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Abstract
We provide comparable algorithms for the Dekel–Fudenberg procedure, iterated
admissibility, proper rationalizability and full permissibility by means of the notions
of likelihood orderings and preference restrictions. The algorithms model reasoning
processes whereby each player’s preferences over his own strategies are completed
by eliminating likelihood orderings. We apply the algorithms for comparing iterated
admissibility, proper rationalizability and full permissibility, and provide a sufficient
condition under which iterated admissibility does not rule out properly rationalizable
strategies. We also use the algorithms to examine an economically relevant strategic
situation, namely a bilateral commitment bargaining game. Finally, we discuss the
relevance of our algorithms for epistemic analysis.
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1 Introduction

In non-cooperative game theory, a player is cautious if he takes into account all oppo-
nent strategies, also strategies that seem very unlikely to be chosen by the opponents.
Caution implies that a player prefers one strategy to another if the former weakly
dominates the latter. This concept can be modeled by allowing a player i to deem
some strategy s j of an opponent j infinitely more likely than some other strategy s′

j ,
while still taking s′

j into account (Blume et al. 1991a). What reasoning in a strategic
game is consistent with, not only players being cautious, but also believing that the
opponents are rational and cautious, believing that the opponents believe that their
opponents are rational and cautious, and so on?

Various concepts in the literature provide different answers to this question. Still,
there is a common idea underlying each of these concepts, namely that player i should
deem a strategy s j of opponent j infinitely more likely than strategy s′

j whenever
player i considers s j a “better choice” for opponent j than s′

j . The question then
remains what we should mean by a “better choice”.

As an illustration, consider the following economic example (which is the Spy game
of Perea (2012, p. 262), but with another motivating story). An entrant (firm 1) and
an incumbent (firm 2) must decide which type of good to bring to the market: x , y or
z. The entrant expects a revenue of 3 as long as it produces a good different from the
incumbent, and a revenue of 2 if it produces the same good. Its production costs for
each of the goods is 2. The incumbent expects, for every production choice, a revenue
of 3. The only exception is when the goods x and z are both brought on the market.
Since these goods are complementary, the incumbent expects a revenue of 6 in this
case. The incumbent has produced good x in the past, which would therefore have the
lowest costs (normalized to 0). Producing goods y and z would cost the incumbent 1
and 2, respectively, since good y is more similar to x than z is. The profits for both
firms can be found in Fig. 1, where the choice of firm 1 is indicated in upper case, to
differentiate from the choice of firm 2 in lower case.

Note that for firm 2, production choice y can never be rational as x weakly (and
strictly) dominates y, whereas x and z might as they are not even weakly dominated.
One could therefore argue that x and z are better choices for firm 2 than y, and hence
firm 1 should deem x and z infinitely more likely than y. But then, since Y weakly
dominates both X and Z on the subset {x, z}, firm 1’s unique rational choice would
be to implement production plan Y . The line of argument we have followed here
corresponds to the procedure of iterated admissibility which iteratedly eliminates all
weakly dominated strategies, as it corresponds to the epistemic foundation provided
for this procedure by Brandenburger et al. (2008, Theorem 9.1) for any finite number
of iterations.

Fig. 1 Illustrating iterated
admissibility and proper
rationalizability

x y z

X

Y

Z

0, 3 1, 2 1, 4
1, 3 0, 2 1, 1
1, 6 1, 2 0, 1
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Iterated admissibility is not the only plausible procedure for cautious reasoning,
however. Consider again the example above. If firm 2 would indeed believe that firm 1
makes production choice Y , which is what iterated admissibility requires, then choice
y would actually be better for firm 2 than choice z. So given that firm 1 believes that
firm 2 believes that firm 1 will do the choice that iterated admissibility requires, one
could argue that firm 1 should deem y infinitely more likely than z, and not infinitely
less likely, as iterated admissibility imposes. Hence, by applying the procedure of
iterated admissibility one may along the way impose conditions on beliefs which need
not be convincing given the prescriptions that this procedure ends up providing. Such
problems with iterated admissibility were already pointed out, discussed and analyzed
by Samuelson (1992).

The concept of proper rationalizability (Schuhmacher 1999; Asheim 2001) takes
a different viewpoint. The key condition is that a player i should deem a strategy s j of
opponent j infinitely more likely than strategy s′

j whenever he believes that opponent
j , after completing his reasoning process, prefers s j to s′

j . If the beliefs of player i
satisfies this condition, we say (following Blume et al. 1991b, Definition 4) that player
i respects the preferences of opponent j .

To see what difference this approach makes, let us return to the example. It is clear
that for firm 2, choice x is better than choice y, whereas we cannot say at this stage
of the reasoning process that z is better than y. Proper rationalizability therefore only
requires that firm 1 deems x infinitely more likely than y, but does not require that it
deems z infinitely more likely than y. If firm 1 indeed holds such a belief, then firm
1 prefers Y to X as Y weakly dominates X on both {x} and {x, z}, implying that firm
2 should deem Y infinitely more likely than X . But then, firm 2 will, in addition to
prefering x to y, also prefer y to z as y weakly dominates z on both {Y } and {Y , Z}.
Hence, firm 1 should deem x infinitely more likely than y, and y infinitely more likely
than z. As a consequence, firm 1 should choose production plan Z , and not Y as
iterated admissibility requires.

The concept of full permissibility (Asheim and Dufwenberg 2003a) represents an
intermediate position: Based on the observation that y can never be a rational choice
for firm 2, firm 1 might (i) deem both x and z infinitely more likely than y, (ii) deem
x infinitely more likely than both y and z, or (iii) deem z infinitely more likely than
both x and y. In case (i), X and Z are ruled out as rational choices for firm 1, leading
firm 2 to deem Y infinitely more likely than both X and Z . In case (ii), only X is ruled
out as a rational choice for firm 1, leading firm 2 to deem both Y and Z infinitely
more likely than X . Lastly, in case (iii), only Z is ruled out as a rational choice for
firm 1, leading firm 2 to deem both X and Y infinitely more likely than Z . However,
in neither of these cases, can z be the sole rational choice for firm 2, ruling out case
(iii) where firm 1 deems z infinitely more likely than both x and y. This precludes that
firm 2 deems both X and Y infinitely more likely than Z . But then, x and z cannot
both be rational choices for firm 2, ruling out case (i) and implying that firm 1, in line
with case (ii), deems x infinitely more likely than both y and z. Thus, only X is ruled
out as a rational choice for firm 1, in which case firm 2 deems both Y and Z infinitely
more likely than X . Thereby, full permissibility promotes the choice sets {Y , Z} and
{x} for firms 1 and 2 respectively.
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1244 G. B. Asheim, A. Perea

All three concepts, iterated admissibility, proper rationalizability and full per-
missibility, are reasonable concepts with their own intuitive appeal, but may lead
to completely different reasoning and choices as we have seen. It therefore seems
worthwhile to investigate their differences and similarities in some more detail, and
this is exactly what this paper seeks to accomplish.

A number of contributions, startingwith Brandenburger (1992) andBörgers (1994),
have shown that theDekel–Fudenberg procedure (Dekel and Fudenberg 1990), where
one round of elimination of weakly dominated strategies is followed by iterated elim-
ination of strictly dominated strategies, provides a robust answer to the question we
posed initially, in the sense that the eliminated strategies are definitely incompatible
with iterated beliefs of the event that all players are rational and cautious. Hence, sur-
viving the Dekel–Fudenberg procedure, and thus being permissible in the terminology
of Brandenburger (1992), is a necessary condition. However, the concepts of iter-
ated admissibility, proper rationalizability and full permissibilitymight rule out more
strategies. This is indeed the case in the game of Fig. 1, where the Dekel–Fudenberg
procedure eliminates only y for firm 2, leading to X , Y and Z being permissible for
firm 1 and x and z being permissible for firm 2.

Permissibility, iterated admissibility and full permissibility are all defined in terms
of algorithms. While epistemic foundations for the former and latter were provided
quickly (Brandenburger 1992; Börgers 1994; Asheim and Dufwenberg 2003a), half
a century elapsed between the introduction of iterated admissibility in the 1950s and
the establishment of epistemic foundations for this procedure by Brandenburger et al.
(2008) and later contributions (cf. footnote 2).

The case of proper rationalizability is different. This concept was defined by Schuh-
macher (1999) and Asheim (2001) by means of epistemic conditions. Schuhmacher
defines, for every ε > 0, the ε-proper trembling condition, which states that if a player
prefers one pure strategy over another, then the probability he assigns to the latter
strategy should be at most ε times the probability he assigns to the former. Proper
rationalizability is obtained by imposing common belief of the ε-proper trembling
condition, and then letting ε tend to zero. Schuhmacher (1999) provides an algorithm,
iteratively proper trembling, which generates for a given ε > 0 the set of mixed
strategy profiles that can be chosen under common belief of the ε-proper trembling
condition. However, this procedure does not yield the set of properly rationalizable
strategies directly, as we must still let ε go to zero, and see which strategies survive
in the limit. Only later has Perea (2011) provided an algorithm that directly computes
the set of properly rationalizable strategies.

The present paper presents algorithms for permissibility, iterated admissibility and
full permissibility that are comparable to Perea’s (2011) algorithm for proper ratio-
nalizability. In all cases, the reasoning process leads to preferences that become more
complete with additional levels of reasoning. If a player is cautious but does not reason
about the behavior of his opponents, then he can only rank strategies that weakly dom-
inate each other on the whole set of opponent strategy profiles. However, by realizing
that some opponent strategies are “better choices” than others, the player might also
be able to rank strategies that weakly dominate each other on strict subsets of oppo-
nent strategy profiles, as illustrated by the game of Fig. 1. Considering that opponents
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also engage in similar kinds of reasoning reduces his strategic uncertainty even more
and leads to further completion of preferences, and so on.

It is a main observation of the present paper that, in the case all four concepts con-
sidered, the reasoning process can be captured by the key notions introduced by Perea
(2011): likelihood orderings and preference restrictions. More specifically, the com-
pletion of preferenceswith increasing levels of reasoning corresponds to elimination of
likelihood orderings, while the reasoning about opponent behavior is captured by sets
of preference restrictions derived from their sets of remaining likelihood orderings.

Section 2 defines the notions of likelihood orderings and preference restrictions and
explores how a player’s set of likelihood orderings corresponds to (possibly incom-
plete) preferences over the player’s own strategies. Section 3 introduces algorithms
that iteratedly eliminate likelihood orderings, for the concepts of permissibility, iter-
ated admissibility and full permissibility. These algorithms are thus comparable with
the one for proper rationalizability. Section 4 then puts these algorithms to use. In
particular, we offer examples further illuminating the differences between iterated
admissibility, proper rationalizability and full permissibility. Moreover, we provide
a sufficient condition under which iterated admissibility does not rule out properly
rationalizable strategies. Finally, we use the algorithms to examine an economically
relevant strategic situation, namely a bilateral commitment bargaining game which
has been analyzed by Ellingsen and Miettinen (2008). Section 5 offers concluding
remarks, in particular by discussing the relevance of our algorithms for epistemic
analysis. An appendix contains all proofs.

2 Likelihood orderings and preference restrictions

Consider a finite strategic game G = (Si , ui )i∈I where I is a finite set of players and
where, for i ∈ I , the finite set Si denotes player i’s set of strategies and ui : ∏

j∈I S j →
R denotes player i’s utility function. Write S−i := ∏

j �=i S j and S−i, j := ∏
j ′ �=i, j S j ′ .

As usual, we extend ui to objective probability distributions (mixed strategies) μi ∈
�(Si ) over player i’s strategies, writing ui (μi , s−i ) for the resulting objective expected
utility, and to subjective probability distributions λi ∈ �(S−i ) over the opponent’s
strategy profiles, writing ui (si , λi ) for the resulting subjective expected utility.

For all mixed strategies μ′
i , μ′′

i ∈ �(Si ), say that μ′
i strictly dominates μ′′

i on
a subset S′−i ⊆ S−i of opponent strategy profiles if ui (μ′

i , s−i ) > ui (μ′′
i , s−i ) for

every s−i ∈ S′−i . Similarly, say that μ′
i weakly dominates μ′′

i on S′−i if ui (μ
′
i , s−i ) ≥

ui (μ′′
i , s−i ) for every s−i ∈ S′−i , with strict inequality for some s′−i ∈ S′−i .

Each player i’s preferences over his own strategies are determined by ui and a
non-empty set Li of likelihood orderings on S−i . The notion of a likelihood ordering
was used by Perea (2011) and is one of the two key definitions for our algorithms.

Definition 1 (Likelihood ordering) A likelihood ordering for player i on S−i is an
ordered partition Li = (L1

i , L
2
i , . . . , L

K
i ) of S−i .

Let L∗
i denote the set of all likelihood orderings on S−i . Note that L∗

i is finite. Let L̃∗
i

(⊆ L∗
i ) denote the set of all likelihood orderings on S−i which are either trivial (so
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1246 G. B. Asheim, A. Perea

that K = 1 and Li = (L1
i ) = (S−i )) or partition S−i into a non-empty proper subset

S′−i and its complement (so that K = 2 and Li = (L1
i , L

2
i ) = (S′−i , S−i\S′−i )).

Assume that player i has a non-empty set Li of likelihood orderings. Then, for
all mixed strategies μ′

i , μ′′
i ∈ �(Si ), player i prefers μ′

i to μ′′
i under Li (written

μ′
i 	Li

i μ′′
i ) if, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li , there exists k ∈ {1, . . . , K } such

that μ′
i weakly dominates μ′′

i on L1
i ∪ · · · ∪ Lk

i , and player i deems μ′
i equally as

good as μ′′
i (written μ′

i ∼Li
i μ′′

i ) if ui (μ
′
i , s−i ) = ui (μ′′

i , s−i ) for every s−i ∈ S−i . It

holds for any non-empty set Li of likelihood orderings that μ′
i 	Li

i μ′′
i if μ′

i weakly
dominatesμ′′

i on S−i since, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li , L1

i ∪· · ·∪LK
i = S−i .

Write μ′
i �Li

i μ′′
i if μ′

i 	Li
i μ′′

i or μ′
i ∼Li

i μ′′
i .

Lemma 1 LetLi be player i’s non-empty set of likelihood orderings. The∼Li
i and�Li

i

relations are reflexive and transitive, and the 	Li
i relation is irreflexive and transitive.

Furthermore, the ∼Li
i and 	Li

i relations satisfy objective independence.1

Remark 1 While the �Li
i relation is always reflexive and transitive, it need not be

complete. To see this, let I = {1, 2}, S1 = {s′
1, s

′′
1 }, S2 = {s′

2, s
′′
2 }, u1(s′

1, s
′
2) = 1,

u1(s′′
1 , s′

2) = 0, u1(s′
1, s

′′
2 ) = 0, and u1(s′′

1 , s′′
2 ) = 1. Then s′

1 �
L1
1 s′′

1 , s
′
1 �

L1
1 s′′

1

and s′
1 ⊀

L1
1 s′′

1 if L1 = L∗
1 = {({s′

2}, {s′′
2 }), ({s′′

2 }, {s′
2}), (S2)}. However, s′

1 	L1
1 s′′

1 if
L1 = {({s′

2}, {s′′
2 })}.

These preferences can be characterized by means of the lexicographic probability
system (LPS) concept and related to the infinitely more likely relation, both due to
Blume et al. (1991a).

A lexicographic probability system (LPS) on S−i consists of a finite sequence
of subjective probability distributions, λi = (λ1i , λ

2
i , . . . , λ

K
i ), where for each k ∈

{1, . . . , K }, λki ∈ �(S−i ). Consider two mixed strategiesμ′
i ,μ

′′
i ∈ �(Si ). The LPS λi

ranksμ′
i aboveμ′′

i if there exists k ∈ {1, . . . , K } such that (i) ui (μ′
i , λ

k
i ) > ui (μ′′

i , λ
k
i )

and (ii) ui (μ′
i , λ

�
i ) = ui (μ′′

i , λ
�
i ) for all � ∈ {1, . . . , k − 1}. The LPS λi deems μ′

i
indifferent to μ′′

i if ui (μ′
i , λ

k
i ) = ui (μ′′

i , λ
k
i ) for all k ∈ {1, . . . , K }. For given LPS,

the ranking-above-or-deeming-indifferent-to relation is complete and transitive. The
LPS λi = (λ1i , . . . , λ

K
i ) has full support on S−i if suppλ1i ∪ · · · ∪ suppλK

i = S−i .
Say that the LPS λi = (λ1i , . . . , λ

K
i ) is consistent with the likelihood ordering Li =

(L1
i , L

2
i , . . . , L

K
i ) if, for all k ∈ {1, . . . , K }, suppλ1i ∪ · · · ∪ suppλki = L1

i ∪ · · · ∪ Lk
i .

An LPS λi has full support on S−i if consistent with a likelihood ordering Li .

Lemma 2 Let Li be player i’s non-empty set of likelihood orderings. For all mixed
strategies μ′

i , μ′′
i ∈ �(Si ), μ′

i 	Li
i μ′′

i if and only if, for all Li ∈ Li , every LPS λi

consistent with Li ranks μ′
i above μ′′

i , and μ′
i ∼Li

i μ′′
i if and only if, for all Li ∈ Li ,

every LPS λi consistent with Li deems μ′
i indifferent to μ′′

i .

1 Say that a binary relation ∼ (	) satisfies objective independence if, for all μ′
i , μ′′

i , μ′′′
i ∈ �(Si ) and

γ ∈ (0, 1), μ′
i ∼ (	) μ′′

i if and only if γμ′
i + (1 − γ )μ′′′

i ∼ (	) γμ′′
i + (1 − γ )μ′′′

i .
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Assume that player i has a non-empty set Li of likelihood orderings. Consider two
pure opponent strategy profiles s′−i , s

′′−i ∈ S−i . Player i deems s′−i infinitelymore likely

than s′′−i under Li (written s′−i �Li
i s′′−i ) if, for all Li = (L1

i , L
2
i , · · · , LK

i ) ∈ Li ,
there exists k ∈ {1, . . . , K } such that s′−i ∈ L1

i ∪ · · · ∪ Lk
i and s′′−i /∈ L1

i ∪ · · · ∪ Lk
i .

Furthermore, for each j �= i , player i deems s′
j infinitely more likely than s′′

j under

Li (written s′
j �Li

i s′′
j ) if there exists some s′−i ∈ {s′

j } × S−i, j such that s′−i �Li
i s′′−i

for all s′′−i ∈ {s′′
j } × S−i, j . In the following remark we observe that this definition is

consistent with the concept as defined by Blume et al. (1991a, Definition 5.1).

Remark 2 Let Li be player i’s non-empty set of likelihood orderings. For all mixed
strategies μ′

i , μ′′
i ∈ �(Si ) and all pure opponent strategy profiles s′−i , s

′′−i ∈ S−i ,

if s′−i �Li
i s′′−i , then μ′

i 	Li
i μ′′

i whenever μ′
i , μ′′

i ∈ �(Si ) satisfy ui (μ′
i , s

′−i ) >

ui (μ′′
i , s

′−i ) and, for all s−i ∈ S−i\{s′−i , s
′′−i }, ui (μ′

i , s−i ) = ui (μ′′
i , s−i ).

The converse of the implication in Remark 2 cannot be shown as we consider a
particular game G with a particular utility function ui for player i .

We are now ready to introduce the other key notion of our algorithms, also taken
from Perea (2011).

Definition 2 (Preference restriction) A preference restriction for player i on Si is a
pair (si , Ai ), where si ∈ Si and Ai is a nonempty subset of Si .

Let Ri denote a set of preference restrictions for i , and letR∗
i denote the collection of

all sets of preference restrictions for i .
For any non-empty set Li of likelihood orderings, let Ri (Li ) denote the set of

preference restrictions derived from Li , where Ri (Li ) is defined as follows:

Ri (Li ) :=
{
(si , Ai ) ∈ Si × 2Si | ∃μi ∈ �(Ai ) such that μi 	Li

i si
}

.

Hence, the interpretation of a preference restriction (si , Ai ) in the set Ri (Li ) is that
player i prefers some mixed strategy in �(Ai ) to si under Li . It follows that Ri (L′

i )∩
Ri (L′′

i ) = Ri (L′
i ∪ L′′

i ) for every L′
i , L′′

i ⊆ L∗
i . In particular, Ri (L′

i ) ⊇ Ri (L′′
i )

whenever L′
i ⊆ L′′

i . Abuse notation slightly by writing Ri (Li ) instead of Ri (Li ) if
Li = {Li } is a singleton set of likelihood orderings.

Lemma 3 Let Li be player i’s non-empty set of likelihood orderings. If (si , Ai ) ∈
Ri (Li ), then there exists A′

i ⊆ Si\{si } such that (si , A′
i ) ∈ Ri (Li ).

Remark 3 The set Ri (Li ) of derived preference restrictions need not be non-empty.
To see this, consider the example of Remark 1, where s′

1 �
L1
1 s′′

1 , s
′
1 ⊀

L1
1 s′′

1 and

R1(L1) = ∅ if L1 = L∗
1 = {({s′

2}, {s′′
2 }), ({s′′

2 }, {s′
2}), (S2)}. However, s′

1 	L1
1 s′′

1 and
R1(L1) = {(s′′

1 , {s′
1}), (s′′

1 , S1)} if L1 = {({s′
2}, {s′′

2 })}.
Assume that player i has the (possibly empty) set, Ri , of preference restrictions.

Define player i’s choice set Ci (Ri ) as follows:

Ci (Ri ) := {si ∈ Si | �Ai ⊆ Si with (si , Ai ) ∈ Ri } .
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1248 G. B. Asheim, A. Perea

It follows that Ci (R′
i ) ∩Ci (R′′

i ) = Ci (R′
i ∪ R′′

i ) for every R′
i , R

′′
i ∈ R∗

i . In particular,
Ci (R′

i ) ⊇ Ci (R′′
i ) whenever R′

i ⊆ R′′
i . Clearly, Ci (∅) = Si . The following result

yields a justification for the term ‘choice set’.

Lemma 4 Let Li be player i’s non-empty set of likelihood orderings. Then

Ci (Ri (Li )) =
{
si ∈ Si | �μi ∈ �(Si ) such that μi 	Li

i si
}

.

Furthermore, Ci (Ri (Li )) �= ∅.
Let R∗−i := ∏

j �=i R∗
i denote the collection of all vectors of sets of preference

restrictions for i’s opponents. If R−i ∈ R∗−i , let C−i (R−i ) := ∏
j �=i C j (R j ) denote

the Cartesian product of the choice sets of i’s opponents, given the vector of their
sets of preference restrictions. The set C−i (R−i ) is the event that i’s opponents are
rationalwhen their preferences satisfy the vector R−i of sets of preference restrictions.
Let R−i (L−i ) := (R j (L j )) j �=i denote the vectors of sets of preference restrictions
for i’s opponents given their vector L−i := (L j ) j �=i of non-empty sets of likelihood
orderings. Let L−i �= ∅ signify that L j �= ∅ for all j �= i and let L′−i ⊆ L′′−i signify
that L′

j ⊆ L′′
j for all j �= i . Let R−i (L−i ) := (R j (L j )) j �=i denote the vectors of

sets of preference restrictions for i’s opponents given their vector L−i = (L j ) j �=i of
singleton sets of likelihood orderings. Let L−i ∈ L−i signify that L j ∈ L j for all
j �= i .
Likelihood-orderings can be related to the ordinary belief operator as well as the

assumption operator, as proposed by Brandenburger et al. (2008) (and discussed by
Asheim and Søvik 2005, Section 6).

Definition 3 (Believing an event) For a given subset A−i ⊆ S−i of opponent strategy
vectors, the likelihood ordering Li = (L1

i , L
2
i , . . . , L

K
i ) believes A−i if L1

i ⊆ A−i .

Likewise, say that player i with non-empty setLi of likelihood orderings believes A−i

if, for all Li ∈ Li , Li believes A−i . In the special case where A−i is a singleton set,
we have that player i believes A−i if and only if the sole strategy profile a−i in A−i

satisfies, for every s−i ∈ S−i\A−i , a−i �Li
i s−i .

Definition 4 (Assuming an event) For a given subset A−i ⊆ S−i of opponent strategy
vectors, the likelihood ordering Li = (L1

i , L
2
i , . . . , L

K
i ) assumes A−i if there exists

k ∈ {1, . . . , K } such that L1
i ∪ · · · ∪ Lk

i = A−i .

Likewise, say that player i with non-empty set Li of likelihood orderings assumes
A−i if, for all Li ∈ Li , Li assumes A−i . Hence, player i assumes A−i if and only if
A−i �= ∅ and, for every s−i ∈ S−i\A−i , a−i �Li

i s−i for every a−i ∈ A−i .
Note that if player i assumes an event A−i , then the player also believes the event

A−i (since clearly, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li , L1

i ⊆ A−i if there exists
k ∈ {1, . . . , K } such that L1

i ∪ · · · ∪ Lk
i = A−i ), but not vice versa.

Likelihood-orderings can also be related to respect of preferences as introduced by
Blume et al. (1991b).
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Definition 5 (Respecting preferences) For a given vector R−i ∈ R∗−i of sets of pref-
erence restrictions, the likelihood ordering Li = (L1

i , L
2
i , . . . , L

K
i ) respects R−i if,

for all players j �= i , and every preference restriction (s j , A j ) ∈ R j , there exists
k ∈ {1, . . . , K } such that

(L1
i ∪ · · · ∪ Lk

i ) ∩ (A j × S−i, j ) �= ∅ and (L1
i ∪ · · · ∪ Lk

i ) ∩ ({s j } × S−i, j ) = ∅.

Likewise, say that player i with non-empty setLi of likelihood orderings respects R−i

if, for all Li ∈ Li , Li respects R−i . If player i respects R−i and there exist a player j
and a preference restriction (s j , A j ) such that A j\{s j } is a singleton set, then the sole
strategy a j in A j\{s j } satisfies a j �Li

i s j .
It follows that player i believes the rationality of the opponents if the player respects

their preferences, but not vice versa. This can be stated formally as follows.

Lemma 5 If player i with non-empty setLi of likelihood orderings respects the vector
R−i ∈ R∗−i of sets of preference restrictions, then the player also believes the event
C−i (R−i ).

Let Lb
i (R−i ) denote the greatest set of likelihood orderings for which player i

believes the rationality of i’s opponents when the preferences of i’s opponents satisfy
the vector R−i of sets of preference restrictions:

Lb
i (R−i ) := {Li ∈ L∗

i | Li believes C−i (R−i )}.

Let La
i (R−i ) denote the greatest set of likelihood orderings for which player i

assumes the rationality of i’s opponents when the preferences of i’s opponents satisfy
the vector R−i of sets of preference restrictions:

La
i (R−i ) := {Li ∈ L∗

i | Li assumes C−i (R−i )}.

Finally, letLr
i (R−i ) denote the greatest set of likelihood orderings for which player

i respects the vector R−i of opponent sets of preference restrictions:

Lr
i (R−i ) := {Li ∈ L∗

i | Li respects R−i }.

Note that Lb
i (∅) = La

i (∅) = Lr
i (∅) = L∗

i . We have seen that assumption implies
belief, but not vice versa.Moreover, fromLemma5weknow that respect of preferences
implies belief of rationality, but not versa. Hence, we conclude that

Lb
i (R−i ) ⊇ La

i (R−i ) ∪ Lr
i (R−i )

for every R−i ∈ R∗−i with C−i (R−i ) �= ∅. Since the belief operator satisfies conjunc-
tion and monotonicity, the properties of the choice correspondence Ci (·) imply

Lb
i (R

′−i ) ∩ Lb
i (R

′′−i ) = Lb
i (R

′−i ∪ R′′−i )
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1250 G. B. Asheim, A. Perea

for every R′−i , R
′′−i ∈ R∗−i . However, since the assumption operator satisfies conjunc-

tion but not monotonicity, it holds for every R′−i , R
′′−i ∈ R∗−i that

La
i (R

′−i ) ∩ La
i (R

′′−i ) ⊆ La
i (R

′−i ∪ R′′−i ),

while the inverse inclusion need not hold. In particular, La
i (R

′−i )∩La
i (R

′′−i ) �= ∅ only
if C−i (R′−i ) ⊆ C−i (R′′−i ) or C−i (R′′−i ) ⊆ C−i (R′−i ). Finally, Definition 5 implies

Lr
i (R

′−i ) ∩ Lr
i (R

′′−i ) = Lr
i (R

′−i ∪ R′′−i )

for every R′−i , R′′−i ∈ R∗−i . In particular, Lb
i (R

′−i ) ⊇ Lb
i (R

′′−i ) and Lr
i (R

′−i )⊇ Lr
i (R

′′−i ) whenever R′−i ⊆ R′′−i . This conclusion need not hold for La
i (·) since

a likelihood ordering Li may assume A′−i but not A′′−i even though A′−i ⊂ A′′−i .
Hence, we may have La

i (R
′−i ) � La

i (R
′′−i ) and La

i (R
′−i ) � La

i (R
′′−i ) even though

R′−i ⊂ R′′−i .

3 Algorithms

In this section we provide comparable algorithms for permissibility (the Dekel–
Fudenberg procedure), iterated admissibility, proper rationalizability, and full per-
missibility. To define these concepts, we need to introduce the following operators:

ai (S
′−i ) := {

si ∈ Si | si is not weakly dominated by any μi ∈ �(Si ) on S′−i

}
,

bi (S
′−i ) := {

si ∈ Si | si is not strictly dominated by any μi ∈ �(Si ) on S′−i

}
,

where S′−i is a non-empty subset of S−i . Note that ∅ �= ai (S′−i ) ⊆ bi (S′−i ) ⊆ Si for
any non-empty subset S′−i of S−i .

3.1 An algorithm for permissibility

Wefirst consider theDekel–Fudenberg procedure (Dekel and Fudenberg 1990), which
is the procedure where one round of maximal elimination of weakly dominated strate-
gies is followed by iterated maximal elimination of strictly dominated strategies.
Following Brandenburger (1992), strategies surviving the Dekel–Fudenberg proce-
dure are referred to as permissible. The formal definition is as follows.

Definition 6 (Permissibility) Consider the sequence defined by, for all players i , S0i =
Si and, for every n ≥ 1, Sni = bi

(
Sn−1
−i

) ∩ ai (S−i ). A strategy si for player i is
permissible if si ∈ ⋂∞

n=1 S
n
i .

Since ai (S−i ) ⊆ bi (S−i ) this corresponds to the Dekel–Fudenberg procedure: elim-
ination of weakly dominated strategies in the first round, followed by elimination of
strictly dominated strategies in later rounds.

For our algorithmic characterization of permissibility in Proposition 1 below, the
following observation is useful.
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Lemma 6 Let si ∈ Si , Ai ⊆ Si and S′−i ⊆ S−i . Then, si is strictly dominated by
some μi ∈ �(Ai ) on S′−i if and only for every (∅ �=) S′′−i ⊆ S′−i strategy si is weakly
dominated by some μ′

i ∈ �(Ai ) on S′′−i .

By Lemma 6 it follows that the operator bi (S′−i ) can be expressed as follows:

bi (S
′−i ) = {

si ∈ Si | ∃(∅ �=) S′′−i ⊆ S′−i s.t. si ∈ ai (S
′′−i )

}
,

and the combined operator used to define permissibility (in Definition 6) becomes:

bi (S
′−i ) ∩ ai (S−i ) =

{

si ∈ Si | ∃(∅ �=) S′′−i ⊆ S′−i

s.t. si ∈ ai (S
′′−i ) ∩ ai (S−i )

}

.

(1)

Hence, a strategy si for player i survives another round of the Dekel-Fudenberg pro-
cedure if there exists a subset S′′−i of non-eliminated opponent strategy profiles such
that si is not weakly dominated on either S′′−i or the set S−i of all opponent strategy
profiles.

Consider the following algorithm, which iteratedly decreases the set of likelihood
orderings for all players:

Ini For all players i , let L0
i = L∗

i .

Per For every n ≥ 1 and all players i , let Ln
i = Lb

i

(
R−i

(
Ln−1

−i

))
.

From the properties of Lb
i (·) and Ri (·), it follows that Ini and Per determine,

for each player, a non-increasing sequence of sets of likelihood orderings (where non-
increasing are definedw.r.t. set inclusion). As a consequence, the sequenceCi (Ri (Ln

i ))

of choice sets is non-increasing. Since the set of likelihood orderings is finite, the
algorithm converges after a finite number of rounds.

For all players i , let L∞
i := ⋂∞

n=1 Ln
i be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and Per.

Proposition 1 Let G be a finite strategic game. Then, for all players i , a strategy si is
permissible if and only if si ∈ Ci (Ri (L∞

i )).

Proof See the appendix for a proof that applies Eq. (1). ��
As we note in the proof, the same result is obtained if the algorithm is initiated

with L0
i = L̃∗

i , including only likelihood orderings that are either trivial or partition
S−i into a non-empty proper subset and its complement. The reason is that the belief
operator is concerned only with the top level element of the likelihood ordering.

3.2 An algorithm for iterated admissibility

Iterated admissibility is the procedure of iterated maximal elimination of weakly
dominated strategies, which can formally be defined as follows.
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1252 G. B. Asheim, A. Perea

Definition 7 (Iterated admissibility) Consider the sequence defined by, for all players
i , S0i = Si and, for every n ≥ 1, Sni = ai

(
Sn−1
−i

) ∩ Sn−1
i . A strategy si for player i

survives iterated admissibility if si ∈ ⋂∞
n=1 S

n
i .

Consider the following algorithm, which iteratedly decreases the set of likelihood
orderings for all players:

Ini For all players i , let L0
i = L∗

i .
IA For every n ≥ 1 and all players i , let

Ln
i = La

i (R−i (Ln−1
−i )) ∩ Ln−1

i .

It follows directly that Ini and IA determine, for each player, a non-increasing
sequence of sets of likelihood orderings. As a consequence, the sequence Ci (Ri (Ln

i ))

of choice sets is non-increasing. Since the set of likelihood orderings is finite, the
algorithm converges after a finite number of rounds.

For all players i , let L∞
i := ⋂∞

n=1 Ln
i be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and IA.

Proposition 2 Let G be a finite strategic game. Then, for all players i , a strategy si
survives iterated admissibility if and only if si ∈ Ci (Ri (L∞

i )).

Proof See the appendix. ��
Proposition 2 is proven by showing that, for every n ≥ 0 and all players i ,

Ci (Ri (Ln
i )) equals the set of player i’s strategies that survives n + 1 rounds of iter-

ated admissibility. This observation echoes Brandenburger et al.’s (2008, Theorem
9.1) epistemic characterization of strategy profiles that survives a finite number of
rounds of iterated admissibility (see also the observation that Stahl 1995 makes in his
theorem) by pointing out that iterated admissibility corresponds to sets of likelihood
orderings where

• strategies eliminated in a later iteration are deemed infinitely more likely than
strategies eliminated in an earlier iteration, and

• surviving strategies are deemed infinitely more likely than strategies eliminated in
any iteration.

Thus, when evaluating iterated admissibility by considering how our algorithm elim-
inates likelihood orderings, our evaluation is consistent with Brandenburger et al.’s
(2008, Theorem 9.1) epistemic characterization for finite numbers of iterations.2

3.3 An algorithm for proper rationalizability

We then consider proper rationalizability, a concept defined by Schuhmacher (1999)
and characterized by Asheim (2001). We refer to these references for details.

2 Brandenburger et al. (2008) do not provide an epistemic foundation for iterated admissibility with a count-
ably infinite number of iterations, cf. their Theorem 10.1. Barelli and Galanis (2013), Dekel et al. (2016),
Keisler and Lee (2015), Lee (2016) and Yang (2015) are later papers that discuss iterated admissibility and
the problem of providing an epistemic foundation for this procedure.
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Consider the following algorithm, which iteratedly decreases the set of likelihood
orderings for all players:

Ini For all players i , let L0
i = L∗

i .

PR For every n ≥ 1 and all players i , let Ln
i = Lr

i

(
R−i

(
Ln−1

−i

))
.

From the properties ofLr
i (·) and Ri (·), it follows that Ini andPR determine, for each

player, a non-increasing sequence of sets of likelihood orderings. As a consequence,
the sequence Ci (Ri (Ln

i )) of choice sets is non-increasing. Since the set of likelihood
orderings is finite, the algorithm converges after a finite number of rounds.

For all players i , let L∞
i := ⋂∞

n=1 Ln
i be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and PR.

Proposition 3 Let G be a finite strategic game. Then, for all players i , a strategy si is
properly rationalizable if and only if si ∈ Ci (Ri (L∞

i )).

Proof Perea (2011). ��

3.4 An algorithm for full permissibility

We finally consider an algorithm for the concept of fully permissible sets, as defined
by Asheim and Dufwenberg (2003a) for 2-player games. Full permissibility selects
sets of strategies, rather than individual strategies, for both players. In analogy with
the combined operator for permissibility, as interpreted in (1), let a strategy subset Ai

for player i survive another iteration of the procedure that defines full permissibility
if there exists a union A1

j ∪ · · · ∪ An
j of non-eliminated opponent strategy subsets

A1
j , . . . , A

n
j such that Ai equals the set of player i strategies that are not weakly

dominated on the union A1
j ∪ · · · ∪ An

j and not weakly dominated on the set S j of all
opponent strategies.

Formally, for both players i , let �i denote the collection of all non-empty subsets
of player i’s strategy set Si , and introduce the following operator:

αi (�
′
j ) :=

{
Ai ∈ �i | ∃(∅ �=)�′′

j ⊆ �′
j s.t. Ai = ai

(∪A j∈�′′
j
A j

) ∩ ai (S j )
}

,

where j �= i and �′
j and �′′

j are non-empty subcollections of � j . Note that ∅ �=
αi (�

′
j ) ⊆ �i for any non-empty subcollection �′

j of � j .

Definition 8 (Full permissibility) Consider the sequence defined by, for both players
i , �0

i = �i and, for every n ≥ 1, �n
i = αi

(
�n−1

j

)
. A strategy set Ai for player i is

fully permissible if Ai ∈ ⋂∞
n=1 �n

i .

Consider the following algorithm, which iteratedly decreases the set of likelihood
orderings for all players:

Ini For all players i , let L0
i = L∗

i .
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FP For every n ≥ 1 and all players i , let

Ln
i =

{

Li ∈ L∗
i | ∃(∅ �=)L−i ⊆ Ln−1

−i s.t. Li = (S′−i , S−i\S′−i ) if S
′−i �= S−i

and Li = (S−i ) otherwise, where S
′−i = ∪L−i∈L−i C−i (R−i (L−i ))

}

.

Hence,Ln
i contains likelihood orderings that assume a subset S′−i of opponent strategy

profiles (other than the set S−i of all opponent strategy profiles) only if S′−i is a union
of Cartesian products of opponent choice sets, where the union is taken over vectors
of sets of opponent preference restrictions for vectors of singleton sets of likelihood
orderings in some non-empty subset L−i of Ln−1

−i .
It follows that Ini and FP determine, for each player, a non-increasing sequence

of sets of likelihood orderings. As a consequence, the sequence (Ci (Ri (Li )))Li∈Ln
i

of collections of choice sets is non-increasing. Since the set of likelihood orderings is
finite, the algorithm converges after a finite number of rounds.

For all players i , let L∞
i := ⋂∞

n=1 Ln
i be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and FP.

Proposition 4 Let G be a finite 2-player strategic game. Then, for both players i , Ai is
a fully permissible set if and only if there exists Li ∈ L∞

i such that Ai = Ci (Ri (Li )).

Proof See the appendix. ��
We can use the algorithm defined by Ini and FP to define the concept of fully

permissible sets for games with more than two players:

Definition 9 Let G be a finite strategic game. Then, for all players i , Ai is a fully
permissible set if there exists Li ∈ L∞

i such that Ai = Ci (Ri (Li )).

As for permissibility, we can initiate the algorithm for full permissibility with
L0
i = L̃∗

i , including only likelihood orderings that are either trivial or partition S−i

into a non-empty proper subset and its complement. Indeed, Ln
i ⊆ L̃∗

i for every n ≥ 1
and all players i also when the algorithm is initiated with L0

i = L∗
i .

4 Applying the algorithms

In this section we put the algorithms to work. In the first subsection four examples
illustrate how the algorithms lead to sequences of sets of likelihood orderings. This
sheds light on differences between iterated admissibility, proper rationalizability and
full permissibility. Iterated admissibility results in a strict refinement of permissibility
in all four examples, proper rationalizability strictly refines permissibility in examples
2 and 3, and full permissibility strictly refines permissibility in examples 2 and 4.
However, even when two different concepts (like iterated admissibility and proper
rationalizability in examples 2 and 3) give rise to the same prescription, there are
interesting differences in the working of the algorithms in terms of the likelihood
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Fig. 2 Iterated admissibility
rules out properly rationalizable
strategies (G1)

L R

U

M

D

1, 1 1, 1
0, 1 2, 0
1, 0 0, 1

Fig. 3 IA and proper
rationalizability make same
prescription (G2)

L R

U

M

D

1, 1 1, 0
0, 1 2, 1
1, 0 0, 1

orderings that are eliminated along the way. In particular, example 3 illustrates how
iterated admissibility and proper rationalizability promote backward induction through
two different sequences of elimination, while example 4 does the same for how iterated
admissibility and full permissibility promote forward induction.

In the second subsectionwe build on insights conveyed by the examples and provide
through Proposition 5 a sufficient condition ensuring that any properly rationalizable
strategy survives iterated admissibility. In particular, since proper equilibrium always
exists and any strategy being used with positive probability in a proper equilibrium
is properly rationalizable, we reach the following conclusion: If a game, for which
iterated admissibility leads to a unique strategy for each player, satisfies the suffi-
cient condition of Proposition 5, then the surviving strategies are the unique properly
rationalizable strategies and the corresponding strategy profile is the unique proper
equilibrium.

In the third subsection we consider a contribution on commitment bargaining
(Ellingsen and Miettinen 2008) to show the usefulness and appeal of the concept
of proper rationalizability in an economically relevant situation. In particular, we use
the algorithm of Sect. 3.3 to show how proper rationalizability yields the outcomes
Ellingsen and Miettinen point to in their propositions, while other concepts do not.

4.1 Examples

The examples are games G1–G4, which are illustrated by Figs. 2, 3, 4 and 5. The
corresponding Tables 1, 2, 3 and 4 provide the order in which likelihood orderings are
eliminated by the algorithms for permissibility, iterated admissibility, proper rational-
izability and full permissibility in each of these examples.3

In game G1 (discussed by Asheim and Dufwenberg 2003a) the algorithm for per-
missibility rules out likelihood orderings for player 2 where D is at the top level, while
the algorithm for proper rationalizability in addition requires that player 2 respects the
preferences of player 1 by deeming D infinitely less likely thanU (asU weakly dom-
inates D and is thus preferred by player 1). Since this does not imply anything about
the relative likelihood of M and D, which is what the preferences of player 2 depend

3 For permissibility and full permissibility we restrict ourselves to likelihood orderings that are either
trivial or partition the opponent’s strategy set into a proper subset and its complement since—as noted in
the main text—this is immaterial for the outcome.
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1 2 1 2 6
F f F f 4

D d D d
2 1 4 3
0 3 2 5

d fd ff
D

FD
FF

2, 0 2, 0 2, 0
1, 3 4, 2 4, 2
1, 3 3, 5 6, 4

Fig. 4 Backward induction in a four-legged centipede game (G3)

Fig. 5 Forward induction in the
battle of the sexes with outside
option (G4)

L R

U

M

D

3, 1 0, 0
0, 0 1, 3
2, 2 2, 2

on, there is no elimination of likelihood orderings for player 1. Thus, for permissibility
and proper rationalizability, the algorithm converges after one round. The algorithm
for full permissibility also rules out that the top level element of a surviving likeli-
hood ordering is a singleton set containing only R or M . However, all three concepts
eliminate only strategy D in this example.

In contrast, the algorithm for iterated admissibility works by eliminating all likeli-
hood orderings for player 2 but those that assume {U , M}, thus deeming D infinitely
less likely than bothU andM in the first round. This in turnmeans that player 2 prefers
L to R, determining ({L}, {R}) as the sole surviving likelihood ordering for player
1 in round 2, and that player 1 prefers U to M , determining ({U }, {M}, {D}) as the
sole surviving likelihood ordering for player 2 in round 3. Thus, iterated admissibility
eliminates both strategies D and M for player 1 and strategy R for player 2.

The key difference in game G1 between the algorithms for iterated admissibility
and the other concepts is that the algorithm for iterated admissibility insists that both
U and M be infinitely more likely than D, even though only U weakly dominates
D. It follows from the structure of game G1 that player 2 prefers L to R if player 2
believes that M is infinitely more likely than D. The algorithms for the other concepts
do not reach this conclusion, and thus player 2 need not prefer L to R. Under iterated
admissibility the sole surviving likelihood ordering for player 1 entails the belief that
L is infinitely more likely than R, implying that player 1 prefers D toM . Nevertheless,
the sole surviving likelihood ordering for player 2 entails the belief that D is infinitely
less likely than M .

Compare game G1 to game G2, for which both iterated admissibility and proper
rationalizability prescribe only U for player 1 and only L for player 2. Also in this
game, the algorithm for proper rationalizability rules out all likelihood orderings for
player 2 but those where D is infinitely less likely than U (as U weakly dominates D
and is thus preferred by player 1), while the algorithm for iterated admissibility goes
further by eliminating all likelihood orderings but those where D is infinitely less
likely than both U and M in the first round. However, in this example the preferences
of player 2 depends on the relative likelihood of U and D and thus U being infinitely
more likely than D is sufficient for player 2 preferring L to R. For both algorithms this
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Table 1 The functioning of the algorithms in game G1

Permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L∞
1 = L̃∗

1 L∞
2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}

Iterated admissibility

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = L∗

1 L1
2 = {({U , M}, {D}), ({U }, {M}, {D}), ({M}, {U }, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U , M}, {D}), ({U }, {M}, {D}), ({M}, {U }, {D})}
L∞
1 = {({L}, {R})} L∞

2 = {({U }, {M}, {D})}
Proper rationalizability

L0
1 = L∗

1 L0
2 = L∗

2

L∞
1 = L∗

1 L∞
2 = {({U }, {M, D}), ({U , M}, {D}),

({U }, {M}, {D}), ({U }, {D}, {M}), ({M}, {U }, {D})}
Full permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L1
1 = L̃∗

1 L1
2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}
L∞
1 = {S2, ({L}, {R})} L∞

2 = {({U }, {M, D}), ({U , M}, {D})}

determines ({L}, {R}) as the sole surviving likelihood ordering for player 1 in round
2, and implies that player 1 prefers both U and D to M .

In the algorithm for iterated admissibility this entails that player 2 assumes {U },
implying that U is infinitely more likely than both M and D. Since all likelihood
orderings but those where bothU andM are infinitely more likely than D have already
been eliminated, ({U }, {M}, {D}) ends up as the sole surviving likelihood ordering
for player 2 in round 3. However, as player 1 prefers D to M and the algorithm for
proper rationalizability requires player 2 to respect the preferences of player 1, this
algorithm yields ({U }, {D}, {M}) as the sole surviving likelihood ordering for player
2 in round 3.

A key observation for game G2 is that U weakly dominates D, and that L weakly
dominates R on both {U } (which is the strategy used to eliminate D in the first round of
iterated admissibility) and {U , M} (which is the set of strategies for player 1 surviving
the first round of iterated admissibility). The same kind of observation can be made
for the centipede game, which we turn to next.

Also in the four-legged centipede game illustrated in Fig. 4 both iterated admissi-
bility and proper rationalizability make the same prescription, namely the backward
induction outcome (D, d). However, as for game G2, the algorithms in terms of
likelihood orderings do not coincide. In the first round, the algorithm for proper ratio-
nalizability requires that player 1 respects the preferences of player 2 by deeming ff
infinitely less likely than fd (as fd weakly dominates ff and is thus preferred by player
2). The algorithm for iterated admissibility goes further by eliminating all likelihood
orderings for player 1 but those that assume {d, fd}, thus deeming ff infinitely less
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Table 2 The functioning of the algorithms in game G2

Permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L∞
1 = L̃∗

1 L∞
2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}

Iterated admissibility

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = L∗

1 L1
2 = {({U , M}, {D}), ({U }, {M}, {D}), ({M}, {U }, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U , M}, {D}), ({U }, {M}, {D}), ({M}, {U }, {D})}
L∞
1 = {({L}, {R})} L∞

2 = {({U }, {M}, {D})}
Proper rationalizability

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = L∗

1 L1
2 = {({U }, {M, D}), ({U , M}, {D}),

({U }, {M}, {D}), ({U }, {D}, {M}), ({M}, {U }, {D})}
L2
1 = {({L}, {R})} L2

2 = {({U }, {M, D}), ({U , M}, {D}),
({U }, {M}, {D}), ({U }, {D}, {M}), ({M}, {U }, {D})}

L∞
1 = {({L}, {R})} L∞

2 = {({U }, {D}, {M})}
Full permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L1
1 = L̃∗

1 L1
2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U }, {M, D}), ({M}, {U , D}), ({U , M}, {D})}
L3
1 = {S2, ({L}, {R})} L3

2 = {({U }, {M, D}), ({U , M}, {D})}
L4
1 = {({L}, {R})} L4

2 = {({U }, {M, D}), ({U , M}, {D})}
L∞
1 = {({L}, {R})} L∞

2 = {({U }, {M, D})}

Table 3 The functioning of the algorithms in game G3

Permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L1
1 = {({d}, {fd, ff }), L1

2 = L̃∗
2

({fd}, {d, ff }), ({d, fd}, {ff })}
L∞
1 = {({d}, {fd, ff }), L∞

2 = {({D}, {FD,FF}),
({fd}, {d, ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

Iterated admissibility

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = {({d, fd}, {ff }), L1

2 = L∗
2

({d}, {fd}, {ff }), ({fd}, {d}, {ff })}
L2
1 = {({d, fd}, {ff }), L2

2 = {({D,FD}, {FF}),
({d}, {fd}, {ff }), ({fd}, {d}, {ff })} ({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L3
1 = {({d}, {fd}, {ff })} L3

2 = {({D,FD}, {FF}),
({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L∞
1 = {({d}, {fd}, {ff })} L∞

2 = {({D}, {FD}, {FF})}
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Table 3 continued

Proper rationalizability

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = {({fd}, {d, ff }), ({d, fd}, {ff }), L1

2 = L∗
2

({d}, {fd}, {ff }), ({fd}, {d}, {ff }),
({fd}, {ff }, {d})}

L2
1 = {({fd}, {d, ff }), ({d, fd}, {ff }), L2

2 = {({FD}, {D,FF}), ({D,FD}, {FF}),
({d}, {fd}, {ff }), ({fd}, {d}, {ff }), ({D}, {FD}, {FF}), ({FD}, {D}, {FF}),
({fd}, {ff }, {d})} ({FD}, {FF}, {D})}

L3
1 = {({d}, {fd}, {ff })} L3

2 = {({FD}, {D,FF}), ({D,FD}, {FF}),
({D}, {FD}, {FF}), ({FD}, {D}, {FF})}
({FD}, {FF}, {D})}

L∞
1 = {({d}, {fd}, {ff })} L∞

2 = {({D}, {FD}, {FF})}
Full permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L1
1 = {({d}, {fd, ff }), L1

2 = L̃∗
2

({fd}, {d, ff }), ({d, fd}, {ff })}
L2
1 = {({d}, {fd, ff }), L2

2 = {({D}, {FD,FF}),
({fd}, {d, ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

L3
1 = {({d}, {fd, ff }), ({d, fd}, {ff })} L3

2 = {({D}, {FD,FF})
({FD}, {D,FF}), ({D,FD}, {FF})}

L∞
1 = {({d}, {fd, ff }), ({d, fd}, {ff })} L∞

2 = {({D}, {FD,FF}), ({D,FD}, {FF})}

likely than both d and fd. Even though the set of likelihood orderings for player 1
that assume {d, fd} is a strict subset of those that deem fd infinitely more likely than
ff, it turns out that deeming fd infinitely more likely than ff is sufficient for player 1
to prefer FD to FF. Likewise, in the second round, even though the set of likelihood
orderings for player 2 that assume {D,FD} is a strict subset of those that deem FD
infinitely more likely than FF, it turns out that deeming FD infinitely more likely than
FF is sufficient for player 2 to prefer d to fd.

Note that in the second round, FD weakly dominates FF on both {fd} (which
is the strategy used to eliminate ff in the first round of iterated admissibility) and
{d, fd} (which is the set of strategies for player 2 surviving the first round of iterated
admissibility). Likewise, in the third round, d weakly dominates fd and ff on both
{FD} (which is the strategy used to eliminate FF in the second round of iterated
admissibility) and {D,FD} (which is the set of strategies for player 1 surviving the
second round of iterated admissibility). Similar conclusions hold for any centipede
game independent of size and illustrates how both iterated admissibility and proper
rationalizability correspond to the procedure of backward induction in such games.4

4 For finite perfect information games without relevant payoff ties, proper rationalizability leads to the
unique profile of backward induction strategies (Schuhmacher 1999; Asheim 2001), and iterated admis-
sibility leads to the backward induction outcome (see Battigalli 1997, pp. 52–53, for relevant references).
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Table 4 The functioning of the algorithms in game G4

Permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L∞
1 = L̃∗

1 L∞
2 = {({U }, {M, D}), ({D}, {U , M}), ({U , D}, {M})}

Iterated admissibility

L0
1 = L∗

1 L0
2 = L∗

2

L1
1 = L∗

1 L1
2 = {({U , D}, {M}), ({U }, {D}, {M}), ({D}, {U }, {M})}

L2
1 = {({L}, {R})} L2

2 = {({U , D}, {M}), ({U }, {D}, {M}), ({D}, {U }, {M})}
L∞
1 = {({L}, {R})} L∞

2 = {({U }, {D}, {M})}
Proper rationalizability

L0
1 = L∗

1 L0
2 = L∗

2

L∞
1 = L∗

1 L∞
2 = {({D}, {U , M}), ({U , D}, {M}),

({U }, {D}, {M}), ({D}, {U }, {M}), ({D}, {M}, {U })}
Full permissibility

L0
1 = L̃∗

1 L0
2 = L̃∗

2

L1
1 = L̃∗

1 L1
2 = {({U }, {M, D}), ({D}, {U , M}), ({U , D}, {M})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U }, {M, D}), ({D}, {U , M}), ({U , D}, {M})}
L3
1 = {S2, ({L}, {R})} L3

2 = {({U }, {M, D}), ({U , D}, {M})}
L4
1 = {({L}, {R})} L4

2 = {({U }, {M, D}), ({U , D}, {M})}
L∞
1 = {({L}, {R})} L∞

2 = {({U }, {M, D})}

The algorithm for permissibility works similarly in games G2 and G3 as in game
G1. In particular, in game G2 it does not require player 2 to deem U infinitely more
likely than D (even thoughU weakly dominates D and is thus preferred by player 1).
Thus, this algorithm does not allow us to conclude that player 2 prefers L to R, and
therefore does not determine ({L}, {R}) as the sole surviving likelihood ordering for
player 1. In contrast, the algorithm for full permissibility does lead to ({L}, {R}) as
the sole surviving likelihood ordering for player 1 in game G2. Hence, it prescribes
the outcome (U , L), thus coinciding with the algorithms for iterated admissibility and
proper rationalizability in this respect. However, the algorithm for full permissibility
does not directly conclude that U infinitely more likely than D. Rather, as shown in
Table 2, this conclusion is reached through a process that is more involved than for
the algorithms for iterated admissibility and proper rationalizability.

To illustrate the algorithm for full permissibility in another gamewhere this concept
has asmuch cutting power as iterated admissibility, but where in contrast to gameG2 it
is more restrictive than proper rationalizability, we include the battle of the sexes with
outside option as game G4. In this game, both iterated admissibility and full permissi-
bility prescribe the forward induction outcome (U , L) (see Asheim and Dufwenberg

Footnote 4 continued
While the algorithms of Sects. 3.2 and 3.3 correspond to the backward induction procedure in the subclass
of centipede games, this does not hold for the whole class of finite perfect information games without
relevant payoff ties.
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2003b, p. 319). However, the process at which player 2 is lead to conclude that U is
infinitely more likely than M (leading to a preference for L over R) is different for the
two algorithms. For iterated admissibility this follows directly from assuming {U , D},
thus deeming M infinitely less likely than both U and D, even though only D weakly
dominates M . For full permissibility the process is more involved, as illustrated in
Table 4.

The examples of Figs. 2, 3, 4 and 5 show that there are no logical relationships
between proper rationalizability and full permissibility, while suggesting that iterated
admissibility refines proper rationalizability and full permissibility,which in turn refine
permissibility.Which of these relations are general properties?This is a questionwhich
we consider in the next subsection.

4.2 The relations between the algorithms

The properties of Lb
i (·) and Ri (·) combined with Lemma 5 imply both

La
i (R−i (L′−i )) ⊆ Lb

i (R−i (L′−i )) ,

Lr
i (R−i (L′−i )) ⊆ Lb

i (R−i (L′−i )) ,
{

Li ∈ L∗
i | ∃(∅ �=)L−i ⊆ L′−i s.t. Li = (S′−i , S−i\S′−i ) if S

′−i �= S−i

and Li = (S−i otherwise, where S
′−i = ∪L−i∈L−i C−i (R−i (L−i ))

} ⊆ Lb
i (R−i (L′−i ))

for any vector L′−i of non-empty sets of likelihood orderings for i’s opponents, and

Lb
i (R−i (L′−i )) ⊆ Lb

i (R−i (L′′−i ))

if L′−i ⊆ L′′−i , signifying that L′
j ⊆ L′′

j for all j �= i . Thus, if L′
j ⊆ L′′

j for all j �= i ,
then the set of likelihood orderings determined for i by Per on the basis of L′′−i is
always a superset of those sets determined for i by IA, PR and FP on the basis of
L′−i . This means that Propositions 1–4 can be used to establish the (already known)
result that each of the concepts iterated admissibility, proper rationalizability and full
permissibility refine the concept of permissibility. The examples illustrate that these
refinements might be strict.

The other conjecture suggested by examples of Figs. 2, 3, 4 and 5, namely that
iterated admissibility refines proper rationalizability and full permissibility, is not
true. Asheim andDufwenberg (2003a, p. 216) show that there is no logical relationship
between iterated admissibility and full permissibility: in their game G4 (illustrated in
Asheim and Dufwenberg 2003a, Figure 4) strategy b survives iterated admissibility
but does not appear in any fully permissible set, while strategy f appears in a fully
permissible set but does not survive iterated admissibility. Likewise, our example in
the introduction, illustrated in Fig. 1 (see also Perea 2012, p. 262), shows that there
is no logical relationship between iterated admissibility and proper rationalizability:
in the game of Fig. 1 proper rationalizability uniquely selects strategy Z , whereas
iterated admissibility uniquely selects strategy Y .
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As we have seen in games G2 and G3, there are examples where proper ratio-
nalizability has at least as much cutting power as iterated admissibility. In the
following propositionwe generalize insights gained through these examples to provide
a sufficient condition under which iterated admissibility does not rule out properly
rationalizable strategies. Hence, under these conditions, the restrictions on lexico-
graphic beliefs that the procedure of iterated admissibility imposes along the way are
convincing also given the prescriptions that this procedure ends up providing.

Proposition 5 Consider a finite 2-player strategic game G where the procedure of
iterated admissibility leads to the sequence 〈Sn1 , Sn2 〉∞n=0 of surviving strategy sets.
Suppose that there exists a sequence 〈An

1, A
n
2〉∞n=0 of strategy sets satisfying, for both

players i , A0
i = Si and for each n ∈ N,

• An
i ⊆ Sni ,

• if Sni �= Sn−1
i , then, for every si ∈ Si\Sni , si is weakly dominated by every ai ∈ An

i

on either (An−1
j and Sn−1

j ) or S j ,

• if Sni = Sn−1
i , then An

i = An−1
i .

Then, for both players i , if si is properly rationalizable, then si ∈ ⋂∞
n=1 S

n
i .

Proof See the appendix. ��
Both G2 of Fig. 3 and G3 of Fig. 4 can be used to illustrate Proposition 5. In G2,

the procedure of iterated admissibility yields the following sequence of strategy sets:
S11 = S21 = {U , M} and Sn1 = {U } for n ≥ 3, and S12 = {L, R} and Sn2 = {L} for
n ≥ 2. Choose An

1 = {U } for n ≥ 1, and A1
2 = {L, R} and An

2 = {L} for n ≥ 2. It is
straightforward to check that the conditions of Proposition 5 are satisfied; in particular,
L weakly dominates R on both A1

1 = {U } and S11 = {U , M}, andU weakly dominates
M on A2

2 = S22 = {L}, and weakly dominates D on S2.
In G3, the procedure of iterated admissibility yields the following sequence of

strategy sets: S11 = {D,FD,FF}, S21 = S31 = {D,FD} and Sn1 = {D} for n ≥ 4,
and S12 = S22 = {d, fd} and Sn2 = {d} for n ≥ 3. Choose A1

1 = {D,FD,FF},
A2
1 = A3

1 = {FD} and An
1 = {D} for n ≥ 4, and A1

2 = A2
2 = {fd} and An

2 = {d} for
n ≥ 3. Again, it is straightforward to check that the conditions of Proposition 5 are
satisfied; in particular, FD weakly dominates FF on both A1

2 = {fd} and S12 = {d, fd},
d weakly dominates both fd and ff on both A2

1 = {FD} and S21 = {D,FD}, and D

weakly dominates both FD and FF on A3
2 = S32 = {d}.

4.3 Commitment bargaining

The algorithms of Sect. 3 can be applied for the purpose of analyzing economically
significant models, independently of whether the sufficient condition of Proposition 5
is satisfied. In particular, they can be used for comparing iterated admissibility to
properly rationalizable strategies in specific strategic situations. In this subsection we
consider a model of bilateral commitment bargaining due to Ellingsen and Miettinen
(2008, Section I).

123



Algorithms for cautious reasoning in games 1263

Ellingsen andMiettinen (2008) reexamine the problem of observable commitments
in bargaining, first studied by Schelling (1956) and later formalized by Crawford
(1982). Ellingsen and Miettinen (2008) extends Crawford’s (1982) analysis by con-
sidering variants of iterated admissibility and refinements of Nash equilibrium. Here
we show how some of the outcomes that Ellingsen and Miettinen (2008) suggest, in
particular through their Lemma 2 and Proposition 2, can be obtained by using proper
rationalizability instead of iterated admissibility. There is actually a mistake in their
Lemma 2, but we will come back to this later.

In order to turn their strategic situation where two players bargain over real num-
bered fractions of a surplus of size 1 into a finite one-stage game with simultaneous
moves, we introduce a smallest money unit g. We measure all variables in terms of
numbers of the smallest money unit, and assume that k units of the smallest money
unit equals the total surplus (i.e., k · g = 1). Hence, players 1 and 2 bargain over a
surplus of size k.

Each player i chooses, simultaneously with the other, either to commit to some
demand si ∈ {0, 1, . . . , k} or to wait and remain uncommitted. Let w denote the
waiting strategy. Hence the strategy set of each player i is Si = {0, 1, . . . , k} ∪ {w}.
If both players choose w, then each player i receives βi > 1, where β1 + β2 = k.

In the case with certain commitments and no commitment costs (Ellingsen and
Miettinen 2008, Section I) the payoffs are as follows: If only one player i makes a
commitment si , then i receives si and the other player receives k − si . If both players
make commitments, then each player i receives xi (si , s j ) ∈ {si , si + 1, . . . , k − s j },
with x1(s1, s2) + x2(s2, s1) ≤ k, if s1 + s2 ≤ k and nothing otherwise.

The payoff function ui (si , s j ) of each player i can be summarized as follows:

ui (si , s j ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi (si , s j ) if si + s j ≤ k ,

0 if si + s j > k ,

si if si �= w and s j = w ,

k − s j if si = w and s j �= w ,

βi if si = w = s j .

Ellingsen and Miettinen (2008) show through the proof of their Lemma 2 that,
for each player i , iterated admissibility leads to the elimination of 0, 1, . . . , βi in the
first round, and βi + 1, βi + 2, . . . , k − 1 in the second round, leaving k and w as
the surviving strategies. Actually, with only k and w as the surviving strategies, w

is eliminated in the third round, since choosing k yields player i a payoff of 0 if the
opponent also chooses k and k if the opponent chooses w, while choosing w yields
player i a payoff of 0 if the opponent chooses k and βi (< k) if the opponent also
chooses w. Hence, the correct statement of Ellingsen and Miettinen’s (2008) Lemma
2 is that only k is iteratedly weakly undominated.

Ellingsen and Miettinen (2008) use Lemma 2 in their subsequent Proposition 2 to
focus on Nash equilibria involving only the strategies k and w (including asymmetric
equilibria where one commits to the entire surplus and the other waits), as opposed
to the plethora of unrefined Nash equilibria that this game gives rise to (cf. Crawford
1982). Their Proposition 2 states that only the two asymmetric equilibria along with
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the symmetric equilibrium where both claim the entire surplus are consistent with two
rounds of elimination of weakly dominated strategies. This statement is correct, but
it begs the question: why stop with two rounds of weak elimination? As the following
proposition shows, proper rationalizability provides a reason for considering only the
strategies k and w.

Proposition 6 Consider the finite version of Ellingsen and Miettinen’s (2008, Section
I) bilateral commitment bargaining game with zero commitment cost. The properly
rationalizable strategies for each player are to commit to the whole surplus, i.e., to
choose the strategy k, or to wait, i.e., to choose the strategy w.

Proof See the appendix. ��
The proof of Proposition 6 consists of two parts. The one part uses the algorithm of

Section 3.3 to show that no strategy but k and w can be properly rationalizable. Since
w weakly dominates 0, 1, . . . , β j for player j , respect of j’s preferences forces player
i to deem w infinitely more likely than each of 0, 1, . . . , β j . This in turn implies that
k weakly dominates βi + 1, βi + 2, . . . , k − 1 for player i . Hence, only k and w can
be best responses when players are cautious.

The other part uses the result of Asheim (2001, Proposition 2)—that any
strategy being used with positive probability in a proper equilibrium is properly
rationalizable—to show that k and w are properly rationalizable. In particular, the
asymmetric equilibria where one player commits to the entire surplus and the other
waits are proper. In addition, there is a proper equilibrium where both players choose
k with probability 1.5 In any proper equilibrium, at most one player attains positive
payoff and no strategy but k and w is assigned positive probability. Thus, the concept
of proper equilibrium focuses precisely on the equilibria highlighted in Ellingsen and
Miettinen’s (2008, Proposition 2).6

Ellingsen and Miettinen (2008, Section II) also consider a variant of Crawford’s
(1982) bilateral commitment bargaining game where commitments are uncertain. In
their Proposition 4 they show that only k survives iterated admissibility if commitments
are uncertain. Actually, the iterations involve one round of weak elimination, followed
by two rounds of strict elimination.Hence, only k is permissible, and it follows from the
algorithms of Sects. 3.1 and 3.3 that only k is properly rationalizable (and thus, (k, k)
is the only proper equilibrium). In their Propositions 1 and 3 they consider costly
commitments. In this case, it can be shown that every strategy surviving iterated
elimination of strictly dominated strategies is properly rationalizable. Hence, in all
variants considered by Ellingsen and Miettinen (2008), proper rationalizability and
proper equilibrium yield the outcomes they point to in their propositions, while other
concepts do not.

5 This equilibrium involves likelihood orderings where k − 1 and w are at the second level. See the Claim
of the Appendix.
6 Even though at most one player attains positive payoff in any perfect equilibrium, there exists, for each
player i and any strategy � ∈ {βi + 1, βi + 2, . . . , k − 1}, a perfect equilibrium in which player i assigns
positive probability to �. This requires that this player also assigns sufficient positive probability to w, so
that k is the unique best response for the other player. See the Claim of the Appendix. Hence, the concept
of perfect equilibrium can not be used to rule out all equilibria but the ones highlighted in Ellingsen and
Miettinen’s (2008, Proposition 2).
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5 Concluding remarks

In our opinion, proper rationalizability is an attractive concept which is based on
appealing epistemic conditions. However, its applicability has been hampered by the
lack of an algorithm leading directly to the properly rationalizable strategies. With
Perea’s (2011) algorithm, this roadblock has been removed. Here we have compared
proper rationalizability to permissibility (i.e., the Dekel–Fudenberg procedure), iter-
ated admissibility and full permissibility by presenting comparable algorithms for the
three latter concepts. Through a bilateral commitment bargaining game due to Craw-
ford (1982) and Ellingsen and Miettinen (2008) we have illustrated the usefulness of
proper rationalizability in economic applications.

The four algorithms eliminate likelihood orderings. Likelihood orderings model
cautious behavior, as they require that each player takes into all opponents strate-
gies, also those that seem unlikely to be chosen. There might also be other interesting
elimination procedures that can be captured in terms of likelihood orderings. A partic-
ularly interesting example is the reasoning-based expected utility procedure defined
by Cubitt and Sugden (2011). This procedure determines, for each player and every
iteration, a positive and a negative subset of the player’s strategy set (the two subsets
having a non-empty intersection) as follows:

(i) A set of allowable probability distribution is determined by assigning positive
weight to every strategy in the opponent’s positive set and zero weight to every
strategy in the opponent’s negative set.

(ii) The player’s positive set consists of strategies being a best reply to every allowable
probability distribution, while the player’s negative set consists of strategies not
being a best reply to any allowable probability distribution.

In terms of likelihood orderings this requires the top level element to include every
strategy in the opponent’s positive set and to exclude every strategy in the opponent’s
negative set. However, the resulting algorithm is different since the partitional nature
of likelihood orderings induces cautious behavior: all opponent strategies, also those
in the negative set are taken into account.

Finally, it is of interest to speculate how epistemic foundations for the algorithms
of the present paper might be provided in models of interactive beliefs. Epistemic
models of games of complete information usually contain a set Ti of epistemic types
for all players i , where every type ti of player i determines a strategy choice si and a
belief on the set T−i of opponent type profiles.

The algorithms of the present paper indicate that the reasoning process might alter-
natively be captured by an epistemic model where every type ti of player i , in addition
to having a belief over the set T−i of opponent type profiles, determines of non-empty
subset Li of likelihood orderings. As we have explored through the analysis of this
paper, such subsets of likelihood orderings are sufficient to describe player i’s (pos-
sibly incomplete) preferences over his own strategies in any stage of the reasoning
processes. Furthermore, the collection of non-empty subsets of likelihood orderings
is finite if the underlying game is finite.

However, such epistemic analysis is beyond the scope of the present paper and will
be investigated in future work.
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6 Appendix A: Proofs

Proof of Lemma 1 Let Li be player i’s non-empty set of likelihood orderings.
Reflexivity of ∼Li

i and �Li
i . Consider anyμi ∈ �(Si ). Then, trivially, ui (μi , s−i )

= ui (μi , s−i ) for every s−i , so that μi ∼Li
i μi , and thus, μi �Li

i μi .

Irreflexivity of 	Li
i . Consider any μi ∈ �(Si ). Then, trivially, there exists no

subset of opponent strategy profiles S′−i ⊆ S−i such that μ weakly dominates μ on

S′−i . Hence, μi �
Li
i μi .

Transitivity of ∼Li
i . Ifμi ∼Li

i μ′
i andμ′

i ∼Li
i μ′′

i , then ui (μi , s−i ) = ui (μ′
i , s−i ) =

ui (μ′′
i , s−i ) for every s−i , so that μi ∼Li

i μ′′
i .

Transitivity of 	Li
i . If μi 	Li

i μ′
i and μ′

i 	Li
i μ′′

i , then, for all Li = (L1
i , L

2
i , . . . ,

LK
i ) ∈ Li , there exists k′ ∈ {1, . . . , K } such that μi weakly dominates μ′

i on L1
i ∪

· · · ∪ Lk′
i and k′′ ∈ {1, . . . , K } such that μ′

i weakly dominates μ′′
i on L1

i ∪ · · · ∪ Lk′′
i .

For each Li ∈ Li , choose k = min{k′, k′′}. Then μi weakly dominates μ′′
i on L1

i ∪
· · · ∪ Lk

i since ui (μi , s−i ) ≥ ui (μ′
i , s−i ) and ui (μ′

i , s−i ) ≥ ui (μ′′
i , s−i ) for every

s−i ∈ L1
i ∪ · · · ∪ Lk

i , with ui (μi , s′−i ) > ui (μ′
i , s

′−i ) or ui (μ
′
i , s

′−i ) > ui (μ′′
i , s

′−i ) for
some s′−i ∈ L1

i ∪ · · · ∪ Lk
i . Hence, for all Li ∈ Li , there exists k ∈ {1, . . . , K } such

that μi weakly dominates μ′′
i on L1

i ∪ · · · ∪ Lk
i , so that so that μi 	Li

i μ′′
i .

Transitivity of �Li
i . Consider any μi , μ′

i , μ′′
i ∈ �(Si ) such that μi �Li

i μ′
i and

μ′
i �Li

i μ′′
i . We must show that μi �Li

i μ′′
i .

Case 1: If μi ∼Li
i μ′

i and μ′
i ∼Li

i μ′′
i , then it follows from the transitivity of ∼Li

i

that μi ∼Li
i μ′′

i , and thus, μi �Li
i μ′′

i .

Case 2a: If μi 	Li
i μ′

i and μ′
i ∼Li

i μ′′
i , then since ui (μ′

i , s−i ) = ui (μ′′
i , s−i ) for

every s−i , for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li , there exists k ∈ {1, . . . , K } such that

μi weakly dominates μ′′
i on L1

i ∪ · · · ∪ Lk
i , so that μi 	Li

i μ′′
i , and thus, μi �Li

i μ′′
i .

Case 2b: Likewise if μi ∼Li
i μ′

i and μ′
i 	Li

i μ′′
i .

Case 3: If μi 	Li
i μ′

i and μ′
i 	Li

i μ′′
i , then it follows from the transitivity of 	Li

i

that μi 	Li
i μ′′

i , and thus, μi �Li
i μ′′

i .

Objective independence of ∼Li
i Consider anyμi ,μ′

i ,μ
′′
i ∈ �(Si ) and allγ ∈ (0, 1).

Objective independence follows since ui (μ′
i , s−i ) = ui (μ′′

i , s−i ) for every s−i ∈ S−i

if and only if ui (γμ′
i + (1 − γ )μ′′′

i , s−i ) = ui (γμ′′
i + (1 − γ )μ′′′

i , s−i ) for every
s−i ∈ S−i

Objective independence of 	Li
i . Consider any μi , μ′

i , μ′′
i ∈ �(Si ) and all γ ∈

(0, 1). Objective independence follows since, for any S′−i ⊆ S−i ,μ′
i weakly dominates

μ′′
i on S′−i if and only if γμ′

i + (1 − γ )μ′′′
i weakly dominates γμ′′

i + (1 − γ )μ′′′
i on

S′−i . ��
Proof of Lemma 2 Let Li be player i’s non-empty set of likelihood orderings, and
consider two mixed strategies μ′

i , μ
′′
i ∈ �(Si ).

Assume μ′
i 	Li

i μ′′
i . Hence, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li , there exists

k ∈ {1, . . . , K } such that μ′
i weakly dominates μ′′

i on L1
i ∪ · · · ∪ Lk

i . Fix Li ∈ Li . We
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need to show that everyLPSλi consistentwith Li ranksμ′
i aboveμ′′

i . This follows since

ui (μ′
i , λ

�
i ) ≥ ui (μ′′

i , λ
�
i ) for all � ∈ {1, . . . , k} and ui (μ′

i , λ
�′
i ) > ui (μ′′

i , λ
�′
i ) for some

�′ ∈ {1, . . . , k}, asμ′
i weakly dominatesμ′′

i on L
1
i ∪· · ·∪Lk

i = suppλ1∪· · ·∪suppλk .
Assume that, for all Li ∈ Li , every LPS λi consistent with Li ranks μ′

i above μ′′
i .

Fix Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li . We need to show that there exists k ∈ {1, . . . , K }

such thatμ′
i weakly dominatesμ′′

i on L
1
i ∪· · ·∪Lk

i . Suppose, by way of contradiction,
that, for all k ∈ {1, . . . , K }, μ′

i does not weakly dominate μ′′
i on L1

i ∪ · · · ∪ Lk
i =

suppλ1 ∪ · · · ∪ suppλk . Case 1: ui (μ′
i , s−i ) ≤ ui (μ′′

i , s−i ) for every s−i ∈ S−i . Then
no LPS λi consistent with Li ranks μ′

i above μ′′
i . Case 2: ui (μ

′
i , s

′−i ) > ui (μ′′
i , s

′−i )

for some s′−i ∈ S−i . W.l.o.g., choose s′−i and k ∈ {1, . . . , K } with the properties that

s′−i ∈ Lk
i and ui (μ

′
i , s−i ) ≤ ui (μ′′

i , s−i ) for every s−i ∈ L1
i ∪· · ·∪Lk−1

i . Sinceμ′
i does

not weakly dominateμ′′
i on L

1
i ∪· · ·∪Lk

i , there exists s
′′−i ∈ L1

i ∪· · ·∪Lk
i = suppλ1∪

· · · ∪ suppλk such that ui (μ′
i , s

′′−i ) < ui (μ′′
i , s

′′−i ). Then it is possible to construct λ̃i

consistent with Li such that ui (μ′
i , λ̃

k
i ) < ui (μ′′

i , λ̃
k
i ) and ui (μ′

i , λ̃
�
i ) ≤ ui (μ′′

i , λ̃
�
i )

for all � ∈ {1, · · · , k − 1}, implying that λ̃i consistent with Li ranks μ′′
i above μ′

i . In
both cases, we obtain a contradiction to the claim that every LPS λi consistent with
Li ranks μ′

i above μ′′
i .

Assumeμ′
i ∼Li

i μ′′
i . Hence, ui (μ

′
i , s−i ) = ui (μ′′

i , s−i ) for every s−i . Then, clearly,
every LPS λi deem μ′

i indifferent to μ′′
i .

Assume that, for all Li ∈ Li , every LPS λi consistent with Li , deem μ′
i indifferent

to μ′′
i . We need to show that ui (μ′

i , s−i ) = ui (μ′′
i , s−i ) for every s−i . Suppose, by

way of contradiction, that ui (μ′
i , s

′−i ) �= ui (μ′′
i , s

′−i ) for some s′−i ∈ S−i . W.l.o.g.,
choose s′−i , Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li , and k ∈ {1, . . . , K } with the properties

that s′−i ∈ Lk
i and ui (μ′

i , s−i ) = ui (μ′′
i , s−i ) for every s−i ∈ L1

i ∪ · · · ∪ Lk−1
i . Then

it is possible to construct λ̃i consistent with Li such that ui (μ′
i , λ̃

k
i ) �= ui (μ′′

i , λ̃
k
i ) and

ui (μ′
i , λ̃

�
i ) = ui (μ′′

i , λ̃
�
i ) for all � ∈ {1, . . . , k − 1}, implying that λ̃i consistent with

Li does not deem μ′
i indifferent to μ′′

i . This contradicts that every LPS λi consistent
with Li , deem μ′

i indifferent to μ′′
i . ��

Proof of Remark 2 Let Li be player i’s non-empty set of likelihood orderings, and
consider two pure opponent strategy profiles s′−i , s

′′−i ∈ S−i . Assume s′−i �Li
i s′′−i .

Hence, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li , there exists k ∈ {1, . . . , K } such that

s′−i ∈ L1
i ∪ · · · ∪ Lk

i and s
′′−i /∈ L1

i ∪ · · · ∪ Lk
i . If the mixed strategies μ′

i , μ
′′
i ∈ �(Si )

satisfy ui (μ′
i , s

′−i ) > ui (μ′′
i , s

′−i ) and, for all s−i ∈ S−i\{s′−i , s
′′−i }, ui (μ′

i , s−i ) =
ui (μ′′

i , s−i ), then, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li , μ′

i weakly dominates μ′′
i

on L1
i ∪ · · · ∪ Lk

i by choosing k ∈ {1, . . . , K } such that s′−i ∈ L1
i ∪ · · · ∪ Lk

i and

s′′−i /∈ L1
i ∪ · · · ∪ Lk

i . Thus, μ′
i 	Li

i μ′′
i whenever the mixed strategies μ′

i , μ′′
i have

these properties. ��
Proof of Lemma 3 Let (si , Ai ) ∈ Ri (Li ), implying that there exists μi ∈ �(Ai ) such
that μi 	Li

i si . Clearly, μi (si ) < 1 since 	Li
i is irreflexive (cf. Lemma 1). If μi (si ) =

0, so that si /∈ suppμi , then μi ∈ �(Ai\{si }) and μi 	Li
i si , implying that (si , A′

i ) ∈
Ri (Li )where A′

i = Ai\{si }. Ifμi (si ) = (0, 1), rewriteμi asμi (si )si +(1−μi (si ))μ′
i ,
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1268 G. B. Asheim, A. Perea

where μ′
i is defined by μ′

i (s
′
i ) = μi (s′

i )/(1 − μi (si )) for all s′
i �= si . Then

μi (si )si + (1 − μi (si ))μ
′
i = μi 	Li

i si = μi (si )si + (1 − μi (si ))si .

Hence, by the objective independence of 	Li
i (cf. Lemma 1), μ′

i 	Li
i si , where μ′

i ∈
�(Ai\{si }). Thus, also in this case, (si , A′

i ) ∈ Ri (Li ) where A′
i = Ai\{si }. ��

Proof of Lemma 4 Assume there existsμi ∈ �(Si ) such thatμi 	Li
i si . Then (si , Si ) ∈

Ri (Li ) and si ∈ Si\Ci (Ri (Li )). Hence,

Ci (Ri (Li )) ⊆
{
si ∈ Si | �μi ∈ �(Si ) such that μi 	Li

i si
}

. (A1)

Assume there does not exist μi ∈ �(Si ) such that μi 	Li
i si . Then there does not

exist Ai ⊆ Si with (si , Ai ) ∈ Ri (Li ), and si ∈ Ci (Ri (Li )). Hence,

Ci (Ri (Li )) ⊇
{
si ∈ Si | �μi ∈ �(Si ) such that μi 	Li

i si
}

. (A2)

The first part of the lemma follows from (A1) and (A2).
To showCi (Ri (Li )) �= ∅, consider an LPS λi that is consistent with some Li ∈ Li .

Since the ranking-above relation for given LPS λi is transitive and irreflexive and Si
is finite, there exists si ∈ Si such that λi ranks no s′

i ∈ Si above si . Moreover, by the
definition of the ranking-above relation it now follows that λi ranks no μi ∈ �(Si )
above si . Hence, by Lemma 2, there does not exist μi ∈ �(Si ) such that μi 	Li

i si ,
implying by the first part of the lemma that si ∈ Ci (Ri (Li )). ��
Proof of Lemma 5 Assume that player i with non-empty setLi of likelihoods orderings
respects R−i . Suppose s′

j /∈ C j (R j ) for some j �= i , implying that there exists A j

such that (s j , A j ) ∈ R j . Since i respects R−i , (L1
i ∩ {s j }) × S−i, j = ∅ for all Li =

(L1
i , L

2
i , . . . , L

K
i ) ∈ Li . Therefore, if s−i ∈ L1

i for some Li = (L1
i , L

2
i , . . . , L

K
i ) ∈

Li , then s−i ∈ ∏
j �=i C j (R j ) = C−i (R−i ). This implies that Li ⊆ C−i (R−i ) for all

Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li and establishes the lemma. ��

Proof of Lemma 6 Only if. If there exists μi ∈ �(Ai ) such that μi strictly dominates
si on S′−i , then, for every (∅ �=) S′′−i ⊆ S′−i , μi ∈ �(Ai ) weakly dominates si on S′′−i .

If. Suppose there does not exist μi ∈ �(Ai ) such that μi strictly dominates si
on S′−i . Hence, by Pearce (1984, Lemma 3), there exists λi ∈ �(S′−i ) such that
u(si , λi ) ≥ u(s′

i , λi ) for all s
′
i ∈ Ai . Then, by Pearce (1984, Lemma 4), there does not

exist μ′
i ∈ �(Ai ) such that μ′

i weakly dominates si on S′′−i := suppλi ⊆ S′−i . ��
Proof of Proposition 1 Consider, for all players i , the sequence 〈Sni 〉∞n=0 defined in
Definition 6. We show, by induction on n, that Ci (Ri (Ln

i )) = Sn+1
i for all players i

and every n ≥ 0.
Part (i). For n = 0, we have that L0

i = L∗
i and hence,

Ri (L0
i ) = {(si , Ai ) | ∃μi ∈ �(Ai ) such that si is weakly dominated by μi on S−i } .
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Therefore, Ci (Ri (L0
i )) = ai (S−i ) = bi (S0−i ) ∩ ai (S−i ) = S1i for all players i , since

S0−i = S−i and ai (S−i ) ⊆ bi (S−i ).

Part (ii). Now, let n ≥ 1, and assume that for all players i , Ci (Ri (Ln−1
i )) = Sni .

We show that, for all players i , Ci (Ri (Ln
i )) = Sn+1

i .
Fix a player i . By definition, Ln

i = Lb
i (R−i (Ln−1

−i )). We have that

Lb
i (R−i (Ln−1

−i )) =
{
Li ∈ L∗

i | Li believes C−i (R−i (Ln−1
−i ))

}

= {Li ∈ L∗
i | Li believes S

n
−i }

= {Li ∈ L∗
i | L1

i ⊆ Sn−i },

by our induction assumption. But then,

Ri (Ln
i ) =

{

(si , Ai ) | for every L1
i ⊆ Sn−i there is μi ∈ �(Ai ) such that

si is weakly dominated by μi on L1
i or on S−i

}

and

Ci (Ri (Ln
i )) = {si ∈ Si | ∃(∅ �=) L1

i ⊆ Sn−i s.t. si ∈ ai (L
1
i ) ∩ ai (S−i )}

= bi (S
n
−i ) ∩ ai (S−i ) = Sn+1

i

by (1) and Definition 6, thus concluding the proof.
The proof above would also apply to the case where L0

i = L̃∗
i , considering only

likelihood orderings that consist of one or two levels only. The reason is that the
restrictions on the sets Ln

i of likelihood orderings only apply to the top level of the
likelihood orderings. ��

Proof of Proposition 2 Consider, for all players i , the sequence 〈Sni 〉∞n=0 defined in
Definition 7. We show, by induction on n, that Ci (Ri (Ln

i )) = Sn+1
i for all players i

and every n ≥ 0.
Part (i). For n = 0, it follows by part (i) of the proof of Proposition 1, that

Ci (Ri (L0
i )) = ai (S−i ) = ai (S0−i ) ∩ Si = S1i for all players i .

Part (ii). Let n ≥ 1, and assume that, for all players i , Ci (Ri (Lm
i )) = Sm+1

i for
every m ∈ {0, . . . , n − 1}. We show that, for all players i , Ci (Ri (Ln

i )) = Sn+1
i .

Fix a player i . By definition, we have that

Ln
i = La

i (R−i (L0−i )) ∩ La
i (R−i (L1−i )) ∩ · · · ∩ La

i (R−i (Ln−1
−i )).

By the induction assumption, we know that C−i (R−i (Lm
−i )) = Sm+1

i for every m ∈
{0, . . . , n − 1}, and hence
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1270 G. B. Asheim, A. Perea

La
i (R−i (Lm

−i )) = {
Li ∈ L∗

i | Li assumes C−i (R−i (Lm
−i ))

}

= {Li ∈ L∗
i | Li assumes Sm+1

−i }
=

{
Li ∈ L∗

i | ∃k ∈ {1, . . . , K } such that L1
i ∪ · · · ∪ Lk

i = Sm+1
−i

}

for every m ∈ {0, . . . , n − 1}. This implies that

Ln
i =

{
Li ∈ L∗

i | ∀m ∈ {1, . . . , n}, ∃k ∈ {1, . . . , K } such that L1
i ∪ · · · ∪ Lk

i = Sm−i

}
.

Therefore, Ri (Ln
i ) contains exactly those preference restrictions (si , Ai ) such that si

is weakly dominated by some μi ∈ �(Ai ) on some Sm−i with m ≤ n:

Ri (Ln
i ) =

{

(si , Ai ) | there are m ∈ {0, . . . , n} and μi ∈ �(Ai )

such that si is weakly dominated by μi on Sm−i

}

and
Ci (Ri (Ln

i )) = ai (S
0−i ) ∩ ai (S

1−i ) ∩ · · · ∩ ai (S
n
−i ) = Sn+1

i ,

which completes the proof. ��
Proof of Proposition 4 Consider, for both players i , the sequence 〈�n

i 〉∞n=0 defined in
Definition 8. Consider also, for both players i , the sequence 〈L̃n

i 〉∞n=0 defined by

Ini* For both players i , let L̃0
i = L̃∗

i .

and FP. Note thatL1
i ⊆ L̃0

i ⊆ L0
i , so by induction, for every n ≥ 1,Ln+1

i ⊆ L̃n
i ⊆ Ln

i .
Since also the algorithm defined by Ini* and FP converges after a finite number of
rounds, as the set of likelihood orderings is finite, we have that L̃∞

i := ⋂∞
n=1 L̃n

i equals
L∞
i . Thus, it is sufficient to show that there exists Li ∈ L̃n

i such that Ai = Ci (Ri (Li ))

if and only if Ai ∈ �n+1
i , for both players i and every n ≥ 0. We show this by

induction on n.
Part (i). For n = 0, we have that L̃0

i = L̃∗
i and thus, Li ∈ L̃0

i if and only if
Li = (L1

i ) = S j or Li = (L1
i , L

2
i ) = (S′

j , S j\S′
j ) for some non-empty proper subset

S′
j of S j . Hence, there is Li ∈ L̃0

i such that (si , Ai ) ∈ Ri (Li ) if and only if there
exist (∅ �=) S′

j ⊆ S j and μi ∈ �(Ai ) such that si is weakly dominated by μi on

S′
j or S j . Therefore, there is Li ∈ L̃0

i such that Ai ∈ Ci (Ri (Li )) if and only if
Ai = ai (S′

j ) ∩ ai (S j ) for some (∅ �=) S′
j ⊆ S j . It now follows from the definition of

the operator αi (�
′
j ) that there is Li ∈ L̃0

i such that Ai ∈ Ci (Ri (Li )) if and only if

Ai ∈ αi (� j ) = αi (�
0
j ) = �1

i , since �0
j = � j .

Part (ii). Now, let n ≥ 1, and assume that for both players i , there exists Li ∈ L̃n−1
i

such that Ai = Ci (Ri (Li )) if and only if Ai ∈ �n
i .
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Fix a player i . By FP, Li ∈ L̃n
i is equivalent to there existing (∅ �=)L j ⊆ L̃n−1

j
such that Li = (S′

j , S j\S′
j ) if S′

j �= S j and Li = (S j ) otherwise, where S′
j =

∪L j∈L j C j (R j (L j )). By the induction assumption this is equivalent to there existing
(∅ �=)�′′

j ⊆ �n
j such that Li = (S′

j , S j\S′
j ) if S

′
j �= S j and Li = (S j ) otherwise,

where S′
j = ∪A j∈�n−1

j
A j . Therefore, there is Li ∈ L̃n

i such that Ai = Ci (Ri (Li ))

if and only if Ai = ai (∪A j∈�′′
j
A j ) ∩ ai (S j ) for some (∅ �=)�′′

j ⊆ �n
j . It now

follows from the definition of the operator αi (�
′
j ) that there is Li ∈ L̃n

i such that

Ai = Ci (Ri (Li )) if and only if Ai ∈ αi (�
n
j ) = �n+1

i , which completes the proof. ��

Proof of Proposition 5 Let 〈Ln
1,Ln

2〉∞n=1 be the sequence of likelihoodorderings accord-
ing to the algorithm for proper rationalizability (cf. Sect. 3.3). It is sufficient to show,
under the assumptions of the proposition, that for every n ≥ 0 and both players i ,
it holds that, for every si ∈ Si\Sn+1

i , (si , {ai }) ∈ Ri (Ln
i ) for every ai ∈ An+1

i . In
this case, namely, every properly rationalizable strategy is in

⋂∞
n=1 S

n
i . We show by

induction that the statement above is true.
Part (i). Let n = 0. If S1i = Si , so that there is no si ∈ Si\S1i , then the statement is

trivially true. If S1i �= Si , then, by the premise of the proposition, for every si ∈ Si\S1i ,
si is weakly dominated by every ai ∈ A1

i on S j . Hence, by the full support assumption,
(si , {ai }) ∈ Ri (L∗

i ) = Ri (L0
i ), implying that the statement is true also in this case.

Part (ii). Let n ≥ 1, and assume that, for everym ∈ {0, . . . , n − 1} and both players
i , it holds that, for every si ∈ Si\Sm+1

i , (si , {ai }) ∈ Ri (Lm
i ) for every ai ∈ Am+1

i .
Fix a player i . We first make the observation that, for every m ∈ {1, . . . , n}, every

Li = (L1
i , . . . , L

K
i ) ∈ Lm

i satisfies that there exists k ∈ {1, . . . , K } such that Am
j ⊆

L1
i ∪ · · · ∪ Lk

i ⊆ Smj . This is true by the full support assumption if Smj = S j (and thus

Am
j = S j , by the last bullet point of Proposition 5 and fact that A0

j = S j ). Assume
now Smj �= S j . By the algorithm for proper rationalizability, every Li ∈ Lm

i respects

R j (Lm−1
j ), implying that there exists k ∈ {1, . . . , K } such that (L1

i ∪· · ·∪Lk
i )∩{a j } �=

∅ for every a j ∈ Am
j and (L1

i ∪ · · · ∪ Lk
i ) ∩ {s j } = ∅ for every s j ∈ S j\Smj , and the

observation follows also in this case.
If Sn+1

i = Si , then the statement is trivially true also for n ≥ 1.
If Sn+1

i �= Si , let (0 ≤) m ≤ n satisfy Sn+1
i = Sm+1

i �= Smi . By a premise of the
proposition, for every si ∈ Si\Sm+1

i , si is weakly dominated by every ai ∈ Am+1
i

on either (Am
j and Smj ) or S j . If si is weakly dominated by ai on Am

j and Smj , then
si is weakly dominated by ai on each strategy set S′

j satisfying Am
j ⊆ S′

j ⊆ Smj .

By the observation that every Li = (L1
i , . . . , L

K
i ) ∈ Lm

i satisfies that there exists
k ∈ {1, . . . , K } such that Am

j ⊆ L1
i ∪· · ·∪Lk

i ⊆ Smj it follows that (si , {ai }) ∈ Ri (Lm
i ).

If si is weakly dominated by ai on S j , then by the full support assumption, (si , {ai }) ∈
Ri (L∗

i ) = Ri (L0
i ). Hence, since the sequence of sets of likelihood orderings is non-

increasing, so that Ln
i ⊆ Lm

i ⊆ L0
i and thus, Ri (Ln

i ) ⊇ Ri (Lm
i ) ⊇ Ri (L0

i ), for every
si ∈ Si\Sn+1

i , (si , {ai }) ∈ Ri (Ln
i ) for every ai ∈ An+1

i . ��
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Proof of Proposition 6 The proof is divided into two parts. In part (i) we show that the
strategies in Si\({k} ∪ {w}) are not properly rationalizable. In part (ii) we show that k
and w are properly rationalizable.

Part (i). Let 〈Ln
1,Ln

2〉∞n=1 be the sequence of sets of likelihood orderings for the
finite version of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment
bargaining game with zero commitment cost, according to the algorithm for proper
rationalizability (cf. Sect. 3.3). In order to show that the strategies in Si\ ({k} ∪ {w}) =
{0, 1, . . . , k − 1} are not properly rationalizable, it is sufficient to show that for each
player i , it holds that (a) for every si ∈ {0, 1, . . . , βi }, (si , {w}) ∈ Ri (L0

i ), and (b) for
every si ∈ {βi + 1, βi + 2, . . . , k − 1}, (si , {k}) ∈ Ri (L1

i ), keeping in mind that the
sequence of sets of likelihood orderings is non-increasing, so that Ln

i ⊆ L1
i ⊆ L0

i and
thus, Ri (Ln

i ) ⊇ Ri (L1
i ) ⊇ Ri (L0

i ) for every n ≥ 1.
Result (a) follows from the fact that, for each player i and for every si ∈

{0, 1, . . . , βi }, w weakly dominates si on S j . (To see this, note that if the opponent
choosesw, then player i’s payoff by choosingw isβi , while it is {0, 1, . . . , βi } if player
i commits to one of these demands, and if the opponent chooses s j ∈ {0, 1, . . . , k}, then
player i’s payoff by choosingw is 1−s j , while it is nomore than 1−s j and sometimes
0 if si ∈ {0, 1, . . . , βi }.) Hence, for each player i and for every si ∈ {0, 1, . . . , βi },
(si , {w}) ∈ Ri (L∗

i ) = Ri (L0
i ). This result implies that, for each player i , every Li =

(L1
i , . . . , L

K
i ) ∈ L1

i = Lr
i (R j (L0

j )) satisfies that there exists k ∈ {1, . . . , K } such that
{w} ⊆ L1

i ∪· · ·∪ Lk
i ⊆ {β j +1, β j +2, . . . , k}∪{w}. Result (b) follows from the fact

that, for each player i and for every si ∈ {βi+1, βi+2, . . . , k−1}, k weakly dominates
si on each strategy set S′

j satisfying {w} ⊆ S′
j ⊆ {β j +1, β j +2, . . . , k}∪{w}. Hence,

for each player i and for every si ∈ {βi + 1, βi + 2, . . . , k − 1}, (si , {k}) ∈ Ri (L1
i ).

Part (ii). We establish that k and w are properly rationalizable in the finite version
of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment bargaining game
with zero commitment cost, by showing that both k and w can be used with positive
probability in a proper equilibrium; thus, they are properly rationalizable (Asheim
2001, Proposition 2). To prove this claim, consider the likelihood orderings

L1 = {{w}, {1}, {2}, . . . , {β2 − 1}, {k}, {k − 1}, . . . , {β2 + 1}, {β2}, {0}} ,

L2 = {{k}, {k − 1}, . . . , {β1 + 1}, {w}, {β1}, {β1 − 1}, . . . , {1}, {0}}.

Since each element in either of these partitions contains only one strategy, they deter-
mine a pair of LPSs. It is straightforward to check that this pair of LPSs determines
a proper equilibrium, according to Blume et al.’s (1991b, Proposition 5) character-
ization, where player 1 chooses k with probability 1 and player 2 chooses w with
probability 1. ��

Claim Consider the finite version of Ellingsen and Miettinen’s (2008, Section I)
bilateral commitment bargaining game with zero commitment cost. Assume that
x1(s1, s2) = s1 and x2(s2, s1) = s2 if s1 + s2 ≤ k.

(i) There exists a proper equilibrium where both players assign probability 1 to k.
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(ii) For both players i and any strategy � ∈ {βi + 1, βi + 2, . . . , k − 1}, there exists
a perfect equilibrium where player i assigns positive probability to both w and �

and player j assigns probability 1 to k.

Proof Part (i). Consider the LPSs

λ1 =
{
λ11, . . . , λ

k+1
1

}

λ2 =
{
λ12, . . . , λ

k+1
2

}
,

where for both players i and each � ∈ {1, . . . , k + 1}, the support of λ�
i is included

in {w, k + 1 − �} for � ∈ {1, . . . , β j + 1}, {w, 1} for � = β j + 2, {w, k + 2 − �} for
� ∈ {β j + 3, . . . , k}, and {w, 0} for � = k + 1. Let, for each � ∈ {1, . . . , k + 1}, λ�

i be
determined by ui (w, λ�

i ) = ui (k − 1, λ�
i ). This means that

λ1i (w) = 0 λ1i (k) = 1

λ2i (w) = 1
β j

λ2i (k − 1) = β j−1
β j

λ3i (w) = 2
β j+1 λ3i (k − 2) = β j−1

β j+1

· · · · · ·
λ

β j+1
i (w) = β j

2β j−1 λ
β j+1
i (βi ) = β j−1

2β j−1

λ
β j+2
i (w) = 0 λ

β j+2
i (1) = 1

λ
β j+3
i (w) = β j+1

2β j
λ

β j+3
i (βi − 1) = β j−1

2β j

· · · · · ·
λki (w) = k−2

β j+k−3 λki (2) = β j−1
β j+k−3

λk+1
i (w) = 1

β j
λk+1
i (0) = β j−1

β j

The LPSs λ1 and λ2 determine the following likelihood orderings:

L1 = {{k}, {w, k − 1}, {k − 2}, . . . , {β1 + 1}, {β1}, {1}, {β1 − 1}, . . . , {2}, {0}} ,

L2 = {{k}, {w, k − 1}, {k − 2}, . . . , {β2 + 1}, {β2}, {1}, {β2 − 1}, . . . , {2}, {0}} .

It can be checked that L1 respects the preference restrictions that u2 and λ2 give rise
to, and L2 respects the preference restrictions that u1 and λ1 give rise to. To see this
in the case of L1 (the demonstration for L2 is symmetric), note:

(a) Player 2 ranks the commitment strategies 0, 2, 3, . . . , k according to size since
u2(s2, λ12) = 0 and u2(s2, λ22) = s2/β1 for s2 ∈ 0, 2, 3, . . . , k.

(b) Player 2 is indifferent between the commitment strategy k−1 and waitingw since,
by construction, u2(w, λ�

2) = u2(k − 1, λ�
2) for all � ∈ {1, . . . , k + 1}.

(c) Player 2 ranks the commitment strategy 1 between the commitment strategies β1
and β1 − 1 since
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u2(β1, λ
1
2) = u2(1, λ

1
2) = u2(β1 − 1, λ12) = 0 ,

u2(β1, λ
2
2) = u2(1, λ

2
2) = 1 > u2(β1 − 1, λ22) = β1−1

β1
,

u2(β1, λ
3
2) = 2β1

β1+1 > u2(1, λ
3
2) = 1,

since β1 > 1 and x2(1, k − 2) = 1.

It follows from Blume et al.’s (1991b, Proposition 5) characterization that (λ11, λ
1
2),

where λ12 is the mixed strategy of player 1 and λ11 is the mixed strategy of player 2, is
a proper equilibrium. Note that, for both players i , λ1i (k) = 1.

Part (ii). Let � be any player 1 strategy in {β1 + 1, β1 + 2, . . . , k − 1}. Consider
the LPSs λ1 = {λ11, . . . , λk+1

1 } and λ2 = {λ12, λ22} defined by

λ11(w) = 0 λ11(k) = 1 λ12(w) = β2
k λ12(�) = 1 − β2

k

λ21(w) = 0 λ21(k − �) = 1 λ22(s1) = 1
k for all s1 ∈ S1\{w, �}

λ31(w) = 1
�−β1+1 λ31(k − 1) = �−β1

�−β1+1
· · · · · ·
λ�+1
1 (w) = �−1

2�−β1−1 λ�+1
1 (k − � + 1) = �−β1

2�−β1−1

λ�+2
1 (w) = 1

�−β1+1 λ�+2
1 (k − � − 1) = �−β1

�−β1+1

· · · · · ·
λk1(w) = k−�−1

k−β1−1 λk1(1) = �−β1
k−β1−1

λk+1
1 (w) = k−�

k−β1
λk+1
1 (0) = �−β1

k−β1
,

with, for each level of these LPSs, zero probability assigned to other strategies.
These LPSs imply that player 1 is indifferent between w and � and that player 1

prefers each of these strategies to any strategy in S1\{w, �}, and that player 2 prefers
k to any strategy in S2\{k}. To see this, note:

(a) It follows that player 1 strictly prefers each ofw and � to any strategy in S1\{w, �}
since u1(s1, λ11) = 0 for all s1 ∈ S1 and u1(w, λ21) = u1(�, λ21) = �, while
u1(s1, λ21) = s1 < � if s1 is a commitment strategy in {1, 2, . . . , � − 1} and
u1(s1, λ21) = 0 < � if s1 is a commitment strategy in {� + 1, � + 2, . . . , k}. It
follows that player 1 is indifferent between w and � since λ31, λ

4
1, . . . , λ

k+1
1 have

been constructed so that u1(w, λm1 ) = u1(�, λm1 ) for each m ∈ {3, 4, . . . , k + 1}.
(b) It follows that player 2 strictly prefers k to any strategy in S2\{k} since u2(k, λ12) =

β2 and u2(s2, λ12) < β2 for all s2 ∈ S2\{k}.
Since both λ1 and λ2 have full support on the set of opponent strategies, it follows

from Blume et al.’s (1991b, Proposition 4) characterization that (λ11, λ
1
2), where λ12 is

the mixed strategy of player 1 and λ11 is the mixed strategy of player 2, is a perfect
equilibrium where player 1 assigns positive probability to both w and � and player 2
assigns probability 1 to k.

In a similar fashion we can show that, for any player 2 strategy � ∈ {β2 + 1, β2 +
2, . . . , k − 1}, there exists a perfect equilibrium where player 1 assigns probability 1
to k and player 2 assigns positive probability to both w and �. ��
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