

It may be verified that this conditional preference relation satisfies the regularity axioms, transi-
tivity and three choice linear preference intensity. In fact, three choice linear preference intensity is
satisfied trivially, as there are no two distinct parallel lines of beliefs in this scenario. The only possible
line of beliefs is the one that goes through the beliefs [d] and [r], assigning probability 1 to dry and
rainy, respectively.

However, depending on the precise probabilities we specify for the beliefs py, ..., pgs, the axiom of
four choice linear preference intensity may be satisfied or violated. If we take, for instance, py,(r) =
0.05, ppg(r) = 0.12, pyg(r) = 0.4, prs(r) = 0.5, prs(r) = 0.8 and pys(r) = 0.88, like we did in Figure
2.4.7 of the book, then it may be verified that four choice linear preference intensity is satisfied. Please
verify this. If we change pys(r) into 0.9, while leaving the other indifference beliefs the same, then it
turns out that four choice linear preference intensity is violated. Also verify this, please.

Note that a conditional preference relation with an expected utility representation will always
satisfy four choice linear preference intensity. The reason is that in this case, the preference intensity
between any two choices will always change linearly with the belief, as this preference intensity corre-
sponds to the difference in expected utility between these two choices. As such, the second conditional
preference relation above, where pyq(r) = 0.9, cannot have an expected utility representation.

It turns out that the axioms we have gathered until now, which are the regularity axioms, transi-
tivity, three choice linear preference intensity and four choice linear preference intensity, are sufficient
for guaranteeing an expected utility representation, provided there are preference reversals for all pairs
of choices. This is the content of the following result.

Theorem 2.9.1 (Expected utility with preference reversals) Consider a conditional preference
relation 7~ where there are preference reversals for all pairs of choices. Then, 7 has an expected util-
ity representation, if and only if, 7~ satisfies continuity, preservation of indifference, preservation of
strict preference, transitivity, three choice linear preference intensity and four choice linear preference
intensity,

Recall that the last two axioms indicate that the preference intensities must change linearly with
the belief. In that light, the result above shows that the conditional preference relations with an
expected utility representation are precisely those that are based on preference intensities that change
linearly with the belief, of course assuming the regularity axioms and transitivity in the background.
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Figure 2.9.11 Intuition for why utility design procedure works

We will now provide an intuition for why the axioms above are sufficient to guarantee an expected
utility representation. Consider a conditional preference relation 7~ with preference reversals for all
pairs of choices which satisfies all of the axioms above. Recall that we can use the utility design
procedure from Section 2.4.2 of the book to compute a utility function u. We will intuitively explain
why this utility function u represents the conditional preference relation 7.

As an illustration, consider a conditional preference relation with four choices and three states, as
given in Figure 2.9.11. We have only indicated the preference between the four choices in one of the
seven regions, as to not crowd the picture too much. The preferences in the other six regions can be
derived form these preferences, using the lines of beliefs where the DM becomes indifferent between
two choices.

It may first be verified that this conditional preference relation satisfies the regularity axioms and
transitivity. To see why it satisfies three choice linear preference intensity, note that the lines of beliefs
P,p, Pioc and Py, when extended linearly outside the belief triangle, all meet at the same point
v. Therefore, we know by Proposition 2.9.1 that three choice linear preference intensity is satisfied
for the choices a,b and c. In a similar way, it can also be verified that three choice linear preference
intensity holds for the triple of choices a, b, d, the triple a, c,d and the triple b, c, d.

Moreover, we assume that the beliefs p1, g2, q1, 72,71 and r are chosen such that they satisfy the
equation for four choice linear preference intensity on the line between [z] and [z]. It may be verified
that this implies that the conditional preference relation satisfies four choice linear preference intensity.

Finally, note that there are preference reversals for all pairs of choices, and that there are beliefs
where the DM is indifferent between some, but not all, choices. Hence, all the conditions for applying
the utility design procedure are satisfied.

The utility design procedure would work as follows. We start by choosing the utilities for a
arbitrarily, and by choosing an arbitrary utility for u(b, z) larger than u(a, z). Subsequently, we apply
the utility difference property to the beliefs p; and ps, for the choices a and b, to determine u(b, x)
and wu(b,y). The utility difference property makes sure that the expected utility of a will be equal to
the expected utility of b at the beliefs p; and ps. As such, the expected utility of a will be the same
as for b at all beliefs where the DM is indifferent between a and b.

Next, to determine the utilities for ¢, we apply the utility difference property to the belief ¢; for
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the choices ¢ and a, and to the beliefs ¢o and g3 for the choices ¢ and b. This guarantees that at the
beliefs ¢o and g3, the expected utility for b will be same as for c¢. As such, at all beliefs where the DM
is indifferent between b and c¢, the expected utility for b will be the same as for c.

Note that the lines of beliefs P, and P,.., when extended linearly, meet at the same point v. As
the expected utility for a is the same as for b on P,.p, and the expected utility for b is the same as
for c on Py, it follows that the expected utilities for a, b and ¢ will all be the same at the point v. In
particular, the expected utility for a will be the same as for ¢ at the point v.

Now, the utility difference property at ¢; for the choices ¢ and a makes sure that at g1, the expected
utility for a is the same as for c. But then, the expected utility for a must be the same as for ¢ at
all points on the line through v and ¢;. In particular, the expected utility for ¢ must be the same as
for ¢ at all beliefs where the DM is indifferent between a and c. Hence, we have seen so far that the
utilities for a,b and c get the three indifference lines P,.p, Py~ and P, right.

Subsequently, we generate the utilities for d by applying the utility difference property to the belief
ry for the choices d and a, and to the beliefs 7o and r3 for the choices d and b. In the same way as
above for a, b, ¢, it then follows that the utilities for a,b and d will get the indifference lines P,.4 and
By 4 right. It remains to show that it will also get the last indifference line P.,.. 4 right.

Note that the indifference lines P,.q and P,~., when extended linearly, meet at the same point v.
Since the expected utility for a is the same as for d at all beliefs in P, 4, and the expected utility for
a is the same as for ¢ at all beliefs in P, it follows that the expected utilities for a,c and d are all
the same at the point v. In particular, at the point v the expected utility for c¢ is the same as for d.

Consider the line between [z] and [z]. Since four choice linear preference intensity is satisfied on
this line, the belief r on this line where the DM is indifferent between ¢ and d is uniquely given by
the other five indifference beliefs p1, g2, q1, 72 and ry on this line, through the equation in four choice
linear preference intensity.

On the other hand, the conditional preference relation induced by the utilities generated for a, b, ¢
and d will also satisfy four choice linear preference intensity on this line. Since we have seen that the
utilities get the indifference beliefs p1,qo, 1,72 and ry right, and r is uniquely given by p1, qo, g1, 72
and r; through four choice linear preference intensity, the utilities must also get the indifference belief
r right. That is, at the belief r the expected utility for ¢ must be the same as for d.

Altogether, we see that the expected utility for ¢ must be the same as for d at the points v and
r, and hence they must be the same at all beliefs on the line through v and r. As such, at all beliefs
where the DM is indifferent between ¢ and d, the expected utility for ¢ will be the same as for d.
Hence, the utilities also get the last line of indifference beliefs P,..4 right.

Not only this, the utilities will also get all the preferences between the choices right for all possible
beliefs. In other words, the utility matrix generated by the utility design procedure will indeed
represent the conditional preference relation at hand.

2.10 *General Case

In the previous section we have considered scenarios in which there are preference reversals for all
pairs of choices. We will now move towards the general scenario where there may be no preference
reversals for some pairs of choices, because some choices may be weakly, or even strictly, dominated
by other choices. For those scenarios, we investigate what additional axioms need to be imposed on a
conditional preference relation such that it allows for an expected utility representation.
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Figure 2.10.1 Signed indifference belief

As we will see, the key is to look at so-called signed beliefs, which allow for “probabilities” that
are negative, or larger than one. Although signed beliefs cannot be interpreted directly as likelihoods,
they may be used to measure how the preference intensity between two choices changes when we move
from one state to another.

Every conditional preference relation can be extended to a signed conditional preference relation,
which does not only assign a preference relation over choices to every belief, but also to every signed
belief. The axioms we have seen so far for conditional preference relations can be generalized to
signed conditional preference relations, and we will argue that these generalized axioms make intuitive
sense if we assume that the preference intensity between two choices changes linearly with the belief.
Besides, we need two new axioms. Our main result shows that a conditional preference relation has an
expected utility representation precisely when it can be extended to a signed conditional preference
relation that satisfies each of these axioms.

2.10.1 Signed Beliefs

In the previous section we restricted ourselves to scenarios where there are preference reversals for all
pairs of choices. We will now extend our analysis to cases where there may be no preference reversals
between some pairs of choices, because some choices are weakly, or strictly, dominated by other choices.

Consider again the birthday party example and let us focus, for the moment, on your choices house
and tent. Suppose that you always prefer house to tent, irrespective of your belief about the weather,
because you had a terrible camping experience last year. That is, your choice house strictly dominates
your choice tent. Or, in other words, the intensity by which you prefer house to tent is always positive,
no matter what belief you have.

Still, it seems plausible that the intensity by which you prefer house to tent is greater at the state
stormy than at the state calm, because in the former case there is a chance that the tent will be
blown away. Assume that the intensity by which you prefer house to tent at the state stormy is three
times higher than at the state calm. See Figure 2.10.1. Then, on the line of beliefs through the states
calm and stormy, we could linearly extend this preference intensity outside the set of beliefs. This is
depicted by the dashed line in Figure 2.10.1. If we do so, the preference intensity between house and
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tent would become zero at the vector (0,—0.5,1.5) outside the belief triangle.

This vector, which assigns 0 to state rainy, —0.5 to state stormy and 1.5 to state calm, cannot
really be interpreted in the way we understand a belief. The reason is that it involves numbers which
are negative, or larger than 1, which cannot be interpreted as likelihoods. But the indifference vector
(0,—0.5,1.5) does have a meaning: It states that the preference intensity between house and tent
at the state stormy is three times higher than at the state calm. Such vectors, which may include
numbers less than 0 or larger than 1, but where the sum is equal to 1, are called signed beliefs.

Definition 2.10.1 (Signed belief) For a given set of states S, a signed belief q assigns to every
state s a (possibly negative) number q(s) such that ) ¢ q(s) = 1.

Thus, every belief is a signed belief, but not vice versa. Let us now go back to the example above,
with the choices house and tent. As we have seen in earlier sections, the preference intensity between
house and tent at a given belief, or state, can be identified with the expected utility difference between
the choices. Thus, we conclude that

u(house, stormy) — u(tent, stormy)

=3

u(house, calm) — u(tent, calm) ’
as visualized in Figure 2.10.1. Moreover, at the signed indifference belief ¢ = (0,—0.5,1.5) we have
that q¢(stormy) = —0.5 and ¢(calm) = 1.5, which implies that ¢(calm)/q(stormy) = —3. If we combine
this with the equality above, we obtain

u(house, stormy) — u(tent, stormy) q(calm)

u(tent, calm) — u(house, calm)  q(stormy)’

Note that this involves the same expression as the utility difference property in Section 2.4 of the book.
In fact, it may be viewed as a generalization of the utility difference property to signed indifference
beliefs.

To see why, in general, the utility difference property also holds for signed “indifference” beliefs,
consider two choices, a and b, two states z and y, and a signed “indifference” belief g on the line
through [z] and [y] where the DM is “indifferent” between a and b. See Figure 2.10.2 for an illustration.
Similarly to Section 2.4 of the book, we conclude that

u(a, ) — u(b, x)

u(a7 y) - u(bv y)

|

Moreover, it can be seen from the figure that

A _q@z)-1  1-q(=) _ q@)

B q(z)-0 q(x) q(x)

By combining these two equations we obtain

u(a, ) —u(b,z)  qy)
u(b,y) —u(a,y) qz)’

which may be viewed as the utility difference property for signed beliefs.

Let us return again to our example above, where you always prefer house to tent for every belief.
We assumed that the intensity by which you prefer house to tent when it is stormy is three times
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higher than when it is calm. Now suppose, additionally, that the intensity by which you prefer house
to tent when it is stormy is two times higher than when it is rainy. If we assume that your preference
intensity between house and tent changes linearly with your belief, your preferences for all possible
signed beliefs can visualized by Figure 2.10.3.

This picture should be read as follows: The dotted line, going through the signed beliefs (2, —1,0)
and (0, —0.5, 1.5), represents all the signed beliefs where you are “indifferent” between house and tent.
Consider, for instance, the signed belief ¢ = (2, —1,0) on the line through rain and stormy. By the
utility difference property above, we have that

u(house, stormy) — u(tent, stormy) _ q(rainy) 2 5
u(tent, rainy) — u(house, rainy)  q(stormy) -1

Thus, the intensity by which you prefer house to tent when it is stormy is twice as high as when it
is rainy, as required. The set of signed beliefs where you are “indifferent” between house and tent is
denoted by Qp~; in the figure.

Moreover, the figure indicates that for all signed beliefs to the right of the dotted line you “prefer”
house to temt, whereas on the other side of the dotted line you “prefer” tent to house. Since all
(traditional) beliefs are to the right of the dotted line, you prefer house to tent for all beliefs, as it
should be.

Such an object, which specifies a preference relation over choices for every signed belief, is called
a signed conditional preference relation.

Definition 2.10.2 (Signed conditional preference relation) A signed conditional preference
relation J* assigns to every signed belief q a preference relation 7, over the choices.

Similarly to “normal” conditional preference relations, we can also define what it means for a
signed conditional preference relation to be represented by a utility function. Formally, we say that
a signed conditional preference relation =—* is represented by a utility function w if for every signed
belief ¢ and every two choices a and b we have that

a Z, b if and only if u(a, q) > u(b, q).

Here,

u(a,q) ==Y q(s) - u(a,s)

ses

represents the “expected utility” induced by the choice a at the signed belief ¢, and similarly for
u(b, q). We write “expected utility” between quotes since ¢ need not necessarily be a belief.

In Figure 2.10.3 we can say that the “normal” conditional preference relation 7, where you always
prefer house to tent for every belief, can be extended to the signed conditional preference relation ~—*
depicted in that figure. In a sense, the signed conditional preference relation reveals more information,
as it also states how the intensities by which you prefer house to tent compare at the three states
of weather. In general, extending a conditional preference relation to a signed conditional preference
relation can be defined as follows.

Definition 2.10.3 (Extension to signed conditional preference relation) A signed conditional
preference relation 7-* extends a conditional preference relation 77 if for every belief p € A(S) the
preference relations Z;, and Z; coincide.
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Figure 2.10.4 Relative change of preference intensities on a line

Clearly, if a conditional preference relation 7~ can be extended to a signed conditional preference
relation 2—* with an expected utility representation u, then the utility function u will also represent
the conditional preference relation 7~ . Thus, if we are given a conditional preference relation 7, where
some choices possibly weakly or strictly dominate other choices, and ask whether it has an expected
utility representation, then it all boils down to the following question: Can 7 be extended to a signed
conditional preference relation 7~* with an expected utility representation? If the answer is “yes”, then
>~ will have an expected utility representation as well. If the answer is “no”, then there is no expected
utility representation for 7 .

In a sense, the question whether an expected utility representation exists is thus shifted to the
domain of signed conditional preference relations. As we will see in the following two subsections, a
signed conditional preference relation will have an expected utility representation precisely when it
satisfies (a generalized version of) the regularity axioms, transitivity, three choice linear preference
intensity and four choice linear preference intensity, together with two additional axioms that are
related to cases of “constant preference intensity”.

2.10.2 Extending the Previous Axioms

As we have seen above, a signed conditional preference relation reveals for every two choices a and
b how the intensities by which the DM prefers a to b at the various states relate to each other. But
if there are more than two choices, then a signed conditional preference relation will also tell us, for
every line of signed beliefs, and every three choices a, b, ¢, how quickly the preference intensity between
a and b changes on this line, as compared to the speed with which the preference intensity between a
and c changes.

To see this, consider Figure 2.10.4 where we have depicted the preference intensities between a and
b and between a and c on a line of signed beliefs. Here, qup, ¢oc and gy are the signed beliefs on the
line [ where the DM is “indifferent” between the respective choices. In the figure, we assume that g,
and qq. are “real” beliefs whereas qp. is not, but this is not relevant for our argument. As in Section
2.9.2, int,.p denotes the intensity by which the DM prefers a to b, and similarly for int,. .. Note that
the two preference intensities must be equal at the signed belief gp., where the DM is “indifferent”
between b and c.

Similarly to Section 2.9.2, we conclude that the relative change rates of these two preference
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intensities satisfy
A(intas4(q)) - Qac(8) — qve(8)
A(intcw-c(q» Qab(s) - ch(s)
for every state s where the probability of s is not constant on the line. That is, the three signed
indifference beliefs qup, goe and ¢p. determine the relative speed at which the preference intensities
between a and b and between a and ¢ change on the line.

If we assume that the preference intensity between any two choices changes linearly with the belief,
then the relative change rates of the preference intensities must always be the same on two parallel
lines of signed beliefs [ and I’. Hence, if we consider a line I’ of signed beliefs parallel to the line [ in
Figure 2.10.4, then on the line I’ the ratio A(int,s(q))/A(intqs-c(¢)) must be the same as on the line
. 1f ¢/, q,,. and qj, denote the signed “indifference” beliefs on the line I’ then, in view of (2.10.1), we
must have that

(2.10.1)

Gac(5) = @e(s)  dae(s) — g4 (5)
Gab(s) = ave(s) — qy(s) — ape(s)’
and hence
(qab(5) = @e(5)) - (Gac(s) = @be(5)) = (Gap(5) = @be(5))  (dac(s) — Goe(s))- (2.10.2)

This may be viewed as an extension of three choice linear preference intensity to signed conditional
preference relations. Although this property includes signed beliefs, it follows solely from the as-
sumption that the preference intensity between any two choices of the original conditional preference
relation — which does not include signed beliefs — changes linearly with the belief.

Now, consider four choices a, b, ¢, d, and a line [ of signed beliefs. Similarly to Section 2.9.4, it must

hold that
A(inttw-b(Q)) — A(intz»—b(Q)) . A(inta>c(Q))
A(inttw-d(Q)) A(inta>c(Q)) A(inttw-d(Q))'

Together with (2.10.1), and using the same arguments as in Section 2.9.4, this leads to

(ab(8) — qbe(8)) - (ac(8) — qea(s)) - (qad(s) — qva(s)) (2.10.3)
= (qap(s) = @d(5)) - (qac(s) — @be(s)) - (qaals) — qea(s)).

Here, qup, ..., geq denote the signed “indifference” beliefs for the six pairs of choices from {a, b, ¢, d}. This
formula can be viewed as an extension of four choice linear preference intensity to signed conditional
preference relations. Again, the formula follows from the assumption that the preference intensities of
the original conditional preference relation — which does not include signed beliefs — change linearly
with the belief.

Summarizing, we see that if the preference intensities of the original conditional preference relation
7~ change linearly with the belief, then it must be possible to extend 7~ to a signed conditional preference
relation 7—* that satisfies three choice and four choice linear preference intensity.

But we can say even more: In this case, the signed conditional preference relation 77* must also
satisfy (generalizations of) the regularity axioms and transitivity.

To see why it satisfies the regularity axioms, we consider Figure 2.10.5 as a reference point. It
depicts the conditional preferences between two choices, a and b, with three states z, y and z. Moreover,
for every belief it shows the intensity by which the DM prefers a to b, along the vertical axis. In
particular, the DM always prefers a to b for every belief, but this preference intensity varies in a linear
fashion with the belief.

Note that these preference intensities are captured by the signed conditional preference relation
shown in the same figure. Indeed, if we linearly extend the preference intensity levels outside the
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Figure 2.10.5 Regularity axioms for a signed conditional preference relation

belief triangle, then the signed beliefs where the DM is “indifferent” are exactly those points where
the preference intensity is zero.

On the basis of this figure, we will now argue that the signed conditional preference relation 7-*
must satisfy the three regularity axioms. We will start with continuity. Take two signed beliefs, ¢1
and g2, where a 7 b and b -, a. See Figure 2.10.5 for an illustration. Then, it can be seen that
there is a signed belief g3 on the line segment between ¢; and go where the DM is “indifferent”. This
establishes continuity.

We next consider preservation of indifference. Take two signed beliefs, g3 and g4, where the DM is
“indifferent”. See Figure 2.10.5 for an illustration. Then, for every signed belief on the line segment
between q3 and ¢4, the DM would also be “indifferent”. Thus, preservation of indifference holds.

Now, consider preservation of strict preference. Consider a belief g3 where a 7, b and a belief
q1 with a >3 b. See Figure 2.10.5 for an illustration. Then, it can be seen that at every belief on
the line segment between g3 and ¢q; (excluding g3 and ¢;) the DM strictly prefers a to b. This yields
preservation of strict preference.

We finally turn to transitivity. Consider three choices, a,b and ¢, and a signed belief ¢ such that
a Zy band b 77 c. We will see that it then naturally follows that a 7 c. Take some “real” beliefs
p1,p2 such that ¢ is on the line through p; and ps. See Figure 2.10.6 for an illustration in case the
preference intensity between a and b is linear in the belief. Let g, be the signed belief on that line
where the DM is “indifferent” between a and b. Then, according to Figure 2.10.6 we must have that

intasp(p1) A

inta>b(p2) B
Let gqp = (1 — A)p1 + Apg for some number A. Then,
A 0—-X A

B 1-X X-1

By combining the two equalities above we get that

Y intas(p1)
o = (1— A Apz with B '
Gab = (1 = A)p1 + Apz with +—— int s (pa)
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Figure 2.10.6  Continuity for signed conditional preference relations

*

Since a Z;

b, we must have that ¢ is either equal to g4, or to the right of ¢, and hence

A < int(z>—b(p1)

= (1= Ap2 with '
q= )p1 + Aps wi A—1 7 intesp(p2)

As at the signed belief ¢ both A and A — 1 are negative, this can be rewritten as
g = (1= A)p1 + Ap2 with A - inta,p(p2) > (A — 1) - intaep(p1). (2.10.4)
As b Zy ¢, it follows in a similar way that
g = (1= X)p1 + Ap2 with X - intpec(p2) > (A= 1) - intpec(p1)- (2.10.5)
By adding (2.10.4) and (2.10.5) we get
q=(1—X)p1 + Ap2 with (2.10.6)
A (intamp(p2) + intpec(p2)) > (A — 1) - (intamp(p1) + intpc(p1))-

Intuitively, intq.p(p1) + intpc(p1) represents the intensity by which the DM prefers a to c. Indeed,
it makes sense to view preference intensity as an additive concept, which means that the intensity by
which the DM prefers a to ¢ can be written as the sum of the intensity by which he prefers a to b and
the intensity by which he prefers b to c. Thus, int,.p(p1) + intpsec(p1) = inte=c(p1), and similarly for
p2.

If we substitute this into (2.10.6) we obtain that

qg=(1—=X)p1 + Ap2 with X -intgec(p2) > (A — 1) - inteec(p1),

and hence )
A < Mlgsc (p 1 )

A—-17 inta>c(p2).

g = (1—A)p1 + Apz with

In view of Figure 2.10.6, this means that a Zj c. This establishes transitivity.
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Summarizing, we have seen that if the preference intensities between the choices vary linearly
with the belief, then every signed conditional preference relation 7—~* that extends 7~ must satisfy the
regularity axioms. Moreover, as shown above, the signed conditional preference relation =~* will also
satisfy three choice and four choice linear preference intensity. Finally, it must also satisfy transitivity.
For completeness, we now summarize these axioms for signed conditional preference relations.

Definition 2.10.4 (Axioms for signed conditional preference relations) A signed conditional
preference relation 7—* satisfies

(a) continuity if for every two choices a,b and every two signed beliefs q; and go with a =5 b and
b =y, a, there is a A € (0,1) such that the DM is “indifferent” between a and b at the signed belief
(1= Na1 + Ao

(b) preservation of indifference if for every two choices a, b, for every two signed beliefs q1, qo with
a ~y banda~g b, and for every A € (0,1), the DM is “indifferent” between a and b at the signed
belief (1 — A\)q1 + Aqo;

(c) preservation of strict preference if for every two choices a, b, for every two signed beliefs q1, g2
with a Z; b and a =}, b, and for every A € (0,1), the DM “prefers” a to b at the signed belief

(1= Naq1 + Aga;
(d) transitivity if the preference relation 7y is transitive for every signed belief g;

(e) three choice linear preference intensity if for every three choices a,b,c, every two parallel
lines of signed beliefs | and I' containing signed beliefs where the DM is not “indifferent” between
any of these three choices, every triple of signed beliefs qup, Gac, qpe 011 | where the DM is “indifferent”
between the respective choices, and every triple of signed beliefs ¢, q.,.,q;. on I' where the DM is
“indifferent” between the respective choices, it holds for every state s that

(qab(s) = @be(5)) - (dac(8) — ahe(s)) = (@ (5) = Gbe(5)) - (dac(s) — aue(s));

(f) four choice linear preference intensity if for every line of signed beliefs [, for every four choices
a,b, c,d such that there is a signed belief on this line where the DM is not “indifferent” between any
pair of choices in {a,b,c,d}, and for every six signed beliefs qup, Qac, Qad, Gbc, b and qeq on the line
where the DM is “indifferent” between the respective choices, it holds for every state s that

(qab(5) = @be(5))  (qac(s) = ged(s)) - (qaa(s) — qva(s))
= (ng(s) - de(s)) ’ (QCLC(S) - ch(s)) ’ (szd(s) - qu(S))'

However, as we will see in the next subsection, these axioms will not suffice to guarantee an
expected utility representation for a signed conditional preference relation. The reason is that so far
we have not examined cases where the preference intensity between two choices is constant. These
scenarios will be studied in the following subsection.

2.10.3 Axioms for Constant Preference Intensity
So far we have only studied cases where for every pair of choices a and b, the signed conditional
preference relation admits a signed belief ¢ where the DM is “indifferent” between a and b. As we
have seen in Figure 2.10.2, such signed “indifference” beliefs ¢ measure how the preference intensity
between a and b varies if we move from one state to another.
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Figure 2.10.7 Constant preference intensity

But what if there are no signed beliefs ¢ for which the DM is “indifferent” between a and b7 This
is precisely the case when the intensity by which the DM prefers a to b is always the same for every
belief. Indeed, in such a scenario the preference intensity between a and b in Figure 2.10.2 would be
horizontal, and hence would nowhere become zero on the line. In these cases, the DM would either
always “prefer” a to b for every signed belief, or always “prefer” b to a for every signed belief. We
say that there is constant preference intensity between a and b.

Definition 2.10.5 (Constant preference intensity) A signed conditional preference relation 7-*
reveals a constant preference intensity between choices a and b if either a = b for every signed
belief q, or b =} a for every signed belief q, or a ~7 b for every signed belief g.

As an illustration, consider the signed conditional preference relation in Figure 2.10.7. Since you
are never “indifferent” between house and garden, or between house and tent, for any signed belief,
we conclude that you have a constant preference intensity between house and garden, and between
house and tent.

It may be verified that this signed conditional preference relation =* satisfies all the axioms from
the previous subsection. Nevertheless, it does not allow for an expected utility representation. To see
this, note that an expected utility representation u for ~* must necessarily have a constant utility
difference between house and garden, and between house and tent. Indeed, otherwise there would be
signed beliefs where you would become “indifferent” between house and garden, or between house and
tent. But then, the utility difference between garden and tent must also be constant across all signed
beliefs. This would mean, in turn, that you are either always indifferent between garden and tent, or
that you always prefer one of these choices over the other. However, this would contradict the signed
conditional preference relation at hand, and hence there is no expected utility representation for the
signed conditional preference relation 2* .

This raises the question: What is “wrong” with this signed conditional preference relation? Recall
that the intensity by which you prefer house to garden, and the intensity by which you prefer house
to tent, is constant across all signed beliefs. But then, the preference intensity between garden and
tent should also be constant — a principle which is violated in Figure 2.10.7. This principle is called
transitive constant preference intensity.
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Axiom 2.10.1 (Transitive constant preference intensity) If under the signed conditional pref-
erence relation * there is a constant preference intensity between choices a and b, and between choices
b and c, then there must also be a constant preference intensity between choices a and c.

Let us now go back to the axiom four choice linear preference intensity. As we have seen before,
this axiom reveals that on a line of signed beliefs we have that

A(intarp(q) _ Alinta-b(g)  Alinta-c(q)) (2.10.7)

A(inta>-d(q)) A(inta>c(q)) A(inttv-d(q))
Suppose now that the preference intensity between ¢ and d is constant. Then, the preference in-
tensity between a and ¢ and the preference intensity between a and d will only differ by a con-
stant. In particular, the speed at which the preference intensity between a and ¢ changes will be

the same as the speed at which the preference intensity between a and d changes, which means that
A(intgec(q))/Alintaea(q)) = 1. By (2.10.7) we then get that

A(intasp(q)) _ A(intasb(q))
A(intasa(q))  Alintesc(q))

Since we have seen that

A(inta>b(q)) _ Qad(s) - de(s) and A(inta>b(q» _ Q(Lc(s) - ch(s)
A(inta>d(Q)> Qab(3> - de(s) A(int(v—c(q» Qab(s) - ch(s)

we conclude that

Qad(s) - de(3> _ qac(s) - ch(s)
qab(5) — @a(s)  qav(s) — que(s)

This, in turn, yields the formula

(qab(8) — @be(8))  (qad(s) — qva(s)) = (qab(s) — wa(s)) * (dac(s) — qve(s))- (2.10.8)

Suppose, in addition, that the preference intensity between a and b would also be constant. That
is, the preference intensities between a and b, and between ¢ and d, would both be constant. Then,
on a line of signed beliefs the preference intensities between the various pairs of choices would yield
a picture similar to that in Figure 2.10.8. Note that the preference intensities between a and b, and
between ¢ and d, correspond to horizontal lines, as these are constant on the line of signed beliefs.
Moreover, at the signed belief ¢,q where the preference intensity between a and d is equal to the
preference intensity between a and b, it must be that the preference intensity between b and d is zero,
and hence the DM is “indifferent” between b and d. Similarly, at the signed belief q,. the preference
intensity between a and d is equal to the preference intensity between ¢ and d, and thus the DM is
“indifferent” between a and c.

Moreover, the difference between the preference intensity between a and d on the one hand and
the preference intensity between b and d on the other hand must always be equal to the constant
preference intensity « between a and b. As such, the line of the preference intensity between b and
d is parallel to the line of the preference intensity between a and d. In fact, the first line is obtained
by the second line if we shift it downwards by the amount «. Finally, note that at the signed belief
qve the preference intensity between b and d is equal to the preference intensity between ¢ and d, and
hence the DM is “indifferent” between b and c.

From the picture it can clearly be seen that

Qac(8) — qve(8) = qaa(s) — qva(s) (2.10.9)
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Figure 2.10.8 Four choice linear preference intensity with constant preference intensity

for every state s.
The formulas (2.10.8) and (2.10.9) give rise to the following axiom, which we call four choice linear
preference intensity with constant preference intensity.

Axiom 2.10.2 (Four choice linear preference intensity with contant preference intensity)
For every line of signed beliefs I, and for every four choices a,b, c,d such that there is a signed belief
on this line where the DM is not “indifferent” between any pair of choices in {a, b, ¢, d}, the following
holds:

(a) if there is a constant preference intensity between c¢ and d, but not between the other five pairs
of choices, then for every five signed beliefs qup, Guc, Gads @pe and qpq on the line | where the DM is
“indifferent” between the respective choices, it holds for every state s that

(ng(s) - qu(S)) : (qu(s) - de(s)) = (Qab(s) - de(s)) : (Qac(s) - ch(s));

(b) if there is a constant preference intensity between a and b, and between ¢ and d, but not between
the other four pairs of choices, then for every four signed beliefs quc, qud, qpe and qpq on the line | where
the DM is “indifferent” between the respective choices, it holds for every state s that

Gac(5) = Qve(s) = qad(s) — qpa(s).

Now, take a conditional preference relation 7~ with an expected utility representation. Then, as we
have seen in Section 2.9, the induced preference intensity between every two choices will vary linearly
with the belief. Consequently, on the basis of our arguments above, we can extend ~ to a signed
conditional preference relation ~—* that satisfies all of the axioms above.

However, it turns out that the opposite direction is also true: If we can extend the conditional
preference relation 77 to a signed conditional preference relation 2* that satisfies all of the axioms
above, then there will be an expected utility representation for 7~ . As such, the axioms above char-
acterize precisely those conditional preference relations that admit an expected utility representation.
We thus obtain the following result.
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Figure 2.10.9 Verifying the axioms

Theorem 2.10.1 (Expected utility for the general case) A conditional preference relation has
an expected utility representation, if and only if, it can be extended to a signed conditional preference
relation that satisfies continuity, preservation of indifference, preservation of strict preference, transi-
tivity, three choice linear preference intensity, four choice linear preference intensity, transitive constant
preference intensity and four choice linear preference intensity with constant preference intensity.

As we have argued above, all of these axioms are consequences of assuming that the preference
intensities between every two choices change linearly with the belief. When viewed in this light, the
result above states that expected utility may be seen as an expression of linear preference intensity.

2.10.4 Verifying the Axioms

We have seen in Theorem 2.10.1 that a conditional preference relation has an expected utility repre-
sentation precisely when it can be extended to a signed conditional preference relation that satisfies
a list of axioms. This result can be used for two purposes: First, as we have done above, we can use
it to show that a given conditional preference relation has an expected utility representation. But
we can also use it to prove that a given conditional preference relation 7~ does not have an expected
utility representation. Indeed, if we show that every signed conditional preference relation 72* that
extends 7~ violates at least one of the axioms, then we know that 7~ cannot have an expected utility
representation. Moreover, the axiom, or axioms, that are violated tell us what is “wrong” with the
conditional preference relation at hand.

As an example, consider the conditional preference relation 7~ in Figure 2.10.9. We will show that
every signed conditional preference relation 7Z* that extends 72 must necessarily violate some of the
axioms.

To see why, note that the indifference sets in Z* between house and garden, between house and
square, between garden and tent and between tent and square are uniquely given by the corresponding
indifference sets in -, inside the belief triangle. Hence, these four indifference sets in ~* must be
given by the corresponding dashed lines in Figure 2.10.10. Now, consider the signed belief ¢; in Figure
2.10.10, where you are “indifferent” between house and square, and “indifferent” between square and
tent. By transitivity of Z—*, you must then also be indifferent between house and tent at ¢q;. In a

~
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Figure 2.10.10 Verifying the axioms

similar way, we can conclude that at the signed belief g3, you must also be “indifferent” between house
and tent.

Hence, by preservation of indifference, the “indifference set” in ~—* between house and tent must
be a line that passes through the signed beliefs ¢; and ¢o. But then, as can be seen from Figure 2.10.10,
this indifference set will pass through the belief triangle. In other words, there must be “real” beliefs
for which you are indifferent between house and tent. This, however, contradicts the conditional
preference relation - we started from, since under - you will always prefer house to tent for every
belief.

We thus see that there is no signed conditional preference relation ~* that extends 7~ and satisfies
all the axioms from Theorem 2.10.1. By the same theorem we can then conclude that the conditional
preference relation in Figure 2.10.9 has no expected utility representation.

2.11 Economic Applications

In this section we discuss two economic applications of our approach to decision theory — one from
consumer theory and one from producer theory.

2.11.1 Consumption under Uncertainty
Consider a consumer who must decide whether he wants to buy one unit from good a or one unit
from good b. The consumer knows the quality of good a, because he has purchased this good before,
but is uncertain about the quality of good b. Assume that the quality of good b can either be poor,
medium or good. These are the three states in this scenario. The conditional preference relation of
the consumer is depicted in Figure 2.11.1. Qualitatively speaking, the consumer would only consider
buying good b if he assigns a sufficiently high probability to its quality being good.

We will now use the utility design procedure from Section 2.4.1 to verify whether the conditional
preference relation has an expected utility representation, and if so, how such an expected utility
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Figure 2.11.1 Conditional preference relation of consumer who is uncertain about quality of good b

representation would look like. Suppose we set all utilities for good a equal to 3, that is, u(a, poor) =
u(a, medium) = u(a, good) = 3. Moreover, at the state good, where the consumer prefers b to a, we
set u(b, good) = 4.

To compute the utility u(b, poor), we apply the utility difference property to the belief p; =
(0.25,0,0.75) on the line segment between poor and good, and obtain that

u(a, poor) —u(b, poor)  pi(good) 0.75 3

u(b, good) —u(a, good) — pi(poor)  0.25
By filling in the utilities that have already been determined, we get

3 — u(b, poor)

1_3 =3 — u(b, poor) =3,

and hence u(b, poor) = 0.
We finally compute the utility u(b, medium) by applying the utility difference property to the
belief pa = (0,0.5,0.5) on the line segment between medium and good, and obtain that

u(a, medium) — u(b, medium)  pa(good) 0.5 1

u(b, good) — u(a, good) = po(medium) — 0.5
If we fill in the utilities that have already been determined, we get

3 — u(b, medium)

4-3

=3 —u(b, medium) =1,

and hence u(b, medium) = 2.

We thus obtain the utility function u given by Table 2.11.1. It may be verified that this utility
function indeed represents the consumer’s conditional preference relation.

As there are preference reversals between the two choices a and b, we conclude from Theorem
2.5.1 in the book that the utility differences are unique up to a positive multiplicative constant. As
a consequence, the consumer’s relative preference intensities are unique, and these are given by the
utility function from Table 2.11.1.
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‘ poor medium  good
good a 3 3 3
good b 0 2 4

Table 2.11.1 Expected utility representation for the consumer’s conditional preference relation

Note that at the three states poor, medium and good, the utility differences between goods a and
b are 3,1 and —1, respectively. As such, we conclude that the intensity by which the consumer prefers
good a to good b is three times as large when the quality of good b is poor, compared to the case where
the quality of good b is medium. This makes perfect intuitive sense. Also, the intensity by which the
consumer prefers good a to good b when b’s quality is medium is the same as the intensity by which
he prefers good b to good a when b’s quality is good.

2.11.2 Production under Uncertainty

In this chapter so far we have focused on scenarios where there are finitely many choices and states.
As we will see, the notions of conditional preference relation and expected utility representation can
naturally be extended to cases where there are infinitely many choices and states.

Consider a monopolist who must decide which price to charge for the good it is offering. The
problem, however, is that the monopolist is uncertain about the price elasticity of demand. More
precisely, if the monopolist chooses a price p, then the demand for the good is equal to a — e - p,
where a > 0 is known but e is unknown to the monopolist. The number e determines how quickly the
demand for the good drops if the monopolist increases its price, and can thus be viewed as a measure
for the price elasticity of demand. From now on, we will refer to e as the elasticity parameter. Suppose
that there are no fixed costs, and the marginal cost of the monopolist is constant, and equal to ¢ > 0.

As the monopolist can choose any price p > 0, the set of possible choices is infinite. Assume that
it is known that the elasticity parameter e is in the interval [e1, €2, where e; > 0, ea > e; and

2a

_— 2.11.1
c+ajer ( )

ey <

Then, the set of states is the interval [ej, ea], which is also an infinite set. Still, the monopolist is able
to form a belief § about the state.

Suppose that the monopolist holds the following conditional preference relation 2-: For every belief
B about the elasticity parameter, he prefers price p; to price ps precisely when the expected profit
induced by the price p; and the belief 3 is greater than the expected profit induced by ps and 5. What
would then be the optimal price for the monopolist, for every possible belief 5 about the elasticity
parameter?

To answer this question, let us first determine the expected profit 7 (p, 8) induced by a price p and
a belief 5. Suppose that the elasticity parameter is e, and that the monopolist chooses the price p.
Then, the demand for the monopolist will be a — e - p, and hence the total revenue, which is equal
to the price times the demand, will be p- (a — e - p). Since there are no fixed costs, and the marginal
costs are constant and equal to ¢, the total costs will be the marginal cost times the demand, which is
¢ (a—e-p). The total profit, given by the total revenue minus the total costs, will therefore be given
by

m(pe)=p-(a—e-p)—c-(a—e-p)=(p—c)-(a—e-p). (2.11.2)
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Assume now that the monopolist has a belief 5 about the elasticity parameter. To keep things
easy, suppose that the belief 8 only assigns positive probability to finitely many states. By supp(/3) we
denote the finite set of elasticity parameters that receive positive probability by 5. This set is called
the support of the belief 5. The expected profit induced by the price p and the belief S is then given
by

m(p.B)= > Ble) w(pe)
e€supp(B)

Hence, the monopolist’s conditional preference relation - is such that for every belief 3,

p1 Zp p2 precisely when 7(py, 8) > m(p2, B).

This means that 2~ has an expected utility representation u, given by

u(p,e) = m(p,e)

for every choice p > 0 and every state e € [eq, e3].

We will now compute, for every belief 3, the optimal price for the monopolist. This will be precisely
the price that maximizes the expected profit under 8. In view of (2.11.2) this expected profit, for every
price p, is given by

w(p,8) = Y, Ble)-mlpe)= Y Ble)[p—c)-(a—e-p)

ecsupp(B) e€supp(B)

= (p-o-(a=[ Y Ble)e p)

e€supp(B)

The expression Zeésupp(ﬁ) B(e) - e has a clear interpretation: It is the expected elasticity parameter
under the belief 3. If we denote it by Eg(e), then we conclude from above that

m(p,B) = (p—¢)- (a — Eg(e) - p).

Thus, the expected profit is obtained if in the profit function 7 (p, €) we replace the elasticity parameter
e by the expected elastiscity parameter Eg(e).

For a fixed belief 3, the expected profit 7(p, 3) is a second degree polynomial in p that becomes
zero for p = ¢ and p = a/Eg(e), and that obtains a maximum precisely in the middle between ¢ and
a/Eg(e). Thus, the expected profit is maximized for the price

1 1 a
*(B) == — 2.11.3
In other words, for every belief 3 about the elasticity parameter, the optimal price for the monopolist
is given by (2.11.3).

We check that for this optimal price the demand will always be positive, as it should be, irrespective
of the value of e. By definition, the demand at the optimal price p*(/3) for a given elasticity parameter
e is 1 1

* pr— _ . _— . _— a/
a—e-p*(f)=a—e [2 c—|—2 Eg(e)]'
Recall that e lies in the interval [e1, e3], and hence e < eg and Eg(e) > eq. In view of the above, the
demand at p*(8) and e is then

[1 +1 a | > [1 +1 a]
a— o | — . —_ . a/—e.—. — .« —.
T B T T T g
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By the assumption (2.11.1) above, this demand will then be at least

1 1 a 2a 1 1 a
a—e-[z-c+=--—|>a [z c+

- . —.=]=0.
2 2 e ct+aje; "2 2 61]

Hence, the demand will always be greater than zero, no matter which value e takes. As such, the
optimal price p*(3) in (2.11.3) is justified.

Note that the optimal price in (2.11.3) is decreasing in the expected value of the elasticity pa-
rameter. This makes intuitive sense: If the expected elasticity parameter rises, then the monopolist
believes that, in expectation, a rise in the price will lead to a larger drop in demand. To compensate
for this, the monopolist will end up charging a lower price than before.
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2.12 Proofs

2.12.1 Proof for Section 2.8

In this subsection we will prove Theorem 2.8.1 for two choices. Before doing so, we first derive three
preparatory results. The first characterizes the span of the set of beliefs where the DM is indifferent
between a and b. Let P,.; be the set of beliefs p where the DM is indifferent between a and b.

Lemma 2.12.1 (Span of an indifference set) Consider a conditional preference relation 77 that
satisfies preservation of indifference, and two choices a and b. Then,

span(Pyp) = {A1-p1+ A2 -p2 | p1,p2 € Pawp and Mg, A2 € R}

Proof. Let
A:={A1-p1+A2-p2 | p1,p2 € Pyp and A, A2 € R}

We will show that span(P,.;) = A. Clearly, A C span(P,.p). Hence, it remains to show that
span(Pyp) C A.

Take some p € span(P,.p). Then, there are some beliefs pi, ..., Pk, Pkt1, s Phim € Pap and
numbers A1, ..., Ak, Agt1, oo Aprm > 0 such that

P =Ap1+ ..+ APk — Nt 1Pk+1 — o — MetmPhm- (2.12.1)
Let a1 := A1 4 ... + A\ and g := Agy1 + .. + Aprm- If a1 > 0 and ag > 0, then define the vectors

A1 Ak Ak41 Ak
q:=—p1+..+—p, and g9 := ZhAl Prt1 + ... + 7+mpk+m.
o (o731 (%) a

It may be verified that ¢g; and g2 are convex combinations of beliefs in P,.;. Hence, by repeatedly
using preservation of indifference, it follows that ¢1,q2 € P,p. By (2.12.1) we have that

P = 0191 — 2q2,

and thus p € A.

If @1 > 0 and ag = 0, then we must have that Ay11 = ... = A1, = 0. We can define q; € P,y as
above, and get p = a1¢;. Thus, p = a1q1 + 0 - ¢q1, which is in A. The case when a1 = 0 and g > 0 is
similar. Finally, when a; = 0 and ap = 0, then A\ = ... = A4, = 0, which means that p = 0. Thus,

p=0-p; +0-ps for two arbitrary beliefs pi, ps € P,p, and hence p € A.

In general, we thus see that every p € span(P,p) is also in A, and thus span(P,;) C A. Together
with the observation above that A C span(P,~), we conclude that span(Py~p) = A. This completes
the proof. ]

The second preparatory result contains some further properties of the set of beliefs where the DM
is indifferent between a and b, gathered in Lemma 2.12.2. In this lemma, we denote by S,~p the set
of states s where a ~[4 b. From now on, we often write a ~; b instead of a ~[4 b. Recall, by Definition
2.2.1, that A(S) is the set of probability distributions on S, the set of states. That is, A(S) contains
all possible beliefs.
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Lemma 2.12.2 (Linear structure of indifference sets) Suppose there are two choices, a and b,
and n states. Consider a conditional preference relation >~ that satisfies the regularity axioms. Then,
the following properties hold:

(a) Py = span(Pyup) NA(S);

(b) if 7~ has preference reversals between a and b, then span(P,~p) is a hyperplane with dimension
n — 1, the beliefs pa, ..., p, € P, selected by the utility design procedure in Section 2.4.1 of the book
are linearly independent, and there is a full support belief p € P, with p(s) > 0 for all s € S;

(c) if a weakly dominates b under - then P,., = {p € A(S) | ZsESaNb p(s) = 1}.

Proof. (a) Clearly, P, C span(Pyp) N A(S). It remains to show that span(Pyp) N A(S) C Pyp.
Take some p € span(P,p) N A(S). Then, by Lemma 2.12.1, there are beliefs p;,p2 € P, and

numbers A1, Ao such that
D = A1p1 + Aa2po. (2.12.2)

Since p € A(S), we must have that > _gp(s) = 1. Moreover, as p1,py are beliefs, it holds that
Y oscsP1(8) = cgp2(s) = 1. In view of (2.12.2),

1=> "p(s) = (Api(s) + Aapa(s)) = M (Zm(@) + A (Zm(s)) =M+ A2

ses seS seES sES

Suppose first that Ay = 0. Then, Ay = 1, and hence p = Aop2 = po, which is in P,.;. The case
where \g = 0 is similar.

Assume next that A1, Ao > 0. As A1+ X2 = 1, it follows from (2.12.2) that p is a convex combination
of p1 and po, which are both in P,.;. By preservation of indifference, it follows that p € P,p.

Suppose now that A7 > 0 and Ay < 0. Since A1 + Ao = 1, it must be that A\; > 1. Then, it follows

from (2.12.2) that

1 A2 1 1

— e — 1 — — 2.12.3
P1 p )\11?2 )\1P+( >\1)p2 ( )

since Ao = 1 — A1. As A1 > 1, it follows that p; is a convex combination of p and ps, where p; and po
are both in P,p.

We will show that p must be in P,.;. Suppose, on the contrary, that p ¢ P, p. Assume, without
loss of generality, that p € P,.p, where P, is the set of beliefs ¢ where a >, b. Then, it follows
from (2.12.3) and preservation of strict preference that p; € P,.p, which is a contradiction. Hence,
pe P(zrvb-

The case where A\; < 0 and Ay > 0 is similar. In general, we conclude that every p € span(P,p) N
A(S) is also in P,.p. Hence, span(P,p) N A(S) C P,.p. As we have already seen that P,.;, C
span(Pap) NA(S), we have that P,y = span(Pyp) N A(S).

(b) Suppose that 7~ has preference reversals on {a,b}. Then, there must be a state z where a >, b,
and another state y where b =, a. Indeed, assume that this would not be the case. Then, either a 7, b
for all states x, or b 77, a for all states x. Assume, without loss of generality, that a -, b for all states
x. Then, it follows by preservation of indifference and preservation of strict preference that a 7, b for
all beliefs p. This would contradict the assumption that there are preference reversals between a and
b. Hence, we conclude that there are states z,y with a >, b and b >, a.

By continuity, there must then be a belief p» = (1 — A2)[x] + A2]y] on the line segment between [z]
and [y] where a ~y, b. By preservation of strict preference, the DM will prefer a to b at every belief
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strictly between [z] and pe on this line, and will prefer b to a at every belief strictly between [y] and
p2 on this line. Hence, py is the unique belief on the line between [z] and [y] where a ~y, b.
Now, let the remaining states be numbered ss, ..., s, such that

a g bforall ke {3, .. m},
b>s, aforall ke {m+1,..,m+1}, and
anrg bforallke {m+1+1,..,n}

Following the utility design procedure of Section 2.4.1 in the book, we choose (i) for every k €
{3,...,m} the unique belief pr = (1 — Ag)[sk] + Ak[y] on the line segment between [sx] and [y] with
. b, (ii) for every k € {m + 1,...,m + [} the unique belief p; = (1 — Ag)[sx] + Ax[z] on the line
segment between [sy] and [z] with a ~p, b, and (iii) for every k € {m+1+1,...,n} the belief p;, = [s;}
with a ~p, b.

We will now show that po, ..., p, are linearly independent. Take some numbers as, ..., @, such that

n
Zak “pr = 0.
k=2

CLNp

By construction, this sum is equal to

s (1= Ao)[z] + Aafy]) + > (1 = A)[sk] + Aely))+
k=3
m-l n
+ Y ar((T= M) se] + M)+ Y anlsi]
k=m+1 k=m-+I1+1
ml m
= (Ozg(l — /\2) + Z Oék)\k> [LL’] + (ag)\g + Z Otk)\k) [y]
k=m+1 k=3
m+l n
+ Z ak(l — )\k)[sk] + Z oak[sk] = 0.
k=3 k=m-i+1
As the vectors [z], [y], [s3], ..., [Sn] are linearly independent, and 0 < A\p < 1 for all k € {2,...,n}, it

follows that ay, = 0 for all k € {3, ...,n}. This, in turn, implies that also ag = 0. Hence, the indifference
beliefs ps, ..., pn € P, are linearly independent.

As a consequence, the dimension of span(P,.p) is at least n — 1. The dimension of span(P,p)
cannot be m, since otherwise we would have that span(P,.p) = RS, and hence, by (a), Pyup =
RSNA(S) = A(S). This would contradict the assumption that there are preference reversals between
a and b. We thus conclude that the dimension of span(P,.p) must be n — 1, and therefore span(P,s)
is a hyperplane.

To show that P,.; contains a belief p with p(s) > 0 for every state s, consider the vector

pi= b2 + e+ e
It may be verified that p is a belief. Moreover, by construction of the beliefs po, ..., p,, we have that
p(s) > 0 for all states s.

(c) Let A={p e A(S) | > scs,_, P(s) = 1}. To show that Py, C A, take some p € Fyp. Assume,
contrary to what we want to show, that p ¢ A. Then, p(s) > 0 for some s € S,.p, where S,.p is the
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set of states ¢t with a ¢ b. As p = Y .cg , p(s) " [s] + D seq, , P(s) - [s], it follows by preservation
of indifference and preservation of strict preference that p € P,.p. This is a contradiction to the
assumption that p € P,.,. We thus conclude that p € A. Hence, P,.;, C A. The inclusion A C P,
follows directly by preservation of indifference. We thus see that P,.; = A. This completes the proof.l

The third preparatory result provides sufficient conditions for an expected utility representation
between two choices.

Lemma 2.12.3 (Sufficient conditions for expected utility representation) Consider a condi-
tional preference relation -, that satisfies the regularity axioms, two choices a and b, and a utility
function u. Suppose that >~ has preference reversals between a and b, and that there are n states.
If there is a belief p* with a >,+ b and u(a,p*) > u(b,p*), and n — 1 linearly independent beliefs
D1,y Pn—1 With a ~p, b and u(a, pr) = u(b, px) for all k € {1,...,n — 1}, then u represents - on {a, b}.

Proof. Let P,)—yup) be the set of beliefs p with u(a,p) = u(b,p). Moreover, let Py, be the set
of beliefs p with a =) b, and P,4)>u(p) the set of beliefs p where u(a,p) > u(b,p). To show that u
represents 5 on {a, b}, it is thus sufficient to show that P,y = Py(a)=u(p) a0d Pasbs = Py(a)>u(b)-

We start by showing that Py = Py (q)=u(p)- For every vector v € RS, define the “expected utility”

u(a,v) == Zv(s) -u(a, s),

seS

and similarly for u(b,v). Consider the set V,)—yup) := {v € R® | u(a,v) = u(b,v)}. It may be verified
that V,,()=u(p) is a linear space. Moreover, P, )—u(b) = Vu(a)=u®) N A(S)-

We now show that span(Pus) = Viy)=up).- We first prove that span(Pub) € Viya)=u@p)- In
Lemma 2.12.2 (b) we have seen that span(P,~;) has dimension n — 1. Since the beliefs p1,...,pp—1 in
span(P,~p) are linearly independent, we conclude that {p1,...,pn—1} is a basis of span(P,p). Take
some v € span(P,p). Then, we can write

V= )\2]?2 + ...+ )\npn

for some numbers Ag, ..., A,,. Since u(a, px) = u(b, px) for all k € {1,...n — 1}, it follows that
u(a,v) —u(b,v) Z)\k w(a,pg) — u(b,pr)) =0,

and hence v € Vi (4)=y(p)- Thus, span(P,p) C 'V, w(a)=u(b)-

We next show that Vi )=y span(Py~p). Since V, u(a)=u(b) 1S & linear subspace of R, its dimen-
sion can be at most n. Moreover, as span(Pa~y) € Viya)=up) and span(Py.p) has dimension n — 1, the
dimension of V,(4)—y(p) 1s at least n — 1. Suppose, contrary to what we want to prove, that V,,(q)—y) 18
not a subset of span(Pyp). Then, the dimension of V,,4)—y ) must be n, and hence V,,3)—yp) = RS.
However, this is a contradiction since u(a, p*) > u(b,p*), and hence p* & V,(q)—y()- We thus conclude
that Vi (a)=up) € span(Pap). Since we have already seen that span(Pyp) € Viy(a)=u(p), it follows that
span(Pap) = Vi(a)y=u(v)-

Since Pu(a):u(b) = Vu(a):u(b) N A(S) and, by Lemma 2.12.2 (a), P,y = span(Pyp) N A(S), w
conclude that Pop = Pya)=u(b)-

We next prove that Py.p = Pya)sup)- Let p* be the belief where a =« b and u(a,p*) > u(b, p*).
Consider the set

A:={p € A(S) | there isno A € [0,1] with (1 — A)p + \p* € P,p}.
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We show that P,.;, = A. To prove that P,.; C A, take some p € P,.p. Since p* € P,.; it follows
by preservation of strict preference that (1 — \)p + Ap* € P, for every A € [0,1], and hence p € A.
Thus, P,., C A.

To show that A C P,., take some p € A. Suppose that p ¢ P,.. Since p € A, we must
have that p ¢ P,.p, and hence p € P, ,. By continuity, there must then be some A € (0,1) with
(1 =X)p+ Ap* € P,p. This, however, contradicts the assumption that p € A. Hence, p € P,.p, which
yields A C P,.p. Altogether, we conclude that P,.;, = A.

We next show that P q)su@p) = A. Since Pop = Pya)=u(p), it follows that

A= {pe A(S) | there is no A € [0,1] with (1 — A)p + Ap* € Py(a)=u()}-

As p* € Pya)>u(p) by construction, it can be shown in a similar same way as above that P q)su@) = A-
As Such, Pa>b =A= Pu(a)>u(b)-

Since Py = Pya)=u@) and Puwp = Py(a)>u(), We conclude that u(a,p) > u(b,p) if and only if
a Zp b. Hence, the utility function u represents = on {a,b}. This completes the proof. ]

We are now ready to prove Theorem 2.8.1.

Proof of Theorem 2.8.1. Suppose first that 7~ has an expected utility representation. Then, it has
been shown in Section 2.8.1 that = satisfies continuity, preservation of indifference and preservation
of strict preference.

Assume next that - satisfies continuity, preservation of indifference and preservation of strict
preference. We will show that =~ has an expected utility representation. We distinguish four cases: (a)
there are preference reversals between a and b, (b) a weakly dominates b, (c) b weakly dominates a,
and (d) @ and b are equivalent, meaning that a ~, b for all states s. For the remainder of this proof,
we assume that the number of states is n.

(a) Suppose that there are preference reversals between a and b. Let the states  and y be such that
a >, band b =, a, and use the utility design procedure from Section 2.4.1 in the book to generate
utilities u(a, s) and u(b, s) for every state s. Recall that the procedure is based on the selection of
specific beliefs po, ..., p, € P,p. Then, by construction of the procedure, we have that u(b, y) > u(a,y)
and u(b, px) = u(a,pg) for all k € {2,...,n}. Moreover, we know from Lemma 2.12.2 (b) that these n—1
beliefs po, ..., pn are linearly independent. By Lemma 2.12.3 it thus follows that the utility function u
generated by the utility design procedure represents 77 .

(b) Suppose that a weakly dominates b. Choose a utility function u such that, for every state s, we
have u(a, s) > u(b, s) when [s] € P,p, and u(a, s) = u(b, s) when [s] € P,p. As, by Lemma 2.12.2 (c),

Py ={peA(S) | Y p(s)=1}

SES b

it follows that Pyp = Pyq)=u(v)- Since every belief p is either in P,y or Pyep, it follows that Py.p =
Py(a)>u(v)- We thus conclude that the utility function u represents = .

(c) This proof is similar to that for (b).

(d) Suppose that a and b are equivalent. Then, any utility function v with u(a,s) = u(b, s) for every
state s will represent 77 . This completes the proof. |
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2.12.2 Proofs for Section 2.9

In this subsection we will prove Proposition 2.9.1 and Theorem 2.9.1. Before we can prove Proposition
2.9.1 we need the result below. In the statement, a full support belief is a belief p with p(s) > 0 for
all states s.

Lemma 2.12.4 (Line containing three indifference beliefs) Consider a conditional preference
relation 7, that has preference reversals for all pairs of choices, and satisfies the regularity axioms and
transitivity. Then, for every three choices a,b, c, there is a line of beliefs that contains full support
beliefs pap, Pac, Poe Where the DM is indifferent between the respective choices.

Proof. Suppose first that there is a full support belief p € P,y Py~c. Then, by transitivity, p € Py..
We can then choose a line of beliefs through p. Such a line will satisfy the statement in the lemma.
Assume next that there is no full support belief in P, N Py.. By transitivity, there will be no
full support belief in P,y N Py OF Pye N Py either. Let AT(S) be the set of full support beliefs.
Then, the sets Pyp, Pie and Py, will be pairwise disjoint on AT(S). As, by Lemma 2.12.2 (a),
these indifference sets are the intersections of hyperplanes with A(S), it must be that one of these
indifference sets is “in between” the other two within A*(S). Suppose, without loss of generality, that
Py is in between P, and Py... By Lemma 2.12.2 (b), there is a full support belief py, € P, and
a full support belief p,. € P,~c. Let [ be the line of beliefs that goes through p., and pg.. As the set
Py is in between P,.; and P,.., there must be a belief py. € Py on the line [ between py, and pgc.
Moreover, py. is a full support belief, since p,p, and pg. are full support beliefs. The line [ thus satisfies
the requirements of the lemma. This completes the proof. ]

We are now ready to prove Proposition 2.9.1.

Proof of Proposition 2.9.1. Consider a conditional preference relation - that has preference
reversals on every pair of choices, and satisfies the regularity axioms and transitivity.

(a) Assume first that /7 satisfies three choice linear preference intensity. Consider three choices a,b
and c¢. We must show that (P,p) N (Pyc) C (Pyec) . Take some g € (Pyp) N (Pyec) . By Lemma 2.12.4
there is a line [ containing full support beliefs p.p € Pob, Poe € Poe and pge € Pyee. Then, there is
some ¢ € (0, 1) small enough such that (i) the vectors p/, := (1 — &)pap + ¢, p}. := (1 —€)ppe +€q and
P’ = (1—¢€)pac+eq are all in A(S), and (ii) the line " through p/, and pj, contains a belief p,. € Py~..
Since pl, — pj. = (1 =€) - (Pab — Pve), we conclude that the lines [ and I’ are parallel.

Moreover, the lines [ and I’ can be chosen such that they contain beliefs where the DM is not
indifferent between any of the three choices. Hence, by preservation of strict preference, pl. is the
unique belief in P, on the line I’. Also, the lines [ and I’ can be chosen such that the probability of
no state is constant on [ or I’.

As ¢ € (Pywp) we know, in particular, that ¢ € span(P,.p). Thus, we conclude that p/, €
span(Pyp) NA(S). Since Lemma 2.12.2 (a) guarantees that span(Pyp) NA(S) = Py, it follows that
Ply € Parh- As q € (Pyc) it can be shown, in a similar way, that p). € Py..

We will now show that p,. = p’. Suppose first that p,, = ppe. Then, by transitivity, pae = Pab = Dbe-
Moreover, by definition of p/, and pj, it follows that p/, = pj., and hence by transitivity we must have
that p},. = pl, = D}, Since

p'=(1—€)pac+eq=(1—¢€)paw +eq =Dy,

we conclude that pl,, = p'.
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Suppose now that p,p 7# ppe. Then, by transitivity, the beliefs pqp, pre and pq. are pairwise different.
By definition of p/, and p;., we then have that p/, # p;.. Hence, by transitivity, the beliefs p/,, pj.
and pl,. are pairwise different.

By three choice linear preference intensity, we have for every state s that

(Pab(5) = Poc(5))  (Pac(s) = Phe(s)) = (0 (8) = Phe(8)) - (Pac(s) — poe(s))- (2.12.4)
Note that p,(s) = (1 — €)pap(s) + €q(s) and pj.(s) = (1 — €)ppe(s) + £q¢(s), which implies that
(Pap(8) = Phe(s)) = (1 = €)(Pab(5) — poe(s))- (2.12.5)

Recall that the beliefs pyp, pre and py. are pairwise different, the beliefs p!,. p) . and p,. are pairwise
different, and no state has constant probability on the lines [ and I’. Hence, it follows from (2.12.4)
and (2.12.5) that

(Pac(8) = Phe(s)) = (1 = €)(pac(s) — poe(s)),
and thus

pfzc<3) = (1 - 5>(pac(s) _pbc(3>) +p;;c(5)
= (1= ¢€)pac(s) +eq(s) =p'(s).

As this holds for every state s, we conclude that p/,, = p’. Thus, the belief p’ = (1 — €)pa. + €q is in
P, .. As such,

1 1
q= gp/ + (1 - g)pac € <Pa~c> .
As this holds for every ¢ € (Pyp) N (Pyec) , it follows that (P,p) N (Ppe) € (Pane) -

(b) Suppose now that (Pyp) N (Ppe) € (Pa~e) for all three choices a,b,c. We must show that -
satisfies three choice linear preference intensity. Consider two parallel lines of beliefs 1,1’ that (i)
contain beliefs where the DM is not indifferent between any two choices from {a,b,c}, (ii) where [
contains indifference beliefs pyp € Pipy Pbe € Poe and pye € Pyee, and (iii) I’ contains indifference
beliefs p, € Pyt Dy € Pooe and ply, € Pyee.

Let gy be the line through p,, and pl,, let Iy, be the line through py. and pj., and l4. the line
through p,. and pl,.. Note that all these lines belong to the same two-dimensional plane: the plane
that goes through [ and I’.

Assume first that the lines l,p, . and [ . are all parallel. Then, there is a vector ¢ such that

Do = Pab + G, Phe = Poe + ¢ and ply. = Pac + .

As a consequence, for every state s,

(pab(s) - pr(s)) ! (p;c(s) - pgc(s)) = (pab(s) - pbc($)> ! (pac<3) - pbc(s))
= (Pap(5) = Dhe(5)) * (Pac(s) — poc(s))-

Hence, the formula for three choice linear preference intensity is satisfied.

Assume next that the lines lyp, Ip. and [, are not all parallel. Without loss of generality, we suppose
that [, and lp. are not parallel. Since these two lines lie in the same two-dimensional plane, they
must intersect at a unique vector g. Since g lies on g, which goes through p,, and pl, in Py.p, we
conclude that ¢ € (Pyp) . Similarly, as ¢ lies on lj., which goes through py. and pj_ in Py, it follows
that ¢ € (Py.) . Since we assume that (P,p) N (Pye) C (Py~c), we conclude that g € (P,.) too.
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Let V be the two-dimensional plane that goes through the lines ! and !’. Since, by condition
(i) above, I and I’ contain beliefs where the DM is not indifferent between a and ¢, it follows that
(Pyroc) NV =lge. As q € (Pyc) NV, we conclude that ¢ lies on the line l,.

As g lies on lgp, lpe and lae, the beliefs pap, Poc, Pac lie on 1, the beliefs p!,. p} . and p,. lie on I, and
the lines [ and [’ are parallel, there is a unique number \ such that

Py = (1= X)q + Apab, Phe = (1 = A)q+ Appe and pl. = (1 — X)q + Apac-

Hence, for every state s we have that

(pab(s) _pbc(s)) ’ (pfw(S) - pgc(s)) = A (pab(s) - pbc(s)) ’ (pac(s) - pbc(s))
= (Pap(5) = Pbe(8)) * (Pac(s) = Pue(s))-

Thus, the formula for three choice linear preference intensity is satisfied.
We therefore conclude that =~ satisfies three choice linear preference intensity. This completes the
proof. ]

Before we can prove Theorem 2.9.1, we need some preparatory results. The following lemma
provides a connection between the linear extension and the span of an indifference set P,.p.

Lemma 2.12.5 (Linear extension and span) Consider a conditional preference relation 7 that
satisfies preservation of indifference. Then, for every two choices a, b,

(Pap) = {v € span(Py,p) | Zsesv(s) =1}.

Proof. Let A := {v € span(P,p) | D ,cqv(s) = 1}. We will prove that (P,.;) = A. To show that
(Pyp) € A, take some g € (P,.p). Then, there are p1,p2 € P,.p and some number A such that
q = (1= X)p1 + Apa. Clearly, q € span(P,~y). Moreover, since ) . ¢p1(s) = Y cgp2(s) = 1, it follows
that ) . gq(s) =1 also. Hence, q € A.

To show that A C (P,p) , take some g € A. By Lemma 2.12.1, there are p1,p1 € P, and numbers
A1, Az such that ¢ = Aip1+Xopa. As Y gp1(s) = > cgp2(s) = 1, it follows that > ¢ q(s) = A1+ Aa.
Since g € A, it must be that > __5q(s) =1, and hence A; + A = 1. Thus, Ay = 1 — A;. But then, by
definition, ¢ € (Pyp) -

We thus conclude that (P,.;) C Aand A C (P,p), which implies that (P,.;) = A. This completes
the proof. [ |

On the basis of Proposition 2.9.1 and Lemma 2.12.5 we can show the following characterization of
three choice linear preference intensity, wich will be useful for proving Theorem 2.9.1.

Lemma 2.12.6 (Three choice linear preference intensity) Suppose that the conditional pref-
erence relation 7~ has preference reversals on every pair of choices, and satisfies the regularity axioms
and transitivity. Then, 7 satisfies three choice linear preference intensity, if and only if, for every
three choices a,b, c we have that span(P,p) N span(Py~.) C span(Pyc).

Proof. (a) Suppose first that 7~ satisfies three choice linear preference intensity. We will show that
span(Pyp) N span(Py.) C span(Py~.). We distinguish two cases: (1) (Pyp) N (Pp~e) is not empty,
and (2) (Py~p) N (Ppec) is empty.
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Case 1. Suppose that (P,p) N (Pp~c) is not empty. Since 7~ satisfies three choice linear preference
intensity, we know by Proposition 2.9.1 that

(Part) N (Pomc) C (Pane) - (2.12.6)

To show that span(P,p) N span(Py~c) C span(P,.), take some v € span(Pyp) N span(Py~.). Then,
by Lemma 2.12.1, we have that

v =A1p1 + Aap2 = i1 + [12G2
for some p1,p2 € Pyp, ¢1, 92 € Py and some numbers A1, Ag, i1, h. Note that
D u(s) =X\ (ZP1(5)> + A2 (ZP2(5)> = A1+ Az,
seS seS seS
since Y cgp1(8) = D ,cgp2(s) = 1. Similarly, > . gv(s) = py + po, which yields
A1+ A = g + po.

We distinguish the following cases: (1.1) > g v(s) # 0, and (1.2) >~ _sv(s) = 0.
Case 1.1. Suppose first that ) _gv(s) # 0, which implies that A\; + Ay # 0. Then,

1 v A1 n 2
Mt e T

p2,

which means that ﬁv € (Pa~p) - Since A\; + A2 = piy + 1o, it follows in a similar way that ﬁv =

ulJlruzv € (Pyp.) . Thus, ﬁv € (Pyp) N{Pyec) - By (2.12.6) we then conclude that ﬁv € (Pye) s

and hence ﬁv € span(Py~.). This implies that v € span(P,~.) also.

Case 1.2. Suppose next that > _gwv(s) = 0. Since (Pyp) N (Pyre) is not empty, we can take
some ¢ € (Pyp) N (Poee) . By (2.12.6) we then know that ¢ € (P,~c), and hence, in particular,
q € span(Pync).

Choose some « € (0,1), and let ¢ := (1—a)-v+a-q. Asv,q € span(P,p) Nspan(Py~.), it follows
that ¢’ € span(Pyp) N span(Py~.) also. Moreover, as > .qv(s) = 0 and Y _gq(s) = 1, it follows
that > ¢ ¢'(s) = a > 0. By Case 1.1, it thus follows that ¢ € span(Py~.). But then,

L

vzl—aq_

a
T aq € span(Pyc)

since both ¢ and ¢’ are in span(Pa~.).

Case 2. Suppose that (P,p) N (Pyc) is empty. As, by Proposition 2.9.1, (Pyp) N (Pa~e) C (Poc)
and (Pac) N (Poc) C (Pamsp) , it follows that (Pyp) N (Pa~e) and (Pyc) N (Pp~c) are empty as well.

Let Vo := {v € R* | Y ,cqv(s) =0} and Vi == {v € R* | Y, qv(s) = 1}. By Lemma 2.12.5
we know that (P,p) = span(Pyp) N Vi and (Py.) = span(Py.) N Vi, and hence (Pyp) N (Ppe) =
span(Pyp) N span(Py~e) NV1. As (Pyop) N (Pye.) is empty, we conclude that span(P,~p) N span(Pp..)
has an empty intersection with V.

This implies, in turn that span(P,p) N span(Py~.) C Vp. To see this, assume to the contrary
that there would be a vector v € span(FPy~p) N span(Py..) with > _gv(s) = a # 0. Then, the

vector év would still be in span(Pyp) N span(Py~.), and Y g év(s) =1, so v € V;. But then,
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Ly € span(P,) N span(Py.) N Vi, which is a contradiction since span(P,p) N span(Py.) N Vi is
empty. Thus, we know that span(P,p) N span(Py.) C Vp.

On the basis of this fact, it can now be shown that span(P,p) N span(Py~.) = span(P,p) NVy. To
see this, note first that span(P,p)Nspan(Py~.) C span(Pyp)NVo, since span(P,wp)Nspan(Py.) C Vp.
Moreover, we also know that span(P,p) # span(Py~.), since otherwise, by Lemma 2.12.5, (P,p) =
(Pp~c) and hence (Pyp) N (Ppe) would not be empty, which would be a contradiction. Since, by
Lemma 2.12.2 (b), span(P,~p) and span(Py...) are linear subspaces of dimension n — 1, it follows that
span(Pyp) N span(Pp~.) is a linear subspace of dimension n — 2. Now, consider the linear subspace
span(Pyp) N Vy. Clearly, span(Pyp) # Vo, since span(Pyp) contains beliefs in P,.;, which are not in
Vo. Since span(P,p) and Vj are linear subspaces of dimension n — 1, it follows that span(P,~p) N Vo
is a linear subspace of dimension n — 2. Since span(Pyp) N span(Py~.) C span(P,p) NV and both
linear subspaces have the same dimension, n — 2, both spaces must be equal. Hence, span(Pyp) N
span(Pyc) = span(Po~p) N Vo.

Since we have seen above that also (P,p) N (Py~.) is empty, it can be shown in a similar way that
span(Pyp) N span(Py~c) = span(P,p) N Vp. By combining the latter two equalities, we get

span(Pyp) N span(Pyc) = span(Pyp) N Vo = span(Pyp) N span(Py~c),

which implies that span(Py~p) N span(Py~c) C span(Pyc).
Since all cases have been covered, this completes part (a).

(b) Suppose now that span(Pyp) N span(Py.) C span(Py~.) for all three choices a,b, c. Since, by
Lemma 2.12.5, (P,p) = span(Pap) N V1, and similarly for (Py..) and (Py~) , it follows that

(Pab) N (Pyme) = span(Pyp) N span(Pye) N V1 C span(Pye) N V1 = (Pare) -

By Proposition 2.9.1 it follows that =~ satisfies three choice linear preference intensity. The proof is
hereby complete. ]

In our last preparatory result, we characterize the span of an indifference set P,.; in case of an
expected utility representation. We use the following notation: For a given utility function u, choice
a and vector ¢ € R, we denote by u(a,q) := > .. q(s) - u(a,s) the “expected utility” induced by a
at the vector g.

Lemma 2.12.7 (Span of indifference set under utility representation) Consider a conditional
preference relation - with an expected utility representation u. Suppose there are preferene reversals
between choices a and b. Then,

span(Pyp) = {q € R® | u(a,q) = u(b,q)}.

Proof. Let A := {q € R® | u(a,q) = u(b,q)}. We first show that span(P,.,) C A. Take some
q € span(P,p). Then, by Lemma 2.12.1, there are p1,ps € P, and numbers A1, A2 such that
g = Mp1 + Aap2. As u(a,p1) = u(b,p1) and u(a,p2) = u(b, p2), it follows that

u(a, q) = Mu(a,p1) + Aeu(a, p2) = Mu(b,p1) + Aau(b, p2) = u(b, q),

and hence ¢ € A. Thus, span(P,) C A.

By Lemma 2.12.2 (b) we know that span(P,~;) has dimension n — 1. Since A is a linear subspace
with dimension n — 1 also, and span(P,~p) C A, it must be that span(P,;) = A. This completes the
proof. ]
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We are now ready to prove Theorem 2.9.1.

Proof of Theorem 2.9.1. (a) Suppose first that 7~ has an expected utility representation u. From
Section 2.8.1 we know that 77 satisfies continuity, preservation of indifference and preservation of strict
preference. To show transitivity, assume that a 77, b 22, ¢ for some belief p, and for some choices a, b
and c¢. Then, we must have that u(a,p) > u(b,p) > u(c,p), which implies that u(a,p) > u(c,p), and
hence a 7, c.

To show three choice linear preference intensity it suffices, in view of Lemma 2.12.6, to show
that span(Pyp) N span(Py~.) C span(Pa~.) for all three choices a, b, c. Take some ¢ € span(Pyp) N
span(Py~.). Then, by Lemma 2.12.7, we have that u(a,q) = u(b,q) and u(b,q) = u(c,q), and hence
u(a, q) = u(c, q). By the same Lemma 2.12.7 it thus follows that ¢ € span(P,~.). Hence, span(Pyp) N
span(Py~c) C span(Py~.), which implies by Lemma 2.12.6 that 7~ satisfies three choice linear preference
intensity.

We finally show four choice linear preference intensity. Consider a line of beliefs [, and four choices
a, b, c,d such that there is a belief on the line where the DM is not indifferent between any pair of
choices in {a,b,c,d}. Moreover, let pup, Dacs Pad, Poe, Pbd and peq be corresponding indifference beliefs
on this line. Consider some state s. If the probability of s is constant on the line [, then the formula
for four choice linear preference intensity holds trivially.

We therefore assume from now on that the probability of s is not constant on [, so that every belief
on [ is uniquely given by the probability it assigns to s. Suppose that p,p, = pee. Then, by transitivity,
it must be that pep = pac = Ppe, and the formula for four choice linear preference intensity would hold
trivially. Similarly, the formula would trivially hold if pu, = Peg O Pac = Pad-

We now assume that pup, Dac, Pag are pairwise different. Then, by transitivity, pp. is different from
Pap and pge, the belief pyg is different from pg, and pggq, and the belief p.4 is different from p,. and pyq.

Consider two arbitrary, but different, beliefs p1, p2 on [, and define

A(u(a) = u(b)) := (u(a,p1) = u(b, p1)) — (u(a, p2) — u(b, p2))-

As there is a belief on the line where the DM is indifferent between a and b, and another belief on
the line where the DM is not, we must have that A(u(a) — u(b)) # 0. In a similar way, we define
A(u(a) — u(c)) and A(u(a) — u(d)).

In (2.9.4) of Section 2.9.1 we have seen that

Au(a) = u(b)) _ Pac(s) = poe(s)
A(u(a) —u(c))  Pab(s) = poc(s)
Recall that also A(u(a) — u(c)) # 0. Moreover, since p,p 7# ppe and the belief on the line is uniquely

given by its probability on s, we have that p.p(s) # ppe(s). Thus, the two ratios above are well-defined.
In a similar fashion, it follows that

(2.12.7)

A(u(a) —u(c))  pad(s) — pea(s)

A(u(a) —u(d)) ~ pac(s) — pea(s) (2.12.8)
and

A<u(a) - u(b)) o pad(s) — pbd(s)

Au(a) —u(d)) ~ pap(s) — pra(s) (2.12.9)

As, by definition,
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it follows by (2.12.7), (2.12.8) and (2.12.9) that

Pad(s) = Pb(8) _ Pac(s) = Pe(s)  Pad(s) = Pea(s)
Pab(8) = Poa(s)  Pab(s) = Poe(s)  Pac(s) — peal(s)”

By cross-multiplication, this yields the formula for four choice linear preference intensity. Thus, 7
satisfies four choice linear preference intensity.

(b) Suppose that 7~ satisfies continuity, preservation of indifference, preservation of strict preference,
transitivity, three choice linear preference intensity and four choice linear preference intensity. If there
are only two choices, then we know from Theorem 2.8.1 that there is an expected utility representation.
We therefore assume, from now on, that there are at least three choices.

Suppose first that no two choices are equivalent under - . To show that 7~ has an expected utility
representation, we distinguish two cases: (1) P, = P.q for every two pairs of choices {a,b} and
{¢,d}, and (2) P,p # P.q for some pairs of choices {a,b} and {c,d}.

Case 1. Suppose that P,., = P..4 for every two pairs of choices {a,b} and {c,d}. Let A := P,
for some pair of choices {a,b}. If A = A(S), then the DM is always indifferent between any pair of
choices. This would be a contradiction, as we assume that no two choices are equivalent under - .
Hence, it must be that A # A(S). By preservation of indifference, there must be a state = with
[z] ¢ A. Thus, [z] ¢ P, for every two choices a and b. By transitivity, we can order the choices
c1,Ca, ..., i such that
C1 ™ [z] €2 7 [z] €3 *[a] --- 7 [a] CK-

Choose numbers vy, ..., vg with v1 > vo > ... > vg.

For choice ¢1, set u(cy, ) = vy, and set the utilities u(cy, ) for states s # x arbitrarily.

By Lemma 2.12.2 (b) we know that span(A) has dimension n — 1, where n is the number of states.
Let {p1,...,pn—1} be a basis for span(A). As [z] ¢ span(A), we know that {pi, ..., pn—1, [2]} is a basis
for R®. For every choice ¢;, with k > 2 find the unique utilities u(cy, s) such that

u(cg, p1) = u(cr, p1), ., u(Ck, Pn—1) = ulcr, Pp—1) and u(ck, z) = vg. (2.12.10)

We will show that the utility function u represents 77 .

Take two choices a,b with a >[;) b. Then, by construction of the utility function, we have that
u(a,pr) = u(b,px) for all k € {1,....n — 1}, and w(a,z) > u(b,x). As {p1,...,pn—1} is a basis for
span(Py~p), we know that pq,...,p,—1 are linearly independent. It thus follows by Lemma 2.12.3 that
u represents 7 on the pair of choices {a,b}. As this holds for every pair of choices {a, b}, we conclude
that u represents = .

Case 2. Suppose that P, # P..q for some pairs of choices {a,b} and {c,d}. Then, there must be
some choices a, b, ¢ such that P, # Py~.. To see this, suppose on the contrary that Py. = P, for all
three choices a, b, c. Then, take two arbitrary pairs of choices {a, b} and {c, d} where {a,b}N{c,d} = 0.
By assumption we would then have that

Pawb = wac = Le~d)

and hence P, = P..4 for all pairs {a,b} and {c,d}. This would be a contradiction. Hence, P,.. #
By for some choices a, b, c.

Now take some choice d different from a,b and c, if it exists. Then, either P,.q # Pywq Or
P,wq # P..q. To see this, suppose on the contrary that P,.q = Py~q = P:wq- Define A :== P, g =
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Py.q = P.q. Since, by transitivity, P,~q N Pyeq € Puwp and Ppog N Powg € Py, it follows that
AC P, and A C Py_.. Since, by Lemma 2.12.2 (b), span(A), span(P,~p) and span(Py-.) all have
dimension n — 1, it follows that A = span(P,p) = span(Pp.).

Hence, by Lemma 2.12.2 (a),

A= A(S) N span(A) = A(S) N span(Pyp) = Py

In a similar way, it can be shown that also A = Py.. This would imply that A = P,y = Ppc.

By transitivity, A = Pyp N Pyoe € Pye. In a similar way as above, it can be shown that, in fact,
A = P,... We thus conclude that P, = Py = P,~c. This is a contradiction to our assumption that
P.c # Py.. Hence, either P, q # Pyq or Pyoq # P.q.

We can thus apply the utility design procedure for more than two choices, from Section 2.4.2. We
will show that the utility function u so obtained represents 7~ . We distinguish the following cases:
(2.1) there are three choices, (2.2) there are four choices, and (2.3) there are more than four choices.

Case 2.1. Suppose there are three choices. Let these choices be a,b,c with Py # Ppe. In the
procedure, we first derive the utilities u(a,s) and u(b, s) for the choices a and b, using the utility
design procedure for two choices. By the proof of Theorem 2.8.1 we know that these utilities represent
= on {a,b}.

To derive the utilities for ¢, we first fix the beliefs p1, po, ..., p, as described in the utility design
procedure for more than two choices, where n is the number of states. In particular, p1 € Pyoc\Ppec,
and pa, ..., pn € Ppe. Note that such a belief p; € Py.\ Py~ can be found, since P,.. # Py~ and, by
Lemma 2.12.2 (a) and (b), Pywe = span(Pyc) N A(S), Pye = span(Pp~c) N A(S) where span(Py.)
and span(Py~.) both have dimension n — 1.

Since p1 ¢ Ppc, we must have that p1 € Py or p1 € P.p. Let us assume, without loss of
generality, that p; € P..p. As p1 € Py, it follows by transitivity that p; € P,.;. Above we have seen
that u represents - on {a, b}, and thus we know that u(a,p1) > u(b,p1).

We now show that u represents 77 on {b, c}. By construction of the utility design procedure, we
have that wu(c, px) = u(b, px) for all k € {2,...,n}. Moreover, we know by the proof of Lemma 2.12.2
(b) that {ps,...,pn} is a basis for span(Py~.), and hence pa, ..., p, are linearly independent. Consider
the belief p; above, with p; € P, ;. Since we know that u(a,p1) > u(b, p1) and, by construction of the
utility design procedure, u(c,p1) = u(a,p1), it follows that u(c,p1) > u(b, p1). But then, it follows by
Lemma 2.12.3 that u represents =~ on {b, c}.

We finally show that u represents = on {a,c}. Since P, # Py, we know by Lemma 2.12.2
(a) that span(P,.) # span(Pp~.). As both linear subspaces have dimension n — 1, it follows that
span(Py~c) N span(Py.) is a linear subspace with dimension n — 2. Choose a basis {q2, ..., ¢,—1} for
span(Pyc)Nspan(Pyc). As p1 ¢ Py, we know by Lemma 2.12.2 (a) that p; ¢ span(Py~.), and hence
{p1,42, .-, qn—1} are linearly independent. Since all these vectors are in span(P,~.), and span(Py~.)
has dimension n — 1, we conclude that {pi, q2, ..., gn—1} is a basis for P,..

By Lemma 2.12.6 we know that span(P,.) N span(Py.) C span(Pyp). As such, we conclude
that g2, ..., gn—1 € span(Pyp) N span(Py.). Since u represents - on {a,b} and {b, c}, it follows from
Lemma 2.12.7 that

u(a, g) = u(b, qx) and u(b, g) = u(c, qx) for all k € {2,....,n — 1}

which implies that
u(a, qx) = u(e, qx) for all k € {2,...,n — 1}. (2.12.11)
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Moreover, by construction of the utility design procedure,
u(a, p1) = u(c,p1). (2.12.12)

Since Py.c # Py we can choose, by a similar argument as above, a belief p € Py.\ Pyc. Assume,
without loss of generality, that p € P..,. Then, by transitivity, p € Py.,. As u represents 7~ on {a, b}
and {b, c}, we know that u(c,p) = u(b,p) and u(b,p) > u(a,p), which implies that

u(e,p) > u(a,p) for some p € Pey . (2.12.13)

In view of (2.12.11), (2.12.12) and (2.12.13), it follows by Lemma 2.12.3 that u represents the restriction
of 7 to {a,c}. As such, u represents .

Case 2.2. Suppose there are four choices, a, b, c,d, where P,.. # Pp.. By construction, the utility
design procedure first computes the utilities for a,b and ¢, and afterwards computes the utilities for
d. We show that u represents 7~ .

By Case 2.1, we know that u represents =~ on {a, b, c}. That is, it is left to show that u represents
= on {d,a},{d,b} and {d, c}.

We have seen above that either Py, # Pjwp or Py # Pic. Suppose, without loss of generality,
that Py.q # Pgp. Then, by construction of the utility design procedure, we find the utilities for d in
a similar way as for {a, b, c}, but now applied to the choices {a,b,d} instead of {a,b,c}. In the same
way as above, it then follows that u represents 7~ on {d,a} and {d, b}.

It remains to show that u represents /7 on {c, d}. We distinguish three cases: (2.2.1) Pgq = Pa~c
or Piup = Pyee, (2.2.2) Pivg # Pane, Picy # Pone and span(Piq) N span(Pu~c) # span(Pgp) N
span(Py~c), and (2.2.3) Pjoq # Pa~cy Pit # Poe and span(Pyq) N span(Py~.) = span(Pip) N
span(Pyc)-

Case 2.2.1: Suppose that Py, = Pyc or Pyop = Py.. Assume, without loss of generality, that
Py = P,c. By transitivity, Pjwq = Piwa N Pae € Pgoe. As, by Lemma 2.12.2 (a) and (b), Py, =
span(Pyq) N A(S), where span(Py.,) has dimension n — 1, and a similar property holds for Py, it
follows in the same way as at the beginning of Case 2 that Py, = Pive = Piee.

Let {pa,...,pn} be a basis for Py.. As Pj.q = Pywc = Py, and u represents 7~ on {d,a} and

{a, ¢}, it follows that u(d, p,,) = u(a, pm) and u(a, pm) = u(c, pm) for all m € {2,...,n}. Hence,
u(d, pm) = u(c, py) for all m € {2,...,n}. (2.12.14)

We now show that Py.p # Py~.. To see this, suppose on the contrary that Py, = Py... Then, by
transitivity, it would follow in the same was as above that Py, = Py = Pyc. As we have seen above
that Pj. = Py~c, it would follow that Py.. = P,~., which is a contradiction. Hence, Py # Pj..

We can thus choose some p € Py p\ Py~c. Assume, without loss of generality, that p € Py, .. Then,
by transitivity, p € Pp-.. As u represents 7~ on {d,b} and {b,c}, we know that u(d,p) = u(b,p) and
u(b,p) > u(c,p). Thus,

u(d,p) > u(c,p) for some p € Py . (2.12.15)

In view of (2.12.14) and (2.12.15), it follows by Lemma 2.12.3 that u represents 2~ on {d, c}.

Case 2.2.2: Suppose that Py.q # Pae, Piob # Poe and span(Pyq) N span(Pyc) # span(Pgp) N
span(Py~.). By Lemma 2.12.2 (a) we know that span(Pyq) # span(Py~.) and span(Pyp) # span(Py~c).
As, by Lemma 2.12.2 (b), each of these four linear subspaces has dimension n — 1, we conclude
that span(Pgq) N span(Py~.) and span(Pi.p) N span(Py..) are linear subspaces with dimension
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n — 2. Since span(Pgq) N span(Pyc) # span(Pywp) N span(Py..), there is some ¢1 € (span(Pgq) N
span(Py~c))\(span(Pgp) N span(Pyp.)). Moreover, let {q,...,qn—1} be a basis for span(Pg.p) N
span(Py~.). Then {q1, g2, ...,qn—1} are linearly independent.

As, by Lemma 2.12.6,

span(Piq) N span(Pa~c) C span(Py~.) and span(Pyp) N span(Py.) C span(Pg.)

we conclude that qi1,q2,...,qn—1 € span(Py~.). Since {q1,q2,...,qn—1} are linearly independent, and
span(Py..) has dimension n — 1, we know that {q1, g2, ..., gn—1} is a basis for span(Py-.).

By construction, g1 € span(Pg.q) N span(Py~.). As u represents 7~ on {d,a} and {a,c}, it follows
from Lemma 2.12.7 that u(d, q1) = u(a,q) and u(a,q1) = u(c, q1), and thus

u(d, q1) = u(c, q1). (2.12.16)

As g2, ...,qn—1 € span(Pyp) N span(Py..), and u represents - on {d,b} and {b,c}, it follows in a
similar fashion that
u(d, gm) = u(c, qm) for all m € {2,...,n — 1}. (2.12.17)

Since Pyq # Py~e, it follows by transitivity that Py.q # Pj~c. Thus, there is some p € Pjog\ Pi~c-
Suppose, without loss of generality, that p € Py .. By transitivity, we then have that p € P,... As u
represents =~ on {d,a} and {a, c}, it follows that u(d, p) = u(a,p) and u(a,p) > u(c,p), and thus

u(d,p) > u(c, p) for some p € Py .. (2.12.18)

In view of (2.12.16), (2.12.17) and (2.12.18), it follows by Lemma 2.12.3 that u represents =~ on {d, c}.

Case 2.2.3: Suppose that Py, # Pae, Piob 7 Poe and span(Piq) N span(Py~c) = span(Pgp) N
span(Py~.). Let
A := span(Pyq) N span(Pyc).

Recall that, by Lemma 2.12.6, span(Pgq)Nspan(Py~c) C span(Py~.) and span(Pgq)Nspan(Pgp) C
span(P,p). Hence,

span(Pyq) N span(Py~c) N span(Pgp) N span(Py.) N span(Py.) N span(Pyp)
span(Pyq) N span(Py~.) N span(Pgp) N span(Pp..)
= span(Pi.q) N span(Pac) = A, (2.12.19)

where the second equality follows from the fact that span(Pg.q) N span(Pa~c) = span(Pgp) N
span(Pyc)-

As Py.q # Pa~c we know, by Lemma 2.12.2 (a), that span(Pj,) # span(P,~.). Since, by Lemma
2.12.2 (b), span(Pj,) and span(P,~.) have dimension n — 1, we know that A has dimension n — 2.
Moreover, by (2.12.19) we know, for every e, f € {a,b,c,d}, that A C span(Pey).

Let AT(S) :={p e A(S) | p(s) > 0 for all s € S} be the set of full support beliefs. We distinguish
two cases: (2.2.3.1) AN AT(S) is empty, and (2.2.3.2) AN AT(S) is non-empty.

Case 2.2.3.1. Suppose that A N A*(S) is empty. Recall from Lemma 2.12.2 (b) that each of
the indifference sets P..y, where e, f € {a,b,c,d}, has a full support belief in A*(S), and thus
P,y N AT(S) is non-empty. Moreover, by (2.12.19) we have that P.; N P, = A whenever P, #
Pyoh. As AN AT(S) is empty, it follows that P.y N Pyp N AT(S) is empty whenever P.y # Pyp.

Recall from the assumption in Case 2.2.3 that Pyoe # Poc, Pina # Paee and Pyop # Ppec.
Moreover, we have seen at the beginning of Case 2.2 that Py, # Py.p. By transitivity, it follows
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that the sets P,p, Pyc, Py~ are pairwise different, that the sets P,.., Py~q and P.., are pairwise
different, that the sets P,.p, P,~q and P4 are different, and that the sets Py.., P,~q and P..g4 are
pairwise different. Let P4, ..., P be the pairwise different sets from P,., ..., P.q. From the above, it
follows that k£ > 3.

As P NPy ,NAT(S) is empty whenever P s # Py, it follows that the sets PtNAT(S), ..., PN
AT(S) are pairwise disjoint. Moreover, we have seen that each of the latter sets are non-empty. Since
span(Py), ..., span(Py) are hyperplanes of dimension n — 1, we can order the sets P, ..., Py such that
PyNAT(S), ..., P_1 NAT(S) are in between Py NAT(S) and P, NA1(S). Take some p; € PLNAT(S)
and py € P, N AT(S), and let [ be the line through p; and py. Then, the corresponding line segment
from p; to pg is included in AT(S). As P, NAT(S),..., Pr_1 N AT(S) are in between P; N AT (S) and
P, N AT(S), the line [ contains for every m € {2, ...,k — 1} a unique belief p,,, in P,,.

In particular, for every pair of choices e, f in {a, b, c,d}, there is a unique belief p.y € P, on the
line [, and the line | contains a belief where the DM is not indifferent between any of the choices in
{a,b,c,d}.

Recall, from above, that the sets P,y, Py~c, Py~ are pairwise different, that the sets P,, Py~q and
P4 are pairwise different, that the sets Py, P,~q and P, are pairwise different, and that the sets
Py¢, Pyog and P, are pairwise different. Moreover, we have seen that Py NAT(S), ..., PLNAT(S) are
pairwise disjoint. Hence, by construction, pup, Pac, Pbe are pairwise different, pgp, Pad, Pba are pairwise
different, and pguc, pPad, Ped are pairwise different. Let s be a state such that the probability of s is not
constant on the line [. By four choice linear preference intensity, we have that

pac(S) - pcd(s) _ (pab(S) — pbd(S))(pac(S) — pbc(s)) (21220)

Pad(8) = Ped(s)  (Pab(5) — Poc(5))(Paa(s) — pra(s))

Note that both fractions are well-defined since puq # DPed, Pab F Poe a0d Dog # Ppg- Moreover, as
Dacs Pads Ped are pairwise different, we have that puc(s) — pea(s) # pad(s) — pea(s), and hence the
fraction on the lefthand side is not equal to 1. As such, the fraction on the righthand side is not equal
to 1 either. Let this fraction on the righthand side be called F. Then, by (2.12.20), p.q is the unique

belief on | where .
peals) = L Pad($) = Pacls) (2.12.21)
F-1

Remember that A C span(Pe..q), that A has dimension n — 2, and that span(P..q) has dimension
n — 1. Let {q2,...,qn—1} be a basis for A. Since p.,; € AT(S) and AN AT(S) is empty, we conclude
that p.g ¢ A. Hence, {pcd, g2, ---, gn—1} is a basis for span(P.q).

Now, let 7Z" be the conditional preference relation generated by the utility function u. We have
already seen that u represents 7~ on all pairs of choices in {a, b, ¢, d}, except {c,d}. In particular, we
thus know that

u(avpab) = u(bapab)a u(aapac) = u(c, pac)v u(avpad) = u(d7pad)7
u(b, ppe) = u(c, pye) and u(b, ppa) = u(d, ppa)-

As we have seen in part (a) of the proof that =" satisfies four choice linear preference intensity, the
unique belief on the line [ where the DM is indifferent between ¢ and d under Z* is given by (2.12.21).
Therefore,

(e, ped) = u(d, peq)- (2.12.22)

Recall that A = span(Pgq) N span(Py~c). As u represents 27 on {d,a} and {a,c}, it follows that
u(d,v) = u(a,v) and u(a,v) = u(c,v) for every v € span(Pyq) N span(Py~.). Therefore, u(c,v) =
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u(d,v) for every v € A. In particular,
u(c, qx) = u(d, qx) for every k € {2,...,n — 1}, (2.12.23)

where {qo,...,qn—1} is a basis for A. Moreover, we have seen that {p.4,q2,...,qn—1} is a basis for
span(Peq).

As Py.q # Pye, we can choose some p € Py ,\Py~c. Assume, without loss of generality, that
p € P, . By transitivity, we then have that p € Py, .. Since u represents 7~ on {d,a} and {a,c}, we
know that u(d, p) = u(a,p) and u(a,p) > u(c,p), and hence

u(d,p) > u(c, p) for some p € Py . (2.12.24)

In view of (2.12.22), (2.12.23) and (2.12.24), it follows by Lemma 2.12.3 that u represents 7~ on
{¢,d}. Thus, u represents - on {a,b, c,d}, which completes the proof for Case 2.2.3.1.

Case 2.2.3.2. Suppose that AN AT(S) is non-empty. Then, there is some full support belief p* in
A, with p*(s) > 0 for all states s. As we have seen that A C span(P.~y) for all e, f € {a,b,c,d}, it
follows that p* € P..s for all pairs e, f € {a,b, c,d}.

Since we have seen that A has dimension n — 2, the linear subspace A is contained in some
hyperplane containing the zero vector. Hence, there is some vector n € R® such that

nd v =0forallve A (2.12.25)

Moreover, we can choose the vector n such that for every pair e, f € {a,b,c,d} there is some p € P. s
with n? - p # 0.

In that case, there is for every pair e, f € {a,b,c,d} some p € P,y with n? . p > 0. To see this,
suppose that e, f are such that nt-p < 0 for every p € P, . As there is some p € P,y with nt.p#£0,
there must be some p € P,y with n? . p < 0. Since p* € AT(S), there is some A > 1 close enough to
1 such that ¢ := (1 — A)p+ A\p* € A(S). Note that p* € A C span(Pe~¢) and p € P, which implies
that g € span(Pe~f) NA(S) = P.~s. At the same time we know, by (2.12.25) and the fact that p* € A,
that n? - p* = 0. Since n” - p < 0 and A > 1, it follows that

ntg=1-N - p)+ X (n-p*)>0.

Thus,
for every e, f € {a,b,c,d} there is some p € P,y with ntp>0. (2.12.26)

Let
Pt i={peAS)|n* p>0}.

Then, in view of (2.12.26),

P..fN P is non-empty for all e, f € {a,b,c,d}. (2.12.27)

Recall that P, N Py.j = A for every two pairs {e, f},{g, h} in {a,b, c,d} with Py # Pyp. In view
of (2.12.25) and (2.12.27) we conclude that P, N Py, NP is empty whenever P, # P, Hence,
(Pes N PT) and (Pyp, N PT) are disjoint whenever P..y # Py ;. But then, the different sets in
P, .y, ..., P..q can be numbered Py, ..., P,, with k > 3, such that PN P™, ..., P,_1 NPT are in between
PN Pt and P, N P". In a similar way as in Case 2.2.3.1, it can then be shown that u represents -
on {c¢,d}. This would complete the proof for Case 2.2.3.2.

Hence, u represents 7 on {a,b,c,d}. This completes the proof for Case 2.2.
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Case 2.3. Suppose there are more than four choices. Label these choices a,b, ¢, dy,do, ..., dx, where
P, # P..p, and the choices are ordered according to the order in which their respective utilities are
computed in the utility design procedure.

We will prove, by induction on k, that u represents - on {a,b,c,dq,...,d;}. In Case 2.2 we have
already shown that u represents = on {a,b, ¢,d; }, which yields the induction start.

Now, let k& > 2, and suppose that u represents = on {a,b,c,dy,...,di—1}. We will show that u
represents 7~ on {a,b,c,dy,...,d,_1,di}, by showing that it does so on {dg,a}, {dx,b} and {dy,e} for
every e € {c,dy,...,dp_1}.

In a similar way as in Case 2.2, it can be shown that either Py, ~, # Pa,~b, Or Pi~na # Payrc-
Assume, without loss of generality, that Py, ~q # Pa.~p- Then, it follows from the proof of Case 2.1
that u represents - on {dg,a} and {dj,b}.

Now, choose some e € {c,di, ...,dx_1}. By mimicking the proof of Case 2.2, it can then be shown
u represents - on {dg, e}. Indeed, instead of applying the proof to {a, b, c,d}, we can now apply it to
{a,b,e,dy}. As such, u represents - on {a,b,c,dy,...,dg_1,d;}. By induction, the proof for Case 2.3
is complete.

By combining Cases 1, 2.1, 2.2 and 2.3, we have shown that u represents >~ whenever no two
choices are equivalent.

Suppose now that two, or more, choices are equivalent. In this case, we can select a subset C* of
choices such that (i) no two choices in C* are equivalent, and (ii) every choice outside C* is equivalent
to a choice inside C*. By the proof above, we then know that there is a utility function ©* on C* that
represents 7~ on C*. This utility function can be extended to a utility function w on C, by setting, for
every choice ¢ ¢ C*,

u(e, s) = u(c, s)

for all states s, where ¢* is the unique choice in C* that is equivalent to c¢. Then, the utility function
u will represent 7~ on the whole choice set C. This completes the proof. ]

2.12.3 Proof for Section 2.10

Before we can prove Theorem 2.10.1 we need a preparatory result. It describes, for a given signed
conditional preference relation meeting the axioms, the structure of the set of signed beliefs for which
the DM is “indifferent” between two choices. To formally state the preparatory result, we must
introduce some new notions and notation. For a signed conditional preference relation 2* and two
choices a and b, we denote by Qq~+p the set of signed beliefs ¢ for which a ~7 b. By

AYS)={ge R[S als) =1}

we denote the set of all signed beliefs. Two subsets @, Q" C A*(S) are called parallel if there is some
vector v € R® such that

Q ={g+v|qeQ}
In particular, two parallel sets Q, Q" with Q # Q' are always disjoint, that is, Q N Q' is empty.
Lemma 2.12.8 (Signed indifference sets) Let ~* be a signed conditional preference relation with-

out equivalent choices which satisfies continuity, preservation of indifference and preservation of strict
preference.

(a) Consider two choices a, b such that there is no constant preference intensity between a and b. Then,
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span(Qq~+p) has dimension |S| — 1, and Qg+ = A*(S) N span(Qa+p);

(b) Consider three choices a,b, ¢ such that there is constant preference intensity between a and b, but
not between a and ¢, and not between b and c. Then, the sets Qg+ and Qp~+. are parallel.

Proof. (a) In a similar way as in the proof of Lemma 2.12.2 (a), it can be shown that Qg+p =
A*(S) N span(Qq~~p). We therefore omit this proof here.

As there is no constant preference intensity between a and b, it is not the case that a > b for all
signed beliefs ¢, and it is not the case that b =} a for all signed beliefs ¢. In that case, there must
be signed beliefs ¢; and gz such that a -7 b and b =7, a. To see this, suppose such signed beliefs ¢;
and g2 would not exist. Then, either a 7 b for all signed beliefs ¢, or b 77 a for all signed beliefs
q. Assume, without loss of generality, that a 7 b for all signed beliefs g. As there is no constant
preference intensity between a and b, and a and b are not equivalent, there must be signed beliefs ¢;
and g2 with a =7 b and a ~, b. Let the signed belief g3 be such that ga = (1/2)q1 + (1/2)g3. We will
see that b 7. a. Suppose, on the contrary, that a ZZ7. b. Since g2 = (1/2)q1 + (1/2)g3 and a =7 b, it
would follow by preservation of strict preference that a 7, b, which is a contradiction to the fact that
a ~y, b. Hence, we see that b =7 a. This is a contradiction to the assumption above that a Zj b for all
signed beliefs g. Thus, we conclude that there must be signed beliefs ¢1, g2 with a =7 b and b -7, a.

Choose some full support belief p* with p*(s) > 0 for all states s such that p* ¢ Qq~+p. For every
number A, consider the conditional preference relation =* where for every two choices ¢ and d, and
every belief p,

¢ zp d if and only if ¢ 7, ) d. (2.12.28)

p*+Ap

We now show that A can be chosen large enough such that =* has preference reversals for {a,b}.
Recall from above that there are signed beliefs q1,q2 with a >7 b and b >7, a. As p* is a full
support belief with p*(s) > 0 for all states s, we can choose € > 0 small enough such that both
p1 = (1 —e)p* + eq1 and p2 = (1 — &)p* + g2 are beliefs. By setting A\ := 1/¢, we have that
@1 = (1= A)p* + Ap1 and g2 = (1 — A)p* + Apa. Since a =7 b and b =7, a it follows, by definition of
>~ that a >;}1 bandb >I))‘2 a. As we have chosen ¢ small enough, and A\ = 1/e, we can choose A large
enough such that there are beliefs p; and ps with a >;,‘1 band b >;}2 a. That is, we can choose A large
enough such that there are preference reversals between ¢ and b. In particular, we can choose A > 1.

It can also be shown that the conditional preference relation ~* satisfies continuity, preservation
of indifference and preservation of strict preference. We start with continuity. Take two choices ¢

and d and two beliefs pi,po with ¢ >;‘1 d and d >22 c. Then, by definition, ¢ >’(1_/\)p*+)\p1 d and
d >?1—A)p*+Ap2 c. Define the signed beliefs ¢; := (1 — \)p* + Ap1 and g2 := (1 — A\)p* + Apa. Since Z*
satisfies continuity, there is some p € (0,1) such that ¢ = 1) g1+ d. Since
I=wa+pe = (1—p)((1—=X2p"+Ap1) + u((1 = A)p* + Ap2)
= (1=Mp" + M = p)p1 + pp2)
it follows by definition of =~* that ¢ ~? d. Thus, ~-* satisfies continuity. In a similar fashion,

(1—p)p1+pp2
it can be shown that ~* satisfies preservation of indifference and preservation of strict preference.

Summarizing, we see that ~* satisfies continuity, preservation of indifference and preservation of
strict preference, and there are preference reversals between a and b. By Lemma 2.12.2 (a) and (b) we
can thus conclude that P, », = span(P, ;) N A(S), and span(P,. ;) has dimension n — 1, where n
is the number of states.
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Select beliefs p1, ..., pp—1 such that {p1, ..., pn—1} is a basis for span(P,

~Ap). Define the signed beliefs
q1s -5 4n—1 by

@ = (L = A)p™ + Apy (2.12.29)

for all k € {1,...,n — 1}. We show that {q1,...,qgn—1} is a basis for span(Qg=p).

We start by verifying that qp € Qe+ for every k. Since a Nl);k b, it follows by (2.12.28) and
(2.12.29) that a ~; b, and hence g € Qq~+p, for all k € {1,...,n —1}.

We next show that ¢, ...,¢,—1 are linearly independent. Recall that p* ¢ Q5. By (2.12.28) it
then follows that p* ¢ P, _x,. Since we know that P, », = span(P, ;) N A(S), it follows that p* ¢
span(P, ).

Now, suppose that g1 + ... + pt,,—1gn—1 = 0 for some numbers p, ..., i1,,_;. Then, by (2.12.29),
(1= XN) (g + oo+ po_)P" + Apyp1 + oo+ Ay 1Pn—1 = 0. (2.12.30)

As p* ¢ span(P, ), and {p1,...,pn—1} is a basis for span(P, ), we conclude that p*, p1,...,pn—1
are linearly independent. Hence, (2.12.30) implies that (1 — A)(uq + ... + p,,_1) = 0 and Auy, = 0 for
all k € {1,....,m —1}. As A > 1, this means that p;, = 0 for all £ € {1,...,n — 1}. Thus, the signed
beliefs q1, ..., ¢n_1 € Qq~+p are linearly independent.

This means, in turn, that span(Q.~~p) has dimension at least n — 1. Recall that Q.+, = A*(S)N
span(Qq~=p). If span(Qq~=p) would have dimension n, then span(Q.=») = R, which would imply
that Qgxp = A*(S). This would be a contradiction, since a and b are not equivalent. We thus conclude
that span(Qg~+p) has dimension n — 1.

(b) Suppose that there is constant preference intensity between a and b, but not between a and c,
and not between b and c. Then, we know from (a) that Qgxc = span(Qg~=c) N A*(S) and Qprc =
span(Qpxc) N A*(S) where span(Qu~+.) and span(Qp~+.) both have dimension |S| — 1. Suppose,
contrary to what we want to show, that Qg+ and Qp-+. are not parallel. Then, it must be that
Qa~+c and Qp~+. intersect, and hence there is some signed belief ¢ which is both in Qg+, and Qpx.
By transitivity, it would then follow that g € Q4+p. This, however, is a contradiction, since there is
constant preference intensity between a and b, and the choices a and b are not equivalent. We thus
conclude that Qg+, and @Qp+. are parallel. This completes the proof. |

We are now ready to prove Theorem 2.10.1.

Proof of Theorem 2.10.1. (a) Suppose first that 7~ has an expected utility representation u. Let
~* be the signed conditional preference relation where for every signed belief ¢, and every two choices
a and b, we have that

a Z, b if and only if u(a, q) > u(b, q).

Then, =* extends 7~ . Similarly to the arguments in Section 2.8 and the proof of Theorem 2.9.1,
it can then be shown that —* satisfies continuity, preservation of indifference, preservation of strict
preference, transitivity, three choice preference intensity and four choice preference intensity.

We now show that 7—* satisfies transitive constant preference intensity. Suppose that there is
constant preference intensity between a and b and between b and c. Then, there must be numbers
a1, g such that u(a,q) — u(b,q) = ay for every signed belief ¢, and u(b,q) — u(c,q) = ag for every
signed belief q. Then, u(a, ¢) —u(c, q) = a1+ s for every signed belief ¢, and therefore there is constant
preference intensity between a and c.

We next show that 7—* satisfies four choice linear preference intensity with constant preference
intensity. Consider a line [ of signed beliefs, and four choices a, b, c and d, such that there is a signed
belief on the line where the DM is not “indifferent” between any of the four choices.
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To prove part (a) of this axiom, assume that there is constant preference intensity between ¢ and
d, but not between the other five pairs of choices. Let qup, Qucs Qud, @pe and gpq be signed beliefs on
the line where the DM is “indifferent” between the respective choices. Consider two arbitrary, but
different, signed beliefs ¢1, g2 on [, and define, for every two choices e, f in {a,b, c,d},

Afule) —u(f)) = (ule,q1) — u(f, 1)) — (ule, ¢2) — ul(f, g2))-

Now, consider a state s such that the probability of s is not constant on the line [. In a similar way as
in the proof of Theorem 2.9.1 it can be shown, for every three choices e, f, g in {a, b, c,d}, that

Au(e) —ulf)) _ eg(s) — drg(s)
—u(9))  ger(s) — apqe(s)

In particular, we have that

Au(a) —uld)) _ Gac(s) = aqpe(s) | o Au(a) —u(d)) _ daals) = qals)
Au(a) —u(c))  qab(s) = qec(s) A(u(a) —u(d))  qab(s) — qoa(s)
Recall that the preference intensity between ¢ and d is constant. This means that there is a number
a such that u(d, q) = u(c, q) + « for every signed belief g. But then,

Au(a) —u(d)) = (u(a,q1) —u(d,q1)) — (u(a,g2) — u(d, g2))
(u(a,q1) —ule,q1) — @) — (u(a, g2) — u(c, q2) — @)
= (u(a,q1) —ulc,q1)) — (u(a, g2) —u(c, @2)) = Au(a) — u(c)).

(2.12.31)

As such,

Together with (2.12.31), this yields

Qac(s) - qu(S) _ qg,cl(s) - de(s)
qab(8) — be(s)  qan(s) — qva(s)

)

and hence
(9ab(8) — @be(8))  (qad(s) — qva(s)) = (qab(s) — qwa(5)) - (dac(s) — qve(s))-

Thus, part (a) of four choice linear preference intensity with constant preference intensity holds.

To prove part (b) of the axiom, assume that the preference intensities between a and b, and between
c and d, are constant, but not between the other four pairs of choices. Then, there are numbers «, 3
such that u(b, q) = u(a,q) + a and u(d, q) = u(c, q) + S for every signed belief q. Let qqc, Qbes Gaa and
Qpq be signed beliefs on the line [ where the DM is “indifferent” between the respective choices. Define
the signed belief q := quq — qpq + Gbe, Which is again on the line [. Then,

u(a, q) —u(c, q) = (w(a, gaa) — u(c, qaa)) — (w(a, gpa) — ulc, gpa)) + (u(a, gue) — ulc, goe))
= (u(a, gaq) — u(d, gaa) + B) — (u(b, qpa) — uw(d, gpa) — @ + B) + (u(b, gpc) — ulc, gpe) — ) = 0,
since u(a, gaq) = u(d, qad), u(b, gpa) = u(d, gpa) and u(b, goc) = ul(c, que)-

Recall that there is a signed belief on the line where the DM is not “indifferent” between any of the
choices in {a, b, c,d}. But then, by preservation of indifference and preservation of strict preference,
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there is only one signed belief on the line [ where the DM is “indifferent” between a and ¢, which is
Qac- Thus, we conclude that ¢ = g4, and therefore

Gac — 9bc = Gad — 4bd;

which yields part (b) of four choice linear preference intensity with constant preference intensity.
Thus, - can be extended to a signed conditional preference relation that satisfies all of the axioms
above.

(b) Suppose now that 77 can be extended to a signed conditional preference relation 7-* that satisfies
all of the axioms above. We will show that there is a utility function u that represents ~*, and thereby
represents 7~ as well. To start, we assume that no two choices are equivalent under - . At the end of
the proof, we show how to deal with the case where some choices are equivalent. We distinguish two
cases: (1) for every two choices a, b there is no constant preference intensity between a and b, and (2)
there are at least two choices a and b with a constant preference intensity between them.

Case 1. Suppose that, for every two choices a and b, there is no constant preference intensity between
a and b. By the proof of Lemma 2.12.8 (a) we then know that for every two choices a and b, there
must be signed beliefs ¢; and g such that a =7 b and b >, a.

Choose some full support belief p* with p*(s) > 0 for all states s. For every number A, consider
the conditional preference relation ~* where for every two choices a and b, and every belief p,

a ,ﬁ?) b if and only if a zzﬂl—k) b.

p*+Ap

We have seen in the proof of Lemma 2.12.8 (a) that for every two choices a and b there is some
large enough A such that ~* has preference reversals between a and b. But then, we can choose A
large enough such that ~* has preference reversals for all pairs of choices.

We will now show that ~* satisfies the regularity axioms, transitivity, three choice linear preference
intensity and four choice linear preference intensity. In the proof of Lemma 2.12.8 (a) we saw that =—*
satisfies the regularity axioms. Transitivity of 7~ follows immediately from the assumption that >*
satisfies transitivity.

We now show three choice linear preference intensity. Consider three choices a, b, ¢, two parallel
lines of beliefs [ and I’ that contain beliefs where the DM is not indifferent under >=* between any of
the three choices, and beliefs pgp, Pac, Poe 01 1 and beliefs p!,,, pl,., pj, on ' where the DM is indifferent
under ~* between the respective choices.

Define the lines L and L’ of signed beliefs where

L:={(1-=XNp*+Xp|ponli}and L' :={(1—XN)p*+Xp' | p' on I}

Then, it may be verified that the lines L and L’ are parallel as well.

Recall that [ and I’ contain beliefs where the DM is not indifferent under *=~* between any of the
three choices. By definition of % it follows that L and L’ contain signed beliefs where the DM is not
“indifferent” under 7Z* between any of the three choices.

Moreover, define the signed belief g5 := (1 — X\)p* + Apas, and similarly for gac, gbe, Ly @oe and g,
Then, Gup, Gac, Gbe are on L and ¢’;, ¢\, g5 are on L'. Also, by definition of -* we can conclude that
at the signed beliefs gqp, ..., g5, the DM is “indifferent” under Z* between the corresponding pair of
choices. Since 7—* satisfies three choice linear preference intensity, we know for every state s that

(qab(s) = e () * (dac(s) = Gbe(8)) = (2 () = Gbe(3)) - (Gac(s) — que(s))- (2.12.32)
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As qap = (1 = N)p* + Apap, it follows that pa, = (1 — 1/A)p* + (1/N)qqp. Similarly for the other five
beliefs. Together with (2.12.32) we conclude that

1

32 (ab(8) = @e(9)) - (dac(s) = dhel))
1

= 3200 () = ahe(5) - (dac(s) = @e(s))

= (Pap(8) = Ppe(5)) - (Pac(s) = poc(s))-

Thus, ~* satisfies three choice linear preference intensity. In a similar fashion, it can be shown that
>~ satisfies four choice linear preference intensity.

Summarizing, we see that the conditional preference relation =* has preference reversals for all
pairs of choices, and satisfies each of the axioms from Theorem 2.9.1. By the same theorem, we then
conclude that >~ has an expected utility representation u*.

Define the utility function u by
u(e,s) = (1—=1/A) - u)‘(c,p*) +(1/A) - u’\(c, s)

(pab<3> - pbc(s)) : (p;c(s) _péc(s)) =

for every choice ¢ and state s. We will show that u represents - .
Take some arbitrary belief p. Then, p = (1 — X\)p* + Ap’ for the belief p' := (1 — 1/A\)p* + (1/N)p.
We conclude, for two arbitrary choices a and b, that

a Zp bif and only if a 7)) b
if and only if a 7y, b if and only if @ 5 b
if and only if u*(a,p’) > v (b,p)
if and only if u*(a, (1 — 1/\)p* + (1/\)p) > ur(b, (1 — 1/X)p* + (1/\)p)
if and only if (1 — 1/N)u(a,p*) + (1/N)u(a,p) > (1 — 1/X)u* (b, p*) + (1/N)u (b, p)
if and only if u(a,p) > u(b, p).

Here, the first equivalence follows from the assumption that 72* extends -, the second equivalence
from the definition of p, the third equivalence from the definition of >, the fourth equivalence from
the fact that u represents =, the fifth equivalence from the definition of p’, the sixth equivalence
from the fact that expected utility is linear in the belief, and the last equivalence from the definition
of the utility function w.

Thus, we see that the utility function u represents -, which completes the proof of Case 1.

Case 2. Suppose now that there are at least two choices a and b such that ~—* exhibits a constant
preference intensity between a and b. We start by constructing a set of choices D, as follows. Take an
arbitrary choice d; € C. If there is a choice ds # d;i such that there is no constant preference intensity
between dy and di, then select such a choice dz. In the next step, if there is a choice d3 # di,ds
such that there is no constant preference intensity between ds and d; and between ds and ds then
select such a choice ds. Continue in this way until no further choice can be selected in this way. Let
D = {dy,...,di} be the resulting set. Then, by construction, there is no constant preference intensity
between any two choices in D, and for every choice ¢ ¢ D there is a choice d € D such that there
is constant preference intensity between ¢ and d. But we can show even more, as the following claim
shows.

Claim. For every choice ¢ ¢ D there is exactly one choice d(c¢) € D such that there is constant
preference intensity between ¢ and d(c).
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Proof of claim. Suppose there are two choices di,ds € D such that there is a constant preference
intensity between ¢ and d; and between ¢ and ds. By transitivity of constant preference intensity,
it would then follow that there is a constant preference intensity between di and ds, which is a
contradiction. This completes the proof of the claim.

We distinguish two cases: (2.1) the set D only contains one choice, and (2.2) the set D contains
more than one choice.

Case 2.1. Suppose that D only contains one choice, say d. Then, for every choice ¢ # d, there
is constant preference intensity between ¢ and d. By transitivity of constant preference intensity, it
would follow that for every two choices a,b € C' we have constant preference intensity between a and
b. Consider an arbitrary signed belief ¢, with the induced ranking ¢y =7 ca =7 ... =} car. Since there
is constant preference intensity between any two choices, this same ranking is induced at every signed
belief. Take some numbers a; > ag > ... > ays. Then, the utility function v with u(cy,, s) := a,, for
every choice ¢, and every state s represents -*, and thereby 7~ .

Case 2.2. Suppose that D contains at least two choices. By the claim, there are for every choice
a ¢ D two choices d(a), e(a) € D such that there is constant preference intensity between a and d(a),
but not between a and e(a). We define the utility function u as follows.

Since there is no constant preference intensity between any two choices in D, we know from Case
1 that there is a utility function v that represents —* on D. We set u(d, s) := v(d, s) for every choice
d € D and state s € S.

Now take some choice a ¢ D. As there is no constant preference intensity between a and e(a),
there is a signed belief gqc(q) where the DM is “indifferent” between a and e(a). Recall that there is
constant preference intensity between a and d(a) € D. We define, for every state s,

u(a’ 8) = u(d(a)7 8) + u(e(a)7 qae(a)) - u(d(a)’ Qae(a))' (21233)

We show that this utility function u represents Z*, by proving that u represents =~* on {a, b} for
every two choices a,b € C. We distinguish the following cases: (2.2.1) a,b € D, (2.2.2) a ¢ D and
b=d(a), (2.23) a ¢ D and b =e(a), (2.24) a ¢ D and b € D\{d(a),e(a)}, and (2.2.5) a,b ¢ D.

Case 2.2.1. Suppose that a,b € D. Then, u represents 2=* on {a,b} since v represents ~* on D.

Case 2.2.2. Suppose that a ¢ D and b = d(a). Since there is constant preference intensity between
a and d(a), it must be that either a =} d(a) for all signed beliefs g, or d(a) =} a for all signed beliefs
q. Assume, without loss of generality, that a > d(a) for all signed beliefs ¢. Since e(a) a, it
follows that e(a) ™ Gaea
By (2.12.33) we conclude that u(a,q) > u(d(a),q) for all signed beliefs ¢, and hence u represents 7~*

on {a,d(a)}.

Case 2.2.3. Assume that a ¢ D and b = e(a). Recall from above that e(a) ~ac(a)
(2.12.33), we know that u(a, ¢ae(a)) = w(€(a), Gae(a))s and thus Gue(q) € Qua)=u(e(a))- Here, we denote
by Qu(a)=u(e(a)) the set of signed beliefs ¢ where u(a, q) = u(e(a), q). As there is constant preference
intensity between a and d(a), but not between a and e(a) and not between d(a) and e(a), we know
from Lemma 2.12.8 (b) that the sets Qu«c(q) and Qg(a)~+c(a) are parallel. Since, by (2.12.33), the
expected utility difference between a and d(a) is constant across all signed beliefs, we know that also
the sets Qua)=u(e(a)) a0d Qu(d(a))=u(e(a)) are parallel. As u represents 5* on D, we must have that

Qd(a)~*e(a) = Qu(d(a))=u(e(a))-

N*
Gae(a)

d(a). As u represents 2Z* on D, we have that u(e(a), qae(a)) > w(d(a), Gae(a))-

a. Moreover, by



62 CHAPTER 2. DECISION PROBLEMS

Summarizing, we thus see that (1) Qu(q)=u(e(a)) a0d Qu(d(a))=u(e(a)) are Parallel, (il) Qu(d(a))=u(e(a)) =
Qd(a)~+e(a)> and (iii) Qg(a)~re(a) a0d Qgrre(q) are parallel. Thus, Qq)=u(e(a)) a0d Qgrxe(q) are parallel.
Since Qae(a) is in both Qaw*e(a) and Qu(a):u(e(a)), it follows that Qu(a )y=u(e(a)) = Qg *e(a)-

Since there is no constant preference intensity between d(a) and e(a), there must be some Qd(a)e(a)
with d(a) ™ ddtaye 2 e(a). Recall from above that a =} d(a) for all signed beliefs ¢, and thus a ™ daare
d(a). Hence, a = Gaarea) e(a). Asurepresents 2Z* on {a, d(a)} and {d(a), e(a)}, we have that u(a, qd(a)e(

)

u(d(a), qa(a)e(a)) and u(d(a), qa(a)e(a)) = w(€(@); Gi(a)e(a))- This implies u(a, ga(a)e(a)) > u(e(a), Gi(a)e(a
We have thus found a belief ggq)e(q) With a >(Id( (o) e(a) and u(a, qq(q)e(a)) > u(e(a), qd(a)e(a))

a)

a))
(a))-

As Qu(a)=u(e(a)) = Qa~re(a) 1t can be shown, in a similar way as in the proof of Lemma 2.12.3, that
u represents ~* on {a,e(a)}.

Case 2.2.4. Assume that a ¢ D and b € D\{d(a),e(a)}. We distinguish three cases: (2.2.4.1)
Qa~re(a) 18 Ot parallel to Qpre(a); (2.2.4.2) Qqrse(q) is parallel to Qpre(a) DUt Qorre(a) # Qbre(a)
and (2243) Qaw*e(a) = wa*e(a)

Case 2.2.4.1. Suppose that Q4«¢(q) is not parallel to Qy«c(q)- Then, there is some signed belief
qab € Qa~re(a) N Qbrre(a)- As Z* is transitive, it follows that gu € Qq~xp. Since u represents Z* on
{a,e(a)} and {b,e(a)}, we know that u(a, q.p) = u(e(a), gap) = u(b, gap). We have thus found a signed
belief g € Qa~rp With gap € Qua)=u(b)-

As there is constant preference intensity between a and d(a), but not between a and b and not
between b and d(a), we know by Lemma 2.12.8 (b) that Qu.+p is parallel to Qy.4(q)- Moreover, as
u represents 2Z* on {b,d(a)}, we know that Qp«q(a) = Qu(p)=u(d(a))- Since, by (2.12.33), the expected
utility between a and d(a) is constant across all signed beliefs, we have that Q=) is parallel to
Qu(b)=u(d(a))- Summarizing, we see that (1) Qu)—u@p) is parallel to Quw)—u(d(a)): (i) Qup)=u(d() =
QbN*d( ) and (iii) Qp~rd(a) is parallel to Quxp. Thus, Qya)—y(p) is parallel to Qu~+p. Since gqp 1s both
in Qa~xp and Qy(q)=u(p), We conclude that Qy)=u@p) = Qa~rb-

Take some signed belief qd ) 1N Qg(a)~+p. Since we assume that a =7 d(a) for all signed beliefs g,

we have that a -7 d(a) ~ datays O and thus a >-qd( b b. As u represents =" on {a, d(a)} and {d(a), b},

we have that u(a, qaay) > u(d(a), gi@ayp) = w(b, ¢ia))- Hence, we have a found a belief g, with
a >_Qd( . b and u(a, qaays) > u(b; Ga(ays)- Since Qua)—u(p) = Qa~b, We can use a similar argument as in
the proof of Lemma 2.12.3 to show that u represents =* on {a, b}.

Case 2.2.4.2. Suppose that Q,xc(q) is parallel to Qpxe(q) but Quore(a) # Qp~re(a)- We show that
the sets Qure(a)s Qbre(a)s Qanrbs Qa(a)~*e(a) AN Qg(a)~+p must all be parallel. As there is constant
preference intensity between a and d(a), but not between a and e(a) and not between e(a) and d(a),
it follows by Lemma 2.12.8 (b) that Qq+c(q) and Qg(g)~se(q) are parallel. Similarly, since there is
constant preference intensity between a and d(a), but not between a and b and not between b and
d(a), it follows by Lemma 2.12.8 (b) that Qu~«; and Qg(4)~+ are parallel. Moreover, by assumption,
Qa~re(a) 18 parallel to Qpxe(q)- Now suppose, contrary to what we want to show, that g~y is not
parallel to Q4x¢(q)- Then, there is some ¢ € Qq~+p N Qurre(q) and hence, by transitivity of Z*, we
have that ¢ € Qyx(q)- But then, g is in both Q4 xe(q) and Qp+e(q), Which is impossible since both
sets are parallel but not equal. Hence, we must conclude that Q,~+p is parallel to Q,~xc(,). But then,
all five sets Qure(a)s Qo~re(a)s Qanrbs Qd(a)~*e(a) a0A Qg(q)~*p are parallel.

Take a line [ of signed beliefs that crosses each of these five sets once, and let q,e(q), Gbe(a)s Gabs 9d(a)e(a)
and q,(q), be the signed beliefs on the line where the DM is “indifferent” between the respective choices.
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As u represents =—* on {a,e(a)},{b,e(a)},{d(a),e(a)} and {d(a),b}, we conclude that

u(a7 qae(a)) = u(e(a)v qae(a))a u(ba Qbe(a)) u( ( ) Qbe(a))
u(d(a)7Qd(a)e(a)) = u(e(a)7Qd(a)e(a)) and u(d( ) dd(a)b ) - u(ba Qd(a)b)'

Recall that there is constant preference intensity between a and d(a). Since 7Z* satisfies part (a) of four
choice linear preference intensity with constant preference intensity, we know that g is uniquely given
by the other four signed indifference beliefs. Moreover, as the signed conditional preference relation 7Z**
induced by u also satisfies part (a) of four choice linear preference intensity with constant preference
intensity, and coincides with ==* on {a,e(a)},{b,e(a)},{d(a),e(a)} and {d(a),b}, we conclude that
Gab € Qq~rup and hence u(a, qep) = u(b, qqp). Thus, we have found a signed belief qup € Qq~xp With
Gab € Qu(a):u(b)‘

Since the expected utility difference between a and d(a) is constant across all signed beliefs, we
know that (i) Qua)=u@p) is parallel to Qq(d(a))=u(v)- Moreover, as u represents Z* on {d(a),b}, we
have that (i) Qu(d(a))=u@) = Qd(a)~b- Flnally, we know that (iii) Qg(q)~+p is parallel to Qq+p. By
combining (i), (ii) and (iii), we conclude that Q,(4)—y) is parallel to Qaw*b But since we have found
a signed belief gqp € Qu~xb With gap € Qu(a)=u(p), it must be that Qy(a)=up) = Qa~b-

Now, take some signed belief ¢ with d(a ) ~g b As a7 d(a) for all signed beliefs ¢/, we conclude
that a =7 b. Since u represents Z* on {d(a),b} and {a,d(a)}, we know that u(a,q) > u(d(a),q) =
u(b, q). Hence, we have found some signed belief ¢ with a =7 b and u(a, q) > u(b, q). Since Q(a)—=u(p) =
Qa~*b, we can show in a similar way as in the proof of Lemma 2.12.3 that u represents 72* on {a, b}.

Case 2.2.4.3. Assume that Qy«c(a) = Qp~re(a)- As a and b are not equivalent, it follows by transitiv-
ity of Z* that Qusp = Quure(a) = Qire(a)- Take an arbitrary qap € Qa~rp- AS qap is in both Qgve(a)
and Qp+c(q), and u represents Z* on {a,e(a)} and {b,e(a)}, it follows that u(a,q) = u(e(a),q) =
u(bv Q) Thus, Qb C Qu (a)=u(b)"

Take some signed belief ¢ with d(a) ~ b. Since a =7, d(a) for all signed beliefs ¢', we know that
a =3 b. As u represents 2Z* on {d(a),b} and {a,d(a)}, it follows that u(a,q) > u(d(a),q) = u(b,q).
Thus, we have found some signed belief ¢ with a =7 b and u(a, q) > u(b, q).

We now show that Qu+p = Qua)=u(p)- To see thls recall from above that Qusb C Qu(a)=u(b);
which implies that span(Qgs~») C spcm(Qu (a)=u(v))- Recall also that span(Qa~~p) has dimension n—1,
which means that span(Q)=u(p)) has dimension n — 1 or n. Suppose, contrary to what we want to
show, that span(Qy(a)—u@p)) has dimension n. Then, span(Qua)=up)) = RS, and thus, by Lemma
2.12.8 (a), Qu(a)=u(s) = A*(S). However, we have found above a signed belief ¢ with u(a,q) > u(b, q),
and thus ¢ € Q(q)—=u(s)- This is a contradiction. We thus conclude that span(Q.,(,)—u()) has dimension
n — 1. Since span(Qa~+p) S span(Qu(a)=up)) and span(Qu~+y) has dimension n — 1, it follows that
span(Qa~+p) = $pan(Qy(a)=u(p))- By Lemma 2.12.8 (a), it then follows that Qg+ = Qu (@)=u b)

Summarizing, we see that € (a)=u( = Qa~+p, and there is a signed belief ¢ where a >7 b and

u(a, q) > u(b,q). We can then show in a sumlar way as in the proof of Lemma 2.12.3 that u represents
~* on {a,b}.

Case 2.2.5. Suppose finally that a,b ¢ D. We distinguish two cases: (2.2.5.1) d(a) = d(b), and
(2.2.5.2) d(a) # d(b).

Case 2.2.5.1. Assume that d(a) = d(b). Then, there is constant preference intensity between a and
d(a) and between b and d(a). By transitivity of constant preference intensity, there is also constant
preference intensity between a and b. That is, either a > b for all signed beliefs ¢, or b > a for all
signed beliefs g. Assume, without loss of generality, that a =} b for all signed beliefs q.
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Take some choice ¢ € D\{d(a)}. Then, we know by the claim that there is no constant preference
intensity between a and ¢, and hence there is a signed belief ¢ with a ~7 c. As a =7 b, we know by
transitivity of 22* that ¢ =7 b. Since, by the previous cases, u represents 2* on {a,c} and {b,c}, it
follows that u(a, q) = u(c, q) > u(b,q). We have thus found a signed belief ¢ with u(a,q) > u(b, q).

Since d(a) = d(b) we know, by construction of the utility function w in (2.12.33), that the expected
utility difference between a and b is constant across all signed beliefs. As we have found a signed belief
q with u(a,q) > u(b, q), we conclude that u(a,q’) > u(b,q’) for all signed beliefs ¢’. Since a = b for

all signed beliefs ¢/, we conclude that u represents 7-* on {a, b}.

Case 2.2.5.2. Suppose that d(a) # d(b). Then, we know by the claim that there is no constant
preference intensity between a and d(b), and also not between b and d(a). Since there is constant
preference intensity between a and d(a), but not between a and d(b) and not between d(a) and d(b), it
follows by Lemma 2.12.8 (b) that (i) Qg(a)~*q(s) is Parallel to Q4. In a similar fashion, it follows
that (i) Qaa)~+d() is also parallel to Qp+q(a)-

Moreover, since there is constant preference intensity between a and d(a), but not between b
and d(a), it must be that there is also no constant preference intensity between a and b. Otherwise,
it would follow by transitivity of constant preference intensity that there would also be constant
preference intensity between b and d(a), which would be a contradiction. But then, since there is
constant preference intensity between a and d(a) but not between b and d(a), and not between a and
b, it follows by Lemma 2.12.8 (b) that (iii) Qp+4(a) is parallel to Qu«;. By combining (i), (ii) and
(iii) we conclude that Qu~xb, Qp~xd(a)s Qd(a)~*d(s) aNd Qq~xqp) are all parallel.

Take a line [ of signed beliefs that cross each of these four parallel sets exactly once, and let
Qabs Qbd(a)s 9d(a)d(b) @0d daqep) be the signed beliefs on this line where the DM is “indifferent” between
the respective choices. As there is constant preference intensity between a and d(a), and between b and
d(b), and since 7Z* satisfies part (b) of four choice linear preference intensity with constant preference
intensity, we know that gu; is uniquely given by the other three signed “indifference” beliefs.

Now, consider the conditional preference relation ~** induced by the utility function u. Since also
7*" satisfies part (b) of four choice linear preference intensity with constant preference intensity, and
since, by the previous cases, u represents =* on {b,d(a)},{d(a),d(b)} and {a,d(b)}, we know that
Gab € Qa~rup, and hence u(a, qqp) = u(b, gap). We have thus found a signed belief g, with gup € Querp
and gqp € Qu(a):u(b)'

Since, by (2.12.33), the expected utility difference between a and d(a) is constant across all signed
beliefs, we know that (i) Q(a)—u() 18 Parallel to Qyw)—u(d(a))- Since, by the previous cases, u represents
Z* on {d(a),b}, it follows that (ii) Qup)=u(d(a)) = @b~*d(a)- Moreover, we have seen above that (iii)
Qp~+d(a) 18 parallel to Q4~+p. By combining (i), (ii) and (iii) we conclude that Qy(q)—u () is parallel to
Qa~+p- Since above we have found a signed belief gup With gup € Qu~rp and gap € Qua)=u(p), it follows
that Qg~xp = Qu(a):u(b)'

Now, take some signed belief ¢ with b ~; d(a). Since we are assuming that a =}, d(a) for all signed
beliefs ¢/, it follows by transitivity of Z2* that a =7 b. As u represents 2* on {b,d(a)} and {a,d(a)},
we know that u(a,q) > u(d(a),q) = u(b,q). We have thus found a signed belief ¢ with a =7 b and
u(a,q) > u(b,q). Since Qurp = Qua)=u(p) We can show, in a similar way as in the proof of Lemma
2.12.3, that u represents 2* on {a, b}.

Since we have covered all the possible cases, we conclude that u represents 7~* on every pair of
choices {a, b}, and thus u represents 7=* . Since ~~* extends 77, it follows that u represents 7 .

Recall that so far we have been assuming that no two choices are equivalent. Now, suppose that
two, or more, choices are equivalent. In this case, we can select a subset C* of choices such that (i) no
two choices in C* are equivalent, and (ii) every choice outside C* is equivalent to a choice inside C*.
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By the proof above, we then know that there is a utility function «* on C* that represents 77 on C*.
This utility function can be extended to a utility function u on C, by setting, for every choice ¢ ¢ C*,

u(e, 8) :=u(c*, s)
where ¢* is the unique choice in C* that is equivalent to ¢. Then, the utility function u will represent

2~ on the whole choice set C. This completes the proof.
[ |
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Chapter 3

Common Belief in Rationality in Standard
Games

3.7 Economic Applications

In this section we discuss two economic applications of common belief in rationality in standard games:
One where there is competition in prices between two firms, and one where there is competition in
quantities between two firms.

3.7.1 Competition in Prices

Consider two firms, 1 and 2, that compete for the market of a certain good. The goods they offer are
differentiated, which means that the two goods have different characteristics. Some consumers prefer
the characteristics of the good of firm 1, whereas other consumers like the good of firm 2 more. That
is, even if a firm charges a higher price than its competitor it will still attract some consumers, because
they enjoy the characteristics of this firm’s good sufficiently more than those of the competitor. Of
course, if firm 1 raises its price, then the demand for firm 1 will drop, whereas the demand for firm
2 will rise, and similarly for firm 2. More precisely, if firms 1 and 2 charge prices p; and po, then the
demands for both firms are given by

gi=a—d-pit+e-ppand g =a—d-ps+e-p1. (3.7.1)

Hence, d is a measure for the elastisticy of a firm’s demand with respect to its own price, whereas e
reflects the elasticity of demand with respect to the opponent’s price.

We assume, for simplicity, that both firms have a constant marginal cost equal to c¢. Suppose that
both firms choose a price from the interval [0, M], that e < 2d and that

67



68 CHAPTER 3. COMMON BELIEF IN RATIONALITY IN STANDARD GAMES

The objective of each firm is to maximize its profit. That is, for every pair of prices p1, ps, firm i’s
utility is equal to the induced profit. This type of competition is called Bertrand competition. What
price(s) can both firms rationally choose under common belief in rationality?

To answer this question we first model the situation above as a game. Obviously, the two players
are the two firms 1 and 2. The set of choices C; for firm 7 is the set of possible prices it can choose,
and hence C; = [0, M]. Note that C; is an infinite set, whereas we have been assuming in Chapter 3
that the sets of choices are finite. We will see, however, that the idea of common belief in rationality
and its associated recursive procedure can easily be extended to the case of infinite choice sets.

What about player ¢’s utility function? We have indicated above that firm ¢’s utility is equal to
its profit. Assume that the two firms choose prices p; and po. Then, the revenue for firm 1 is its price
times its demand, which is

pr-qu=pi-(a—d-pi+e- pa),

whereas its costs are the marginal cost times the demand, resulting in
c-qu=c-(a—d-p1+e-p2).

The profit for firm 1, which is the revenue minus the costs, is therefore given by

Ti(p1,p2) = (p1 —¢)- (a—d-p1 +e-p2). (3.7.2)

Similarly, firm 2’s profit is given by

ma(p1,p2) = (p2 —¢) - (a—d-p2 +e-p1). (3.7.3)

Although the choice sets for both firms are infinite, we can still define probabilistic beliefs in the
same way as in the book. Indeed, a belief for firm ¢ would be a probability distribution 3, over the
set C; = [0, M] of opponent’s prices. To keep things simple, let us concentrate on beliefs ; that only
assign positive probability to finitely many choices of the opponent. Like in Section 2.11 of this online
appendix, we denote by supp(3;) the set of opponent’s choices to which [, assigns positive probability,
and call it the support of belief 3;. But then, we can define belief hierarchies, epistemic models and
the condition of common belief in rationality in essentially the same way as in Chapter 3 of the book.

What about the recursive procedure for common belief in rationality in this setting? In Theorem
3.4.1 of the book we have seen that for the case of finitely many choices, the procedure of iterated
elimination of strictly dominated choices selects precisely those choices that can rationally be made
under common belief in rationality. Moreover, we know from Theorem 2.6.1 in the book that the
choices that are strictly dominated are precisely the choices that are not optimal for a probabilistic
belief. Hence, this procedure is equivalent to the following procedure, which we call iterated elim-
ination of suboptimal choices: In the first round we eliminate all choices that are not optimal for
any probabilistic belief. In the second round, we start by eliminating those states that involve an
opponent’s choice that has been eliminated in round 1, which leads to a reduced decision problem for
every player. In every reduced decision problem, we then eliminate those choices that are not optimal
for any probabilistic belief. And so on.

This procedure, which reveals the idea of common belief in rationality, can be applied to games
with infinite choice sets as well. In particular, it can be applied to our setting here, to identify the
prices that both firms can rationally choose under common belief in rationality. However, as we will
see, the procedure will no longer terminate after finitely many rounds. Indeed, since we start with
infinitely many choices, it is no longer guaranteed that the procedure will stop after finitely many
rounds.
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Let us now apply the iterated elimination of suboptimal choices to the price competition game
above. At the end of every round k, let firm i’s decision problem be given by (Plk, Sf), where sz is
the set of prices for firm 4 that survive round k, and S,f“ is the set of states that survive round k.

Clearly, before we start the procedure we have P? = [0, M] and SY = [0, M] for both firms i.

Round 1. Consider firm 1, whose utility function is given by (3.7.2). By definition, we allow for all
possible states in round 1, and hence S = [0, M]. Which prices are optimal for some probabilistic
belief, and which are not? Suppose firm 1 holds the belief 5, about firm 2’s price. Then, the expected
profit for firm 1 is

mpLB) = > Bilp2) - m(p1,p2)
p2E€supp(By)
= Z Bi(p2) - (p1—¢)-(a—d-p1+e-p2)
p2€supp(By)
= (m—o-(a—d-pi+e[ DY Bilp)-pa))
p2€supp(By)
= (pr—c¢)-(a—d-p1+e-Eg (p2)), (3.7.4)

where
Eg (p2):i= > Balp2)-po
p2E€supp(B1)
denotes the expected price for firm 2 under the belief 3;.

From (3.7.4) we see that firm 1’s expected profit, when viewed as a function of its price py, is a
second-degree polynomial in p; that becomes zero for p; = ¢ and p1 = (a + e - Eg, (p2))/d, and that
obtains a maximum exacty halfway these two points. That is, the unique optimal price for firm 1
under the belief 3, is given by

B
R
= L+ 9+ f B lpo). (375)

As Eg (p2) can only take values between 0 and M, and the optimal price is increasing in Eg, (p2), the

optimal price can only take values between/%(c%— 4) and 3(c+ %)+ 4. Moreover, S(c+ %)+ 9L < M
cta
2—e/d"

Pi=[3(c+ ), 3(c+ )+ 5] (3.7.6)

since, by assumption, e < 2d and M >

Hence the set of optimal prices in round 1 is

Similarly for firm 2.

Round 2. Consider firm 1 first. By definition of the procedure, S? contains those opponent’s prices
that have survived round 1. Hence, S7 = P3 = [1(c+ %), L(c+ %) + %], which leads to a reduced
decision problem for firm 1.

Which prices are optimal for firm 1 if it forms a belief about the states in S2. In other words, when
firm 1 holds a belief 3, that only assigns positive probability to opponent’s prices in Pj. In that case,
the optimal price for firm 1 is given by (3.7.5), where the expected price Eg, (p2) for firm 2 under the
belief 3, must be in P}. Therefore, the lowest price [ for firm 1 that is optimal for such a belief 3; is
given by (3.7.5) if we substitute Eg (p2) = 2(c+ 4). Similarly, the highest price h for firm 1 that is
optimal for such a belief 3, is given by (3.7.5) if we substitute Eg (p2) = 3(c+ %) + %. Thus,

=3 (c+D+33-Glet+ D) =3+ H0+5)
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and

ho= 2 (c+9+5 Gle+9+94)

(c+ 91+ 5)+ (5)°M.

1

2

1

2

Hence, the set of prices for firm 1 that are optimal for some belief in round 2 is given by
P =[3(c+§)(1+5) (et 1+ 5) + (5)?M].

Similarly for firm 2.

If we continue like this, we can derive for every round k the set Plk of prices that survive for firm
1, and similarly for firm 2. In fact, it can be shown that

Pl =[5 (= G, 558 (1= (5)") + (5) M) (8.7.7)

for every round k, and similarly for firm 2. We will now show, by induction on k, that (3.7.7) holds.
For k = 0 we have that P{ = [0, M] and hence (3.7.7) holds.
Take now some k > 1, and assume that (3.7.7) holds for k—1. Concentrate on firm 1. By definition,
Sk Pk 1 and Pk contains those prices that are optimal for some belief on Sk Take a belief 8; on
Sk Slnce Sk Pk ! it follows by the induction assumption that

St=[5a (= G, 5 (1= G + ()",

and hence the expected price Eg, (p2) must be in this interval as well. Recall that the optimal price

under the belief 5; is given by (3.7.5). As the lowest value for Eg (p2) is gfzﬁ (1= (5)* 1, the
lowest price that is optimal for such a belief 5, is

L= e+ D +5 G - ()
= g (d2-9)

Similarly, as the highest value for Eg, (p2) is 5— e7d (1— ()" 1+ (%) 1M, the highest price that is
optimal for such a belief 5, is

ho= 3+ D+ 5 G5 (1- (" + () M)
= 29+ 5 - ()N + ()M
= S (- ()" + ()M

Thus, Pf = [I, h], which is the interval given by (3.7.7). By induction on k, we conclude that (3.7.7)
holds for every k. And similarly for firm 2.

Note that with every round & the interval of prices Plk becomes strictly smaller, and therefore the
procedure does not terminate within finitely many rounds. In the limit, when k tends to infinity, the
term (Q—Gd)k goes to zero, since we assume that e < 2d, and therefore 5; < 1. Hence, when £ tends to

infinity, the interval of prices P collapses to a single price, which is

* cta/d
P = s, (3.7.8)
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This is thus the only price that survives all rounds of the iterated elimination of suboptimal choices,
and similarly for firm 2. We thus conclude that under common belief in rationality, both firms can
only rationally choose the price p* above.

But we can say a bit more: Similarly to Theorem 3.4.1 in the book, we can conclude that for every
k > 1, the prices that firm 1 can rationally choose if it expresses up to k-fold belief in rationality are
given by the set PF™ in (3.7.7), and similarly for firm 2.

Let us finally investigate how the price p* depends on the various parameters in the model, and
why this makes intuitive sense. In view of (3.7.8) we see that the price p* increases in its marginal
cost c. This is natural, since an increase in the marginal cost leads the firm to choose a higher price
to compensate for it. Moreover, the price p* is increasing in a, which somehow measures the size of
the market. Also this is intuitive, since a larger market allows the firms to choose higher prices and
still obtain a “reasonable” demand. The price p* is decreasing in the elasticity parameter d, which
measures how quickly the demand for firm 1 drops if it increases its price. Indeed, if d becomes larger,
then consumers react more fiercely to a price raise of firm 1, which forces firm 1 to choose a lower
price in order to still obtain a “reasonable” demand. Finally, the price p* is increasing in e, which
measures how quickly the demand for firm 1 rises if the opponent raises its price. This makes sense,
since a higher e means that consumers will switch more quickly to firm 1 if firm 2 raises its price,
which allows firm 1 to choose a higher price.

3.7.2 Competition in Quantities
Consider two firms, 1 and 2, that produce homogeneous goods, meaning they produce goods that
are either identical or very similar. Both firms compete for the market of that good, not by choosing
prices but by choosing the quantities they wish to produce. This type of competition is called Cournot
competition.

Assume that both firms i can choose a quantity ¢; in the interval [0, M]. The resulting market
price for the good is then given by

p=a—e-(q1+q), (3.7.9)

where e measures how quickly the market price drops if the total supply ¢q1 + g2 of the good increases.
We refer to e as the elasticity parameter. Like in the Bertrand competition described above, we
suppose that both firms have a constant marginal cost equal to c¢. We assume that ¢ < a, and that
M e %, “=¢]. To objective of each firm is to maximize its profit. Hence, the firms’ utility functions
are equal to their profit functions.

If we model this situation as a game, then the players are the two firms, and player i’s choice set
is given by C; = [0, M| — the set of possible quantities that can be chosen. We will next derive player
1’s utility function. If firm 1 chooses a quantity ¢; and firm 2 chooses a quantity go, then its revenue
is equal to the quantity it sells times the market price, which is given by ¢; - (¢ — e - (g1 + g2)). The
costs for firm 1 are given by the quantity it produces times the constant marginal cost, which is g1 - c.
The profit for firm 1, which is the revenue minus the costs, is thus equal to

(g, 2) = q-(a—e-(q1+q))—q-c
= q-(a—c—e-(q1+q)) (3.7.10)

This is the utility function of firm 1. Similarly for firm 2.
What quantity, or quantities, can both firms rationally choose under common belief in rationality?
Note that both firms have an infinite choice set and an infinite set of states. We therefore use the
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iterated elimination of suboptimal choices explained in the previous subsection to find the quantities
that are possible under common belief in rationality.

For every round k, let Qf and Sf be the sets of quantities and states that survive for firm ¢ in
round k. Then, QY = S? = [0, M] for both firms 1.

Round 1. Focus on firm 1. By definition, the set of states in round 1 is S} = [0, M]. Suppose that
firm 1 holds a belief 3, about the quantity of firm 2. As in the previous subsection, we assume that
B, assigns positive probability only to a finite number of quantities. By supp(5;) we denote the set
of quantities for firm 2 that 8, assigns a positive probability to. Then, the expected profit for firm 1
of choosing a quantity ¢; under the belief 3, is

mi(q, B1) = Y Bl miqg)

q2€supp(By)

= Z B1(a2) - (q1-(a—c—e-(q1+q2)))

q2€supp(B1)
= q-la—c—e-(@+[ >, Bile) al)
g2€supp(By)
= q-(a—c—e-(q1+ Eg(q))). (3.7.11)

Here,

Bs (a2) = > Bile) @

g2€supp(B1)

denotes the expected quantity of firm 2 under the belief 3.

Note that 71(q1,5;), when viewed as a function of ¢, is a second-degree polynomial in ¢; that
becomes zero at 1 = 0 and q1 = “2¢ — Eg,(q2), and that has a maximum exactly halfway between
these two points. Thus, the optimal quantity for firm 1 under the belief 8, is given by

045 (95 = B, (a2)

2;60 — % Eﬁl(QZ) (3712)

q =

SISl

Note that this optimal quantity is at least zero, since M < “=¢ and hence Eg (q2) < “Z¢. Moreover,

the optimal quantity is at most M, since M > <.

As the optimal quantity is decreasing in Eg, (g2) and the value of Eg (g2) is between 0 and M,

the quantities ¢; that are optimal for some belief 3; are between %¢ — 1M and %" Thus, the set of

2e 2
quantities in round 1 that are optimal for some belief 3; is

1 _ _
Q1 = [%%° — M, %°].

Similarly for firm 2.

Round 2. Focus again on firm 1. By definition, the set of states in round 2 is S = Q} = (%55 — %M,

%°]. Now, let firm 1 have a belief 5; on the set of states S3. Recall that the optimal quantity for firm
1 is given by (3.7.12) above. As the optimal quantity is decreasing in Eg, (¢2), and Eg, (g2) is between

S — %M and %, the set of quantities in round 2 that are optimal for some belief 3, on Siis
2 1 a—c a—c _ 1 (a—c _ 1
A I )

2e 2 2 2
— [u’ u+%M]‘
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Similarly for firm 2.

If we continue in this fashion, we can compute the sets of quantities Qlf , Q’2“ for every round k. We
will show, by induction on k, that

3 3-2
+3o0) - 2 — 3 (T4 5k0) - 58], if ks odd ! (3.7.13)

and similarly for firm 2.

If k = 0 then QY = [0, M], which matches the equation (3.7.13).

Now suppose that k£ > 1, and that (3.7.13) holds for & — 1. We distinguish two cases: (1) k is odd,
and (2) k is even.

Case 1. Assume that k is odd. Then, k—1 is either 0 or even. By the induction assumption, we know
that (3.7.13) holds for Qg_l. Take a belief 3, on the set of states S} = Qg_l. Hence, the lowest value
for Eg, (q2) is (% — 32%) - @=£. As the optimal quantity g; is given by (3.7.12), which is decreasing in

Eg, (g2), the highest value of ¢; in Qb is

=5 b G )t = G )

which matches (3.7.13).

Moreover, the highest value for Eg (g2) is (3 —

1 a—c M
5~ 320=1) +

- 5h—T> which implies that the lowest

value for ¢ in Q¥ is

s)

a—c
2e

‘H

=g _ -

)'afc
e

e

[(% - 3-2£—1)'%+ 2%1] = (%"‘

N[ =

2k

w

We thus conclude that Q¥ = [, k], which matches (3.7.13).

Case 2. Assume that k is even. Then, k£ — 1 is odd. By the induction assumption, we know that
(3.7.13) holds for Qg_l. Take a belief 3, on the set of states Sf = Qg_l. Hence, the lowest value for

Eg (q2) is (% + 3,2£,1 )L — 2%1 . As the optimal quantity ¢; is given by (3.7.12), which is decreasing

in Eg, (¢q2), the highest value of ¢; in QY is

a

|
o

M
+7k7

h:%_%'[(%""s-zi—l)'?_z%l]:( 2

which matches (3.7.13).

e ‘

W=

Moreover, the highest value for Eg (g2) is (5 + 32%) - @2¢, which implies that the lowest value
for ¢1 in Q’f is
—_1.(1 1 - 1 1
l=% 3 Gtag) =G —gz)

We thus conclude that Q% = [I, k], which matches (3.7.13).

By induction on k we see that (3.7.13) holds for every k > 0. Note that the sets Q¥, Q% become
strictly smaller with every round k, and therefore the procedure does not terminate within finitely
many rounds, similarly to the case of Bertrand competition above. As k tends to infinity, the term 2F
tends to infinity as well, and therefore the sets Qlf and Q’QC collapse to the quantity

¢ = ==- (3.7.14)

This is the only quantity that survives all rounds of the iterated elimination of suboptimal choices
for both firms. As such, we conclude that under common belief in rationality, both firms can only
rationally choose the quantity ¢* above.
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Moreover, for every k > 1, the quantities that both firms can rationally choose if they express up
to k-fold belief in rationality are given by Qlfﬂ and QSH as specified by (3.7.13).

We finally investigate how the quantity ¢* in (3.7.14) depends on the parameters in the model,
and why this makes sense. First of all, the quantity ¢* is increasing in a. If the parameter a increases,
then this will lead to a larger market price for every combination of quantities chosen by the two
firms. This, in turn, allows the firm to choose a larger quantity and still obtain a “reasonable” profit.
Moreover, the quantity ¢* is decreasing in the marginal cost c. Indeed, if ¢ rises, then producing
the same quantity becomes more costly than before, which forces the firm to reduce its production.
Finally, the quantity ¢* is decreasing in the elasticity parameter e. Also this is intuitive, because a
larger e leads to a lower market price for every combination of quantities chosen. To compensate for
this, the firm will reduce the quantity supplied.



Chapter 4

Correct and Symmetric Beliefs in Standard
Games

4.6 Economic Applications

In this section we reconsider the models of competition in prices and competition in quantities in-
troduced in Section 3.7 of this online appendix. For both models we will apply the concept of Nash
equilibrium to explore what choice(s) both firms can rationally make under common belief in ratio-
nality with a simple belief hierarchy.

4.6.1 Competition in Prices
Recall the Bertrand competition model we introduced in Section 3.7.1 of this online appendix. We
have argued that under common belief in rationality both firms can only rationally choose the price

* cta/d
= g, (4.6.1)

Hence, under common belief in rationality with a simple belief hierarchy, the only possible rational
choice for both firms is to choose this price p*. We will now verify that p* can indeed rationally be
chosen under common belief in rationality with a simple belief hierarchy.

Recall from Theorem 4.1.2 that in a game with finitely many choices, the choices that can rationally
be made under common belief in rationality with a simple belief hierarchy are precisely the choices
that are optimal in a Nash equilibrium. The same is true for games with infinitely many choices, if
we extend the notion of Nash equilibrium to such games. In fact, the definition of a Nash equilibrium
for a game with infinitely many choices is precisely the same as for finitely many choices.

Indeed, consider a game with infinitely many choices, where for every player i the choice set is the
infinite set C;, and the utility function is given by w;. Then, a Nash equilibrium is a combination of
beliefs (o1, ...,0,,) where, for every player i, the belief o; assigns positive probability to finitely many
choices of player i, and o;(¢;) > 0 only if choice ¢; is optimal for player ¢ under the belief o_;.

75
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Consider the price p* in (4.6.1). Then, it can be shown that the belief combination (o7 = p*,
o9 = p*), where o1 and o9 assign probability 1 to the price p*, is a Nash equilibrium. Indeed, in this
belief combination firm 1 believes that firm 2 chooses the price p*. By (3.7.5), the optimal price for
firm 1 is given by

O R S R 10

%
= b+ Drg ==
Hence, oy assigns probability 1 to the only price that is optimal for firm 1 under the belief os.
Similarly, oo assigns probability 1 to the only price that is optimal for firm 2 under the belief o1. As
such, (o1 = p*, 02 = p*) is a Nash equilibrium.

By Theorem 4.1.2 applied to games with infinitely many choices, we then know that both firms can
rationally choose the price p* under common belief in rationality with a simple belief hierarchy. Since
we have seen in Section 3.7.1 that p* is the only price that can rationally be chosen under common
belief in rationality, we conclude that p* is the only price that can rationally be chosen under common
belief in rationality with a simple belief hierarchy. As every simple belief hierarchy is symmetric and
uses one theory per choice, it immediately follows that p* is also the only price that can rationally be
chosen under common belief in rationality with a symmetric belief hierarchy, with or without insisting
on one theory per choice.

Suppose now that we would not know which prices are possible under common belief in rationality.
Is there then a quick way to find the prices that can rationally be chosen under common belief in
rationality with a simple belief hierarchy? The answer is “yes”, by directly computing the set of Nash
equilibria in the game.

To see this, suppose that (o1, 02) is a Nash equilibrium in the Bertrand competition model. Then,
o1(p1) > 0 only if the price p; is optimal for firm 1 under the belief o2 about firm 2’s price. By (3.7.5)
we conclude that o1 must assign probability 1 to the unique price

= le(c+ )+ Eoylpa) (46.2)

that is optimal for firm 1 under the belief o5. Similarly, oo must assign probability 1 to the unique
price

ps=135-(c+9)+ 5 Eo(p) (4.6.3)
that is optimal for firm 2 under the behef o1.
By (4.6.2) and (4.6.3) we know that E,,(p2) = p3 and E,, (p1) = p}. Thus,
P =
py =

“(c+§) + 55 - 3 and (4.6.4)
(4 §) + 5 - P (4.6.5)

NN

The equations (4.6.5) and (4.6.4) are often called best response functions. If we substitute (4.6.5) into
(4.6.4) we obtain

Ol NN NN A K
= L (g (et D+ )i
Hence,
x _ 1/2-(14e/2d)-(ct+a/d) _ 1/2-(1+e/2d)-(c+a/d) _ cta/d _ _«
P1 = 1—(e/2d)2 = (+(e/2d))-(1—(e/2d)) — 2—e/d P -

If we substitute this into (4.6.5) we get that pj = p* also. Hence, our conclusion is that there is only
one Nash equilibrium, which is (o7 = p*, 02 = p*), assigning probability 1 to the price p* for both
firms. In the literature, this Nash equilibrium is known as the Bertrand equilibrium.
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4.6.2 Competition in Quantities
Recall the Cournot competition model we discussed in Section 3.7.2. We saw that under common
belief in rationality both firms can only rationally choose the quantity

g = - (4.6.6)

Can this quantity also rationally be chosen under common belief in rationality with a simple belief
hierarchy?

To answer that question we verify that the belief combination (01 = ¢*, 02 = ¢*), which assigns
probability 1 to the quantity ¢* for both firms, is a Nash equilibrium. Firm 1 believes that, with
probability 1, firm 2 chooses the quantity ¢*. By (3.7.12) we know that the unique optimal quantity
for firm 1 under that belief is given by

*
S|
(¢}

Chz%—%'Eoz(ﬂh):%—%'q :@—%‘@—@:(I-
Hence, o1 assigns probability 1 to the unique quantity that is optimal for firm 1 under the belief 5.
Similarly, o9 assigns probability 1 to the unique quantity that is optimal for firm 2 under the belief
o1. Therefore, (01 = ¢*, 02 = ¢*) is indeed a Nash equilibrium.

In view of Theorem 4.1.2 applied to games with infinitely many choices we conclude that both
firms can rationally choose the quantity ¢* under common belief in rationality with a simple belief
hierarchy. As ¢* is the only quantity that can rationally be chosen under common belief in rationality,
it follows that ¢* is the only quantity that can rationally be chosen under common belief in rationality
with a simple belief hierarchy. As a consequence, ¢* is the only quantity that can rationally be chosen
under common belief in rationality with a symmetric belief hierarchy, with or without insisting on the
one theory per choice condition.

We finally show how to directly find the Nash equilibria in this game, without relying on the sets
of quantities that can rationally be chosen under common belief in rationality. Suppose that (o1, 02)
is a Nash equilibrium in the Cournot competition model. By (3.7.12) we know that o1 must assign
probability 1 to the unique quantity

G = %5 = 5 - Bou(a2) (4.6.7)

that is optimal for firm 1 under the belief o2 about firm 2’s quantity. Similarly, oo must assign
probability 1 to the unique quantity

=%~ 1 B, (q) (4.6.8)

that is optimal for firm 2 under the belief o7 about firm 1’s quantity.
Since Ey, (¢1) = ¢} and E,,(q2) = ¢; it follows from (4.6.7) and (4.6.8) that

g = %°—1.g5 and (4.6.9)
G = SE-3-4 (4.6.10)

These equations reflect the best response functions for the firms. If we substitute (4.6.10) into (4.6.9)
we get

and hence
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By substituting this into (4.6.10) we obtain

*
IS

* _ 1 *_a=—c_ 1 a—c_ a—c_
42 = “9¢ 24 =79 T2 3 T 3 —4-

o

Thus, the combination of beliefs (o1 = ¢*, o2 = ¢*), where both firms are believed to choose ¢* with
probability 1, is the only Nash equilibrium in this model. This Nash equilibrium is called the Cournot
equilibrium.



Chapter 5

Common Belief in Rationality with Incomplete
Information

5.7 Economic Applications

In this section we reconsider the Bertrand competition model and Cournot competition model from
Section 3.7 of this online appendix. This time we assume that both firms are uncertain about the
opponent’s cost function, and we show how this gives rise to a game with incomplete information.
We extend the generalized iterated strict dominance procedure to this setting with infinitely many
choices, states and utility functions, and use this procedure to find the prices and quantities that both
firms can rationally choose under common belief in rationality.

5.7.1 Competition in Prices

Recall the Bertrand competition model from Section 3.7.1. We saw that the profit function for firm 1
was given by

m1(p1,p2) = (p1 —c1) - (a—d-p1 +e-p2), (5.7.1)

where ¢; is the constant marginal cost for firm 1. Similarly for firm 2.

In Section 3.7.1 we assumed that ¢; = ¢3 = ¢, and that this is transparent amongst the two firms.
In this section we drop this assumption, and assume that both firms are uncertain about the marginal
cost of the other firm. Of course, both firms know their own marginal cost. More precisely, it is
commonly known that the marginal cost of both firms lies somewhere in the interval [c,¢], where ¢ is
the lowest possible marginal cost and ¢ is the highest possible marginal cost. That is, firm 1 believes
that firm 2’s marginal cost lies in [, ¢] and firm 2 believes that firm 1’s marginal cost lies in [¢, ¢]. We
assume that

e <2dand M > SJ:Z%
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In view of (5.7.1), the marginal cost ¢; for firm ¢ completely determines firm ¢’s utility function.
We thus obtain a scenario with incomplete information where there are infinitely many possible utility
functions for the two players, since there are infinitely many values that ¢; can take. Moreover,
there are infinitely many possible choices for the two players, and therefore also infinitely many states.
Nevertheless, the concept of common belief in rationality and the generalized iterated strict dominance
procedure can naturally be extended to such scenarios.

Indeed, consider a game with incomplete information (Cy, U;);c; where the set C; of possible choices
and the set U; of possible utility functions may be infinite for every player i. In the generalized iterated
strict dominance procedure for finite games we would in round 1 eliminate, for every possible utility
function u; of player ¢, those choices that are strictly dominated. By Theorem 2.6.1 in the book, these
are precisely the choices that are not optimal for any belief at the utility function w;. Thus, in the
infinite case we can eliminate, in round 1, for every player ¢ and for every utility function u; those
choices that are not optimal for any probabilistic belief. Then, we are left with the 1-fold reduced
decision problem for every player ¢ and utility function u; € U;. Note that there may be infinitely
many decision problems, as there are possibly infinitely many utility functions.

Like in the procedure for finite games, we would start in round 2 by eliminating, for every player
¢ and every utility function u;, those states that involve opponent’s choices ¢; that did not survive
round 1 at any of player j’s utility functions. We thus obtain a smaller decision problem at ;. In
the finite case we would then eliminate the choices for player i that are strictly dominated within this
smaller decision problem. Again, by Theorem 2.6.1, this is equivalent to eliminating those choices
that are not optimal for any belief within this smaller decision problem at u;. In the infinite case, we
can then eliminate those choices for player ¢ that are not optimal for any belief within this smaller
decision problem at wu;.

By continuing in this fashion, we can extend the generalized iterated strict dominance procedure
to games with incomplete information that may contain infinitely many choices, states and utility
functions. We will call this the generalized iterated strict dominance procedure for infinite games.

Let us now apply the generalized iterated strict dominance procedure for infinite games to the
Bertrand competition model above, to find those prices that both firms can rationally choose under
common belief in rationality.

Round 1. Consider firm 1. For every value of ¢; € [c,¢] there is a new decision problem for firm 1,
with the utility function as given in (5.7.1). Which prices are optimal for firm 1 for some belief with
the marginal cost ¢1? By (3.7.5) we know that for every belief 5, about firm 2’s price, the unique
optimal price for firm 1 is given by

b= (o )+ e By ). 572

As Eg (p2) lies between 0 and M, and the optimal price is increasing in Eg (p2), the set of prices
Pj}(c1) that is optimal for firm 1 for some belief with the marginal cost c; is

Pl(er) = [A(e1 +9), 3(e1+9) + 4. (5.7.3)

This yields the 1-fold reduced decision problems for firm 1 — one for every value of ¢;. Similarly for
firm 2.

Round 2. Consider the decision problem for firm 1 at marginal cost c¢;. By definition, the set of
states S?(c1) contains precisely those prices for firm 2 that have survived round 1 for some marginal
cost ¢z € [c,e]. In view of (5.7.3), the lowest price for firm 2 that has survived for some ¢ is 3(c + %)



5.7. ECONOMIC APPLICATIONS 81

for marginal cost ¢, whereas the highest price for firm 2 that has survived for some ¢y is %(E—i— 9+ %
for marginal cost ¢. Thus, the set of states is given by

St(e) =[3(c+9), 3(c+9) + %7

Hence, firm 1 must form a belief 3, about the set of states S7(c1) above, which implies that Eg, (p2)
must be between 3(c+ %) and £(¢+ %) + <7, But then, by (5.7.2), the lowest price for firm 1 that is
optimal for such a behef at marginal cost ¢ is

sat+ )+ 53+ 3),
whereas the highest price for firm 1 that is optimal for such a belief at marginal cost ¢; is
Ha+9+5GC+9+4).
The set of prices that survive round 2 for firm 1 at marginal cost c¢; is thus given by
Pi(cr) = [5(c1+ §) + gqg(c+ ) glen+§) + 53(5(E+ §) + 7))
This yields the 2-fold reduced decision problems for firm 1. Similarly for firm 2.

If we continue in this fashion we can derive, for every round k& > 1, both players ¢ and every
marginal cost ¢;, the set Pf(cz) of prices that survive. We will show, by induction on k, that

P(c1) = [b(e1+9)+ 5528 (1= ()", Ha+9)+5(F28- 01— ()" )+ M), (5.74)

and similarly for firm 2. Let the lower bound and upper bound in this interval be denoted by I¥(c;)
and h¥(c1), and similarly for player 2. Then, it may be verified that

(o) = 3(c+ 9 + (5595 - (1= ()" 1) = 545 - (1= (%)) (5.7.5)
and
PiE = 3§+ s (- G ) + (5 M)
= St (= () + ()M (5.7.6)

For k = 1 we know that Pl(c1) is given by (5.7.3), which matches (5.7.4).

Consider now some k > 2, and assume that (5.7.4) holds for firm 2 and k — 1. Let us focus on
the decision problem of firm 1 at the marginal cost ¢;. By definition, Sf (c1) contains all prices for
firm 2 that have survived round k — 1 for some marginal cost of firm 2. By the induction assumption,
S%(cy) thus contains all prices py such that ps € [I57 (ca), B~ (c2)] for some ¢z € [c,¢]. Hence,
S¥(er) = 57 (o), By~ @),

Take some belief 3, on S¥(c1). Then, Eg, (p2) € [151(¢c), h571(@)]. By (5.7.2) it then follows that
the optimal price for firm 1 under that belief 3, is in the interval

k—1 k—1/=
[3ler+ )+ 53857 (0), z(e1+§) +55h5 (@)
Thus, the set of prices that are optimal for some belief on S¥(c;) for the marginal cost ¢ is

Pi(er) = [3(e1+ §) + 53051 (0), (e +§) + 53h5 (@),
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Moreover, by (5.7.5) and (5.7.6), this interval is equal to

Plien) = [3(en+ §) + 55587 - (1= ()", Sla+ 9 + 5 (- () + ()Ml

which matches (5.7.4). Similarly for firm 2. By induction on k, we thus conclude that (5.7.4) holds
for every k > 1.

In particular, it can be seen that the interval P{“ (c1) becomes strictly smaller with every k, and
thus the procedure does not terminate within finitely many rounds. Recall that e < 2d. Therefore,
when k tends to infinity, the interval P¥(c;) reduces to

Pr(ei) = (e + §) + rtefi, deit D)+ H5Ee] (5.7.7)

for both firms i. Hence, under common belief in rationality, firm ¢ can rationally choose any price from
P*(c;) when its marginal cost is ¢;. Note that the interval P(c;) becomes wider if the range ¢ — ¢
of possible marginal costs becomes larger. This is to be expected, as a larger range ¢ — ¢ of possible
marginal costs allows for more possible beliefs about the marginal cost and price of the opponent.

An important difference with the analysis in Section 3.7.1 is that common belief in rationality
no longer leads to a unique price for the firms. The reason is that both firms are uncertain about
the precise marginal cost that the competitor has, which allows the firms to have a broader range of
reasonable beliefs about the price of the competitor.

We finally investigate the scenario where we impose fized beliefs on wutilities. In our setting this
means that the two firms hold a fixed belief about the competitor’s marginal cost. Suppose we
require both firms to believe that every marginal cost in [c,¢] is equally likely for the competitor. In
mathematical terms, such a belief is called the uniform distribution on [c,¢]. Hence, we impose fixed
beliefs (r1,72) on utilities where 71 and ry are the uniform distribution on [¢, €.

In a similar fashion as above, the generalized iterated strict dominance procedure with fixed beliefs
on utilities can be generalized to games with infinitely many choices, states and utility functions. This
extension is called the generalized iterated strict dominance procedure with fized beliefs on utilities for
infinite games. We will now apply this procedure to our setting to derive the prices that both firms
can rationally choose under common belief in rationality with fixed beliefs (1, 72) about the utilities.

Round 1. This round is precisely the same as for the procedure without fixed beliefs on utilities, and
leads to the set of prices

Pi(c1) = [3(c1+ %), $(ci+ %)+ 97 (5.7.8)
for firm 1, for every marginal cost ¢;. Similarly for firm 2.

Round 2. Focus on firm 1. By definition of the procedure, firm 1 is required to hold a belief 5; on
firm 2’s price-cost pairs that (i) respects r1, that is, deems every marginal cost ¢y € [¢, ¢] equally likely,
and (ii) concentrates only on price-cost pairs (pz, c2) where the price ps has survived round 1 for firm
2 at cg, that is, where py € Py (c2). By (5.7.8), the “lowest” such belief is the belief ST that deems
every cost ca € [c,¢] equally likely, and that concentrates only on pairs (pe, ca) where py = %(02 +9)-
As the price pa depends linearly on cg, and every ca € [c, €] is deemed equally likely, the expected price
for firm 2 under this belief is

Egnin(p2) = 3 - 3e+ 9+ 1 - 4@+ 9) = 3k +a) +9). (5.7.9)
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From (5.7.8) it also follows that the “highest” such belief is the belief 7% that deems every cost
co € [c, €] equally likely, and that concentrates only on pairs (p2, c2) where pg = %(02 +9)+ %. By a
similar reasoning as above, the expected price for firm 2 under that belief is

Egmex(pg) = 3(3(c+70) +9) + 4. (5.7.10)

Please verify this.
By (5.7.2), (5.7.9) and (5.7.10) we conclude that the lowest price which is optimal for such a belief
B, with the marginal cost c; is

p1=be1+9) + G Egmn(p2) = e+ 2) + 5G4 +2) + 2)),
whereas the highest price which is optimal for such a belief 3, with the marginal cost ¢; is
pr= (e + §) + 53 Bapx(p2) = 3(e1 + §) + 53(5(5(c+0) + §) + 57)-
Hence, the set of prices that survives round 2 for firm 1 at the marginal cost ¢; is
Picr) =[5+ 9D+ 5GGe+0+9), 3a+9D+5GGc+a+9+97.  (5.7.11)
Similarly for firm 2.

If we continue in this way we can derive the sets of prices Pf(c1) and P§(cy) that survive for the
firms at the various rounds and the various marginal costs. We will show, by induction on k, that

Pf(er) = [bler+ )+ 200 (5 — (5)8), jler+ §) + CRLEE (5 — (5)M) + (59)" M) (5.7.12)
for every k > 1, and similarly for firm 2. For convenience, we denote the lower bound and upper bound
of this interval by I¥(c1) and h¥(c1), respectively.

For round 1 we have seen that P} (c;) is given by (5.7.8), which matches (5.7.12).

Consider now round k£ > 2 and assume that (5.7.12) holds for firm 2 and round k£ — 1. Focus on
firm 1. By definition, firm 1 is required to hold a belief 5; on firm 2’s price-cost pairs (pa,c2) that
(i) deems every co € [c,¢| equally likely, and (ii) only concentrates on price-cost pairs (p2,ca) where
p2 € PY1(cy). By (5.7.12) for firm 2 and round k — 1, the “lowest” such belief is the belief " that
deems every cy € [c,¢] equally likely and concentrates only on pairs (pg, ca) where ps = llgil(CQ). As
lg_l(CQ) depends linearly on ¢; and A" deems every ¢; € [c, @] equally likely, the expected price for
firm 2 under this belief is

Egmin(p2) = 315~ (c) + 15 (2)). (5.7.13)
It may be verified that
B = EREERE - (5)F) - 5F and
e = SO - ()t +

Together with (5.7.13) we conclude that

Bgpin(p2) = U (1 (5)F ). (5.7.14)

Note that the lowest price p; that is optimal for such a belief 3; above that satisfies (i) and (ii) is the
price that is optimal for S7"". By (5.7.2) and (5.7.14), this price is

pro= e+ 9+ 5B (p2) = dlon + 9) + 5 21— (5)FY)
= fla+9) + EEE L — (),
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which matches I§(c;) in (5.7.12).

Moreover, by (5.7.12) for firm 2 and round k — 1 we conclude that the “highest” belief 3; for firm
1 with the properties (i) and (ii) above is the belief 57"** that deems every ca € [c, ¢ equally likely
and concentrates only on pairs (pe, cy) where ps = hgfl(@). As hgfl(@) depends linearly on ¢y and
A1 deems every ¢y € [c, €] equally likely, the expected price for firm 2 under this belief is

Egpos(pa) = S (W5 (¢) + hb™ (). (5.7.15)

In a similar way as above, it may be verified that

Ne) = RN - ()R - S+ ()M and
—1/— c+c a/d e — c—c e —
BTN = CREEAG - (5)F )+ SE+ ()M
Together with (5.7.15) it follows that
c+c a/d e \k— e \k—
g (py) = L2041 ()1 4+ (10, (5.7.16)

Note that the highest price p; that is optimal for such a belief 3, above that satisfies (i) and (ii) is
the price that is optimal for 57"**. By (5.7.2) and (5.7.16), this price is

(er+ §) & d7Bop(p2) = hler +§) + FSLTFA 0= G + () 1M)
(ex + ) + L (5 — (G)M) + (),

p1 =

N[ D=

which matches h%(c1) in (5.7.12). By induction on k, we conclude that (5.7.12) holds for every k.

We see again that the set PF(c;) becomes strictly smaller with every round k, and hence the
procedure does not terminate within finitely many rounds. When k tends to infinity, the set Pf(cz)
now collapses to a single price, which is

pi(e) = 3+ 9) + LR Zteld (5.7.17)
Hence, under common belief in rationality and common belief in the fixed belief (r1,r2) on utilities,
firm ¢ can only rationally choose the price p}(c;) above if its marginal cost is ¢;.

This is fundamentally different from the scenario without fixed beliefs on utilities, where the firm
could rationally choose from a whole range of prices P*(c;) under common belief in rationality. See
(5.7.7) above. The reason is that with fixed beliefs on utilities, the possible reasonable beliefs that
both firms can hold about the competitor’s prices are heavily restricted.

Note that the unique price p}(¢;) in (5.7.17) that can rationally be chosen under common belief in
rationality in the scenario with fixed beliefs on utilities belongs to the range of prices P}(c;) in (5.7.7)
that can rationally be chosen under common belief in rationality in the scenario without fixed beliefs
on utilities, as it should be. In fact, we can say more: The price p}(c;) lies exactly in the middle of
the interval P(c;). This makes intuitive sense, as the fixed beliefs on utilities deem every marginal
cost for the opponent equally likely.

5.7.2 Competition in Quantities
Let us return to the Cournot competition model from Section 3.7.2. Similarly to the Bertrand model
with incomplete information above, we assume that both firms have marginal costs ¢; and co, and
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that both firms are uncertain about the precise marginal cost of the competitor. Recall from Section
3.7.2 that the profit function for firm 1 is given by

m1(q1,q2) = q1- (a —c1 — e~ (q1 + q2)), (5.7.18)

and similarly for firm 2.

Again, suppose that the marginal cost for both firms belongs to the interval [¢, ¢]. Moreover, assume
that 2¢ — ¢ < a and M € [%5=, %¢]. For every possible marginal cost ¢; € [¢,¢], what quantities can
firm ¢ rationally choose under common belief in rationality? To answer this question we apply the
generalized iterated strict dominance procedure for infinite games outlined in Section 5.7.1.

Round 1. Consider firm 1 and suppose it has a marginal cost of ¢;. Which quantities are optimal for
firm 1 for some probabilistic belief about firm 2’s quantity and which are not? Suppose firm 1 holds a
probabilistic belief 8, about firm 2’s quantity. By (3.7.12), firm 1’s optimal quantity is then given by

G =0 LB (qo). (5.7.19)

Since Eg, (g2) lies somewhere in the interval [0, M], and the optimal quantity is decreasing in Eg (g2),

the lowest quantity that is optimal for some belief is ¢; = “57 — %M , whereas the highest such quantity
is q1 = “5;*. Thus, the set of quantities for firm 1 that survives round 1 at the marginal cost ¢; is
1 = 1 -
Qier) = [552 — 1M, o52], (5.7.20)

Similarly for firm 2.

Round 2. Consider firm 1 with a marginal cost of ¢;. The set of states S%(c1) that survives round
2 contains precisely those quantities ¢o that have survived round 1 for at least one marginal cost cs.
By (5.7.20) applied to firm 2, the lowest such quantity is go = “2—_66 — %M whereas the highest such
quantity is go = “=. Hence,

St(er) = [ = 3M, %)

Now, take a probabilistic belief 3; on the set of states S?(c1). Then, Eg (g2) lies somewhere in the
interval S3(c1). Recall, by (5.7.19), that the optimal quantity ¢; for this belief is decreasing in Eg (g2).
Hence, by (5.7.19), the lowest quantity for firm 1 that is optimal for such a belief 3; is

_ a— la—c
0=~ e
whereas the highest such quantity is
— lia—c _ 1
@ = 5t — 3% — g M).

Hence, the set of quantities for firm 1 that survive round 2 at the marginal cost ¢y is

Qi(a) = [52 — 555 5 — 5(%%F — 3M)). (5.7.21)

Similarly for firm 2.

If we continue in this fashion we can also derive the sets of quantities Q¥ (c;) for both firms i, every
marginal cost ¢; and every round k£ > 1. We will show, by induction on k, that for every k > 1 we
have that

Qie) = [52 - - ()" D+ M- -5 G2 -0 -+ 0 -
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if k£ is odd, and

Qller) = [558 — 52 (1— ()P + 21— (D)), 552 — 52 (1 - (1)) + 521 ()P + ] (5.7.23)

if k is even. Similarly for firm 2.
It may be verified that for k£ = 1 the expression (5.7.22) matches precisely the equation (5.7.20).
Take some now even k > 2, and assume that (5.7.22) holds for firm 2 for the odd k — 1. Consider
firm 1 with a marginal cost of ¢;. Then, the set of states S]f(cl) contains those quantities go that are
in Q% 1(cy) for some marginal cost cp. In view of (5.7.22), the lowest such ¢o is the lower bound of
]5 1(€), which we denote by lk 1(@). Similarly, the highest such ¢ is the upper bound of Q Le),
which we denote by h5~1(c). Hence

Stle) = 15710, hy(<))-

Take now a probabilistic belief 3; on the set of states S¥(c1). Then, Eg, (g2) lies somewhere in
the interval S¥(c1). By (5.7.19), the lowest quantity ¢; that is optimal for such a belief 3, is obtained
when Eg (q2) = h5~1(c). This yields the quantity

e = %58 - S
s =4l - P+ - ()
se e (1— (1)) + 42— (1R,

Moreover, the highest quantity g; that is optimal for such a belief 3, is obtained when Eg (q2) =
lk 1(@). This yields the quantity

Mhe) = 52— @

= A e — 51— (HF ) + 521 - 3)FD) - 4l
= A (- (N + FA - () + oF

Thus, we conclude that Q¥(c1) = [I¥(c1), h¥(c1)], which matches (5.7.23).

Next, take some odd k > 2, and assume that (5.7.23) holds for firm 2 for the even k — 1. Consider
firm 1 with a marginal cost of ¢;. Then, the set of states Sf(cl) contains those quantities go that are
in QQ_ (c2) for some marginal cost co. In view of (5.7.23), the lowest such g2 is the lower bound of

k 1(€), which we denote by lk 1(@). Similarly, the highest such gy is the upper bound of Q L),
Whlch we denote by h5 1 (c). Hence

Stle) = 1571 (@), hy~(<))-

Take now a probabilistic belief 3, on the set of states Sf(c1). Then, Eg (g2) lies somewhere in
the interval S¥(c1). By (5.7.19), the lowest quantity ¢, that is optimal for such a belief 3, is obtained
when Eg (q2) = h5~1(c). This yields the quantity

e = 38— 3hy7 (0
a;eq _%[aTeg_aTj(l (2) )"" Be (1_( )k 3)"‘2%1]

k— k—
e HE -G+ -G) ) - o
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Moreover, the highest quantity g; that is optimal for such a belief 8 is obtained when Eg (q2) =
lgil(é). This yields the quantity

Wi(er) = %52 -3l

“ge = 35— SE (- () + %A - ()
_ -z k— — k—
eset - (1 - (31 51— ()R,

Thus, we conclude that Q¥(c1) = [I¥(c1), h¥(c1)], which matches (5.7.22).

By induction on k, we conclude that Q%(c;) is given by (5.7.22) and (5.7.23) for every k > 1.
Similarly for firm 2. In particular, we see that the set of quantities Q’f (¢;) that survives round k of
the procedure becomes strictly smaller with every round, and hence the procedure does not terminate
within finitely many rounds.

When k tends to infinity, then Qf(cz) approaches the interval

Qf(ci) =[98 — 5 + %5 5t — % T & (5.7.24)

for both firms ¢, and every marginal cost ¢;. Hence, under common belief in rationality both firms i
can only rationally choose the quantities in Q}(c;) when its marginal cost is ¢;. Note that this interval
Q7 (c;) becomes wider if the range ¢ — c of possible marginal costs becomes larger. Again, this is to be
expected, as a larger range ¢ — ¢ of possible marginal costs allows for more possible beliefs about the
marginal cost and quantity of the opponent.

We finally explore the scenario where there are fixed beliefs on utilities. Like in the Bertrand model
above, assume that we require both firms to deem every marginal cost ¢ € [c, ¢| for the competitor
equally likely. That is, we impose the fixed beliefs (r1,72) on utilities, where 71 and ry are the uniform
distribution on [¢, €.

To find the quantities that both firms can rationally choose under common belief in rationality and
common belief in the fixed beliefs (r1,72) on utilities, we use the generalized iterated strict dominance
procedure with fived beliefs on utilities for infinite games as outlined in Section 5.7.1 above.

Round 1. This round is exactly the same as for the generalized iterated strict dominance procedure
without fixed beliefs on utilities. The set of quantities that survives for firm 1 for every marginal cost
c1 is thus given by

Ql(cr) = [552 — LM, o4, (5.7.25)

and similarly for firm 2.

Round 2. Focus on firm 1. By construction of the procedure, firm 1 is required to hold a belief 5,
on the competitor’s quantity-cost pairs (go,c2) that (i) respects ro, that is, deems every cost ¢z € [c,
¢] for the competitor equally likely, and (ii) only concentrates on pairs (go,c2) where g2 € Q3(ca). In
view of (5.7.25) for firm 2, the “highest” such belief 3, is the belief 7"** that only concentrates on
the pairs (g2, c2) where g2 = “572. As 1" deems every cz € [c, €] equally likely, and g is linear in
the cost co, we have that the expected quantity for firm 2 under this belief is

a—c a—=c a—(ctc)/2
Egpox(g2) = § - 55+ § - %52 = 502, (5.7.26)

Similarly, the “lowest” such belief 3; is the belief S that only concentrates on pairs (go,co)
a—co

where go = 572 — %M . The expected quantity for firm 2 under that belief is

a—c a—c a—(c+c)/2
Eﬁ?m(qg):%-(Tg—%M)%—%-(@—%M):%—%M- (5.7.27)
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In view of (5.7.19), (5.7.26) and (5.7.27), the lowest quantity for firm 1 that is optimal for such a
belief 3; at the marginal cost ¢; is

e 1 _ —(c+0)/2
g = 59— §E‘Brlngm((JQ) — oo a (046c)/ .

Similarly, the highest quantity for firm 1 that is optimal for such a belief 3, at the marginal cost ¢; is

a—cq a—cy a—(c+c)/2

_ 1 . _ 1
= "5 _§E6§nm(cm)_ 2¢ 4e +ZM'

Hence, the set of quantities for firm 1 that survives round 2 at the marginal cost ¢ is

Qier) = (252 — S0 oo _osginin 1y

Similarly for firm 2.

If we continue in this fashion we can derive the sets of quantities Qf(ci) for both firms 4, for all
marginal costs ¢; and all rounds k. We will show, by induction on k, that for all rounds & > 1 we have
that

Qh(er) = [25a — =02 — (L)k) — Y ecer  on(efOR(g _ (L)) (5.7.28)

6e 2k 2e 6e
if k£ is odd, and

Qi(cr) = %52 — =L+ (PF), g — =BG+ () + 4 (5.7.29)

if k is even. Similarly for firm 2.

If k£ =1 then (5.7.28) matches precisely (5.7.25).

Now, take some even k > 2 and assume that (5.7.28) holds for firm 2 and the odd k£ — 1. In round
Ek, firm 1 must hold a belief 3; on quantity-cost pairs (g2, c2) that deems all costs ca € [c, ¢ equally
likely, and that only concentrates on pairs (g2, c2) where o € Q’;fl(@). By (5.7.28) for firm 2 and
k — 1, the “highest” such belief 3 is the belief 57" that only concentrates on pairs (gz2, c2) with

a—c a—(c+c)/2 —
G2 = 2@2 _ (%t )/ (1_(%)]@ 2)'

The expected quantity for firm 2 under that belief is

Bgp(a2) = 3 [5° = 0220 - ()" + - 157 - 8220 - ()"
_ a—(g2—‘gc)/2 . a—(gﬁ—ie-c)/Q(l . (%)k—Q) (5730)

Similarly, the “lowest” such belief 3, is the belief ﬁrlnin that only concentrates on pairs (g, c2) with

— — c)/2 —
@ =52 = G- ()7 - 7

The expected quantity for firm 2 under that belief is

Egmin() = §-[%5—E020 - (Lh2) = M) ] [of — =02 (L) - M
a—(g;j)/? _ a—(gﬁtﬁ)ﬂ(l — ()2 - 2}?{1. (5.7.31)

By (5.7.19), (5.7.30) and (5.7.31) we conclude that the lowest quantity ¢; that is optimal for such
a belief 5, at the marginal cost ¢; is

@ = GE - JEg(qy) = fg8 — J[GIR a2 ()k2)]

= ego G020 4 (h),

2e 6e
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whereas the highest quantity ¢; that is optimal for such a belief 8, at the marginal cost ¢; is

_ — —(c+2)/2 —(c+e)/2 -
q = a2661 _%Eﬁgnin((p): a2er:1 _%[a (2266)/ _a (9660)/ (1_(%)k 2)_ 2%1]
— —(c+2¢)/2 —
= - E=EA ()Y + o

Thus, the set of quantities that survives round k for firm 1 at the marginal cost ¢; is

Qllc(cl) _ [a;eq _ a*(QGJgE)/Q(l + (%)k—l)’ agecl . a*(gﬁté)/?(l + (%)k—l) + ng]

which matches (5.7.29).

Next, take some odd k > 2, and assume that (5.7.29) holds for firm 2 and the even k — 1. Again,
firm 1 must hold a belief 3, on quantity-cost pairs (g2, c2) that deems all costs ca € [c, ¢] equally likely,
and that only concentrates on pairs (g2, c2) where g2 € Q871 (cg). By (5.7.29) for firm 2 and k — 1, the
“highest” such belief 3; is the belief S7'** that only concentrates on pairs (ge, c2) with

B = 5 =GR+ () + ot

The expected quantity for firm 2 under that belief is

Bop(a) = 3-[%2 - 5020+ QP + )+ 4[58 - =020+ (1)) + 24
a—(%*:)/? _ a-(%tﬁ)ﬂ(l + (D) 4+ 2%1_ (5.7.32)

Similarly, the “lowest” such belief 3, is the belief 32" that only concentrates on pairs (ga, c2) with

@ = 452 — a*(%tﬁ)ﬂ(l + (%)k—2)_

The expected quantity for firm 2 under that belief is

Egun(a2) = 4% = G220+ )]+ 5[5 - G20+ (1))
_ a—(%tﬁ)ﬂ _ a—(%té)/Q(l +(1)F2). (5.7.33)

By (5.7.19), (5.7.32) and (5.7.33) we conclude that the lowest quantity ¢; that is optimal for such
a belief 5, at the marginal cost ¢; is

- — —(ct+0)/2 —(c+e)/2 k—

G = G — IEgmex(qp) = 959 — L[aetA2 _a(ehD/2(q 4 (1yk=2y M
_ —(c+7¢)/2 k—
e = PR - ()R - 8,

whereas the highest quantity ¢; that is optimal for such a belief 8, at the marginal cost ¢; is

a—c a—c a—(c+¢c)/2 —(caB) /2 _
a—c a—(c+c)/2 —

Thus, the set of quantities that survives round k for firm 1 at the marginal cost c; is

Qffer) = [52 — “GEAR - (1)) - 5f, 52— EPRA - (F)

which matches (5.7.28).
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By induction on k, we then conclude that for every round k, and all marginal costs c¢1, the set
Q%(cy) is given by (5.7.28) and (5.7.29). And similarly for firm 2.

When k tends to infinity, the set Qf (¢;) collapses to the single quantity

g () = 5o — e=(e02 (5.7.34)

Hence, under common belief in rationality and common belief in the fixed beliefs (r1,72) on utilities,
firm ¢ can only rationally choose the quantity ¢} (c;) if the marginal costs are ¢;.

Note that this quantity ¢/ (c;) is exactly halfway the set of quantities Q! (¢;) in (5.7.24) that firm
1 can rationally choose under common belief in rationality without fixed beliefs on utilities. This
makes intuitive sense, since firm ¢ deems every possible marginal cost of competitor j equally likely.
Moreover, the quantity ¢;(c;) is decreasing in the marginal cost ¢;. Also this is intuitive, as a higher
marginal cost forces the firm to reduce its production.



Chapter 6

Correct and Symmetric Beliefs with Incomplete
Information

6.6 Economic Applications

In this section we continue our exploration of the Bertrand model and Cournot model introduced in
Section 3.7 of this online appendix. For both models of competition we investigate the possible choices
that both firms can rationally make under common belief in rationality with a simple belief hierarchy.
We also consider the scenario where the beliefs about the firms’ marginal costs are fixed.

6.6.1 Competition in Prices

Recall the Bertrand competition model with incomplete information we investigated in Section 5.7.1
of this online appendix. We have seen in (5.7.7) that under common belief in rationality without fixed
beliefs on utilities, both firms ¢ can rationally choose from the set of prices

* a e cta/d a e ¢c+a/d
Pci) = [bei+9) + 5528, Yot %)+ 5 5s) (6.6.1)

if the marginal cost is ¢;.

In Section 6.1 of the book we introduced the notion of a simple belief hierarchy for games with
incomplete information where there are finitely many choices and utility functions. Moreover, it has
been shown in Theorem 6.1.2 that the choices which can rationally be made under common belief in
rationality with a simple belief hierarchy are precisely the choices that are optimal in a generalized
Nash equilibrium.

The concepts of a simple belief hierarchy and a generalized Nash equilibrium, together with the
result above, can be extended to games with infinitely many choices and utility functions, as is the
case in the Bertrand model we consider. Indeed, a simple belief hierarchy for firm ¢ is a belief hierarchy
B,; that is generated by a single belief 1 about firm 1’s price-cost pair and a single belief o9 about firm
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2’s price-cost pair. Moreover, such a pair of beliefs (o1, 02) would be a generalized Nash equilibrium if
for both firms 7, the belief o; only concentrates on price-cost pairs (p;, ¢;) where the price p; is optimal
for firm 4 at the marginal cost ¢; under the belief about competitor j’s price as induced by o;.

The prices that firm ¢ can rationally choose under common belief in rationality with a simple belief
hierarchy at the marginal cost ¢; are exactly the prices p; that are optimal at the marginal cost ¢; in
such a generalized Nash equilibrium. But what are these prices in the Bertrand model? That is the
question we will investigate now.

Consider a generalized Nash equilibrium (o1, 03). Let 71 be the belief about firm 1’s costs induced
by o1, and similarly for r9. By (3.7.5) we know that, for every marginal cost ¢y, the optimal price for
firm 1 under the belief o5 about firm 2’s price-cost pair is given by

pi(er) = 5 (a1 + §) + 57 - Eoy(p2), (6.6.2)

where E,,(p2) is the expected price for firm 2 under the belief o5.

As (01,02) is a generalized Nash equilibrium, the belief o7 should only concentrate on price-cost
pairs (p1,c1) for firm 1 where p; = pi(c1) as given in (6.6.2). Since the optimal price pi(c1) depends
linearly on the cost cq, the expected price for firm 1 under the belief o1 about firm 1’s price-cost pairs
is

EUl (pl) = % : (Em (Cl) + %) + 2%1 : Eaz(p2)a (663)

where E,, (¢1) is the expected marginal cost for firm 1 under the belief 71 about firm 1’s marginal cost.
In a similar fashion it can be shown that

Esy(p2) = 3 (Ery(c2) + %) + 55 - Eoy (p1)- (6.6.4)
If we substitute (6.6.4) into (6.6.3) we get
Eq,(m1) = 3(Bry(c1) + §) + 53[5(Eray(c2) + §) + 5B, (01)],

which yields

By (p1) = (Erq (cl)+(e/2d)E2i2€(j?i))/(1+e/2d)+a/d. (6.6.5)
Similarly,
By, (p2) = (Er, (cz)+(e/2d)E211€(2l))/(1+e/2d)+a/d. (6.6.6)

If we substitute this into (6.6.2) we conclude that

pi(c1) = % (e1 + %) + 2% . (Erz(62)+(e/2d)E2r_16(?[11))/(1+e/2d)+a/d' (6.6.7)
Similarly,
pa(e2) = % (ea + %) X % ) (Erl(c1)+(e/2d)]:/;T_Qe(;z))/(l-i-e/Qd)—i-a/d (6.6.8)

Hence, every generalized Nash equilibrium (o1, 02) has the property that o1 only concentrates on pairs
(p1(c1), c1) where p1(c1) is given by (6.6.7), and o only concentrates on pairs (p2(c2), c2) where pa(c2)
is given by (6.6.8).

As a consequence, the generalized Nash equilibrium is uniquely given by the belief r; about firm
1’s costs and the belief 9 about firm 2’s cost: Indeed, if the beliefs r; and r9 about the firms’ marginal
costs are known, then we can compute the expected costs Fy, (¢1) and Ey,(c2), which in turn uniquely
determine the optimal prices pj(c1) and pa(cz) for every marginal cost by means of (6.6.7) and (6.6.8).
Hence, o1 must be the unique belief about firm 1’s price-cost pairs that (i) has the belief r1 about firm
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1’s cost, and (ii) only concentrates on pairs (pi(c1),c1) where pi(cy) is given by (6.6.7), and similarly
for os.

Thus, for every pair of beliefs (71, 72) about the firms marginal costs there is exactly one generalized
Nash equilibrium (o1, 09) that has these beliefs (r1,72). Moreover, this generalized Nash equilibrium
can be derived on the basis of (6.6.7) and (6.6.8). Also, (6.6.7) tells us precisely which price is optimal
for firm 1 for every possible marginal cost ¢; in such a generalized Nash equilibrium: This is exactly
the price p1(cq1).-

By Theorem 6.1.2, the prices that can rationally be chosen by firm 1 at marginal cost ¢; under
common belief in rationality with a simple belief hierarchy are exactly the prices pi(c1) as given by
(6.6.7), where E,, (c1) and E,,(c2) can vary between ¢ and ¢. The lowest such price is obtained when
E, (c1) = E;,(c2) = ¢, in which case

pi(er) = §-(at )+ gy (CHELOY Lre/aireerd
= b+ i+ 5

Similarly, the highest such price is obtained when E,, (¢1) = Ey,(c2) = ¢, in which case

pi(er) = §-(at )+ gy CHOLIY re/airserd
= i (a+9+5 T4

Hence, under common belief in rationality with a simple belief hierarchy at the marginal cost ¢y, firm
1 can rationally choose any price in the interval

* d c d
Piler) = [ (14 9) + & - 5594 1 (1 4+ 9) + & - 52204, (6.6.9)

Note that this is precisely the interval in (6.6.1), which contained the prices that were possible
under common belief in rationality. Hence, under common belief in rationality with a simple belief
hierarchy, firm 1 can rationally choose the same set of prices as under common belief in rationality
without insisting on a simple belief hierarchy. The same holds for firm 2.

We next turn to the scenario where there are fized beliefs about utilities. Suppose we fix some
beliefs (r1,72) about the firms’ marginal costs. What prices can firm 1 rationally choose if it has a
marginal cost of ¢;, expresses common belief in rationality and common belief in (71, r2), and holds a
simple belief hierarchy?

The answer is given in (6.6.7): Indeed, we have seen that there is a unique generalized Nash
equilibrium (o1, 09) that respects the fixed beliefs (r1,72) on marginal costs, and in this generalized
Nash equilibrium the optimal price for firm 1 at the marginal cost ¢; is given by (6.6.7). As such, if
firm 1 has a simple belief hierarchy that expresses common belief in rationality and common belief in
(r1,72), then the unique optimal price at marginal cost ¢ is given by (6.6.7). Similarly for firm 2.

Note that the optimal price pi(c;1) for firm 1 in (6.6.7) is increasing in both E, (¢1) and E,,(c2).
This makes intuitive sense: If firm 1’s belief 79 about firm 2’s marginal cost would change by deeming
higher marginal costs for firm 2 more likely, then firm 1 will believe that, in expectation, firm 2 will
choose a higher price to compensate for this. In turn, this will allow firm 1 to choose a higher price as
well. Similarly, if E,, (c1) rises, then firm 1 believes that firm 2 will deem higher marginal costs for firm
1 more likely. As we have seen above, this will induce firm 2 to choose a higher price in expectation.
Firm 1, anticipating on this, will then also raise its price.
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Consider now the special case where 1 and 79 are the uniform distribution on [¢, €]. Then, the
expected marginal costs are given by E,, (¢1) = E,,(c2) = (¢ +¢)/2. If we substitute this into (6.6.7)
we conclude that the only optimal price for firm ¢ at marginal cost ¢; is

?)/2+a/d
pile) =% (ci+9) + g - CH2Ead /+da/ , (6.6.10)

Note that this matches precisely (5.7.17), which described the unique price that firm 4 can rationally
choose at marginal cost ¢; if it expresses common belief in rationality and common belief in (ry,r3).
This, of course, should come as no surprise: If common belief in rationality and common belief in
(r1,72) already leads to a unique optimal price at ¢;, then it will remain the unique optimal price if,
in addition, we require the belief hierarchy to be simple.

6.6.2 Competition in Quantities

Recall the Cournot competition model with incomplete information from Section 5.7.2. We saw in
(5.7.24) that under common belief in rationality, firm 7, at a marginal cost of ¢;, can rationally choose
any quantity from the interval

Qe = (355 - S+ %52, %55 - 5+ %) (6:6.11)

What quantities can firm ¢ rationally choose if, in addition, we require a simple belief hierarchy?
That is the question we wish to address now. Similarly as for the Bertrand model above, this amounts
to finding the quantities that are optimal for firm ¢ in a generalized Nash equilibrium.

Consider a generalized Nash equilibrium (o1, 02), where o1 is a probabilistic belief about firm 1’s
quantity-cost pair, and oy is a probabilistic belief about firm 2’s quantity-cost pair. By (3.7.12) we
know that in this generalized Nash equilibrium, the optimal quantity for firm 1 at a marginal cost of
c1 is given by

qi(c1) = 52 = 5Eoy(a2), (6.6.12)

where E,,(q2) is the expected quantity for firm 2 under the belief 0.

Now, let 1 be the belief about firm 1’s marginal cost induced by o1, and similarly for ro. Note
that, by (6.6.12), the optimal quantity ¢i(c1) depends linearly on the marginal cost ¢;. Moreover, as
(01,02) is a generalized Nash equilibrium, the belief o1 only concentrates on pairs (qi(c1),c1) where
q1(c1) is given by (6.6.12). As such, we conclude that the expected quantity for firm 1 under the belief
o1 is given by

—E,
Eg\(q1) = “271(1) — 3E0,(q2). (6.6.13)
Similarly, it follows that
—E,
Eogy(q2) = a272(02) — 3B, (q1)- (6.6.14)

If we substitute (6.6.14) into (6.6.13) we get

a—F,, (c a—F,, (c
Eq(q) = “5 @) 1 Ee@) 1p ()],

Solving for E,, (q1) then yields

By, (q1) = 2Bt ()

Similarly, we obtain that

B, () = 2Bt En (1),
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Together with (6.6.12) we conclude that firm 1’s unique optimal quantity at marginal cost c¢; in
the generalized Nash equilibrium (o1, 03) is given by

q(er) = 92 — 2B (@) (6.6.15)
and similarly for firm 2.

Note that this optimal quantity only depends on the expected marginal costs E,, (¢1) and Ey,(c2)
induced by (01,02). As a consequence, for every pair (r1,r3) of beliefs on marginal costs there is a
unique generalized Nash equilibrium (o1, 02) with these beliefs, where for both firms i the belief o; is
the unique belief on quantity-cost pairs for firm ¢ that has the belief r; on marginal costs, and only
concentrates on pairs (g;(¢;), ¢;) where g;(c;) is given by (6.6.15).

On the basis of (6.6.15) we now know what quantities firm 1 can rationally choose at marginal
cost c; if it has a simple belief hierarchy that expresses common belief in rationality. These would be
any of the quantities g1 (c1) in (6.6.15), where E;, (¢1) and E,,(c2) can vary arbitrarily between ¢ and
¢. The lowest such ¢j(c1) is obtained when E,, (¢1) = ¢ and E,,(c2) = ¢, resulting in

_a—c1 __la—2ct¢ _ a—c1 _a—¢c | a—=¢C
q(c1) = %5 27 3¢ 2 3e +

Similarly, the highest such ¢i(c1) is obtained when E;, (¢1) = ¢ and E,(c2) = €, resulting in

_a—c1 __la—2¢ctc _ a—c1 _ a—¢C a—c
qi(c1) = 2e 27 3 2 3 T 6o

Hence, with a simple belief hierarchy that expresses common belief in rationality, and with a marginal
cost of ¢, firm 1 can rationally choose any quantity from the set

Qiler) = [52 — FF+ 55 98— + & (6.6.16)

Similarly for firm 2.

Note that this matches precisely the set from (6.6.11), which indicated what quantities firm 4
could rationally choose under common belief in rationality, without requiring a simple belief hierarchy.
Hence, the additional condition of a simple belief hierarchy does not alter the quantities that both
firms can rationally choose under common belief in rationality.

Consider now the scenario where we impose fized beliefs on wutilities. Suppose we fix a pair of
beliefs (r1,72) on the firms’ marginal costs. What quantities can both firms rationally choose, for each
of the possible marginal costs, if they hold a simple belief hierarchy that expresses common belief in
rationality and common belief in (71, 72)7

Similarly as in the Bertrand model above, the answer is given by (6.6.15). Indeed, for a given
pair (r1,72) of beliefs on the firms’ marginal costs, we saw that there is a unique generalized Nash
equilibrium (01, 02) that has these beliefs, and for this generalized Nash equilibrium the optimal
quantity for firm 1 at marginal cost ¢; is given by (6.6.15). As a consequence, the only quantity that
firm 1 can rationally choose at marginal cost ¢y if it holds a simple belief hierarchy that expresses
common belief in rationality and common belief in (71, 72) is the quantity ¢i(c1) given by (6.6.15).

Note that this optimal quantity ¢j(c1) is decreasing in the expected marginal cost E,,(c1) for
firm 1, and increasing in the expected marginal cost E,,(c2) for firm 2. This has a clear economic
interpretation: If E,,(cg) rises, then firm 1’s belief about firm 2’s marginal cost starts to assign higher
probabilities to higher marginal costs. As a consequence, firm 1 expects firm 2 to decrease its quantity
in expectation. Anticipating on this, firm 1 can increase its own quantity. Moreover, if E,, (¢1) rises,
then firm 1 believes that firm 2 starts to assign higher probabilities to higher marginal costs for firm
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1. As we have seen above, this will lead firm 1 to believe that firm 2 will increase its quantity in
expectation. Anticipating on this, firm 1 will then decrease its quantity.

Consider finally the special case where 1 and 79 are the uniform distribution on [¢, ¢]. Then, the
expected marginal costs for both firms are E,,(c1) = E,,(c2) = (¢ + ¢)/2. If we substitute this into
(6.6.15), we see that the optimal quantity for firm 1 at the marginal cost ¢; is

gi(cr) = a5 — o=(eta2 (6.6.17)

and similarly for firm 2.

Note that this matches precisely (5.7.34), which indicated the unique quantity that firm i could
rationally choose at marginal cost ¢; under common belief in rationality and common belief in the
beliefs (r1,r2) about the marginal costs. Again, this should come as no surprise: If common belief in
rationality and common belief in (71,72) already leads to a unique optimal quantity g;(c;) for every
marginal cost c¢1, then this will remain so if we additionally require a simple belief hierarchy.



Chapter 7

Common Belief in Rationality with Unaware-
ness

7.9 Economic Applications

In this section we investigate variations of the Bertrand competition model and Cournot competition
model from Section 3.7 in which a firm may be unaware of certain choices that the other firm can
make.

7.9.1 Competition in Prices

Like in Section 3.7.1, we consider the competition in prices between two firms that produce differenti-
ated goods. The difference is that firm 1 now has the additional option to produce a new good that is
more similar to firm 2’s good than the standard good it has been producing until now. More precisely,
if firm 1 produces the standard good while choosing a price of p;1, and firm 2 chooses a price of po,
then the demand for both firms is given by

q1 = 24 — p1 + p2 and g = 24 — ps + p1. (7.9.1)

That is, in the Bertrand competition model from Section 3.7.1 we choose the parameters a = 24 and
d = e = 1. If, on the other hand, firm 1 decides to produce the new good, and the prices chosen are
p1 and po, then the demands would be

q1 =24 — 4p1 + 4ps and qo = 24 — 4ps + 4p;. (7.9.2)

Hence, we would have that d = e = 4. In this case, the demands for both firms would change more
rapidly with the prices since the goods of firms 1 and 2 are more similar now, and hence consumers
start caring more about the price.
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However, firm 2 need not be aware of the new good that firm 1 can produce. This leads to two
different views for firm 2, which are v5 and vy. Here, v5 stands for firm 2’s view where it is only aware
of the standard good of firm 1, while vy is the view where it is aware of firm 1’s additional option to
produce the new good.

Of course, if firm 2’s view is v3, then it cannot possibly reason about firm 1 being able to produce
the new good. Therefore, we need two views for firm 1, which are v{ and v]. Here, v is firm 1’s actual
view, where it is aware of the additional option to produce the new good, whereas v{ is the restricted
view where it is not aware of this option.

Suppose that both firms have a constant marginal cost of 4, and that the maximum price that can
be chosen by both firms is 40. That is, we assume that ¢ = 4 and M = 40 in the model of Section
3.7.1. What prices can firm 1 rationally choose under common belief in rationality?

As a first step towards answering this question, let us first model the situation above as a game
with unawareness. As already announced above, the possible views for firm 1 are v and v}, whereas
the possible views for firm 2 are v5 and vy.

In the view v{, firm 1 can make any choice of the type (s, p1), where s indicates that firm 1 produces
the standard good, and p; can be any price from [0,40]. Moreover, the states are all prices py from
[0,40] that can be chosen by firm 2.

In the larger view v, the possible choices for firm 1 are the pairs (s, p;) considered above, together
with any pair (n,p1), where n indicates that firm 1 produces the new good, and p; can be any price
from [0, 40]. The states are still all the prices ps from [0,40] that can be chosen by firm 2.

In firm 2’s view v3, the set of possible choices for firm 2 are all prices ps from [0,40] that firm 2
can choose, whereas the states are all the choices (s,p1) that firm 1 can make at the view v3.

At the larger view v, the possible choices for firm 2 are still all the prices ps from [0,40] that firm
2 can choose. However, the states are now all the pairs (s,p1) and (n,p;) that firm 1 can choose at
the view 7.

We thus obtain a game with unawareness with infinitely many choices and states, but with finitely
many views. For such games we can adopt the procedure of iterated strict dominance for unaware-
ness as follows: In round 1 we eliminate, at every view, those choices that are not optimal for any
probabilistic belief about the states. This yields the 1-fold reduced decision problems at the various
views.

In round 2 we start by eliminating, at a given view v, those states that involve an opponent’s choice
that did not survive round 1 at any view that is contained in v. In the reduced decision problem so
obtained at v, we then eliminate those choices that are not optimal for any belief about the states
that remain. This yields the 2-fold reduced decision problems at the various views. And so on.

Similarly as for finite games with unawareness, this procedure delivers for every view precisely
those choices that can rationally be made under common belief in rationality with that particular
view. We will now use this procedure to find the prices that both firms can rationally choose under
common belief in rationality at both of their possible views. In fact, we opt for the bottom-up version
of the procedure, as it significantly reduces our computations.

Views of rank 1. Clearly, the views with rank 1 are v{ and v5. Hence, we first investigate which
prices both firms can rationally choose under common belief in rationality at the views v{ and v3.
Since firm 1, with view v{, must believe that firm 2 has view v3, and vice versa, we have a standard
Bertrand competition model from Section 3.7.1 where the parameters are a =24, d =e=1,c =14
and M = 40. We know, from (3.7.8), that under common belief in rationality both firms can only
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rationally choose the price

x _ cta/d _
p = 2—e/d — 28.

Hence, at the small views v{ and v5 we expect both firms to choose a price of 28 under common belief
in rationality.

Views of rank 2. We now turn to the views of rank 2, which are v{" and v3.

Round 1. Consider first the view v} for firm 1. Which prices are optimal for some belief about the
states, and which are not?

Suppose that firm 1 chooses the pair (s, p;) for the standard product and firm 2 chooses the price
p2. Then, we know from (3.7.2) in Section 3.7.1 that firm 1’s profit is

m1((s,p1),p2) =1 —¢)-(a—d-p1+e-p2) = (p1 —4) - (24 — p1 + p2).

Similarly, if firm 1 chooses the pair (n,p;) for the new product and firm 2 chooses the price po, then
firm 1’s profit is

m1((n,p1),p2) = (p1 —¢) - (a—d-p1 +e-p2) = (p1 —4) - (24 — 4p1 + 4p2).

Assume that firm 1 has a belief 5, about firm 2’s price. Since firm 1’s profit above depends linearly
on firm 2’s price, it can be shown in a similar way as in Section 3.7.1 that firm 1’s expected profit
under this belief is given by

m1((s,p1),81) = (p1 —4) - (24 — p1 + Ep, (p2)) (7.9.3)
if firm 1 opts for the standard product, whereas it is
m1((n,p1), B1) = (p1 — 4) - (24 — 4p1 + 4E3, (p2)) (7.9.4)

if firm 1 opts for the new product. Here, Eg (p2) denotes the expected price for firm 2 under the belief
By

Suppose that firm 1 opts for the standard product under the belief 5;. Which price would then
be optimal for firm 17 Note that the expected profit m1((s,p1), ;) is a second-degree polynomial in
p1 which becomes zero at p; = 4 and p; = 24 + Eg, (p2), and obtains a maximum exactly halfway
between these two points. Hence, the optimal price in this case would be

Pi(B1) =5 -4+ 5 (24+ Ep,(p2)) = 14 + 3 Ep, (p2)- (7.9.5)
By (7.9.3), the maximal expected profit with the standard product under the belief 5 is
3 (61) = (10 + 3 Ep, (p2))*. (7.9.6)

Now assume that firm 1 opts for the new product under the belief 3;. Then, in view of (7.9.4),
the expected profit 71((s,p1), ;) is a second-degree polynomial in p; which becomes zero at p; = 4
and p; = 6 + Eg, (p2), and obtains a maximum exactly halfway between these two points. Hence, the
optimal price in this case would be

pr(B) =34+ 35 (64 Eg (p2) =5+ 3Es,(p2). (7.9.7)

By (7.9.4), the maximal expected profit with the new product under the belief 3; is

TH(B1) = (2+ Bz, (p2))*. (7.9.8)
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Hence, the firm will choose the standard product if 7§(8;) > 7} (5;), it will choose the new
product if 77 (5;) > 75 (5;), and it will be indifferent between the standard and the new product if
©5(B81) = 71 (51). In view of (7.9.6) and (7.9.8), we have 7§(51) > n{(8;) precisely when

(10 + 5Ep, (p2))* > (2 + B, (p2))?,

which happens exactly when
10+ 5 Ep, (p2) > 2 + Eg, (p2),

yielding Eg, (p2) < 16.

Hence, if Eg (p2) < 16 then firm 1 will choose the standard product together with the price in
(7.9.5). Similarly, if Eg (p2) > 16 then firm 1 will choose the new product together with the price in
(7.9.7). Finally, if Eg, (p2) = 16 then firm 1 will be indifferent between the standard product together
with the price 22 from (7.9.5) and the new product together with the price 13 from (7.9.7). Firm 1’s
optimal product-price pairs for every belief 3, are thus given by

(s, 144 3Eg (p2)), if Eg, (p2) <16
a(By) = (s5,22) or (n,13), if Eg (p2) =16 . (7.9.9)
(n,5+ 3Eg, (p2)), if Eg, (p2) > 16
As the price pa can vary between 0 and 40, the expected price Eg, (p2) will also be between 0

and 40. By (7.9.9) we thus conclude that the set Pf(v}) of product-price pairs for firm 1 that can be
optimal for some belief at the view v} is given by

Pi(v}) = {(s,p1) | p1 € [14,22]} U {(n,p1) | p1 € [13,25]}. (7.9.10)

We now turn to firm 2 with the view v3. If firm 1 chooses a pair (s,p1) containing the standard
product, and firm 2 chooses a price pe, then it follows from (3.7.3) in Section 3.7.1 that firm 2’s profit
is

m2((8,p1),p2) = (p2 —¢) - (a—d-pa+e-p1) = (p2 —4) - (24 — p2 + p1). (7.9.11)
Similarly, if firm 1 chooses a pair (n,p1) containing the new product, then firm 2’s profit is
m2((n,p1),p2) = (p2 —c) - (a—d-p2+e-p1) = (p2 —4) - (24 — 4dp2 + 4p1). (7.9.12)

Suppose now that firm 2 holds the belief 85 about firm 1’s product-price pairs. Let [5(s) and
B5(n) be the probability that firm 2 assigns to firm 1 choosing the standard and the new product,
respectively. Moreover, let Eg, (p1|s) be the expected price for firm 1 under the belief 35, conditional
on firm 1 choosing the standard product. Similarly, Eg, (p1|n) denotes the expected price for firm 1
under the belief §5, conditional on firm 1 choosing the new product.

As firm 2’s profit in (7.9.11) and (7.9.12) depends linearly on firm 1’s price, firm 2’s expected profit
of choosing the price po under the belief 55 is

T2(p2, B2) = Ba(s) - [(p2 —4) - (24 — p2 + Eg, (p1]s))]
+62(n) - [(p2 —4) - (24 — 4p2 + 4E3,(p1|n))]- (7.9.13)
Firm 2’s optimal price is obtained by setting the derivative g—g; of ma(pe, B5) with respect to pa
equal to zero. Thus,

5oz = Ba(s)  [(24 = p2 + Eg, (pas)) + (2 —4) - (1))
+85(n) - [(24 — 4p2 + 4E3, (p1|n)) + (p2 — 4) - (—4)] = 0.
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By solving for ps2, we see that the optimal price for firm 2 under the belief 3, is given by

(5)(28+ B, ()42 (1) (1044135, (1 )
pa(Ba) = B ROL A a— (7.9.14)

What is the minimal price p2(55) that is optimal for a belief 557 In view of (7.9.14) this is obtained
if we set Eg,(p1]|s) = 0 and Eg,(p1|n) = 0. In that case we would have

B2 (s)-284845(n)
pa(By) = T,

Since B5(s) + B2(n) =1, we can set ,6’2(3) =1 — f5(n) and write this as

pa(By) = B2(n))-28+B5(n)40 _ 28+03,(n)-12
2 2(1=B2(n))+885(n) 2+655(n)

which is an expression that only depends on §5(n). It may be verified that the derivative of pa(55)
with respect to By(n) is
op2(Ba) _ 144
9By(n) —  (2+6B2(n))
and hence the optimal price pa(55) is decreasing in (85(n). As such, the optimal price p2(35) is mini-
mized by setting [5(n) = 1.
Overall, we see that the minimal price ps(3,) that is optimal for a belief 3, is obtained by choosing
Ba(n) =1 and Eg,(p1|n) = 0, resulting in p2(B8y) = 5.
Next, we are interested in the maximal price p2(f5) that is optimal for a belief 5. In view of
(7.9.14) this is obtained if we set Eg, (p1|s) = 40 and Eg,(p1|n) = 40. In that case we would have

2<O7

(5)-68+85(n)-200
p2(B2) = P

Since B5(s) + B5(n) = 1, we can set B5(s) = 1 — B59(n) and write this as

pa(By) = (1— [32( ))-68+85(n)-200 _ 68+8,(n)-132
2 2(1-B2(n))+8B5(n) 24+685(n)

which is an expression that only depends on 5(n). It may be verified that the derivative of pa(85)
with respect to B5(n) is

Op2(Ba) _ 144
Dy — — @reg ) <0

and hence the optimal price pa(f5) is decreasing in [5(n). As such, the optimal price p2(f5) is maxi-
mized by setting S5(n) = 0, and hence by choosing (5(s) = 1.

Overall, we see that the maximal price p2(fS5) that is optimal for a belief 35 is obtained by choosing
Ba(s) =1 and Eg, (p1|s) = 40, resulting in p2(3,) = 34.

Thus, the set of prices for firm 2 that are optimal for some belief at view v} is given by

P} (v} = [5,34].

Round 2. Consider firm 1 with view 7. By definition, the set of states S%(v}) contains those prices
for firm 2 that have survived so far at some view vp contained in v}'. Note that both views v5 and vy
are contained in v{. Recall from above that only price pa = 28 has survived for firm 2 at the view v3
in the bottom-up procedure. Moreover, at the view v} all prices in [5,34] have survived for firm 2 in
round 1. As such, the set of states in Round 2 at view o7 is

S2(v) = [5, 34].
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Therefore, firm 1’s belief 3; should only assign positive probability to firm 2’s prices in [5, 34], which
implies that Eg (p2) € [5,34]. By (7.9.9) we know that for every expected price Eg, (p2) in [5,16] the
optimal product-price pair for firm 1 is (s, 14+ %EB ,(p2)). Hence, every product-price pair (s, p1) with
p1 € [16.5,22] is optimal for some belief 3, on SZ(v?). Moreover, it follows from (7.9.9) that for every
expected price Eg (p2) in [16, 34] the optimal product-price pair for firm 1 is (n,5+ %Eﬁ L (p2)). Hence,
every product-price pair (n,p;) with n € [13,22] is optimal for some belief 3, on S7(v}).

As such, the set of product-price pairs for firm 1 that survive Round 2 at view v} is given by

PE(v}) = {(s.p1) | p1 € [16.5,22]} U{(n,p1) | p1 € [13,22]}. (7.9.15)

We now turn to firm 2 with view v%. The set of states S2(v}) that survive Round 2 for firm 2
at view vy contain, by definition, those product-price pairs for firm 1 that have survived all previous
rounds at a view v; contained in vy. Note that both views v{ and v} are contained in vy. We have
seen that at the view v] only the product-price pair (s,28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.10) that at the view v}, the set of product-price pairs
that survived Round 1 was

Pi(v]) = {(s,p1) | p1 € [14,22]} U{(n,p1) | p1 € [13,25]}.

Taken together, we conclude that the set of states S2(v%) for firm 2 in Round 2 at view vY is given by

S3(v3) = {(s,p1) | p1 € [14,22]} U {(n,p1) | p1 € [13,25]} U {(s,28)}. (7.9.16)

Here, the first two sets contain the choices for firm 1 that survived Round 1 at the view v}, whereas
the last set contains the unique choice that survived for firm 1 at the view vy.

Firm 2 is thus required to hold a belief 3, on this set of states S2(v%). From the first and the last
set in (7.9.16) we conclude that Eg,(p1|s) € [14,28]. Indeed, every expected price between 22 and 28
can be induced by a belief (5 that assigns a positive probability to (s,22) and a positive probability
to (s,28). Moreover, from the second set in (7.9.16) we know that Eg (p1|n) € [13,25].

In view of (7.9.14) it can be verified, similarly to what we have done in Round 1, that the lowest
price pa(fs) that is optimal for such a belief 3, is obtained by choosing 35(n) = 1 and Eg, (p1|n) = 13,
resulting in the optimal price pa2(8,) = 11.5. From (7.9.14) it also follows, in a similar way as in Round
1, that the highest price p2(8,) that is optimal for such a belief 35 is obtained by choosing (5(s) =1
and Eg, (p1]s) = 28, resulting in the optimal price pa(8s) = 28.

Hence, the set of prices that survive Round 2 for firm 2 at view v3 is

P3(vh) = [11.5,28)]. (7.9.17)

Round 3. Consider firm 1 with view v?. By definition, the set of states S$(v}) contains those prices
for firm 2 that have survived so far at some view v2 contained in v7. Recall that both views v5 and
vy are contained in v{. From above we know that only price po = 28 has survived for firm 2 at the
view v§ in the bottom-up procedure. Moreover, we know by (7.9.17) that at the view v4 all prices in
[11.5,28] have survived for firm 2 in round 2. As such, the set of states in Round 3 at view v} is

S3(v) = [11.5, 28)].
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Therefore, firm 1’s belief 3; should only assign positive probability to firm 2’s prices in [11.5, 28],
which implies that Eg (p2) € [11.5,28]. By (7.9.9) we know that for every expected price Eg (p2) in
[11.5,16] the optimal product-price pair for firm 1 is (s, 14 4+ %Eg ,(p2)). Hence, every product-price
pair (s,p1) with p; € [19.75,22] is optimal for some belief 3, on S(v7). Moreover, it follows from
(7.9.9) that for every expected price Eg (p2) in [16,28] the optimal product-price pair for firm 1 is
(n,5+ %E@l (p2)). Hence, every product-price pair (n,p;) with p; € [13,19] is optimal for some belief
By on SP(f).

As such, the set of product-price pairs for firm 1 that survive Round 3 at view v} is given by

PE(w?) = {(s,p1) | p1 € [19.75,22]} U {(n,p1) | p1 € [13,19]}. (7.9.18)

We now turn to firm 2 with view v%. The set of states S3(v}) that survive Round 3 for firm 2
at view vy contain, by definition, those product-price pairs for firm 1 that have survived all previous
rounds at a view vy contained in vy. Recall that both views v{ and v} are contained in vy. We have
seen that at the view v{ only the product-price pair (s,28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.15) that at the view v}, the set of product-price pairs
that survived Round 2 was

PE(v7) = {(s,p1) | p1 € [16.5,22]} U {(n,p1) | p1 € [13,22]}.

Taken together, we conclude that the set of states S3(v%) for firm 2 in Round 3 at view v is given by
S3(08) = {(s,p) | 1 € [165,22]} U{(n,p1) | 1 € [13,22} U {(5,28)}.  (7.9.19)

Here, the first two sets contain the choices for firm 1 that survived Round 2 at the view v}, whereas
the last set contains the unique choice that survived for firm 1 at the view vy.

Firm 2 is thus required to hold a belief 85 on this set of states S3(v%). From the first and the last
set in (7.9.19) we conclude that Eg,(p1]s) € [16.5,28]. Indeed, as before, every expected price between
22 and 28 can be induced by a belief (5 that assigns a positive probability to (s,22) and a positive
probability to (s,28). Moreover, from the second set in (7.9.19) we know that Eg_(p1|n) € [13,22].

In view of (7.9.14) it may be verified, similarly to what we have done in Round 1, that the lowest
price pa(fBs) that is optimal for such a belief 3, is obtained by choosing 35(n) = 1 and Eg, (p1|n) = 13,
resulting in the optimal price pa(55) = 11.5. From (7.9.14) it also follows, similarly to Round 1, that
the highest price pa(f,) that is optimal for such a belief 3, is obtained by choosing B5(s) = 1 and
Eg,(p1]s) = 28, resulting in the optimal price pa(8s) = 28.

Hence, the set of prices that survive Round 3 for firm 2 at view vg is

P3(v3) = [11.5, 28], (7.9.20)

which is the same as PZ(vl).

Round 4. Consider firm 1 with view v7. As before, Sj(v}) contains all prices for firm 2 that have
survived so far at the views v5 and vy. Since only price po = 28 has survived for firm 2 at view v3,
and P3(v}) = PZ(vY), we conclude that Sf(v}) = S3(v}). As a consequence,

Pi(v}) = PY(v}) = {(s,p1) | p1 € [19.75,22]} U {(n, p1) | p1 € [13,19]}. (7.9.21)

We next turn to firm 2 with view v%. The set of states S3(v%) that survive Round 4 for firm 2
at view vy contain, by definition, those product-price pairs for firm 1 that have survived all previous
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rounds at a view v1 contained in vy. Recall that both views v and v are contained in vy. We have
seen that at the view v{ only the product-price pair (s,28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.18) that at the view v, the set of product-price pairs
that survived Round 3 was

PR = {(s,p1) | p1 € [19.75,22]} U {(n,p1) | p1 € [13,19]}.

Taken together, we conclude that the set of states S3(v%) for firm 2 in Round 4 at view v} is given by
Sy(vi) = {(s,p1) | p1 € [19.75,22]} U {(n,p1) | p1 € [13,19]} U {(s,28)}. (7.9.22)

Here, the first two sets contain the choices for firm 1 that survived Round 3 at the view v}, whereas
the last set contains the unique choice that survived for firm 1 at the view v7.

Firm 2 is thus required to hold a belief 3, on this set of states S3(v%). From the first and the last
set in (7.9.22) we conclude that Eg, (p1|s) € [19.75,28]. Indeed, as before, every expected price between
22 and 28 can be induced by a belief 3, that assigns a positive probability to (s,22) and a positive
probability to (s,28). Moreover, from the second set in (7.9.22) we know that Eg, (p1|n) € [13,19].

In view of (7.9.14) it can be verified, similarly to what we have done in Round 1, that the lowest
price pa(fs) that is optimal for such a belief 3, is obtained by choosing 35(n) = 1 and Eg, (p1|n) = 13,
resulting in the optimal price pa(5y) = 11.5. From (7.9.14) it also follows, similarly to Round 1, that
the highest price pa(8,) that is optimal for such a belief 3, is obtained by choosing B5(s) = 1 and
Eg,(p1]s) = 28, resulting in the optimal price pa(8s) = 28.

Hence, the set of prices that survive Round 4 for firm 2 at view vg is

Pl(vg) = [11.5, 28],

which is the same as P2 (v}) and Py (v3).

As PE(v}) = PP(v}) and P#(v}) = P§(v}), the bottom-up procedure terminates at this round.
The surviving choices for firm 1 and firm 2 at the views v} and v3 are thus

Pr(of) ={(s,p1) | p1 € [19.75,22]} U{(n,p1) | p1 € [13,19]} (7.9.23)

and
Py (vy) =[11.5,28]. (7.9.24)

Hence, under common belief in rationality at view o7, firm 1 can rationally choose the standard
product together with any price between 19.75 and 22, or the new product together with any price
between 13 and 19. Moreover, at the view v3 firm 2 can rationally choose any price between 11.5 and
28 under common belief in rationality.

At the view v, firm 1 can only rationally choose the product-price pair (s,28) under common
belief in rationality, whereas firm 2 can only rationally choose the price 28 under common belief in
rationality at the view v5.

We now turn to a scenario where there are fixed beliefs about the views. Consider the fixed belief
combination p = (p1,p2) on views as given by Figure 7.9.1. Hence, if firm 1 holds the larger view o7,
then it believes that firm 2 will have either of the two views v§ and v5 with equal probability. In other
words, if firm 1 can offer the new product, then it believes that with probability 0.5 firm 2 will also
be aware of the new product, and with probability 0.5 firm 2 will not be aware of the new product.
However, if firm 2 is aware of the possibility that firm 1 can offer the new product, then it believes
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Figure 7.9.1 Fixed beliefs about views for price competition

that, with probability 1, firm 1 can actually offer the new product. This makes intuitive sense. What
product-price pairs can firm 1 rationally choose at the view v under common belief in rationality and
common belief in the fixed beliefs p on views? Similarly as before, we will use the bottom-up version
of iterated strict dominance for unawareness with fixed beliefs p on views.

Views of rank 1. At the views v{ and v3, both firms are only aware of the standard product for
firm 1, and believe that the other firm is also aware of only the standard product for firm 1. From the
analysis above without fixed beliefs on views we know that under common belief in rationality, firm
1 can only rationally choose the product-price pair (s,28), and firm 2 can only rationally choose the
price 28.

Views of rank 2. We now consider the views of rank 2, which are v} and vy.

Round 1. This round is the same as for the procedure without fixed beliefs on views. We thus obtain
the set of product-price pairs

PL(v}) = {(s,p1) | p1 € [14,22]} U{(n,p1) | p1 € [13,25]} (7.9.25)

for firm 1, and the set of prices
Py (vg) = [5,34] (7.9.26)

for firm 2.

Round 2. Firm 1 is required to hold a belief 5; about firm 2’s choice-view pairs that (i) assigns
probability 0.5 to the views v§ and v3, (ii) for the view v% only assigns positive probability to price-
view pairs (pg,v}) where py € Pj(v%), and (iii) for the view v3 only assigns positive probability to
the price-view pair (28,v3). But then, in view of (7.9.26), the lowest expected price Eg, (p2) for firm
2 under such a belief 8, is (0.5) - 5+ (0.5) - 28 = 16.5, whereas the highest expected price Eg, (p2) for
firm 2 under such a belief 3, is (0.5) - 34 + (0.5) - 28 = 31. Hence, the expected price Eg, (p2) under
such a belief 8 lies in the interval [16.5, 31].

By (7.9.9), the optimal product-price pair for firm 1 under such a belief 5; is (n,5+ %E[gl (p2)). As
Eg (p2) lies in the interval [16.5,31], the optimal price 5 + 1 Eg (p2) lies in the interval [13.25,20.5].
Hence, the set of product-price pairs for firm 1 that are optimal at the view v} for such a belief 3, is

PZ(v?) = {(n,p1) | p1 € [13.25,20.5]}. (7.9.27)

We now turn to firm 2. By definition, firm 2 is required to hold a belief 85 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view v}, and (ii) for the view v} only assigns positive
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probability to choice-view pairs (c1,v7) where ¢; € P} (v%). By (7.9.25) we then conclude that
Eg,(p1]s) € [14,22] and Eg, (p1|n) € [13,25]. (7.9.28)

By (7.9.14) and (7.9.28), the lowest price p2(55) that is optimal for such a belief 3, is obtained by
choosing Eg,_(p1]s) = 14 and Eg,(p1|n) = 13 in (7.9.14). We then get

(By) = P2()EBELI+5,(m)(40+413) _ 4205 (s)+920, (n)
p2\P2 28, (5)+862(n) 28,(5)+8B5(n)

As B5(s) + By(n) = 1, we may substitute 85(s) = 1 — B5(n) in the equation above, and obtain

P2(B2) = Sig5 (7.9.29)

It may be verified that the derivative of pa(83,) with respect to y(n) is

Op2(Ba) _ 152
98,(n) — ~ @regmE < U

which implies that the optimal price pa(3,) is decreasing in [5(n).

Therefore, the lowest optimal price pa(f35) for such a belief 3, is obtained when §5(n) is as large
as possible. We thus see that the lowest possible optimal price p2(8,) for such a belief is reached by
choosing B5(n) = 1 and Eg,(p1|n) = 13. By (7.9.29), the associated optimal price is p2(8s) = 43120 =
11.5.

By (7.9.14) and (7.9.28), the highest price p2(/5) that is optimal for such a belief 3, is obtained

by choosing Eg, (p1|s) = 22 and Eg,(p1|n) = 25 in (7.9.14). We then get

(B,) = Ba(5)(28422)+85(n)(40+4-25) _ 5085 (s)+1408,(n)
P22 265(5)+803(n) 255 (5)+805(n)

As B5(s) + B9(n) = 1, we may substitute 55(s) = 1 — 55(n) in the equation above, and obtain

p2(B2) = 500y (7.9.30)

It may be verified that the derivative of pa(8,) with respect to 5y(n) is

Op2(By) _ 120
B3 (n) (2+682(n)

)2 <O7

which implies that the optimal price p2(3,) is decreasing in [5(n).

Therefore, the highest optimal price p2(8,) for such a belief 3, is obtained when (4(n) is as low
as possible. We thus see that the highest possible optimal price pa(/35) for such a belief is reached by
choosing B5(n) = 0 and Eg, (p1]s) = 22. By (7.9.30), the associated optimal price is pa(3y) = 52 = 25.

We thus conclude that the set of prices for firm 2 that are optimal for such a belief 3, is given by

P3(v) = [11.5,25]. (7.9.31)

Round 3. Firm 1 is required to hold a belief 5; about firm 2’s choice-view pairs that (i) assigns
probability 0.5 to the views v§ and v3, (ii) for the view v4 only assigns positive probability to price-
view pairs (pg,v%) where po € P2(v%), and (iii) for the view v§ only assigns positive probability to
the price-view pair (28,v3). But then, in view of (7.9.31), the lowest expected price Eg, (p2) for firm
2 under such a belief 3; is (0.5) - 11.5 + (0.5) - 28 = 19.75, whereas the highest expected price Eg, (p2)
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for firm 2 under such a belief 3, is (0.5) - 25 + (0.5) - 28 = 26.5. Hence, the expected price Eg, (p2)
under such a belief 3; lies in the interval [19.75,26.5].

By (7.9.9), the optimal product-price pair for firm 1 under such a belief 5, is (n,5+ %Egl (p2)). As
Eg, (p2) lies in the interval [19.75, 26.5], the optimal price 5+ 3 E, (p2) lies in the interval [14.875, 18.25].
Hence, the set of product-price pairs for firm 1 that are optimal at the view v for such a belief 3; is

Pi(w]) = {(n,p1) | p1 € [14.875,18.25]}. (7.9.32)

We now turn to firm 2. By definition, firm 2 is required to hold a belief 85 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view v}, and (ii) for the view v} only assigns positive
probability to choice-view pairs (c1,v7) where ¢; € P2(v}). By (7.9.27) we conclude that (5 only
assigns positive probability to pairs (n,p1) with p; € [13.25,20.5].

Together with (i) and (ii) we see that

By(s) =0, Ba(n) =1, and Eg, (p1|n) € [13.25,20.5]. (7.9.33)
If we substitute this into (7.9.14), we see that the optimal price p2(f5) under this belief 3, is
p2(Bs) =5+ 5 E5,(p1n). (7.9.34)
In view of (7.9.33) and (7.9.34), the lowest price p2(f5) that is optimal for such a belief is
5+ 3 - (13.25) = 11.625,
whereas the highest price p2(8,) that is optimal for such a belief is
54 %-(20.5) = 15.25.
Hence, the set of prices for firm 2 that is optimal for such a belief 5, at the view vj is

P3(vy) = [11.625,15.25)]. (7.9.35)

If we continue in this fashion we can derive Pf(v}) and Py (v}) for every round k > 4 as well. We
will show that, for every round k& > 3,

PF(o}) = {(n,p1) | pr € (I}, h]} and Py (v3) = [I5, h3]

where 106 1\(k—3)/2 . 1.875
k_ =2 — ()PP 28R i ks odd
: { 206 1. (4)(k=4)/2. 6685 if [ ig even (7.9.36)
106 4 (1\(k=3)/2, 2175  if L is odd
kE_ = +(3) ==, ifkiso
hi = { 17(7)6 + % . (%)(k—z;)/z 18 757 if ks even (7.9.37)
88 _ (1y(k=3)/2, 6.625 i L ig odd
k — 7 (8) 7 1 1S O
ly { % _ % ] (%)(/g_4)/2 1.5;75, (£ is oven (7.9.38)
and 883 1\(k—3)/2 . 18.75
k_ 2+ () -5 if ks odd
hs { % + % . (%)(k—4)/2 21%757 if kis even (7.9.39)
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We will prove this by induction on k, for k£ > 3. Start with & = 3. Then, it follows by (7.9.36),
(7.9.37), (7.9.38) and (7.9.39) that

I3 = 14.875, h3 = 17.25, I3 = 11.625 and h3 = 15.25,

which matches (7.9.32) and (7.9.35).

Assume next that £ > 4, and that (7.9.36), (7.9.37), (7.9.38) and (7.9.39) hold for £ — 1. We
distinguish two cases: (1) k is even, and (2) k is odd.

Case 1. Suppose that k is even. Firm 1 is required to hold a belief 3; about firm 2’s choice-view
pairs that (i) assigns probability 0.5 to the views v§ and v3, (ii) for the view v} only assigns positive
probability to price-view pairs (p2,vy) where pa € sz_l(vg), and (iii) for the view v only assigns
positive probability to the price-view pair (28, v5). But then, in view of (7.9.38) and (7.9.39) for k — 1,
the lowest expected price Eg, (p2) for firm 2 under such a belief 3 is

(05) - (% — (1)#~/2 . 895) 1 (0.5) 28 = L2 — L (L)(-0/2 . 625

whereas the highest expected price Eg, (p2) for firm 2 under such a belief 3, is
(05) . (% + (%)(k—4)/2 . 18’.775) + (05) .98 — L$2 + % . (%)(k—4)/2 . 18’.775‘
Hence, the expected price Eg (p2) under such a belief 3, lies in the interval

B -4 (P9 848, 2 g 0. 1, (710

Moreover, the lowest expected price in this interval is at least
142 1 6.625
7~z o7 > 16
By (7.9.9), the optimal product-price pair for firm 1 under such a belief 3; is (n,5 + %Eﬁl(pg)).
As Eg (p2) lies in the interval given by (7.9.40), the optimal price 5 + %Eﬁl(pg) lies in the interval

5+ 1 (& _ % . (%)(k%)/? . @)’ 5+ % . (&72 + % . (%)(1674)/2 . %)]

106 1 1\(k—4)/2 6.625 106 1 1\(k—4)/2  18.75
7_,.§)( )/'TvTJFZ'(@)( )/'T]'
Hence, the set of product-price pairs for firm 1 that are optimal at the view v} for such a belief 3, is
k k—4)/2 . k—4)/2 .7
PE(}) = {(n,p1) | pr € [0 — - (3)F79/2. 868 296 4 1. (5)(=0/2 . 8Dy

which matches (7.9.36) and (7.9.37).

We now turn to firm 2. By definition, firm 2 is required to hold a belief 55 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view v}, and (ii) for the view v} only assigns positive
probability to choice-view pairs (c1,v}) where ¢; € PF~!(v}). By (7.9.36) and (7.9.37) for k — 1 we
conclude that 35 only assigns positive probability to pairs (n,p) with p; € [l’ffl, hlffl].

Together with (i) and (iii) we see that

By(s) =0, By(n) =1, and Eg, (p1|n) € 1§71, A5 1. (7.9.41)
If we substitute this into (7.9.14), we see that the optimal price p2(f5) under this belief 3, is

p2(B2) =5+ 3Ep, (p1n). (7.9.42)
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In view of (7.9.41) and (7.9.42), the lowest price p2(85) that is optimal for such a belief is

5+ % . lllc—l = 54 % . (&76 N (%)(k—4)/2 . 1.8775)
— 88 1 (Ly(k-0)/2 1875
= 7728 7
whereas the highest price p2(8,) that is optimal for such a belief is
5+ % . hlf_l = 54 % . (17(7)6 + (%)(k—4)/2 . 21.775)
88 | 1. (1\(k—4)/2 2175
THgo(p)he s

Hence, the set of prices for firm 2 that is optimal for such a belief 35 at the view v3 is

PER) = (B —F- (D092 L5, B4 1. (hl-ore. 24)

which matches (7.9.38) and (7.9.39).

Case 2. Suppose that k is odd. Firm 1 is required to hold a belief 3; about firm 2’s choice-view
pairs that (i) assigns probability 0.5 to the views v§ and v§, (ii) for the view v only assigns positive
probability to price-view pairs (pa,v}) where ps € PQk_l(vg), and (iii) for the view v only assigns
positive probability to the price-view pair (28, v5). But then, in view of (7.9.38) and (7.9.39) for k£ —1,
the lowest expected price Eg, (p2) for firm 2 under such a belief 3, is

(0.5) - (% _ % ) (%)(k—5)/2 . 1-6;75) +(0.5) - 28 = # _ 1, (%)(k—5)/2 ) 1-2;75’
whereas the highest expected price Eg, (p2) for firm 2 under such a belief 3, is

(05) . (% + % . (%)(kf5)/2 . 21.775) + (05) .98 = # + i . (%)(k75)/2 . 21%75‘
Hence, the expected price Eg, (p2) under such a belief 3; lies in the interval

EEHOLAE 8 SN ) (7.1

Moreover, the lowest expected price in this interval is at least

142 1 1.875
7 —1 7 >16

By (7.9.9), the optimal product-price pair for firm 1 under such a belief 3, is (n,5 + %Eﬁl(pg)).
As Eg, (ps) lies in the interval given by (7.9.43), the optimal price 5 + 3 Eg, (pz) lies in the interval

5+ % . (% — % . (%)(7%5)/2 . @)7 54 1. (&72 + % . (%)(1675)/2 . @)]
— [m _ 1, (%)(k%)/? 1875 106 4 1. (%)(kﬂ%)/? . L775]
( 3

8 )
- [ (I 1, e (0 )

Hence, the set of product-price pairs for firm 1 that are optimal at the view v} for such a belief 3, is

PE@f) = {(n,p1) | pr € [0 — ()22 180, 18 4 (1) (/2 2L

which matches (7.9.36) and (7.9.37).
We now turn to firm 2. By definition, firm 2 is required to hold a belief 35 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view v}, and (ii) for the view v} only assigns positive
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probability to choice-view pairs (c1,v}) where ¢; € PF~1(v}). By (7.9.36) and (7.9.37) for k — 1 we
conclude that 5 only assigns positive probability to pairs (n,p;) with p; € [l’ffl, hlffl].
Together with (i) and (ii) we see that

By(s) =0, By(n) =1, and Eg, (p1|n) € I}, h5 1. (7.9.44)

If we substitute this into (7.9.14), we see that the optimal price p2(f5) under this belief 3, is

p2(B2) =5 + 3Es,(p1|n). (7.9.45)
In view of (7.9.44) and (7.9.45), the lowest price p2(f5) that is optimal for such a belief is
s+bET = 5} (-] eI o)
= 8 _ 1, (1)(k—5)/2 . 6.625
7 8 \8 7

_ 88 _ (1)(1@—3)/2. 6.625
7 8 7

whereas the highest price p2(f5) that is optimal for such a belief is
5+ % . hlle—l = 54+ % . (L;G + % . (%)(k—S)/Q . 18%75)
_ 88 , 1 (1\(k—5)/2  18.75
= Py (ptYn e
_ 88 1\(k—3)/2  18.75
= By (ndr. 18n,

Hence, the set of prices for firm 2 that is optimal for such a belief 5, at the view vj is

PE(ug) = [ — ()72 862, 88 4 (fyon/2. 187)

1
8
which matches (7.9.38) and (7.9.39).

By induction on k£ we thus conclude that (7.9.36), (7.9.37), (7.9.38) and (7.9.39) hold for every
k > 3. In particular, when k tends to infinity, the sets Pf(v7) and P§(v}) collapse to the single choices

pi(v]) = (n, 1) ~ (n, 15.14) and p3(vy) = 2 ~ 12.57.

Hence, under common belief in rationality with the view v}’ we expect firm 1 to offer the new product
at the price 15.14. Moreover, under common belief in rationality with the view vy we expect firm 2 to
choose the price 12.57.

The asymmetry in prices can be explained as follows: Firm 1, with the view v}, believes that with
probability 0.5 firm 2 is not aware of the new product. In this case, firm 2 would believe to compete
with the more different standard good, which leads firm 2 to choose the higher price 28. As firm 1
believes this to happen with probability 0.5, firm 1 will also choose a relatively high price itself.

Firm 2, in contrast, believes with the view v that firm 1 will definitely have the view v}, and
hence firm 2 will believe that firm 1 will definitely offer the new good. As the new good is more similar
to firm 2’s good than the standard good, firm 2 will choose a relatively low price.

7.9.2 Competition in Quantities

Consider a Cournot competition model between two firms as discussed in Section 3.7.2. Assume that
both firms have a constant marginal cost equal to 5. Moreover, if both firms choose the quantities ¢;
and 2, the market price for the good is given by

p=20—q —qo.
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Under the standard production technology, both firms are able to produce at most 4 units of the good.
However, there is a new production technology which has only recently been developed, and which
would allow the firm to produce up to 10 units of the good, at the same marginal costs as before.

Firm 1 has recently incorporated the new production technology, but is uncertain whether firm
2 is aware of this new technology or not. What quantities can firm 1 then rationally choose under
common belief in rationality?

To answer this question we first model the scenario above as a game with unawareness. The
possible views for firm 1 are v} and vj, where v} denotes its actual view by which it is aware of the
new technology, whereas v{ denotes the smaller view where it is not aware of the new technology.
Similarly, we can define the possible views vy and v3 for firm 2.

Under the view v} the set of choices for firm 1 is C;(v]') = [0,10], because it can produce any
amount between 0 and 10. Moreover, the set of states under this view is Ca(v]) = [0, 10], as firm 1 is
allowed to believe that firm 2 is aware of the new production technology, and that firm 2 is actually
using this new technology.

Under the view v firm 1’s set of choices is Cy(v]) = [0,4], since firm 1 can only produce up to
4 units with the standard technology. Moreover, the set of states is Ca(v]) = [0,4], as firm 1 must
believe that firm 2 is only aware of the standard technology, which allows firm 2 to produce at most
4 units. Similarly for the view of firm 2.

To see which amounts firm 1 can rationally produce under common belief in rationality we use the
extension of iterated strict dominance with unawareness to games with infinitely many choices and
states, like we did in the previous subsection. As before, we will use the bottom-up version of this
procedure. We will thus start with the views of rank 1.

Views of rank 1. Consider the views of rank 1, which are v{ and v3. This gives rise to a Cournot
competition model in Section 3.7.2 where a = 20, ¢ = 5, e = 1 and M = 4. Note, however, that the
condition M € [%¢, 4=°] is violated since M < %°. Hence, we cannot use the analysis in Section 3.7.2
to obtain the quantities that both firms can rationally choose under common belief in rationality. We

have to apply the procedure round by round to this scenario.

Round 1. Consider firm 1 with view v;. Then, firm 1 must believe that firm 2’s view is v§. By (3.7.11)
it follows that firm 1’s profit under the belief 8, about firm 2’s quantity is

mi(q,B1) =q-(a—c—e- (@1 + Ep (q2) = q1- (15— (1 + Ep, (q2))-
The derivative of this profit with respect to ¢ is

9m — 15— 2q1 — B, (g2) > 0

since q1 < 4 and Eg, (g2) < 4. That is, firm 1’s profit is always increasing in its output ¢;. The unique
optimal quantity is therefore the maximal possible quantity, which is g1 = 4. Thus, the set of quantities
for firm 1 that survive Round 1 at the view v{ is

Q1(vi) = {4}.
Similarly,
Q3(v3) = {4}.
Then, the procedure at the views of rank 1 terminates. Thus, under common belief in rationality,
both firms will rationally choose the quantity

g1 (vf) = g3 (v3) = 4 (7.9.46)
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at the views v] and v3, respectively.
Views of rank 2. Consider next the views of rank 2, which are v and v3.

Round 1. Focus on firm 1 with view v]". Suppose that firm 1 holds a belief 5, about firm 2’s quantity.
As firm 1 may believe that firm 2 holds the view vy, the belief 8; may attach positive probability to
all possible prices in [0, 10], and hence Eg (p2) € [0,10]. By (3.7.12) we know that firm 1’s optimal
quantity under this belief 3, is

a1(B,) = %5 — $Eg, (p2) = 7.5 — 2 E5, (p2). (7.9.47)

As Eg (p2) € [0,10], the quantities that are optimal for some belief 3; are given by
Qi(v}) =[7.5—4-10, 7.5 — % - 0] = [2.5, 7.5]. (7.9.48)

Similarly for firm 2.

Round 2. By definition, the set of states S7(v7) for firm 1 at the view v7 are those quantities that
survived so far for firm 2 at the views which are contained in v, which are the views v5 and v3. By
(7.9.46) and (7.9.48) we know that quantity 4 survived at the view v3, whereas all quantities in [2.5,
7.5] survived Round 1 at the view vj. Hence,

S2(v) = [2.5, 7.5].

Since firm 1 is required to hold a belief 3; on S7(v}'), we know that Eg, (p2) € [2.5, 7.5]. By (7.9.47),
the set of quantities that are optimal for firm 1 for such a belief 3; is given by

Qi) =[75—1%-(7.5), 7.5— % (2.5)] = [3.75, 6.25]. (7.9.49)

Similarly for firm 2.

Round 3. By definition, the set of states S5 (v}) for firm 1 at the view v} are those quantities that
survived so far for firm 2 at the views v and vy. By (7.9.46) and (7.9.49) we know that quantity 4
survived at the view v3, whereas all quantities in [3.75, 6.25] survived Round 2 at the view v%. Hence,

S3(v}) = [3.75, 6.25).

Since firm 1 is required to hold a belief 3; on S3(v}'), we know that Eg, (p2) € [3.75, 6.25]. By (7.9.47),
the set of quantities that are optimal for firm 1 for such a belief 3, is given by

Q) = [7.5— 1 (6.25), 7.5 — 1. (3.75)] = [4.375, 5.625]. (7.9.50)

Similarly for firm 2.

Round 4. By definition, the set of states S7(v}) for firm 1 at the view o7 are those quantities that
survived so far for firm 2 at the views v§ and v§. By (7.9.46) and (7.9.50) we know that quantity
4 survived at the view vj, whereas all quantities in [4.375, 5.625] survived Round 3 at the view vf.
Hence,

St} = {4} U [4.375, 5.625].

Since firm 1 is required to hold a belief 8; on S}(v]), we know that Eg (p2) € [4, 5.625]. Indeed, every
expected price between 4 and 4.375 can be obtained by a belief 5; that assigns positive probability
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to the quantities 4 and 4.375. By (7.9.47), the set of quantities that are optimal for firm 1 for such a
belief 3, is given by

Qi) =[7.5— 1 - (5.625), 7.5 — 1 - 4] = [4.6875, 5.5]. (7.9.51)

Similarly for firm 2.

Round 5. By definition, the set of states S?(v]) for firm 1 at the view v} are those quantities that
survived so far for firm 2 at the views v3 and vf. By (7.9.46) and (7.9.51) we know that quantity 4
survived at the view v3, whereas all quantities in [4.6875, 5.5] survived Round 4 at the view v3. Hence,

S2(v) = {4} U [4.6875, 5.5].

Since firm 1 is required to hold a belief 8; on S7(v]'), we know that Eg (p2) € [4, 5.5]. Indeed, every
expected price between 4 and 4.6875 can be obtained by a belief 5, that assigns positive probability
to the quantities 4 and 4.6875. By (7.9.47), the set of quantities that are optimal for firm 1 for such a
belief 3, is given by

QW) =[7.5—2%-(5.5), 7.5— % -4] = [4.75, 5.5]. (7.9.52)

Similarly for firm 2.

Round 6. By definition, the set of states S¢(v]) for firm 1 at the view v} are those quantities that
survived so far for firm 2 at the views v§ and v5. By (7.9.46) and (7.9.52) we know that quantity 4
survived at the view v3, whereas all quantities in [4.75, 5.5] survived Round 5 at the view v3. Hence,

SS(vh) = {4} U [4.75,5.5].

Since firm 1 is required to hold a belief 8, on S7(v"), we know that Eg (p2) € [4, 5.5]. Indeed, every
expected price between 4 and 4.75 can be obtained by a belief 3, that assigns positive probability to
the quantities 4 and 4.75. By (7.9.47), the set of quantities that are optimal for firm 1 for such a belief
B, is given by

QS(vP) =[7.5 — % - (5.5), 7.5 — % - 4] = [4.75, 5.5]. (7.9.53)

Similarly for firm 2.

As Q8(v]) = Q3 (v}) and QS(vY) = Q3(vY), we conclude that the procedure for the views of rank 2
terminates here. As such, the sets of quantities that firms 1 and 2 can rationally choose under common
belief in rationality at the views v]" and vy are given by

QF(v7) = Q(vD) = [4.75, 5.5]. (7.9.54)

We finally turn to a scenario with fized beliefs on views. Assume that the fixed belief combination
p = (p1,p2) on views is given by Figure 7.9.2. Hence, if a firm is aware of the new production
technology, then it believes that with probability 0.5 the other firm will also be aware of it, and with
probability 0.5 the other firm is not aware of it. Suppose that firm 1 is aware of the new technology.
What quantities can it then rationally choose under common belief in rationality and common belief
in the fixed belief combination p about views?

We will use the extension of iterated strict dominance for unawareness with fixed beliefs on views
to games with infinitely many choices and states. As for the case of price competition, we will use the
bottom-up version of this procedure. Hence, we will start with the views of rank 1.
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Firm 1 Firm 2 Firm 1
0.5 0.5
v} vy vy
0.5 0.5
vf v3 vy

Figure 7.9.2 Fixed beliefs about views for quantity competition

Views of rank 1. Consider the views of rank 1, which are v{ and v3. For these views the analysis
is exactly the same as for the case without fixed beliefs about views. Hence, the only quantities that
survive the procedure at these views are

g (v]) = g3(v3) = 4. (7.9.55)

Views of rank 2. Consider next the views of rank 2, which are v{ and vj.

Round 1. This round is exactly the same as for the case without fixed beliefs about views, and leads

to the set of quantities
Qi(v) = [2.5, 7.5] (7.9.56)

for firm 1. Similarly for firm 2.

Round 2. Firm 1 is required to hold a belief 3; about firm 2’s quantity-view pairs that (i) assigns
probability 0.5 to the views vy and v3, (ii) for the view vi only assigns positive probability to quantity-
view pairs (q2,v%) where g € Q3(v%), and (iii) for the view v§ only assigns positive probability to
the quantity-view pair (4,v5). In view of (7.9.56), the belief 8, will then assign probability 0.5 to the
quantity 4, and probability 0.5 to some quantity in [2.5, 7.5]. Hence, the expected quantity Eg, (g2)
will be somewhere in the interval

[3-44 %25, -4+ 375 =[3.25, 5.75].

By (7.9.47) we know that the optimal quantity ¢1(3;) for such a belief is given by 7.5 — % - Eg (q2).
As Eg (q2) € [3.25, 5.75], the optimal quantity for such a belief will be in the interval

[7.5—1.(5.75), 7.5 — 1 - (3.25)] = [4.625, 5.875].
Hence, the set of quantities that survive Round 2 for firm 1 at view o7 is
Q3(v}) = [4.625, 5.875]. (7.9.57)

Similarly for firm 2.

By continuing in this fashion we can compute the sets Q% (v}) and Q5 (v%) for all rounds k > 3 as
well. It can be shown, for every round k£ > 2, that

QY (v]) = Q5(v5) = [I*, h*,
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where

(el o)
and

"= {Zgig 3“% iifflzifsivdeg ' (7.9.59)

We prove this by induction on k, for k > 2.

If k = 2, then we know from (7.9.57) that [? = 4.625 and h? = 5.875, which matches (7.9.58) and
(7.9.59).

Take now some k > 3, and assume that (7.9.58) and (7.9.59) hold for k£ — 1. We distinguish two
cases: (1) k is odd, and (2) k is even.

Case 1. Suppose that k is odd. Firm 1 is required to hold a belief 8, about firm 2’s quantity-view
pairs that (i) assigns probability 0.5 to the views v} and v2, (ii) for the view v% only assigns positive
probability to quantity-view pairs (g2, vy) where ¢a € Q L %), and (iii) for the view v§ only assigns
positive probability to the quantity-view pair (4,v5). In view of (7.9.58) and (7.9.59), the belief /3,
will then assign probability 0.5 to the quantity 4, and probability 0.5 to some quantity in [lk_l, hk_l].
Hence, the expected quantity g, (g2) will be somewhere in the interval

[%.44_1.[76*1 L.y l.hk’*l]
[5-4+3-(52 (%) (23), 5445 (524 (P2 (2.7)]
= [46-3-(H)F2.(23), 46+1 ()2 (2.7) (7.9.60)

By (7.9.47) we know that the optimal quantity qi(53;) for such a belief is given by 7.5 — 3 - E3 (q2).
As Eg (go) is in the interval given by (7.9.60), the lowest quantity q1(/3;) that is optimal for such a
belief 3, is

a(f) = 75—z (46+5- (D (27)
= 52-L. (2.2 =52-(HF.@n =1~

(2.3))
= 52+ 1. (L2 23) =524 (H)F1.(2.3) = nt.
Hence, the set of quantities that survives Round £ for firm 1 at view v is
QY (vi) = [I*, ]
as given by (7.9.58) and (7.9.59). Similarly for firm 2.

Case 2. Suppose that £ is even. Firm 1 is required to hold a belief 5; about firm 2’s quantity-view
pairs that (i) assigns probability 0.5 to the views v} and ’UQ, (ii) for the view v% only assigns positive
probability to quantity-view pairs (g2, vy) where ga € Q L %), and (iii) for the view v§ only assigns
positive probability to the quantity-view pair (4,v5). In view of (7.9.58) and (7.9.59), the belief /3,
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will then assign probability 0.5 to the quantity 4, and probability 0.5 to some quantity in [lk_l, hk_l].
Hence, the expected quantity Eg, (g2) will be somewhere in the interval

[%.4+1.lk71 L.y L.hkfl]
[3-4+3 (5.2 (i) H(2.7), o445 (524 (D (23))]
= [46-3-(HF2. 27, 46+31-(3)F2.(23)). (7.9.61)

By (7.9.47) we know that the optimal quantity ¢;(5;) for such a belief is given by 7.5 — % - Eg, (q2).
As Eg (qe) is in the interval given by (7.9.61), the lowest quantity q1(/5;) that is optimal for such a
belief 3, is

ql(,é’l) = 75—

(46 + 3 ()2 (2.3)
= 52— 3

: )
()2 (23)=52—(HF(23) =1~

Similarly, the highest quantity ¢1(8;) that is optimal for such a belief 3; is

a(B) = 753 (46—5- ()" (27)
= 52+ 5 (PN =52+ (27 =h"

Hence, the set of quantities that survive Round k for firm 1 at view v} is
QYY) = [I, ¥
as given by (7.9.58) and (7.9.59). Similarly for firm 2.

By induction on k, we conclude that (7.9.58) and (7.9.59) hold for every k& > 2. In particular, when
k tends to infinity, the sets of quantities Q’f(v?) and Qé(v?) collapse to the single quantity

a1 (v7) = g3(vy) = 5.2.

Hence, under common belief in rationality and common belief in the fixed belief combination p on
views, we expect both firms to choose the quantity 5.2 at the views v} and vy, respectively.

Compare this to the situation where both firms are aware of the new technology and both firms
would believe, with probability 1, that the other firm is also aware of the new technology. In this case,
we would be back to a standard Cournot competition model in Section 3.7.2 where a = 20, ¢ = 5,
e =1and M = 10. Since M € [%°, “=°], we know by (3.7.14) that under common belief in rationality,
both firms would rationally choose the quantity

Above we have seen that, if both firms believe there is a 50% chance that the other firm is unaware
of the new technology, then both firms would opt for a higher quantity, which is 5.2. The intuition is
clear: In the latter case, the firm believes there is a 50% chance that the other firm will choose the
low quantity 4 because it is only aware of the standard technology. The firm that is aware of the new
technology will then respond by choosing a quantity higher than 5.



Chapter 8

Common Belief in Rationality in Psychological
Games

8.8 Economic Applications

In this section we take as a starting point the Bertrand competition model and the Cournot competition
model from Section 3.7. In both models we assume that firm ¢ receives a mental bonus if it chooses
a price or quantity that is more cooperative than the price or quantity that firm j expects firm i to
choose. This turns both scenarios into a psychological game, as the utility for firm ¢ depends on what
firm ¢ believes that firm j believes that ¢ will do. For both scenarios we investigate which prices or
quantities the firms can rationally choose under common belief in rationality.

8.8.1 Competition in Prices

Consider the Bertrand competition model from Section 3.7.1. As we did for one of the views in Section
7.9.1, we choose the parameters a =24, c=4,d =1, e =1 and M = 40. By following the arguments
in Section 3.7.1 we then know that firm 1’s profit is given by

m1(p1,p2) = (p1 — 4) - (24 — p1 + p2) (8.8.1)

if the firms choose the prices p; and ps.

Suppose now that firm 1 not only cares about its profit, but that, in addition, it receives a mental
bonus if it chooses a price which is higher — and hence more cooperative — than the price that firm 2
expects firm 1 to choose. More precisely, if firm 1 chooses a price p1, and believes that firm 2 expects
firm 1 to choose a price of pj with p; > p/, then firm 1 receives the mental bonus

£ (o1 —ph)% (8.8.2)

Here, f is a parameter that measures how strongly firm 1 wishes to exceed firm 2’s expectations by
the price it chooses. We choose f such that f < 0.15.

117
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Assume that firm 1’s utility is the sum of its profit and (possibly) the mental bonus from exceeding
firm 2’s expectations. Then, in view of (8.8.1) and (8.8.2), firm 1’s utility function is given by

. )2 s > /

o () = (1 = 0) - 2= pr-+) + { 0 i<y

where p] is the price that firm 1 believes that firm 2 believes that firm 1 will choose. Similarly for
firm 2. We thus obtain a psychological game where the choices for firm 1 are the prices pi, the states
are the pairs (p2,p}), and similarly for firm 2.

What prices can both firms rationally choose under common belief in rationality? To answer that
question we apply the states-first procedure from Section 8.5 where we first perform the iterated
elimination of choices and states and subsequently apply the iterated elimination of choices and
second-order expectations.

Let us start with the iterated elimination of choices and states. Note that the psychological game
at hand is infinite, because we have infinitely many choices and states for both firms. However, the
iterated elimination of choices and states can be extended to such infinite psychological games as
follows: In round 1 we start by eliminating, for every decision problem, those choices that are not
optimal for any second-order expectation. At the beginning of round 2 we eliminate, for every decision
problem, all states that contain a choice that has already been eliminated in round 1. Within the
reduced decision problem so obtained, we then eliminate all choices that are not optimal for any
second-order expectation within the reduced decision problem. For further rounds we procede in a
similar fashion. Let us now apply this iterated elimination of choices and states to our model above.

Round 1. Focus on firm 1. Which prices p; are optimal for some second-order expectation e; and
which are not? Consider a second-order expectation e; which assigns positive probability to finitely
many states (p2,p}). By Ee, (p2) we denote the expected price for firm 2 under e, whereas e;(p))
denotes the probability that e; assigns to firm 1’s price p}. By following the steps in Section 3.7.1
it can then be shown, based on (8.8.3), that the expected utility for firm 1 if it chooses the price py
under the second-order expectation e; is given by

ur(pi,er) = (p1—4) - (24 —p1+ Ee, (p2)) + [ S ) (- ph)?
Py <p1:e1(p})>0

As a function of p;, the expected utility uj(p1, e1) achieves its maximum at the unique point where

the derivative %}1751) is equal to 0. It may be verified that

PulPre) — 98 — 9py + Eey(p2) +2f - Y. ea(ph) - (o1 — )
pi<p1:e1(p})>0

Oui (p1,e1)

opr 0 precisely when

Hence,
pr=14+3E,(p2)+f- Y el (—1) (8.8.4)
Py <pi:e1(p})>0

Let the function on the right-hand side of (8.8.4) be denoted by g(p1,e1). Hence, the optimal price
pi(e1) under the second-order expectation e; is the unique price p; for which p; = g(p1,e1).

Note that the function g(pi,e;) is increasing in p;. Graphically, the unique price pi(e;) with
pi(er) = g(pi(e1),e1) is the intersection point between the 45 degree line and the increasing curve
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of g(p1,e1) in Figure 8.8.1. Suppose now that the second-order expectation starts to assign higher
probabilities to higher prices pj. Then, by (8.8.4), the curve of g(p1,e1) in Figure 8.8.1 will shift
downwards, which means that the optimal price p;(e1) will become smaller. If, on the other hand,
the second-order expectation starts to assign higher probabilities to lower prices p}, then the curve
of g(p1,e1) in Figure 8.8.1 will shift upwards, which means that the optimal price p;(e1) will become
larger.

In view of (8.8.4), the lowest price p; that is optimal for a second-order expectation is thus obtained
when e assigns probability 1 to the lowest possible price ps = 0 for firm 2, and to the highest possible
price pj = 40 for firm 1. In that case, E., (p2) = 0 and

Y el (p—ph) =0
p) <p1:e1(p})>0

which means that
p1 = 14. (8.8.5)

At the same time, the highest price p; that is optimal for a second-order expectation is thus obtained
when e assigns probability 1 to the highest possible price p2 = 40 for firm 2, and to the lowest possible
price pj = 0 for firm 1. In that case, E., (p2) = 40 and

> alh) i —p)=p—0=p,
p)<p1:e1(p})>0
which implies that
P1 :14+%40+fp1
Hence,
p= (8.8.6)
Note that % < 40 as we assume that f < 0.15.

On the basis of (8.8.5) and (8.8.6) we conclude that the set P[ of prices that is optimal for firm 1
for some second-order expectation is given by

P{ = [14, $%4]. (8.8.7)
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Similarly for firm 2.

Round 2. We focus on firm 1. In firm 1’s decision problem we eliminate all states (pg,p}) where
either po or p| did not survive round 1. Hence, we concentrate on those second-order expectations
e1 which only assign positive probability to pairs (p2,p)) where py € P21 and pj € Pll. Let this set of
second-order expectations be F?.

By (8.8.4) and our arguments in round 1 we conclude that the lowest possible price p; that is
optimal for some second-order expectation e; in E? is obtained by letting e; assign probability 1 to
the lowest possible price py € Py, which is po = 14, and to the highest possible price p} € P}, which is
Py = %. Hence, we have that E, (p2) = 14. By construction, every price p; that is optimal for this

second-order expectation e; € E? must be in P!, which means that p; < %. Hence,

> al) (m—-p)=0

P} <p1:e1(p})>0

for every price p; € P} = [14, %] In view of (8.8.4) we conclude that
p=14+1-14=21 (8.8.8)

in this case.
Moreover, the highest possible price p; that is optimal for some second-order expectation e; in E?
is obtained by letting e; assign probability 1 to the highest possible price ps € Py, which is py = %,

and to the lowest possible price p € Pll, which is pj = 14. Hence, we have that Ee, (p2) = % and

Yo el (p-ph)=p - 14

Py <p1:e1(p})>0

for every price p; € P} = [14, %] In view of (8.8.4) we conclude that
pr=14+5 25+ [ (p1—14)

which yields

p1 =14+ ‘(1i§c)2 (8.8.9)

in this case. On the basis of (8.8.8) and (8.8.9) we see that the set of prices for firm 1 that survive

round 2 is given by

P2 =1[21,14 + ﬁ]. (8.8.10)

Similarly for firm 2.

By continuing in this fashion we can derive the sets of prices Pf and P} for every round k > 3 as

well. We will show, by induction on k, that
P =Py =[28— %28 28+ 55 - (g2 pyr — 56)] (8.8.11)

for every k > 1.

For k =1 we see that (8.8.11) matches (8.8.7), and hence (8.8.11) holds for k = 1.

Take now some k > 2, and assume that (8.8.11) holds for & — 1. Concentrate on firm 1. In round &
we restrict to first-order expectations e; which assign positive probability only to pairs (pe, pj) where
Py € PQk_1 and p) € Plk_l. Let this set of first-order expectations be E{“
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By (8.8.4) and our arguments in round 1 we conclude that the lowest possible price p; that is
optimal for some second-order expectation e; in E¥ is obtained by letting e; assign probability 1 to
the lowest possible price py € 132]‘;_17 which is 28 — 21%1 -28, and to the highest possible price p] € Plk_l7
which is

P =28+ gt (= her — 56)-

Hence, we have that F., (p2) = 28 — %%1 - 28 and

> al)-(p-p)=0

Py <p1:e1(p})>0
for every price p; € Plkfl. In view of (8.8.4) we conclude that
pr=14+4 5 (28 — 55 - 28) =28 — 57 - 28 (8.8.12)

in this case.
Moreover, the highest possible price p; that is optimal for some second-order expectation e; in Ef
is obtained by letting e; assign probability 1 to the highest possible price po € PQk*l, which is

p2 =28+ g1 - (et — 56),

and to the lowest possible price p} € Plk_l, which is p} = 28 — 21%1 - 28. Hence, we have that
Ee,(p2) = 28 + g1 - (r=fye=r — 56)

and
> elh) - (p—ph) =p1— (28— 75 - 28)
P <pi:e1(p})>0

for every price p; € PF~1. In view of (8.8.4) we conclude that

P L (284 e (e —56) + - (28— e 28))
which yields

pL =28+ 5 - (% — 56) (8.8.13)

in this case. On the basis of (8.8.12) and (8.8.13) we see that the set of prices for firm 1 that survive

round k is given by
P =28 — % - 28, 28+2%-($—56)},

which matches (8.8.11). Similarly for firm 2.
By induction on k we thus conclude that (8.8.11) holds for every k.

Recall the assumption that f < 0.15. This guarantees that 2(1 — f) > 1.7, and hence 2% . (123)1@

tends to 0 when k tends to infinity. As such, the sets Plk and PQI“ collapse to the single price

p* =28 (8.8.14)

when k tends to infinity. Hence, we see that the iterated elimination of choices and states already
leads to a unique price for both firms, which is p* = 28. As such, the states-first procedure will lead
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to that same unique price. Hence, under common belief in rationality both firms can only rationally
choose the price 28. In particular, both firms will not be able to exceed the other firm’s expectations
under common belief in rationality, as firm 1 believes that firm 2 believes that firm 1 will choose the
price 28, and similarly for firm 2.

From (8.8.11) we can conclude, however, that the highest price which survives round £ of the
iterated elimination of choices and states becomes larger as f increases. This makes intuitive sense,
since a larger f means that firm 1 has a stronger preference for choosing a price that exceeds firm 2’s
expectation, which pushes the highest price in Plk upwards.

8.8.2 Competition in Quantities

Consider the Cournot competition model from Section 3.7.2. Like we did for one of the views in
Section 7.9.2, we choose the parameters a = 20, ¢ = 5, e = 1 and M = 10. Following (3.7.10), the
profit for firm 1 is then equal to

(g, @) =g - (a—c—e- (1 + @) =q - (15—q — q), (8.8.15)

where ¢; and ¢o are the quantities chosen by the two firms. Similarly for firm 2.

Assume now that firm 1 also has a preference for choosing a quantity that is lower — and hence
more cooperative — than the quantity that firm 1 believes that firm 2 expects firm 1 to choose. More
concretely, if firm 1 chooses a quantity ¢; and believes that firm 2 believes that firm 1 chooses a
quantity ¢} that is higher than ¢, then firm 1 receives a mental bonus equal to

f(d—a) (8.8.16)

Here, f is a parameter which measures how strongly firm 1 wishes to exceed firm 2’s expectations.
We assume that f < 0.25.

Suppose that the utility for firm 1 is the sum of its profit and (possibly) the mental bonus above.
Then, in view of (8.8.15) and (8.8.16), firm 1’s utility is equal to

. !/ 2 : / >
f (QI ql) ) if q = q1 (8817)

Ul(Qla(CI%q/l))—QI'<15_QI_Q2)+{ 0, ifq <q
’ 1

where ¢} is the quantity that firm 1 believes that firm 2 believes that firm 1 will choose. Similarly for
firm 2.

We hereby have modelled this scenario as a psychological game, where the choices for firm 1 are
the possible quantities g1, and the states for firm 1 are the possible pairs (g2, ¢}), and similarly for
firm 2.

The question we wish to answer is: What quantities can both firms rationally choose under common
in rationality? To this purpose we will use the states-first procedure adapted to infinite psychological
games, as described in the previous subsection. Hence, we will start with the iterated elimination
of choices and states, and subsequently apply the iterated elimination of choices and second-order
expectations.

Let us first apply the iterated elimination of choices and states.

Round 1. Consider firm 1. In round 1 we must identify all quantities that are optimal for some second-
order expectation e, and eliminate all quantities that are not. Take some second-order expectation e;
which assigns positive probability to finitely many pairs (gz, q]). Let Ee, (g2) be the expected quantity
for firm 2 under e;, and let e1(g]) be the probability that e; assigns to firm 1’s quantity ¢j. Similarly
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to Sections 3.7.2 and 8.8.1, and building on (8.8.17), it may be verified that the expected utility for
firm 1 from choosing the quantity ¢; under the second-order expectation ej is given by

ui(qr,e1) = q1 - (156 — q1 — Ee,(q2)) + Z ei(d) - - (a1 — @)

4, >q1:e1(q})>0

As a function of g1, the expected utility u;(qi,e1) achieves the unique maximum precisely where
Ou1(g1,e1)
oq

0
Qulinel) 15— 2g) — Be,(q2) =2+ Y. eild)) - (al — @)
¢1>q1:e1(q1)>0

the derivative is equal to 0. It may be verified that

By putting this derivative equal to 0 we find that

G =75~ 5Ee,(q2) = [ - ei(qy) - (dh — q)- (8.8.18)
q1>q1:e1(q})>0

Hence, the only quantity ¢;(e1) that is optimal under the second-order expectation e; is the unique
quantity ¢; that satisfies (8.8.18).

Let us denote the right-hand side in (8.8.18) by ¢(¢1,e1). Hence, the optimal quantity ¢i(e1) is
the unique quantity ¢; where ¢ = g(q1,e1). Note that g(qi,e1) is increasing in ¢;. Graphically, the
optimal quantity ¢1(e1) has been depicted in Figure 8.8.2 as the unique intersection point between the
45 degree line and the increasing curve of g(qi,e1).

Suppose now that in the second-order expectation e; we start assigning higher probabilities to
higher quantities ¢j. Then, we conclude from (8.8.18) that the curve of g(q1,e1) will shift downwards,
and hence we conclude on the basis of Figure 8.8.2 that the optimal quantity gi(e;) will decrease
as well. Similarly, if e; starts to assign higher probabilities to lower quantities ¢}, then the curve of
9(q1, e1) will shift upwards, and therefore the optimal quantity g;(e;) will increase.

In view of (8.8.18), the lowest quantity g;(e;) that is optimal for a second-order expectation e; is
obtained if e; assigns probability 1 to the highest possible quantity g2, which is ¢go = 10, and e; assigns
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probability 1 to the highest possible ¢}, which is ¢j = 10. Then,
>, ala) (@ —-a)=10-aq.
q1>q1:e1(q))>0

By (8.8.18) we thus see that
@ =75-%-10—f (10— q)

which yields

q =220 (8.8.19)

Note that ¢; > 0 since we assume that f < 0.25.

Similarly, the highest quantity ¢;(e;) that is optimal for a second-order expectation e; is obtained
if e; assigns probability 1 to the lowest possible quantity ¢o, which is go = 0, and ey assigns probability
1 to the lowest possible ¢}, which is ¢; = 0. Then,

>, ala) (@ —a)=0

41 >q1:e1(q})>0

By (8.8.18) we thus see that
¢ =T75—%-0—f-0="75. (8.8.20)

On the basis of (8.8.19) and (8.8.20) we conclude that the set Q1 of quantities surviving the first
round is

Qi = (2=, 7). (8.8.21)
Similarly for firm 2.

Round 2. Consider firm 1. At the beginning of round 2 we eliminate all states (g2, ¢}) where either
g2 or ¢; did not survive round 1. Hence, we concentrate on second-order expectations e; that only
assign positive probability to states (g2, ¢}) where g2 € Q% and ¢} € Q%. Let us denote by E% the set
of such second-order expectations.

Which quantities q; can be optimal for a second-order expectation e; in E2? Similarly to round
1, the smallest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that assigns
probability 1 to the highest possible quantity go in Q3, which is g = 7.5, and that assigns probability 1
to the highest possible quantity ¢} in @31, which is ¢} = 7.5. By (8.8.18), and the fact that the optimal
quantity g; must be in Q1, the optimal quantity ¢; must satisfy

G =75-3% (75— f (75— q)

which yields

q = 2B (8.8.22)
Similarly, the highest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that

assigns probability 1 to the lowest possible quantity g2 in Q%, which is ¢ = 2'5111]00f , and that assigns

probability 1 to the lowest possible quantity ¢} in @1, which is ¢} = %. By (8.8.18), and the fact

that the optimal quantity q; must be in Q}, the optimal quantity q; must satisfy

=751 22 f

which yields
= 6-2511(?0-5”' (8.8.23)
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On the basis of (8.8.22) and (8.8.23), we see that the set Q% of quantities that survive round 2 is
given by

Q} = 2GR SBC]) (8.8.24)

Similarly for firm 2.

If we continue in this manner we can derive the sets Q} and Q% for every round k > 3. We will
show, by induction on k, that

e o BA=®)FEEDT), 51+ ()T LT, if ks odd
Q“J%_{ b QDD 50+ QIO wrkiseen O

for every k > 1.
For k = 1 the expression for Q¥ in (8.8.25) matches (8.8.21), and hence (8.8.25) holds for k = 1.
Suppose now that k > 2, and that (8.8.25) holds for £ — 1. We distinguish two cases: (1) k is even,
and (2) k is odd.

Case 1. Suppose that k is even. Consider firm 1. At the beginning of round k we eliminate all
states (g2, ¢}) where either ¢ or ¢ did not survive the odd round k — 1. Hence, we concentrate on
second-order expectations e; that only assign positive probability to states (go,q]) where g2 € Qg_l
and ¢} € Q’f_l. Let us denote by Ef the set of such second-order expectations.

Which quantities ¢; can be optimal for a second-order expectation e; in E¥? Similarly to above,
the smallest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that assigns
probability 1 to the highest possible quantity g2 in ngl, which is

k—2

n=5-(1+G):(F)),

and that assigns probability 1 to the highest possible quantity ¢} in Qlf ~1 which is
Eo1/24+f\ k=2
g =5-1+@):HEHT).

By (8.8.18), and the fact that the optimal quantity g; must be in Qlffl, the optimal quantity g1 must
satisfy

k
2

G =75-15(1+(@)
Solving for ¢ yields

(T~ 1600+ DD - )

k. 1/2 k
g =5 (1—(3) (7{:}]0)2), (8.8.26)
Similarly, the highest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that
assigns probability 1 to the lowest possible quantity g2 in ngl, which is

k=2 1/2 k
@=51-(7T HEDH,
and that assigns probability 1 to the lowest possible quantity ¢} in Qlffl, which is
k=2 1/2 k
g=5-1-(3)F 4EH).

By (8.8.18), and the fact that the optimal quantity g; must be in Q’f_l, the optimal quantity g; must
satisfy

k— k
@=T5-55(1—(3) 7 ()2~ f-0
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which yields

@ =5 (1+ (33 (423, (8.8.27)

On the basis of (8.8.26) and (8.8.27), we see that the set Q} of quantities that survive round k is
given by

E
2

Qi =15-(1= QFCEDD, 5 L+ D)

which matches (8.8.25). Similarly for firm 2.
Case 2. Suppose now that k is odd. Consider firm 1. At the beginning of round k£ we eliminate all
states (g2, ¢}) where either ga or ¢j did not survive the even round k — 1. Hence, we concentrate on
second-order expectations e; that only assign positive probability to states (gz,q]) where g2 € ngl
and ¢) € Qlf_l. Let us denote by E{“ the set of such second-order expectations.

Which quantities g1 can be optimal for a second-order expectation e; in E{“? Similarly to above,

the smallest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that assigns
probability 1 to the highest possible quantity g2 in ngl, which is

1/2
e =5-(1+(3)7 (HEHT),
and that assigns probability 1 to the highest possible quantity ¢} in Qlffl, which is

G=5-(1+(1)7 (2.

By (8.8.18), and the fact that the optimal quantity ¢; must be in Qlffl, the optimal quantity ¢; must
satisfy

n=75-35-(1+})7 CEFHT)-f6-0+@) T HEHT) - a).
Solving for ¢; yields

k—1 k+1
@ =5 (1- (5T (25, (8.8.28)

Similarly, the highest quantity ¢; that is optimal for such an e; is obtained by choosing the e; that
assigns probability 1 to the lowest possible quantity ¢2 in Qg_l, which is

k=1 k=1
p=5-01-(37 #EHT),

and that assigns probability 1 to the lowest possible quantity ¢} in Qlf_l, which is
1/2
G=5-1- (7 ().

By (8.8.18), and the fact that the optimal quantity ¢; must be in Q’ffl, the optimal quantity g; must
satisfy

@=T5-45-(1-()F () -f-0
which yields

a=5-(1+(1)F (2. (8.8.29)

On the basis of (8.8.28) and (8.8.29), we see that the set Q} of quantities that survive round k is
given by

Q=06-1-0)"= HEHT), 5-a+H)F ),
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which matches (8.8.25). Similarly for firm 2.

By induction on k we conclude that (8.8.25) holds for every round k£ and for both firms. It may
be verified that 1{2_?0 < 1 since we assume that f < 0.25. Therefore, the sets Q’f and Q§ of quantities
that survive round k of the iterated elimination of choices and states collapse to the single quantity

¢ =5 (8.8.30)

when k tends to infinity. But then, the states-first procedure will only yield the quantity ¢* = 5 at the
end. As such, both firms can only rationally choose the quantity 5 under common belief in rationality.
In particular, it will be impossible for both firms to exceed the other firm’s expectation under common
belief in rationality.

But we can say a little more: Consider the set of quantities @} in (8.8.25) that survive round k

of the iterated elimination of choices and states. If f increases, then the number 1{2_?0 will increase

as well, and therefore the interval Q’f of quantities that survives round k becomes wider. This makes
intuitive sense, since a larger f means that firm 1 has a stronger preference for choosing a low quantity
that exceeds firm 2’s expectation. If firm 2 indeed believes that firm 1 chooses a low quantity, then
firm 2 will choose a high quantity in response. This will make the lower bound of Q¥ lower, and the
upper bound of Q’;H higher. As the same holds if we reverse the roles of firms 1 and 2, the intervals
Q% and Q5 become wider.
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Chapter 9

Correct and Symmetric Beliefs in Psychological
Games

9.5 Economic Applications

In this section we reconsider the Bertrand competition model and Cournot competition model from
Sections 8.8.1 and 8.8.2. For both models we investigate which prices or quantities the firms can
rationally choose under common belief in rationality with a simple belief hierarchy, a symmetric belief
hierarchy, and a symmetric belief hierarchy using one theory per choice.

9.5.1 Competition in Prices

Let us return to the Bertrand competition model from Section 8.8.1, which we modelled as a psycho-
logical game. We saw in that section that under common belief in rationality, both firms can only
rationally choose the price p* = 28. As such, this will be the only price that both firms can rationally
choose under common belief in rationality with a simple belief hierarchy, a symmetric belief hierarchy,
and a symmetric belief hierarchy using one theory per choice.

But suppose we would not have the information from Section 8.8.1, but would nevertheless wish
to find those prices that both firms can rationally choose under common belief in rationality with a
simple belief hierarchy. Is there a quick way to do this? The answer is “yes”, by trying to find the
psychological Nash equilibria in this game. By Theorem 9.1.2 we know that for finite psychological
games, the choices that can rationally be made under common belief in rationality with a simple belief
hierarchy are precisely those that are optimal in a psychological Nash equilibrium. The same is true
for infinite psychological games.

In the Betrand competition model from Section 8.8.1, suppose that (o1, 02) is a psychological Nash
equilibrium where o7 is a belief about firm 1’s price that assigns positive probability to finitely many
prices for firm 1, and similarly for oy. Let ej[o1,02] and ex[o1, 03] be the second-order expectation
for firms 1 and 2, respectively, induced by the beliefs 01 and o2. Then, we know from (8.8.4) that the

129
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unique price p; that is optimal for firm 1 under the second-order expectation ej[o1, 03] satisfies

Pi =14+ 5B (61,00 (P2) + f - > e1[o1, o2)(p) - (pT — p1)- (9.5.1)
P} <pjieifo1,02](p})>0

Similarly, the unique price p} that is optimal for firm 2 under the second-order expectation ez[o1, o2]
satisfies
p; =14+ %Eeg[ohaz](pl) + /- Z 62[017 0—2}(17,2) ) (p; - p’z) (9'5'2)
ph<p}:ez|o1,02](ph)>0

But then, by definition of a psychological Nash equilibrium, ¢ must assign probability 1 to p] and
o9 must assign probability 1 to p3. Hence, e1[o1, 02| assigns probability 1 to the pair (p3, p}), whereas
e2[01, 02] assigns probability 1 to the pair (p7, p3). In particular, F,, (5, »,)(p2) = p3, the second-order
expectation ejfo1,02] assigns probability 1 to p}, and similarly for ea[o1,02]. As such, (9.5.1) and
(9.5.2) can be reduced to
pi =14 + ip} and p = 14 + Lp}.
By substituting the second equation in the first we obtain

pi=14+1 (144 ip}),

which yields p] = 28. Hence, p5 = 28 as well.

We thus conclude that there is a unique psychological Nash equilibrium (o1, 02) where o assigns
probability 1 to firm 1’s price 28, and og assigns probability 1 to firm 2’s price 28. By (9.5.1) and
(9.5.2), the unique price that is optimal for firm 1 in this psychological Nash equilibrium is pj = 28,
and similarly for firm 2. Hence, we see that under common belief in rationality with a simple belief
hierarchy, both firms can only rationally choose the price 28.

9.5.2 Competition in Quantities

Let us finally go back to the Cournot competition model from Section 8.8.2. We have seen in that
section that under common belief in rationality both firms can only rationally choose the quantity
q* = 5. Hence, we conclude that under common belief in rationality with a simple belief hierarchy, a
symmetric belief hierarchy, or a symmetric belief hierarchy using one theory per choice, both firms can
still only rationally choose the quantity 5. Similarly to what we have done above, we will now directly
compute the quantities that both firms can rationally choose under common belief in rationality with
a simple belief hierarchy, by looking for the psychological Nash equilibria.

Suppose that (01, 02) is a psychological Nash equilibrium, where o is a belief about firm 1’s quan-
tities that assigns positive probability to finitely many quantities, and similarly for o9. By e1[o1, 09]
and es[o1, 02| we denote the second-order expectation for firm 1 and firm 2, respectively, induced by
the beliefs o1 and og. From (8.8.18) we know that the unique quantity ¢j that is optimal for firm 1
under the second-order expectation ej[o1, oo satisfies

G =75 = 5B [0),00)(02) — f - Z e1lo1,02)(q1) - (4 — 47)- (9.5.3)

q1>q5e1lo1,02](q1)>0

Similarly, the unique quantity ¢; that is optimal for firm 2 under the second-order expectation ea[o1, 02|
satisfies
G =75~ 5E0,01 00)(01) — [ - > e2lo1,02)(q5) - (g5 — ¢3)- (9.5.4)

q5>q3e2[01,02](qh)>0
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As (01,02) is a psychological Nash equilibrium, the belief o; must assign probability 1 to the
unique optimal quantity ¢f that satisfies (9.5.3), whereas o2 must assign probability 1 to the unique
optimal quantity ¢3 that satisfies (9.5.4). But then, we know that E, (5, 5,)(g2) = g3, that ei[o1, 02]
assigns probability 1 to firm 1’s quantity ¢j, and similarly for ex[o1,02]. Hence, (9.5.3) and (9.5.4)
can then be reduced to

gt =7.5— 3¢5 and g5 = 7.5 — 3q}.

By substituting the second equation into the first we obtain
a1 = 75— 3(7.5 - 347),

which yields ¢f = 5. As ¢ = 7.5 — 3¢} it follows that ¢} = 5 as well.

Thus, the unique psychological Nash equilibrium (o1, 09) is such that o; assigns probability 1 to
firm 1’s quantity 5, and o9 assigns probability 1 to firm 2’s quantity 5. By (9.5.3) and (9.5.4), the
unique optimal quantity for firm 1 and firm 2 in this psychological Nash equilibrium is 5. Therefore,
both firms can only rationally choose the quantity 5 under common belief in rationality with a simple
belief hierarchy.



