
Chapter 2

Decision Problems

In this chapter of the online appendix, we first provide an axiomatic characterization for expected
utility in Sections 2.8, 2.9 and 2.10. That is, we will impose a list of conditions — or axioms —on
a conditional preference relation that is both necessary and suffi cient for the conditional preference
relation having an expected utility representation. Like for the utility design procedure, we build
up our characterization in three steps: In Section 2.8 we restrict to the case of two choices, and
show that some very basic axioms —the regularity axioms —characterize those conditional preference
relations that have an expected utility representation. In Section 2.9 we move to the case with more
than two choices, but where there are preference reversals for every pair choices. We introduce two
new axioms, three choice linear preference intensity and four choice linear preference intensity, and
show that these axioms, together with the regularity axioms, characterize expected utility. The two
new axioms reveal the idea that the intensity by which the DM prefers a choice to another choice
changes linearly with the belief he holds. In Section 2.10 we move to the general case, where there
may be no preference reversals for some pairs of choices. That is, some choices may be weakly or
strictly dominated by other choices. The axioms above are extended to signed conditional preference
relations, where we consider so-called signed beliefs which possibly assign negative “probabilities”to
states. These extended axioms, together with some additional axioms that concern cases where there
is constant preference intensity between two choices, are shown to characterize expected utility for the
general case. In Section 2.11 we discuss some economic applications for decision problems. All proofs
can be found in Section 2.12.

2.8 Case of Two Choices

In this section we explore the situation where there are only two choices. We start by presenting
some axioms, called the regularity axioms, which are required for an expected utility representation.
Subsequently, we present a theorem which shows that these axioms are not only necessary but also
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Figure 2.8.1 When an expected utility representation does not exist

suffi cient for an expected utility representation. That is, if the conditional preference relation satisfies
the regularity axioms, then we can find a utility matrix that represents it.

2.8.1 Regularity Axioms
Suppose the DM can only choose between two options, a and b.What properties should the conditional
preference relation % have such that it can be represented by a utility matrix? Figure 2.8.1 presents
a few instances where an expected utility representation does not exist, and these instances will give
rise to our regularity axioms.

In each of the three instances we assume that the set of states is S = {x, y, z}. Consider first the
conditional preference relation in panel (a). Hence, for all beliefs above the line the DM prefers a to
b, for all beliefs on the line he still prefers a to b, whereas for all beliefs below the line he prefers b to
a. Such a conditional preference relation cannot have an expected utility representation. For suppose
it would be represented by a utility function. Then, at the belief p the expected utility for a must be
greater than that for b, whereas at the belief q the expected utility for b must greater than that for a.
But then, there must be a belief on the line segment between p and q where the two expected utilities
are the same, and hence where the DM is indifferent between a and b. However, there is no belief
where the DM is indifferent between a and b, and therefore we reach a contradiction. Thus, there is
no expected utility representation. The reason is that this conditional preference relation violates the
axiom of continuity.

Axiom 2.8.1 (Continuity) If the beliefs p, q are such that a �p b and b �q a, then there is a belief
r = (1− λ)p+ λq on the line segment between p and q with λ ∈ (0, 1), such that a ∼r b.

That is, if at the belief p the DM prefers a to b, and at the belief q he prefers b to a, then there
must be a belief on the line segment between a and b where the DM is indifferent between a and b. In
the formulation of the axiom, by r = (1− λ)p+ λq we denote the belief that assigns to every state s
the probability r(s) = (1− λ) · p(s) + λ · q(s). For instance, if p = (0.2, 0.3, 0.5), q = (0.4, 0.4, 0.2) and
λ = 0.4 then

r = (1− λ)p+ λq = (0.28, 0.34, 0.38).
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Indeed, the probability that r assigns to x (the first state) is (0.6) · (0.2)+(0.4) · (0.4) = 0.28. Similarly
for the other two probabilities. Please verify this.

Geometrically, r = (1− λ)p+ λq is the belief on the line between p and q where the ratio between
the distance to p and the distance to q is λ/(1 − λ). In particular, when λ = 0.5 then r is exactly
halfway between p and q, and if λ < 0.5 then r is closer to p than to q.

Consider now the conditional preference relation in panel (b) of Figure 2.8.1. Also here an expected
utility representation will not be possible. To see why, suppose the conditional preference relation
would be represented by a utility function. Then, at the beliefs p and q the DM is indifferent between
a and b, and hence the expected utilities for a and b must be the same at p and q. But then, the
expected utilities for a and b must also be the same for every belief on the line segment between a and
b, which is not the case. Hence, we reach a contradiction, and thus an expected utility representation
is not possible. The reason is that the conditional preference relation violates the axiom preservation
of indifference.

Axiom 2.8.2 (Preservation of indifference) If the beliefs p, q are such that a ∼p b and a ∼q b,
and r = (1− λ)p+ λq is a belief on the line segment between p and q with λ ∈ (0, 1), then a ∼r b.

In other words, if the DM is indifferent between a and b at two beliefs p and q, then the indifference is
preserved if we vary the belief on the line segment between p and q. To formally see why preservation of
indifference must hold if we have an expected utility representation, assume that % is represented by a
utility function u. Then, at the beliefs p and q we must have that u(a, p) = u(b, p) and u(a, q) = u(b, q).
Consider the belief r = (1− λ)p+ λq, for some λ ∈ (0, 1). Then,

u(a, r)− u(b, r) = u(a, (1− λ)p+ λq)− u(b, (1− λ)p+ λq)

= (1− λ) · u(a, p) + λ · u(a, q)− (1− λ) · u(b, p)− λ · u(b, q)

= (1− λ) · (u(a, p)− u(b, p)) + λ · (u(a, q)− u(b, q))

= (1− λ) · 0 + λ · 0 = 0,

and hence u(a, r) = u(b, r). That is, the DM must be indifferent between a and b at r.
Finally, consider the conditional preference relation in panel (c) of Figure 2.8.1. An expected

utility representation will also not be possible here. To see this, suppose there would be an expected
utility representation. Then, at the beliefs p and q the expected utility for a must be larger than for
b. As a consequence, the expected utility for a must be larger than that for b for all beliefs on the line
segment between p and q, and as such the DM must prefer a to b for all beliefs on that line segment.
This, however, is not the case, as there are beliefs on this line where the DM is indifferent between a
and b. This conditional preference relation violates the axiom preservation of strict preference.

Axiom 2.8.3 (Preservation of strict preference) If the beliefs p, q are such that a %p b and
a �q b, and r = (1 − λ)p + λq is a belief on the line segment between p and q with λ ∈ (0, 1), then
a �r b.

Thus, if the DM weakly prefers a to b at the belief p, and prefers a to b at the belief q, then the
preference between a and b will be preserved if we vary the belief on the line segment between p and
q. Similarly as above, we can show that preservation of strict preference must necessarily hold if we
have an expected utility representation. Indeed, suppose that % is represented by a utility function u.
Then, we must have that u(a, p) ≥ u(b, p) and u(a, q) > u(b, q). Consider the belief r = (1− λ)p+ λq,
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for some λ ∈ (0, 1). Then,

u(a, r)− u(b, r) = u(a, (1− λ)p+ λq)− u(b, (1− λ)p+ λq)

= (1− λ) · u(a, p) + λ · u(a, q)− (1− λ) · u(b, p)− λ · u(b, q)

= (1− λ) · (u(a, p)− u(b, p)) + λ · (u(a, q)− u(b, q))

> (1− λ) · 0 + λ · 0 = 0,

and hence u(a, r) > u(b, r). That is, the DM must prefers a to b at r.
The three axioms above are called the regularity axioms. By our arguments above we know that

every conditional preference relation with an expected utility representation must necessarily satisfy
the three regularity axioms. However, the other direction is also true if there are only two choices: In
the case of two choices, every conditional preference relation that satisfies the three regularity axioms
will have an expected utility representation. We thus obtain the following characterization.

Theorem 2.8.1 (Expected utility for two choices) Suppose there are only two choices. Then,
a conditional preference relation has an expected utility representation, if and only if, it satisfies
continuity, preservation of indifference and preservation of strict preference.

With our arguments above we have already proven one direction of the theorem: If the conditional
preference relation has an expected utility representation, then it must satisfy the three regularity
axioms. In the remainder of this section we will sketch how to prove the other direction.

2.8.2 Why Axioms are Suffi cient
We will now discuss, on an intuitive level, why the regularity axioms are enough to guarantee an
expected utility representation. In Section 2.4 of the book we have seen the utility design procedure
for two choices with preference reversals. With this procedure we can derive a utility function u,
provided there are preference reversals between the two choices. Suppose now that the conditional
preference relation satisfies the regularity axioms, and that there are preference reversals between
the two choices. We will explain, without diving too much into technical details, why the utilities
generated by this procedure will represent the conditional preference relation at hand.

To make our argument easier and more visual, let us assume there are three states, x, y and z.
Suppose, moreover, that a �x b, b �y a and b �z a. Then, the conditional preference relation will look
like the one in Figure 2.8.2 if it satisfies the regularity axioms.

Now, suppose we apply the utility design procedure, resulting in a utility function u. Recall that
we set u(b, y) > u(a, y), and that we obtain u(b, x) and u(b, z) by the utility difference property with
respect to the beliefs p1 and p2. This will make sure that u(a, p1) = u(b, p1) and u(a, p2) = u(b, p2).
But then, u(a, p) = u(b, p) for every belief p on the line segment L between p1 and p2. Thus, the beliefs
at which a and b yield the same expected utility are precisely the beliefs where the DM is indifferent
between a and b.

Moreover, since u(b, y) > u(a, y), the expected utility for b will be higher than the expected utility
for a in the area to the right of L. This is precisely the area of beliefs for which the DM prefers b
to a. Similarly, the expected utility for a will be higher than the expected utility for b in the area to
the left of L. This, in turn, is precisely the area of beliefs for which the DM prefers a to b. As such,
the utilities generated by the utility design procedure represent the conditional preference relation at
hand.
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Figure 2.8.2 Why the utility design procedure works

2.9 Case of Preference Reversals

In this section we move from two choices to three choices or more. We start by showing that the
regularity axioms from the previous section are no longer suffi cient to guarantee an expected utility
representation if there are three choices or more. In response, we introduce two additional axioms,
three choice linear preference intensity and four choice linear preference intensity, which both reveal
the idea that the intensity by which you prefer a choice to another choice must change linearly with the
belief. We show that these new axioms, together with the regularity axioms, guarantee an expected
utility representation if there are preference reversals for every pair of choices.

2.9.1 Why Regularity Axioms are Not Suffi cient
In the previous section we have seen that for the case of two choices, the regularity axioms were
suffi cient to guarantee an expected utility representation. However, if we move to three choices or
more, this is no longer true. To see this, consider the conditional preference relation in Figure 2.9.1
for the example “The birthday party”. At first sight, there seems nothing wrong with this conditional
preference relation. It may be verified that all the regularity axioms are satisfied, and that for every
belief p the preference relation %p on choices is transitive. Such conditional preference relations, where
the preference relation %p on choices is transitive for every belief p, are said to satisfy the transitivity
axiom.

Axiom 2.9.1 (Transitivity) For every belief p, the preference relation %p on choices is transitive.

However, as we will demonstrate, the conditional preference relation in Figure 2.9.1 does not have
an expected utility representation.

To see this, consider a general conditional preference relation % with an expected utility repre-
sentation u, and a line of beliefs l. For an example of a line of beliefs, see the grey line in Figure
2.9.2. Consider three choices a, b and c, and suppose that pab, pac and pbc are beliefs on that line where
the DM is indifferent between a and b, between a and c, and between b and c, respectively. Assume
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Figure 2.9.1 Regularity axioms are not suffi cient for an expected utility representation

Figure 2.9.2 Line of beliefs
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Figure 2.9.3 Expected utility difference on a line of beliefs with three choices

moreover that pbc is in between pab and pac, and that the DM prefers a to b, and a to c, at the belief
pbc. Then, the expected utility differences between a and b, and between a and c, on the line l must
behave as in Figure 2.9.3.

Note that at the belief pab, the expected utility difference between a and b must be 0. Similarly, at
the belief pac the expected utility difference between a and c must be 0. At the belief pbc, the expected
utility of b must be the same as the expected utility of c. Hence, at the belief pbc the expected utility
difference between a and b must be the same as the expected utility difference between a and c. This
results in the two triangles in Figure 2.9.3.

From the first triangle we can derive the constant rate at which the expected utility difference
between a and b changes on the line l. Indeed,

∆(u(a, p)− u(b, p))

∆p
=
A

B
, (2.9.1)

where ∆p is an arbitrary change of the belief p on the line l, and ∆(u(a, p) − u(b, p)) is the induced
change in expected utility difference between a and b. The lengths A and B are as given in the figure.

Similarly, from the second triangle we can derive the change rate of the expected utility difference
between a and c through the equation

∆(u(a, p)− u(c, p))

∆p
= −A

C
. (2.9.2)

Indeed, note that u(a, p) − u(c, p) gets smaller if we move to the right on the line l. For that reason,
the change rate above is negative. By combining (2.9.1) and (2.9.2) we get

∆(u(a, p)− u(b, p))

∆(u(a, p)− u(c, p))
=

∆(u(a, p)− u(b, p))/∆p

∆(u(a, p)− u(c, p))/∆p
=

A/B

−A/C = −C
B
. (2.9.3)

Here, the ratio
∆(u(a, p)− u(b, p))

∆(u(a, p)− u(c, p))

expresses how quickly the expected utility difference between a and b changes, compared to the change
rate of the expected utility difference between a and c.

Fix a state s. Then, the length C in the figure is proportional to the difference pac(s) − pbc(s),
whereas the length B is proportional to pbc(s)− pab(s). As such,

−C
B

=
pac(s)− pbc(s)
pab(s)− pbc(s)

.
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Figure 2.9.4 Why regularity axioms are not suffi cient for an expected utility representation

Together with (2.9.3) this leads to

∆(u(a, p)− u(b, p))

∆(u(a, p)− u(c, p))
=
pac(s)− pbc(s)
pab(s)− pbc(s)

. (2.9.4)

Now, consider a line l′ of beliefs that is parallel to the line l, like in Figure 2.9.4.
Let p′ab, p

′
ac and p

′
bc be beliefs on the new line l′ where the DM is indifferent between a and b,

between a and c, and between b and c, respectively. Then, (2.9.4) also applies to this new line and
these new beliefs.

Since the expected utility difference between any two choices changes linearly with the beliefs, the
change rate ratio

∆(u(a, p)− u(b, p))

∆(u(a, p)− u(c, p))

must be the same on the line l as on the parallel line l′. In view of (2.9.4) we then conclude that

pac(s)− pbc(s)
pab(s)− pbc(s)

=
p′ac(s)− p′bc(s)
p′ab(s)− p′bc(s)

. (2.9.5)

However, equation (2.9.5) is violated for the conditional preference relation in Figure 2.9.1. To see
that, consider the parallel lines l and l′ in Figure 2.9.4. Indeed, if we choose rainy for the state s, then
we have that

pgt(r)− pgh(r)

pht(r)− pgh(r)
=

0.7− 0.5

0.3− 0.5
= −1

whereas
p′gt(r)− p′gh(r)

p′ht(r)− p′gh(r)
=

0.64− 0.35

0− 0.35
6= −1.

As such, the conditional preference relation from Figure 2.9.1 cannot have an expected utility repre-
sentation.
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Figure 2.9.5 Preference intensities on a line of beliefs for three choices

2.9.2 Three Choice Linear Preference Intensity
This raises the question: What is wrong with the conditional preference relation in Figure 2.9.1?
Consider again the parallel lines of beliefs l and l′ in Figure 2.9.4. Along those lines, the DM changes
his belief in exactly the same direction, while departing from different initial beliefs. Intuitively,
changing the belief in the same direction should change the intensity by which the DM prefers one
choice to another by the same rate. But, as we will show, the conditional preference relation in Figure
2.9.1 is not compatible with this principle.

To see this, consider an arbitrary conditional preference relation, a line l of beliefs, and three
choices a, b and c. Assume that pab, pac and pbc are beliefs on this line where the DM is indifferent
between a and b, between a and c, and between b and c, respectively. As before, suppose that pbc is in
between pab and pac, and that the DM prefers a to b, and a to c, at the belief pbc. If we assume that
the preference intensity between any two choices changes linearly on the line l, then the preference
intensities must behave as in Figure 2.9.5.

The picture looks exactly the same as the one in Figure 2.9.3. This should not come as a surprise,
since we have seen that expected utility differences can be identified with preference intensities. By
using the same arguments as above for expected utility differences, we can then conclude, for any state
s, that

∆(inta�b(p))

∆(inta�c(p))
=
pac(s)− pbc(s)
pab(s)− pbc(s)

. (2.9.6)

Here, inta�b(p) denotes the intensity by which the DM prefers choice a to choice b at the belief p, and
similarly for inta�c(p). As such, the ratio

∆(inta�b(p))

∆(inta�c(p))

describes how quickly the preference intensity between a and b changes on the line l, compared to the
change rate of the preference intensity between a and c.

Now, consider a second line of beliefs l′ that is parallel to l. Suppose that p′ab, p
′
ac and p

′
bc are beliefs

on the new line l′ where the DM is indifferent between a and b, between a and c, and between b and
c, respectively. If we assume that the preference intensities change linearly with the belief then, in
particular, the change rate of the preference intensities on l′ must be the same as on l. We can then
conclude, by (2.9.6), that

pac(s)− pbc(s)
pab(s)− pbc(s)

=
p′ac(s)− p′bc(s)
p′ab(s)− p′bc(s)

(2.9.7)
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for every state s. By cross-multiplication, this is equivalent to

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)). (2.9.8)

This property, which is a consequence of the preference intensity between three choices changing
linearly with the belief, will be called three choice linear preference intensity.

To define the property formally, we must first explain more precisely what we mean by parallel
lines of beliefs. Consider two beliefs p1, p2 and a number λ such that (1 − λ) · p1 + λ · p2 is again a
belief. Then, the belief

p = (1− λ) · p1 + λ · p2
lies on the line that goes through p1 and p2.

A line of beliefs is a set of beliefs l for which there are two beliefs p1, p2 such that

l = {p ∈ ∆(S) | p = (1− λ) · p1 + λ · p2 for some number λ}.

That is, l contains exactly those beliefs that are on the line through p1 and p2. In this case, we say
that l is the line that goes through p1 and p2. In Figure 2.9.4, for instance, the line l goes through the
beliefs pgt and pgh.

Now, consider two lines of beliefs l and l′, where l goes through the beliefs p1 and p2, and l′ goes
through the beliefs p′1 and p

′
2. We say that the lines l and l

′ are parallel if there is a number λ such
that p1 − p2 = λ · (p′1 − p′2).

We are now ready to introduce the new axiom three choice linear preference intensity.

Axiom 2.9.2 (Three choice linear preference intensity) For every three choices a, b, c, every
two parallel lines of beliefs l and l′ containing beliefs where the DM is not indifferent between any of
these three choices, every triple of beliefs pab, pac, pbc on l where the DM is indifferent between the
respective choices, and every triple of beliefs p′ab, p

′
ac, p

′
bc on l

′ where the DM is indifferent between the
respective choices, it holds for every state s that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

We have thus verified above that the conditional preference relation in Figure 2.9.1 violates the ax-
iom of three choice linear preference intensity. In particular, this means that the conditional preference
relation cannot be based on preference intensities that change linearly with the belief.

2.9.3 Geometric Characterization
In a decision problem with three states or more, it may be quite demanding to verify that three choice
linear preference intensity holds. In this case, we would have to check the formula above for every
two parallel lines l and l′. And if there are at least three states, there are many —indeed, infinitely
many —of such parallel lines. In this light, it would be nice to find an easier way of checking for linear
preference intensity. This is precisely what we will do in this subsection.

Consider the conditional preference relation in Figure 2.9.6, which is a copy from Figure 2.3.1 in
the book. It turns out that it satisfies three choice linear preference intensity. The easiest argument
is to use the fact that it has an expected utility representation, as we have seen in Section 2.3 of the
book. Therefore, the preference intensities are given by the differences in expected utility, and will
thus vary linearly with the belief. This, in turn, guarantees three choice linear preference intensity, as
we have seen above.
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Figure 2.9.6 Conditional preference relation that satisfies three choice linear preference intensity

Figure 2.9.7 Geometric characterization of three choice linear preference intensity

But suppose we would not know whether the conditional preference relation in Figure 2.9.6 has an
expected utility representation or not. How would we then show that it satisfies three choice linear
preference intensity? The key lies in extending the sets of beliefs where you are indifferent between
two choices to the area outside the belief triangle. Consider, for instance, the set of beliefs where you
are indifferent between house and tent. This is a line segment that goes through the beliefs (0.3, 0, 0, 7)
and (0, 0.15, 0.85). If we would extend this line segment outside the belief triangle, we would get the
dotted line in Figure 2.9.7.

Note that this line goes through the point (0.7,−0.2, 0.5) outside the belief triangle. To see this,
observe that

(0.7,−0.2, 0.5) = (1− λ) · (0.3, 0, 0.7) + λ · (0, 0.15, 0.85)

for λ = −4/3. The reason that (0.7,−0.2, 0.5) is outside the belief triangle is that its second coordinate
is negative. Hence, these three numbers do not correspond to the probabilities in a belief, because
probabilities must always be non-negative.
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Figure 2.9.8 Geometric characterization of three choice linear preference intensity

Similarly, we can also extend the line segment of beliefs where you are indifferent between garden
and house, and the line segment of beliefs where you are indifferent between garden and tent, outside
the belief triangle. This results in the other two dotted lines in Figure 2.9.7.

As can be observed, the three dotted lines meet at the same point (0.7,−0.2, 0.5) outside the
belief triangle. This, as we will demonstrate now, is not a coincidence if three choice linear preference
intensity is satisfied.

Consider a conditional preference relation with three choices a, b and c, as shown in Figure 2.9.8.
Suppose that it satisfies three choice linear preference intensity. Then, equation (2.9.7) guarantees
that the ratio between the lengths A and B on the line l is the same as the ratio between A′ and B′

on any parallel line l′. This means that there must be some fixed number α such that B′ = α · A′ on
every line l′ that is parallel to l.

Consider now the dotted line through the beliefs where the DM is indifferent between a and c,
and the dotted line through the beliefs where the DM is indifferent between b and c. Suppose that
these two lines meet at some point q, possibly outside the belief triangle, and consider the line l′′ that
is parallel to l and goes through this point q. See Figure 2.9.8 for an illustration. Then, on the line
l′′ it must be that the corresponding length A′′ is equal to 0. Since we have seen that B′′ = α · A′′
for every line l′′ that is parallel to l, we then know that also B′′ must be equal to 0. This, however,
means that the line through the beliefs where the DM is indifferent between b and c must meet the
line through the beliefs where the DM is indifferent between a and b at this point q. In other words,
the three dotted lines must meet at the same point q.

The other direction is also true: If the three dotted lines meet at the same point, then three choice
linear preference intensity must be satisfied. To see this, consider two arbitrary parallel lines of beliefs,
like the lines l and l′ in Figure 2.9.8. Then, it must be that the ratio between A and B is the same as
the ratio between A′ and B′. This, in turn, implies that three choice linear preference intensity must
hold at the lines l and l′.

Thus, we see that for the case of three states, three choice linear preference intensity is satisfied
precisely when the linear extensions of the three indifference sets —that is, the sets of beliefs where
the DM is indifferent between two choices —all meet at the same point, possibly outside the belief
triangle.
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A similar result can be shown for an arbitrary number of states. To state this result formally, we
must first define more precisely what we mean by the linear extension of a set of beliefs. Consider the
set of beliefs Pa∼b where the DM is indifferent between the choices a and b. Take a point q, possibly
outside the set of beliefs. Then, we say that q is in the linear extension of Pa∼b if there are beliefs
p1, p2 in Pa∼b, and a number λ, such that

q = (1− λ) · p1 + λ · p2.

In other words, the point q is on the line through two beliefs in Pa∼b. By 〈Pa∼b〉 we denote the set of
all points q that are in the linear extension of Pa∼b, and 〈Pa∼b〉 is simply called the linear extension
of Pa∼b.

In Figure 2.9.7, for instance, 〈Pg∼t〉 contains all the points, inside and outside the belief triangle,
that are on the line through the beliefs (0.7, 0, 0.3) and (0.7, 0.3, 0) in Pg∼t. In particular, the point
(0.7,−0.2, 0.5) outside the belief triangle is in 〈Pg∼t〉 .

By using an argument like the one above, one can show that if three choice linear preference
intensity is satisfied, then every point that is in both 〈Pa∼b〉 and 〈Pb∼c〉 will also be in 〈Pa∼c〉 . In
Figure 2.9.7, for instance, the point (0.7,−0.2, 0.5), which is in both 〈Pg∼h〉 and 〈Ph∼t〉 , is also in
〈Pg∼t〉 .

Proposition 2.9.1 (Geometric characterization of three choice linear preference intensity)
Consider a conditional preference relation % that has preference reversals on every pair of choices,
and satisfies the regularity axioms and transitivity. Then, % satisfies three choice linear preference
intensity, if and only if, for every three choices a, b, c, every point that is both in 〈Pa∼b〉 and 〈Pb∼c〉
will also be in 〈Pa∼c〉 .

The latter condition, that every point which is in 〈Pa∼b〉 and 〈Pb∼c〉 will also be in 〈Pa∼c〉 , is in
general easy to check. By the result above, verifying this condition is suffi cient for checking whether
three choice linear preference intensity is satisfied. From a practical viewpoint this is a very useful
result.

Proposition 2.9.1 can be applied to show more easily that the conditional preference relation in
Figure 2.9.1 violates three choice linear preference intensity. To see this, consider Figure 2.9.9. It can
be seen that the linear extensions of Pg∼t, Pg∼h and Ph∼t do not meet at the same point. Indeed, the
point q, outside the belief triangle, is in both 〈Pg∼t〉 and 〈Pg∼h〉 , but not in 〈Ph∼t〉 .

Conceptually, the condition in Proposition 2.9.1 may be viewed as an extension of transitivity
outside the set of beliefs. Indeed, by Question 2.1.2 (d) in the book we know that if the conditional
preference relation is transitive, then every belief that is in both Pa∼b and Pb∼c will also be in Pa∼c.
The condition in Proposition 2.9.1 states that this must also be true for the linear extensions of these
three indifference sets.

2.9.4 Four Choice Linear Preference Intensity
Suppose now that there are at least four choices at the disposal of the DM. If the DM’s preference
intensities between these four choices change linearly with the belief, then this has another consequence
which is different from three choice linear preference intensity. This new property will be called four
choice linear preference intensity.

To see what it says, consider a line of beliefs l, and four choices a, b, c and d. Suppose that
pab, pac, pad, pbc, pbd and pcd are beliefs on the line l where the DM is indifferent between the respective
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Figure 2.9.9 Violation of three choice linear preference intensity

choices. If the preference intensities change linearly with the beliefs, then we have seen in the previous
section that

∆(inta�b(p))

∆(inta�c(p))
=
pac(s)− pbc(s)
pab(s)− pbc(s)

(2.9.9)

In fact, the same holds for the triples of choices a, b, d and a, c, d, and thus we know that

∆(inta�b(p))

∆(inta�d(p))
=
pad(s)− pbd(s)
pab(s)− pbd(s)

(2.9.10)

and
∆(inta�c(p))

∆(inta�d(p))
=
pad(s)− pcd(s)
pac(s)− pcd(s)

(2.9.11)

as well. Clearly,
∆(inta�b(p))

∆(inta�d(p))
=

∆(inta�b(p))

∆(inta�c(p))
· ∆(inta�c(p))

∆(inta�d(p))
.

If we combine this equation with (2.9.9), (2.9.10) and (2.9.11) we obtain

pad(s)− pbd(s)
pab(s)− pbd(s)

=
pac(s)− pbc(s)
pab(s)− pbc(s)

· pad(s)− pcd(s)
pac(s)− pcd(s)

.

By cross-multiplication, this leads to the condition

(pab(s)− pbc(s)) · (pac(s)− pcd(s)) · (pad(s)− pbd(s))
= (pab(s)− pbd(s)) · (pac(s)− pbc(s)) · (pad(s)− pcd(s)).

This property is called four choice linear preference intensity.

Axiom 2.9.3 (Four choice linear preference intensity) For every line of beliefs l, for every four
choices a, b, c, d such that there is a belief on this line where the DM is not indifferent between any
pair of choices in {a, b, c, d}, and for every six beliefs pab, pac, pad, pbc, pbd and pcd on the line l where
the DM is indifferent between the respective choices, it holds for every state s that

(pab(s)− pbc(s)) · (pac(s)− pcd(s)) · (pad(s)− pbd(s))
= (pab(s)− pbd(s)) · (pac(s)− pbc(s)) · (pad(s)− pcd(s)).
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Figure 2.9.10 The birthday party with two states and four choices

To illustrate this axiom, suppose that in the example “The birthday party”you replace the states
stormy and calm by the “summary”state dry, like we did in Figure 2.4.7 of the book. At the same
time, you thought about another possible location for your party, which is a nice square close to your
house. Assume that your conditional preference relation is given by Figure 2.9.10, which should be
read in the same way as Figure 2.4.7 of the book.

It may be verified that this conditional preference relation satisfies the regularity axioms, transi-
tivity and three choice linear preference intensity. In fact, three choice linear preference intensity is
satisfied trivially, as there are no two distinct parallel lines of beliefs in this scenario. The only possible
line of beliefs is the one that goes through the beliefs [d] and [r], assigning probability 1 to dry and
rainy, respectively.

However, depending on the precise probabilities we specify for the beliefs pth, ..., pgs, the axiom of
four choice linear preference intensity may be satisfied or violated. If we take, for instance, pth(r) =
0.05, phg(r) = 0.12, ptg(r) = 0.4, phs(r) = 0.5, pts(r) = 0.8 and pgs(r) = 0.88, like we did in Figure
2.4.7 of the book, then it may be verified that four choice linear preference intensity is satisfied. Please
verify this. If we change pgs(r) into 0.9, while leaving the other indifference beliefs the same, then it
turns out that four choice linear preference intensity is violated. Also verify this, please.

Note that a conditional preference relation with an expected utility representation will always
satisfy four choice linear preference intensity. The reason is that in this case, the preference intensity
between any two choices will always change linearly with the belief, as this preference intensity corre-
sponds to the difference in expected utility between these two choices. As such, the second conditional
preference relation above, where pgs(r) = 0.9, cannot have an expected utility representation.

It turns out that the axioms we have gathered until now, which are the regularity axioms, transi-
tivity, three choice linear preference intensity and four choice linear preference intensity, are suffi cient
for guaranteeing an expected utility representation, provided there are preference reversals for all pairs
of choices. This is the content of the following result.

Theorem 2.9.1 (Expected utility with preference reversals) Consider a conditional preference
relation % where there are preference reversals for all pairs of choices. Then, % has an expected util-
ity representation, if and only if, % satisfies continuity, preservation of indifference, preservation of
strict preference, transitivity, three choice linear preference intensity and four choice linear preference
intensity,

Recall that the last two axioms indicate that the preference intensities must change linearly with
the belief. In that light, the result above shows that the conditional preference relations with an
expected utility representation are precisely those that are based on preference intensities that change
linearly with the belief, of course assuming the regularity axioms and transitivity in the background.
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Figure 2.9.11 Intuition for why utility design procedure works

We will now provide an intuition for why the axioms above are suffi cient to guarantee an expected
utility representation. Consider a conditional preference relation % with preference reversals for all
pairs of choices which satisfies all of the axioms above. Recall that we can use the utility design
procedure from Section 2.4.2 of the book to compute a utility function u. We will intuitively explain
why this utility function u represents the conditional preference relation %.

As an illustration, consider a conditional preference relation with four choices and three states, as
given in Figure 2.9.11. We have only indicated the preference between the four choices in one of the
seven regions, as to not crowd the picture too much. The preferences in the other six regions can be
derived form these preferences, using the lines of beliefs where the DM becomes indifferent between
two choices.

It may first be verified that this conditional preference relation satisfies the regularity axioms and
transitivity. To see why it satisfies three choice linear preference intensity, note that the lines of beliefs
Pa∼b, Pa∼c and Pb∼c, when extended linearly outside the belief triangle, all meet at the same point
v. Therefore, we know by Proposition 2.9.1 that three choice linear preference intensity is satisfied
for the choices a, b and c. In a similar way, it can also be verified that three choice linear preference
intensity holds for the triple of choices a, b, d, the triple a, c, d and the triple b, c, d.

Moreover, we assume that the beliefs p1, q2, q1, r2, r1 and r are chosen such that they satisfy the
equation for four choice linear preference intensity on the line between [x] and [z]. It may be verified
that this implies that the conditional preference relation satisfies four choice linear preference intensity.

Finally, note that there are preference reversals for all pairs of choices, and that there are beliefs
where the DM is indifferent between some, but not all, choices. Hence, all the conditions for applying
the utility design procedure are satisfied.

The utility design procedure would work as follows. We start by choosing the utilities for a
arbitrarily, and by choosing an arbitrary utility for u(b, z) larger than u(a, z). Subsequently, we apply
the utility difference property to the beliefs p1 and p2, for the choices a and b, to determine u(b, x)
and u(b, y). The utility difference property makes sure that the expected utility of a will be equal to
the expected utility of b at the beliefs p1 and p2. As such, the expected utility of a will be the same
as for b at all beliefs where the DM is indifferent between a and b.

Next, to determine the utilities for c, we apply the utility difference property to the belief q1 for
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the choices c and a, and to the beliefs q2 and q3 for the choices c and b. This guarantees that at the
beliefs q2 and q3, the expected utility for b will be same as for c. As such, at all beliefs where the DM
is indifferent between b and c, the expected utility for b will be the same as for c.

Note that the lines of beliefs Pa∼b and Pb∼c, when extended linearly, meet at the same point v. As
the expected utility for a is the same as for b on Pa∼b, and the expected utility for b is the same as
for c on Pb∼c, it follows that the expected utilities for a, b and c will all be the same at the point v. In
particular, the expected utility for a will be the same as for c at the point v.

Now, the utility difference property at q1 for the choices c and a makes sure that at q1, the expected
utility for a is the same as for c. But then, the expected utility for a must be the same as for c at
all points on the line through v and q1. In particular, the expected utility for a must be the same as
for c at all beliefs where the DM is indifferent between a and c. Hence, we have seen so far that the
utilities for a, b and c get the three indifference lines Pa∼b, Pa∼c and Pb∼c right.

Subsequently, we generate the utilities for d by applying the utility difference property to the belief
r1 for the choices d and a, and to the beliefs r2 and r3 for the choices d and b. In the same way as
above for a, b, c, it then follows that the utilities for a, b and d will get the indifference lines Pa∼d and
Pb∼d right. It remains to show that it will also get the last indifference line Pc∼d right.

Note that the indifference lines Pa∼d and Pa∼c, when extended linearly, meet at the same point v.
Since the expected utility for a is the same as for d at all beliefs in Pa∼d, and the expected utility for
a is the same as for c at all beliefs in Pa∼c, it follows that the expected utilities for a, c and d are all
the same at the point v. In particular, at the point v the expected utility for c is the same as for d.

Consider the line between [x] and [z]. Since four choice linear preference intensity is satisfied on
this line, the belief r on this line where the DM is indifferent between c and d is uniquely given by
the other five indifference beliefs p1, q2, q1, r2 and r1 on this line, through the equation in four choice
linear preference intensity.

On the other hand, the conditional preference relation induced by the utilities generated for a, b, c
and d will also satisfy four choice linear preference intensity on this line. Since we have seen that the
utilities get the indifference beliefs p1, q2, q1, r2 and r1 right, and r is uniquely given by p1, q2, q1, r2
and r1 through four choice linear preference intensity, the utilities must also get the indifference belief
r right. That is, at the belief r the expected utility for c must be the same as for d.

Altogether, we see that the expected utility for c must be the same as for d at the points v and
r, and hence they must be the same at all beliefs on the line through v and r. As such, at all beliefs
where the DM is indifferent between c and d, the expected utility for c will be the same as for d.
Hence, the utilities also get the last line of indifference beliefs Pc∼d right.

Not only this, the utilities will also get all the preferences between the choices right for all possible
beliefs. In other words, the utility matrix generated by the utility design procedure will indeed
represent the conditional preference relation at hand.

2.10 *General Case

In the previous section we have considered scenarios in which there are preference reversals for all
pairs of choices. We will now move towards the general scenario where there may be no preference
reversals for some pairs of choices, because some choices may be weakly, or even strictly, dominated
by other choices. For those scenarios, we investigate what additional axioms need to be imposed on a
conditional preference relation such that it allows for an expected utility representation.
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Figure 2.10.1 Signed indifference belief

As we will see, the key is to look at so-called signed beliefs, which allow for “probabilities” that
are negative, or larger than one. Although signed beliefs cannot be interpreted directly as likelihoods,
they may be used to measure how the preference intensity between two choices changes when we move
from one state to another.

Every conditional preference relation can be extended to a signed conditional preference relation,
which does not only assign a preference relation over choices to every belief, but also to every signed
belief. The axioms we have seen so far for conditional preference relations can be generalized to
signed conditional preference relations, and we will argue that these generalized axioms make intuitive
sense if we assume that the preference intensity between two choices changes linearly with the belief.
Besides, we need two new axioms. Our main result shows that a conditional preference relation has an
expected utility representation precisely when it can be extended to a signed conditional preference
relation that satisfies each of these axioms.

2.10.1 Signed Beliefs
In the previous section we restricted ourselves to scenarios where there are preference reversals for all
pairs of choices. We will now extend our analysis to cases where there may be no preference reversals
between some pairs of choices, because some choices are weakly, or strictly, dominated by other choices.

Consider again the birthday party example and let us focus, for the moment, on your choices house
and tent. Suppose that you always prefer house to tent, irrespective of your belief about the weather,
because you had a terrible camping experience last year. That is, your choice house strictly dominates
your choice tent. Or, in other words, the intensity by which you prefer house to tent is always positive,
no matter what belief you have.

Still, it seems plausible that the intensity by which you prefer house to tent is greater at the state
stormy than at the state calm, because in the former case there is a chance that the tent will be
blown away. Assume that the intensity by which you prefer house to tent at the state stormy is three
times higher than at the state calm. See Figure 2.10.1. Then, on the line of beliefs through the states
calm and stormy, we could linearly extend this preference intensity outside the set of beliefs. This is
depicted by the dashed line in Figure 2.10.1. If we do so, the preference intensity between house and
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tent would become zero at the vector (0,−0.5, 1.5) outside the belief triangle.
This vector, which assigns 0 to state rainy, −0.5 to state stormy and 1.5 to state calm, cannot

really be interpreted in the way we understand a belief. The reason is that it involves numbers which
are negative, or larger than 1, which cannot be interpreted as likelihoods. But the indifference vector
(0,−0.5, 1.5) does have a meaning: It states that the preference intensity between house and tent
at the state stormy is three times higher than at the state calm. Such vectors, which may include
numbers less than 0 or larger than 1, but where the sum is equal to 1, are called signed beliefs.

Definition 2.10.1 (Signed belief) For a given set of states S, a signed belief q assigns to every
state s a (possibly negative) number q(s) such that

∑
s∈S q(s) = 1.

Thus, every belief is a signed belief, but not vice versa. Let us now go back to the example above,
with the choices house and tent. As we have seen in earlier sections, the preference intensity between
house and tent at a given belief, or state, can be identified with the expected utility difference between
the choices. Thus, we conclude that

u(house, stormy)− u(tent, stormy)

u(house, calm)− u(tent, calm)
= 3,

as visualized in Figure 2.10.1. Moreover, at the signed indifference belief q = (0,−0.5, 1.5) we have
that q(stormy) = −0.5 and q(calm) = 1.5, which implies that q(calm)/q(stormy) = −3. If we combine
this with the equality above, we obtain

u(house, stormy)− u(tent, stormy)

u(tent, calm)− u(house, calm)
=

q(calm)

q(stormy)
.

Note that this involves the same expression as the utility difference property in Section 2.4 of the book.
In fact, it may be viewed as a generalization of the utility difference property to signed indifference
beliefs.

To see why, in general, the utility difference property also holds for signed “indifference”beliefs,
consider two choices, a and b, two states x and y, and a signed “indifference” belief q on the line
through [x] and [y] where the DM is “indifferent”between a and b. See Figure 2.10.2 for an illustration.
Similarly to Section 2.4 of the book, we conclude that

u(a, x)− u(b, x)

u(a, y)− u(b, y)
=
A

B
.

Moreover, it can be seen from the figure that

A

B
=
q(x)− 1

q(x)− 0
= −1− q(x)

q(x)
= −q(y)

q(x)
.

By combining these two equations we obtain

u(a, x)− u(b, x)

u(b, y)− u(a, y)
=
q(y)

q(x)
,

which may be viewed as the utility difference property for signed beliefs.

Let us return again to our example above, where you always prefer house to tent for every belief.
We assumed that the intensity by which you prefer house to tent when it is stormy is three times
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Figure 2.10.2 Utility difference property for signed “indifference”beliefs

Figure 2.10.3 Signed conditional preference relation
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higher than when it is calm. Now suppose, additionally, that the intensity by which you prefer house
to tent when it is stormy is two times higher than when it is rainy. If we assume that your preference
intensity between house and tent changes linearly with your belief, your preferences for all possible
signed beliefs can visualized by Figure 2.10.3.

This picture should be read as follows: The dotted line, going through the signed beliefs (2,−1, 0)
and (0,−0.5, 1.5), represents all the signed beliefs where you are “indifferent”between house and tent.
Consider, for instance, the signed belief q = (2,−1, 0) on the line through rain and stormy. By the
utility difference property above, we have that

u(house, stormy)− u(tent, stormy)

u(tent, rainy)− u(house, rainy)
=

q(rainy)

q(stormy)
=

2

−1
= −2.

Thus, the intensity by which you prefer house to tent when it is stormy is twice as high as when it
is rainy, as required. The set of signed beliefs where you are “indifferent”between house and tent is
denoted by Qh∼t in the figure.

Moreover, the figure indicates that for all signed beliefs to the right of the dotted line you “prefer”
house to tent, whereas on the other side of the dotted line you “prefer” tent to house. Since all
(traditional) beliefs are to the right of the dotted line, you prefer house to tent for all beliefs, as it
should be.

Such an object, which specifies a preference relation over choices for every signed belief, is called
a signed conditional preference relation.

Definition 2.10.2 (Signed conditional preference relation) A signed conditional preference
relation %∗ assigns to every signed belief q a preference relation %∗q over the choices.

Similarly to “normal” conditional preference relations, we can also define what it means for a
signed conditional preference relation to be represented by a utility function. Formally, we say that
a signed conditional preference relation %∗ is represented by a utility function u if for every signed
belief q and every two choices a and b we have that

a %∗q b if and only if u(a, q) ≥ u(b, q).

Here,
u(a, q) :=

∑
s∈S

q(s) · u(a, s)

represents the “expected utility” induced by the choice a at the signed belief q, and similarly for
u(b, q). We write “expected utility”between quotes since q need not necessarily be a belief.

In Figure 2.10.3 we can say that the “normal”conditional preference relation %, where you always
prefer house to tent for every belief, can be extended to the signed conditional preference relation %∗
depicted in that figure. In a sense, the signed conditional preference relation reveals more information,
as it also states how the intensities by which you prefer house to tent compare at the three states
of weather. In general, extending a conditional preference relation to a signed conditional preference
relation can be defined as follows.

Definition 2.10.3 (Extension to signed conditional preference relation) A signed conditional
preference relation %∗ extends a conditional preference relation % if for every belief p ∈ ∆(S) the
preference relations %p and %∗p coincide.
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Figure 2.10.4 Relative change of preference intensities on a line

Clearly, if a conditional preference relation % can be extended to a signed conditional preference
relation %∗ with an expected utility representation u, then the utility function u will also represent
the conditional preference relation % . Thus, if we are given a conditional preference relation %, where
some choices possibly weakly or strictly dominate other choices, and ask whether it has an expected
utility representation, then it all boils down to the following question: Can % be extended to a signed
conditional preference relation %∗ with an expected utility representation? If the answer is “yes”, then
% will have an expected utility representation as well. If the answer is “no”, then there is no expected
utility representation for % .

In a sense, the question whether an expected utility representation exists is thus shifted to the
domain of signed conditional preference relations. As we will see in the following two subsections, a
signed conditional preference relation will have an expected utility representation precisely when it
satisfies (a generalized version of) the regularity axioms, transitivity, three choice linear preference
intensity and four choice linear preference intensity, together with two additional axioms that are
related to cases of “constant preference intensity”.

2.10.2 Extending the Previous Axioms
As we have seen above, a signed conditional preference relation reveals for every two choices a and
b how the intensities by which the DM prefers a to b at the various states relate to each other. But
if there are more than two choices, then a signed conditional preference relation will also tell us, for
every line of signed beliefs, and every three choices a, b, c, how quickly the preference intensity between
a and b changes on this line, as compared to the speed with which the preference intensity between a
and c changes.

To see this, consider Figure 2.10.4 where we have depicted the preference intensities between a and
b and between a and c on a line of signed beliefs. Here, qab, qac and qbc are the signed beliefs on the
line l where the DM is “indifferent”between the respective choices. In the figure, we assume that qab
and qac are “real”beliefs whereas qbc is not, but this is not relevant for our argument. As in Section
2.9.2, inta�b denotes the intensity by which the DM prefers a to b, and similarly for inta�c. Note that
the two preference intensities must be equal at the signed belief qbc, where the DM is “indifferent”
between b and c.

Similarly to Section 2.9.2, we conclude that the relative change rates of these two preference
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intensities satisfy
∆(inta�b(q))

∆(inta�c(q))
=
qac(s)− qbc(s)
qab(s)− qbc(s)

(2.10.1)

for every state s where the probability of s is not constant on the line. That is, the three signed
indifference beliefs qab, qac and qbc determine the relative speed at which the preference intensities
between a and b and between a and c change on the line.

If we assume that the preference intensity between any two choices changes linearly with the belief,
then the relative change rates of the preference intensities must always be the same on two parallel
lines of signed beliefs l and l′. Hence, if we consider a line l′ of signed beliefs parallel to the line l in
Figure 2.10.4, then on the line l′ the ratio ∆(inta�b(q))/∆(inta�c(q)) must be the same as on the line
l. If q′ab, q

′
ac and q

′
bc denote the signed “indifference”beliefs on the line l

′ then, in view of (2.10.1), we
must have that

qac(s)− qbc(s)
qab(s)− qbc(s)

=
q′ac(s)− q′bc(s)
q′ab(s)− q′bc(s)

,

and hence
(qab(s)− qbc(s)) · (q′ac(s)− q′bc(s)) = (q′ab(s)− q′bc(s)) · (qac(s)− qbc(s)). (2.10.2)

This may be viewed as an extension of three choice linear preference intensity to signed conditional
preference relations. Although this property includes signed beliefs, it follows solely from the as-
sumption that the preference intensity between any two choices of the original conditional preference
relation —which does not include signed beliefs —changes linearly with the belief.

Now, consider four choices a, b, c, d, and a line l of signed beliefs. Similarly to Section 2.9.4, it must
hold that

∆(inta�b(q))

∆(inta�d(q))
=

∆(inta�b(q))

∆(inta�c(q))
· ∆(inta�c(q))

∆(inta�d(q))
.

Together with (2.10.1), and using the same arguments as in Section 2.9.4, this leads to

(qab(s)− qbc(s)) · (qac(s)− qcd(s)) · (qad(s)− qbd(s)) (2.10.3)

= (qab(s)− qbd(s)) · (qac(s)− qbc(s)) · (qad(s)− qcd(s)).

Here, qab, ..., qcd denote the signed “indifference”beliefs for the six pairs of choices from {a, b, c, d}. This
formula can be viewed as an extension of four choice linear preference intensity to signed conditional
preference relations. Again, the formula follows from the assumption that the preference intensities of
the original conditional preference relation —which does not include signed beliefs —change linearly
with the belief.

Summarizing, we see that if the preference intensities of the original conditional preference relation
% change linearly with the belief, then it must be possible to extend% to a signed conditional preference
relation %∗ that satisfies three choice and four choice linear preference intensity.

But we can say even more: In this case, the signed conditional preference relation %∗ must also
satisfy (generalizations of) the regularity axioms and transitivity.

To see why it satisfies the regularity axioms, we consider Figure 2.10.5 as a reference point. It
depicts the conditional preferences between two choices, a and b, with three states x, y and z.Moreover,
for every belief it shows the intensity by which the DM prefers a to b, along the vertical axis. In
particular, the DM always prefers a to b for every belief, but this preference intensity varies in a linear
fashion with the belief.

Note that these preference intensities are captured by the signed conditional preference relation
shown in the same figure. Indeed, if we linearly extend the preference intensity levels outside the
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Figure 2.10.5 Regularity axioms for a signed conditional preference relation

belief triangle, then the signed beliefs where the DM is “indifferent”are exactly those points where
the preference intensity is zero.

On the basis of this figure, we will now argue that the signed conditional preference relation %∗
must satisfy the three regularity axioms. We will start with continuity. Take two signed beliefs, q1
and q2, where a �∗q1 b and b �

∗
q2 a. See Figure 2.10.5 for an illustration. Then, it can be seen that

there is a signed belief q3 on the line segment between q1 and q2 where the DM is “indifferent”. This
establishes continuity.

We next consider preservation of indifference. Take two signed beliefs, q3 and q4, where the DM is
“indifferent”. See Figure 2.10.5 for an illustration. Then, for every signed belief on the line segment
between q3 and q4, the DM would also be “indifferent”. Thus, preservation of indifference holds.

Now, consider preservation of strict preference. Consider a belief q3 where a %∗q3 b and a belief
q1 with a �∗q1 b. See Figure 2.10.5 for an illustration. Then, it can be seen that at every belief on
the line segment between q3 and q1 (excluding q3 and q1) the DM strictly prefers a to b. This yields
preservation of strict preference.

We finally turn to transitivity. Consider three choices, a, b and c, and a signed belief q such that
a %∗q b and b %∗q c. We will see that it then naturally follows that a %∗q c. Take some “real” beliefs
p1, p2 such that q is on the line through p1 and p2. See Figure 2.10.6 for an illustration in case the
preference intensity between a and b is linear in the belief. Let qab be the signed belief on that line
where the DM is “indifferent”between a and b. Then, according to Figure 2.10.6 we must have that

inta�b(p1)

inta�b(p2)
=
A

B
.

Let qab = (1− λ)p1 + λp2 for some number λ. Then,

A

B
=

0− λ
1− λ =

λ

λ− 1
.

By combining the two equalities above we get that

qab = (1− λ)p1 + λp2 with
λ

λ− 1
=
inta�b(p1)

inta�b(p2)
.
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Figure 2.10.6 Continuity for signed conditional preference relations

Since a %∗q b, we must have that q is either equal to qab, or to the right of qab, and hence

q = (1− λ)p1 + λp2 with
λ

λ− 1
≤ inta�b(p1)

inta�b(p2)
.

As at the signed belief q both λ and λ− 1 are negative, this can be rewritten as

q = (1− λ)p1 + λp2 with λ · inta�b(p2) ≥ (λ− 1) · inta�b(p1). (2.10.4)

As b %∗q c, it follows in a similar way that

q = (1− λ)p1 + λp2 with λ · intb�c(p2) ≥ (λ− 1) · intb�c(p1). (2.10.5)

By adding (2.10.4) and (2.10.5) we get

q = (1− λ)p1 + λp2 with (2.10.6)

λ · (inta�b(p2) + intb�c(p2)) ≥ (λ− 1) · (inta�b(p1) + intb�c(p1)).

Intuitively, inta�b(p1) + intb�c(p1) represents the intensity by which the DM prefers a to c. Indeed,
it makes sense to view preference intensity as an additive concept, which means that the intensity by
which the DM prefers a to c can be written as the sum of the intensity by which he prefers a to b and
the intensity by which he prefers b to c. Thus, inta�b(p1) + intb�c(p1) = inta�c(p1), and similarly for
p2.

If we substitute this into (2.10.6) we obtain that

q = (1− λ)p1 + λp2 with λ · inta�c(p2) ≥ (λ− 1) · inta�c(p1),

and hence

q = (1− λ)p1 + λp2 with
λ

λ− 1
≤ inta�c(p1)

inta�c(p2)
.

In view of Figure 2.10.6, this means that a %∗q c. This establishes transitivity.
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Summarizing, we have seen that if the preference intensities between the choices vary linearly
with the belief, then every signed conditional preference relation %∗ that extends % must satisfy the
regularity axioms. Moreover, as shown above, the signed conditional preference relation %∗ will also
satisfy three choice and four choice linear preference intensity. Finally, it must also satisfy transitivity.
For completeness, we now summarize these axioms for signed conditional preference relations.

Definition 2.10.4 (Axioms for signed conditional preference relations) A signed conditional
preference relation %∗ satisfies
(a) continuity if for every two choices a, b and every two signed beliefs q1 and q2 with a �∗q1 b and
b �∗q2 a, there is a λ ∈ (0, 1) such that the DM is “indifferent”between a and b at the signed belief
(1− λ)q1 + λq2;

(b) preservation of indifference if for every two choices a, b, for every two signed beliefs q1, q2 with
a ∼∗q1 b and a ∼

∗
q2 b, and for every λ ∈ (0, 1), the DM is “indifferent”between a and b at the signed

belief (1− λ)q1 + λq2;

(c) preservation of strict preference if for every two choices a, b, for every two signed beliefs q1, q2
with a %∗q1 b and a �∗q2 b, and for every λ ∈ (0, 1), the DM “prefers” a to b at the signed belief
(1− λ)q1 + λq2;

(d) transitivity if the preference relation %∗q is transitive for every signed belief q;
(e) three choice linear preference intensity if for every three choices a, b, c, every two parallel
lines of signed beliefs l and l′ containing signed beliefs where the DM is not “indifferent” between
any of these three choices, every triple of signed beliefs qab, qac, qbc on l where the DM is “indifferent”
between the respective choices, and every triple of signed beliefs q′ab, q

′
ac, q

′
bc on l

′ where the DM is
“indifferent”between the respective choices, it holds for every state s that

(qab(s)− qbc(s)) · (q′ac(s)− q′bc(s)) = (q′ab(s)− q′bc(s)) · (qac(s)− qbc(s));

(f) four choice linear preference intensity if for every line of signed beliefs l, for every four choices
a, b, c, d such that there is a signed belief on this line where the DM is not “indifferent”between any
pair of choices in {a, b, c, d}, and for every six signed beliefs qab, qac, qad, qbc, qbd and qcd on the line l
where the DM is “indifferent”between the respective choices, it holds for every state s that

(qab(s)− qbc(s)) · (qac(s)− qcd(s)) · (qad(s)− qbd(s))
= (qab(s)− qbd(s)) · (qac(s)− qbc(s)) · (qad(s)− qcd(s)).

However, as we will see in the next subsection, these axioms will not suffi ce to guarantee an
expected utility representation for a signed conditional preference relation. The reason is that so far
we have not examined cases where the preference intensity between two choices is constant. These
scenarios will be studied in the following subsection.

2.10.3 Axioms for Constant Preference Intensity
So far we have only studied cases where for every pair of choices a and b, the signed conditional
preference relation admits a signed belief q where the DM is “indifferent” between a and b. As we
have seen in Figure 2.10.2, such signed “indifference”beliefs q measure how the preference intensity
between a and b varies if we move from one state to another.
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Figure 2.10.7 Constant preference intensity

But what if there are no signed beliefs q for which the DM is “indifferent”between a and b? This
is precisely the case when the intensity by which the DM prefers a to b is always the same for every
belief. Indeed, in such a scenario the preference intensity between a and b in Figure 2.10.2 would be
horizontal, and hence would nowhere become zero on the line. In these cases, the DM would either
always “‘prefer”a to b for every signed belief, or always “prefer” b to a for every signed belief. We
say that there is constant preference intensity between a and b.

Definition 2.10.5 (Constant preference intensity) A signed conditional preference relation %∗
reveals a constant preference intensity between choices a and b if either a �∗q b for every signed
belief q, or b �∗q a for every signed belief q, or a ∼∗q b for every signed belief q.

As an illustration, consider the signed conditional preference relation in Figure 2.10.7. Since you
are never “indifferent”between house and garden, or between house and tent, for any signed belief,
we conclude that you have a constant preference intensity between house and garden, and between
house and tent.

It may be verified that this signed conditional preference relation %∗ satisfies all the axioms from
the previous subsection. Nevertheless, it does not allow for an expected utility representation. To see
this, note that an expected utility representation u for %∗ must necessarily have a constant utility
difference between house and garden, and between house and tent. Indeed, otherwise there would be
signed beliefs where you would become “indifferent”between house and garden, or between house and
tent. But then, the utility difference between garden and tent must also be constant across all signed
beliefs. This would mean, in turn, that you are either always indifferent between garden and tent, or
that you always prefer one of these choices over the other. However, this would contradict the signed
conditional preference relation at hand, and hence there is no expected utility representation for the
signed conditional preference relation %∗ .

This raises the question: What is “wrong”with this signed conditional preference relation? Recall
that the intensity by which you prefer house to garden, and the intensity by which you prefer house
to tent, is constant across all signed beliefs. But then, the preference intensity between garden and
tent should also be constant —a principle which is violated in Figure 2.10.7. This principle is called
transitive constant preference intensity.
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Axiom 2.10.1 (Transitive constant preference intensity) If under the signed conditional pref-
erence relation %∗ there is a constant preference intensity between choices a and b, and between choices
b and c, then there must also be a constant preference intensity between choices a and c.

Let us now go back to the axiom four choice linear preference intensity. As we have seen before,
this axiom reveals that on a line of signed beliefs we have that

∆(inta�b(q))

∆(inta�d(q))
=

∆(inta�b(q))

∆(inta�c(q))
· ∆(inta�c(q))

∆(inta�d(q))
. (2.10.7)

Suppose now that the preference intensity between c and d is constant. Then, the preference in-
tensity between a and c and the preference intensity between a and d will only differ by a con-
stant. In particular, the speed at which the preference intensity between a and c changes will be
the same as the speed at which the preference intensity between a and d changes, which means that
∆(inta�c(q))/∆(inta�d(q)) = 1. By (2.10.7) we then get that

∆(inta�b(q))

∆(inta�d(q))
=

∆(inta�b(q))

∆(inta�c(q))
.

Since we have seen that

∆(inta�b(q))

∆(inta�d(q))
=
qad(s)− qbd(s)
qab(s)− qbd(s)

and
∆(inta�b(q))

∆(inta�c(q))
=
qac(s)− qbc(s)
qab(s)− qbc(s)

we conclude that
qad(s)− qbd(s)
qab(s)− qbd(s)

=
qac(s)− qbc(s)
qab(s)− qbc(s)

.

This, in turn, yields the formula

(qab(s)− qbc(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s)). (2.10.8)

Suppose, in addition, that the preference intensity between a and b would also be constant. That
is, the preference intensities between a and b, and between c and d, would both be constant. Then,
on a line of signed beliefs the preference intensities between the various pairs of choices would yield
a picture similar to that in Figure 2.10.8. Note that the preference intensities between a and b, and
between c and d, correspond to horizontal lines, as these are constant on the line of signed beliefs.
Moreover, at the signed belief qbd where the preference intensity between a and d is equal to the
preference intensity between a and b, it must be that the preference intensity between b and d is zero,
and hence the DM is “indifferent”between b and d. Similarly, at the signed belief qac the preference
intensity between a and d is equal to the preference intensity between c and d, and thus the DM is
“indifferent”between a and c.

Moreover, the difference between the preference intensity between a and d on the one hand and
the preference intensity between b and d on the other hand must always be equal to the constant
preference intensity α between a and b. As such, the line of the preference intensity between b and
d is parallel to the line of the preference intensity between a and d. In fact, the first line is obtained
by the second line if we shift it downwards by the amount α. Finally, note that at the signed belief
qbc the preference intensity between b and d is equal to the preference intensity between c and d, and
hence the DM is “indifferent”between b and c.

From the picture it can clearly be seen that

qac(s)− qbc(s) = qad(s)− qbd(s) (2.10.9)
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Figure 2.10.8 Four choice linear preference intensity with constant preference intensity

for every state s.
The formulas (2.10.8) and (2.10.9) give rise to the following axiom, which we call four choice linear

preference intensity with constant preference intensity.

Axiom 2.10.2 (Four choice linear preference intensity with contant preference intensity)
For every line of signed beliefs l, and for every four choices a, b, c, d such that there is a signed belief
on this line where the DM is not “indifferent”between any pair of choices in {a, b, c, d}, the following
holds:

(a) if there is a constant preference intensity between c and d, but not between the other five pairs
of choices, then for every five signed beliefs qab, qac, qad, qbc and qbd on the line l where the DM is
“indifferent”between the respective choices, it holds for every state s that

(qab(s)− qbc(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s));

(b) if there is a constant preference intensity between a and b, and between c and d, but not between
the other four pairs of choices, then for every four signed beliefs qac, qad, qbc and qbd on the line l where
the DM is “indifferent”between the respective choices, it holds for every state s that

qac(s)− qbc(s) = qad(s)− qbd(s).

Now, take a conditional preference relation % with an expected utility representation. Then, as we
have seen in Section 2.9, the induced preference intensity between every two choices will vary linearly
with the belief. Consequently, on the basis of our arguments above, we can extend % to a signed
conditional preference relation %∗ that satisfies all of the axioms above.

However, it turns out that the opposite direction is also true: If we can extend the conditional
preference relation % to a signed conditional preference relation %∗ that satisfies all of the axioms
above, then there will be an expected utility representation for % . As such, the axioms above char-
acterize precisely those conditional preference relations that admit an expected utility representation.
We thus obtain the following result.
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Figure 2.10.9 Verifying the axioms

Theorem 2.10.1 (Expected utility for the general case) A conditional preference relation has
an expected utility representation, if and only if, it can be extended to a signed conditional preference
relation that satisfies continuity, preservation of indifference, preservation of strict preference, transi-
tivity, three choice linear preference intensity, four choice linear preference intensity, transitive constant
preference intensity and four choice linear preference intensity with constant preference intensity.

As we have argued above, all of these axioms are consequences of assuming that the preference
intensities between every two choices change linearly with the belief. When viewed in this light, the
result above states that expected utility may be seen as an expression of linear preference intensity.

2.10.4 Verifying the Axioms
We have seen in Theorem 2.10.1 that a conditional preference relation has an expected utility repre-
sentation precisely when it can be extended to a signed conditional preference relation that satisfies
a list of axioms. This result can be used for two purposes: First, as we have done above, we can use
it to show that a given conditional preference relation has an expected utility representation. But
we can also use it to prove that a given conditional preference relation % does not have an expected
utility representation. Indeed, if we show that every signed conditional preference relation %∗ that
extends % violates at least one of the axioms, then we know that % cannot have an expected utility
representation. Moreover, the axiom, or axioms, that are violated tell us what is “wrong”with the
conditional preference relation at hand.

As an example, consider the conditional preference relation % in Figure 2.10.9. We will show that
every signed conditional preference relation %∗ that extends % must necessarily violate some of the
axioms.

To see why, note that the indifference sets in %∗ between house and garden, between house and
square, between garden and tent and between tent and square are uniquely given by the corresponding
indifference sets in %, inside the belief triangle. Hence, these four indifference sets in %∗ must be
given by the corresponding dashed lines in Figure 2.10.10. Now, consider the signed belief q1 in Figure
2.10.10, where you are “indifferent”between house and square, and “indifferent”between square and
tent. By transitivity of %∗, you must then also be indifferent between house and tent at q1. In a
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Figure 2.10.10 Verifying the axioms

similar way, we can conclude that at the signed belief q2, you must also be “indifferent”between house
and tent.

Hence, by preservation of indifference, the “indifference set” in %∗ between house and tent must
be a line that passes through the signed beliefs q1 and q2. But then, as can be seen from Figure 2.10.10,
this indifference set will pass through the belief triangle. In other words, there must be “real”beliefs
for which you are indifferent between house and tent. This, however, contradicts the conditional
preference relation % we started from, since under % you will always prefer house to tent for every
belief.

We thus see that there is no signed conditional preference relation %∗ that extends % and satisfies
all the axioms from Theorem 2.10.1. By the same theorem we can then conclude that the conditional
preference relation in Figure 2.10.9 has no expected utility representation.

2.11 Economic Applications

In this section we discuss two economic applications of our approach to decision theory —one from
consumer theory and one from producer theory.

2.11.1 Consumption under Uncertainty
Consider a consumer who must decide whether he wants to buy one unit from good a or one unit
from good b. The consumer knows the quality of good a, because he has purchased this good before,
but is uncertain about the quality of good b. Assume that the quality of good b can either be poor,
medium or good. These are the three states in this scenario. The conditional preference relation of
the consumer is depicted in Figure 2.11.1. Qualitatively speaking, the consumer would only consider
buying good b if he assigns a suffi ciently high probability to its quality being good.

We will now use the utility design procedure from Section 2.4.1 to verify whether the conditional
preference relation has an expected utility representation, and if so, how such an expected utility
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Figure 2.11.1 Conditional preference relation of consumer who is uncertain about quality of good b

representation would look like. Suppose we set all utilities for good a equal to 3, that is, u(a, poor) =
u(a, medium) = u(a, good) = 3. Moreover, at the state good, where the consumer prefers b to a, we
set u(b, good) = 4.

To compute the utility u(b , poor), we apply the utility difference property to the belief p1 =
(0.25, 0, 0.75) on the line segment between poor and good, and obtain that

u(a, poor)− u(b, poor)
u(b, good)− u(a, good)

=
p1(good)

p1(poor)
=

0.75

0.25
= 3.

By filling in the utilities that have already been determined, we get

3− u(b, poor)
4− 3

= 3− u(b, poor) = 3,

and hence u(b, poor) = 0.
We finally compute the utility u(b , medium) by applying the utility difference property to the

belief p2 = (0, 0.5, 0.5) on the line segment between medium and good, and obtain that

u(a, medium)− u(b, medium)

u(b, good)− u(a, good)
=

p2(good)

p2(medium)
=

0.5

0.5
= 1.

If we fill in the utilities that have already been determined, we get

3− u(b, medium)

4− 3
= 3− u(b, medium) = 1,

and hence u(b, medium) = 2.
We thus obtain the utility function u given by Table 2.11.1. It may be verified that this utility

function indeed represents the consumer’s conditional preference relation.
As there are preference reversals between the two choices a and b, we conclude from Theorem

2.5.1 in the book that the utility differences are unique up to a positive multiplicative constant. As
a consequence, the consumer’s relative preference intensities are unique, and these are given by the
utility function from Table 2.11.1.
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poor medium good
good a 3 3 3
good b 0 2 4

Table 2.11.1 Expected utility representation for the consumer’s conditional preference relation

Note that at the three states poor, medium and good, the utility differences between goods a and
b are 3, 1 and −1, respectively. As such, we conclude that the intensity by which the consumer prefers
good a to good b is three times as large when the quality of good b is poor, compared to the case where
the quality of good b is medium. This makes perfect intuitive sense. Also, the intensity by which the
consumer prefers good a to good b when b’s quality is medium is the same as the intensity by which
he prefers good b to good a when b’s quality is good.

2.11.2 Production under Uncertainty
In this chapter so far we have focused on scenarios where there are finitely many choices and states.
As we will see, the notions of conditional preference relation and expected utility representation can
naturally be extended to cases where there are infinitely many choices and states.

Consider a monopolist who must decide which price to charge for the good it is offering. The
problem, however, is that the monopolist is uncertain about the price elasticity of demand. More
precisely, if the monopolist chooses a price p, then the demand for the good is equal to a − e · p,
where a > 0 is known but e is unknown to the monopolist. The number e determines how quickly the
demand for the good drops if the monopolist increases its price, and can thus be viewed as a measure
for the price elasticity of demand. From now on, we will refer to e as the elasticity parameter. Suppose
that there are no fixed costs, and the marginal cost of the monopolist is constant, and equal to c > 0.

As the monopolist can choose any price p ≥ 0, the set of possible choices is infinite. Assume that
it is known that the elasticity parameter e is in the interval [e1, e2], where e1 > 0, e2 > e1 and

e2 <
2a

c+ a/e1
. (2.11.1)

Then, the set of states is the interval [e1, e2], which is also an infinite set. Still, the monopolist is able
to form a belief β about the state.

Suppose that the monopolist holds the following conditional preference relation %: For every belief
β about the elasticity parameter, he prefers price p1 to price p2 precisely when the expected profit
induced by the price p1 and the belief β is greater than the expected profit induced by p2 and β.What
would then be the optimal price for the monopolist, for every possible belief β about the elasticity
parameter?

To answer this question, let us first determine the expected profit π(p, β) induced by a price p and
a belief β. Suppose that the elasticity parameter is e, and that the monopolist chooses the price p.
Then, the demand for the monopolist will be a − e · p, and hence the total revenue, which is equal
to the price times the demand, will be p · (a− e · p). Since there are no fixed costs, and the marginal
costs are constant and equal to c, the total costs will be the marginal cost times the demand, which is
c · (a− e · p). The total profit, given by the total revenue minus the total costs, will therefore be given
by

π(p, e) = p · (a− e · p)− c · (a− e · p) = (p− c) · (a− e · p). (2.11.2)
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Assume now that the monopolist has a belief β about the elasticity parameter. To keep things
easy, suppose that the belief β only assigns positive probability to finitely many states. By supp(β) we
denote the finite set of elasticity parameters that receive positive probability by β. This set is called
the support of the belief β. The expected profit induced by the price p and the belief β is then given
by

π(p, β) =
∑

e∈supp(β)
β(e) · π(p, e).

Hence, the monopolist’s conditional preference relation % is such that for every belief β,

p1 %β p2 precisely when π(p1, β) ≥ π(p2, β).

This means that % has an expected utility representation u, given by

u(p, e) := π(p, e)

for every choice p ≥ 0 and every state e ∈ [e1, e2].
We will now compute, for every belief β, the optimal price for the monopolist. This will be precisely

the price that maximizes the expected profit under β. In view of (2.11.2) this expected profit, for every
price p, is given by

π(p, β) =
∑

e∈supp(β)
β(e) · π(p, e) =

∑
e∈supp(β)

β(e) · [(p− c) · (a− e · p)]

= (p− c) · (a− [
∑

e∈supp(β)
β(e) · e] · p).

The expression
∑

e∈supp(β) β(e) · e has a clear interpretation: It is the expected elasticity parameter
under the belief β. If we denote it by Eβ(e), then we conclude from above that

π(p, β) = (p− c) · (a− Eβ(e) · p).

Thus, the expected profit is obtained if in the profit function π(p, e) we replace the elasticity parameter
e by the expected elastiscity parameter Eβ(e).

For a fixed belief β, the expected profit π(p, β) is a second degree polynomial in p that becomes
zero for p = c and p = a/Eβ(e), and that obtains a maximum precisely in the middle between c and
a/Eβ(e). Thus, the expected profit is maximized for the price

p∗(β) =
1

2
· c+

1

2
· a

Eβ(e)
. (2.11.3)

In other words, for every belief β about the elasticity parameter, the optimal price for the monopolist
is given by (2.11.3).

We check that for this optimal price the demand will always be positive, as it should be, irrespective
of the value of e. By definition, the demand at the optimal price p∗(β) for a given elasticity parameter
e is

a− e · p∗(β) = a− e · [1
2
· c+

1

2
· a

Eβ(e)
].

Recall that e lies in the interval [e1, e2], and hence e ≤ e2 and Eβ(e) ≥ e1. In view of the above, the
demand at p∗(β) and e is then

a− e · [1
2
· c+

1

2
· a

Eβ(e)
] ≥ a− e2 · [

1

2
· c+

1

2
· a
e1

].
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By the assumption (2.11.1) above, this demand will then be at least

a− e2 · [
1

2
· c+

1

2
· a
e1

] > a− 2a

c+ a/e1
· [1

2
· c+

1

2
· a
e1

] = 0.

Hence, the demand will always be greater than zero, no matter which value e takes. As such, the
optimal price p∗(β) in (2.11.3) is justified.

Note that the optimal price in (2.11.3) is decreasing in the expected value of the elasticity pa-
rameter. This makes intuitive sense: If the expected elasticity parameter rises, then the monopolist
believes that, in expectation, a rise in the price will lead to a larger drop in demand. To compensate
for this, the monopolist will end up charging a lower price than before.
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2.12 Proofs

2.12.1 Proof for Section 2.8
In this subsection we will prove Theorem 2.8.1 for two choices. Before doing so, we first derive three
preparatory results. The first characterizes the span of the set of beliefs where the DM is indifferent
between a and b. Let Pa∼b be the set of beliefs p where the DM is indifferent between a and b.

Lemma 2.12.1 (Span of an indifference set) Consider a conditional preference relation % that
satisfies preservation of indifference, and two choices a and b. Then,

span(Pa∼b) = {λ1 · p1 + λ2 · p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.

Proof. Let
A := {λ1 · p1 + λ2 · p2 | p1, p2 ∈ Pa∼b and λ1, λ2 ∈ R}.

We will show that span(Pa∼b) = A. Clearly, A ⊆ span(Pa∼b). Hence, it remains to show that
span(Pa∼b) ⊆ A.

Take some p ∈ span(Pa∼b). Then, there are some beliefs p1, ..., pk, pk+1, ..., pk+m ∈ Pa∼b and
numbers λ1, ..., λk, λk+1, ..., λk+m > 0 such that

p = λ1p1 + ...+ λkpk − λk+1pk+1 − ...− λk+mpk+m. (2.12.1)

Let α1 := λ1 + ...+ λk and α2 := λk+1 + ...+ λk+m. If α1 > 0 and α2 > 0, then define the vectors

q1 :=
λ1
α1
p1 + ...+

λk
α1
pk and q2 :=

λk+1
α2

pk+1 + ...+
λk+m
α2

pk+m.

It may be verified that q1 and q2 are convex combinations of beliefs in Pa∼b. Hence, by repeatedly
using preservation of indifference, it follows that q1, q2 ∈ Pa∼b. By (2.12.1) we have that

p = α1q1 − α2q2,

and thus p ∈ A.
If α1 > 0 and α2 = 0, then we must have that λk+1 = ... = λk+m = 0. We can define q1 ∈ Pa∼b as

above, and get p = α1q1. Thus, p = α1q1 + 0 · q1, which is in A. The case when α1 = 0 and α2 > 0 is
similar. Finally, when α1 = 0 and α2 = 0, then λ1 = ... = λk+m = 0, which means that p = 0. Thus,
p = 0 · p1 + 0 · p2 for two arbitrary beliefs p1, p2 ∈ Pa∼b, and hence p ∈ A.

In general, we thus see that every p ∈ span(Pa∼b) is also in A, and thus span(Pa∼b) ⊆ A. Together
with the observation above that A ⊆ span(Pa∼b), we conclude that span(Pa∼b) = A. This completes
the proof. �

The second preparatory result contains some further properties of the set of beliefs where the DM
is indifferent between a and b, gathered in Lemma 2.12.2. In this lemma, we denote by Sa∼b the set
of states s where a ∼[s] b. From now on, we often write a ∼s b instead of a ∼[s] b. Recall, by Definition
2.2.1, that ∆(S) is the set of probability distributions on S, the set of states. That is, ∆(S) contains
all possible beliefs.
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Lemma 2.12.2 (Linear structure of indifference sets) Suppose there are two choices, a and b,
and n states. Consider a conditional preference relation % that satisfies the regularity axioms. Then,
the following properties hold:

(a) Pa∼b = span(Pa∼b) ∩∆(S);

(b) if % has preference reversals between a and b, then span(Pa∼b) is a hyperplane with dimension
n− 1, the beliefs p2, ..., pn ∈ Pa∼b selected by the utility design procedure in Section 2.4.1 of the book
are linearly independent, and there is a full support belief p ∈ Pa∼b with p(s) > 0 for all s ∈ S;

(c) if a weakly dominates b under % then Pa∼b = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}.

Proof. (a) Clearly, Pa∼b ⊆ span(Pa∼b) ∩∆(S). It remains to show that span(Pa∼b) ∩∆(S) ⊆ Pa∼b.
Take some p ∈ span(Pa∼b) ∩ ∆(S). Then, by Lemma 2.12.1, there are beliefs p1, p2 ∈ Pa∼b and

numbers λ1, λ2 such that
p = λ1p1 + λ2p2. (2.12.2)

Since p ∈ ∆(S), we must have that
∑

s∈S p(s) = 1. Moreover, as p1, p2 are beliefs, it holds that∑
s∈S p1(s) =

∑
s∈S p2(s) = 1. In view of (2.12.2),

1 =
∑
s∈S

p(s) =
∑
s∈S

(λ1p1(s) + λ2p2(s)) = λ1

(∑
s∈S

p1(s)

)
+ λ2

(∑
s∈S

p2(s)

)
= λ1 + λ2.

Suppose first that λ1 = 0. Then, λ2 = 1, and hence p = λ2p2 = p2, which is in Pa∼b. The case
where λ2 = 0 is similar.

Assume next that λ1, λ2 > 0. As λ1+λ2 = 1, it follows from (2.12.2) that p is a convex combination
of p1 and p2, which are both in Pa∼b. By preservation of indifference, it follows that p ∈ Pa∼b.

Suppose now that λ1 > 0 and λ2 < 0. Since λ1 + λ2 = 1, it must be that λ1 > 1. Then, it follows
from (2.12.2) that

p1 =
1

λ1
p− λ2

λ1
p2 =

1

λ1
p+ (1− 1

λ1
)p2 (2.12.3)

since λ2 = 1− λ1. As λ1 > 1, it follows that p1 is a convex combination of p and p2, where p1 and p2
are both in Pa∼b.

We will show that p must be in Pa∼b. Suppose, on the contrary, that p /∈ Pa∼b. Assume, without
loss of generality, that p ∈ Pa�b, where Pa�b is the set of beliefs q where a �q b. Then, it follows
from (2.12.3) and preservation of strict preference that p1 ∈ Pa�b, which is a contradiction. Hence,
p ∈ Pa∼b.

The case where λ1 < 0 and λ2 > 0 is similar. In general, we conclude that every p ∈ span(Pa∼b)∩
∆(S) is also in Pa∼b. Hence, span(Pa∼b) ∩ ∆(S) ⊆ Pa∼b. As we have already seen that Pa∼b ⊆
span(Pa∼b) ∩∆(S), we have that Pa∼b = span(Pa∼b) ∩∆(S).

(b) Suppose that % has preference reversals on {a, b}. Then, there must be a state x where a �x b,
and another state y where b �y a. Indeed, assume that this would not be the case. Then, either a %x b
for all states x, or b %x a for all states x. Assume, without loss of generality, that a %x b for all states
x. Then, it follows by preservation of indifference and preservation of strict preference that a %p b for
all beliefs p. This would contradict the assumption that there are preference reversals between a and
b. Hence, we conclude that there are states x, y with a �x b and b �y a.

By continuity, there must then be a belief p2 = (1− λ2)[x] + λ2[y] on the line segment between [x]
and [y] where a ∼p2 b. By preservation of strict preference, the DM will prefer a to b at every belief
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strictly between [x] and p2 on this line, and will prefer b to a at every belief strictly between [y] and
p2 on this line. Hence, p2 is the unique belief on the line between [x] and [y] where a ∼p2 b.

Now, let the remaining states be numbered s3, ..., sn such that

a �sk b for all k ∈ {3, ...,m},
b �sk a for all k ∈ {m+ 1, ...,m+ l}, and
a ∼sk b for all k ∈ {m+ l + 1, ..., n}.

Following the utility design procedure of Section 2.4.1 in the book, we choose (i) for every k ∈
{3, ...,m} the unique belief pk = (1 − λk)[sk] + λk[y] on the line segment between [sk] and [y] with
a ∼pk b, (ii) for every k ∈ {m + 1, ...,m + l} the unique belief pk = (1 − λk)[sk] + λk[x] on the line
segment between [sk] and [x] with a ∼pk b, and (iii) for every k ∈ {m+ l+ 1, ..., n} the belief pk = [sk}
with a ∼pk b.

We will now show that p2, ..., pn are linearly independent. Take some numbers α2, ..., αn such that

n∑
k=2

αk · pk = 0.

By construction, this sum is equal to

α2((1− λ2)[x] + λ2[y]) +
m∑
k=3

αk((1− λk)[sk] + λk[y])+

+

m+l∑
k=m+1

αk((1− λk)[sk] + λk[x]) +

n∑
k=m+l+1

αk[sk]

=

(
α2(1− λ2) +

m+l∑
k=m+1

αkλk

)
[x] +

(
α2λ2 +

m∑
k=3

αkλk

)
[y]

+
m+l∑
k=3

αk(1− λk)[sk] +
n∑

k=m+l+1

αk[sk] = 0.

As the vectors [x], [y], [s3], ..., [sn] are linearly independent, and 0 < λk < 1 for all k ∈ {2, ..., n}, it
follows that αk = 0 for all k ∈ {3, ..., n}. This, in turn, implies that also α2 = 0. Hence, the indifference
beliefs p2, ..., pn ∈ Pa∼b are linearly independent.

As a consequence, the dimension of span(Pa∼b) is at least n − 1. The dimension of span(Pa∼b)
cannot be n, since otherwise we would have that span(Pa∼b) = RS , and hence, by (a), Pa∼b =
RS ∩∆(S) = ∆(S). This would contradict the assumption that there are preference reversals between
a and b.We thus conclude that the dimension of span(Pa∼b) must be n− 1, and therefore span(Pa∼b)
is a hyperplane.

To show that Pa∼b contains a belief p with p(s) > 0 for every state s, consider the vector

p := 1
n−1p2 + ...+ 1

n−1pn.

It may be verified that p is a belief. Moreover, by construction of the beliefs p2, ..., pn, we have that
p(s) > 0 for all states s.

(c) Let A = {p ∈ ∆(S) |
∑

s∈Sa∼b p(s) = 1}. To show that Pa∼b ⊆ A, take some p ∈ Pa∼b. Assume,
contrary to what we want to show, that p /∈ A. Then, p(s) > 0 for some s ∈ Sa�b, where Sa�b is the
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set of states t with a �t b. As p =
∑

s∈Sa∼b p(s) · [s] +
∑

s∈Sa�b p(s) · [s], it follows by preservation
of indifference and preservation of strict preference that p ∈ Pa�b. This is a contradiction to the
assumption that p ∈ Pa∼b. We thus conclude that p ∈ A. Hence, Pa∼b ⊆ A. The inclusion A ⊆ Pa∼b
follows directly by preservation of indifference. We thus see that Pa∼b = A. This completes the proof.�

The third preparatory result provides suffi cient conditions for an expected utility representation
between two choices.

Lemma 2.12.3 (Suffi cient conditions for expected utility representation) Consider a condi-
tional preference relation % that satisfies the regularity axioms, two choices a and b, and a utility
function u. Suppose that % has preference reversals between a and b, and that there are n states.
If there is a belief p∗ with a �p∗ b and u(a, p∗) > u(b, p∗), and n − 1 linearly independent beliefs
p1, ..., pn−1 with a ∼pk b and u(a, pk) = u(b, pk) for all k ∈ {1, ..., n− 1}, then u represents % on {a, b}.

Proof. Let Pu(a)=u(b) be the set of beliefs p with u(a, p) = u(b, p). Moreover, let Pa�b be the set
of beliefs p with a �p b, and Pu(a)>u(b) the set of beliefs p where u(a, p) > u(b, p). To show that u
represents % on {a, b}, it is thus suffi cient to show that Pa∼b = Pu(a)=u(b) and Pa�b = Pu(a)>u(b).

We start by showing that Pa∼b = Pu(a)=u(b). For every vector v ∈ RS , define the “expected utility”

u(a, v) :=
∑
s∈S

v(s) · u(a, s),

and similarly for u(b, v). Consider the set Vu(a)=u(b) := {v ∈ RS | u(a, v) = u(b, v)}. It may be verified
that Vu(a)=u(b) is a linear space. Moreover, Pu(a)=u(b) = Vu(a)=u(b) ∩∆(S).

We now show that span(Pa∼b) = Vu(a)=u(b). We first prove that span(Pa∼b) ⊆ Vu(a)=u(b). In
Lemma 2.12.2 (b) we have seen that span(Pa∼b) has dimension n− 1. Since the beliefs p1, ..., pn−1 in
span(Pa∼b) are linearly independent, we conclude that {p1, ..., pn−1} is a basis of span(Pa∼b). Take
some v ∈ span(Pa∼b). Then, we can write

v = λ2p2 + ...+ λnpn

for some numbers λ2, ..., λn. Since u(a, pk) = u(b, pk) for all k ∈ {1, ...n− 1}, it follows that

u(a, v)− u(b, v) =
n∑
k=2

λk · (u(a, pk)− u(b, pk)) = 0,

and hence v ∈ Vu(a)=u(b). Thus, span(Pa∼b) ⊆ Vu(a)=u(b).
We next show that Vu(a)=u(b) ⊆ span(Pa∼b). Since Vu(a)=u(b) is a linear subspace of RS , its dimen-

sion can be at most n. Moreover, as span(Pa∼b) ⊆ Vu(a)=u(b) and span(Pa∼b) has dimension n− 1, the
dimension of Vu(a)=u(b) is at least n−1. Suppose, contrary to what we want to prove, that Vu(a)=u(b) is
not a subset of span(Pa∼b). Then, the dimension of Vu(a)=u(b) must be n, and hence Vu(a)=u(b) = RS .
However, this is a contradiction since u(a, p∗) > u(b, p∗), and hence p∗ /∈ Vu(a)=u(b). We thus conclude
that Vu(a)=u(b) ⊆ span(Pa∼b). Since we have already seen that span(Pa∼b) ⊆ Vu(a)=u(b), it follows that
span(Pa∼b) = Vu(a)=u(b).

Since Pu(a)=u(b) = Vu(a)=u(b) ∩ ∆(S) and, by Lemma 2.12.2 (a), Pa∼b = span(Pa∼b) ∩ ∆(S), we
conclude that Pa∼b = Pu(a)=u(b).

We next prove that Pa�b = Pu(a)>u(b). Let p∗ be the belief where a �p∗ b and u(a, p∗) > u(b, p∗).
Consider the set

A := {p ∈ ∆(S) | there is no λ ∈ [0, 1] with (1− λ)p+ λp∗ ∈ Pa∼b}.
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We show that Pa�b = A. To prove that Pa�b ⊆ A, take some p ∈ Pa�b. Since p∗ ∈ Pa�b it follows
by preservation of strict preference that (1 − λ)p + λp∗ ∈ Pa�b for every λ ∈ [0, 1], and hence p ∈ A.
Thus, Pa�b ⊆ A.

To show that A ⊆ Pa�b, take some p ∈ A. Suppose that p /∈ Pa�b. Since p ∈ A, we must
have that p /∈ Pa∼b, and hence p ∈ Pb�a. By continuity, there must then be some λ ∈ (0, 1) with
(1− λ)p+ λp∗ ∈ Pa∼b. This, however, contradicts the assumption that p ∈ A. Hence, p ∈ Pa�b, which
yields A ⊆ Pa�b. Altogether, we conclude that Pa�b = A.

We next show that Pu(a)>u(b) = A. Since Pa∼b = Pu(a)=u(b), it follows that

A = {p ∈ ∆(S) | there is no λ ∈ [0, 1] with (1− λ)p+ λp∗ ∈ Pu(a)=u(b)}.

As p∗ ∈ Pu(a)>u(b) by construction, it can be shown in a similar same way as above that Pu(a)>u(b) = A.
As such, Pa�b = A = Pu(a)>u(b).

Since Pa∼b = Pu(a)=u(b) and Pa�b = Pu(a)>u(b), we conclude that u(a, p) ≥ u(b, p) if and only if
a %p b. Hence, the utility function u represents % on {a, b}. This completes the proof. �

We are now ready to prove Theorem 2.8.1.

Proof of Theorem 2.8.1. Suppose first that % has an expected utility representation. Then, it has
been shown in Section 2.8.1 that % satisfies continuity, preservation of indifference and preservation
of strict preference.

Assume next that % satisfies continuity, preservation of indifference and preservation of strict
preference. We will show that % has an expected utility representation. We distinguish four cases: (a)
there are preference reversals between a and b, (b) a weakly dominates b, (c) b weakly dominates a,
and (d) a and b are equivalent, meaning that a ∼s b for all states s. For the remainder of this proof,
we assume that the number of states is n.

(a) Suppose that there are preference reversals between a and b. Let the states x and y be such that
a �x b and b �y a, and use the utility design procedure from Section 2.4.1 in the book to generate
utilities u(a, s) and u(b, s) for every state s. Recall that the procedure is based on the selection of
specific beliefs p2, ..., pn ∈ Pa∼b. Then, by construction of the procedure, we have that u(b, y) > u(a, y)
and u(b, pk) = u(a, pk) for all k ∈ {2, ..., n}.Moreover, we know from Lemma 2.12.2 (b) that these n−1
beliefs p2, ..., pn are linearly independent. By Lemma 2.12.3 it thus follows that the utility function u
generated by the utility design procedure represents % .

(b) Suppose that a weakly dominates b. Choose a utility function u such that, for every state s, we
have u(a, s) > u(b, s) when [s] ∈ Pa�b, and u(a, s) = u(b, s) when [s] ∈ Pa∼b. As, by Lemma 2.12.2 (c),

Pa∼b = {p ∈ ∆(S) |
∑

s∈Sa∼b

p(s) = 1}

it follows that Pa∼b = Pu(a)=u(b). Since every belief p is either in Pa∼b or Pa�b, it follows that Pa�b =
Pu(a)>u(b). We thus conclude that the utility function u represents % .

(c) This proof is similar to that for (b).

(d) Suppose that a and b are equivalent. Then, any utility function u with u(a, s) = u(b, s) for every
state s will represent % . This completes the proof. �
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2.12.2 Proofs for Section 2.9
In this subsection we will prove Proposition 2.9.1 and Theorem 2.9.1. Before we can prove Proposition
2.9.1 we need the result below. In the statement, a full support belief is a belief p with p(s) > 0 for
all states s.

Lemma 2.12.4 (Line containing three indifference beliefs) Consider a conditional preference
relation % that has preference reversals for all pairs of choices, and satisfies the regularity axioms and
transitivity. Then, for every three choices a, b, c, there is a line of beliefs that contains full support
beliefs pab, pac, pbc where the DM is indifferent between the respective choices.

Proof. Suppose first that there is a full support belief p ∈ Pa∼b∩Pb∼c. Then, by transitivity, p ∈ Pa∼c.
We can then choose a line of beliefs through p. Such a line will satisfy the statement in the lemma.

Assume next that there is no full support belief in Pa∼b ∩ Pb∼c. By transitivity, there will be no
full support belief in Pa∼b ∩ Pa∼c or Pb∼c ∩ Pa∼c either. Let ∆+(S) be the set of full support beliefs.
Then, the sets Pa∼b, Pa∼c and Pb∼c will be pairwise disjoint on ∆+(S). As, by Lemma 2.12.2 (a),
these indifference sets are the intersections of hyperplanes with ∆(S), it must be that one of these
indifference sets is “in between”the other two within ∆+(S). Suppose, without loss of generality, that
Pb∼c is in between Pa∼b and Pa∼c. By Lemma 2.12.2 (b), there is a full support belief pab ∈ Pa∼b and
a full support belief pac ∈ Pa∼c. Let l be the line of beliefs that goes through pab and pac. As the set
Pb∼c is in between Pa∼b and Pa∼c, there must be a belief pbc ∈ Pb∼c on the line l between pab and pac.
Moreover, pbc is a full support belief, since pab and pac are full support beliefs. The line l thus satisfies
the requirements of the lemma. This completes the proof. �

We are now ready to prove Proposition 2.9.1.

Proof of Proposition 2.9.1. Consider a conditional preference relation % that has preference
reversals on every pair of choices, and satisfies the regularity axioms and transitivity.

(a) Assume first that % satisfies three choice linear preference intensity. Consider three choices a, b
and c.We must show that 〈Pa∼b〉∩〈Pb∼c〉 ⊆ 〈Pa∼c〉 . Take some q ∈ 〈Pa∼b〉∩〈Pb∼c〉 . By Lemma 2.12.4
there is a line l containing full support beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c and pac ∈ Pa∼c. Then, there is
some ε ∈ (0, 1) small enough such that (i) the vectors p′ab := (1− ε)pab + εq, p′bc := (1− ε)pbc + εq and
p′ := (1−ε)pac+εq are all in ∆(S), and (ii) the line l′ through p′ab and p

′
bc contains a belief p

′
ac ∈ Pa∼c.

Since p′ab − p′bc = (1− ε) · (pab − pbc), we conclude that the lines l and l′ are parallel.
Moreover, the lines l and l′ can be chosen such that they contain beliefs where the DM is not

indifferent between any of the three choices. Hence, by preservation of strict preference, p′ac is the
unique belief in Pa∼c on the line l′. Also, the lines l and l′ can be chosen such that the probability of
no state is constant on l or l′.

As q ∈ 〈Pa∼b〉 we know, in particular, that q ∈ span(Pa∼b). Thus, we conclude that p′ab ∈
span(Pa∼b)∩∆(S). Since Lemma 2.12.2 (a) guarantees that span(Pa∼b)∩∆(S) = Pa∼b, it follows that
p′ab ∈ Pa∼b. As q ∈ 〈Pb∼c〉 it can be shown, in a similar way, that p′bc ∈ Pb∼c.

We will now show that p′ac = p′. Suppose first that pab = pbc. Then, by transitivity, pac = pab = pbc.
Moreover, by definition of p′ab and p

′
bc it follows that p

′
ab = p′bc, and hence by transitivity we must have

that p′ac = p′ab = p′bc. Since

p′ = (1− ε)pac + εq = (1− ε)pab + εq = p′ab,

we conclude that p′ac = p′.
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Suppose now that pab 6= pbc. Then, by transitivity, the beliefs pab, pbc and pac are pairwise different.
By definition of p′ab and p

′
bc, we then have that p

′
ab 6= p′bc. Hence, by transitivity, the beliefs p

′
ab, p

′
bc

and p′ac are pairwise different.
By three choice linear preference intensity, we have for every state s that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)). (2.12.4)

Note that p′ab(s) = (1− ε)pab(s) + εq(s) and p′bc(s) = (1− ε)pbc(s) + εq(s), which implies that

(p′ab(s)− p′bc(s)) = (1− ε)(pab(s)− pbc(s)). (2.12.5)

Recall that the beliefs pab, pbc and pac are pairwise different, the beliefs p′ab, p
′
bc and p

′
ac are pairwise

different, and no state has constant probability on the lines l and l′. Hence, it follows from (2.12.4)
and (2.12.5) that

(p′ac(s)− p′bc(s)) = (1− ε)(pac(s)− pbc(s)),

and thus

p′ac(s) = (1− ε)(pac(s)− pbc(s)) + p′bc(s)

= (1− ε)pac(s) + εq(s) = p′(s).

As this holds for every state s, we conclude that p′ac = p′. Thus, the belief p′ = (1 − ε)pac + εq is in
Pa∼c. As such,

q =
1

ε
p′ + (1− 1

ε
)pac ∈ 〈Pa∼c〉 .

As this holds for every q ∈ 〈Pa∼b〉 ∩ 〈Pb∼c〉 , it follows that 〈Pa∼b〉 ∩ 〈Pb∼c〉 ⊆ 〈Pa∼c〉 .
(b) Suppose now that 〈Pa∼b〉 ∩ 〈Pb∼c〉 ⊆ 〈Pa∼c〉 for all three choices a, b, c. We must show that %
satisfies three choice linear preference intensity. Consider two parallel lines of beliefs l, l′ that (i)
contain beliefs where the DM is not indifferent between any two choices from {a, b, c}, (ii) where l
contains indifference beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c and pac ∈ Pa∼c, and (iii) l′ contains indifference
beliefs p′ab ∈ Pa∼b, p′bc ∈ Pb∼c and p′ac ∈ Pa∼c.

Let lab be the line through pab and p′ab, let lbc be the line through pbc and p
′
bc, and lac the line

through pac and p′ac. Note that all these lines belong to the same two-dimensional plane: the plane
that goes through l and l′.

Assume first that the lines lab, lbc and lac are all parallel. Then, there is a vector q such that

p′ab = pab + q, p′bc = pbc + q and p′ac = pac + q.

As a consequence, for every state s,

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = (pab(s)− pbc(s)) · (pac(s)− pbc(s))
= (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

Hence, the formula for three choice linear preference intensity is satisfied.
Assume next that the lines lab, lbc and lac are not all parallel. Without loss of generality, we suppose

that lab and lbc are not parallel. Since these two lines lie in the same two-dimensional plane, they
must intersect at a unique vector q. Since q lies on lab, which goes through pab and p′ab in Pa∼b, we
conclude that q ∈ 〈Pa∼b〉 . Similarly, as q lies on lbc, which goes through pbc and p′bc in Pb∼c, it follows
that q ∈ 〈Pb∼c〉 . Since we assume that 〈Pa∼b〉 ∩ 〈Pb∼c〉 ⊆ 〈Pa∼c〉 , we conclude that q ∈ 〈Pa∼c〉 too.
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Let V be the two-dimensional plane that goes through the lines l and l′. Since, by condition
(i) above, l and l′ contain beliefs where the DM is not indifferent between a and c, it follows that
〈Pa∼c〉 ∩ V = lac. As q ∈ 〈Pa∼c〉 ∩ V, we conclude that q lies on the line lac.

As q lies on lab, lbc and lac, the beliefs pab, pbc, pac lie on l, the beliefs p′ab, p
′
bc and p

′
ac lie on l

′, and
the lines l and l′ are parallel, there is a unique number λ such that

p′ab = (1− λ)q + λpab, p
′
bc = (1− λ)q + λpbc and p

′
ac = (1− λ)q + λpac.

Hence, for every state s we have that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) = λ · (pab(s)− pbc(s)) · (pac(s)− pbc(s))
= (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

Thus, the formula for three choice linear preference intensity is satisfied.
We therefore conclude that % satisfies three choice linear preference intensity. This completes the

proof. �

Before we can prove Theorem 2.9.1, we need some preparatory results. The following lemma
provides a connection between the linear extension and the span of an indifference set Pa∼b.

Lemma 2.12.5 (Linear extension and span) Consider a conditional preference relation % that
satisfies preservation of indifference. Then, for every two choices a, b,

〈Pa∼b〉 = {v ∈ span(Pa∼b) |
∑

s∈S
v(s) = 1}.

Proof. Let A := {v ∈ span(Pa∼b) |
∑

s∈S v(s) = 1}. We will prove that 〈Pa∼b〉 = A. To show that
〈Pa∼b〉 ⊆ A, take some q ∈ 〈Pa∼b〉 . Then, there are p1, p2 ∈ Pa∼b and some number λ such that
q = (1−λ)p1 +λp2. Clearly, q ∈ span(Pa∼b). Moreover, since

∑
s∈S p1(s) =

∑
s∈S p2(s) = 1, it follows

that
∑

s∈S q(s) = 1 also. Hence, q ∈ A.
To show that A ⊆ 〈Pa∼b〉 , take some q ∈ A. By Lemma 2.12.1, there are p1, p1 ∈ Pa∼b and numbers

λ1, λ2 such that q = λ1p1+λ2p2. As
∑

s∈S p1(s) =
∑

s∈S p2(s) = 1, it follows that
∑

s∈S q(s) = λ1+λ2.
Since q ∈ A, it must be that

∑
s∈S q(s) = 1, and hence λ1 + λ2 = 1. Thus, λ2 = 1− λ1. But then, by

definition, q ∈ 〈Pa∼b〉 .
We thus conclude that 〈Pa∼b〉 ⊆ A and A ⊆ 〈Pa∼b〉 , which implies that 〈Pa∼b〉 = A. This completes

the proof. �

On the basis of Proposition 2.9.1 and Lemma 2.12.5 we can show the following characterization of
three choice linear preference intensity, wich will be useful for proving Theorem 2.9.1.

Lemma 2.12.6 (Three choice linear preference intensity) Suppose that the conditional pref-
erence relation % has preference reversals on every pair of choices, and satisfies the regularity axioms
and transitivity. Then, % satisfies three choice linear preference intensity, if and only if, for every
three choices a, b, c we have that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c).

Proof. (a) Suppose first that % satisfies three choice linear preference intensity. We will show that
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c). We distinguish two cases: (1) 〈Pa∼b〉 ∩ 〈Pb∼c〉 is not empty,
and (2) 〈Pa∼b〉 ∩ 〈Pb∼c〉 is empty.
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Case 1. Suppose that 〈Pa∼b〉 ∩ 〈Pb∼c〉 is not empty. Since % satisfies three choice linear preference
intensity, we know by Proposition 2.9.1 that

〈Pa∼b〉 ∩ 〈Pb∼c〉 ⊆ 〈Pa∼c〉 . (2.12.6)

To show that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c), take some v ∈ span(Pa∼b) ∩ span(Pb∼c). Then,
by Lemma 2.12.1, we have that

v = λ1p1 + λ2p2 = µ1q1 + µ2q2

for some p1, p2 ∈ Pa∼b, q1, q2 ∈ Pb∼c and some numbers λ1, λ2, µ1, µ2. Note that∑
s∈S

v(s) = λ1

(∑
s∈S

p1(s)

)
+ λ2

(∑
s∈S

p2(s)

)
= λ1 + λ2,

since
∑

s∈S p1(s) =
∑

s∈S p2(s) = 1. Similarly,
∑

s∈S v(s) = µ1 + µ2, which yields

λ1 + λ2 = µ1 + µ2.

We distinguish the following cases: (1.1)
∑

s∈S v(s) 6= 0, and (1.2)
∑

s∈S v(s) = 0.

Case 1.1. Suppose first that
∑

s∈S v(s) 6= 0, which implies that λ1 + λ2 6= 0. Then,

1

λ1 + λ2
v =

λ1
λ1 + λ2

p1 +
λ2

λ1 + λ2
p2,

which means that 1
λ1+λ2

v ∈ 〈Pa∼b〉 . Since λ1+λ2 = µ1+µ2, it follows in a similar way that
1

λ1+λ2
v =

1
µ1+µ2

v ∈ 〈Pb∼c〉 . Thus, 1
λ1+λ2

v ∈ 〈Pa∼b〉∩〈Pb∼c〉 . By (2.12.6) we then conclude that 1
λ1+λ2

v ∈ 〈Pa∼c〉 ,
and hence 1

λ1+λ2
v ∈ span(Pa∼c). This implies that v ∈ span(Pa∼c) also.

Case 1.2. Suppose next that
∑

s∈S v(s) = 0. Since 〈Pa∼b〉 ∩ 〈Pb∼c〉 is not empty, we can take
some q ∈ 〈Pa∼b〉 ∩ 〈Pb∼c〉 . By (2.12.6) we then know that q ∈ 〈Pa∼c〉 , and hence, in particular,
q ∈ span(Pa∼c).

Choose some α ∈ (0, 1), and let q′ := (1−α) ·v+α ·q. As v, q ∈ span(Pa∼b)∩span(Pb∼c), it follows
that q′ ∈ span(Pa∼b) ∩ span(Pb∼c) also. Moreover, as

∑
s∈S v(s) = 0 and

∑
s∈S q(s) = 1, it follows

that
∑

s∈S q
′(s) = α > 0. By Case 1.1, it thus follows that q′ ∈ span(Pa∼c). But then,

v =
1

1− αq
′ − α

1− αq ∈ span(Pa∼c)

since both q and q′ are in span(Pa∼c).

Case 2. Suppose that 〈Pa∼b〉 ∩ 〈Pb∼c〉 is empty. As, by Proposition 2.9.1, 〈Pa∼b〉 ∩ 〈Pa∼c〉 ⊆ 〈Pb∼c〉
and 〈Pa∼c〉 ∩ 〈Pb∼c〉 ⊆ 〈Pa∼b〉 , it follows that 〈Pa∼b〉 ∩ 〈Pa∼c〉 and 〈Pa∼c〉 ∩ 〈Pb∼c〉 are empty as well.

Let V0 := {v ∈ RX |
∑

s∈S v(s) = 0} and V1 := {v ∈ RX |
∑

s∈S v(s) = 1}. By Lemma 2.12.5
we know that 〈Pa∼b〉 = span(Pa∼b) ∩ V1 and 〈Pb∼c〉 = span(Pb∼c) ∩ V1, and hence 〈Pa∼b〉 ∩ 〈Pb∼c〉 =
span(Pa∼b)∩ span(Pb∼c)∩V1. As 〈Pa∼b〉∩ 〈Pb∼c〉 is empty, we conclude that span(Pa∼b)∩ span(Pb∼c)
has an empty intersection with V1.

This implies, in turn that span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. To see this, assume to the contrary
that there would be a vector v ∈ span(Pa∼b) ∩ span(Pb∼c) with

∑
s∈S v(s) = α 6= 0. Then, the

vector 1
αv would still be in span(Pa∼b) ∩ span(Pb∼c), and

∑
s∈S

1
αv(s) = 1, so v ∈ V1. But then,
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1
αv ∈ span(Pa∼b) ∩ span(Pb∼c) ∩ V1, which is a contradiction since span(Pa∼b) ∩ span(Pb∼c) ∩ V1 is
empty. Thus, we know that span(Pa∼b) ∩ span(Pb∼c) ⊆ V0.

On the basis of this fact, it can now be shown that span(Pa∼b)∩span(Pb∼c) = span(Pa∼b)∩V0. To
see this, note first that span(Pa∼b)∩span(Pb∼c) ⊆ span(Pa∼b)∩V0, since span(Pa∼b)∩span(Pb∼c) ⊆ V0.
Moreover, we also know that span(Pa∼b) 6= span(Pb∼c), since otherwise, by Lemma 2.12.5, 〈Pa∼b〉 =
〈Pb∼c〉 and hence 〈Pa∼b〉 ∩ 〈Pb∼c〉 would not be empty, which would be a contradiction. Since, by
Lemma 2.12.2 (b), span(Pa∼b) and span(Pb∼c) are linear subspaces of dimension n− 1, it follows that
span(Pa∼b) ∩ span(Pb∼c) is a linear subspace of dimension n − 2. Now, consider the linear subspace
span(Pa∼b)∩V0. Clearly, span(Pa∼b) 6= V0, since span(Pa∼b) contains beliefs in Pa∼b which are not in
V0. Since span(Pa∼b) and V0 are linear subspaces of dimension n− 1, it follows that span(Pa∼b) ∩ V0
is a linear subspace of dimension n − 2. Since span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼b) ∩ V0 and both
linear subspaces have the same dimension, n − 2, both spaces must be equal. Hence, span(Pa∼b) ∩
span(Pb∼c) = span(Pa∼b) ∩ V0.

Since we have seen above that also 〈Pa∼b〉 ∩ 〈Pa∼c〉 is empty, it can be shown in a similar way that
span(Pa∼b) ∩ span(Pa∼c) = span(Pa∼b) ∩ V0. By combining the latter two equalities, we get

span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0 = span(Pa∼b) ∩ span(Pa∼c),

which implies that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c).
Since all cases have been covered, this completes part (a).

(b) Suppose now that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c) for all three choices a, b, c. Since, by
Lemma 2.12.5, 〈Pa∼b〉 = span(Pa∼b) ∩ V1, and similarly for 〈Pb∼c〉 and 〈Pa∼c〉 , it follows that

〈Pa∼b〉 ∩ 〈Pb∼c〉 = span(Pa∼b) ∩ span(Pb∼c) ∩ V1 ⊆ span(Pa∼c) ∩ V1 = 〈Pa∼c〉 .

By Proposition 2.9.1 it follows that % satisfies three choice linear preference intensity. The proof is
hereby complete. �

In our last preparatory result, we characterize the span of an indifference set Pa∼b in case of an
expected utility representation. We use the following notation: For a given utility function u, choice
a and vector q ∈ RS , we denote by u(a, q) :=

∑
s∈S q(s) · u(a, s) the “expected utility” induced by a

at the vector q.

Lemma 2.12.7 (Span of indifference set under utility representation) Consider a conditional
preference relation % with an expected utility representation u. Suppose there are preferene reversals
between choices a and b. Then,

span(Pa∼b) = {q ∈ RS | u(a, q) = u(b, q)}.

Proof. Let A := {q ∈ RS | u(a, q) = u(b, q)}. We first show that span(Pa∼b) ⊆ A. Take some
q ∈ span(Pa∼b). Then, by Lemma 2.12.1, there are p1, p2 ∈ Pa∼b and numbers λ1, λ2 such that
q = λ1p1 + λ2p2. As u(a, p1) = u(b, p1) and u(a, p2) = u(b, p2), it follows that

u(a, q) = λ1u(a, p1) + λ2u(a, p2) = λ1u(b, p1) + λ2u(b, p2) = u(b, q),

and hence q ∈ A. Thus, span(Pa∼b) ⊆ A.
By Lemma 2.12.2 (b) we know that span(Pa∼b) has dimension n− 1. Since A is a linear subspace

with dimension n− 1 also, and span(Pa∼b) ⊆ A, it must be that span(Pa∼b) = A. This completes the
proof. �



48 CHAPTER 2. DECISION PROBLEMS

We are now ready to prove Theorem 2.9.1.

Proof of Theorem 2.9.1. (a) Suppose first that % has an expected utility representation u. From
Section 2.8.1 we know that % satisfies continuity, preservation of indifference and preservation of strict
preference. To show transitivity, assume that a %p b %p c for some belief p, and for some choices a, b
and c. Then, we must have that u(a, p) ≥ u(b, p) ≥ u(c, p), which implies that u(a, p) ≥ u(c, p), and
hence a %p c.

To show three choice linear preference intensity it suffi ces, in view of Lemma 2.12.6, to show
that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c) for all three choices a, b, c. Take some q ∈ span(Pa∼b) ∩
span(Pb∼c). Then, by Lemma 2.12.7, we have that u(a, q) = u(b, q) and u(b, q) = u(c, q), and hence
u(a, q) = u(c, q). By the same Lemma 2.12.7 it thus follows that q ∈ span(Pa∼c). Hence, span(Pa∼b)∩
span(Pb∼c) ⊆ span(Pa∼c), which implies by Lemma 2.12.6 that% satisfies three choice linear preference
intensity.

We finally show four choice linear preference intensity. Consider a line of beliefs l, and four choices
a, b, c, d such that there is a belief on the line where the DM is not indifferent between any pair of
choices in {a, b, c, d}. Moreover, let pab, pac, pad, pbc, pbd and pcd be corresponding indifference beliefs
on this line. Consider some state s. If the probability of s is constant on the line l, then the formula
for four choice linear preference intensity holds trivially.

We therefore assume from now on that the probability of s is not constant on l, so that every belief
on l is uniquely given by the probability it assigns to s. Suppose that pab = pac. Then, by transitivity,
it must be that pab = pac = pbc, and the formula for four choice linear preference intensity would hold
trivially. Similarly, the formula would trivially hold if pab = pad or pac = pad.

We now assume that pab, pac, pad are pairwise different. Then, by transitivity, pbc is different from
pab and pac, the belief pbd is different from pab and pad, and the belief pcd is different from pac and pad.

Consider two arbitrary, but different, beliefs p1, p2 on l, and define

∆(u(a)− u(b)) := (u(a, p1)− u(b, p1))− (u(a, p2)− u(b, p2)).

As there is a belief on the line where the DM is indifferent between a and b, and another belief on
the line where the DM is not, we must have that ∆(u(a) − u(b)) 6= 0. In a similar way, we define
∆(u(a)− u(c)) and ∆(u(a)− u(d)).

In (2.9.4) of Section 2.9.1 we have seen that

∆(u(a)− u(b))

∆(u(a)− u(c))
=
pac(s)− pbc(s)
pab(s)− pbc(s)

. (2.12.7)

Recall that also ∆(u(a) − u(c)) 6= 0. Moreover, since pab 6= pbc and the belief on the line is uniquely
given by its probability on s, we have that pab(s) 6= pbc(s). Thus, the two ratios above are well-defined.
In a similar fashion, it follows that

∆(u(a)− u(c))

∆(u(a)− u(d))
=
pad(s)− pcd(s)
pac(s)− pcd(s)

(2.12.8)

and
∆(u(a)− u(b))

∆(u(a)− u(d))
=
pad(s)− pbd(s)
pab(s)− pbd(s)

(2.12.9)

As, by definition,

∆(u(a)− u(b))

∆(u(a)− u(d))
=

∆(u(a)− u(b))

∆(u(a)− u(c))
· ∆(u(a)− u(c))

∆(u(a)− u(d))
,
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it follows by (2.12.7), (2.12.8) and (2.12.9) that

pad(s)− pbd(s)
pab(s)− pbd(s)

=
pac(s)− pbc(s)
pab(s)− pbc(s)

· pad(s)− pcd(s)
pac(s)− pcd(s)

.

By cross-multiplication, this yields the formula for four choice linear preference intensity. Thus, %
satisfies four choice linear preference intensity.

(b) Suppose that % satisfies continuity, preservation of indifference, preservation of strict preference,
transitivity, three choice linear preference intensity and four choice linear preference intensity. If there
are only two choices, then we know from Theorem 2.8.1 that there is an expected utility representation.
We therefore assume, from now on, that there are at least three choices.

Suppose first that no two choices are equivalent under % . To show that % has an expected utility
representation, we distinguish two cases: (1) Pa∼b = Pc∼d for every two pairs of choices {a, b} and
{c, d}, and (2) Pa∼b 6= Pc∼d for some pairs of choices {a, b} and {c, d}.

Case 1. Suppose that Pa∼b = Pc∼d for every two pairs of choices {a, b} and {c, d}. Let A := Pa∼b
for some pair of choices {a, b}. If A = ∆(S), then the DM is always indifferent between any pair of
choices. This would be a contradiction, as we assume that no two choices are equivalent under % .

Hence, it must be that A 6= ∆(S). By preservation of indifference, there must be a state x with
[x] /∈ A. Thus, [x] /∈ Pa∼b for every two choices a and b. By transitivity, we can order the choices
c1, c2, ..., cK such that

c1 �[x] c2 �[x] c3 �[x] ... �[x] cK .

Choose numbers v1, ..., vK with v1 > v2 > ... > vK .
For choice c1, set u(c1, x) = v1, and set the utilities u(c1, s) for states s 6= x arbitrarily.
By Lemma 2.12.2 (b) we know that span(A) has dimension n−1, where n is the number of states.

Let {p1, ..., pn−1} be a basis for span(A). As [x] /∈ span(A), we know that {p1, ..., pn−1, [x]} is a basis
for RS . For every choice ck with k ≥ 2 find the unique utilities u(ck, s) such that

u(ck, p1) = u(c1, p1), ..., u(ck, pn−1) = u(c1, pn−1) and u(ck, x) = vk. (2.12.10)

We will show that the utility function u represents % .
Take two choices a, b with a �[x] b. Then, by construction of the utility function, we have that

u(a, pk) = u(b, pk) for all k ∈ {1, ..., n − 1}, and u(a, x) > u(b, x). As {p1, ..., pn−1} is a basis for
span(Pa∼b), we know that p1, ..., pn−1 are linearly independent. It thus follows by Lemma 2.12.3 that
u represents % on the pair of choices {a, b}. As this holds for every pair of choices {a, b}, we conclude
that u represents % .
Case 2. Suppose that Pa∼b 6= Pc∼d for some pairs of choices {a, b} and {c, d}. Then, there must be
some choices a, b, c such that Pa∼c 6= Pb∼c. To see this, suppose on the contrary that Pa∼c = Pb∼c for all
three choices a, b, c. Then, take two arbitrary pairs of choices {a, b} and {c, d} where {a, b}∩{c, d} = ∅.
By assumption we would then have that

Pa∼b = Pb∼c = Pc∼d,

and hence Pa∼b = Pc∼d for all pairs {a, b} and {c, d}. This would be a contradiction. Hence, Pa∼c 6=
Pb∼c for some choices a, b, c.

Now take some choice d different from a, b and c, if it exists. Then, either Pa∼d 6= Pb∼d or
Pa∼d 6= Pc∼d. To see this, suppose on the contrary that Pa∼d = Pb∼d = Pc∼d. Define A := Pa∼d =
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Pb∼d = Pc∼d. Since, by transitivity, Pa∼d ∩ Pb∼d ⊆ Pa∼b and Pb∼d ∩ Pc∼d ⊆ Pb∼c, it follows that
A ⊆ Pa∼b and A ⊆ Pb∼c. Since, by Lemma 2.12.2 (b), span(A), span(Pa∼b) and span(Pb∼c) all have
dimension n− 1, it follows that A = span(Pa∼b) = span(Pb∼c).

Hence, by Lemma 2.12.2 (a),

A = ∆(S) ∩ span(A) = ∆(S) ∩ span(Pa∼b) = Pa∼b.

In a similar way, it can be shown that also A = Pb∼c. This would imply that A = Pa∼b = Pb∼c.

By transitivity, A = Pa∼b ∩ Pb∼c ⊆ Pa∼c. In a similar way as above, it can be shown that, in fact,
A = Pa∼c.We thus conclude that Pa∼b = Pb∼c = Pa∼c. This is a contradiction to our assumption that
Pa∼c 6= Pb∼c. Hence, either Pa∼d 6= Pb∼d or Pa∼d 6= Pc∼d.

We can thus apply the utility design procedure for more than two choices, from Section 2.4.2. We
will show that the utility function u so obtained represents % . We distinguish the following cases:
(2.1) there are three choices, (2.2) there are four choices, and (2.3) there are more than four choices.

Case 2.1. Suppose there are three choices. Let these choices be a, b, c with Pa∼c 6= Pb∼c. In the
procedure, we first derive the utilities u(a, s) and u(b, s) for the choices a and b, using the utility
design procedure for two choices. By the proof of Theorem 2.8.1 we know that these utilities represent
% on {a, b}.

To derive the utilities for c, we first fix the beliefs p1, p2, ..., pn as described in the utility design
procedure for more than two choices, where n is the number of states. In particular, p1 ∈ Pa∼c\Pb∼c,
and p2, ..., pn ∈ Pb∼c. Note that such a belief p1 ∈ Pa∼c\Pb∼c can be found, since Pa∼c 6= Pb∼c and, by
Lemma 2.12.2 (a) and (b), Pa∼c = span(Pa∼c) ∩∆(S), Pb∼c = span(Pb∼c) ∩∆(S) where span(Pa∼c)
and span(Pb∼c) both have dimension n− 1.

Since p1 /∈ Pb∼c, we must have that p1 ∈ Pb�c or p1 ∈ Pc�b. Let us assume, without loss of
generality, that p1 ∈ Pc�b. As p1 ∈ Pa∼c, it follows by transitivity that p1 ∈ Pa�b. Above we have seen
that u represents % on {a, b}, and thus we know that u(a, p1) > u(b, p1).

We now show that u represents % on {b, c}. By construction of the utility design procedure, we
have that u(c, pk) = u(b, pk) for all k ∈ {2, ..., n}. Moreover, we know by the proof of Lemma 2.12.2
(b) that {p2, ..., pn} is a basis for span(Pb∼c), and hence p2, ..., pn are linearly independent. Consider
the belief p1 above, with p1 ∈ Pa�b. Since we know that u(a, p1) > u(b, p1) and, by construction of the
utility design procedure, u(c, p1) = u(a, p1), it follows that u(c, p1) > u(b, p1). But then, it follows by
Lemma 2.12.3 that u represents % on {b, c}.

We finally show that u represents % on {a, c}. Since Pa∼c 6= Pb∼c, we know by Lemma 2.12.2
(a) that span(Pa∼c) 6= span(Pb∼c). As both linear subspaces have dimension n − 1, it follows that
span(Pa∼c) ∩ span(Pb∼c) is a linear subspace with dimension n − 2. Choose a basis {q2, ..., qn−1} for
span(Pa∼c)∩span(Pb∼c). As p1 /∈ Pb∼c, we know by Lemma 2.12.2 (a) that p1 /∈ span(Pb∼c), and hence
{p1, q2, ..., qn−1} are linearly independent. Since all these vectors are in span(Pa∼c), and span(Pa∼c)
has dimension n− 1, we conclude that {p1, q2, ..., qn−1} is a basis for Pa∼c.

By Lemma 2.12.6 we know that span(Pa∼c) ∩ span(Pb∼c) ⊆ span(Pa∼b). As such, we conclude
that q2, ..., qn−1 ∈ span(Pa∼b) ∩ span(Pb∼c). Since u represents % on {a, b} and {b, c}, it follows from
Lemma 2.12.7 that

u(a, qk) = u(b, qk) and u(b, qk) = u(c, qk) for all k ∈ {2, ..., n− 1}

which implies that
u(a, qk) = u(c, qk) for all k ∈ {2, ..., n− 1}. (2.12.11)
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Moreover, by construction of the utility design procedure,

u(a, p1) = u(c, p1). (2.12.12)

Since Pa∼c 6= Pb∼c we can choose, by a similar argument as above, a belief p ∈ Pb∼c\Pa∼c. Assume,
without loss of generality, that p ∈ Pc�a. Then, by transitivity, p ∈ Pb�a. As u represents % on {a, b}
and {b, c}, we know that u(c, p) = u(b, p) and u(b, p) > u(a, p), which implies that

u(c, p) > u(a, p) for some p ∈ Pc�a. (2.12.13)

In view of (2.12.11), (2.12.12) and (2.12.13), it follows by Lemma 2.12.3 that u represents the restriction
of % to {a, c}. As such, u represents %.
Case 2.2. Suppose there are four choices, a, b, c, d, where Pa∼c 6= Pb∼c. By construction, the utility
design procedure first computes the utilities for a, b and c, and afterwards computes the utilities for
d. We show that u represents % .

By Case 2.1, we know that u represents % on {a, b, c}. That is, it is left to show that u represents
% on {d, a}, {d, b} and {d, c}.

We have seen above that either Pd∼a 6= Pd∼b or Pd∼a 6= Pd∼c. Suppose, without loss of generality,
that Pd∼a 6= Pd∼b. Then, by construction of the utility design procedure, we find the utilities for d in
a similar way as for {a, b, c}, but now applied to the choices {a, b, d} instead of {a, b, c}. In the same
way as above, it then follows that u represents % on {d, a} and {d, b}.

It remains to show that u represents % on {c, d}. We distinguish three cases: (2.2.1) Pd∼a = Pa∼c
or Pd∼b = Pb∼c, (2.2.2) Pd∼a 6= Pa∼c, Pd∼b 6= Pb∼c and span(Pd∼a) ∩ span(Pa∼c) 6= span(Pd∼b) ∩
span(Pb∼c), and (2.2.3) Pd∼a 6= Pa∼c, Pd∼b 6= Pb∼c and span(Pd∼a) ∩ span(Pa∼c) = span(Pd∼b) ∩
span(Pb∼c).

Case 2.2.1: Suppose that Pd∼a = Pa∼c or Pd∼b = Pb∼c. Assume, without loss of generality, that
Pd∼a = Pa∼c. By transitivity, Pd∼a = Pd∼a ∩ Pa∼c ⊆ Pd∼c. As, by Lemma 2.12.2 (a) and (b), Pd∼a =
span(Pd∼a) ∩∆(S), where span(Pd∼a) has dimension n− 1, and a similar property holds for Pd∼c, it
follows in the same way as at the beginning of Case 2 that Pd∼a = Pa∼c = Pd∼c.

Let {p2, ..., pn} be a basis for Pd∼c. As Pd∼a = Pa∼c = Pd∼c, and u represents % on {d, a} and
{a, c}, it follows that u(d, pm) = u(a, pm) and u(a, pm) = u(c, pm) for all m ∈ {2, ..., n}. Hence,

u(d, pm) = u(c, pm) for all m ∈ {2, ..., n}. (2.12.14)

We now show that Pd∼b 6= Pd∼c. To see this, suppose on the contrary that Pd∼b = Pd∼c. Then, by
transitivity, it would follow in the same was as above that Pd∼b = Pd∼c = Pb∼c. As we have seen above
that Pd∼c = Pa∼c, it would follow that Pb∼c = Pa∼c, which is a contradiction. Hence, Pd∼b 6= Pd∼c.

We can thus choose some p ∈ Pd∼b\Pd∼c. Assume, without loss of generality, that p ∈ Pd�c. Then,
by transitivity, p ∈ Pb�c. As u represents % on {d, b} and {b, c}, we know that u(d, p) = u(b, p) and
u(b, p) > u(c, p). Thus,

u(d, p) > u(c, p) for some p ∈ Pd�c. (2.12.15)

In view of (2.12.14) and (2.12.15), it follows by Lemma 2.12.3 that u represents % on {d, c}.
Case 2.2.2: Suppose that Pd∼a 6= Pa∼c, Pd∼b 6= Pb∼c and span(Pd∼a) ∩ span(Pa∼c) 6= span(Pd∼b) ∩
span(Pb∼c). By Lemma 2.12.2 (a) we know that span(Pd∼a) 6= span(Pa∼c) and span(Pd∼b) 6= span(Pb∼c).
As, by Lemma 2.12.2 (b), each of these four linear subspaces has dimension n − 1, we conclude
that span(Pd∼a) ∩ span(Pa∼c) and span(Pd∼b) ∩ span(Pb∼c) are linear subspaces with dimension
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n − 2. Since span(Pd∼a) ∩ span(Pa∼c) 6= span(Pd∼b) ∩ span(Pb∼c), there is some q1 ∈ (span(Pd∼a) ∩
span(Pa∼c))\(span(Pd∼b) ∩ span(Pb∼c)). Moreover, let {q2, ..., qn−1} be a basis for span(Pd∼b) ∩
span(Pb∼c). Then {q1, q2, ..., qn−1} are linearly independent.

As, by Lemma 2.12.6,

span(Pd∼a) ∩ span(Pa∼c) ⊆ span(Pd∼c) and span(Pd∼b) ∩ span(Pb∼c) ⊆ span(Pd∼c)

we conclude that q1, q2, ..., qn−1 ∈ span(Pd∼c). Since {q1, q2, ..., qn−1} are linearly independent, and
span(Pd∼c) has dimension n− 1, we know that {q1, q2, ..., qn−1} is a basis for span(Pd∼c).

By construction, q1 ∈ span(Pd∼a) ∩ span(Pa∼c). As u represents % on {d, a} and {a, c}, it follows
from Lemma 2.12.7 that u(d, q1) = u(a, q1) and u(a, q1) = u(c, q1), and thus

u(d, q1) = u(c, q1). (2.12.16)

As q2, ..., qn−1 ∈ span(Pd∼b) ∩ span(Pb∼c), and u represents % on {d, b} and {b, c}, it follows in a
similar fashion that

u(d, qm) = u(c, qm) for all m ∈ {2, ..., n− 1}. (2.12.17)

Since Pd∼a 6= Pa∼c, it follows by transitivity that Pd∼a 6= Pd∼c. Thus, there is some p ∈ Pd∼a\Pd∼c.
Suppose, without loss of generality, that p ∈ Pd�c. By transitivity, we then have that p ∈ Pa�c. As u
represents % on {d, a} and {a, c}, it follows that u(d, p) = u(a, p) and u(a, p) > u(c, p), and thus

u(d, p) > u(c, p) for some p ∈ Pd�c. (2.12.18)

In view of (2.12.16), (2.12.17) and (2.12.18), it follows by Lemma 2.12.3 that u represents % on {d, c}.
Case 2.2.3: Suppose that Pd∼a 6= Pa∼c, Pd∼b 6= Pb∼c and span(Pd∼a) ∩ span(Pa∼c) = span(Pd∼b) ∩
span(Pb∼c). Let

A := span(Pd∼a) ∩ span(Pa∼c).

Recall that, by Lemma 2.12.6, span(Pd∼a)∩span(Pa∼c) ⊆ span(Pd∼c) and span(Pd∼a)∩span(Pd∼b) ⊆
span(Pa∼b). Hence,

span(Pd∼a) ∩ span(Pa∼c) ∩ span(Pd∼b) ∩ span(Pb∼c) ∩ span(Pd∼c) ∩ span(Pa∼b)

= span(Pd∼a) ∩ span(Pa∼c) ∩ span(Pd∼b) ∩ span(Pb∼c)

= span(Pd∼a) ∩ span(Pa∼c) = A, (2.12.19)

where the second equality follows from the fact that span(Pd∼a) ∩ span(Pa∼c) = span(Pd∼b) ∩
span(Pb∼c).

As Pd∼a 6= Pa∼c we know, by Lemma 2.12.2 (a), that span(Pd∼a) 6= span(Pa∼c). Since, by Lemma
2.12.2 (b), span(Pd∼a) and span(Pa∼c) have dimension n − 1, we know that A has dimension n − 2.
Moreover, by (2.12.19) we know, for every e, f ∈ {a, b, c, d}, that A ⊆ span(Pe∼f ).

Let ∆+(S) := {p ∈ ∆(S) | p(s) > 0 for all s ∈ S} be the set of full support beliefs. We distinguish
two cases: (2.2.3.1) A ∩∆+(S) is empty, and (2.2.3.2) A ∩∆+(S) is non-empty.

Case 2.2.3.1. Suppose that A ∩ ∆+(S) is empty. Recall from Lemma 2.12.2 (b) that each of
the indifference sets Pe∼f , where e, f ∈ {a, b, c, d}, has a full support belief in ∆+(S), and thus
Pe∼f ∩∆+(S) is non-empty. Moreover, by (2.12.19) we have that Pe∼f ∩ Pg∼h = A whenever Pe∼f 6=
Pg∼h. As A ∩∆+(S) is empty, it follows that Pe∼f ∩ Pg∼h ∩∆+(S) is empty whenever Pe∼f 6= Pg∼h.

Recall from the assumption in Case 2.2.3 that Pa∼c 6= Pb∼c, Pd∼a 6= Pa∼c and Pd∼b 6= Pb∼c.
Moreover, we have seen at the beginning of Case 2.2 that Pd∼a 6= Pd∼b. By transitivity, it follows
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that the sets Pa∼b, Pa∼c, Pb∼c are pairwise different, that the sets Pa∼c, Pa∼d and Pc∼d are pairwise
different, that the sets Pa∼b, Pa∼d and Pb∼d are different, and that the sets Pb∼c, Pb∼d and Pc∼d are
pairwise different. Let P1, ..., Pk be the pairwise different sets from Pa∼b, ..., Pc∼d. From the above, it
follows that k ≥ 3.

As Pe∼f∩Pg∼h∩∆+(S) is empty whenever Pe∼f 6= Pg∼h, it follows that the sets P1∩∆+(S), ..., Pk∩
∆+(S) are pairwise disjoint. Moreover, we have seen that each of the latter sets are non-empty. Since
span(P1), ..., span(Pk) are hyperplanes of dimension n − 1, we can order the sets P1, ..., Pk such that
P2∩∆+(S), ..., Pk−1∩∆+(S) are in between P1∩∆+(S) and Pk ∩∆+(S). Take some p1 ∈ P1∩∆+(S)
and pk ∈ Pk ∩∆+(S), and let l be the line through p1 and pk. Then, the corresponding line segment
from p1 to pk is included in ∆+(S). As P2 ∩∆+(S), ..., Pk−1 ∩∆+(S) are in between P1 ∩∆+(S) and
Pk ∩∆+(S), the line l contains for every m ∈ {2, ..., k − 1} a unique belief pm in Pm.

In particular, for every pair of choices e, f in {a, b, c, d}, there is a unique belief pef ∈ Pe∼f on the
line l, and the line l contains a belief where the DM is not indifferent between any of the choices in
{a, b, c, d}.

Recall, from above, that the sets Pa∼b, Pa∼c, Pb∼c are pairwise different, that the sets Pa∼b, Pa∼d and
Pb∼d are pairwise different, that the sets Pa∼c, Pa∼d and Pc∼d are pairwise different, and that the sets
Pb∼c, Pb∼d and Pc∼d are pairwise different. Moreover, we have seen that P1∩∆+(S), ..., Pk∩∆+(S) are
pairwise disjoint. Hence, by construction, pab, pac, pbc are pairwise different, pab, pad, pbd are pairwise
different, and pac, pad, pcd are pairwise different. Let s be a state such that the probability of s is not
constant on the line l. By four choice linear preference intensity, we have that

pac(s)− pcd(s)
pad(s)− pcd(s)

=
(pab(s)− pbd(s))(pac(s)− pbc(s))
(pab(s)− pbc(s))(pad(s)− pbd(s))

. (2.12.20)

Note that both fractions are well-defined since pad 6= pcd, pab 6= pbc and pad 6= pbd. Moreover, as
pac, pad, pcd are pairwise different, we have that pac(s) − pcd(s) 6= pad(s) − pcd(s), and hence the
fraction on the lefthand side is not equal to 1. As such, the fraction on the righthand side is not equal
to 1 either. Let this fraction on the righthand side be called F. Then, by (2.12.20), pcd is the unique
belief on l where

pcd(s) =
F · pad(s)− pac(s)

F − 1
. (2.12.21)

Remember that A ⊆ span(Pc∼d), that A has dimension n− 2, and that span(Pc∼d) has dimension
n − 1. Let {q2, ..., qn−1} be a basis for A. Since pcd ∈ ∆+(S) and A ∩ ∆+(S) is empty, we conclude
that pcd /∈ A. Hence, {pcd, q2, ..., qn−1} is a basis for span(Pc∼d).

Now, let %u be the conditional preference relation generated by the utility function u. We have
already seen that u represents % on all pairs of choices in {a, b, c, d}, except {c, d}. In particular, we
thus know that

u(a, pab) = u(b, pab), u(a, pac) = u(c, pac), u(a, pad) = u(d, pad),

u(b, pbc) = u(c, pbc) and u(b, pbd) = u(d, pbd).

As we have seen in part (a) of the proof that %u satisfies four choice linear preference intensity, the
unique belief on the line l where the DM is indifferent between c and d under %u is given by (2.12.21).
Therefore,

u(c, pcd) = u(d, pcd). (2.12.22)

Recall that A = span(Pd∼a) ∩ span(Pa∼c). As u represents % on {d, a} and {a, c}, it follows that
u(d, v) = u(a, v) and u(a, v) = u(c, v) for every v ∈ span(Pd∼a) ∩ span(Pa∼c). Therefore, u(c, v) =
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u(d, v) for every v ∈ A. In particular,

u(c, qk) = u(d, qk) for every k ∈ {2, ..., n− 1}, (2.12.23)

where {q2, ..., qn−1} is a basis for A. Moreover, we have seen that {pcd, q2, ..., qn−1} is a basis for
span(Pc∼d).

As Pd∼a 6= Pa∼c, we can choose some p ∈ Pd∼a\Pa∼c. Assume, without loss of generality, that
p ∈ Pa�c. By transitivity, we then have that p ∈ Pd�c. Since u represents % on {d, a} and {a, c}, we
know that u(d, p) = u(a, p) and u(a, p) > u(c, p), and hence

u(d, p) > u(c, p) for some p ∈ Pd�c. (2.12.24)

In view of (2.12.22), (2.12.23) and (2.12.24), it follows by Lemma 2.12.3 that u represents % on
{c, d}. Thus, u represents % on {a, b, c, d}, which completes the proof for Case 2.2.3.1.
Case 2.2.3.2. Suppose that A ∩∆+(S) is non-empty. Then, there is some full support belief p∗ in
A, with p∗(s) > 0 for all states s. As we have seen that A ⊆ span(Pe∼f ) for all e, f ∈ {a, b, c, d}, it
follows that p∗ ∈ Pe∼f for all pairs e, f ∈ {a, b, c, d}.

Since we have seen that A has dimension n − 2, the linear subspace A is contained in some
hyperplane containing the zero vector. Hence, there is some vector nA ∈ RS such that

nA · v = 0 for all v ∈ A. (2.12.25)

Moreover, we can choose the vector nA such that for every pair e, f ∈ {a, b, c, d} there is some p ∈ Pe∼f
with nA · p 6= 0.

In that case, there is for every pair e, f ∈ {a, b, c, d} some p ∈ Pe∼f with nA · p > 0. To see this,
suppose that e, f are such that nA ·p ≤ 0 for every p ∈ Pe∼f . As there is some p ∈ Pe∼f with nA ·p 6= 0,
there must be some p ∈ Pe∼f with nA · p < 0. Since p∗ ∈ ∆+(S), there is some λ > 1 close enough to
1 such that q := (1− λ)p+ λp∗ ∈ ∆(S). Note that p∗ ∈ A ⊆ span(Pe∼f ) and p ∈ Pe∼f , which implies
that q ∈ span(Pe∼f )∩∆(S) = Pe∼f . At the same time we know, by (2.12.25) and the fact that p∗ ∈ A,
that nA · p∗ = 0. Since nA · p < 0 and λ > 1, it follows that

nA · q = (1− λ) · (nA · p) + λ · (nA · p∗) > 0.

Thus,
for every e, f ∈ {a, b, c, d} there is some p ∈ Pe∼f with nA · p > 0. (2.12.26)

Let
P+ := {p ∈ ∆(S) | nA · p > 0}.

Then, in view of (2.12.26),

Pe∼f ∩ P+ is non-empty for all e, f ∈ {a, b, c, d}. (2.12.27)

Recall that Pe∼f ∩Pg∼h = A for every two pairs {e, f}, {g, h} in {a, b, c, d} with Pe∼f 6= Pg∼h. In view
of (2.12.25) and (2.12.27) we conclude that Pe∼f ∩Pg∼h∩P+ is empty whenever Pe∼f 6= Pg∼h. Hence,
(Pe∼f ∩ P+) and (Pg∼h ∩ P+) are disjoint whenever Pe∼f 6= Pg∼h. But then, the different sets in
Pa∼b, ..., Pc∼d can be numbered P1, ..., Pk, with k ≥ 3, such that P2 ∩P+, ..., Pk−1 ∩P+ are in between
P1 ∩ P+ and Pk ∩ P+. In a similar way as in Case 2.2.3.1, it can then be shown that u represents %
on {c, d}. This would complete the proof for Case 2.2.3.2.

Hence, u represents % on {a, b, c, d}. This completes the proof for Case 2.2.



2.12. PROOFS 55

Case 2.3. Suppose there are more than four choices. Label these choices a, b, c, d1, d2, ..., dK , where
Pc∼a 6= Pc∼b, and the choices are ordered according to the order in which their respective utilities are
computed in the utility design procedure.

We will prove, by induction on k, that u represents % on {a, b, c, d1, ..., dk}. In Case 2.2 we have
already shown that u represents % on {a, b, c, d1}, which yields the induction start.

Now, let k ≥ 2, and suppose that u represents % on {a, b, c, d1, ..., dk−1}. We will show that u
represents % on {a, b, c, d1, ..., dk−1, dk}, by showing that it does so on {dk, a}, {dk, b} and {dk, e} for
every e ∈ {c, d1, ..., dk−1}.

In a similar way as in Case 2.2, it can be shown that either Pdk∼a 6= Pdk∼b, or Pdk∼a 6= Pdk∼c.
Assume, without loss of generality, that Pdk∼a 6= Pdk∼b. Then, it follows from the proof of Case 2.1
that u represents % on {dk, a} and {dk, b}.

Now, choose some e ∈ {c, d1, ..., dk−1}. By mimicking the proof of Case 2.2, it can then be shown
u represents % on {dk, e}. Indeed, instead of applying the proof to {a, b, c, d}, we can now apply it to
{a, b, e, dk}. As such, u represents % on {a, b, c, d1, ..., dk−1, dk}. By induction, the proof for Case 2.3
is complete.

By combining Cases 1, 2.1, 2.2 and 2.3, we have shown that u represents % whenever no two
choices are equivalent.

Suppose now that two, or more, choices are equivalent. In this case, we can select a subset C∗ of
choices such that (i) no two choices in C∗ are equivalent, and (ii) every choice outside C∗ is equivalent
to a choice inside C∗. By the proof above, we then know that there is a utility function u∗ on C∗ that
represents % on C∗. This utility function can be extended to a utility function u on C, by setting, for
every choice c /∈ C∗,

u(c, s) := u(c∗, s)

for all states s, where c∗ is the unique choice in C∗ that is equivalent to c. Then, the utility function
u will represent % on the whole choice set C. This completes the proof. �

2.12.3 Proof for Section 2.10
Before we can prove Theorem 2.10.1 we need a preparatory result. It describes, for a given signed
conditional preference relation meeting the axioms, the structure of the set of signed beliefs for which
the DM is “indifferent” between two choices. To formally state the preparatory result, we must
introduce some new notions and notation. For a signed conditional preference relation %∗ and two
choices a and b, we denote by Qa∼∗b the set of signed beliefs q for which a ∼∗q b. By

∆∗(S) := {q ∈ RS |
∑

s∈S
q(s) = 1}

we denote the set of all signed beliefs. Two subsets Q,Q′ ⊆ ∆∗(S) are called parallel if there is some
vector v ∈ RS such that

Q′ = {q + v | q ∈ Q}.

In particular, two parallel sets Q,Q′ with Q 6= Q′ are always disjoint, that is, Q ∩Q′ is empty.

Lemma 2.12.8 (Signed indifference sets) Let%∗ be a signed conditional preference relation with-
out equivalent choices which satisfies continuity, preservation of indifference and preservation of strict
preference.

(a) Consider two choices a, b such that there is no constant preference intensity between a and b. Then,
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span(Qa∼∗b) has dimension |S| − 1, and Qa∼∗b = ∆∗(S) ∩ span(Qa∼∗b);

(b) Consider three choices a, b, c such that there is constant preference intensity between a and b, but
not between a and c, and not between b and c. Then, the sets Qa∼∗c and Qb∼∗c are parallel.

Proof. (a) In a similar way as in the proof of Lemma 2.12.2 (a), it can be shown that Qa∼∗b =
∆∗(S) ∩ span(Qa∼∗b). We therefore omit this proof here.

As there is no constant preference intensity between a and b, it is not the case that a �∗q b for all
signed beliefs q, and it is not the case that b �∗q a for all signed beliefs q. In that case, there must
be signed beliefs q1 and q2 such that a �∗q1 b and b �

∗
q2 a. To see this, suppose such signed beliefs q1

and q2 would not exist. Then, either a %∗q b for all signed beliefs q, or b %∗q a for all signed beliefs
q. Assume, without loss of generality, that a %∗q b for all signed beliefs q. As there is no constant
preference intensity between a and b, and a and b are not equivalent, there must be signed beliefs q1
and q2 with a �∗q1 b and a ∼

∗
q2 b. Let the signed belief q3 be such that q2 = (1/2)q1 + (1/2)q3. We will

see that b �∗q3 a. Suppose, on the contrary, that a %∗q3 b. Since q2 = (1/2)q1 + (1/2)q3 and a �∗q1 b, it
would follow by preservation of strict preference that a �∗q2 b, which is a contradiction to the fact that
a ∼∗q2 b. Hence, we see that b �

∗
q3 a. This is a contradiction to the assumption above that a %∗q b for all

signed beliefs q. Thus, we conclude that there must be signed beliefs q1, q2 with a �∗q1 b and b �
∗
q2 a.

Choose some full support belief p∗ with p∗(s) > 0 for all states s such that p∗ /∈ Qa∼∗b. For every
number λ, consider the conditional preference relation %λ where for every two choices c and d, and
every belief p,

c %λp d if and only if c %∗(1−λ)p∗+λp d. (2.12.28)

We now show that λ can be chosen large enough such that %λ has preference reversals for {a, b}.
Recall from above that there are signed beliefs q1, q2 with a �∗q1 b and b �∗q2 a. As p∗ is a full
support belief with p∗(s) > 0 for all states s, we can choose ε > 0 small enough such that both
p1 := (1 − ε)p∗ + εq1 and p2 := (1 − ε)p∗ + εq2 are beliefs. By setting λ := 1/ε, we have that
q1 = (1 − λ)p∗ + λp1 and q2 = (1 − λ)p∗ + λp2. Since a �∗q1 b and b �

∗
q2 a it follows, by definition of

%λ, that a �λp1 b and b �λp2 a. As we have chosen ε small enough, and λ = 1/ε, we can choose λ large
enough such that there are beliefs p1 and p2 with a �λp1 b and b �

λ
p2 a. That is, we can choose λ large

enough such that there are preference reversals between a and b. In particular, we can choose λ > 1.

It can also be shown that the conditional preference relation %λ satisfies continuity, preservation
of indifference and preservation of strict preference. We start with continuity. Take two choices c
and d and two beliefs p1, p2 with c �λp1 d and d �

λ
p2 c. Then, by definition, c �

∗
(1−λ)p∗+λp1 d and

d �∗(1−λ)p∗+λp2 c. Define the signed beliefs q1 := (1− λ)p∗ + λp1 and q2 := (1− λ)p∗ + λp2. Since %∗
satisfies continuity, there is some µ ∈ (0, 1) such that c ∼∗(1−µ)q1+µq2 d. Since

(1− µ)q1 + µq2 = (1− µ)((1− λ)p∗ + λp1) + µ((1− λ)p∗ + λp2)

= (1− λ)p∗ + λ((1− µ)p1 + µp2)

it follows by definition of %λ that c ∼λ(1−µ)p1+µp2 d. Thus, %
λ satisfies continuity. In a similar fashion,

it can be shown that %λ satisfies preservation of indifference and preservation of strict preference.
Summarizing, we see that %λ satisfies continuity, preservation of indifference and preservation of

strict preference, and there are preference reversals between a and b. By Lemma 2.12.2 (a) and (b) we
can thus conclude that Pa∼λb = span(Pa∼λb) ∩∆(S), and span(Pa∼λb) has dimension n− 1, where n
is the number of states.
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Select beliefs p1, ..., pn−1 such that {p1, ..., pn−1} is a basis for span(Pa∼λb). Define the signed beliefs
q1, ..., qn−1 by

qk := (1− λ)p∗ + λpk (2.12.29)

for all k ∈ {1, ..., n− 1}. We show that {q1, ..., qn−1} is a basis for span(Qa∼∗b).
We start by verifying that qk ∈ Qa∼∗b for every k. Since a ∼λpk b, it follows by (2.12.28) and

(2.12.29) that a ∼∗qk b, and hence qk ∈ Qa∼∗b, for all k ∈ {1, ..., n− 1}.
We next show that q1, ..., qn−1 are linearly independent. Recall that p∗ /∈ Qa∼∗b. By (2.12.28) it

then follows that p∗ /∈ Pa∼λb. Since we know that Pa∼λb = span(Pa∼λb) ∩∆(S), it follows that p∗ /∈
span(Pa∼λb).

Now, suppose that µ1q1 + ...+ µn−1qn−1 = 0 for some numbers µ1, ..., µn−1. Then, by (2.12.29),

(1− λ)(µ1 + ...+ µn−1)p
∗ + λµ1p1 + ...+ λµn−1pn−1 = 0. (2.12.30)

As p∗ /∈ span(Pa∼λb), and {p1, ..., pn−1} is a basis for span(Pa∼λb), we conclude that p
∗, p1, ..., pn−1

are linearly independent. Hence, (2.12.30) implies that (1 − λ)(µ1 + ... + µn−1) = 0 and λµk = 0 for
all k ∈ {1, ..., n − 1}. As λ > 1, this means that µk = 0 for all k ∈ {1, ..., n − 1}. Thus, the signed
beliefs q1, ..., qn−1 ∈ Qa∼∗b are linearly independent.

This means, in turn, that span(Qa∼∗b) has dimension at least n− 1. Recall that Qa∼∗b = ∆∗(S)∩
span(Qa∼∗b). If span(Qa∼∗b) would have dimension n, then span(Qa∼∗b) = RS , which would imply
that Qa∼∗b = ∆∗(S). This would be a contradiction, since a and b are not equivalent. We thus conclude
that span(Qa∼∗b) has dimension n− 1.

(b) Suppose that there is constant preference intensity between a and b, but not between a and c,
and not between b and c. Then, we know from (a) that Qa∼∗c = span(Qa∼∗c) ∩∆∗(S) and Qb∼∗c =
span(Qb∼∗c) ∩ ∆∗(S) where span(Qa∼∗c) and span(Qb∼∗c) both have dimension |S| − 1. Suppose,
contrary to what we want to show, that Qa∼∗c and Qb∼∗c are not parallel. Then, it must be that
Qa∼∗c and Qb∼∗c intersect, and hence there is some signed belief q which is both in Qa∼∗c and Qb∼∗c.
By transitivity, it would then follow that q ∈ Qa∼∗b. This, however, is a contradiction, since there is
constant preference intensity between a and b, and the choices a and b are not equivalent. We thus
conclude that Qa∼∗c and Qb∼∗c are parallel. This completes the proof. �

We are now ready to prove Theorem 2.10.1.

Proof of Theorem 2.10.1. (a) Suppose first that % has an expected utility representation u. Let
%∗ be the signed conditional preference relation where for every signed belief q, and every two choices
a and b, we have that

a %∗q b if and only if u(a, q) ≥ u(b, q).

Then, %∗ extends % . Similarly to the arguments in Section 2.8 and the proof of Theorem 2.9.1,
it can then be shown that %∗ satisfies continuity, preservation of indifference, preservation of strict
preference, transitivity, three choice preference intensity and four choice preference intensity.

We now show that %∗ satisfies transitive constant preference intensity. Suppose that there is
constant preference intensity between a and b and between b and c. Then, there must be numbers
α1, α2 such that u(a, q) − u(b, q) = α1 for every signed belief q, and u(b, q) − u(c, q) = α2 for every
signed belief q. Then, u(a, q)−u(c, q) = α1+α2 for every signed belief q, and therefore there is constant
preference intensity between a and c.

We next show that %∗ satisfies four choice linear preference intensity with constant preference
intensity. Consider a line l of signed beliefs, and four choices a, b , c and d, such that there is a signed
belief on the line where the DM is not “indifferent”between any of the four choices.
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To prove part (a) of this axiom, assume that there is constant preference intensity between c and
d, but not between the other five pairs of choices. Let qab, qac, qad, qbc and qbd be signed beliefs on
the line where the DM is “indifferent” between the respective choices. Consider two arbitrary, but
different, signed beliefs q1, q2 on l, and define, for every two choices e, f in {a, b, c, d},

∆(u(e)− u(f)) := (u(e, q1)− u(f, q1))− (u(e, q2)− u(f, q2)).

Now, consider a state s such that the probability of s is not constant on the line l. In a similar way as
in the proof of Theorem 2.9.1 it can be shown, for every three choices e, f, g in {a, b, c, d}, that

∆(u(e)− u(f))

∆(u(e)− u(g))
=
qeg(s)− qfg(s)
qef (s)− qfg(s)

.

In particular, we have that

∆(u(a)− u(b))

∆(u(a)− u(c))
=
qac(s)− qbc(s)
qab(s)− qbc(s)

and
∆(u(a)− u(b))

∆(u(a)− u(d))
=
qad(s)− qbd(s)
qab(s)− qbd(s)

. (2.12.31)

Recall that the preference intensity between c and d is constant. This means that there is a number
α such that u(d, q) = u(c, q) + α for every signed belief q. But then,

∆(u(a)− u(d)) = (u(a, q1)− u(d, q1))− (u(a, q2)− u(d, q2))

= (u(a, q1)− u(c, q1)− α)− (u(a, q2)− u(c, q2)− α)

= (u(a, q1)− u(c, q1))− (u(a, q2)− u(c, q2)) = ∆(u(a)− u(c)).

As such,
∆(u(a)− u(b))

∆(u(a)− u(c))
=

∆(u(a)− u(b))

∆(u(a)− u(d))
.

Together with (2.12.31), this yields

qac(s)− qbc(s)
qab(s)− qbc(s)

=
qad(s)− qbd(s)
qab(s)− qbd(s)

,

and hence
(qab(s)− qbc(s)) · (qad(s)− qbd(s)) = (qab(s)− qbd(s)) · (qac(s)− qbc(s)).

Thus, part (a) of four choice linear preference intensity with constant preference intensity holds.
To prove part (b) of the axiom, assume that the preference intensities between a and b, and between

c and d, are constant, but not between the other four pairs of choices. Then, there are numbers α, β
such that u(b, q) = u(a, q) + α and u(d, q) = u(c, q) + β for every signed belief q. Let qac, qbc, qad and
qbd be signed beliefs on the line l where the DM is “indifferent”between the respective choices. Define
the signed belief q := qad − qbd + qbc, which is again on the line l. Then,

u(a, q)− u(c, q) = (u(a, qad)− u(c, qad))− (u(a, qbd)− u(c, qbd)) + (u(a, qbc)− u(c, qbc))

= (u(a, qad)− u(d, qad) + β)− (u(b, qbd)− u(d, qbd)− α+ β) + (u(b, qbc)− u(c, qbc)− α) = 0,

since u(a, qad) = u(d, qad), u(b, qbd) = u(d, qbd) and u(b, qbc) = u(c, qbc).
Recall that there is a signed belief on the line where the DM is not “indifferent”between any of the

choices in {a, b, c, d}. But then, by preservation of indifference and preservation of strict preference,
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there is only one signed belief on the line l where the DM is “indifferent”between a and c, which is
qac. Thus, we conclude that q = qac, and therefore

qac − qbc = qad − qbd,

which yields part (b) of four choice linear preference intensity with constant preference intensity.
Thus, % can be extended to a signed conditional preference relation that satisfies all of the axioms

above.

(b) Suppose now that % can be extended to a signed conditional preference relation %∗ that satisfies
all of the axioms above. We will show that there is a utility function u that represents %∗, and thereby
represents % as well. To start, we assume that no two choices are equivalent under % . At the end of
the proof, we show how to deal with the case where some choices are equivalent. We distinguish two
cases: (1) for every two choices a, b there is no constant preference intensity between a and b, and (2)
there are at least two choices a and b with a constant preference intensity between them.

Case 1. Suppose that, for every two choices a and b, there is no constant preference intensity between
a and b. By the proof of Lemma 2.12.8 (a) we then know that for every two choices a and b, there
must be signed beliefs q1 and q2 such that a �∗q1 b and b �

∗
q2 a.

Choose some full support belief p∗ with p∗(s) > 0 for all states s. For every number λ, consider
the conditional preference relation %λ where for every two choices a and b, and every belief p,

a %λp b if and only if a %∗(1−λ)p∗+λp b.

We have seen in the proof of Lemma 2.12.8 (a) that for every two choices a and b there is some
large enough λ such that %λ has preference reversals between a and b. But then, we can choose λ
large enough such that %λ has preference reversals for all pairs of choices.

We will now show that %λ satisfies the regularity axioms, transitivity, three choice linear preference
intensity and four choice linear preference intensity. In the proof of Lemma 2.12.8 (a) we saw that %λ
satisfies the regularity axioms. Transitivity of %λ follows immediately from the assumption that %∗
satisfies transitivity.

We now show three choice linear preference intensity. Consider three choices a, b, c, two parallel
lines of beliefs l and l′ that contain beliefs where the DM is not indifferent under %λ between any of
the three choices, and beliefs pab, pac, pbc on l and beliefs p′ab, p

′
ac, p

′
bc on l

′ where the DM is indifferent
under %λ between the respective choices.

Define the lines L and L′ of signed beliefs where

L := {(1− λ)p∗ + λp | p on l} and L′ := {(1− λ)p∗ + λp′ | p′ on l′}.

Then, it may be verified that the lines L and L′ are parallel as well.
Recall that l and l′ contain beliefs where the DM is not indifferent under %λ between any of the

three choices. By definition of %λ it follows that L and L′ contain signed beliefs where the DM is not
“indifferent”under %∗ between any of the three choices.

Moreover, define the signed belief qab := (1−λ)p∗+λpab, and similarly for qac, qbc, q′ab, q
′
ac and q

′
bc.

Then, qab, qac, qbc are on L and q′ab, q
′
ac, q

′
bc are on L

′. Also, by definition of %λ we can conclude that
at the signed beliefs qab, ..., q′bc the DM is “indifferent”under %∗ between the corresponding pair of
choices. Since %∗ satisfies three choice linear preference intensity, we know for every state s that

(qab(s)− qbc(s)) · (q′ac(s)− q′bc(s)) = (q′ab(s)− q′bc(s)) · (qac(s)− qbc(s)). (2.12.32)
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As qab = (1− λ)p∗ + λpab, it follows that pab = (1− 1/λ)p∗ + (1/λ)qab. Similarly for the other five
beliefs. Together with (2.12.32) we conclude that

(pab(s)− pbc(s)) · (p′ac(s)− p′bc(s)) =
1

λ2
(qab(s)− qbc(s)) · (q′ac(s)− q′bc(s))

=
1

λ2
(q′ab(s)− q′bc(s)) · (qac(s)− qbc(s))

= (p′ab(s)− p′bc(s)) · (pac(s)− pbc(s)).

Thus, %λ satisfies three choice linear preference intensity. In a similar fashion, it can be shown that
%λ satisfies four choice linear preference intensity.

Summarizing, we see that the conditional preference relation %λ has preference reversals for all
pairs of choices, and satisfies each of the axioms from Theorem 2.9.1. By the same theorem, we then
conclude that %λ has an expected utility representation uλ.

Define the utility function u by

u(c, s) := (1− 1/λ) · uλ(c, p∗) + (1/λ) · uλ(c, s)

for every choice c and state s. We will show that u represents % .
Take some arbitrary belief p. Then, p = (1− λ)p∗ + λp′ for the belief p′ := (1− 1/λ)p∗ + (1/λ)p.

We conclude, for two arbitrary choices a and b, that

a %p b if and only if a %∗p b
if and only if a %∗(1−λ)p∗+λp′ b if and only if a %λp′ b

if and only if uλ(a, p′) ≥ uλ(b, p′)

if and only if uλ(a, (1− 1/λ)p∗ + (1/λ)p) ≥ uλ(b, (1− 1/λ)p∗ + (1/λ)p)

if and only if (1− 1/λ)uλ(a, p∗) + (1/λ)uλ(a, p) ≥ (1− 1/λ)uλ(b, p∗) + (1/λ)uλ(b, p)

if and only if u(a, p) ≥ u(b, p).

Here, the first equivalence follows from the assumption that %∗ extends %, the second equivalence
from the definition of p′, the third equivalence from the definition of %λ, the fourth equivalence from
the fact that uλ represents %λ, the fifth equivalence from the definition of p′, the sixth equivalence
from the fact that expected utility is linear in the belief, and the last equivalence from the definition
of the utility function u.

Thus, we see that the utility function u represents %, which completes the proof of Case 1.
Case 2. Suppose now that there are at least two choices a and b such that %∗ exhibits a constant
preference intensity between a and b. We start by constructing a set of choices D, as follows. Take an
arbitrary choice d1 ∈ C. If there is a choice d2 6= d1 such that there is no constant preference intensity
between d2 and d1, then select such a choice d2. In the next step, if there is a choice d3 6= d1, d2
such that there is no constant preference intensity between d3 and d1 and between d3 and d2 then
select such a choice d3. Continue in this way until no further choice can be selected in this way. Let
D = {d1, ..., dK} be the resulting set. Then, by construction, there is no constant preference intensity
between any two choices in D, and for every choice c /∈ D there is a choice d ∈ D such that there
is constant preference intensity between c and d. But we can show even more, as the following claim
shows.

Claim. For every choice c /∈ D there is exactly one choice d(c) ∈ D such that there is constant
preference intensity between c and d(c).
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Proof of claim. Suppose there are two choices d1, d2 ∈ D such that there is a constant preference
intensity between c and d1 and between c and d2. By transitivity of constant preference intensity,
it would then follow that there is a constant preference intensity between d1 and d2, which is a
contradiction. This completes the proof of the claim.

We distinguish two cases: (2.1) the set D only contains one choice, and (2.2) the set D contains
more than one choice.

Case 2.1. Suppose that D only contains one choice, say d. Then, for every choice c 6= d, there
is constant preference intensity between c and d. By transitivity of constant preference intensity, it
would follow that for every two choices a, b ∈ C we have constant preference intensity between a and
b. Consider an arbitrary signed belief q, with the induced ranking c1 �∗q c2 �∗q ... �∗q cM . Since there
is constant preference intensity between any two choices, this same ranking is induced at every signed
belief. Take some numbers α1 > α2 > ... > αM . Then, the utility function u with u(cm, s) := αm for
every choice cm and every state s represents %∗, and thereby % .

Case 2.2. Suppose that D contains at least two choices. By the claim, there are for every choice
a /∈ D two choices d(a), e(a) ∈ D such that there is constant preference intensity between a and d(a),
but not between a and e(a). We define the utility function u as follows.

Since there is no constant preference intensity between any two choices in D, we know from Case
1 that there is a utility function v that represents %∗ on D. We set u(d, s) := v(d, s) for every choice
d ∈ D and state s ∈ S.

Now take some choice a /∈ D. As there is no constant preference intensity between a and e(a),
there is a signed belief qae(a) where the DM is “indifferent”between a and e(a). Recall that there is
constant preference intensity between a and d(a) ∈ D. We define, for every state s,

u(a, s) := u(d(a), s) + u(e(a), qae(a))− u(d(a), qae(a)). (2.12.33)

We show that this utility function u represents %∗, by proving that u represents %∗ on {a, b} for
every two choices a, b ∈ C. We distinguish the following cases: (2.2.1) a, b ∈ D, (2.2.2) a /∈ D and
b = d(a), (2.2.3) a /∈ D and b = e(a), (2.2.4) a /∈ D and b ∈ D\{d(a), e(a)}, and (2.2.5) a, b /∈ D.

Case 2.2.1. Suppose that a, b ∈ D. Then, u represents %∗ on {a, b} since v represents %∗ on D.

Case 2.2.2. Suppose that a /∈ D and b = d(a). Since there is constant preference intensity between
a and d(a), it must be that either a �∗q d(a) for all signed beliefs q, or d(a) �∗q a for all signed beliefs
q. Assume, without loss of generality, that a �∗q d(a) for all signed beliefs q. Since e(a) ∼∗qae(a) a, it
follows that e(a) �∗qae(a) d(a). As u represents %∗ on D, we have that u(e(a), qae(a)) > u(d(a), qae(a)).

By (2.12.33) we conclude that u(a, q) > u(d(a), q) for all signed beliefs q, and hence u represents %∗
on {a, d(a)}.

Case 2.2.3. Assume that a /∈ D and b = e(a). Recall from above that e(a) ∼∗qae(a) a. Moreover, by
(2.12.33), we know that u(a, qae(a)) = u(e(a), qae(a)), and thus qae(a) ∈ Qu(a)=u(e(a)). Here, we denote
by Qu(a)=u(e(a)) the set of signed beliefs q where u(a, q) = u(e(a), q). As there is constant preference
intensity between a and d(a), but not between a and e(a) and not between d(a) and e(a), we know
from Lemma 2.12.8 (b) that the sets Qa∼∗e(a) and Qd(a)∼∗e(a) are parallel. Since, by (2.12.33), the
expected utility difference between a and d(a) is constant across all signed beliefs, we know that also
the sets Qu(a)=u(e(a)) and Qu(d(a))=u(e(a)) are parallel. As u represents %∗ on D, we must have that
Qd(a)∼∗e(a) = Qu(d(a))=u(e(a)).
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Summarizing, we thus see that (i)Qu(a)=u(e(a)) andQu(d(a))=u(e(a)) are parallel, (ii)Qu(d(a))=u(e(a)) =
Qd(a)∼∗e(a), and (iii) Qd(a)∼∗e(a) and Qa∼∗e(a) are parallel. Thus, Qu(a)=u(e(a)) and Qa∼∗e(a) are parallel.
Since qae(a) is in both Qa∼∗e(a) and Qu(a)=u(e(a)), it follows that Qu(a)=u(e(a)) = Qa∼∗e(a).

Since there is no constant preference intensity between d(a) and e(a), there must be some qd(a)e(a)
with d(a) ∼∗qd(a)e(a) e(a). Recall from above that a �∗q d(a) for all signed beliefs q, and thus a �∗qd(a)e(a)
d(a).Hence, a �∗qd(a)e(a) e(a).As u represents%∗ on {a, d(a)} and {d(a), e(a)}, we have that u(a, qd(a)e(a)) >

u(d(a), qd(a)e(a)) and u(d(a), qd(a)e(a)) = u(e(a), qd(a)e(a)). This implies u(a, qd(a)e(a)) > u(e(a), qd(a)e(a)).
We have thus found a belief qd(a)e(a) with a �∗qd(a)e(a) e(a) and u(a, qd(a)e(a)) > u(e(a), qd(a)e(a)).

As Qu(a)=u(e(a)) = Qa∼∗e(a) it can be shown, in a similar way as in the proof of Lemma 2.12.3, that
u represents %∗ on {a, e(a)}.

Case 2.2.4. Assume that a /∈ D and b ∈ D\{d(a), e(a)}. We distinguish three cases: (2.2.4.1)
Qa∼∗e(a) is not parallel to Qb∼∗e(a), (2.2.4.2) Qa∼∗e(a) is parallel to Qb∼∗e(a) but Qa∼∗e(a) 6= Qb∼∗e(a),
and (2.2.4.3) Qa∼∗e(a) = Qb∼∗e(a).

Case 2.2.4.1. Suppose that Qa∼∗e(a) is not parallel to Qb∼∗e(a). Then, there is some signed belief
qab ∈ Qa∼∗e(a) ∩ Qb∼∗e(a). As %∗ is transitive, it follows that qab ∈ Qa∼∗b. Since u represents %∗ on
{a, e(a)} and {b, e(a)}, we know that u(a, qab) = u(e(a), qab) = u(b, qab). We have thus found a signed
belief qab ∈ Qa∼∗b with qab ∈ Qu(a)=u(b).

As there is constant preference intensity between a and d(a), but not between a and b and not
between b and d(a), we know by Lemma 2.12.8 (b) that Qa∼∗b is parallel to Qb∼∗d(a). Moreover, as
u represents %∗ on {b, d(a)}, we know that Qb∼∗d(a) = Qu(b)=u(d(a)). Since, by (2.12.33), the expected
utility between a and d(a) is constant across all signed beliefs, we have that Qu(a)=u(b) is parallel to
Qu(b)=u(d(a)). Summarizing, we see that (i) Qu(a)=u(b) is parallel to Qu(b)=u(d(a)), (ii) Qu(b)=u(d(a)) =
Qb∼∗d(a), and (iii) Qb∼∗d(a) is parallel to Qa∼∗b. Thus, Qu(a)=u(b) is parallel to Qa∼∗b. Since qab is both
in Qa∼∗b and Qu(a)=u(b), we conclude that Qu(a)=u(b) = Qa∼∗b.

Take some signed belief qd(a)b in Qd(a)∼∗b. Since we assume that a �∗q d(a) for all signed beliefs q,
we have that a �∗qd(a)b d(a) ∼∗qd(a)b b, and thus a �

∗
qd(a)b

b. As u represents %∗ on {a, d(a)} and {d(a), b},
we have that u(a, qd(a)b) > u(d(a), qd(a)b) = u(b, qd(a)b). Hence, we have a found a belief qd(a)b with
a �∗qd(a)b b and u(a, qd(a)b) > u(b, qd(a)b). Since Qu(a)=u(b) = Qa∼b, we can use a similar argument as in
the proof of Lemma 2.12.3 to show that u represents %∗ on {a, b}.

Case 2.2.4.2. Suppose that Qa∼∗e(a) is parallel to Qb∼∗e(a) but Qa∼∗e(a) 6= Qb∼∗e(a). We show that
the sets Qa∼∗e(a), Qb∼∗e(a), Qa∼∗b, Qd(a)∼∗e(a) and Qd(a)∼∗b must all be parallel. As there is constant
preference intensity between a and d(a), but not between a and e(a) and not between e(a) and d(a),
it follows by Lemma 2.12.8 (b) that Qa∼∗e(a) and Qd(a)∼∗e(a) are parallel. Similarly, since there is
constant preference intensity between a and d(a), but not between a and b and not between b and
d(a), it follows by Lemma 2.12.8 (b) that Qa∼∗b and Qd(a)∼∗b are parallel. Moreover, by assumption,
Qa∼∗e(a) is parallel to Qb∼∗e(a). Now suppose, contrary to what we want to show, that Qa∼∗b is not
parallel to Qa∼∗e(a). Then, there is some q ∈ Qa∼∗b ∩ Qa∼∗e(a) and hence, by transitivity of %∗, we
have that q ∈ Qb∼∗e(a). But then, q is in both Qa∼∗e(a) and Qb∼∗e(a), which is impossible since both
sets are parallel but not equal. Hence, we must conclude that Qa∼∗b is parallel to Qa∼∗e(a). But then,
all five sets Qa∼∗e(a), Qb∼∗e(a), Qa∼∗b, Qd(a)∼∗e(a) and Qd(a)∼∗b are parallel.

Take a line l of signed beliefs that crosses each of these five sets once, and let qae(a), qbe(a), qab, qd(a)e(a)
and qd(a)b be the signed beliefs on the line where the DM is “indifferent”between the respective choices.
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As u represents %∗ on {a, e(a)}, {b, e(a)}, {d(a), e(a)} and {d(a), b}, we conclude that

u(a, qae(a)) = u(e(a), qae(a)), u(b, qbe(a)) = u(e(a), qbe(a)),

u(d(a), qd(a)e(a)) = u(e(a), qd(a)e(a)) and u(d(a), qd(a)b) = u(b, qd(a)b).

Recall that there is constant preference intensity between a and d(a). Since %∗ satisfies part (a) of four
choice linear preference intensity with constant preference intensity, we know that qab is uniquely given
by the other four signed indifference beliefs. Moreover, as the signed conditional preference relation%∗u
induced by u also satisfies part (a) of four choice linear preference intensity with constant preference
intensity, and coincides with %∗ on {a, e(a)}, {b, e(a)}, {d(a), e(a)} and {d(a), b}, we conclude that
qab ∈ Qa∼∗ub and hence u(a, qab) = u(b, qab). Thus, we have found a signed belief qab ∈ Qa∼∗b with
qab ∈ Qu(a)=u(b).

Since the expected utility difference between a and d(a) is constant across all signed beliefs, we
know that (i) Qu(a)=u(b) is parallel to Qu(d(a))=u(b). Moreover, as u represents %∗ on {d(a), b}, we
have that (ii) Qu(d(a))=u(b) = Qd(a)∼∗b. Finally, we know that (iii) Qd(a)∼∗b is parallel to Qa∼∗b. By
combining (i), (ii) and (iii), we conclude that Qu(a)=u(b) is parallel to Qa∼∗b. But since we have found
a signed belief qab ∈ Qa∼∗b with qab ∈ Qu(a)=u(b), it must be that Qu(a)=u(b) = Qa∼∗b.

Now, take some signed belief q with d(a) ∼∗q b. As a �∗q′ d(a) for all signed beliefs q′, we conclude
that a �∗q b. Since u represents %∗ on {d(a), b} and {a, d(a)}, we know that u(a, q) > u(d(a), q) =
u(b, q). Hence, we have found some signed belief q with a �∗q b and u(a, q) > u(b, q). Since Qu(a)=u(b) =
Qa∼∗b, we can show in a similar way as in the proof of Lemma 2.12.3 that u represents %∗ on {a, b}.

Case 2.2.4.3. Assume that Qa∼∗e(a) = Qb∼∗e(a). As a and b are not equivalent, it follows by transitiv-
ity of %∗ that Qa∼∗b = Qa∼∗e(a) = Qb∼∗e(a). Take an arbitrary qab ∈ Qa∼∗b. As qab is in both Qa∼∗e(a)
and Qb∼∗e(a), and u represents %∗ on {a, e(a)} and {b, e(a)}, it follows that u(a, q) = u(e(a), q) =
u(b, q). Thus, Qa∼∗b ⊆ Qu(a)=u(b).

Take some signed belief q with d(a) ∼∗q b. Since a �∗q′ d(a) for all signed beliefs q′, we know that
a �∗q b. As u represents %∗ on {d(a), b} and {a, d(a)}, it follows that u(a, q) > u(d(a), q) = u(b, q).
Thus, we have found some signed belief q with a �∗q b and u(a, q) > u(b, q).

We now show that Qa∼∗b = Qu(a)=u(b). To see this, recall from above that Qa∼∗b ⊆ Qu(a)=u(b),
which implies that span(Qa∼∗b) ⊆ span(Qu(a)=u(b)). Recall also that span(Qa∼∗b) has dimension n−1,
which means that span(Qu(a)=u(b)) has dimension n− 1 or n. Suppose, contrary to what we want to
show, that span(Qu(a)=u(b)) has dimension n. Then, span(Qu(a)=u(b)) = RS , and thus, by Lemma
2.12.8 (a), Qu(a)=u(b) = ∆∗(S). However, we have found above a signed belief q with u(a, q) > u(b, q),
and thus q /∈ Qu(a)=u(b). This is a contradiction. We thus conclude that span(Qu(a)=u(b)) has dimension
n − 1. Since span(Qa∼∗b) ⊆ span(Qu(a)=u(b)) and span(Qa∼∗b) has dimension n − 1, it follows that
span(Qa∼∗b) = span(Qu(a)=u(b)). By Lemma 2.12.8 (a), it then follows that Qa∼∗b = Qu(a)=u(b).

Summarizing, we see that Qu(a)=u(b) = Qa∼∗b, and there is a signed belief q where a �∗q b and
u(a, q) > u(b, q).We can then show in a similar way as in the proof of Lemma 2.12.3 that u represents
%∗ on {a, b}.

Case 2.2.5. Suppose finally that a, b /∈ D. We distinguish two cases: (2.2.5.1) d(a) = d(b), and
(2.2.5.2) d(a) 6= d(b).

Case 2.2.5.1. Assume that d(a) = d(b). Then, there is constant preference intensity between a and
d(a) and between b and d(a). By transitivity of constant preference intensity, there is also constant
preference intensity between a and b. That is, either a �∗q b for all signed beliefs q, or b �∗q a for all
signed beliefs q. Assume, without loss of generality, that a �∗q b for all signed beliefs q.
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Take some choice c ∈ D\{d(a)}. Then, we know by the claim that there is no constant preference
intensity between a and c, and hence there is a signed belief q with a ∼∗q c. As a �∗q b, we know by
transitivity of %∗ that c �∗q b. Since, by the previous cases, u represents %∗ on {a, c} and {b, c}, it
follows that u(a, q) = u(c, q) > u(b, q). We have thus found a signed belief q with u(a, q) > u(b, q).

Since d(a) = d(b) we know, by construction of the utility function u in (2.12.33), that the expected
utility difference between a and b is constant across all signed beliefs. As we have found a signed belief
q with u(a, q) > u(b, q), we conclude that u(a, q′) > u(b, q′) for all signed beliefs q′. Since a �∗q′ b for
all signed beliefs q′, we conclude that u represents %∗ on {a, b}.
Case 2.2.5.2. Suppose that d(a) 6= d(b). Then, we know by the claim that there is no constant
preference intensity between a and d(b), and also not between b and d(a). Since there is constant
preference intensity between a and d(a), but not between a and d(b) and not between d(a) and d(b), it
follows by Lemma 2.12.8 (b) that (i) Qd(a)∼∗d(b) is parallel to Qa∼∗d(b). In a similar fashion, it follows
that (ii) Qd(a)∼∗d(b) is also parallel to Qb∼∗d(a).

Moreover, since there is constant preference intensity between a and d(a), but not between b
and d(a), it must be that there is also no constant preference intensity between a and b. Otherwise,
it would follow by transitivity of constant preference intensity that there would also be constant
preference intensity between b and d(a), which would be a contradiction. But then, since there is
constant preference intensity between a and d(a) but not between b and d(a), and not between a and
b, it follows by Lemma 2.12.8 (b) that (iii) Qb∼∗d(a) is parallel to Qa∼∗b. By combining (i), (ii) and
(iii) we conclude that Qa∼∗b, Qb∼∗d(a), Qd(a)∼∗d(b) and Qa∼∗d(b) are all parallel.

Take a line l of signed beliefs that cross each of these four parallel sets exactly once, and let
qab, qbd(a), qd(a)d(b) and qad(b) be the signed beliefs on this line where the DM is “indifferent”between
the respective choices. As there is constant preference intensity between a and d(a), and between b and
d(b), and since %∗ satisfies part (b) of four choice linear preference intensity with constant preference
intensity, we know that qab is uniquely given by the other three signed “indifference”beliefs.

Now, consider the conditional preference relation %∗u induced by the utility function u. Since also
%∗u satisfies part (b) of four choice linear preference intensity with constant preference intensity, and
since, by the previous cases, u represents %∗ on {b, d(a)}, {d(a), d(b)} and {a, d(b)}, we know that
qab ∈ Qa∼∗ub, and hence u(a, qab) = u(b, qab). We have thus found a signed belief qab with qab ∈ Qa∼∗b
and qab ∈ Qu(a)=u(b).

Since, by (2.12.33), the expected utility difference between a and d(a) is constant across all signed
beliefs, we know that (i) Qu(a)=u(b) is parallel to Qu(b)=u(d(a)). Since, by the previous cases, u represents
%∗ on {d(a), b}, it follows that (ii) Qu(b)=u(d(a)) = Qb∼∗d(a). Moreover, we have seen above that (iii)
Qb∼∗d(a) is parallel to Qa∼∗b. By combining (i), (ii) and (iii) we conclude that Qu(a)=u(b) is parallel to
Qa∼∗b. Since above we have found a signed belief qab with qab ∈ Qa∼∗b and qab ∈ Qu(a)=u(b), it follows
that Qa∼∗b = Qu(a)=u(b).

Now, take some signed belief q with b ∼∗q d(a). Since we are assuming that a �∗q′ d(a) for all signed
beliefs q′, it follows by transitivity of %∗ that a �∗q b. As u represents %∗ on {b, d(a)} and {a, d(a)},
we know that u(a, q) > u(d(a), q) = u(b, q). We have thus found a signed belief q with a �∗q b and
u(a, q) > u(b, q). Since Qa∼∗b = Qu(a)=u(b) we can show, in a similar way as in the proof of Lemma
2.12.3, that u represents %∗ on {a, b}.

Since we have covered all the possible cases, we conclude that u represents %∗ on every pair of
choices {a, b}, and thus u represents %∗ . Since %∗ extends %, it follows that u represents % .

Recall that so far we have been assuming that no two choices are equivalent. Now, suppose that
two, or more, choices are equivalent. In this case, we can select a subset C∗ of choices such that (i) no
two choices in C∗ are equivalent, and (ii) every choice outside C∗ is equivalent to a choice inside C∗.
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By the proof above, we then know that there is a utility function u∗ on C∗ that represents % on C∗.
This utility function can be extended to a utility function u on C, by setting, for every choice c /∈ C∗,

u(c, s) := u(c∗, s)

where c∗ is the unique choice in C∗ that is equivalent to c. Then, the utility function u will represent
% on the whole choice set C. This completes the proof.

�
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Chapter 3

Common Belief in Rationality in Standard
Games

3.7 Economic Applications

In this section we discuss two economic applications of common belief in rationality in standard games:
One where there is competition in prices between two firms, and one where there is competition in
quantities between two firms.

3.7.1 Competition in Prices
Consider two firms, 1 and 2, that compete for the market of a certain good. The goods they offer are
differentiated, which means that the two goods have different characteristics. Some consumers prefer
the characteristics of the good of firm 1, whereas other consumers like the good of firm 2 more. That
is, even if a firm charges a higher price than its competitor it will still attract some consumers, because
they enjoy the characteristics of this firm’s good suffi ciently more than those of the competitor. Of
course, if firm 1 raises its price, then the demand for firm 1 will drop, whereas the demand for firm
2 will rise, and similarly for firm 2. More precisely, if firms 1 and 2 charge prices p1 and p2, then the
demands for both firms are given by

q1 = a− d · p1 + e · p2 and q2 = a− d · p2 + e · p1. (3.7.1)

Hence, d is a measure for the elastisticy of a firm’s demand with respect to its own price, whereas e
reflects the elasticity of demand with respect to the opponent’s price.

We assume, for simplicity, that both firms have a constant marginal cost equal to c. Suppose that
both firms choose a price from the interval [0,M ], that e < 2d and that

M ≥ c+a/d
2−e/d .

67
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The objective of each firm is to maximize its profit. That is, for every pair of prices p1, p2, firm i’s
utility is equal to the induced profit. This type of competition is called Bertrand competition. What
price(s) can both firms rationally choose under common belief in rationality?

To answer this question we first model the situation above as a game. Obviously, the two players
are the two firms 1 and 2. The set of choices Ci for firm i is the set of possible prices it can choose,
and hence Ci = [0,M ]. Note that Ci is an infinite set, whereas we have been assuming in Chapter 3
that the sets of choices are finite. We will see, however, that the idea of common belief in rationality
and its associated recursive procedure can easily be extended to the case of infinite choice sets.

What about player i’s utility function? We have indicated above that firm i’s utility is equal to
its profit. Assume that the two firms choose prices p1 and p2. Then, the revenue for firm 1 is its price
times its demand, which is

p1 · q1 = p1 · (a− d · p1 + e · p2),

whereas its costs are the marginal cost times the demand, resulting in

c · q1 = c · (a− d · p1 + e · p2).

The profit for firm 1, which is the revenue minus the costs, is therefore given by

π1(p1, p2) = (p1 − c) · (a− d · p1 + e · p2). (3.7.2)

Similarly, firm 2’s profit is given by

π2(p1, p2) = (p2 − c) · (a− d · p2 + e · p1). (3.7.3)

Although the choice sets for both firms are infinite, we can still define probabilistic beliefs in the
same way as in the book. Indeed, a belief for firm i would be a probability distribution βi over the
set Cj = [0,M ] of opponent’s prices. To keep things simple, let us concentrate on beliefs βi that only
assign positive probability to finitely many choices of the opponent. Like in Section 2.11 of this online
appendix, we denote by supp(βi) the set of opponent’s choices to which βi assigns positive probability,
and call it the support of belief βi. But then, we can define belief hierarchies, epistemic models and
the condition of common belief in rationality in essentially the same way as in Chapter 3 of the book.

What about the recursive procedure for common belief in rationality in this setting? In Theorem
3.4.1 of the book we have seen that for the case of finitely many choices, the procedure of iterated
elimination of strictly dominated choices selects precisely those choices that can rationally be made
under common belief in rationality. Moreover, we know from Theorem 2.6.1 in the book that the
choices that are strictly dominated are precisely the choices that are not optimal for a probabilistic
belief. Hence, this procedure is equivalent to the following procedure, which we call iterated elim-
ination of suboptimal choices: In the first round we eliminate all choices that are not optimal for
any probabilistic belief. In the second round, we start by eliminating those states that involve an
opponent’s choice that has been eliminated in round 1, which leads to a reduced decision problem for
every player. In every reduced decision problem, we then eliminate those choices that are not optimal
for any probabilistic belief. And so on.

This procedure, which reveals the idea of common belief in rationality, can be applied to games
with infinite choice sets as well. In particular, it can be applied to our setting here, to identify the
prices that both firms can rationally choose under common belief in rationality. However, as we will
see, the procedure will no longer terminate after finitely many rounds. Indeed, since we start with
infinitely many choices, it is no longer guaranteed that the procedure will stop after finitely many
rounds.
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Let us now apply the iterated elimination of suboptimal choices to the price competition game
above. At the end of every round k, let firm i’s decision problem be given by (P ki , S

k
i ), where P ki is

the set of prices for firm i that survive round k, and Ski is the set of states that survive round k.
Clearly, before we start the procedure we have P 0i = [0,M ] and S0i = [0,M ] for both firms i.

Round 1. Consider firm 1, whose utility function is given by (3.7.2). By definition, we allow for all
possible states in round 1, and hence S11 = [0,M ]. Which prices are optimal for some probabilistic
belief, and which are not? Suppose firm 1 holds the belief β1 about firm 2’s price. Then, the expected
profit for firm 1 is

π1(p1, β1) =
∑

p2∈supp(β1)
β1(p2) · π1(p1, p2)

=
∑

p2∈supp(β1)
β1(p2) · (p1 − c) · (a− d · p1 + e · p2)

= (p1 − c) · (a− d · p1 + e · [
∑

p2∈supp(β1)
β1(p2) · p2])

= (p1 − c) · (a− d · p1 + e · Eβ1(p2)), (3.7.4)

where
Eβ1(p2) :=

∑
p2∈supp(β1)

β1(p2) · p2

denotes the expected price for firm 2 under the belief β1.
From (3.7.4) we see that firm 1’s expected profit, when viewed as a function of its price p1, is a

second-degree polynomial in p1 that becomes zero for p1 = c and p1 = (a + e · Eβ1(p2))/d, and that
obtains a maximum exacty halfway these two points. That is, the unique optimal price for firm 1
under the belief β1 is given by

p1 = 1
2 · c+ 1

2 ·
a+e·Eβ1 (p2)

d

= 1
2 · (c+ a

d) + e
2d · Eβ1(p2). (3.7.5)

As Eβ1(p2) can only take values between 0 and M, and the optimal price is increasing in Eβ1(p2), the
optimal price can only take values between 1

2(c+ a
d) and 1

2(c+ a
d) + eM

2d . Moreover,
1
2(c+ a

d) + eM
2d ≤M

since, by assumption, e < 2d and M ≥ c+a/d
2−e/d . Hence the set of optimal prices in round 1 is

P 11 = [12(c+ a
d), 1

2(c+ a
d) + eM

2d ]. (3.7.6)

Similarly for firm 2.

Round 2. Consider firm 1 first. By definition of the procedure, S21 contains those opponent’s prices
that have survived round 1. Hence, S21 = P 12 = [12(c + a

d), 12(c + a
d) + eM

2d ], which leads to a reduced
decision problem for firm 1.

Which prices are optimal for firm 1 if it forms a belief about the states in S21 . In other words, when
firm 1 holds a belief β1 that only assigns positive probability to opponent’s prices in P

1
2 . In that case,

the optimal price for firm 1 is given by (3.7.5), where the expected price Eβ1(p2) for firm 2 under the
belief β1 must be in P

1
2 . Therefore, the lowest price l for firm 1 that is optimal for such a belief β1 is

given by (3.7.5) if we substitute Eβ1(p2) = 1
2(c + a

d). Similarly, the highest price h for firm 1 that is
optimal for such a belief β1 is given by (3.7.5) if we substitute Eβ1(p2) = 1

2(c+ a
d) + eM

2d . Thus,

l = 1
2 · (c+ a

d) + e
2d · (

1
2(c+ a

d)) = 1
2(c+ a

d)(1 + e
2d)
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and

h = 1
2 · (c+ a

d) + e
2d · (

1
2(c+ a

d) + eM
2d )

= 1
2(c+ a

d)(1 + e
2d) + ( e

2d)2M.

Hence, the set of prices for firm 1 that are optimal for some belief in round 2 is given by

P 21 = [12(c+ a
d)(1 + e

2d), 1
2(c+ a

d)(1 + e
2d) + ( e

2d)2M ].

Similarly for firm 2.

If we continue like this, we can derive for every round k the set P k1 of prices that survive for firm
1, and similarly for firm 2. In fact, it can be shown that

P k1 = [ c+a/d2−e/d · (1− ( e
2d)k), c+a/d

2−e/d · (1− ( e
2d)k) + ( e

2d)kM ] (3.7.7)

for every round k, and similarly for firm 2. We will now show, by induction on k, that (3.7.7) holds.
For k = 0 we have that P 01 = [0,M ] and hence (3.7.7) holds.
Take now some k ≥ 1, and assume that (3.7.7) holds for k−1. Concentrate on firm 1. By definition,

Sk1 = P k−12 , and P k1 contains those prices that are optimal for some belief on S
k
1 . Take a belief β1 on

Sk1 . Since S
k
1 = P k−12 , it follows by the induction assumption that

Sk1 = [ c+a/d2−e/d · (1− ( e
2d)k−1), c+a/d

2−e/d · (1− ( e
2d)k−1) + ( e

2d)k−1M ],

and hence the expected price Eβ1(p2) must be in this interval as well. Recall that the optimal price

under the belief β1 is given by (3.7.5). As the lowest value for Eβ1(p2) is
c+a/d
2−e/d · (1 − ( e

2d)k−1, the
lowest price that is optimal for such a belief β1 is

l = 1
2(c+ a

d) + e
2d · (

c+a/d
2−e/d · (1− ( e

2d)k−1))

= c+a/d
2−e/d · (

1
2(2− e

d) + e
2d − ( e

2d)k)

= c+a/d
2−e/d · (1− ( e

2d)k).

Similarly, as the highest value for Eβ1(p2) is
c+a/d
2−e/d · (1− ( e

2d)k−1 + ( e
2d)k−1M, the highest price that is

optimal for such a belief β1 is

h = 1
2(c+ a

d) + e
2d · (

c+a/d
2−e/d · (1− ( e

2d)k−1) + ( e
2d)k−1M)

= c+a/d
2−e/d · (

1
2(2− e

d) + e
2d − ( e

2d)k) + ( e
2d)kM

= c+a/d
2−e/d · (1− ( e

2d)k) + ( e
2d)kM.

Thus, P k1 = [l, h], which is the interval given by (3.7.7). By induction on k, we conclude that (3.7.7)
holds for every k. And similarly for firm 2.

Note that with every round k the interval of prices P k1 becomes strictly smaller, and therefore the
procedure does not terminate within finitely many rounds. In the limit, when k tends to infinity, the
term ( e

2d)k goes to zero, since we assume that e < 2d, and therefore e
2d < 1. Hence, when k tends to

infinity, the interval of prices P k1 collapses to a single price, which is

p∗ = c+a/d
2−e/d . (3.7.8)
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This is thus the only price that survives all rounds of the iterated elimination of suboptimal choices,
and similarly for firm 2. We thus conclude that under common belief in rationality, both firms can
only rationally choose the price p∗ above.

But we can say a bit more: Similarly to Theorem 3.4.1 in the book, we can conclude that for every
k ≥ 1, the prices that firm 1 can rationally choose if it expresses up to k-fold belief in rationality are
given by the set P k+11 in (3.7.7), and similarly for firm 2.

Let us finally investigate how the price p∗ depends on the various parameters in the model, and
why this makes intuitive sense. In view of (3.7.8) we see that the price p∗ increases in its marginal
cost c. This is natural, since an increase in the marginal cost leads the firm to choose a higher price
to compensate for it. Moreover, the price p∗ is increasing in a, which somehow measures the size of
the market. Also this is intuitive, since a larger market allows the firms to choose higher prices and
still obtain a “reasonable” demand. The price p∗ is decreasing in the elasticity parameter d, which
measures how quickly the demand for firm 1 drops if it increases its price. Indeed, if d becomes larger,
then consumers react more fiercely to a price raise of firm 1, which forces firm 1 to choose a lower
price in order to still obtain a “reasonable” demand. Finally, the price p∗ is increasing in e, which
measures how quickly the demand for firm 1 rises if the opponent raises its price. This makes sense,
since a higher e means that consumers will switch more quickly to firm 1 if firm 2 raises its price,
which allows firm 1 to choose a higher price.

3.7.2 Competition in Quantities
Consider two firms, 1 and 2, that produce homogeneous goods, meaning they produce goods that
are either identical or very similar. Both firms compete for the market of that good, not by choosing
prices but by choosing the quantities they wish to produce. This type of competition is called Cournot
competition.

Assume that both firms i can choose a quantity qi in the interval [0,M ]. The resulting market
price for the good is then given by

p = a− e · (q1 + q2), (3.7.9)

where e measures how quickly the market price drops if the total supply q1 + q2 of the good increases.
We refer to e as the elasticity parameter. Like in the Bertrand competition described above, we
suppose that both firms have a constant marginal cost equal to c. We assume that c < a, and that
M ∈ [a−c2e ,

a−c
e ]. To objective of each firm is to maximize its profit. Hence, the firms’utility functions

are equal to their profit functions.
If we model this situation as a game, then the players are the two firms, and player i’s choice set

is given by Ci = [0,M ] —the set of possible quantities that can be chosen. We will next derive player
1’s utility function. If firm 1 chooses a quantity q1 and firm 2 chooses a quantity q2, then its revenue
is equal to the quantity it sells times the market price, which is given by q1 · (a − e · (q1 + q2)). The
costs for firm 1 are given by the quantity it produces times the constant marginal cost, which is q1 · c.
The profit for firm 1, which is the revenue minus the costs, is thus equal to

π1(q1, q2) = q1 · (a− e · (q1 + q2))− q1 · c
= q1 · (a− c− e · (q1 + q2)). (3.7.10)

This is the utility function of firm 1. Similarly for firm 2.
What quantity, or quantities, can both firms rationally choose under common belief in rationality?

Note that both firms have an infinite choice set and an infinite set of states. We therefore use the
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iterated elimination of suboptimal choices explained in the previous subsection to find the quantities
that are possible under common belief in rationality.

For every round k, let Qki and S
k
i be the sets of quantities and states that survive for firm i in

round k. Then, Q0i = S0i = [0,M ] for both firms i.

Round 1. Focus on firm 1. By definition, the set of states in round 1 is S11 = [0,M ]. Suppose that
firm 1 holds a belief β1 about the quantity of firm 2. As in the previous subsection, we assume that
β1 assigns positive probability only to a finite number of quantities. By supp(β1) we denote the set
of quantities for firm 2 that β1 assigns a positive probability to. Then, the expected profit for firm 1
of choosing a quantity q1 under the belief β1 is

π1(q1, β1) =
∑

q2∈supp(β1)
β1(q2) · π1(q1, q2)

=
∑

q2∈supp(β1)
β1(q2) · (q1 · (a− c− e · (q1 + q2)))

= q1 · (a− c− e · (q1 + [
∑

q2∈supp(β1)
β1(q2) · q2]))

= q1 · (a− c− e · (q1 + Eβ1(q2))). (3.7.11)

Here,
Eβ1(q2) :=

∑
q2∈supp(β1)

β1(q2) · q2

denotes the expected quantity of firm 2 under the belief β1.
Note that π1(q1, β1), when viewed as a function of q1, is a second-degree polynomial in q1 that

becomes zero at q1 = 0 and q1 = a−c
e − Eβ1(q2), and that has a maximum exactly halfway between

these two points. Thus, the optimal quantity for firm 1 under the belief β1 is given by

q1 = 1
2 · 0 + 1

2 · (
a−c
e − Eβ1(q2))

= a−c
2e −

1
2 · Eβ1(q2). (3.7.12)

Note that this optimal quantity is at least zero, since M ≤ a−c
e and hence Eβ1(q2) ≤

a−c
e . Moreover,

the optimal quantity is at most M, since M ≥ a−c
2e .

As the optimal quantity is decreasing in Eβ1(q2) and the value of Eβ1(q2) is between 0 and M,
the quantities q1 that are optimal for some belief β1 are between

a−c
2e −

1
2M and a−c

2e . Thus, the set of
quantities in round 1 that are optimal for some belief β1 is

Q11 = [a−c2e −
1
2M, a−c

2e ].

Similarly for firm 2.

Round 2. Focus again on firm 1. By definition, the set of states in round 2 is S21 = Q12 = [a−c2e −
1
2M,

a−c
2e ]. Now, let firm 1 have a belief β1 on the set of states S

1
2 . Recall that the optimal quantity for firm

1 is given by (3.7.12) above. As the optimal quantity is decreasing in Eβ1(q2), and Eβ1(q2) is between
a−c
2e −

1
2M and a−c

2e , the set of quantities in round 2 that are optimal for some belief β1 on S
1
2 is

Q21 = [a−c2e −
1
2 ·

a−c
2e ,

a−c
2e −

1
2 · (

a−c
2e −

1
2M)]

= [a−c4e ,
a−c
4e + 1

4M ].
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Similarly for firm 2.

If we continue in this fashion, we can compute the sets of quantities Qk1, Q
k
2 for every round k. We

will show, by induction on k, that

Qk1 =

{
[(13 −

1
3·2k ) · a−ce , (13 −

1
3·2k ) · a−ce + M

2k
], if k = 0 or k is even

[(13 + 1
3·2k ) · a−ce −

M
2k
, (13 + 1

3·2k ) · a−ce ], if k is odd
, (3.7.13)

and similarly for firm 2.
If k = 0 then Q01 = [0,M ], which matches the equation (3.7.13).
Now suppose that k ≥ 1, and that (3.7.13) holds for k− 1. We distinguish two cases: (1) k is odd,

and (2) k is even.

Case 1. Assume that k is odd. Then, k−1 is either 0 or even. By the induction assumption, we know
that (3.7.13) holds for Qk−12 . Take a belief β1 on the set of states S

k
1 = Qk−12 . Hence, the lowest value

for Eβ1(q2) is (13 −
1

3·2k−1 ) · a−ce . As the optimal quantity q1 is given by (3.7.12), which is decreasing in
Eβ1(q2), the highest value of q1 in Q

k
1 is

h = a−c
2e −

1
2 · (

1
3 −

1
3·2k−1 ) · a−ce = (13 + 1

3·2k ) · a−ce ,

which matches (3.7.13).
Moreover, the highest value for Eβ1(q2) is (13 −

1
3·2k−1 ) · a−ce + M

2k−1
, which implies that the lowest

value for q1 in Qk1 is

l = a−c
2e −

1
2 · [(

1
3 −

1
3·2k−1 ) · a−ce + M

2k−1
] = (13 + 1

3·2k ) · a−ce −
M
2k
.

We thus conclude that Qk1 = [l, h], which matches (3.7.13).

Case 2. Assume that k is even. Then, k − 1 is odd. By the induction assumption, we know that
(3.7.13) holds for Qk−12 . Take a belief β1 on the set of states S

k
1 = Qk−12 . Hence, the lowest value for

Eβ1(q2) is (13 + 1
3·2k−1 ) · a−ce −

M
2k−1

. As the optimal quantity q1 is given by (3.7.12), which is decreasing
in Eβ1(q2), the highest value of q1 in Q

k
1 is

h = a−c
2e −

1
2 · [(

1
3 + 1

3·2k−1 ) · a−ce −
M
2k−1

] = (13 −
1
3·2k ) · a−ce + M

2k
,

which matches (3.7.13).
Moreover, the highest value for Eβ1(q2) is (13 + 1

3·2k−1 ) · a−ce , which implies that the lowest value
for q1 in Qk1 is

l = a−c
2e −

1
2 · (

1
3 + 1

3·2k−1 ) · a−ce = (13 −
1
3·2k ) · a−ce .

We thus conclude that Qk1 = [l, h], which matches (3.7.13).

By induction on k we see that (3.7.13) holds for every k ≥ 0. Note that the sets Qk1, Q
k
2 become

strictly smaller with every round k, and therefore the procedure does not terminate within finitely
many rounds, similarly to the case of Bertrand competition above. As k tends to infinity, the term 2k

tends to infinity as well, and therefore the sets Qk1 and Q
k
2 collapse to the quantity

q∗ = a−c
3e . (3.7.14)

This is the only quantity that survives all rounds of the iterated elimination of suboptimal choices
for both firms. As such, we conclude that under common belief in rationality, both firms can only
rationally choose the quantity q∗ above.
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Moreover, for every k ≥ 1, the quantities that both firms can rationally choose if they express up
to k-fold belief in rationality are given by Qk+11 and Qk+12 as specified by (3.7.13).

We finally investigate how the quantity q∗ in (3.7.14) depends on the parameters in the model,
and why this makes sense. First of all, the quantity q∗ is increasing in a. If the parameter a increases,
then this will lead to a larger market price for every combination of quantities chosen by the two
firms. This, in turn, allows the firm to choose a larger quantity and still obtain a “reasonable”profit.
Moreover, the quantity q∗ is decreasing in the marginal cost c. Indeed, if c rises, then producing
the same quantity becomes more costly than before, which forces the firm to reduce its production.
Finally, the quantity q∗ is decreasing in the elasticity parameter e. Also this is intuitive, because a
larger e leads to a lower market price for every combination of quantities chosen. To compensate for
this, the firm will reduce the quantity supplied.



Chapter 4

Correct and Symmetric Beliefs in Standard
Games

4.6 Economic Applications

In this section we reconsider the models of competition in prices and competition in quantities in-
troduced in Section 3.7 of this online appendix. For both models we will apply the concept of Nash
equilibrium to explore what choice(s) both firms can rationally make under common belief in ratio-
nality with a simple belief hierarchy.

4.6.1 Competition in Prices
Recall the Bertrand competition model we introduced in Section 3.7.1 of this online appendix. We
have argued that under common belief in rationality both firms can only rationally choose the price

p∗ = c+a/d
2−e/d . (4.6.1)

Hence, under common belief in rationality with a simple belief hierarchy, the only possible rational
choice for both firms is to choose this price p∗. We will now verify that p∗ can indeed rationally be
chosen under common belief in rationality with a simple belief hierarchy.

Recall from Theorem 4.1.2 that in a game with finitely many choices, the choices that can rationally
be made under common belief in rationality with a simple belief hierarchy are precisely the choices
that are optimal in a Nash equilibrium. The same is true for games with infinitely many choices, if
we extend the notion of Nash equilibrium to such games. In fact, the definition of a Nash equilibrium
for a game with infinitely many choices is precisely the same as for finitely many choices.

Indeed, consider a game with infinitely many choices, where for every player i the choice set is the
infinite set Ci, and the utility function is given by ui. Then, a Nash equilibrium is a combination of
beliefs (σ1, ..., σn) where, for every player i, the belief σi assigns positive probability to finitely many
choices of player i, and σi(ci) > 0 only if choice ci is optimal for player i under the belief σ−i.
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Consider the price p∗ in (4.6.1). Then, it can be shown that the belief combination (σ1 = p∗,
σ2 = p∗), where σ1 and σ2 assign probability 1 to the price p∗, is a Nash equilibrium. Indeed, in this
belief combination firm 1 believes that firm 2 chooses the price p∗. By (3.7.5), the optimal price for
firm 1 is given by

p1 = 1
2 · (c+ a

d) + e
2d · Eσ2(p2) = 1

2 · (c+ a
d) + e

2d · p
∗

= 1
2 · (c+ a

d) + e
2d ·

c+a/d
2−e/d = c+a/d

2−e/d = p∗.

Hence, σ1 assigns probability 1 to the only price that is optimal for firm 1 under the belief σ2.
Similarly, σ2 assigns probability 1 to the only price that is optimal for firm 2 under the belief σ1. As
such, (σ1 = p∗, σ2 = p∗) is a Nash equilibrium.

By Theorem 4.1.2 applied to games with infinitely many choices, we then know that both firms can
rationally choose the price p∗ under common belief in rationality with a simple belief hierarchy. Since
we have seen in Section 3.7.1 that p∗ is the only price that can rationally be chosen under common
belief in rationality, we conclude that p∗ is the only price that can rationally be chosen under common
belief in rationality with a simple belief hierarchy. As every simple belief hierarchy is symmetric and
uses one theory per choice, it immediately follows that p∗ is also the only price that can rationally be
chosen under common belief in rationality with a symmetric belief hierarchy, with or without insisting
on one theory per choice.

Suppose now that we would not know which prices are possible under common belief in rationality.
Is there then a quick way to find the prices that can rationally be chosen under common belief in
rationality with a simple belief hierarchy? The answer is “yes”, by directly computing the set of Nash
equilibria in the game.

To see this, suppose that (σ1, σ2) is a Nash equilibrium in the Bertrand competition model. Then,
σ1(p1) > 0 only if the price p1 is optimal for firm 1 under the belief σ2 about firm 2’s price. By (3.7.5)
we conclude that σ1 must assign probability 1 to the unique price

p∗1 = 1
2 · (c+ a

d) + e
2d · Eσ2(p2) (4.6.2)

that is optimal for firm 1 under the belief σ2. Similarly, σ2 must assign probability 1 to the unique
price

p∗2 = 1
2 · (c+ a

d) + e
2d · Eσ1(p1) (4.6.3)

that is optimal for firm 2 under the belief σ1.
By (4.6.2) and (4.6.3) we know that Eσ2(p2) = p∗2 and Eσ1(p1) = p∗1. Thus,

p∗1 = 1
2 · (c+ a

d) + e
2d · p

∗
2 and (4.6.4)

p∗2 = 1
2 · (c+ a

d) + e
2d · p

∗
1. (4.6.5)

The equations (4.6.5) and (4.6.4) are often called best response functions. If we substitute (4.6.5) into
(4.6.4) we obtain

p∗1 = 1
2 · (c+ a

d) + e
2d · [

1
2 · (c+ a

d) + e
2d · p

∗
1]

= 1
2 · (1 + e

2d) · (c+ a
d) + ( e

2d)2 · p∗1.

Hence,
p∗1 = 1/2·(1+e/2d)·(c+a/d)

1−(e/2d)2 = 1/2·(1+e/2d)·(c+a/d)
(1+(e/2d))·(1−(e/2d)) = c+a/d

2−e/d = p∗.

If we substitute this into (4.6.5) we get that p∗2 = p∗ also. Hence, our conclusion is that there is only
one Nash equilibrium, which is (σ1 = p∗, σ2 = p∗), assigning probability 1 to the price p∗ for both
firms. In the literature, this Nash equilibrium is known as the Bertrand equilibrium.
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4.6.2 Competition in Quantities
Recall the Cournot competition model we discussed in Section 3.7.2. We saw that under common
belief in rationality both firms can only rationally choose the quantity

q∗ = a−c
3e . (4.6.6)

Can this quantity also rationally be chosen under common belief in rationality with a simple belief
hierarchy?

To answer that question we verify that the belief combination (σ1 = q∗, σ2 = q∗), which assigns
probability 1 to the quantity q∗ for both firms, is a Nash equilibrium. Firm 1 believes that, with
probability 1, firm 2 chooses the quantity q∗. By (3.7.12) we know that the unique optimal quantity
for firm 1 under that belief is given by

q1 = a−c
2e −

1
2 · Eσ2(q2) = a−c

2e −
1
2 · q

∗ = a−c
2e −

1
2 ·

a−c
3e = a−c

3e = q∗.

Hence, σ1 assigns probability 1 to the unique quantity that is optimal for firm 1 under the belief σ2.
Similarly, σ2 assigns probability 1 to the unique quantity that is optimal for firm 2 under the belief
σ1. Therefore, (σ1 = q∗, σ2 = q∗) is indeed a Nash equilibrium.

In view of Theorem 4.1.2 applied to games with infinitely many choices we conclude that both
firms can rationally choose the quantity q∗ under common belief in rationality with a simple belief
hierarchy. As q∗ is the only quantity that can rationally be chosen under common belief in rationality,
it follows that q∗ is the only quantity that can rationally be chosen under common belief in rationality
with a simple belief hierarchy. As a consequence, q∗ is the only quantity that can rationally be chosen
under common belief in rationality with a symmetric belief hierarchy, with or without insisting on the
one theory per choice condition.

We finally show how to directly find the Nash equilibria in this game, without relying on the sets
of quantities that can rationally be chosen under common belief in rationality. Suppose that (σ1, σ2)
is a Nash equilibrium in the Cournot competition model. By (3.7.12) we know that σ1 must assign
probability 1 to the unique quantity

q∗1 = a−c
2e −

1
2 · Eσ2(q2) (4.6.7)

that is optimal for firm 1 under the belief σ2 about firm 2’s quantity. Similarly, σ2 must assign
probability 1 to the unique quantity

q∗2 = a−c
2e −

1
2 · Eσ1(q1) (4.6.8)

that is optimal for firm 2 under the belief σ1 about firm 1’s quantity.
Since Eσ1(q1) = q∗1 and Eσ2(q2) = q∗2 it follows from (4.6.7) and (4.6.8) that

q∗1 = a−c
2e −

1
2 · q

∗
2 and (4.6.9)

q∗2 = a−c
2e −

1
2 · q

∗
1. (4.6.10)

These equations reflect the best response functions for the firms. If we substitute (4.6.10) into (4.6.9)
we get

q∗1 = a−c
2e −

1
2 · (

a−c
2e −

1
2 · q

∗
1) = a−c

4e + 1
4 · q

∗
1

and hence
q∗1 = (a−c)/4e

3/4 = a−c
3e = q∗.



78 CHAPTER 4. CORRECT AND SYMMETRIC BELIEFS IN STANDARD GAMES

By substituting this into (4.6.10) we obtain

q∗2 = a−c
2e −

1
2 · q

∗ = a−c
2e −

1
2 ·

a−c
3e = a−c

3e = q∗.

Thus, the combination of beliefs (σ1 = q∗, σ2 = q∗), where both firms are believed to choose q∗ with
probability 1, is the only Nash equilibrium in this model. This Nash equilibrium is called the Cournot
equilibrium.



Chapter 5

Common Belief in Rationality with Incomplete
Information

5.7 Economic Applications

In this section we reconsider the Bertrand competition model and Cournot competition model from
Section 3.7 of this online appendix. This time we assume that both firms are uncertain about the
opponent’s cost function, and we show how this gives rise to a game with incomplete information.
We extend the generalized iterated strict dominance procedure to this setting with infinitely many
choices, states and utility functions, and use this procedure to find the prices and quantities that both
firms can rationally choose under common belief in rationality.

5.7.1 Competition in Prices
Recall the Bertrand competition model from Section 3.7.1. We saw that the profit function for firm 1
was given by

π1(p1, p2) = (p1 − c1) · (a− d · p1 + e · p2), (5.7.1)

where c1 is the constant marginal cost for firm 1. Similarly for firm 2.
In Section 3.7.1 we assumed that c1 = c2 = c, and that this is transparent amongst the two firms.

In this section we drop this assumption, and assume that both firms are uncertain about the marginal
cost of the other firm. Of course, both firms know their own marginal cost. More precisely, it is
commonly known that the marginal cost of both firms lies somewhere in the interval [c, c], where c is
the lowest possible marginal cost and c is the highest possible marginal cost. That is, firm 1 believes
that firm 2’s marginal cost lies in [c, c] and firm 2 believes that firm 1’s marginal cost lies in [c, c]. We
assume that

e < 2d and M ≥ c+a/d
2−e/d .
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In view of (5.7.1), the marginal cost ci for firm i completely determines firm i’s utility function.
We thus obtain a scenario with incomplete information where there are infinitely many possible utility
functions for the two players, since there are infinitely many values that ci can take. Moreover,
there are infinitely many possible choices for the two players, and therefore also infinitely many states.
Nevertheless, the concept of common belief in rationality and the generalized iterated strict dominance
procedure can naturally be extended to such scenarios.

Indeed, consider a game with incomplete information (Ci, Ui)i∈I where the set Ci of possible choices
and the set Ui of possible utility functions may be infinite for every player i. In the generalized iterated
strict dominance procedure for finite games we would in round 1 eliminate, for every possible utility
function ui of player i, those choices that are strictly dominated. By Theorem 2.6.1 in the book, these
are precisely the choices that are not optimal for any belief at the utility function ui. Thus, in the
infinite case we can eliminate, in round 1, for every player i and for every utility function ui those
choices that are not optimal for any probabilistic belief. Then, we are left with the 1-fold reduced
decision problem for every player i and utility function ui ∈ Ui. Note that there may be infinitely
many decision problems, as there are possibly infinitely many utility functions.

Like in the procedure for finite games, we would start in round 2 by eliminating, for every player
i and every utility function ui, those states that involve opponent’s choices cj that did not survive
round 1 at any of player j’s utility functions. We thus obtain a smaller decision problem at ui. In
the finite case we would then eliminate the choices for player i that are strictly dominated within this
smaller decision problem. Again, by Theorem 2.6.1, this is equivalent to eliminating those choices
that are not optimal for any belief within this smaller decision problem at ui. In the infinite case, we
can then eliminate those choices for player i that are not optimal for any belief within this smaller
decision problem at ui.

By continuing in this fashion, we can extend the generalized iterated strict dominance procedure
to games with incomplete information that may contain infinitely many choices, states and utility
functions. We will call this the generalized iterated strict dominance procedure for infinite games.

Let us now apply the generalized iterated strict dominance procedure for infinite games to the
Bertrand competition model above, to find those prices that both firms can rationally choose under
common belief in rationality.

Round 1. Consider firm 1. For every value of c1 ∈ [c, c] there is a new decision problem for firm 1,
with the utility function as given in (5.7.1). Which prices are optimal for firm 1 for some belief with
the marginal cost c1? By (3.7.5) we know that for every belief β1 about firm 2’s price, the unique
optimal price for firm 1 is given by

p1 = 1
2 · (c1 + a

d) + e
2d · Eβ1(p2). (5.7.2)

As Eβ1(p2) lies between 0 and M, and the optimal price is increasing in Eβ1(p2), the set of prices
P 11 (c1) that is optimal for firm 1 for some belief with the marginal cost c1 is

P 11 (c1) = [12(c1 + a
d), 1

2(c1 + a
d) + eM

2d ]. (5.7.3)

This yields the 1-fold reduced decision problems for firm 1 —one for every value of c1. Similarly for
firm 2.

Round 2. Consider the decision problem for firm 1 at marginal cost c1. By definition, the set of
states S21(c1) contains precisely those prices for firm 2 that have survived round 1 for some marginal
cost c2 ∈ [c, c]. In view of (5.7.3), the lowest price for firm 2 that has survived for some c2 is 12(c+ a

d)
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for marginal cost c, whereas the highest price for firm 2 that has survived for some c2 is 12(c+ a
d) + eM

2d
for marginal cost c. Thus, the set of states is given by

S21(c1) = [12(c+ a
d), 1

2(c+ a
d) + eM

2d ].

Hence, firm 1 must form a belief β1 about the set of states S
2
1(c1) above, which implies that Eβ1(p2)

must be between 1
2(c+ a

d) and 1
2(c+ a

d) + eM
2d . But then, by (5.7.2), the lowest price for firm 1 that is

optimal for such a belief at marginal cost c1 is

1
2(c1 + a

d) + e
2d
1
2(c+ a

d),

whereas the highest price for firm 1 that is optimal for such a belief at marginal cost c1 is

1
2(c1 + a

d) + e
2d(12(c+ a

d) + eM
2d ).

The set of prices that survive round 2 for firm 1 at marginal cost c1 is thus given by

P 21 (c1) = [12(c1 + a
d) + e

2d
1
2(c+ a

d), 1
2(c1 + a

d) + e
2d(12(c+ a

d) + eM
2d )].

This yields the 2-fold reduced decision problems for firm 1. Similarly for firm 2.

If we continue in this fashion we can derive, for every round k ≥ 1, both players i and every
marginal cost ci, the set P ki (ci) of prices that survive. We will show, by induction on k, that

P k1 (c1) = [12(c1+ a
d)+ e

2d( c+a/d2−e/d ·(1−( e
2d)k−1), 1

2(c1+ a
d)+ e

2d( c+a/d2−e/d ·(1−( e
2d)k−1)+( e

2d)k−1M)], (5.7.4)

and similarly for firm 2. Let the lower bound and upper bound in this interval be denoted by lk1(c1)
and hk1(c1), and similarly for player 2. Then, it may be verified that

lk1(c) = 1
2(c+ a

d) + e
2d( c+a/d2−e/d · (1− ( e

2d)k−1)) = c+a/d
2−e/d · (1− ( e

2d)k) (5.7.5)

and

hk1(c) = 1
2(c+ a

d) + e
2d( c+a/d2−e/d · (1− ( e

2d)k−1) + ( e
2d)k−1M)

= c+a/d
2−e/d · (1− ( e

2d)k) + ( e
2d)k−1M. (5.7.6)

For k = 1 we know that P 11 (c1) is given by (5.7.3), which matches (5.7.4).
Consider now some k ≥ 2, and assume that (5.7.4) holds for firm 2 and k − 1. Let us focus on

the decision problem of firm 1 at the marginal cost c1. By definition, Sk1 (c1) contains all prices for
firm 2 that have survived round k− 1 for some marginal cost of firm 2. By the induction assumption,
Sk1 (c1) thus contains all prices p2 such that p2 ∈ [lk−12 (c2), h

k−1
2 (c2)] for some c2 ∈ [c, c]. Hence,

Sk1 (c1) = [lk−12 (c), hk−12 (c)].
Take some belief β1 on S

k
1 (c1). Then, Eβ1(p2) ∈ [lk−12 (c), hk−12 (c)]. By (5.7.2) it then follows that

the optimal price for firm 1 under that belief β1 is in the interval

[12(c1 + a
d) + e

2d l
k−1
2 (c), 1

2(c1 + a
d) + e

2dh
k−1
2 (c)].

Thus, the set of prices that are optimal for some belief on Sk1 (c1) for the marginal cost c1 is

P k1 (c1) = [12(c1 + a
d) + e

2d l
k−1
2 (c), 1

2(c1 + a
d) + e

2dh
k−1
2 (c)].
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Moreover, by (5.7.5) and (5.7.6), this interval is equal to

P k1 (c1) = [12(c1 + a
d) + e

2d( c+a/d2−e/d · (1− ( e
2d)k−1), 1

2(c1 + a
d) + e

2d( c+a/d2−e/d · (1− ( e
2d)k−1) + ( e

2d)k−1M)],

which matches (5.7.4). Similarly for firm 2. By induction on k, we thus conclude that (5.7.4) holds
for every k ≥ 1.

In particular, it can be seen that the interval P k1 (c1) becomes strictly smaller with every k, and
thus the procedure does not terminate within finitely many rounds. Recall that e < 2d. Therefore,
when k tends to infinity, the interval P ki (ci) reduces to

P ∗i (ci) = [12(ci + a
d) + e

2d
c+a/d
2−e/d ,

1
2(ci + a

d) + e
2d
c+a/d
2−e/d ] (5.7.7)

for both firms i. Hence, under common belief in rationality, firm i can rationally choose any price from
P ∗i (ci) when its marginal cost is ci. Note that the interval P ∗i (ci) becomes wider if the range c − c
of possible marginal costs becomes larger. This is to be expected, as a larger range c − c of possible
marginal costs allows for more possible beliefs about the marginal cost and price of the opponent.

An important difference with the analysis in Section 3.7.1 is that common belief in rationality
no longer leads to a unique price for the firms. The reason is that both firms are uncertain about
the precise marginal cost that the competitor has, which allows the firms to have a broader range of
reasonable beliefs about the price of the competitor.

We finally investigate the scenario where we impose fixed beliefs on utilities. In our setting this
means that the two firms hold a fixed belief about the competitor’s marginal cost. Suppose we
require both firms to believe that every marginal cost in [c, c] is equally likely for the competitor. In
mathematical terms, such a belief is called the uniform distribution on [c, c]. Hence, we impose fixed
beliefs (r1, r2) on utilities where r1 and r2 are the uniform distribution on [c, c].

In a similar fashion as above, the generalized iterated strict dominance procedure with fixed beliefs
on utilities can be generalized to games with infinitely many choices, states and utility functions. This
extension is called the generalized iterated strict dominance procedure with fixed beliefs on utilities for
infinite games. We will now apply this procedure to our setting to derive the prices that both firms
can rationally choose under common belief in rationality with fixed beliefs (r1, r2) about the utilities.

Round 1. This round is precisely the same as for the procedure without fixed beliefs on utilities, and
leads to the set of prices

P 11 (c1) = [12(c1 + a
d), 1

2(c1 + a
d) + eM

2d ] (5.7.8)

for firm 1, for every marginal cost c1. Similarly for firm 2.

Round 2. Focus on firm 1. By definition of the procedure, firm 1 is required to hold a belief β1 on
firm 2’s price-cost pairs that (i) respects r1, that is, deems every marginal cost c2 ∈ [c, c] equally likely,
and (ii) concentrates only on price-cost pairs (p2, c2) where the price p2 has survived round 1 for firm
2 at c2, that is, where p2 ∈ P 12 (c2). By (5.7.8), the “lowest”such belief is the belief βmin1 that deems
every cost c2 ∈ [c, c] equally likely, and that concentrates only on pairs (p2, c2) where p2 = 1

2(c2 + a
d).

As the price p2 depends linearly on c2, and every c2 ∈ [c, c] is deemed equally likely, the expected price
for firm 2 under this belief is

Eβmin1
(p2) = 1

2 ·
1
2(c+ a

d) + 1
2 ·

1
2(c+ a

d) = 1
2(12(c+ c) + a

d). (5.7.9)
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From (5.7.8) it also follows that the “highest”such belief is the belief βmax1 that deems every cost
c2 ∈ [c, c] equally likely, and that concentrates only on pairs (p2, c2) where p2 = 1

2(c2 + a
d) + eM

2d . By a
similar reasoning as above, the expected price for firm 2 under that belief is

Eβmax1
(p2) = 1

2(12(c+ c) + a
d) + eM

2d . (5.7.10)

Please verify this.
By (5.7.2), (5.7.9) and (5.7.10) we conclude that the lowest price which is optimal for such a belief

β1 with the marginal cost c1 is

p1 = 1
2(c1 + a

d) + e
2dEβmin1

(p2) = 1
2(c1 + a

d) + e
2d(12(12(c+ c) + a

d)),

whereas the highest price which is optimal for such a belief β1 with the marginal cost c1 is

p1 = 1
2(c1 + a

d) + e
2dEβmax1

(p2) = 1
2(c1 + a

d) + e
2d(12(12(c+ c) + a

d) + eM
2d ).

Hence, the set of prices that survives round 2 for firm 1 at the marginal cost c1 is

P 21 (c1) = [12(c1 + a
d) + e

2d(12(12(c+ c) + a
d)), 1

2(c1 + a
d) + e

2d(12(12(c+ c) + a
d) + eM

2d ]. (5.7.11)

Similarly for firm 2.

If we continue in this way we can derive the sets of prices P k1 (c1) and P k2 (c2) that survive for the
firms at the various rounds and the various marginal costs. We will show, by induction on k, that

P k1 (c1) = [12(c1 + a
d) + (c+c)/2+a/d

2−e/d ( e
2d − ( e

2d)k), 1
2(c1 + a

d) + (c+c)/2+a/d
2−e/d ( e

2d − ( e
2d)k) + ( e

2d)kM ] (5.7.12)

for every k ≥ 1, and similarly for firm 2. For convenience, we denote the lower bound and upper bound
of this interval by lk1(c1) and hk1(c1), respectively.

For round 1 we have seen that P 11 (c1) is given by (5.7.8), which matches (5.7.12).
Consider now round k ≥ 2 and assume that (5.7.12) holds for firm 2 and round k − 1. Focus on

firm 1. By definition, firm 1 is required to hold a belief β1 on firm 2’s price-cost pairs (p2, c2) that
(i) deems every c2 ∈ [c, c] equally likely, and (ii) only concentrates on price-cost pairs (p2, c2) where
p2 ∈ P k−12 (c2). By (5.7.12) for firm 2 and round k − 1, the “lowest”such belief is the belief βmin1 that
deems every c2 ∈ [c, c] equally likely and concentrates only on pairs (p2, c2) where p2 = lk−12 (c2). As
lk−12 (c2) depends linearly on c2 and βmin1 deems every c2 ∈ [c, c] equally likely, the expected price for
firm 2 under this belief is

Eβmin1
(p2) = 1

2(lk−12 (c) + lk−12 (c)). (5.7.13)

It may be verified that

lk−12 (c) = (c+c)/2+a/d
2−e/d (1− ( e

2d)k−1)− c−c
4 and

lk−12 (c) = (c+c)/2+a/d
2−e/d (1− ( e

2d)k−1) + c−c
4 .

Together with (5.7.13) we conclude that

Eβmin1
(p2) = (c+c)/2+a/d

2−e/d (1− ( e
2d)k−1). (5.7.14)

Note that the lowest price p1 that is optimal for such a belief β1 above that satisfies (i) and (ii) is the
price that is optimal for βmin1 . By (5.7.2) and (5.7.14), this price is

p1 = 1
2(c1 + a

d) + e
2dEβmin1

(p2) = 1
2(c1 + a

d) + e
2d
(c+c)/2+a/d

2−e/d (1− ( e
2d)k−1)

= 1
2(c1 + a

d) + (c+c)/2+a/d
2−e/d ( e

2d − ( e
2d)k),
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which matches lk1(c1) in (5.7.12).
Moreover, by (5.7.12) for firm 2 and round k− 1 we conclude that the “highest”belief β1 for firm

1 with the properties (i) and (ii) above is the belief βmax1 that deems every c2 ∈ [c, c] equally likely
and concentrates only on pairs (p2, c2) where p2 = hk−12 (c2). As hk−12 (c2) depends linearly on c2 and
βmax1 deems every c2 ∈ [c, c] equally likely, the expected price for firm 2 under this belief is

Eβmax1
(p2) = 1

2(hk−12 (c) + hk−12 (c)). (5.7.15)

In a similar way as above, it may be verified that

hk−12 (c) = (c+c)/2+a/d
2−e/d (1− ( e

2d)k−1)− c−c
4 + ( e

2d)k−1M and

hk−12 (c) = (c+c)/2+a/d
2−e/d (1− ( e

2d)k−1) + c−c
4 + ( e

2d)k−1M.

Together with (5.7.15) it follows that

Eβmax1
(p2) = (c+c)/2+a/d

2−e/d (1− ( e
2d)k−1) + ( e

2d)k−1M. (5.7.16)

Note that the highest price p1 that is optimal for such a belief β1 above that satisfies (i) and (ii) is
the price that is optimal for βmax1 . By (5.7.2) and (5.7.16), this price is

p1 = 1
2(c1 + a

d) + e
2dEβmax1

(p2) = 1
2(c1 + a

d) + e
2d( (c+c)/2+a/d2−e/d (1− ( e

2d)k−1) + ( e
2d)k−1M)

= 1
2(c1 + a

d) + (c+c)/2+a/d
2−e/d ( e

2d − ( e
2d)k) + ( e

2d)kM,

which matches hk1(c1) in (5.7.12). By induction on k, we conclude that (5.7.12) holds for every k.
We see again that the set P ki (ci) becomes strictly smaller with every round k, and hence the

procedure does not terminate within finitely many rounds. When k tends to infinity, the set P ki (ci)
now collapses to a single price, which is

p∗i (ci) = 1
2(ci + a

d) + e
2d
(c+c)/2+a/d

2−e/d . (5.7.17)

Hence, under common belief in rationality and common belief in the fixed belief (r1, r2) on utilities,
firm i can only rationally choose the price p∗i (ci) above if its marginal cost is ci.

This is fundamentally different from the scenario without fixed beliefs on utilities, where the firm
could rationally choose from a whole range of prices P ∗i (ci) under common belief in rationality. See
(5.7.7) above. The reason is that with fixed beliefs on utilities, the possible reasonable beliefs that
both firms can hold about the competitor’s prices are heavily restricted.

Note that the unique price p∗i (ci) in (5.7.17) that can rationally be chosen under common belief in
rationality in the scenario with fixed beliefs on utilities belongs to the range of prices P ∗i (ci) in (5.7.7)
that can rationally be chosen under common belief in rationality in the scenario without fixed beliefs
on utilities, as it should be. In fact, we can say more: The price p∗i (ci) lies exactly in the middle of
the interval P ∗i (ci). This makes intuitive sense, as the fixed beliefs on utilities deem every marginal
cost for the opponent equally likely.

5.7.2 Competition in Quantities
Let us return to the Cournot competition model from Section 3.7.2. Similarly to the Bertrand model
with incomplete information above, we assume that both firms have marginal costs c1 and c2, and
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that both firms are uncertain about the precise marginal cost of the competitor. Recall from Section
3.7.2 that the profit function for firm 1 is given by

π1(q1, q2) = q1 · (a− c1 − e · (q1 + q2)), (5.7.18)

and similarly for firm 2.
Again, suppose that the marginal cost for both firms belongs to the interval [c, c].Moreover, assume

that 2c − c ≤ a and M ∈ [a−c2e ,
a−c
e ]. For every possible marginal cost ci ∈ [c, c], what quantities can

firm i rationally choose under common belief in rationality? To answer this question we apply the
generalized iterated strict dominance procedure for infinite games outlined in Section 5.7.1.

Round 1. Consider firm 1 and suppose it has a marginal cost of c1.Which quantities are optimal for
firm 1 for some probabilistic belief about firm 2’s quantity and which are not? Suppose firm 1 holds a
probabilistic belief β1 about firm 2’s quantity. By (3.7.12), firm 1’s optimal quantity is then given by

q1 = a−c1
2e −

1
2 · Eβ1(q2). (5.7.19)

Since Eβ1(q2) lies somewhere in the interval [0,M ], and the optimal quantity is decreasing in Eβ1(q2),
the lowest quantity that is optimal for some belief is q1 = a−c1

2e −
1
2M, whereas the highest such quantity

is q1 = a−c1
2e . Thus, the set of quantities for firm 1 that survives round 1 at the marginal cost c1 is

Q11(c1) = [a−c12e −
1
2M, a−c1

2e ]. (5.7.20)

Similarly for firm 2.

Round 2. Consider firm 1 with a marginal cost of c1. The set of states S21(c1) that survives round
2 contains precisely those quantities q2 that have survived round 1 for at least one marginal cost c2.
By (5.7.20) applied to firm 2, the lowest such quantity is q2 = a−c

2e −
1
2M whereas the highest such

quantity is q2 = a−c
2e . Hence,

S21(c1) = [a−c2e −
1
2M, a−c

2e ].

Now, take a probabilistic belief β1 on the set of states S
2
1(c1). Then, Eβ1(q2) lies somewhere in the

interval S21(c1). Recall, by (5.7.19), that the optimal quantity q1 for this belief is decreasing in Eβ1(q2).
Hence, by (5.7.19), the lowest quantity for firm 1 that is optimal for such a belief β1 is

q1 = a−c1
2e −

1
2
a−c
2e ,

whereas the highest such quantity is

q1 = a−c1
2e −

1
2(a−c2e −

1
2M).

Hence, the set of quantities for firm 1 that survive round 2 at the marginal cost c1 is

Q21(c1) = [a−c12e −
1
2
a−c
2e ,

a−c1
2e −

1
2(a−c2e −

1
2M)]. (5.7.21)

Similarly for firm 2.

If we continue in this fashion we can also derive the sets of quantities Qki (ci) for both firms i, every
marginal cost ci and every round k ≥ 1. We will show, by induction on k, that for every k ≥ 1 we
have that

Qk1(c1) = [a−c12e −
a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−1)− M
2k
, a−c1

2e −
a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−1)]
(5.7.22)
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if k is odd, and

Qk1(c1) = [a−c12e −
a−c
3e (1−(12)k)+ a−c

6e (1−(12)k−2), a−c12e −
a−c
3e (1−(12)k)+ a−c

6e (1−(12)k−2)+ M
2k

] (5.7.23)

if k is even. Similarly for firm 2.
It may be verified that for k = 1 the expression (5.7.22) matches precisely the equation (5.7.20).
Take some now even k ≥ 2, and assume that (5.7.22) holds for firm 2 for the odd k − 1. Consider

firm 1 with a marginal cost of c1. Then, the set of states Sk1 (c1) contains those quantities q2 that are
in Qk−12 (c2) for some marginal cost c2. In view of (5.7.22), the lowest such q2 is the lower bound of
Qk−12 (c), which we denote by lk−12 (c). Similarly, the highest such q2 is the upper bound of Qk−12 (c),
which we denote by hk−12 (c). Hence,

Sk1 (c1) = [lk−12 (c), hk−12 (c)].

Take now a probabilistic belief β1 on the set of states S
k
1 (c1). Then, Eβ1(q2) lies somewhere in

the interval Sk1 (c1). By (5.7.19), the lowest quantity q1 that is optimal for such a belief β1 is obtained
when Eβ1(q2) = hk−12 (c). This yields the quantity

lk1(c1) = a−c1
2e −

1
2h

k−1
2 (c)

= a−c1
2e −

1
2 [a−c2e −

a−c
3e (1− (12)k−2) + a−c

6e (1− (12)k−2)]

= a−c1
2e −

a−c
3e (1− (12)k) + a−c

6e (1− (12)k−2).

Moreover, the highest quantity q1 that is optimal for such a belief β1 is obtained when Eβ1(q2) =

lk−12 (c). This yields the quantity

hk1(c1) = a−c1
2e −

1
2 l
k−1
2 (c)

= a−c1
2e −

1
2 [a−c2e −

a−c
3e (1− (12)k−2) + a−c

6e (1− (12)k−2)− M
2k−1

]

= a−c1
2e −

a−c
3e (1− (12)k) + a−c

6e (1− (12)k−2) + M
2k
.

Thus, we conclude that Qk1(c1) = [lk1(c1), h
k
1(c1)], which matches (5.7.23).

Next, take some odd k ≥ 2, and assume that (5.7.23) holds for firm 2 for the even k− 1. Consider
firm 1 with a marginal cost of c1. Then, the set of states Sk1 (c1) contains those quantities q2 that are
in Qk−12 (c2) for some marginal cost c2. In view of (5.7.23), the lowest such q2 is the lower bound of
Qk−12 (c), which we denote by lk−12 (c). Similarly, the highest such q2 is the upper bound of Qk−12 (c),
which we denote by hk−12 (c). Hence,

Sk1 (c1) = [lk−12 (c), hk−12 (c)].

Take now a probabilistic belief β1 on the set of states S
k
1 (c1). Then, Eβ1(q2) lies somewhere in

the interval Sk1 (c1). By (5.7.19), the lowest quantity q1 that is optimal for such a belief β1 is obtained
when Eβ1(q2) = hk−12 (c). This yields the quantity

lk1(c1) = a−c1
2e −

1
2h

k−1
2 (c)

= a−c1
2e −

1
2 [a−c2e −

a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−3) + M
2k−1

]

= a−c1
2e −

a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−1)− M
2k
.
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Moreover, the highest quantity q1 that is optimal for such a belief β1 is obtained when Eβ1(q2) =

lk−12 (c). This yields the quantity

hk1(c1) = a−c1
2e −

1
2 l
k−1
2 (c)

= a−c1
2e −

1
2 [a−c2e −

a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−3)]

= a−c1
2e −

a−c
3e (1− (12)k−1) + a−c

6e (1− (12)k−1).

Thus, we conclude that Qk1(c1) = [lk1(c1), h
k
1(c1)], which matches (5.7.22).

By induction on k, we conclude that Qk1(c1) is given by (5.7.22) and (5.7.23) for every k ≥ 1.
Similarly for firm 2. In particular, we see that the set of quantities Qk1(ci) that survives round k of
the procedure becomes strictly smaller with every round, and hence the procedure does not terminate
within finitely many rounds.

When k tends to infinity, then Qki (ci) approaches the interval

Q∗i (ci) = [a−ci2e −
a−c
3e + a−c

6e ,
a−ci
2e −

a−c
3e + a−c

6e ] (5.7.24)

for both firms i, and every marginal cost ci. Hence, under common belief in rationality both firms i
can only rationally choose the quantities in Q∗i (ci) when its marginal cost is ci. Note that this interval
Q∗i (ci) becomes wider if the range c− c of possible marginal costs becomes larger. Again, this is to be
expected, as a larger range c− c of possible marginal costs allows for more possible beliefs about the
marginal cost and quantity of the opponent.

We finally explore the scenario where there are fixed beliefs on utilities. Like in the Bertrand model
above, assume that we require both firms to deem every marginal cost c ∈ [c, c] for the competitor
equally likely. That is, we impose the fixed beliefs (r1, r2) on utilities, where r1 and r2 are the uniform
distribution on [c, c].

To find the quantities that both firms can rationally choose under common belief in rationality and
common belief in the fixed beliefs (r1, r2) on utilities, we use the generalized iterated strict dominance
procedure with fixed beliefs on utilities for infinite games as outlined in Section 5.7.1 above.

Round 1. This round is exactly the same as for the generalized iterated strict dominance procedure
without fixed beliefs on utilities. The set of quantities that survives for firm 1 for every marginal cost
c1 is thus given by

Q11(c1) = [a−c12e −
1
2M, a−c1

2e ], (5.7.25)

and similarly for firm 2.

Round 2. Focus on firm 1. By construction of the procedure, firm 1 is required to hold a belief β1
on the competitor’s quantity-cost pairs (q2, c2) that (i) respects r2, that is, deems every cost c2 ∈ [c,
c] for the competitor equally likely, and (ii) only concentrates on pairs (q2, c2) where q2 ∈ Q12(c2). In
view of (5.7.25) for firm 2, the “highest” such belief β1 is the belief β

max
1 that only concentrates on

the pairs (q2, c2) where q2 = a−c2
2e . As βmax1 deems every c2 ∈ [c, c] equally likely, and q2 is linear in

the cost c2, we have that the expected quantity for firm 2 under this belief is

Eβmax1
(q2) = 1

2 ·
a−c
2e + 1

2 ·
a−c
2e = a−(c+c)/2

2e . (5.7.26)

Similarly, the “lowest” such belief β1 is the belief β
min
1 that only concentrates on pairs (q2, c2)

where q2 = a−c2
2e −

1
2M. The expected quantity for firm 2 under that belief is

Eβmin1
(q2) = 1

2 · (
a−c
2e −

1
2M) + 1

2 · (
a−c
2e −

1
2M) = a−(c+c)/2

2e − 1
2M. (5.7.27)
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In view of (5.7.19), (5.7.26) and (5.7.27), the lowest quantity for firm 1 that is optimal for such a
belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmax1

(q2) = a−c1
2e −

a−(c+c)/2
4e .

Similarly, the highest quantity for firm 1 that is optimal for such a belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmin1

(q2) = a−c1
2e −

a−(c+c)/2
4e + 1

4M.

Hence, the set of quantities for firm 1 that survives round 2 at the marginal cost c1 is

Q21(c1) = [a−c12e −
a−(c+c)/2

4e , a−c1
2e −

a−(c+c)/2
4e + 1

4M ].

Similarly for firm 2.

If we continue in this fashion we can derive the sets of quantities Qki (ci) for both firms i, for all
marginal costs ci and all rounds k.We will show, by induction on k, that for all rounds k ≥ 1 we have
that

Qk1(c1) = [a−c12e −
a−(c+c)/2

6e (1− (12)k−1)− M
2k
, a−c1

2e −
a−(c+c)/2

6e (1− (12)k−1)] (5.7.28)

if k is odd, and

Qk1(c1) = [a−c12e −
a−(c+c)/2

6e (1 + (12)k−1), a−c1
2e −

a−(c+c)/2
6e (1 + (12)k−1) + M

2k
] (5.7.29)

if k is even. Similarly for firm 2.
If k = 1 then (5.7.28) matches precisely (5.7.25).
Now, take some even k ≥ 2 and assume that (5.7.28) holds for firm 2 and the odd k− 1. In round

k, firm 1 must hold a belief β1 on quantity-cost pairs (q2, c2) that deems all costs c2 ∈ [c, c] equally
likely, and that only concentrates on pairs (q2, c2) where q2 ∈ Qk−12 (c2). By (5.7.28) for firm 2 and
k − 1, the “highest”such belief β1 is the belief β

max
1 that only concentrates on pairs (q2, c2) with

q2 = a−c2
2e −

a−(c+c)/2
6e (1− (12)k−2).

The expected quantity for firm 2 under that belief is

Eβmax1
(q2) = 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1− (12)k−2)] + 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1− (12)k−2)]

= a−(c+c)/2
2e − a−(c+c)/2

6e (1− (12)k−2). (5.7.30)

Similarly, the “lowest”such belief β1 is the belief β
min
1 that only concentrates on pairs (q2, c2) with

q2 = a−c2
2e −

a−(c+c)/2
6e (1− (12)k−2)− M

2k−1
.

The expected quantity for firm 2 under that belief is

Eβmin1
(q2) = 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1− (12)k−2)− M

2k−1
] + 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1− (12)k−2)− M

2k−1
]

= a−(c+c)/2
2e − a−(c+c)/2

6e (1− (12)k−2)− M
2k−1

. (5.7.31)

By (5.7.19), (5.7.30) and (5.7.31) we conclude that the lowest quantity q1 that is optimal for such
a belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmax1

(q2) = a−c1
2e −

1
2 [a−(c+c)/22e − a−(c+c)/2

6e (1− (12)k−2)]

= a−c1
2e −

a−(c+c)/2
6e (1 + (12)k−1),
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whereas the highest quantity q1 that is optimal for such a belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmin1

(q2) = a−c1
2e −

1
2 [a−(c+c)/22e − a−(c+c)/2

6e (1− (12)k−2)− M
2k−1

]

= a−c1
2e −

a−(c+c)/2
6e (1 + (12)k−1) + M

2k
.

Thus, the set of quantities that survives round k for firm 1 at the marginal cost c1 is

Qk1(c1) = [a−c12e −
a−(c+c)/2

6e (1 + (12)k−1), a−c1
2e −

a−(c+c)/2
6e (1 + (12)k−1) + M

2k
]

which matches (5.7.29).
Next, take some odd k ≥ 2, and assume that (5.7.29) holds for firm 2 and the even k − 1. Again,

firm 1 must hold a belief β1 on quantity-cost pairs (q2, c2) that deems all costs c2 ∈ [c, c] equally likely,
and that only concentrates on pairs (q2, c2) where q2 ∈ Qk−12 (c2). By (5.7.29) for firm 2 and k− 1, the
“highest”such belief β1 is the belief β

max
1 that only concentrates on pairs (q2, c2) with

q2 = a−c2
2e −

a−(c+c)/2
6e (1 + (12)k−2) + M

2k−1
.

The expected quantity for firm 2 under that belief is

Eβmax1
(q2) = 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1 + (12)k−2) + M

2k−1
] + 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1 + (12)k−2) + M

2k−1
]

= a−(c+c)/2
2e − a−(c+c)/2

6e (1 + (12)k−2) + M
2k−1

. (5.7.32)

Similarly, the “lowest”such belief β1 is the belief β
min
1 that only concentrates on pairs (q2, c2) with

q2 = a−c2
2e −

a−(c+c)/2
6e (1 + (12)k−2).

The expected quantity for firm 2 under that belief is

Eβmin1
(q2) = 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1 + (12)k−2)] + 1

2 · [
a−c
2e −

a−(c+c)/2
6e (1 + (12)k−2)]

= a−(c+c)/2
2e − a−(c+c)/2

6e (1 + (12)k−2). (5.7.33)

By (5.7.19), (5.7.32) and (5.7.33) we conclude that the lowest quantity q1 that is optimal for such
a belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmax1

(q2) = a−c1
2e −

1
2 [a−(c+c)/22e − a−(c+c)/2

6e (1 + (12)k−2) + M
2k−1

]

= a−c1
2e −

a−(c+c)/2
6e (1− (12)k−1)− M

2k
,

whereas the highest quantity q1 that is optimal for such a belief β1 at the marginal cost c1 is

q1 = a−c1
2e −

1
2Eβmin1

(q2) = a−c1
2e −

1
2 [a−(c+c)/22e − a−(c+c)/2

6e (1 + (12)k−2)]

= a−c1
2e −

a−(c+c)/2
6e (1− (12)k−1).

Thus, the set of quantities that survives round k for firm 1 at the marginal cost c1 is

Qk1(c1) = [a−c12e −
a−(c+c)/2

6e (1− (12)k−1)− M
2k
, a−c1

2e −
a−(c+c)/2

6e (1− (12)k−1)]

which matches (5.7.28).
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By induction on k, we then conclude that for every round k, and all marginal costs c1, the set
Qk1(c1) is given by (5.7.28) and (5.7.29). And similarly for firm 2.

When k tends to infinity, the set Qki (ci) collapses to the single quantity

q∗i (ci) = a−ci
2e −

a−(c+c)/2
6e . (5.7.34)

Hence, under common belief in rationality and common belief in the fixed beliefs (r1, r2) on utilities,
firm i can only rationally choose the quantity q∗i (ci) if the marginal costs are ci.

Note that this quantity q∗i (ci) is exactly halfway the set of quantities Q
∗
i (ci) in (5.7.24) that firm

i can rationally choose under common belief in rationality without fixed beliefs on utilities. This
makes intuitive sense, since firm i deems every possible marginal cost of competitor j equally likely.
Moreover, the quantity q∗i (ci) is decreasing in the marginal cost ci. Also this is intuitive, as a higher
marginal cost forces the firm to reduce its production.



Chapter 6

Correct and Symmetric Beliefs with Incomplete
Information

6.6 Economic Applications

In this section we continue our exploration of the Bertrand model and Cournot model introduced in
Section 3.7 of this online appendix. For both models of competition we investigate the possible choices
that both firms can rationally make under common belief in rationality with a simple belief hierarchy.
We also consider the scenario where the beliefs about the firms’marginal costs are fixed.

6.6.1 Competition in Prices
Recall the Bertrand competition model with incomplete information we investigated in Section 5.7.1
of this online appendix. We have seen in (5.7.7) that under common belief in rationality without fixed
beliefs on utilities, both firms i can rationally choose from the set of prices

P ∗i (ci) = [12(ci + a
d) + e

2d
c+a/d
2−e/d ,

1
2(ci + a

d) + e
2d
c+a/d
2−e/d ] (6.6.1)

if the marginal cost is ci.
In Section 6.1 of the book we introduced the notion of a simple belief hierarchy for games with

incomplete information where there are finitely many choices and utility functions. Moreover, it has
been shown in Theorem 6.1.2 that the choices which can rationally be made under common belief in
rationality with a simple belief hierarchy are precisely the choices that are optimal in a generalized
Nash equilibrium.

The concepts of a simple belief hierarchy and a generalized Nash equilibrium, together with the
result above, can be extended to games with infinitely many choices and utility functions, as is the
case in the Bertrand model we consider. Indeed, a simple belief hierarchy for firm i is a belief hierarchy
βi that is generated by a single belief σ1 about firm 1’s price-cost pair and a single belief σ2 about firm
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2’s price-cost pair. Moreover, such a pair of beliefs (σ1, σ2) would be a generalized Nash equilibrium if
for both firms i, the belief σi only concentrates on price-cost pairs (pi, ci) where the price pi is optimal
for firm i at the marginal cost ci under the belief about competitor j’s price as induced by σj .

The prices that firm i can rationally choose under common belief in rationality with a simple belief
hierarchy at the marginal cost ci are exactly the prices pi that are optimal at the marginal cost ci in
such a generalized Nash equilibrium. But what are these prices in the Bertrand model? That is the
question we will investigate now.

Consider a generalized Nash equilibrium (σ1, σ2). Let r1 be the belief about firm 1’s costs induced
by σ1, and similarly for r2. By (3.7.5) we know that, for every marginal cost c1, the optimal price for
firm 1 under the belief σ2 about firm 2’s price-cost pair is given by

p1(c1) = 1
2 · (c1 + a

d) + e
2d · Eσ2(p2), (6.6.2)

where Eσ2(p2) is the expected price for firm 2 under the belief σ2.
As (σ1, σ2) is a generalized Nash equilibrium, the belief σ1 should only concentrate on price-cost

pairs (p1, c1) for firm 1 where p1 = p1(c1) as given in (6.6.2). Since the optimal price p1(c1) depends
linearly on the cost c1, the expected price for firm 1 under the belief σ1 about firm 1’s price-cost pairs
is

Eσ1(p1) = 1
2 · (Er1(c1) + a

d) + e
2d · Eσ2(p2), (6.6.3)

where Er1(c1) is the expected marginal cost for firm 1 under the belief r1 about firm 1’s marginal cost.
In a similar fashion it can be shown that

Eσ2(p2) = 1
2 · (Er2(c2) + a

d) + e
2d · Eσ1(p1). (6.6.4)

If we substitute (6.6.4) into (6.6.3) we get

Eσ1(p1) = 1
2(Er1(c1) + a

d) + e
2d [12(Er2(c2) + a

d) + e
2dEσ1(p1)],

which yields
Eσ1(p1) =

(Er1 (c1)+(e/2d)Er2 (c2))/(1+e/2d)+a/d

2−e/d . (6.6.5)

Similarly,
Eσ2(p2) =

(Er2 (c2)+(e/2d)Er1 (c1))/(1+e/2d)+a/d

2−e/d . (6.6.6)

If we substitute this into (6.6.2) we conclude that

p1(c1) = 1
2 · (c1 + a

d) + e
2d ·

(Er2 (c2)+(e/2d)Er1 (c1))/(1+e/2d)+a/d

2−e/d . (6.6.7)

Similarly,
p2(c2) = 1

2 · (c2 + a
d) + e

2d ·
(Er1 (c1)+(e/2d)Er2 (c2))/(1+e/2d)+a/d

2−e/d (6.6.8)

Hence, every generalized Nash equilibrium (σ1, σ2) has the property that σ1 only concentrates on pairs
(p1(c1), c1) where p1(c1) is given by (6.6.7), and σ2 only concentrates on pairs (p2(c2), c2) where p2(c2)
is given by (6.6.8).

As a consequence, the generalized Nash equilibrium is uniquely given by the belief r1 about firm
1’s costs and the belief r2 about firm 2’s cost: Indeed, if the beliefs r1 and r2 about the firms’marginal
costs are known, then we can compute the expected costs Er1(c1) and Er2(c2), which in turn uniquely
determine the optimal prices p1(c1) and p2(c2) for every marginal cost by means of (6.6.7) and (6.6.8).
Hence, σ1 must be the unique belief about firm 1’s price-cost pairs that (i) has the belief r1 about firm
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1’s cost, and (ii) only concentrates on pairs (p1(c1), c1) where p1(c1) is given by (6.6.7), and similarly
for σ2.

Thus, for every pair of beliefs (r1, r2) about the firms marginal costs there is exactly one generalized
Nash equilibrium (σ1, σ2) that has these beliefs (r1, r2). Moreover, this generalized Nash equilibrium
can be derived on the basis of (6.6.7) and (6.6.8). Also, (6.6.7) tells us precisely which price is optimal
for firm 1 for every possible marginal cost c1 in such a generalized Nash equilibrium: This is exactly
the price p1(c1).

By Theorem 6.1.2, the prices that can rationally be chosen by firm 1 at marginal cost c1 under
common belief in rationality with a simple belief hierarchy are exactly the prices p1(c1) as given by
(6.6.7), where Er1(c1) and Er2(c2) can vary between c and c. The lowest such price is obtained when
Er1(c1) = Er2(c2) = c, in which case

p1(c1) = 1
2 · (c1 + a

d) + e
2d ·

(c+(e/2d)c)/(1+e/2d)+a/d
2−e/d

= 1
2 · (c1 + a

d) + e
2d ·

c+a/d
2−e/d .

Similarly, the highest such price is obtained when Er1(c1) = Er2(c2) = c, in which case

p1(c1) = 1
2 · (c1 + a

d) + e
2d ·

(c+(e/2d)c)/(1+e/2d)+a/d
2−e/d

= 1
2 · (c1 + a

d) + e
2d ·

c+a/d
2−e/d .

Hence, under common belief in rationality with a simple belief hierarchy at the marginal cost c1, firm
1 can rationally choose any price in the interval

P ∗1 (c1) = [12 · (c1 + a
d) + e

2d ·
c+a/d
2−e/d ,

1
2 · (c1 + a

d) + e
2d ·

c+a/d
2−e/d ]. (6.6.9)

Note that this is precisely the interval in (6.6.1), which contained the prices that were possible
under common belief in rationality. Hence, under common belief in rationality with a simple belief
hierarchy, firm 1 can rationally choose the same set of prices as under common belief in rationality
without insisting on a simple belief hierarchy. The same holds for firm 2.

We next turn to the scenario where there are fixed beliefs about utilities. Suppose we fix some
beliefs (r1, r2) about the firms’marginal costs. What prices can firm 1 rationally choose if it has a
marginal cost of c1, expresses common belief in rationality and common belief in (r1, r2), and holds a
simple belief hierarchy?

The answer is given in (6.6.7): Indeed, we have seen that there is a unique generalized Nash
equilibrium (σ1, σ2) that respects the fixed beliefs (r1, r2) on marginal costs, and in this generalized
Nash equilibrium the optimal price for firm 1 at the marginal cost c1 is given by (6.6.7). As such, if
firm 1 has a simple belief hierarchy that expresses common belief in rationality and common belief in
(r1, r2), then the unique optimal price at marginal cost c1 is given by (6.6.7). Similarly for firm 2.

Note that the optimal price p1(c1) for firm 1 in (6.6.7) is increasing in both Er1(c1) and Er2(c2).
This makes intuitive sense: If firm 1’s belief r2 about firm 2’s marginal cost would change by deeming
higher marginal costs for firm 2 more likely, then firm 1 will believe that, in expectation, firm 2 will
choose a higher price to compensate for this. In turn, this will allow firm 1 to choose a higher price as
well. Similarly, if Er1(c1) rises, then firm 1 believes that firm 2 will deem higher marginal costs for firm
1 more likely. As we have seen above, this will induce firm 2 to choose a higher price in expectation.
Firm 1, anticipating on this, will then also raise its price.
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Consider now the special case where r1 and r2 are the uniform distribution on [c, c]. Then, the
expected marginal costs are given by Er1(c1) = Er2(c2) = (c+ c)/2. If we substitute this into (6.6.7)
we conclude that the only optimal price for firm i at marginal cost ci is

pi(ci) = 1
2 · (ci + a

d) + e
2d ·

(c+c)/2+a/d
2−e/d . (6.6.10)

Note that this matches precisely (5.7.17), which described the unique price that firm i can rationally
choose at marginal cost ci if it expresses common belief in rationality and common belief in (r1, r2).
This, of course, should come as no surprise: If common belief in rationality and common belief in
(r1, r2) already leads to a unique optimal price at ci, then it will remain the unique optimal price if,
in addition, we require the belief hierarchy to be simple.

6.6.2 Competition in Quantities
Recall the Cournot competition model with incomplete information from Section 5.7.2. We saw in
(5.7.24) that under common belief in rationality, firm i, at a marginal cost of ci, can rationally choose
any quantity from the interval

Q∗i (ci) = [a−ci2e −
a−c
3e + a−c

6e ,
a−ci
2e −

a−c
3e + a−c

6e ]. (6.6.11)

What quantities can firm i rationally choose if, in addition, we require a simple belief hierarchy?
That is the question we wish to address now. Similarly as for the Bertrand model above, this amounts
to finding the quantities that are optimal for firm i in a generalized Nash equilibrium.

Consider a generalized Nash equilibrium (σ1, σ2), where σ1 is a probabilistic belief about firm 1’s
quantity-cost pair, and σ2 is a probabilistic belief about firm 2’s quantity-cost pair. By (3.7.12) we
know that in this generalized Nash equilibrium, the optimal quantity for firm 1 at a marginal cost of
c1 is given by

q1(c1) = a−c1
2e −

1
2Eσ2(q2), (6.6.12)

where Eσ2(q2) is the expected quantity for firm 2 under the belief σ2.
Now, let r1 be the belief about firm 1’s marginal cost induced by σ1, and similarly for r2. Note

that, by (6.6.12), the optimal quantity q1(c1) depends linearly on the marginal cost c1. Moreover, as
(σ1, σ2) is a generalized Nash equilibrium, the belief σ1 only concentrates on pairs (q1(c1), c1) where
q1(c1) is given by (6.6.12). As such, we conclude that the expected quantity for firm 1 under the belief
σ1 is given by

Eσ1(q1) =
a−Er1 (c1)

2e − 1
2Eσ2(q2). (6.6.13)

Similarly, it follows that
Eσ2(q2) =

a−Er2 (c2)
2e − 1

2Eσ1(q1). (6.6.14)

If we substitute (6.6.14) into (6.6.13) we get

Eσ1(q1) =
a−Er1 (c1)

2e − 1
2 [
a−Er2 (c2)

2e − 1
2Eσ1(q1)].

Solving for Eσ1(q1) then yields

Eσ1(q1) =
a−2Er1 (c1)+Er2 (c2)

3e .

Similarly, we obtain that
Eσ2(q2) =

a−2Er2 (c2)+Er1 (c1)
3e .
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Together with (6.6.12) we conclude that firm 1’s unique optimal quantity at marginal cost c1 in
the generalized Nash equilibrium (σ1, σ2) is given by

q1(c1) = a−c1
2e −

1
2
a−2Er2 (c2)+Er1 (c1)

3e , (6.6.15)

and similarly for firm 2.
Note that this optimal quantity only depends on the expected marginal costs Er1(c1) and Er2(c2)

induced by (σ1, σ2). As a consequence, for every pair (r1, r2) of beliefs on marginal costs there is a
unique generalized Nash equilibrium (σ1, σ2) with these beliefs, where for both firms i the belief σi is
the unique belief on quantity-cost pairs for firm i that has the belief ri on marginal costs, and only
concentrates on pairs (qi(ci), ci) where qi(ci) is given by (6.6.15).

On the basis of (6.6.15) we now know what quantities firm 1 can rationally choose at marginal
cost c1 if it has a simple belief hierarchy that expresses common belief in rationality. These would be
any of the quantities q1(c1) in (6.6.15), where Er1(c1) and Er2(c2) can vary arbitrarily between c and
c. The lowest such q1(c1) is obtained when Er1(c1) = c and Er2(c2) = c, resulting in

q1(c1) = a−c1
2e −

1
2
a−2c+c
3e = a−c1

2e −
a−c
3e + a−c

6e .

Similarly, the highest such q1(c1) is obtained when Er1(c1) = c and Er2(c2) = c, resulting in

q1(c1) = a−c1
2e −

1
2
a−2c+c
3e = a−c1

2e −
a−c
3e + a−c

6e .

Hence, with a simple belief hierarchy that expresses common belief in rationality, and with a marginal
cost of c1, firm 1 can rationally choose any quantity from the set

Q∗1(c1) = [a−c12e −
a−c
3e + a−c

6e ,
a−c1
2e −

a−c
3e + a−c

6e ]. (6.6.16)

Similarly for firm 2.
Note that this matches precisely the set from (6.6.11), which indicated what quantities firm i

could rationally choose under common belief in rationality, without requiring a simple belief hierarchy.
Hence, the additional condition of a simple belief hierarchy does not alter the quantities that both
firms can rationally choose under common belief in rationality.

Consider now the scenario where we impose fixed beliefs on utilities. Suppose we fix a pair of
beliefs (r1, r2) on the firms’marginal costs. What quantities can both firms rationally choose, for each
of the possible marginal costs, if they hold a simple belief hierarchy that expresses common belief in
rationality and common belief in (r1, r2)?

Similarly as in the Bertrand model above, the answer is given by (6.6.15). Indeed, for a given
pair (r1, r2) of beliefs on the firms’marginal costs, we saw that there is a unique generalized Nash
equilibrium (σ1, σ2) that has these beliefs, and for this generalized Nash equilibrium the optimal
quantity for firm 1 at marginal cost c1 is given by (6.6.15). As a consequence, the only quantity that
firm 1 can rationally choose at marginal cost c1 if it holds a simple belief hierarchy that expresses
common belief in rationality and common belief in (r1, r2) is the quantity q1(c1) given by (6.6.15).

Note that this optimal quantity q1(c1) is decreasing in the expected marginal cost Er1(c1) for
firm 1, and increasing in the expected marginal cost Er2(c2) for firm 2. This has a clear economic
interpretation: If Er2(c2) rises, then firm 1’s belief about firm 2’s marginal cost starts to assign higher
probabilities to higher marginal costs. As a consequence, firm 1 expects firm 2 to decrease its quantity
in expectation. Anticipating on this, firm 1 can increase its own quantity. Moreover, if Er1(c1) rises,
then firm 1 believes that firm 2 starts to assign higher probabilities to higher marginal costs for firm
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1. As we have seen above, this will lead firm 1 to believe that firm 2 will increase its quantity in
expectation. Anticipating on this, firm 1 will then decrease its quantity.

Consider finally the special case where r1 and r2 are the uniform distribution on [c, c]. Then, the
expected marginal costs for both firms are Er1(c1) = Er2(c2) = (c + c)/2. If we substitute this into
(6.6.15), we see that the optimal quantity for firm 1 at the marginal cost c1 is

q1(c1) = a−c1
2e −

a−(c+c)/2
6e , (6.6.17)

and similarly for firm 2.
Note that this matches precisely (5.7.34), which indicated the unique quantity that firm i could

rationally choose at marginal cost ci under common belief in rationality and common belief in the
beliefs (r1, r2) about the marginal costs. Again, this should come as no surprise: If common belief in
rationality and common belief in (r1, r2) already leads to a unique optimal quantity q1(c1) for every
marginal cost c1, then this will remain so if we additionally require a simple belief hierarchy.



Chapter 7

Common Belief in Rationality with Unaware-
ness

7.9 Economic Applications

In this section we investigate variations of the Bertrand competition model and Cournot competition
model from Section 3.7 in which a firm may be unaware of certain choices that the other firm can
make.

7.9.1 Competition in Prices
Like in Section 3.7.1, we consider the competition in prices between two firms that produce differenti-
ated goods. The difference is that firm 1 now has the additional option to produce a new good that is
more similar to firm 2’s good than the standard good it has been producing until now. More precisely,
if firm 1 produces the standard good while choosing a price of p1, and firm 2 chooses a price of p2,
then the demand for both firms is given by

q1 = 24− p1 + p2 and q2 = 24− p2 + p1. (7.9.1)

That is, in the Bertrand competition model from Section 3.7.1 we choose the parameters a = 24 and
d = e = 1. If, on the other hand, firm 1 decides to produce the new good, and the prices chosen are
p1 and p2, then the demands would be

q1 = 24− 4p1 + 4p2 and q2 = 24− 4p2 + 4p1. (7.9.2)

Hence, we would have that d = e = 4. In this case, the demands for both firms would change more
rapidly with the prices since the goods of firms 1 and 2 are more similar now, and hence consumers
start caring more about the price.
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However, firm 2 need not be aware of the new good that firm 1 can produce. This leads to two
different views for firm 2, which are vs2 and v

n
2 . Here, v

s
2 stands for firm 2’s view where it is only aware

of the standard good of firm 1, while vn2 is the view where it is aware of firm 1’s additional option to
produce the new good.

Of course, if firm 2’s view is vs2, then it cannot possibly reason about firm 1 being able to produce
the new good. Therefore, we need two views for firm 1, which are vs1 and v

n
1 . Here, v

n
1 is firm 1’s actual

view, where it is aware of the additional option to produce the new good, whereas vs1 is the restricted
view where it is not aware of this option.

Suppose that both firms have a constant marginal cost of 4, and that the maximum price that can
be chosen by both firms is 40. That is, we assume that c = 4 and M = 40 in the model of Section
3.7.1. What prices can firm 1 rationally choose under common belief in rationality?

As a first step towards answering this question, let us first model the situation above as a game
with unawareness. As already announced above, the possible views for firm 1 are vs1 and v

n
1 , whereas

the possible views for firm 2 are vs2 and v
n
2 .

In the view vs1, firm 1 can make any choice of the type (s, p1), where s indicates that firm 1 produces
the standard good, and p1 can be any price from [0, 40]. Moreover, the states are all prices p2 from
[0, 40] that can be chosen by firm 2.

In the larger view vn1 , the possible choices for firm 1 are the pairs (s, p1) considered above, together
with any pair (n, p1), where n indicates that firm 1 produces the new good, and p1 can be any price
from [0, 40]. The states are still all the prices p2 from [0, 40] that can be chosen by firm 2.

In firm 2’s view vs2, the set of possible choices for firm 2 are all prices p2 from [0, 40] that firm 2
can choose, whereas the states are all the choices (s, p1) that firm 1 can make at the view vs1.

At the larger view vn1 , the possible choices for firm 2 are still all the prices p2 from [0, 40] that firm
2 can choose. However, the states are now all the pairs (s, p1) and (n, p1) that firm 1 can choose at
the view vn1 .

We thus obtain a game with unawareness with infinitely many choices and states, but with finitely
many views. For such games we can adopt the procedure of iterated strict dominance for unaware-
ness as follows: In round 1 we eliminate, at every view, those choices that are not optimal for any
probabilistic belief about the states. This yields the 1-fold reduced decision problems at the various
views.

In round 2 we start by eliminating, at a given view v, those states that involve an opponent’s choice
that did not survive round 1 at any view that is contained in v. In the reduced decision problem so
obtained at v, we then eliminate those choices that are not optimal for any belief about the states
that remain. This yields the 2-fold reduced decision problems at the various views. And so on.

Similarly as for finite games with unawareness, this procedure delivers for every view precisely
those choices that can rationally be made under common belief in rationality with that particular
view. We will now use this procedure to find the prices that both firms can rationally choose under
common belief in rationality at both of their possible views. In fact, we opt for the bottom-up version
of the procedure, as it significantly reduces our computations.

Views of rank 1. Clearly, the views with rank 1 are vs1 and v
s
2. Hence, we first investigate which

prices both firms can rationally choose under common belief in rationality at the views vs1 and v
s
2.

Since firm 1, with view vs1, must believe that firm 2 has view vs2, and vice versa, we have a standard
Bertrand competition model from Section 3.7.1 where the parameters are a = 24, d = e = 1, c = 4
and M = 40. We know, from (3.7.8), that under common belief in rationality both firms can only
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rationally choose the price
p∗ = c+a/d

2−e/d = 28.

Hence, at the small views vs1 and v
s
2 we expect both firms to choose a price of 28 under common belief

in rationality.

Views of rank 2. We now turn to the views of rank 2, which are vn1 and v
n
2 .

Round 1. Consider first the view vn1 for firm 1. Which prices are optimal for some belief about the
states, and which are not?

Suppose that firm 1 chooses the pair (s, p1) for the standard product and firm 2 chooses the price
p2. Then, we know from (3.7.2) in Section 3.7.1 that firm 1’s profit is

π1((s, p1), p2) = (p1 − c) · (a− d · p1 + e · p2) = (p1 − 4) · (24− p1 + p2).

Similarly, if firm 1 chooses the pair (n, p1) for the new product and firm 2 chooses the price p2, then
firm 1’s profit is

π1((n, p1), p2) = (p1 − c) · (a− d · p1 + e · p2) = (p1 − 4) · (24− 4p1 + 4p2).

Assume that firm 1 has a belief β1 about firm 2’s price. Since firm 1’s profit above depends linearly
on firm 2’s price, it can be shown in a similar way as in Section 3.7.1 that firm 1’s expected profit
under this belief is given by

π1((s, p1), β1) = (p1 − 4) · (24− p1 + Eβ1(p2)) (7.9.3)

if firm 1 opts for the standard product, whereas it is

π1((n, p1), β1) = (p1 − 4) · (24− 4p1 + 4Eβ1(p2)) (7.9.4)

if firm 1 opts for the new product. Here, Eβ1(p2) denotes the expected price for firm 2 under the belief
β1.

Suppose that firm 1 opts for the standard product under the belief β1. Which price would then
be optimal for firm 1? Note that the expected profit π1((s, p1), β1) is a second-degree polynomial in
p1 which becomes zero at p1 = 4 and p1 = 24 + Eβ1(p2), and obtains a maximum exactly halfway
between these two points. Hence, the optimal price in this case would be

ps1(β1) = 1
2 · 4 + 1

2 · (24 + Eβ1(p2)) = 14 + 1
2Eβ1(p2). (7.9.5)

By (7.9.3), the maximal expected profit with the standard product under the belief β1 is

πs1(β1) = (10 + 1
2Eβ1(p2))

2. (7.9.6)

Now assume that firm 1 opts for the new product under the belief β1. Then, in view of (7.9.4),
the expected profit π1((s, p1), β1) is a second-degree polynomial in p1 which becomes zero at p1 = 4
and p1 = 6 +Eβ1(p2), and obtains a maximum exactly halfway between these two points. Hence, the
optimal price in this case would be

pn1 (β1) = 1
2 · 4 + 1

2 · (6 + Eβ1(p2)) = 5 + 1
2Eβ1(p2). (7.9.7)

By (7.9.4), the maximal expected profit with the new product under the belief β1 is

πn1 (β1) = (2 + Eβ1(p2))
2. (7.9.8)
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Hence, the firm will choose the standard product if πs1(β1) > πn1 (β1), it will choose the new
product if πn1 (β1) > πs1(β1), and it will be indifferent between the standard and the new product if
πs1(β1) = πn1 (β1). In view of (7.9.6) and (7.9.8), we have π

s
1(β1) > πn1 (β1) precisely when

(10 + 1
2Eβ1(p2))

2 > (2 + Eβ1(p2))
2,

which happens exactly when
10 + 1

2Eβ1(p2) > 2 + Eβ1(p2),

yielding Eβ1(p2) < 16.
Hence, if Eβ1(p2) < 16 then firm 1 will choose the standard product together with the price in

(7.9.5). Similarly, if Eβ1(p2) > 16 then firm 1 will choose the new product together with the price in
(7.9.7). Finally, if Eβ1(p2) = 16 then firm 1 will be indifferent between the standard product together
with the price 22 from (7.9.5) and the new product together with the price 13 from (7.9.7). Firm 1’s
optimal product-price pairs for every belief β1 are thus given by

c1(β1) =


(s, 14 + 1

2Eβ1(p2)), if Eβ1(p2) < 16
(s, 22) or (n, 13), if Eβ1(p2) = 16

(n, 5 + 1
2Eβ1(p2)), if Eβ1(p2) > 16

. (7.9.9)

As the price p2 can vary between 0 and 40, the expected price Eβ1(p2) will also be between 0
and 40. By (7.9.9) we thus conclude that the set P 11 (vn1 ) of product-price pairs for firm 1 that can be
optimal for some belief at the view vn1 is given by

P 11 (vn1 ) = {(s, p1) | p1 ∈ [14, 22]} ∪ {(n, p1) | p1 ∈ [13, 25]}. (7.9.10)

We now turn to firm 2 with the view vn2 . If firm 1 chooses a pair (s, p1) containing the standard
product, and firm 2 chooses a price p2, then it follows from (3.7.3) in Section 3.7.1 that firm 2’s profit
is

π2((s, p1), p2) = (p2 − c) · (a− d · p2 + e · p1) = (p2 − 4) · (24− p2 + p1). (7.9.11)

Similarly, if firm 1 chooses a pair (n, p1) containing the new product, then firm 2’s profit is

π2((n, p1), p2) = (p2 − c) · (a− d · p2 + e · p1) = (p2 − 4) · (24− 4p2 + 4p1). (7.9.12)

Suppose now that firm 2 holds the belief β2 about firm 1’s product-price pairs. Let β2(s) and
β2(n) be the probability that firm 2 assigns to firm 1 choosing the standard and the new product,
respectively. Moreover, let Eβ2(p1|s) be the expected price for firm 1 under the belief β2, conditional
on firm 1 choosing the standard product. Similarly, Eβ2(p1|n) denotes the expected price for firm 1
under the belief β2, conditional on firm 1 choosing the new product.

As firm 2’s profit in (7.9.11) and (7.9.12) depends linearly on firm 1’s price, firm 2’s expected profit
of choosing the price p2 under the belief β2 is

π2(p2, β2) = β2(s) · [(p2 − 4) · (24− p2 + Eβ2(p1|s))]
+β2(n) · [(p2 − 4) · (24− 4p2 + 4Eβ2(p1|n))]. (7.9.13)

Firm 2’s optimal price is obtained by setting the derivative ∂π2
∂p2

of π2(p2, β2) with respect to p2
equal to zero. Thus,

∂π2
∂p2

= β2(s) · [(24− p2 + Eβ2(p1|s)) + (p2 − 4) · (−1)]

+β2(n) · [(24− 4p2 + 4Eβ2(p1|n)) + (p2 − 4) · (−4)] = 0.
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By solving for p2, we see that the optimal price for firm 2 under the belief β2 is given by

p2(β2) =
β2(s)(28+Eβ2 (p1|s))+β2(n)(40+4Eβ2 (p1|n))

2β2(s)+8β2(n)
. (7.9.14)

What is the minimal price p2(β2) that is optimal for a belief β2? In view of (7.9.14) this is obtained
if we set Eβ2(p1|s) = 0 and Eβ2(p1|n) = 0. In that case we would have

p2(β2) = β2(s)·28+β2(n)·40
2β2(s)+8β2(n)

.

Since β2(s) + β2(n) = 1, we can set β2(s) = 1− β2(n) and write this as

p2(β2) = (1−β2(n))·28+β2(n)·40
2(1−β2(n))+8β2(n)

= 28+β2(n)·12
2+6β2(n)

,

which is an expression that only depends on β2(n). It may be verified that the derivative of p2(β2)
with respect to β2(n) is

∂p2(β2)
∂β2(n)

= − 144
(2+6β2(n))

2 < 0,

and hence the optimal price p2(β2) is decreasing in β2(n). As such, the optimal price p2(β2) is mini-
mized by setting β2(n) = 1.

Overall, we see that the minimal price p2(β2) that is optimal for a belief β2 is obtained by choosing
β2(n) = 1 and Eβ2(p1|n) = 0, resulting in p2(β2) = 5.

Next, we are interested in the maximal price p2(β2) that is optimal for a belief β2. In view of
(7.9.14) this is obtained if we set Eβ2(p1|s) = 40 and Eβ2(p1|n) = 40. In that case we would have

p2(β2) = β2(s)·68+β2(n)·200
2β2(s)+8β2(n)

.

Since β2(s) + β2(n) = 1, we can set β2(s) = 1− β2(n) and write this as

p2(β2) = (1−β2(n))·68+β2(n)·200
2(1−β2(n))+8β2(n)

= 68+β2(n)·132
2+6β2(n)

,

which is an expression that only depends on β2(n). It may be verified that the derivative of p2(β2)
with respect to β2(n) is

∂p2(β2)
∂β2(n)

= − 144
(2+6β2(n))

2 < 0,

and hence the optimal price p2(β2) is decreasing in β2(n). As such, the optimal price p2(β2) is maxi-
mized by setting β2(n) = 0, and hence by choosing β2(s) = 1.

Overall, we see that the maximal price p2(β2) that is optimal for a belief β2 is obtained by choosing
β2(s) = 1 and Eβ2(p1|s) = 40, resulting in p2(β2) = 34.

Thus, the set of prices for firm 2 that are optimal for some belief at view vn2 is given by

P 12 (vn2 ) = [5, 34].

Round 2. Consider firm 1 with view vn1 . By definition, the set of states S
2
1(vn1 ) contains those prices

for firm 2 that have survived so far at some view v2 contained in vn1 . Note that both views v
s
2 and v

n
2

are contained in vn1 . Recall from above that only price p2 = 28 has survived for firm 2 at the view vs2
in the bottom-up procedure. Moreover, at the view vn2 all prices in [5, 34] have survived for firm 2 in
round 1. As such, the set of states in Round 2 at view vn1 is

S21(vn1 ) = [5, 34].
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Therefore, firm 1’s belief β1 should only assign positive probability to firm 2’s prices in [5, 34], which
implies that Eβ1(p2) ∈ [5, 34]. By (7.9.9) we know that for every expected price Eβ1(p2) in [5, 16] the
optimal product-price pair for firm 1 is (s, 14+ 1

2Eβ1(p2)). Hence, every product-price pair (s, p1) with
p1 ∈ [16.5, 22] is optimal for some belief β1 on S

2
1(vn1 ). Moreover, it follows from (7.9.9) that for every

expected price Eβ1(p2) in [16, 34] the optimal product-price pair for firm 1 is (n, 5+ 1
2Eβ1(p2)). Hence,

every product-price pair (n, p1) with n ∈ [13, 22] is optimal for some belief β1 on S
2
1(vn1 ).

As such, the set of product-price pairs for firm 1 that survive Round 2 at view vn1 is given by

P 21 (vn1 ) = {(s, p1) | p1 ∈ [16.5, 22]} ∪ {(n, p1) | p1 ∈ [13, 22]}. (7.9.15)

We now turn to firm 2 with view vn2 . The set of states S
2
2(vn2 ) that survive Round 2 for firm 2

at view vn2 contain, by definition, those product-price pairs for firm 1 that have survived all previous
rounds at a view v1 contained in vn2 . Note that both views v

s
1 and v

n
1 are contained in v

n
2 . We have

seen that at the view vs1 only the product-price pair (s, 28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.10) that at the view vn1 , the set of product-price pairs
that survived Round 1 was

P 11 (vn1 ) = {(s, p1) | p1 ∈ [14, 22]} ∪ {(n, p1) | p1 ∈ [13, 25]}.

Taken together, we conclude that the set of states S22(vn2 ) for firm 2 in Round 2 at view vn2 is given by

S22(vn2 ) = {(s, p1) | p1 ∈ [14, 22]} ∪ {(n, p1) | p1 ∈ [13, 25]} ∪ {(s, 28)}. (7.9.16)

Here, the first two sets contain the choices for firm 1 that survived Round 1 at the view vn1 , whereas
the last set contains the unique choice that survived for firm 1 at the view vs1.

Firm 2 is thus required to hold a belief β2 on this set of states S
2
2(vn2 ). From the first and the last

set in (7.9.16) we conclude that Eβ2(p1|s) ∈ [14, 28]. Indeed, every expected price between 22 and 28
can be induced by a belief β2 that assigns a positive probability to (s, 22) and a positive probability
to (s, 28). Moreover, from the second set in (7.9.16) we know that Eβ2(p1|n) ∈ [13, 25].

In view of (7.9.14) it can be verified, similarly to what we have done in Round 1, that the lowest
price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(n) = 1 and Eβ2(p1|n) = 13,
resulting in the optimal price p2(β2) = 11.5. From (7.9.14) it also follows, in a similar way as in Round
1, that the highest price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(s) = 1
and Eβ2(p1|s) = 28, resulting in the optimal price p2(β2) = 28.

Hence, the set of prices that survive Round 2 for firm 2 at view vn2 is

P 22 (vn2 ) = [11.5, 28]. (7.9.17)

Round 3. Consider firm 1 with view vn1 . By definition, the set of states S
3
1(vn1 ) contains those prices

for firm 2 that have survived so far at some view v2 contained in vn1 . Recall that both views v
s
2 and

vn2 are contained in v
n
1 . From above we know that only price p2 = 28 has survived for firm 2 at the

view vs2 in the bottom-up procedure. Moreover, we know by (7.9.17) that at the view vn2 all prices in
[11.5, 28] have survived for firm 2 in round 2. As such, the set of states in Round 3 at view vn1 is

S31(vn1 ) = [11.5, 28].
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Therefore, firm 1’s belief β1 should only assign positive probability to firm 2’s prices in [11.5, 28],
which implies that Eβ1(p2) ∈ [11.5, 28]. By (7.9.9) we know that for every expected price Eβ1(p2) in
[11.5, 16] the optimal product-price pair for firm 1 is (s, 14 + 1

2Eβ1(p2)). Hence, every product-price
pair (s, p1) with p1 ∈ [19.75, 22] is optimal for some belief β1 on S

3
1(vn1 ). Moreover, it follows from

(7.9.9) that for every expected price Eβ1(p2) in [16, 28] the optimal product-price pair for firm 1 is
(n, 5 + 1

2Eβ1(p2)). Hence, every product-price pair (n, p1) with p1 ∈ [13, 19] is optimal for some belief
β1 on S

3
1(vn1 ).

As such, the set of product-price pairs for firm 1 that survive Round 3 at view vn1 is given by

P 31 (vn1 ) = {(s, p1) | p1 ∈ [19.75, 22]} ∪ {(n, p1) | p1 ∈ [13, 19]}. (7.9.18)

We now turn to firm 2 with view vn2 . The set of states S
3
2(vn2 ) that survive Round 3 for firm 2

at view vn2 contain, by definition, those product-price pairs for firm 1 that have survived all previous
rounds at a view v1 contained in vn2 . Recall that both views v

s
1 and v

n
1 are contained in v

n
2 . We have

seen that at the view vs1 only the product-price pair (s, 28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.15) that at the view vn1 , the set of product-price pairs
that survived Round 2 was

P 21 (vn1 ) = {(s, p1) | p1 ∈ [16.5, 22]} ∪ {(n, p1) | p1 ∈ [13, 22]}.

Taken together, we conclude that the set of states S32(vn2 ) for firm 2 in Round 3 at view vn2 is given by

S32(vn2 ) = {(s, p1) | p1 ∈ [16.5, 22]} ∪ {(n, p1) | p1 ∈ [13, 22]} ∪ {(s, 28)}. (7.9.19)

Here, the first two sets contain the choices for firm 1 that survived Round 2 at the view vn1 , whereas
the last set contains the unique choice that survived for firm 1 at the view vs1.

Firm 2 is thus required to hold a belief β2 on this set of states S
3
2(vn2 ). From the first and the last

set in (7.9.19) we conclude that Eβ2(p1|s) ∈ [16.5, 28]. Indeed, as before, every expected price between
22 and 28 can be induced by a belief β2 that assigns a positive probability to (s, 22) and a positive
probability to (s, 28). Moreover, from the second set in (7.9.19) we know that Eβ2(p1|n) ∈ [13, 22].

In view of (7.9.14) it may be verified, similarly to what we have done in Round 1, that the lowest
price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(n) = 1 and Eβ2(p1|n) = 13,
resulting in the optimal price p2(β2) = 11.5. From (7.9.14) it also follows, similarly to Round 1, that
the highest price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(s) = 1 and
Eβ2(p1|s) = 28, resulting in the optimal price p2(β2) = 28.

Hence, the set of prices that survive Round 3 for firm 2 at view vn2 is

P 32 (vn2 ) = [11.5, 28], (7.9.20)

which is the same as P 22 (vn2 ).

Round 4. Consider firm 1 with view vn1 . As before, S
4
2(vn1 ) contains all prices for firm 2 that have

survived so far at the views vs2 and v
n
2 . Since only price p2 = 28 has survived for firm 2 at view vs2,

and P 32 (vn2 ) = P 22 (vn2 ), we conclude that S41(vn1 ) = S31(vn1 ). As a consequence,

P 41 (vn1 ) = P 31 (vn1 ) = {(s, p1) | p1 ∈ [19.75, 22]} ∪ {(n, p1) | p1 ∈ [13, 19]}. (7.9.21)

We next turn to firm 2 with view vn2 . The set of states S
4
2(vn2 ) that survive Round 4 for firm 2

at view vn2 contain, by definition, those product-price pairs for firm 1 that have survived all previous
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rounds at a view v1 contained in vn2 . Recall that both views v
s
1 and v

n
1 are contained in v

n
2 . We have

seen that at the view vs1 only the product-price pair (s, 28) has survived for firm 1 in the bottom-up
procedure so far. Moreover, we know from (7.9.18) that at the view vn1 , the set of product-price pairs
that survived Round 3 was

P 31 (vn1 ) = {(s, p1) | p1 ∈ [19.75, 22]} ∪ {(n, p1) | p1 ∈ [13, 19]}.

Taken together, we conclude that the set of states S42(vn2 ) for firm 2 in Round 4 at view vn2 is given by

S42(vn2 ) = {(s, p1) | p1 ∈ [19.75, 22]} ∪ {(n, p1) | p1 ∈ [13, 19]} ∪ {(s, 28)}. (7.9.22)

Here, the first two sets contain the choices for firm 1 that survived Round 3 at the view vn1 , whereas
the last set contains the unique choice that survived for firm 1 at the view vs1.

Firm 2 is thus required to hold a belief β2 on this set of states S
4
2(vn2 ). From the first and the last

set in (7.9.22) we conclude that Eβ2(p1|s) ∈ [19.75, 28]. Indeed, as before, every expected price between
22 and 28 can be induced by a belief β2 that assigns a positive probability to (s, 22) and a positive
probability to (s, 28). Moreover, from the second set in (7.9.22) we know that Eβ2(p1|n) ∈ [13, 19].

In view of (7.9.14) it can be verified, similarly to what we have done in Round 1, that the lowest
price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(n) = 1 and Eβ2(p1|n) = 13,
resulting in the optimal price p2(β2) = 11.5. From (7.9.14) it also follows, similarly to Round 1, that
the highest price p2(β2) that is optimal for such a belief β2 is obtained by choosing β2(s) = 1 and
Eβ2(p1|s) = 28, resulting in the optimal price p2(β2) = 28.

Hence, the set of prices that survive Round 4 for firm 2 at view vn2 is

P 42 (vn2 ) = [11.5, 28],

which is the same as P 22 (vn2 ) and P 32 (vn2 ).

As P 41 (vn1 ) = P 31 (vn1 ) and P 42 (vn2 ) = P 32 (vn2 ), the bottom-up procedure terminates at this round.
The surviving choices for firm 1 and firm 2 at the views vn1 and v

n
2 are thus

P ∗1 (vn1 ) = {(s, p1) | p1 ∈ [19.75, 22]} ∪ {(n, p1) | p1 ∈ [13, 19]} (7.9.23)

and
P ∗2 (vn2 ) = [11.5, 28]. (7.9.24)

Hence, under common belief in rationality at view vn1 , firm 1 can rationally choose the standard
product together with any price between 19.75 and 22, or the new product together with any price
between 13 and 19. Moreover, at the view vn2 firm 2 can rationally choose any price between 11.5 and
28 under common belief in rationality.

At the view vs1, firm 1 can only rationally choose the product-price pair (s, 28) under common
belief in rationality, whereas firm 2 can only rationally choose the price 28 under common belief in
rationality at the view vs2.

We now turn to a scenario where there are fixed beliefs about the views. Consider the fixed belief
combination p = (p1, p2) on views as given by Figure 7.9.1. Hence, if firm 1 holds the larger view vn1 ,
then it believes that firm 2 will have either of the two views vn2 and v

s
2 with equal probability. In other

words, if firm 1 can offer the new product, then it believes that with probability 0.5 firm 2 will also
be aware of the new product, and with probability 0.5 firm 2 will not be aware of the new product.
However, if firm 2 is aware of the possibility that firm 1 can offer the new product, then it believes
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Figure 7.9.1 Fixed beliefs about views for price competition

that, with probability 1, firm 1 can actually offer the new product. This makes intuitive sense. What
product-price pairs can firm 1 rationally choose at the view vn1 under common belief in rationality and
common belief in the fixed beliefs p on views? Similarly as before, we will use the bottom-up version
of iterated strict dominance for unawareness with fixed beliefs p on views.

Views of rank 1. At the views vs1 and v
s
2, both firms are only aware of the standard product for

firm 1, and believe that the other firm is also aware of only the standard product for firm 1. From the
analysis above without fixed beliefs on views we know that under common belief in rationality, firm
1 can only rationally choose the product-price pair (s, 28), and firm 2 can only rationally choose the
price 28.

Views of rank 2. We now consider the views of rank 2, which are vn1 and v
n
2 .

Round 1. This round is the same as for the procedure without fixed beliefs on views. We thus obtain
the set of product-price pairs

P 11 (vn1 ) = {(s, p1) | p1 ∈ [14, 22]} ∪ {(n, p1) | p1 ∈ [13, 25]} (7.9.25)

for firm 1, and the set of prices
P 12 (vn2 ) = [5, 34] (7.9.26)

for firm 2.

Round 2. Firm 1 is required to hold a belief β1 about firm 2’s choice-view pairs that (i) assigns
probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive probability to price-

view pairs (p2, v
n
2 ) where p2 ∈ P 12 (vn2 ), and (iii) for the view vs2 only assigns positive probability to

the price-view pair (28, vs2). But then, in view of (7.9.26), the lowest expected price Eβ1(p2) for firm
2 under such a belief β1 is (0.5) · 5 + (0.5) · 28 = 16.5, whereas the highest expected price Eβ1(p2) for
firm 2 under such a belief β1 is (0.5) · 34 + (0.5) · 28 = 31. Hence, the expected price Eβ1(p2) under
such a belief β1 lies in the interval [16.5, 31].

By (7.9.9), the optimal product-price pair for firm 1 under such a belief β1 is (n, 5 + 1
2Eβ1(p2)). As

Eβ1(p2) lies in the interval [16.5, 31], the optimal price 5 + 1
2Eβ1(p2) lies in the interval [13.25, 20.5].

Hence, the set of product-price pairs for firm 1 that are optimal at the view vn1 for such a belief β1 is

P 21 (vn1 ) = {(n, p1) | p1 ∈ [13.25, 20.5]}. (7.9.27)

We now turn to firm 2. By definition, firm 2 is required to hold a belief β2 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view vn1 , and (ii) for the view vn1 only assigns positive
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probability to choice-view pairs (c1, v
n
1 ) where c1 ∈ P 11 (vn1 ). By (7.9.25) we then conclude that

Eβ2(p1|s) ∈ [14, 22] and Eβ2(p1|n) ∈ [13, 25]. (7.9.28)

By (7.9.14) and (7.9.28), the lowest price p2(β2) that is optimal for such a belief β2 is obtained by
choosing Eβ2(p1|s) = 14 and Eβ2(p1|n) = 13 in (7.9.14). We then get

p2(β2) = β2(s)(28+14)+β2(n)(40+4·13)
2β2(s)+8β2(n)

= 42β2(s)+92β2(n)
2β2(s)+8β2(n)

As β2(s) + β2(n) = 1, we may substitute β2(s) = 1− β2(n) in the equation above, and obtain

p2(β2) = 42+50β2(n)
2+6β2(n)

. (7.9.29)

It may be verified that the derivative of p2(β2) with respect to β2(n) is

∂p2(β2)
∂β2(n)

= − 152
(2+6β2(n))

2 < 0,

which implies that the optimal price p2(β2) is decreasing in β2(n).
Therefore, the lowest optimal price p2(β2) for such a belief β2 is obtained when β2(n) is as large

as possible. We thus see that the lowest possible optimal price p2(β2) for such a belief is reached by
choosing β2(n) = 1 and Eβ2(p1|n) = 13. By (7.9.29), the associated optimal price is p2(β2) = 42+50

2+6 =
11.5.

By (7.9.14) and (7.9.28), the highest price p2(β2) that is optimal for such a belief β2 is obtained
by choosing Eβ2(p1|s) = 22 and Eβ2(p1|n) = 25 in (7.9.14). We then get

p2(β2) = β2(s)(28+22)+β2(n)(40+4·25)
2β2(s)+8β2(n)

= 50β2(s)+140β2(n)
2β2(s)+8β2(n)

As β2(s) + β2(n) = 1, we may substitute β2(s) = 1− β2(n) in the equation above, and obtain

p2(β2) = 50+90β2(n)
2+6β2(n)

. (7.9.30)

It may be verified that the derivative of p2(β2) with respect to β2(n) is

∂p2(β2)
∂β2(n)

= − 120
(2+6β2(n))

2 < 0,

which implies that the optimal price p2(β2) is decreasing in β2(n).
Therefore, the highest optimal price p2(β2) for such a belief β2 is obtained when β2(n) is as low

as possible. We thus see that the highest possible optimal price p2(β2) for such a belief is reached by
choosing β2(n) = 0 and Eβ2(p1|s) = 22. By (7.9.30), the associated optimal price is p2(β2) = 50

2 = 25.
We thus conclude that the set of prices for firm 2 that are optimal for such a belief β2 is given by

P 22 (vn2 ) = [11.5, 25]. (7.9.31)

Round 3. Firm 1 is required to hold a belief β1 about firm 2’s choice-view pairs that (i) assigns
probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive probability to price-

view pairs (p2, v
n
2 ) where p2 ∈ P 22 (vn2 ), and (iii) for the view vs2 only assigns positive probability to

the price-view pair (28, vs2). But then, in view of (7.9.31), the lowest expected price Eβ1(p2) for firm
2 under such a belief β1 is (0.5) · 11.5 + (0.5) · 28 = 19.75, whereas the highest expected price Eβ1(p2)
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for firm 2 under such a belief β1 is (0.5) · 25 + (0.5) · 28 = 26.5. Hence, the expected price Eβ1(p2)
under such a belief β1 lies in the interval [19.75, 26.5].

By (7.9.9), the optimal product-price pair for firm 1 under such a belief β1 is (n, 5 + 1
2Eβ1(p2)). As

Eβ1(p2) lies in the interval [19.75, 26.5], the optimal price 5+ 1
2Eβ1(p2) lies in the interval [14.875, 18.25].

Hence, the set of product-price pairs for firm 1 that are optimal at the view vn1 for such a belief β1 is

P 31 (vn1 ) = {(n, p1) | p1 ∈ [14.875, 18.25]}. (7.9.32)

We now turn to firm 2. By definition, firm 2 is required to hold a belief β2 about firm 1’s choice-
view pairs that (i) assigns probability 1 to the view vn1 , and (ii) for the view vn1 only assigns positive
probability to choice-view pairs (c1, v

n
1 ) where c1 ∈ P 21 (vn1 ). By (7.9.27) we conclude that β2 only

assigns positive probability to pairs (n, p1) with p1 ∈ [13.25, 20.5].
Together with (i) and (ii) we see that

β2(s) = 0, β2(n) = 1, and Eβ2(p1|n) ∈ [13.25, 20.5]. (7.9.33)

If we substitute this into (7.9.14), we see that the optimal price p2(β2) under this belief β2 is

p2(β2) = 5 + 1
2Eβ2(p1|n). (7.9.34)

In view of (7.9.33) and (7.9.34), the lowest price p2(β2) that is optimal for such a belief is

5 + 1
2 · (13.25) = 11.625,

whereas the highest price p2(β2) that is optimal for such a belief is

5 + 1
2 · (20.5) = 15.25.

Hence, the set of prices for firm 2 that is optimal for such a belief β2 at the view vn2 is

P 32 (vn2 ) = [11.625, 15.25]. (7.9.35)

If we continue in this fashion we can derive P k1 (vn1 ) and P k2 (vn2 ) for every round k ≥ 4 as well. We
will show that, for every round k ≥ 3,

P k1 (vn1 ) = {(n, p1) | p1 ∈ [lk1 , h
k
1]} and P k2 (vn2 ) = [lk2 , h

k
2]

where

lk1 =

{
106
7 − (18)(k−3)/2 · 1.8757 , if k is odd

106
7 −

1
4 · (

1
8)(k−4)/2 · 6.6257 , if k is even

, (7.9.36)

hk1 =

{
106
7 + (18)(k−3)/2 · 21.757 , if k is odd

106
7 + 1

4 · (
1
8)(k−4)/2 · 18.757 , if k is even

, (7.9.37)

lk2 =

{
88
7 − (18)(k−3)/2 · 6.6257 , if k is odd

88
7 −

1
2 · (

1
8)(k−4)/2 · 1.8757 , if k is even

(7.9.38)

and

hk2 =

{
88
7 + (18)(k−3)/2 · 18.757 , if k is odd

88
7 + 1

2 · (
1
8)(k−4)/2 · 21.757 , if k is even

. (7.9.39)



108 CHAPTER 7. COMMON BELIEF IN RATIONALITY WITH UNAWARENESS

We will prove this by induction on k, for k ≥ 3. Start with k = 3. Then, it follows by (7.9.36),
(7.9.37), (7.9.38) and (7.9.39) that

l31 = 14.875, h31 = 17.25, l32 = 11.625 and h32 = 15.25,

which matches (7.9.32) and (7.9.35).

Assume next that k ≥ 4, and that (7.9.36), (7.9.37), (7.9.38) and (7.9.39) hold for k − 1. We
distinguish two cases: (1) k is even, and (2) k is odd.

Case 1. Suppose that k is even. Firm 1 is required to hold a belief β1 about firm 2’s choice-view
pairs that (i) assigns probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive

probability to price-view pairs (p2, v
n
2 ) where p2 ∈ P k−12 (vn2 ), and (iii) for the view vs2 only assigns

positive probability to the price-view pair (28, vs2). But then, in view of (7.9.38) and (7.9.39) for k− 1,
the lowest expected price Eβ1(p2) for firm 2 under such a belief β1 is

(0.5) · (887 − (18)(k−4)/2 · 6.6257 ) + (0.5) · 28 = 142
7 −

1
2 · (

1
8)(k−4)/2 · 6.6257 ,

whereas the highest expected price Eβ1(p2) for firm 2 under such a belief β1 is

(0.5) · (887 + (18)(k−4)/2 · 18.757 ) + (0.5) · 28 = 142
7 + 1

2 · (
1
8)(k−4)/2 · 18.757 .

Hence, the expected price Eβ1(p2) under such a belief β1 lies in the interval

[1427 −
1
2 · (

1
8)(k−4)/2 · 6.6257 , 142

7 + 1
2 · (

1
8)(k−4)/2 · 18.757 ]. (7.9.40)

Moreover, the lowest expected price in this interval is at least

142
7 −

1
2 ·

6.625
7 > 16.

By (7.9.9), the optimal product-price pair for firm 1 under such a belief β1 is (n, 5 + 1
2Eβ1(p2)).

As Eβ1(p2) lies in the interval given by (7.9.40), the optimal price 5 + 1
2Eβ1(p2) lies in the interval

[5 + 1
2 · (

142
7 −

1
2 · (

1
8)(k−4)/2 · 6.6257 ), 5 + 1

2 · (
142
7 + 1

2 · (
1
8)(k−4)/2 · 18.757 )]

= [1067 −
1
4 · (

1
8)(k−4)/2 · 6.6257 , 106

7 + 1
4 · (

1
8)(k−4)/2 · 18.757 ].

Hence, the set of product-price pairs for firm 1 that are optimal at the view vn1 for such a belief β1 is

P k1 (vn1 ) = {(n, p1) | p1 ∈ [1067 −
1
4 · (

1
8)(k−4)/2 · 6.6257 , 106

7 + 1
4 · (

1
8)(k−4)/2 · 18.757 ]},

which matches (7.9.36) and (7.9.37).
We now turn to firm 2. By definition, firm 2 is required to hold a belief β2 about firm 1’s choice-

view pairs that (i) assigns probability 1 to the view vn1 , and (ii) for the view vn1 only assigns positive
probability to choice-view pairs (c1, v

n
1 ) where c1 ∈ P k−11 (vn1 ). By (7.9.36) and (7.9.37) for k − 1 we

conclude that β2 only assigns positive probability to pairs (n, p1) with p1 ∈ [lk−11 , hk−11 ].
Together with (i) and (iii) we see that

β2(s) = 0, β2(n) = 1, and Eβ2(p1|n) ∈ [lk−11 , hk−11 ]. (7.9.41)

If we substitute this into (7.9.14), we see that the optimal price p2(β2) under this belief β2 is

p2(β2) = 5 + 1
2Eβ2(p1|n). (7.9.42)
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In view of (7.9.41) and (7.9.42), the lowest price p2(β2) that is optimal for such a belief is

5 + 1
2 · l

k−1
1 = 5 + 1

2 · (
106
7 − (18)(k−4)/2 · 1.8757 )

= 88
7 −

1
2 · (

1
8)(k−4)/2 · 1.8757 ,

whereas the highest price p2(β2) that is optimal for such a belief is

5 + 1
2 · h

k−1
1 = 5 + 1

2 · (
106
7 + (18)(k−4)/2 · 21.757 )

= 88
7 + 1

2 · (
1
8)(k−4)/2 · 21.757 .

Hence, the set of prices for firm 2 that is optimal for such a belief β2 at the view vn2 is

P k2 (vn2 ) = [887 −
1
2 · (

1
8)(k−4)/2 · 1.8757 , 88

7 + 1
2 · (

1
8)(k−4)/2 · 21.757 ],

which matches (7.9.38) and (7.9.39).

Case 2. Suppose that k is odd. Firm 1 is required to hold a belief β1 about firm 2’s choice-view
pairs that (i) assigns probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive

probability to price-view pairs (p2, v
n
2 ) where p2 ∈ P k−12 (vn2 ), and (iii) for the view vs2 only assigns

positive probability to the price-view pair (28, vs2). But then, in view of (7.9.38) and (7.9.39) for k− 1,
the lowest expected price Eβ1(p2) for firm 2 under such a belief β1 is

(0.5) · (887 −
1
2 · (

1
8)(k−5)/2 · 1.8757 ) + (0.5) · 28 = 142

7 −
1
4 · (

1
8)(k−5)/2 · 1.8757 ,

whereas the highest expected price Eβ1(p2) for firm 2 under such a belief β1 is

(0.5) · (887 + 1
2 · (

1
8)(k−5)/2 · 21.757 ) + (0.5) · 28 = 142

7 + 1
4 · (

1
8)(k−5)/2 · 21.757 .

Hence, the expected price Eβ1(p2) under such a belief β1 lies in the interval

[1427 −
1
4 · (

1
8)(k−5)/2 · 1.8757 , 142

7 + 1
4 · (

1
8)(k−5)/2 · 21.757 ]. (7.9.43)

Moreover, the lowest expected price in this interval is at least

142
7 −

1
4 ·

1.875
7 > 16.

By (7.9.9), the optimal product-price pair for firm 1 under such a belief β1 is (n, 5 + 1
2Eβ1(p2)).

As Eβ1(p2) lies in the interval given by (7.9.43), the optimal price 5 + 1
2Eβ1(p2) lies in the interval

[5 + 1
2 · (

142
7 −

1
4 · (

1
8)(k−5)/2 · 1.8757 ), 5 + 1

2 · (
142
7 + 1

4 · (
1
8)(k−5)/2 · 21.757 )]

= [1067 −
1
8 · (

1
8)(k−5)/2 · 1.8757 , 106

7 + 1
8 · (

1
8)(k−5)/2 · 21.757 ]

= [1067 − (18)(k−3)/2 · 1.8757 , 106
7 + (18)(k−3)/2 · 21.757 ].

Hence, the set of product-price pairs for firm 1 that are optimal at the view vn1 for such a belief β1 is

P k1 (vn1 ) = {(n, p1) | p1 ∈ [1067 − (18)(k−3)/2 · 1.8757 , 106
7 + (18)(k−3)/2 · 21.757 ]},

which matches (7.9.36) and (7.9.37).
We now turn to firm 2. By definition, firm 2 is required to hold a belief β2 about firm 1’s choice-

view pairs that (i) assigns probability 1 to the view vn1 , and (ii) for the view vn1 only assigns positive



110 CHAPTER 7. COMMON BELIEF IN RATIONALITY WITH UNAWARENESS

probability to choice-view pairs (c1, v
n
1 ) where c1 ∈ P k−11 (vn1 ). By (7.9.36) and (7.9.37) for k − 1 we

conclude that β2 only assigns positive probability to pairs (n, p1) with p1 ∈ [lk−11 , hk−11 ].
Together with (i) and (ii) we see that

β2(s) = 0, β2(n) = 1, and Eβ2(p1|n) ∈ [lk−11 , hk−11 ]. (7.9.44)

If we substitute this into (7.9.14), we see that the optimal price p2(β2) under this belief β2 is

p2(β2) = 5 + 1
2Eβ2(p1|n). (7.9.45)

In view of (7.9.44) and (7.9.45), the lowest price p2(β2) that is optimal for such a belief is

5 + 1
2 · l

k−1
1 = 5 + 1

2 · (
106
7 −

1
4 · (

1
8)(k−5)/2 · 6.6257 )

= 88
7 −

1
8 · (

1
8)(k−5)/2 · 6.6257

= 88
7 − (18)(k−3)/2 · 6.6257 ,

whereas the highest price p2(β2) that is optimal for such a belief is

5 + 1
2 · h

k−1
1 = 5 + 1

2 · (
106
7 + 1

4 · (
1
8)(k−5)/2 · 18.757 )

= 88
7 + 1

8 · (
1
8)(k−5)/2 · 18.757

= 88
7 + (18)(k−3)/2 · 18.757 .

Hence, the set of prices for firm 2 that is optimal for such a belief β2 at the view vn2 is

P k2 (vn2 ) = [887 − (18)(k−3)/2 · 6.6257 , 88
7 + (18)(k−3)/2 · 18.757 ],

which matches (7.9.38) and (7.9.39).
By induction on k we thus conclude that (7.9.36), (7.9.37), (7.9.38) and (7.9.39) hold for every

k ≥ 3. In particular, when k tends to infinity, the sets P k1 (vn1 ) and P k2 (vn2 ) collapse to the single choices

p∗1(v
n
1 ) = (n, 106

7 ) ≈ (n, 15.14) and p∗2(v
n
2 ) = 88

7 ≈ 12.57.

Hence, under common belief in rationality with the view vn1 we expect firm 1 to offer the new product
at the price 15.14. Moreover, under common belief in rationality with the view vn2 we expect firm 2 to
choose the price 12.57.

The asymmetry in prices can be explained as follows: Firm 1, with the view vn1 , believes that with
probability 0.5 firm 2 is not aware of the new product. In this case, firm 2 would believe to compete
with the more different standard good, which leads firm 2 to choose the higher price 28. As firm 1
believes this to happen with probability 0.5, firm 1 will also choose a relatively high price itself.

Firm 2, in contrast, believes with the view vn2 that firm 1 will definitely have the view vn1 , and
hence firm 2 will believe that firm 1 will definitely offer the new good. As the new good is more similar
to firm 2’s good than the standard good, firm 2 will choose a relatively low price.

7.9.2 Competition in Quantities
Consider a Cournot competition model between two firms as discussed in Section 3.7.2. Assume that
both firms have a constant marginal cost equal to 5. Moreover, if both firms choose the quantities q1
and q2, the market price for the good is given by

p = 20− q1 − q2.
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Under the standard production technology, both firms are able to produce at most 4 units of the good.
However, there is a new production technology which has only recently been developed, and which
would allow the firm to produce up to 10 units of the good, at the same marginal costs as before.

Firm 1 has recently incorporated the new production technology, but is uncertain whether firm
2 is aware of this new technology or not. What quantities can firm 1 then rationally choose under
common belief in rationality?

To answer this question we first model the scenario above as a game with unawareness. The
possible views for firm 1 are vn1 and v

s
1, where v

n
1 denotes its actual view by which it is aware of the

new technology, whereas vs1 denotes the smaller view where it is not aware of the new technology.
Similarly, we can define the possible views vn2 and v

s
2 for firm 2.

Under the view vn1 the set of choices for firm 1 is C1(vn1 ) = [0, 10], because it can produce any
amount between 0 and 10. Moreover, the set of states under this view is C2(vn1 ) = [0, 10], as firm 1 is
allowed to believe that firm 2 is aware of the new production technology, and that firm 2 is actually
using this new technology.

Under the view vs1 firm 1’s set of choices is C1(vs1) = [0, 4], since firm 1 can only produce up to
4 units with the standard technology. Moreover, the set of states is C2(vs1) = [0, 4], as firm 1 must
believe that firm 2 is only aware of the standard technology, which allows firm 2 to produce at most
4 units. Similarly for the view of firm 2.

To see which amounts firm 1 can rationally produce under common belief in rationality we use the
extension of iterated strict dominance with unawareness to games with infinitely many choices and
states, like we did in the previous subsection. As before, we will use the bottom-up version of this
procedure. We will thus start with the views of rank 1.

Views of rank 1. Consider the views of rank 1, which are vs1 and v
s
2. This gives rise to a Cournot

competition model in Section 3.7.2 where a = 20, c = 5, e = 1 and M = 4. Note, however, that the
conditionM ∈ [a−c2e ,

a−c
e ] is violated sinceM < a−c

2e . Hence, we cannot use the analysis in Section 3.7.2
to obtain the quantities that both firms can rationally choose under common belief in rationality. We
have to apply the procedure round by round to this scenario.

Round 1. Consider firm 1 with view vs1. Then, firm 1 must believe that firm 2’s view is v
s
2. By (3.7.11)

it follows that firm 1’s profit under the belief β1 about firm 2’s quantity is

π1(q1, β1) = q1 · (a− c− e · (q1 + Eβ1(q2)) = q1 · (15− (q1 + Eβ1(q2)).

The derivative of this profit with respect to q1 is

∂π1
∂q1

= 15− 2q1 − Eβ1(q2) > 0

since q1 ≤ 4 and Eβ1(q2) ≤ 4. That is, firm 1’s profit is always increasing in its output q1. The unique
optimal quantity is therefore the maximal possible quantity, which is q1 = 4. Thus, the set of quantities
for firm 1 that survive Round 1 at the view vs1 is

Q11(v
s
1) = {4}.

Similarly,
Q12(v

s
2) = {4}.

Then, the procedure at the views of rank 1 terminates. Thus, under common belief in rationality,
both firms will rationally choose the quantity

q∗1(v
s
1) = q∗2(v

s
2) = 4 (7.9.46)
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at the views vs1 and v
s
2, respectively.

Views of rank 2. Consider next the views of rank 2, which are vn1 and v
n
2 .

Round 1. Focus on firm 1 with view vn1 . Suppose that firm 1 holds a belief β1 about firm 2’s quantity.
As firm 1 may believe that firm 2 holds the view vn2 , the belief β1 may attach positive probability to
all possible prices in [0, 10], and hence Eβ1(p2) ∈ [0, 10]. By (3.7.12) we know that firm 1’s optimal
quantity under this belief β1 is

q1(β1) = a−c
2e −

1
2Eβ1(p2) = 7.5− 1

2Eβ1(p2). (7.9.47)

As Eβ1(p2) ∈ [0, 10], the quantities that are optimal for some belief β1 are given by

Q11(v
n
1 ) = [7.5− 1

2 · 10, 7.5− 1
2 · 0] = [2.5, 7.5]. (7.9.48)

Similarly for firm 2.

Round 2. By definition, the set of states S21(vn1 ) for firm 1 at the view vn1 are those quantities that
survived so far for firm 2 at the views which are contained in vn1 , which are the views v

s
2 and v

n
2 . By

(7.9.46) and (7.9.48) we know that quantity 4 survived at the view vs2, whereas all quantities in [2.5,
7.5] survived Round 1 at the view vn2 . Hence,

S21(vn1 ) = [2.5, 7.5].

Since firm 1 is required to hold a belief β1 on S
2
1(vn1 ), we know that Eβ1(p2) ∈ [2.5, 7.5]. By (7.9.47),

the set of quantities that are optimal for firm 1 for such a belief β1 is given by

Q21(v
n
1 ) = [7.5− 1

2 · (7.5), 7.5− 1
2 · (2.5)] = [3.75, 6.25]. (7.9.49)

Similarly for firm 2.

Round 3. By definition, the set of states S31(vn1 ) for firm 1 at the view vn1 are those quantities that
survived so far for firm 2 at the views vs2 and v

n
2 . By (7.9.46) and (7.9.49) we know that quantity 4

survived at the view vs2, whereas all quantities in [3.75, 6.25] survived Round 2 at the view vn2 . Hence,

S31(vn1 ) = [3.75, 6.25].

Since firm 1 is required to hold a belief β1 on S
3
1(vn1 ), we know that Eβ1(p2) ∈ [3.75, 6.25]. By (7.9.47),

the set of quantities that are optimal for firm 1 for such a belief β1 is given by

Q31(v
n
1 ) = [7.5− 1

2 · (6.25), 7.5− 1
2 · (3.75)] = [4.375, 5.625]. (7.9.50)

Similarly for firm 2.

Round 4. By definition, the set of states S41(vn1 ) for firm 1 at the view vn1 are those quantities that
survived so far for firm 2 at the views vs2 and v

n
2 . By (7.9.46) and (7.9.50) we know that quantity

4 survived at the view vs2, whereas all quantities in [4.375, 5.625] survived Round 3 at the view vn2 .
Hence,

S41(vn1 ) = {4} ∪ [4.375, 5.625].

Since firm 1 is required to hold a belief β1 on S
4
1(vn1 ), we know that Eβ1(p2) ∈ [4, 5.625]. Indeed, every

expected price between 4 and 4.375 can be obtained by a belief β1 that assigns positive probability
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to the quantities 4 and 4.375. By (7.9.47), the set of quantities that are optimal for firm 1 for such a
belief β1 is given by

Q41(v
n
1 ) = [7.5− 1

2 · (5.625), 7.5− 1
2 · 4] = [4.6875, 5.5]. (7.9.51)

Similarly for firm 2.

Round 5. By definition, the set of states S51(vn1 ) for firm 1 at the view vn1 are those quantities that
survived so far for firm 2 at the views vs2 and v

n
2 . By (7.9.46) and (7.9.51) we know that quantity 4

survived at the view vs2, whereas all quantities in [4.6875, 5.5] survived Round 4 at the view vn2 . Hence,

S51(vn1 ) = {4} ∪ [4.6875, 5.5].

Since firm 1 is required to hold a belief β1 on S
5
1(vn1 ), we know that Eβ1(p2) ∈ [4, 5.5]. Indeed, every

expected price between 4 and 4.6875 can be obtained by a belief β1 that assigns positive probability
to the quantities 4 and 4.6875. By (7.9.47), the set of quantities that are optimal for firm 1 for such a
belief β1 is given by

Q51(v
n
1 ) = [7.5− 1

2 · (5.5), 7.5− 1
2 · 4] = [4.75, 5.5]. (7.9.52)

Similarly for firm 2.

Round 6. By definition, the set of states S61(vn1 ) for firm 1 at the view vn1 are those quantities that
survived so far for firm 2 at the views vs2 and v

n
2 . By (7.9.46) and (7.9.52) we know that quantity 4

survived at the view vs2, whereas all quantities in [4.75, 5.5] survived Round 5 at the view vn2 . Hence,

S61(vn1 ) = {4} ∪ [4.75, 5.5].

Since firm 1 is required to hold a belief β1 on S
5
1(vn1 ), we know that Eβ1(p2) ∈ [4, 5.5]. Indeed, every

expected price between 4 and 4.75 can be obtained by a belief β1 that assigns positive probability to
the quantities 4 and 4.75. By (7.9.47), the set of quantities that are optimal for firm 1 for such a belief
β1 is given by

Q61(v
n
1 ) = [7.5− 1

2 · (5.5), 7.5− 1
2 · 4] = [4.75, 5.5]. (7.9.53)

Similarly for firm 2.

As Q61(v
n
1 ) = Q51(v

n
1 ) and Q62(v

n
2 ) = Q52(v

n
2 ), we conclude that the procedure for the views of rank 2

terminates here. As such, the sets of quantities that firms 1 and 2 can rationally choose under common
belief in rationality at the views vn1 and v

n
2 are given by

Q∗1(v
n
1 ) = Q∗2(v

n
2 ) = [4.75, 5.5]. (7.9.54)

We finally turn to a scenario with fixed beliefs on views. Assume that the fixed belief combination
p = (p1, p2) on views is given by Figure 7.9.2. Hence, if a firm is aware of the new production
technology, then it believes that with probability 0.5 the other firm will also be aware of it, and with
probability 0.5 the other firm is not aware of it. Suppose that firm 1 is aware of the new technology.
What quantities can it then rationally choose under common belief in rationality and common belief
in the fixed belief combination p about views?

We will use the extension of iterated strict dominance for unawareness with fixed beliefs on views
to games with infinitely many choices and states. As for the case of price competition, we will use the
bottom-up version of this procedure. Hence, we will start with the views of rank 1.
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Figure 7.9.2 Fixed beliefs about views for quantity competition

Views of rank 1. Consider the views of rank 1, which are vs1 and v
s
2. For these views the analysis

is exactly the same as for the case without fixed beliefs about views. Hence, the only quantities that
survive the procedure at these views are

q∗1(v
s
1) = q∗2(v

s
2) = 4. (7.9.55)

Views of rank 2. Consider next the views of rank 2, which are vn1 and v
n
2 .

Round 1. This round is exactly the same as for the case without fixed beliefs about views, and leads
to the set of quantities

Q11(v
n
1 ) = [2.5, 7.5] (7.9.56)

for firm 1. Similarly for firm 2.

Round 2. Firm 1 is required to hold a belief β1 about firm 2’s quantity-view pairs that (i) assigns
probability 0.5 to the views vn2 and v

s
2, (ii) for the view v

n
2 only assigns positive probability to quantity-

view pairs (q2, v
n
2 ) where q2 ∈ Q12(v

n
2 ), and (iii) for the view vs2 only assigns positive probability to

the quantity-view pair (4, vs2). In view of (7.9.56), the belief β1 will then assign probability 0.5 to the
quantity 4, and probability 0.5 to some quantity in [2.5, 7.5]. Hence, the expected quantity Eβ1(q2)
will be somewhere in the interval

[12 · 4 + 1
2 · 2.5,

1
2 · 4 + 1

2 · 7.5] = [3.25, 5.75].

By (7.9.47) we know that the optimal quantity q1(β1) for such a belief is given by 7.5 − 1
2 · Eβ1(q2).

As Eβ1(q2) ∈ [3.25, 5.75], the optimal quantity for such a belief will be in the interval

[7.5− 1
2 · (5.75), 7.5− 1

2 · (3.25)] = [4.625, 5.875].

Hence, the set of quantities that survive Round 2 for firm 1 at view vn1 is

Q21(v
n
1 ) = [4.625, 5.875]. (7.9.57)

Similarly for firm 2.

By continuing in this fashion we can compute the sets Qk1(v
n
1 ) and Qk2(v

n
2 ) for all rounds k ≥ 3 as

well. It can be shown, for every round k ≥ 2, that

Qk1(v
n
1 ) = Qk2(v

n
2 ) = [lk, hk],
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where

lk =

{
5.2− (14)k−1 · (2.3), if k is even
5.2− (14)k−1 · (2.7), if k is odd

(7.9.58)

and

hk =

{
5.2 + (14)k−1 · (2.7), if k is even
5.2 + (14)k−1 · (2.3), if k is odd

. (7.9.59)

We prove this by induction on k, for k ≥ 2.

If k = 2, then we know from (7.9.57) that l2 = 4.625 and h2 = 5.875, which matches (7.9.58) and
(7.9.59).

Take now some k ≥ 3, and assume that (7.9.58) and (7.9.59) hold for k − 1. We distinguish two
cases: (1) k is odd, and (2) k is even.

Case 1. Suppose that k is odd. Firm 1 is required to hold a belief β1 about firm 2’s quantity-view
pairs that (i) assigns probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive

probability to quantity-view pairs (q2, v
n
2 ) where q2 ∈ Qk−12 (vn2 ), and (iii) for the view vs2 only assigns

positive probability to the quantity-view pair (4, vs2). In view of (7.9.58) and (7.9.59), the belief β1
will then assign probability 0.5 to the quantity 4, and probability 0.5 to some quantity in [lk−1, hk−1].
Hence, the expected quantity Eβ1(q2) will be somewhere in the interval

[12 · 4 + 1
2 · l

k−1, 1
2 · 4 + 1

2 · h
k−1]

= [12 · 4 + 1
2 · (5.2− (14)k−2 · (2.3)), 1

2 · 4 + 1
2 · (5.2 + (14)k−2 · (2.7))]

= [4.6− 1
2 · (

1
4)k−2 · (2.3), 4.6 + 1

2 · (
1
4)k−2 · (2.7)] (7.9.60)

By (7.9.47) we know that the optimal quantity q1(β1) for such a belief is given by 7.5 − 1
2 · Eβ1(q2).

As Eβ1(q2) is in the interval given by (7.9.60), the lowest quantity q1(β1) that is optimal for such a
belief β1 is

q1(β1) = 7.5− 1
2 · (4.6 + 1

2 · (
1
4)k−2 · (2.7))

= 5.2− 1
4 · (

1
4)k−2 · (2.7) = 5.2− (14)k−1 · (2.7) = lk.

Similarly, the highest quantity q1(β1) that is optimal for such a belief β1 is

q1(β1) = 7.5− 1
2 · (4.6−

1
2 · (

1
4)k−2 · (2.3))

= 5.2 + 1
4 · (

1
4)k−2 · (2.3) = 5.2 + (14)k−1 · (2.3) = hk.

Hence, the set of quantities that survives Round k for firm 1 at view vn1 is

Qk1(v
n
1 ) = [lk, hk]

as given by (7.9.58) and (7.9.59). Similarly for firm 2.

Case 2. Suppose that k is even. Firm 1 is required to hold a belief β1 about firm 2’s quantity-view
pairs that (i) assigns probability 0.5 to the views vn2 and v

s
2, (ii) for the view vn2 only assigns positive

probability to quantity-view pairs (q2, v
n
2 ) where q2 ∈ Qk−12 (vn2 ), and (iii) for the view vs2 only assigns

positive probability to the quantity-view pair (4, vs2). In view of (7.9.58) and (7.9.59), the belief β1
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will then assign probability 0.5 to the quantity 4, and probability 0.5 to some quantity in [lk−1, hk−1].
Hence, the expected quantity Eβ1(q2) will be somewhere in the interval

[12 · 4 + 1
2 · l

k−1, 1
2 · 4 + 1

2 · h
k−1]

= [12 · 4 + 1
2 · (5.2− (14)k−2 · (2.7)), 1

2 · 4 + 1
2 · (5.2 + (14)k−2 · (2.3))]

= [4.6− 1
2 · (

1
4)k−2 · (2.7), 4.6 + 1

2 · (
1
4)k−2 · (2.3)]. (7.9.61)

By (7.9.47) we know that the optimal quantity q1(β1) for such a belief is given by 7.5 − 1
2 · Eβ1(q2).

As Eβ1(q2) is in the interval given by (7.9.61), the lowest quantity q1(β1) that is optimal for such a
belief β1 is

q1(β1) = 7.5− 1
2 · (4.6 + 1

2 · (
1
4)k−2 · (2.3))

= 5.2− 1
4 · (

1
4)k−2 · (2.3) = 5.2− (14)k−1 · (2.3) = lk.

Similarly, the highest quantity q1(β1) that is optimal for such a belief β1 is

q1(β1) = 7.5− 1
2 · (4.6−

1
2 · (

1
4)k−2 · (2.7))

= 5.2 + 1
4 · (

1
4)k−2 · (2.7) = 5.2 + (14)k−1 · (2.7) = hk.

Hence, the set of quantities that survive Round k for firm 1 at view vn1 is

Qk1(v
n
1 ) = [lk, hk]

as given by (7.9.58) and (7.9.59). Similarly for firm 2.

By induction on k, we conclude that (7.9.58) and (7.9.59) hold for every k ≥ 2. In particular, when
k tends to infinity, the sets of quantities Qk1(v

n
1 ) and Qk2(v

n
2 ) collapse to the single quantity

q∗1(v
n
1 ) = q∗2(v

n
2 ) = 5.2.

Hence, under common belief in rationality and common belief in the fixed belief combination p on
views, we expect both firms to choose the quantity 5.2 at the views vn1 and v

n
2 , respectively.

Compare this to the situation where both firms are aware of the new technology and both firms
would believe, with probability 1, that the other firm is also aware of the new technology. In this case,
we would be back to a standard Cournot competition model in Section 3.7.2 where a = 20, c = 5,
e = 1 andM = 10. SinceM ∈ [a−c2e ,

a−c
e ], we know by (3.7.14) that under common belief in rationality,

both firms would rationally choose the quantity

q = a−c
3e = 5.

Above we have seen that, if both firms believe there is a 50% chance that the other firm is unaware
of the new technology, then both firms would opt for a higher quantity, which is 5.2. The intuition is
clear: In the latter case, the firm believes there is a 50% chance that the other firm will choose the
low quantity 4 because it is only aware of the standard technology. The firm that is aware of the new
technology will then respond by choosing a quantity higher than 5.



Chapter 8

Common Belief in Rationality in Psychological
Games

8.8 Economic Applications

In this section we take as a starting point the Bertrand competition model and the Cournot competition
model from Section 3.7. In both models we assume that firm i receives a mental bonus if it chooses
a price or quantity that is more cooperative than the price or quantity that firm j expects firm i to
choose. This turns both scenarios into a psychological game, as the utility for firm i depends on what
firm i believes that firm j believes that i will do. For both scenarios we investigate which prices or
quantities the firms can rationally choose under common belief in rationality.

8.8.1 Competition in Prices
Consider the Bertrand competition model from Section 3.7.1. As we did for one of the views in Section
7.9.1, we choose the parameters a = 24, c = 4, d = 1, e = 1 and M = 40. By following the arguments
in Section 3.7.1 we then know that firm 1’s profit is given by

π1(p1, p2) = (p1 − 4) · (24− p1 + p2) (8.8.1)

if the firms choose the prices p1 and p2.
Suppose now that firm 1 not only cares about its profit, but that, in addition, it receives a mental

bonus if it chooses a price which is higher —and hence more cooperative —than the price that firm 2
expects firm 1 to choose. More precisely, if firm 1 chooses a price p1, and believes that firm 2 expects
firm 1 to choose a price of p′1 with p1 ≥ p′1, then firm 1 receives the mental bonus

f · (p1 − p′1)2. (8.8.2)

Here, f is a parameter that measures how strongly firm 1 wishes to exceed firm 2’s expectations by
the price it chooses. We choose f such that f ≤ 0.15.

117
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Assume that firm 1’s utility is the sum of its profit and (possibly) the mental bonus from exceeding
firm 2’s expectations. Then, in view of (8.8.1) and (8.8.2), firm 1’s utility function is given by

u1(p1, (p2, p
′
1)) = (p1 − 4) · (24− p1 + p2) +

{
f · (p1 − p′1)2, if p1 ≥ p′1

0, if p1 < p′1
, (8.8.3)

where p′1 is the price that firm 1 believes that firm 2 believes that firm 1 will choose. Similarly for
firm 2. We thus obtain a psychological game where the choices for firm 1 are the prices p1, the states
are the pairs (p2, p

′
1), and similarly for firm 2.

What prices can both firms rationally choose under common belief in rationality? To answer that
question we apply the states-first procedure from Section 8.5 where we first perform the iterated
elimination of choices and states and subsequently apply the iterated elimination of choices and
second-order expectations.

Let us start with the iterated elimination of choices and states. Note that the psychological game
at hand is infinite, because we have infinitely many choices and states for both firms. However, the
iterated elimination of choices and states can be extended to such infinite psychological games as
follows: In round 1 we start by eliminating, for every decision problem, those choices that are not
optimal for any second-order expectation. At the beginning of round 2 we eliminate, for every decision
problem, all states that contain a choice that has already been eliminated in round 1. Within the
reduced decision problem so obtained, we then eliminate all choices that are not optimal for any
second-order expectation within the reduced decision problem. For further rounds we procede in a
similar fashion. Let us now apply this iterated elimination of choices and states to our model above.

Round 1. Focus on firm 1. Which prices p1 are optimal for some second-order expectation e1 and
which are not? Consider a second-order expectation e1 which assigns positive probability to finitely
many states (p2, p

′
1). By Ee1(p2) we denote the expected price for firm 2 under e1, whereas e1(p′1)

denotes the probability that e1 assigns to firm 1’s price p′1. By following the steps in Section 3.7.1
it can then be shown, based on (8.8.3), that the expected utility for firm 1 if it chooses the price p1
under the second-order expectation e1 is given by

u1(p1, e1) = (p1 − 4) · (24− p1 + Ee1(p2)) + f ·
∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1)2.

As a function of p1, the expected utility u1(p1, e1) achieves its maximum at the unique point where
the derivative ∂u1(p1,e1)

∂p1
is equal to 0. It may be verified that

∂u1(p1,e1)
∂p1

= 28− 2p1 + Ee1(p2) + 2f ·
∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1).

Hence, ∂u1(p1,e1)∂p1
= 0 precisely when

p1 = 14 + 1
2Ee1(p2) + f ·

∑
p′1≤p1:e1(p′1)>0

e1(p
′
1) · (p1 − p′1). (8.8.4)

Let the function on the right-hand side of (8.8.4) be denoted by g(p1, e1). Hence, the optimal price
p1(e1) under the second-order expectation e1 is the unique price p1 for which p1 = g(p1, e1).

Note that the function g(p1, e1) is increasing in p1. Graphically, the unique price p1(e1) with
p1(e1) = g(p1(e1), e1) is the intersection point between the 45 degree line and the increasing curve
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Figure 8.8.1 Optimal price for a second-order expectation

of g(p1, e1) in Figure 8.8.1. Suppose now that the second-order expectation starts to assign higher
probabilities to higher prices p′1. Then, by (8.8.4), the curve of g(p1, e1) in Figure 8.8.1 will shift
downwards, which means that the optimal price p1(e1) will become smaller. If, on the other hand,
the second-order expectation starts to assign higher probabilities to lower prices p′1, then the curve
of g(p1, e1) in Figure 8.8.1 will shift upwards, which means that the optimal price p1(e1) will become
larger.

In view of (8.8.4), the lowest price p1 that is optimal for a second-order expectation is thus obtained
when e1 assigns probability 1 to the lowest possible price p2 = 0 for firm 2, and to the highest possible
price p′1 = 40 for firm 1. In that case, Ee1(p2) = 0 and∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1) = 0

which means that
p1 = 14. (8.8.5)

At the same time, the highest price p1 that is optimal for a second-order expectation is thus obtained
when e1 assigns probability 1 to the highest possible price p2 = 40 for firm 2, and to the lowest possible
price p′1 = 0 for firm 1. In that case, Ee1(p2) = 40 and∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1) = p1 − 0 = p1,

which implies that
p1 = 14 + 1

2 · 40 + f · p1.
Hence,

p1 = 34
1−f . (8.8.6)

Note that 34
1−f ≤ 40 as we assume that f ≤ 0.15.

On the basis of (8.8.5) and (8.8.6) we conclude that the set P 11 of prices that is optimal for firm 1
for some second-order expectation is given by

P 11 = [14, 34
1−f ]. (8.8.7)
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Similarly for firm 2.

Round 2. We focus on firm 1. In firm 1’s decision problem we eliminate all states (p2, p
′
1) where

either p2 or p′1 did not survive round 1. Hence, we concentrate on those second-order expectations
e1 which only assign positive probability to pairs (p2, p

′
1) where p2 ∈ P 12 and p′1 ∈ P 11 . Let this set of

second-order expectations be E21 .
By (8.8.4) and our arguments in round 1 we conclude that the lowest possible price p1 that is

optimal for some second-order expectation e1 in E21 is obtained by letting e1 assign probability 1 to
the lowest possible price p2 ∈ P 12 , which is p2 = 14, and to the highest possible price p′1 ∈ P 11 , which is
p′1 = 34

1−f . Hence, we have that Ee1(p2) = 14. By construction, every price p1 that is optimal for this

second-order expectation e1 ∈ E21 must be in P 11 , which means that p1 ≤ 34
1−f . Hence,∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1) = 0

for every price p1 ∈ P 11 = [14, 34
1−f ]. In view of (8.8.4) we conclude that

p1 = 14 + 1
2 · 14 = 21 (8.8.8)

in this case.
Moreover, the highest possible price p1 that is optimal for some second-order expectation e1 in E21

is obtained by letting e1 assign probability 1 to the highest possible price p2 ∈ P 12 , which is p2 = 34
1−f ,

and to the lowest possible price p′1 ∈ P 11 , which is p′1 = 14. Hence, we have that Ee1(p2) = 34
1−f and∑

p′1≤p1:e1(p′1)>0
e1(p

′
1) · (p1 − p′1) = p1 − 14

for every price p1 ∈ P 11 = [14, 34
1−f ]. In view of (8.8.4) we conclude that

p1 = 14 + 1
2 ·

34
1−f + f · (p1 − 14)

which yields
p1 = 14 + 17

(1−f)2 (8.8.9)

in this case. On the basis of (8.8.8) and (8.8.9) we see that the set of prices for firm 1 that survive
round 2 is given by

P 21 = [21, 14 + 17
(1−f)2 ]. (8.8.10)

Similarly for firm 2.

By continuing in this fashion we can derive the sets of prices P k1 and P
k
2 for every round k ≥ 3 as

well. We will show, by induction on k, that

P k1 = P k2 = [28− 1
2k
· 28, 28 + 1

2k
· ( 68
(1−f)k − 56)] (8.8.11)

for every k ≥ 1.
For k = 1 we see that (8.8.11) matches (8.8.7), and hence (8.8.11) holds for k = 1.
Take now some k ≥ 2, and assume that (8.8.11) holds for k− 1. Concentrate on firm 1. In round k

we restrict to first-order expectations e1 which assign positive probability only to pairs (p2, p
′
1) where

p2 ∈ P k−12 and p′1 ∈ P k−11 . Let this set of first-order expectations be Ek1 .
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By (8.8.4) and our arguments in round 1 we conclude that the lowest possible price p1 that is
optimal for some second-order expectation e1 in Ek1 is obtained by letting e1 assign probability 1 to
the lowest possible price p2 ∈ P k−12 , which is 28− 1

2k−1
·28, and to the highest possible price p′1 ∈ P k−11 ,

which is
p′1 = 28 + 1

2k−1
· ( 68
(1−f)k−1 − 56).

Hence, we have that Ee1(p2) = 28− 1
2k−1

· 28 and∑
p′1≤p1:e1(p′1)>0

e1(p
′
1) · (p1 − p′1) = 0

for every price p1 ∈ P k−11 . In view of (8.8.4) we conclude that

p1 = 14 + 1
2 · (28− 1

2k−1
· 28) = 28− 1

2k
· 28 (8.8.12)

in this case.
Moreover, the highest possible price p1 that is optimal for some second-order expectation e1 in Ek1

is obtained by letting e1 assign probability 1 to the highest possible price p2 ∈ P k−12 , which is

p2 = 28 + 1
2k−1

· ( 68
(1−f)k−1 − 56),

and to the lowest possible price p′1 ∈ P k−11 , which is p′1 = 28− 1
2k−1

· 28. Hence, we have that

Ee1(p2) = 28 + 1
2k−1

· ( 68
(1−f)k−1 − 56)

and ∑
p′1≤p1:e1(p′1)>0

e1(p
′
1) · (p1 − p′1) = p1 − (28− 1

2k−1 · 28)

for every price p1 ∈ P k−11 . In view of (8.8.4) we conclude that

p1 = 14 + 1
2 · (28 + 1

2k−1
· ( 68
(1−f)k−1 − 56)) + f · (p1 − (28− 1

2k−1
· 28)),

which yields
p1 = 28 + 1

2k
· ( 68
(1−f)k − 56) (8.8.13)

in this case. On the basis of (8.8.12) and (8.8.13) we see that the set of prices for firm 1 that survive
round k is given by

P k1 = [28− 1
2k
· 28, 28 + 1

2k
· ( 68
(1−f)k − 56)],

which matches (8.8.11). Similarly for firm 2.
By induction on k we thus conclude that (8.8.11) holds for every k.

Recall the assumption that f ≤ 0.15. This guarantees that 2(1 − f) ≥ 1.7, and hence 1
2k
· 68
(1−f)k

tends to 0 when k tends to infinity. As such, the sets P k1 and P
k
2 collapse to the single price

p∗ = 28 (8.8.14)

when k tends to infinity. Hence, we see that the iterated elimination of choices and states already
leads to a unique price for both firms, which is p∗ = 28. As such, the states-first procedure will lead
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to that same unique price. Hence, under common belief in rationality both firms can only rationally
choose the price 28. In particular, both firms will not be able to exceed the other firm’s expectations
under common belief in rationality, as firm 1 believes that firm 2 believes that firm 1 will choose the
price 28, and similarly for firm 2.

From (8.8.11) we can conclude, however, that the highest price which survives round k of the
iterated elimination of choices and states becomes larger as f increases. This makes intuitive sense,
since a larger f means that firm 1 has a stronger preference for choosing a price that exceeds firm 2’s
expectation, which pushes the highest price in P k1 upwards.

8.8.2 Competition in Quantities
Consider the Cournot competition model from Section 3.7.2. Like we did for one of the views in
Section 7.9.2, we choose the parameters a = 20, c = 5, e = 1 and M = 10. Following (3.7.10), the
profit for firm 1 is then equal to

π1(q1, q2) = q1 · (a− c− e · (q1 + q2)) = q1 · (15− q1 − q2), (8.8.15)

where q1 and q2 are the quantities chosen by the two firms. Similarly for firm 2.
Assume now that firm 1 also has a preference for choosing a quantity that is lower —and hence

more cooperative —than the quantity that firm 1 believes that firm 2 expects firm 1 to choose. More
concretely, if firm 1 chooses a quantity q1 and believes that firm 2 believes that firm 1 chooses a
quantity q′1 that is higher than q1, then firm 1 receives a mental bonus equal to

f · (q′1 − q1)2. (8.8.16)

Here, f is a parameter which measures how strongly firm 1 wishes to exceed firm 2’s expectations.
We assume that f ≤ 0.25.

Suppose that the utility for firm 1 is the sum of its profit and (possibly) the mental bonus above.
Then, in view of (8.8.15) and (8.8.16), firm 1’s utility is equal to

u1(q1, (q2, q
′
1)) = q1 · (15− q1 − q2) +

{
f · (q′1 − q1)2, if q′1 ≥ q1

0, if q′1 < q1
, (8.8.17)

where q′1 is the quantity that firm 1 believes that firm 2 believes that firm 1 will choose. Similarly for
firm 2.

We hereby have modelled this scenario as a psychological game, where the choices for firm 1 are
the possible quantities q1, and the states for firm 1 are the possible pairs (q2, q

′
1), and similarly for

firm 2.
The question we wish to answer is: What quantities can both firms rationally choose under common

in rationality? To this purpose we will use the states-first procedure adapted to infinite psychological
games, as described in the previous subsection. Hence, we will start with the iterated elimination
of choices and states, and subsequently apply the iterated elimination of choices and second-order
expectations.

Let us first apply the iterated elimination of choices and states.

Round 1. Consider firm 1. In round 1 we must identify all quantities that are optimal for some second-
order expectation e1, and eliminate all quantities that are not. Take some second-order expectation e1
which assigns positive probability to finitely many pairs (q2, q

′
1). Let Ee1(q2) be the expected quantity

for firm 2 under e1, and let e1(q′1) be the probability that e1 assigns to firm 1’s quantity q′1. Similarly
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Figure 8.8.2 Optimal quantity for a second-order expectation

to Sections 3.7.2 and 8.8.1, and building on (8.8.17), it may be verified that the expected utility for
firm 1 from choosing the quantity q1 under the second-order expectation e1 is given by

u1(q1, e1) = q1 · (15− q1 − Ee1(q2)) +
∑

q′1≥q1:e1(q′1)>0
e1(q

′
1) · f · (q′1 − q1)2.

As a function of q1, the expected utility u1(q1, e1) achieves the unique maximum precisely where
the derivative ∂u1(q1,e1)

∂q1
is equal to 0. It may be verified that

∂u1(q1,e1)
∂q1

= 15− 2q1 − Ee1(q2)− 2f ·
∑

q′1≥q1:e1(q′1)>0
e1(q

′
1) · (q′1 − q1).

By putting this derivative equal to 0 we find that

q1 = 7.5− 1
2Ee1(q2)− f ·

∑
q′1≥q1:e1(q′1)>0

e1(q
′
1) · (q′1 − q1). (8.8.18)

Hence, the only quantity q1(e1) that is optimal under the second-order expectation e1 is the unique
quantity q1 that satisfies (8.8.18).

Let us denote the right-hand side in (8.8.18) by g(q1, e1). Hence, the optimal quantity q1(e1) is
the unique quantity q1 where q1 = g(q1, e1). Note that g(q1, e1) is increasing in q1. Graphically, the
optimal quantity q1(e1) has been depicted in Figure 8.8.2 as the unique intersection point between the
45 degree line and the increasing curve of g(q1, e1).

Suppose now that in the second-order expectation e1 we start assigning higher probabilities to
higher quantities q′1. Then, we conclude from (8.8.18) that the curve of g(q1, e1) will shift downwards,
and hence we conclude on the basis of Figure 8.8.2 that the optimal quantity q1(e1) will decrease
as well. Similarly, if e1 starts to assign higher probabilities to lower quantities q′1, then the curve of
g(q1, e1) will shift upwards, and therefore the optimal quantity q1(e1) will increase.

In view of (8.8.18), the lowest quantity q1(e1) that is optimal for a second-order expectation e1 is
obtained if e1 assigns probability 1 to the highest possible quantity q2, which is q2 = 10, and e1 assigns
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probability 1 to the highest possible q′1, which is q
′
1 = 10. Then,∑

q′1≥q1:e1(q′1)>0
e1(q

′
1) · (q′1 − q1) = 10− q1.

By (8.8.18) we thus see that
q1 = 7.5− 1

2 · 10− f · (10− q1)

which yields
q1 = 2.5−10f

1−f . (8.8.19)

Note that q1 ≥ 0 since we assume that f ≤ 0.25.
Similarly, the highest quantity q1(e1) that is optimal for a second-order expectation e1 is obtained

if e1 assigns probability 1 to the lowest possible quantity q2, which is q2 = 0, and e1 assigns probability
1 to the lowest possible q′1, which is q

′
1 = 0. Then,∑

q′1≥q1:e1(q′1)>0
e1(q

′
1) · (q′1 − q1) = 0.

By (8.8.18) we thus see that
q1 = 7.5− 1

2 · 0− f · 0 = 7.5. (8.8.20)

On the basis of (8.8.19) and (8.8.20) we conclude that the set Q11 of quantities surviving the first
round is

Q11 = [2.5−10f1−f , 7.5]. (8.8.21)

Similarly for firm 2.

Round 2. Consider firm 1. At the beginning of round 2 we eliminate all states (q2, q
′
1) where either

q2 or q′1 did not survive round 1. Hence, we concentrate on second-order expectations e1 that only
assign positive probability to states (q2, q

′
1) where q2 ∈ Q12 and q′1 ∈ Q11. Let us denote by E21 the set

of such second-order expectations.
Which quantities q1 can be optimal for a second-order expectation e1 in E21? Similarly to round

1, the smallest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that assigns
probability 1 to the highest possible quantity q2 in Q12, which is q2 = 7.5, and that assigns probability 1
to the highest possible quantity q′1 in Q

1
1, which is q

′
1 = 7.5. By (8.8.18), and the fact that the optimal

quantity q1 must be in Q11, the optimal quantity q1 must satisfy

q1 = 7.5− 1
2 · (7.5)− f · (7.5− q1)

which yields
q1 = 3.75−(7.5)f

1−f . (8.8.22)

Similarly, the highest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that
assigns probability 1 to the lowest possible quantity q2 in Q12, which is q2 = 2.5−10f

1−f , and that assigns

probability 1 to the lowest possible quantity q′1 in Q
1
1, which is q

′
1 = 2.5−10f

1−f . By (8.8.18), and the fact
that the optimal quantity q1 must be in Q11, the optimal quantity q1 must satisfy

q1 = 7.5− 1
2 ·

2.5−10f
1−f − f · 0

which yields
q1 = 6.25−(2.5)f

1−f . (8.8.23)
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On the basis of (8.8.22) and (8.8.23), we see that the set Q21 of quantities that survive round 2 is
given by

Q21 = [3.75−(7.5)f1−f , 6.25−(2.5)f
1−f ]. (8.8.24)

Similarly for firm 2.

If we continue in this manner we can derive the sets Qk1 and Q
k
2 for every round k ≥ 3. We will

show, by induction on k, that

Qk1 = Qk2 =

{
[5 · (1− (12)

k−1
2 (1/2+f1−f )

k+1
2 ), 5 · (1 + (12)

k+1
2 (1/2+f1−f )

k−1
2 )], if k is odd

[5 · (1− (12)
k
2 (1/2+f1−f )

k
2 ), 5 · (1 + (12)

k
2 (1/2+f1−f )

k
2 )], if k is even

(8.8.25)

for every k ≥ 1.
For k = 1 the expression for Qk1 in (8.8.25) matches (8.8.21), and hence (8.8.25) holds for k = 1.
Suppose now that k ≥ 2, and that (8.8.25) holds for k− 1.We distinguish two cases: (1) k is even,

and (2) k is odd.

Case 1. Suppose that k is even. Consider firm 1. At the beginning of round k we eliminate all
states (q2, q

′
1) where either q2 or q

′
1 did not survive the odd round k − 1. Hence, we concentrate on

second-order expectations e1 that only assign positive probability to states (q2, q
′
1) where q2 ∈ Qk−12

and q′1 ∈ Qk−11 . Let us denote by Ek1 the set of such second-order expectations.
Which quantities q1 can be optimal for a second-order expectation e1 in Ek1? Similarly to above,

the smallest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that assigns
probability 1 to the highest possible quantity q2 in Qk−12 , which is

q2 = 5 · (1 + (12)
k
2 (1/2+f1−f )

k−2
2 ),

and that assigns probability 1 to the highest possible quantity q′1 in Q
k−1
1 , which is

q′1 = 5 · (1 + (12)
k
2 (1/2+f1−f )

k−2
2 ).

By (8.8.18), and the fact that the optimal quantity q1 must be in Qk−11 , the optimal quantity q1 must
satisfy

q1 = 7.5− 1
2 · 5 · (1 + (12)

k
2 (1/2+f1−f )

k−2
2 )− f · (5 · (1 + (12)

k
2 (1/2+f1−f )

k−2
2 )− q1).

Solving for q1 yields
q1 = 5 · (1− (12)

k
2 (1/2+f1−f )

k
2 ). (8.8.26)

Similarly, the highest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that
assigns probability 1 to the lowest possible quantity q2 in Qk−12 , which is

q2 = 5 · (1− (12)
k−2
2 (1/2+f1−f )

k
2 ),

and that assigns probability 1 to the lowest possible quantity q′1 in Q
k−1
1 , which is

q′1 = 5 · (1− (12)
k−2
2 (1/2+f1−f )

k
2 ).

By (8.8.18), and the fact that the optimal quantity q1 must be in Qk−11 , the optimal quantity q1 must
satisfy

q1 = 7.5− 1
2 · 5 · (1− (12)

k−2
2 (1/2+f1−f )

k
2 )− f · 0
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which yields
q1 = 5 · (1 + (12)

k
2 (1/2+f1−f )

k
2 ). (8.8.27)

On the basis of (8.8.26) and (8.8.27), we see that the set Qk1 of quantities that survive round k is
given by

Qk1 = [5 · (1− (12)
k
2 (1/2+f1−f )

k
2 ), 5 · (1 + (12)

k
2 (1/2+f1−f )

k
2 )],

which matches (8.8.25). Similarly for firm 2.

Case 2. Suppose now that k is odd. Consider firm 1. At the beginning of round k we eliminate all
states (q2, q

′
1) where either q2 or q

′
1 did not survive the even round k − 1. Hence, we concentrate on

second-order expectations e1 that only assign positive probability to states (q2, q
′
1) where q2 ∈ Qk−12

and q′1 ∈ Qk−11 . Let us denote by Ek1 the set of such second-order expectations.
Which quantities q1 can be optimal for a second-order expectation e1 in Ek1? Similarly to above,

the smallest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that assigns
probability 1 to the highest possible quantity q2 in Qk−12 , which is

q2 = 5 · (1 + (12)
k−1
2 (1/2+f1−f )

k−1
2 ),

and that assigns probability 1 to the highest possible quantity q′1 in Q
k−1
1 , which is

q′1 = 5 · (1 + (12)
k−1
2 (1/2+f1−f )

k−1
2 ).

By (8.8.18), and the fact that the optimal quantity q1 must be in Qk−11 , the optimal quantity q1 must
satisfy

q1 = 7.5− 1
2 · 5 · (1 + (12)

k−1
2 (1/2+f1−f )

k−1
2 )− f · (5 · (1 + (12)

k−1
2 (1/2+f1−f )

k−1
2 )− q1).

Solving for q1 yields
q1 = 5 · (1− (12)

k−1
2 (1/2+f1−f )

k+1
2 ). (8.8.28)

Similarly, the highest quantity q1 that is optimal for such an e1 is obtained by choosing the e1 that
assigns probability 1 to the lowest possible quantity q2 in Qk−12 , which is

q2 = 5 · (1− (12)
k−1
2 (1/2+f1−f )

k−1
2 ),

and that assigns probability 1 to the lowest possible quantity q′1 in Q
k−1
1 , which is

q′1 = 5 · (1− (12)
k−1
2 (1/2+f1−f )

k−1
2 ).

By (8.8.18), and the fact that the optimal quantity q1 must be in Qk−11 , the optimal quantity q1 must
satisfy

q1 = 7.5− 1
2 · 5 · (1− (12)

k−1
2 (1/2+f1−f )

k−1
2 )− f · 0

which yields
q1 = 5 · (1 + (12)

k+1
2 (1/2+f1−f )

k−1
2 ). (8.8.29)

On the basis of (8.8.28) and (8.8.29), we see that the set Qk1 of quantities that survive round k is
given by

Qk1 = [5 · (1− (12)
k−1
2 (1/2+f1−f )

k+1
2 ), 5 · (1 + (12)

k+1
2 (1/2+f1−f )

k−1
2 )],
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which matches (8.8.25). Similarly for firm 2.

By induction on k we conclude that (8.8.25) holds for every round k and for both firms. It may
be verified that 1/2+f1−f ≤ 1 since we assume that f ≤ 0.25. Therefore, the sets Qk1 and Q

k
2 of quantities

that survive round k of the iterated elimination of choices and states collapse to the single quantity

q∗ = 5 (8.8.30)

when k tends to infinity. But then, the states-first procedure will only yield the quantity q∗ = 5 at the
end. As such, both firms can only rationally choose the quantity 5 under common belief in rationality.
In particular, it will be impossible for both firms to exceed the other firm’s expectation under common
belief in rationality.

But we can say a little more: Consider the set of quantities Qk1 in (8.8.25) that survive round k
of the iterated elimination of choices and states. If f increases, then the number 1/2+f1−f will increase

as well, and therefore the interval Qk1 of quantities that survives round k becomes wider. This makes
intuitive sense, since a larger f means that firm 1 has a stronger preference for choosing a low quantity
that exceeds firm 2’s expectation. If firm 2 indeed believes that firm 1 chooses a low quantity, then
firm 2 will choose a high quantity in response. This will make the lower bound of Qk1 lower, and the
upper bound of Qk+12 higher. As the same holds if we reverse the roles of firms 1 and 2, the intervals
Qk1 and Q

k
2 become wider.
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Chapter 9

Correct and Symmetric Beliefs in Psychological
Games

9.5 Economic Applications

In this section we reconsider the Bertrand competition model and Cournot competition model from
Sections 8.8.1 and 8.8.2. For both models we investigate which prices or quantities the firms can
rationally choose under common belief in rationality with a simple belief hierarchy, a symmetric belief
hierarchy, and a symmetric belief hierarchy using one theory per choice.

9.5.1 Competition in Prices
Let us return to the Bertrand competition model from Section 8.8.1, which we modelled as a psycho-
logical game. We saw in that section that under common belief in rationality, both firms can only
rationally choose the price p∗ = 28. As such, this will be the only price that both firms can rationally
choose under common belief in rationality with a simple belief hierarchy, a symmetric belief hierarchy,
and a symmetric belief hierarchy using one theory per choice.

But suppose we would not have the information from Section 8.8.1, but would nevertheless wish
to find those prices that both firms can rationally choose under common belief in rationality with a
simple belief hierarchy. Is there a quick way to do this? The answer is “yes”, by trying to find the
psychological Nash equilibria in this game. By Theorem 9.1.2 we know that for finite psychological
games, the choices that can rationally be made under common belief in rationality with a simple belief
hierarchy are precisely those that are optimal in a psychological Nash equilibrium. The same is true
for infinite psychological games.

In the Betrand competition model from Section 8.8.1, suppose that (σ1, σ2) is a psychological Nash
equilibrium where σ1 is a belief about firm 1’s price that assigns positive probability to finitely many
prices for firm 1, and similarly for σ2. Let e1[σ1, σ2] and e2[σ1, σ2] be the second-order expectation
for firms 1 and 2, respectively, induced by the beliefs σ1 and σ2. Then, we know from (8.8.4) that the
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unique price p∗1 that is optimal for firm 1 under the second-order expectation e1[σ1, σ2] satisfies

p∗1 = 14 + 1
2Ee1[σ1,σ2](p2) + f ·

∑
p′1≤p∗1:e1[σ1,σ2](p′1)>0

e1[σ1, σ2](p
′
1) · (p∗1 − p′1). (9.5.1)

Similarly, the unique price p∗2 that is optimal for firm 2 under the second-order expectation e2[σ1, σ2]
satisfies

p∗2 = 14 + 1
2Ee2[σ1,σ2](p1) + f ·

∑
p′2≤p∗2:e2[σ1,σ2](p′2)>0

e2[σ1, σ2](p
′
2) · (p∗2 − p′2). (9.5.2)

But then, by definition of a psychological Nash equilibrium, σ1 must assign probability 1 to p∗1 and
σ2 must assign probability 1 to p∗2. Hence, e1[σ1, σ2] assigns probability 1 to the pair (p∗2, p

∗
1), whereas

e2[σ1, σ2] assigns probability 1 to the pair (p∗1, p
∗
2). In particular, Ee1[σ1,σ2](p2) = p∗2, the second-order

expectation e1[σ1, σ2] assigns probability 1 to p∗1, and similarly for e2[σ1, σ2]. As such, (9.5.1) and
(9.5.2) can be reduced to

p∗1 = 14 + 1
2p
∗
2 and p

∗
2 = 14 + 1

2p
∗
1.

By substituting the second equation in the first we obtain

p∗1 = 14 + 1
2 · (14 + 1

2p
∗
1),

which yields p∗1 = 28. Hence, p∗2 = 28 as well.
We thus conclude that there is a unique psychological Nash equilibrium (σ1, σ2) where σ1 assigns

probability 1 to firm 1’s price 28, and σ2 assigns probability 1 to firm 2’s price 28. By (9.5.1) and
(9.5.2), the unique price that is optimal for firm 1 in this psychological Nash equilibrium is p∗1 = 28,
and similarly for firm 2. Hence, we see that under common belief in rationality with a simple belief
hierarchy, both firms can only rationally choose the price 28.

9.5.2 Competition in Quantities
Let us finally go back to the Cournot competition model from Section 8.8.2. We have seen in that
section that under common belief in rationality both firms can only rationally choose the quantity
q∗ = 5. Hence, we conclude that under common belief in rationality with a simple belief hierarchy, a
symmetric belief hierarchy, or a symmetric belief hierarchy using one theory per choice, both firms can
still only rationally choose the quantity 5. Similarly to what we have done above, we will now directly
compute the quantities that both firms can rationally choose under common belief in rationality with
a simple belief hierarchy, by looking for the psychological Nash equilibria.

Suppose that (σ1, σ2) is a psychological Nash equilibrium, where σ1 is a belief about firm 1’s quan-
tities that assigns positive probability to finitely many quantities, and similarly for σ2. By e1[σ1, σ2]
and e2[σ1, σ2] we denote the second-order expectation for firm 1 and firm 2, respectively, induced by
the beliefs σ1 and σ2. From (8.8.18) we know that the unique quantity q∗1 that is optimal for firm 1
under the second-order expectation e1[σ1, σ2] satisfies

q∗1 = 7.5− 1
2Ee1[σ1,σ2](q2)− f ·

∑
q′1≥q∗1 :e1[σ1,σ2](q′1)>0

e1[σ1, σ2](q
′
1) · (q′1 − q∗1). (9.5.3)

Similarly, the unique quantity q∗2 that is optimal for firm 2 under the second-order expectation e2[σ1, σ2]
satisfies

q∗2 = 7.5− 1
2Ee2[σ1,σ2](q1)− f ·

∑
q′2≥q∗2 :e2[σ1,σ2](q′2)>0

e2[σ1, σ2](q
′
2) · (q′2 − q∗2). (9.5.4)
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As (σ1, σ2) is a psychological Nash equilibrium, the belief σ1 must assign probability 1 to the
unique optimal quantity q∗1 that satisfies (9.5.3), whereas σ2 must assign probability 1 to the unique
optimal quantity q∗2 that satisfies (9.5.4). But then, we know that Ee1[σ1,σ2](q2) = q∗2, that e1[σ1, σ2]
assigns probability 1 to firm 1’s quantity q∗1, and similarly for e2[σ1, σ2]. Hence, (9.5.3) and (9.5.4)
can then be reduced to

q∗1 = 7.5− 1
2q
∗
2 and q

∗
2 = 7.5− 1

2q
∗
1.

By substituting the second equation into the first we obtain

q∗1 = 7.5− 1
2(7.5− 1

2q
∗
1),

which yields q∗1 = 5. As q∗2 = 7.5− 1
2q
∗
1 it follows that q

∗
2 = 5 as well.

Thus, the unique psychological Nash equilibrium (σ1, σ2) is such that σ1 assigns probability 1 to
firm 1’s quantity 5, and σ2 assigns probability 1 to firm 2’s quantity 5. By (9.5.3) and (9.5.4), the
unique optimal quantity for firm 1 and firm 2 in this psychological Nash equilibrium is 5. Therefore,
both firms can only rationally choose the quantity 5 under common belief in rationality with a simple
belief hierarchy.


