
Games and Economic Behavior 72 (2011) 510–525
Contents lists available at ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

An algorithm for proper rationalizability ✩

Andrés Perea

Maastricht University, Department of Quantitative Economics, P.O. Box 616, 6200 MD, Maastricht, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2009
Available online 27 October 2010

JEL classification:
C72

Keywords:
Epistemic game theory
Proper rationalizability
Algorithms

Proper rationalizability (Schuhmacher, 1999; Asheim, 2001) is a concept in epistemic game
theory based on the following two conditions: (a) a player should be cautious, that is,
should not exclude any opponent’s strategy from consideration; and (b) a player should
respect the opponents’ preferences, that is, should deem an opponent’s strategy si infinitely
more likely than s′

i if he believes the opponent to prefer si to s′
i . A strategy is properly

rationalizable if it can optimally be chosen under common belief in the events (a) and (b).
In this paper we present an algorithm that for every finite game computes the set of all
properly rationalizable strategies. The algorithm is based on the new idea of a preference
restriction, which is a pair (si, Ai) consisting of a strategy si , and a subset of strategies Ai ,
for player i. The interpretation is that player i prefers some strategy in Ai to si . The
algorithm proceeds by successively adding preference restrictions to the game.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In a game, it is natural to assume that a player reasons about his opponents before making a decision. Namely, in order
to evaluate the possible consequences of a decision, the player must form some belief about his opponents’ choices which,
in turn, must be based on some belief about his opponents’ beliefs about their opponents’ choices, and so on. It is the goal
of epistemic game theory to formally describe such reasoning processes, and to investigate their behavioral implications.

Proper rationalizability (Schuhmacher, 1999; Asheim, 2001) is a concept within epistemic game theory that is based
upon the following two assumptions:

• a player should be cautious, that is, a player should not exclude any opponent’s strategy from consideration;
• a player should respect the opponents’ preferences, that is, if the player believes that an opponent prefers strategy si to

strategy s′
i , then the player should deem si much more likely (in fact, infinitely more likely) than s′

i .

Any strategy that can be chosen optimally under common belief in these two events is called properly rationalizable.
In order to define proper rationalizability formally we can no longer model the players’ beliefs by standard probability

distributions. Suppose, for instance, that player 1 believes that player 2 prefers strategy a to strategy b. If player 1’s belief
about 2’s choice would be modeled by a single probability distribution then player 1 should assign probability 0 to b, since
he must respect 2’s preferences. This, however, would contradict the assumption that he is cautious.

A possible way to define proper rationalizability is by means of sequences of probability distributions, as Schuhmacher
(1999) does, or by using lexicographic probability systems, as Asheim (2001) does. Both frameworks can model a state of
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mind in which you deem some opponent’s strategy si infinitely more likely than some other strategy s′
i , without completely

discarding the latter choice.
The practical disadvantage of these richer frameworks is that, in many examples, it makes the computation of properly

rationalizable strategies rather difficult. This is probably also the reason that proper rationalizability, despite its strong
intuitive appeal, has not received as much attention as many other concepts in game theory. It would therefore be very
useful to have an algorithm helping us to compute these properly rationalizable strategies. Schuhmacher (1999) presents a
procedure, called iteratively proper trembling, that for any given ε > 0 yields the set of ε-properly rationalizable strategies.
By letting ε tend to zero, we finally would obtain the set of properly rationalizable strategies. So, in a sense, Schuhmacher’s
procedure only indirectly leads to the set of properly rationalizable strategies, as we first have to apply the procedure for a
sequence of small ε’s, and then let ε go to zero.

Schulte (2003) provides another algorithm designed for proper rationalizability, called iterated backward inference. This
procedure does not exactly yield the set of properly rationalizable strategies, as its output may contain strategies that are
not properly rationalizable. The output, however, always includes the set of properly rationalizable strategies.

In this paper we present an algorithm, called iterated addition of preference restrictions, that directly delivers the set of all
properly rationalizable strategies in every finite game. The algorithm is based on the new notion of a preference restriction.
Formally, a preference restriction for player i is a pair (si, Ai), where si is a strategy and Ai a subset of strategies for
player i. The interpretation is that player i prefers some strategy in Ai to si , without specifying which one (unless Ai

contains only one strategy, of course). A lexicographic belief for player i about his opponents’ strategies is a finite sequence
λi = (λ1

i , . . . , λ
K
i ) of probability distributions on S−i , the set of opponents’ strategy combinations, such that every strategy

combination s−i in S−i receives positive probability under some probability distribution λk
i in this sequence. For every

k ∈ {1, . . . , K }, we call λk
i the level k belief. The lexicographic belief λi deems some strategy combination s−i infinitely more

likely than some other strategy combination s′
−i if there is some level k such that s−i receives positive probability under

the level k belief λk
i , whereas s′

−i receives probability zero under the first k levels. We say that λi respects a preference
restriction (s j, A j) for opponent j if it deems some strategy in A j infinitely more likely than s j . This thus mimics the
condition in proper rationalizability that i must respect j’s preferences. The lexicographic belief λi is said to assume a subset
D−i ⊆ S−i of strategy combinations if it deems every element in D−i infinitely more likely than every element outside D−i

(cf. Brandenburger et al., 2008).
The algorithm we present proceeds by inductively adding preference restrictions, until no further preference restrictions

can be produced. At round 1, we start with the empty set of preference restrictions for all players. In every subsequent
round, we add a preference restriction (si, Ai) for player i if every lexicographic belief on S−i that respects all current
preference restrictions for i’s opponents, assumes some subset D−i ⊆ S−i on which si is weakly dominated by some ran-
domized strategy on Ai . We continue this process until no further preference restriction can be added. Among the final set
of preference restrictions for player i, we look for those strategies si that are not part of any preference restriction (si, Ai).
We show that these strategies are exactly the properly rationalizable strategies for player i.

So, at every round the algorithm produces, for each player, a set of preference restrictions. As the set of preference
restrictions can only grow at every round, and there are only finitely many possible preference restrictions, the algorithm
must stop after finitely many rounds.

Not only can this algorithm be used to compute the properly rationalizable strategies in a game, it also represents
a natural inductive reasoning procedure for the players, that eventually leads them to properly rationalizable choices. The
central object in this reasoning process is that of a preference restriction. If we add a preference restriction (si, Ai) for
player i, then epistemically this means that i’s opponents believe that i prefers some strategy in Ai to si . Moreover, if i’s
opponents respect i’s preferences, as we assume in proper rationalizability, then i’s opponents will also deem some strategy
in Ai infinitely more likely than si . Thus, by adding preference restrictions at every round, we further and further restrict the
possible lexicographic beliefs that players can plausibly hold about their opponents’ choices. In a sense, what the algorithm
shows is that, in order to reason your way toward properly rationalizable strategies, it is sufficient to keep track of the
players’ preference restrictions. At every round, by considering the current preference restrictions, we can possibly derive
new preference restrictions, thus further restricting the players’ possible lexicographic beliefs, until this reasoning process
cannot produce any new preference restrictions. This is where the reasoning procedure ends, and by looking at the final
preference restrictions we can find all the properly rationalizable strategies in the game.

In the algorithm we present, the objects of output are different than in Schuhmacher’s procedure. There, the procedure
delivers at every round, and for every player i, a set of full support probability distributions on player i’s strategies, where
this set becomes smaller with every round. As there are infinitely many possible sets of full support probability distributions,
Schuhmacher’s procedure can produce infinitely many possible outputs in every round. This is a major difference with the
algorithm we propose, where at every round there is only a finite number of possible outputs, namely the preference
restrictions at that round.

Note also that the algorithm in this paper is fundamentally different from most other inductive concepts in epistemic
game theory, which usually proceed by successively eliminating strategies from the game. Think, for instance, of iterated
elimination of strictly (weakly) dominated strategies, and the Dekel–Fudenberg procedure (Dekel and Fudenberg, 1990) con-
sisting of one round of elimination of weakly dominated strategies, followed by iterated elimination of strictly dominated
strategies. So, why did we not base the algorithm on elimination of strategies as well? The reason is that iterated elimina-
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d e f
a 0,0 0,1 3,1
b 1,1 1,0 1,1
c 2,1 2,1 2,0

Fig. 1. Why elimination of strategies does not work.

tion of strategies cannot work for proper rationalizability. In Section 2 we provide an example that shows this. Hence, an
algorithm for proper rationalizability must necessarily be of a different nature than the ones we are used to.

The outline of the paper is as follows. In Section 2 we show, by means of an example, why successive elimination of
strategies does not work for proper rationalizability. In Section 3 we give a formal definition of proper rationalizability, by
making use of lexicographic probability systems. In Section 4 we present the algorithm, illustrate it by means of an example,
and state our main theorem showing that the algorithm produces exactly the set of properly rationalizable strategies. In
Section 5 we discuss some important properties of the algorithm: We show how the algorithm can be viewed as a natural
inductive reasoning procedure, and explain why the order in which we add preference restrictions does not matter for the
eventual output. Section 6, finally, contains all the proofs.

2. Why elimination of strategies does not work

Most algorithms in the epistemic game theory literature proceed by successively eliminating strategies from the game.
Think, for instance, of iterated elimination of strictly (weakly) dominated strategies, and the Dekel–Fudenberg procedure
(Dekel and Fudenberg, 1990) consisting of one round of elimination of weakly dominated strategies, followed by iterated
elimination of strictly dominated strategies. As announced in the introduction, the algorithm we propose for proper ratio-
nalizability is of a different nature since it is based on successively adding preference restrictions rather than eliminating
strategies. A natural question is why we do not stick to the process of eliminating strategies here. In this section we show
why elimination of strategies does not work for proper rationalizability.

Let us first be precise about the class of strategy elimination procedures we consider. All the elimination procedures
mentioned above have in common that at each round, only weakly dominated strategies in the reduced game (but not
necessarily all) are eliminated. Now, say that a strategy elimination procedure is regular if at every round, it eliminates a
(possibly empty) subset of the set of weakly dominated strategies in the reduced game.

We will show, by means of an example, that a regular strategy elimination procedure cannot work for proper rational-
izability. Consider the game in Fig. 1, where player 1 is the row player and player 2 the column player. Let us first see
what proper rationalizability does for this example. Since player 1 prefers c to b, player 2 must deem c infinitely more
likely than b. But then, player 2 will prefer e to f , and hence player 1 must deem e infinitely more likely than f . This,
in turn, implies that player 1 prefers b to a, and therefore player 2 must deem b infinitely more likely than a. So, overall,
player 2 must deem c infinitely more likely than b, and b infinitely more likely than a. As a consequence, player 2 must
choose d, and player 1 must choose c. Hence, proper rationalizability uniquely selects strategy c for player 1, and strategy d
for player 2.

We now show that a regular strategy elimination procedure can never eliminate strategy e for player 2. Note that there
is only one weakly dominated strategy in the full game, namely b. So, at the first round we either eliminate nothing, or
we eliminate strategy b for player 1. However, if we eliminate b, then strategy e can never become weakly dominated in
any smaller game, so we would never be able to eliminate strategy e after eliminating b. Hence, we see that by applying
a regular strategy elimination procedure, we will never eliminate strategy e from the game, despite the fact that e is not
properly rationalizable. Such a procedure can therefore not work for proper rationalizability.

The key problem here is that, according to proper rationalizability, player 2 must deem b infinitely more likely than a
(see our argument above). However, at the same time, a regular strategy elimination procedure can only eliminate strategy
b at the beginning, which amounts to requiring that player 2 must deem the remaining strategies, a and c, infinitely more
likely than b. This, obviously, produces a conflict.

3. Definition of proper rationalizability

The concept of proper rationalizability has first been defined by Schuhmacher (1999). More precisely, Schuhmacher intro-
duces for every ε > 0 the ε-proper trembling condition as an analogue to Myerson’s (1978) condition underlying proper
equilibrium. For a given ε, the concept of ε-proper rationalizability is formalized by imposing common belief in the ε-proper
trembling condition. Proper rationalizability is obtained, finally, by letting ε approach 0. Although Schuhmacher provides, for
every ε > 0, an epistemic model for ε-proper rationalizability, he does not give a direct epistemic foundation for the limiting
concept of proper rationalizability. Later, Asheim (2001) has provided an epistemic foundation for the limiting concept of
proper rationalizability in two-player games, making use of lexicographic beliefs. In this section, we use Asheim’s model and
extend it to more than two players.
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3.1. Lexicographic probability systems

Lexicographic probability systems have been formally introduced by Blume et al. (1991a, 1991b) as a possible way to
represent a decision maker’s belief about the state of the world. The essential feature is that it allows the decision maker
to deem one state much more likely (in fact, infinitely more likely) than some other state, without completely ignoring the
latter state when making a decision.

More formally, let X be some finite set of states. By �(X) we denote the set of all probability distributions on X .
A lexicographic probability system (LPS) on X is a finite sequence of probability distributions

λ = (
λ1, λ2, . . . , λK )

,

with λk ∈ �(X) for all k ∈ {1, . . . , K }. We refer to λ1 as the decision maker’s level 1 belief, to λ2 as his level 2 belief, and so on.
The interpretation is that the decision maker attaches much more importance to his level 1 belief than to his level 2 belief,
attaches much more importance to his level 2 belief than to his level 3 belief, and so on, without completely discarding any
of these beliefs. For every state x ∈ X , let rk(x, λ) be the first level k for which λk(x) > 0. If λk(x) = 0 for every k ∈ {1, . . . , K },
set rk(x, λ) = ∞. We call rk(x, λ) the rank of state x within the LPS λ. We say that the LPS λ deems state x infinitely more
likely than some other state y if x has a lower rank that y.

3.2. Epistemic model

Consider a finite static game Γ = (Si, ui)i∈I where I is the finite set of players, the finite set Si denotes the set of
strategies for player i, and ui : ∏ j∈I S j → R denotes player i’s utility function. We assume that player i does not only have
a belief about his opponents’ strategy choices, but also about the possible beliefs that his opponents could have about the
other players’ strategy choices, and about the possible beliefs that the opponents could have about the possible beliefs that
their opponents could have about the other players’ strategy choices, and so on. That is, player i holds a full belief hierarchy
about the opponents’ choices and the opponents’ beliefs. If we assume, moreover, that each of the beliefs in this hierarchy
can be represented by an LPS, this leads to the following epistemic model.

Definition 3.1 (Epistemic model). A finite epistemic model for the game Γ is a tuple (Ti, λi)i∈I where, for all players i, Ti is a
finite set of types, and λi is a function that assigns to every type ti ∈ Ti some LPS λi(ti) on the set S−i × T−i of opponents’
strategy–type combinations.

Here, S−i := ∏
j �=i S j denotes the set of opponents’ strategy combinations, and T−i := ∏

j �=i T j the set of opponents’ type
combinations. The interpretation is that λi(ti) represents the belief that type ti has about his opponents’ choices and beliefs.
For instance, the marginal of λi(ti) on S j represents the belief that ti has about opponent j’s choice. Since every opponent’s
type t j holds a belief about the other players’ choices, we can derive from λi(ti) as well the belief that type ti has about the
belief that player j has about his opponents’ choices, and so on. In fact, from λi(ti) we can derive the full belief hierarchy
that player i has about his opponents’ choices and beliefs.

The reader may wonder why we restrict attention to epistemic models with finitely many types for every player. The
reason is that this is sufficient for the purpose of this paper. In principle, we could allow for infinitely many types for
every player, and define proper rationalizability for such infinite epistemic models. But it can be shown that every properly
rationalizable strategy in a finite game can be supported by a properly rationalizable type within an epistemic model with
finitely many types only. So, we do not “overlook” any properly rationalizable strategies by concentrating on finite type
spaces only. As working with finite sets of types makes things easier, we have decided to solely concentrate on finite
epistemic models in this paper.

Note that within an epistemic model, the lexicographic belief λi(ti) = (λ1
i , . . . , λ

K
i ) of a type ti is, mathematically speak-

ing, an LPS on the set of states S−i × T−i . For every opponents’ strategy–type combination (s−i, t−i) ∈ S−i × T−i , we can
thus define the rank rk((s−i, t−i), λi(ti)) of (s−i, t−i) within λi(ti), being the lowest level k such that λk

i (s−i, t−i) > 0. Re-
member that, by convention, rk((s−i, t−i), λi(ti)) = ∞ whenever (s−i, t−i) does not receive positive probability anywhere in
λi(ti). We say that type ti deems the strategy–type combination (s−i, t−i) infinitely more likely than some other combination
(s′

−i, t′
−i) if the rank of (s−i, t−i) is lower than the rank of (s′

−i, t′
−i).

Similarly, we can define for every event E ⊆ S−i × T−i of opponents’ strategy–type combinations the associated rank by

rk
(

E, λi(ti)
) = min

{
r
(
(s−i, t−i), λi(ti)

) ∣∣ (s−i, t−i) ∈ E
}
.

Hence, the rank of E is the lowest level k such that λk
i assigns positive probability to some element in E . This definition

then allows us to define the rank of an individual opponent’s strategy–type pair (s j, t j), simply by taking the rank of the
event

{s j} ×
∏

Sk × {t j} ×
∏

Tk.
k �=i, j k �=i, j
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So, we first take the marginal of the LPS λi(ti) on S j × T j , and then take the rank of (s j, t j) inside this marginal LPS. In a
similar fashion, we can also define the rank of an individual opponent’s type t j , and of an individual opponent’s strategy s j .
As such, we can formally state expressions like “λi(ti) deems (s j, t j) infinitely more likely than (s′

j, t′
j) for opponent j” or

“λi(ti) deems s j infinitely more likely than s′
j for opponent j”, which means that the rank of the former is smaller than the

rank of the latter.
We say that type ti deems possible some event E ⊆ S−i × T−i if there is some level k with λk

i (E) > 0. That is, E is deemed
possible if and only if rk(E, λi(ti)) �= ∞. Since we have defined the rank also for individual strategy–type pairs (s j, t j) and
for individual types t j , we can also formally define the event that type ti deems possible a strategy–type pair (s j, t j) for
opponent j, and that ti deems possible an opponent’s type t j . It simply means that the associated rank is not ∞.

3.3. Cautious types

Intuitively, caution means that the player should not fully exclude any opponent’s choice from consideration. The formal
definition is a little bit more subtle, however – it states that a type ti should not exclude any strategy choice for any
opponent’s type t j he considers possible. Hence, for every belief hierarchy that ti deems possible for his opponent j, and for
every strategy s j that j can possibly choose, type ti should deem possible the event that his opponent holds this belief
hierarchy and chooses s j .

Definition 3.2 (Cautious type). Consider an epistemic model with sets of types Ti for every player i. Type ti ∈ Ti is cautious
if, for every opponent j, every type t j ∈ T j he considers possible, and every strategy choice s j ∈ S j , type ti deems possible
the strategy–type pair (s j, t j).

3.4. Respecting the opponents’ preferences

The key condition in Asheim’s model for proper rationalizability is that a type should respect his opponents’ preferences. In
words it means that, whenever type ti believes that his opponent j prefers some strategy s j to some other strategy s′

j , then
he should deem s j infinitely more likely than s′

j . We must first define what it means, within our epistemic model, that a
type prefers some strategy to another strategy.

Consider a type ti with an LPS λi(ti) = (λ1
i , . . . , λ

K
i ) on S−i ×T−i . Then, for every level k ∈ {1, . . . , K } and every strategy si ,

we can define the level k expected utility

ui
(
si, λ

k
i

) :=
∑

(s−i ,t−i)∈S−i×T−i

λk
i (s−i, t−i) ui(si, s−i).

This is the expected utility that would result by choosing si under the belief λk
i .

Definition 3.3 (A type’s preference relation over strategies). Let ti ∈ Ti be a type with LPS λi(ti) = (λ1
i , . . . , λ

K
i ) on S−i × T−i .

Type ti prefers strategy si to some other strategy s′
i if there is some level k ∈ {1, . . . , K } such that ui(si, λ

k
i ) > ui(s′

i, λ
k
i ) and

ui(si, λ
l
i) = ui(s′

i, λ
l
i) for all l < k.

For later purposes, we say that type ti weakly prefers si to s′
i if ti does not prefer s′

i to si .

Definition 3.4 (Respecting the opponents’ preferences). Let ti ∈ Ti be a cautious type. Type ti respects the opponent’s prefer-
ences if, for every opponent j, every type t j ∈ T j deemed possible by ti , and every two strategies s j, s′

j such that t j prefers
s j to s′

j , type ti deems the pair (s j, t j) infinitely more likely than the pair (s′
j, t j).

3.5. Proper rationalizability

We say that a type ti is properly rationalizable if ti is cautious and respects the opponents’ preferences, believes that all
opponents are cautious and respect their opponents’ preferences, believes that all opponents believe that their opponents
are cautious and respect their opponents’ preferences, and so on. In other words, ti is cautious and respects the opponents’
preferences, and expresses common belief in the event that players are cautious and respect the opponents’ preferences.

Definition 3.5 (Common belief in “caution and respect of the opponents’ preferences”). A type ti expresses common belief in the
event that players are cautious and respect the opponents’ preferences if ti only deems possible opponents’ types that are
cautious and respect their opponents’ preferences, only deems possible opponents’ types that only deem possible opponents’
types that are cautious and respect their opponents’ preferences, and so on.

By additionally assuming that ti itself is cautious and respects the opponents’ preferences, we obtain the definition of a
properly rationalizable type.
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Definition 3.6 (Properly rationalizable type). A type ti is properly rationalizable if it is cautious and respects the opponents’
preferences, and moreover expresses common belief in the event that players are cautious and respect the opponents’
preferences.

Finally, we say that a strategy si is properly rationalizable for player i if it is optimal for some properly rationalizable
type. Formally, a strategy si is called optimal for type ti if ti weakly prefers si to any other strategy.

Definition 3.7 (Properly rationalizable strategy). A strategy si for player i is properly rationalizable if there is some finite
epistemic model (Ti, λi)i∈I and some properly rationalizable type ti ∈ Ti such that si is optimal for ti .

As we already mentioned before, the concept of a properly rationalizable strategy would not change if we would allow
for infinite epistemic models here.

4. Algorithm

In this section we will present an algorithm that always delivers all properly rationalizable strategies. Before doing so, we
first provide some intuitive arguments that eventually will lead to the algorithm. We will then state the algorithm formally,
and illustrate it by means of an example. Finally, we state our main result, namely that the algorithm yields precisely the
set of properly rationalizable strategies in every game. The proof for this result can be found in Section 6.

4.1. Road to the algorithm

In Section 2 we have seen that elimination of (subsets of) weakly dominated strategies cannot work for proper rational-
izability. So, what kind of procedure could work here? We start our informal investigation with the following well known
fact:

Step 1. Suppose that strategy si is weakly dominated on S−i by some randomized strategy μi ∈ �(Ai), where Ai is a subset
of strategies. Then, if player i is cautious, he will prefer some strategy in Ai to si . We say that (si, Ai) is a preference
restriction for player i.

Here, �(Ai) denotes the set of probability distributions on Ai . The reason for this fact is simple: If si is weakly dominated
by μi , then under every cautious lexicographic belief, si will be worse than μi , and hence there must be some ai ∈ Ai which
is better than si under such a cautious lexicographic belief. So, (si, Ai) will be a preference restriction for player i.

Suppose now that player i believes his opponents are cautious, and that he respects his opponents’ preferences. If some
opponent’s strategy s j is weakly dominated on S− j by some randomized strategy μ j ∈ �(A j), then we know by Step 1 that
player j will prefer some strategy in A j to s j in case he is cautious. As player i indeed believes he is cautious, and respects
j’s preferences, player i must deem some strategy in A j infinitely more likely than s j . We say that player i’s lexicographic
belief respects the preference restriction (s j, A j). This leads to the following observation:

Step 2. Suppose player i believes his opponents are cautious, and respects his opponents’ preferences. Then, i’s lexicographic
belief must respect every opponent’s preference restriction (s j, A j) generated in Step 1.

Say that a lexicographic belief for player i assumes a set D−i ⊆ S−i of opponents’ strategy combinations if it deems all
strategy combinations inside D−i infinitely more likely than all strategy combinations outside D−i . Suppose now that i’s
lexicographic belief is cautious, and assumes some set D−i of opponents’ strategy combinations. Assume, moreover, that
his strategy si is weakly dominated on D−i by a randomized strategy μi ∈ �(Ai). Then, i must prefer some strategy in Ai
to si . The argument is basically the same as for Step 1, if we would “reduce” the game to opponents’ strategy combinations
in D−i . We thus obtain the following step:

Step 3. Suppose that every lexicographic belief for player i respecting all preference restrictions from Step 1, assumes some
D−i ⊆ S−i on which si is weakly dominated by some μi ∈ �(Ai). Suppose, moreover, that player i is cautious, believes his
opponents are cautious, and respects the opponents’ preferences. Then, i must prefer some strategy in Ai to si . We say that
(si, Ai) is a new preference restriction for player i.

Of course, we can iterate this argument if we assume that player i is cautious, respects the opponents’ preferences,
and expresses common belief in the event that players are cautious and respect the opponents’ preferences. That is, if we
assume that player i’s type is properly rationalizable. The inductive step would then look as follows:

Inductive step. Suppose that every lexicographic belief for i that respects all preference restrictions generated so far, as-
sumes some D−i ⊆ S−i on which si is weakly dominated by some μi ∈ �(Ai). Then, if i is of a properly rationalizable type,
he must prefer some strategy in Ai to si . So, (si, Ai) would be a new preference restriction for player i.
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This would thus generate an inductive procedure in which at every step (possibly) some new preference restrictions
would be added for the players. Since there are only finitely many possible preference restrictions for the players, this
procedure must end after finitely many steps. Now, consider some player i, and his set of preference restrictions generated
by the procedure above. If player i is of some properly rationalizable type, we know from our arguments above that he will
never choose a strategy si if it is part of some preference restriction (si, Ai). In that case, namely, he would always prefer
some strategy in Ai to si , so si could not be optimal.

So, the procedure above rules out strategies that are certainly not properly rationalizable. But what about the converse?
So, what about strategies that are not ruled out by the procedure above? The main theorem in this paper, Theorem 4.6, will
show that the “surviving” strategies are all properly rationalizable! Hence, the procedure above will always select exactly
those strategies that are properly rationalizable – not more and not less.

4.2. Description of the algorithm

Before we state the algorithm, we first formally define the new concepts we described above, such as preference restric-
tions, what it means for a lexicographic belief to respect a preference restriction, and so on.

Definition 4.1 (Preference restriction). A preference restriction for player i is a pair (si, Ai) where si is a strategy, and Ai a
nonempty subset of strategies.

The interpretation is that player i prefers at least one strategy from Ai to si . Now, consider a lexicographic belief λi on
S−i , which is simply an LPS on S−i . From here on, we will always assume that such a lexicographic belief λi has full support
on S−i , that is, every strategy combination in S−i receives positive probability in some level of λi .

Definition 4.2 (Respecting a preference restriction). A lexicographic belief λi on S−i respects a preference restriction (s j, A j)

for player j if λi deems some strategy in A j infinitely more likely than s j .

This, in a sense, mimics the requirement that player i must respect j’s preferences.

Definition 4.3 (Assuming a set of opponents’ strategy combinations). Consider a subset D−i ⊆ S−i of opponents’ strategy com-
binations, and a lexicographic belief λi on S−i . The lexicographic belief λi assumes the set D−i if λi deems all strategy
combinations inside D−i infinitely more likely than all strategy combinations outside D−i .

This notion is based upon the idea of “assuming an event” in Brandenburger et al. (2008). Note that a lexicographic
belief λi = (λ1

i , . . . , λ
K
i ) on S−i assumes a subset D−i ⊆ S−i , if and only if, there is some level k ∈ {1, . . . , K } such that⋃

l�k supp(λl
i) = D−i . Here, supp(λl

i) denotes the support of the probability distribution λl
i .

A randomized strategy for player i is a probability distribution μi ∈ �(Si) on player i’s strategies. For a subset Ai ⊆ Si ,
we denote by �(Ai) the set of randomized strategies that assign positive probability only to strategies in Ai . For some
opponents’ strategy combination s−i ∈ S−i , let

ui(μi, s−i) :=
∑
si∈Si

μi(si) ui(si, s−i)

denote i’s expected utility from the randomized strategy μi and the opponents’ strategy combination s−i .

Definition 4.4 (Weakly dominated strategy). Let D−i ⊆ S−i be a subset of the opponents’ strategy combinations. Strategy si
is said to be weakly dominated by randomized strategy μi on D−i if ui(μi, s−i) � ui(si, s−i) for all s−i ∈ D−i , with strict
inequality for at least some s−i ∈ D−i .

We are now ready to present the algorithm. The idea is to start with the empty set of preference restrictions for all
players, and at every round to add new preference restrictions, if possible. For that reason, the algorithm is called “iterated
addition of preference restrictions”.

Algorithm 4.5 (Iterated addition of preference restrictions). In round 1, begin for all players i with the empty set of preference
restrictions.

At every further round n � 2, restrict for every player i to those lexicographic beliefs on S−i that respect all opponents’
preference restrictions generated so far. Add a new preference restriction (si, Ai) for player i if every such lexicographic
belief assumes some set D−i ⊆ S−i on which si is weakly dominated by some μi ∈ �(Ai).

Since the number of preference restrictions is finite, this algorithm must end after a finite number of rounds. We say
that strategy si survives the algorithm of iterated addition of preference restrictions if si is not part of any preference
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e f g h
a 3,3 0,0 1,1 0,0
b 0,0 3,3 1,1 0,0
c 1,0 1,0 1,1 5,0
d 4,0 4,0 4,0 4,0

Fig. 2. Illustration of the algorithm.

restriction (si, Ai) generated by the algorithm. Namely, if si were to be part of a preference restriction (si, Ai) produced by
the algorithm, then player i would prefer at least one strategy in Ai to si , and hence si could not be optimal.

4.3. Illustration of the algorithm

We will now illustrate the algorithm by means of an example. Consider the game from Fig. 2.

Round 1. We start with the empty set of preference restrictions for both players.

Round 2. Clearly, every lexicographic belief for player 2 assumes the set {a,b, c,d}. Since h is weakly dominated by e, f and
g on {a,b, c,d}, we add the preference restrictions

(
h, {e}), (h, { f }) and

(
h, {g})

for player 2.

Round 3. Every lexicographic belief for player 1 that respects the preference restrictions (h, {e}), (h, { f }) and (h, {g}) must
deem e, f and g infinitely more likely than h, and hence must assume the set {e, f , g}. On {e, f , g}, strategies a,b and c
are weakly dominated by d, and c is weakly dominated by the randomized strategy 1

2 a + 1
2 b. So, we add the preference

restrictions

(
a, {d}), (b, {d}), (c, {d}) and

(
c, {a,b})

for player 1.

Round 4. Every lexicographic belief for player 2 that respects the preference restriction (c, {a,b}) must deem a or b infinitely
more likely than c. So, every such belief must assume some set D1 ⊆ S1 that contains a or b, but not c. On every such
set D1, strategy g is weakly dominated by the randomized strategy 1

2 e + 1
2 f , and hence we add the preference restriction

(
g, {e, f })

for player 2.

After this round no new preference restrictions can be generated, apart from those that are “logically implied” by the
ones above. By this, we mean the following: If we take a preference restriction (si, Ai), then it logically implies all the
preference restrictions (si, Âi) with Ai ⊆ Âi .

So, the algorithm generates the preference restrictions

(
a, {d}), (b, {d}), (c, {d}) and

(
c, {a,b})

for player 1, and the preference restrictions

(
h, {e}), (h, { f }), (h, {g}) and

(
g, {e, f })

for player 2, plus those that are logically implied by these. For player 1, the only strategy s1 that is not part of a preference
restriction (s1, A1) is strategy d. For player 2, the only strategies s2 that are not part of a preference restriction (s2, A2) are
e and f . Hence, the strategies that survive iterated addition of preference restrictions are d for player 1, and e and f for
player 2. We show that d, e and f are exactly the properly rationalizable strategies in the game.

Consider the epistemic model as given in Table 1. This table should be read as follows: We consider two types for
player 1, {t1, t̂1}, and two types for player 2, {t2, t̂2}. Type t1 only deems possible opponent’s type t2, and deems the
strategy–type pair (e, t2) infinitely more likely than the strategy–type pair (g, t2), which he deems infinitely more likely
than ( f , t2), which, in turn, he deems infinitely more likely than (h, t2). Similarly for the other types in the model.

It can easily be verified that every type in this model is cautious and respects the opponent’s preferences. Therefore,
every type in this model expresses common belief in the event that both players are cautious and respect the opponent’s
preferences. This implies that every type in this model is properly rationalizable. As strategy d is optimal for t1 and t̂1,
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Table 1
An epistemic model for the game in Fig. 2.

Types T1 = {t1, t̂1}, T2 = {t2, t̂2}
Beliefs for player 1 λ1(t1) = ((e, t2), (g, t2), ( f , t2), (h, t2))

λ1(t̂1) = (( f , t̂2), (g, t̂2), (e, t̂2), (h, t̂2))

Beliefs for player 2 λ2(t2) = ((d, t1), (a, t1), (c, t1), (b, t1))

λ2(t̂2) = ((d, t̂1), (b, t̂1), (c, t̂1), (a, t̂1))

strategy e is optimal for t2, and strategy f is optimal for t̂2, we conclude that d, e and f are indeed properly rationalizable
strategies in this game.1

The reader may verify that there are no other properly rationalizable strategies in this game. As such, d, e and f are the
only properly rationalizable strategies in the game. So, in this example, the algorithm yields exactly the properly rationaliz-
able strategies for all players. Our main theorem in this paper states that this is always the case!

4.4. Main theorem

Our main theorem states that the algorithm of iterated addition of preference restrictions yields exactly the set of prop-
erly rationalizable strategies for every player.

Theorem 4.6 (Algorithm yields precisely the set of properly rationalizable strategies). Consider a finite static game. Then, a strategy si
is properly rationalizable, if and only if, si survives the algorithm of iterated addition of preference restrictions.

The proof for this result can be found in Section 6. The easier direction is to show that every properly rationalizable
strategy survives iterated addition of preference restriction. So, a properly rationalizable strategy si can never be part of
a preference restriction (si, Ai) generated by the algorithm. The proof for this direction is basically a formalization of the
intuitive arguments laid out at the beginning of this section. The more difficult direction is to prove that every strategy si
that is not part of any such preference restriction (si, Ai) is properly rationalizable. Hence, we must construct an epistemic
model in which each of these strategies si is supported by some properly rationalizable type. This construction is rather
delicate.

From the theorem, we can easily derive the following observation: If in a given game no strategy is weakly dominated,
then all strategies for the players are properly rationalizable. Namely, the algorithm we present will only generate preference
restrictions at the first round if there is at least some strategy that is weakly dominated within the full game. Otherwise,
the algorithm will not generate any preference restriction at all, and hence all strategies would survive the algorithm.

4.5. A finite formulation of the algorithm

The algorithm of iterated addition of preference restrictions as we have formulated it, proceeds by adding preference
restrictions and deleting lexicographic beliefs at every round. More precisely, we start with the empty set of preference
restrictions and the full set of lexicographic beliefs. At the first round we see whether we can add some preference re-
strictions. If so, then this would reduce the set of lexicographic beliefs, which at the next round could add some further
preference restrictions, and so on.

What is somewhat undesirable from a computational point of view is that there are infinitely many possible lexico-
graphic beliefs in the game. This would suggest that at every round in the algorithm we must scan through infinitely many
lexicographic beliefs. This, however, is not necessary. What matters for the algorithm is not so much the precise probabilities
in the lexicographic belief, but the induced “likelihood ordering” on opponents’ strategy combinations. More precisely, let
λi = (λ1

i , . . . , λ
K
i ) be a lexicographic belief on S−i . Remember our convention that λi has full support on S−i , that is, every

s−i ∈ S−i receives positive probability in some level λk
i . Let Li = (L1

i , . . . , LM
i ) be the ordered sequence of disjoint subsets

Lm
i ⊆ S−i such that (a) λi deems every s−i ∈ Lm

i infinitely more likely than every s′
−i ∈ Lm+1

i , for every m ∈ {1, . . . , M − 1},
(b) for every m and every s−i, s′

−i ∈ Lm
i , the LPS λi does not deem s−i infinitely more likely than s′

−i , nor vice versa, and
(c) the union of the sets in Li is S−i . We call Li the likelihood ordering induced by λi . Formally, we have the following
definition.

Definition 4.7 (Likelihood ordering). A likelihood ordering for player i on the opponents’ strategy combinations is an ordered
sequence Li = (L1

i , . . . , LM
i ) where L1

i , . . . , LM
i are pairwise disjoint subsets of S−i whose union is equal to S−i .

1 In fact, (d, e) and (d, f ) are proper equilibria (Myerson, 1978) in this game. Proper equilibria correspond to pairs (t1, t2) of properly rationalizable
types such that t1 only deems possible the opponent’s type t2, and t2 only deems possible the opponent’s type t1. (This follows from Blume et al.,
1991b, Proposition 5.) Note that the pairs (t1, t2) and (t̂1, t̂2) in Table 1 have this property, and they correspond to the proper equilibria (d, e) and (d, f ),
respectively. However, in general there are properly rationalizable strategies that cannot be supported by type pairs (t1, t2) that have the property above.
This is because not every properly rationalizable strategy is part of a proper equilibrium.
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So, the interpretation is that Li deems all strategy combinations in L1
i infinitely more likely than all strategy combinations

in L2
i , deems all strategy combinations in L2

i infinitely more likely than all strategy combinations in L3
i , and so on. It is clear

that there are only finitely many likelihood orderings in the game, since there are only finitely many strategies for every
player.

We can now easily extend the definitions of “respecting a preference restriction” and “assuming a set of opponents’
strategy combinations” to likelihood orderings. Say that a likelihood ordering Li = (L1

i , . . . , LM
i ) respects a preference restriction

(s j, A j) if Li deems some strategy in A j infinitely more likely than s j . Also, the likelihood ordering Li is said to assume the
set D−i of opponents’ strategy combinations if Li deems all strategy combinations inside D−i , infinitely more likely than all
strategy combinations outside D−i .

The algorithm of iterated addition of preference restrictions can thus alternatively be stated as follows:

Algorithm 4.8 (Finite version). In round 1, begin for all players i with the empty set of preference restrictions.
At every further round n � 2, restrict for every player i to those likelihood orderings on S−i that respect all opponents’

preference restrictions generated so far. Add a new preference restriction (si, Ai) for player i if every such likelihood ordering
assumes some set D−i ⊆ S−i on which si is weakly dominated by some μi ∈ �(Ai).

The advantage of this formulation is that at every round, we only have to scan through finitely many objects, as there are
only finitely many preference restrictions and likelihood orderings in the game. Obviously, this algorithm generates precisely
the same set of preference restrictions as the original procedure. As such, the properly rationalizable strategies are precisely
those strategies that survive this alternative algorithm.

5. Discussion

In this section we will discuss some important properties of the algorithm.

5.1. Algorithm as an inductive reasoning procedure

The algorithm is not merely a tool to compute the properly rationalizable strategies in a game, but can also be interpreted
as an inductive reasoning process that can be used by a player who reasons in the spirit of proper rationalizability. Consider
namely a fixed player in the game, say player i. In round 2, the algorithm would add for every opponent j a preference
restriction (s j, A j) if s j would be weakly dominated on S− j by a mixture on A j . In that case, player i would store the
preference restriction (s j, A j) in his mind, meaning that he believes that player j prefers some strategy in A j to s j . If i
respects j’s preferences, then he should consequently deem some strategy in A j infinitely more likely than s j . That is, the
preference restrictions that player i would store in his mind at round 2 would restrict the possible lexicographic beliefs he
could hold about his opponents’ choices. Moreover, if player i believes that his opponents reason similarly, then player i can
actually deduce the possible lexicographic beliefs that his opponents may hold at this round.

In the next round of his reasoning procedure, player i would then ask for every opponent j: Given his restricted set of
beliefs, would player j always assume some set D− j ⊆ S− j on which some strategy s j would always be weakly dominated
by a mixture on A j? If yes, then player i will store (s j, A j) as a new preference restriction in his mind. By doing so, player
i would then further restrict the possible lexicographic beliefs he could hold about his opponents. Player i could continue
this inductive reasoning procedure until no new preference restriction could be added, and hence his possible lexicographic
beliefs could not be restricted any further.

So we see that the algorithm may serve very well as an intuitive reasoning procedure for players, that will eventually lead
them to the properly rationalizable strategies in the game. What is crucial in this reasoning procedure is that a player only
needs to keep track of preference restrictions, which substantially simplifies matters compared to the original definition of
proper rationalizability. In that light, our main theorem thus says that in order to find the properly rationalizable strategies
in a game, it is sufficient for a player to think in terms of preference restrictions, and to reason in accordance with the
algorithm.

In the epistemic game theory literature, there are other algorithms that can nicely be interpreted as intuitive reason-
ing procedures. Take, for instance, the epistemic concept of common belief in rationality (Tan and Werlang, 1988) and the
associated algorithm of iterated elimination of strictly dominated strategies. Here, the algorithm can be seen as an epistemic
reasoning procedure in which a player successively deletes opponents’ strategies from his mind, since they can no longer
be optimal. At every round, this would then restrict the player’s possible beliefs as he must assign probability zero to these
strategies. These additional restrictions on the players’ beliefs could then induce further strategies that can be deleted, and
so on. So, in that procedure the players’ possible (non-lexicographic) beliefs are restricted further and further by deleting
strategies, whereas in our procedure the (lexicographic) beliefs are restricted further and further by adding new preference
restrictions.

A similar story can be told for the epistemic concept of iterated assumption of rationality within a complete type structure
(Brandenburger et al., 2008) and the associated algorithm of iterated elimination of weakly dominated strategies. Here, the
algorithm reflects an epistemic reasoning procedure in which a player with lexicographic beliefs iteratedly deletes weakly
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dominated strategies from his mind. At every round of this procedure, the player will then deem all surviving strategies
infinitely more likely than all deleted strategies, thus restricting the possible lexicographic beliefs he can hold (see Stahl,
1995, who proposes exactly this type of reasoning). So also in this procedure, the player’s possible beliefs are restricted in
every round by deleting strategies.

Other algorithms that can be interpreted as epistemic reasoning procedures are, for instance, the Dekel–Fudenberg pro-
cedure (Dekel and Fudenberg, 1990) for static games, and extensive form rationalizability (Pearce, 1984; Battigalli, 1997) and
backwards induction (Zermelo, 1913) for dynamic games.

5.2. Order independence

For the algorithm, it can be shown that the order and speed in which we add preference restrictions does not matter for
the eventual result. That is, it does not matter whether in every round we add all preference restrictions that can possibly
be generated, or only some of these.

To see this, let us compare two procedures, Procedure 1 and Procedure 2, where in the first we always add all possible
preference restrictions at every round, and in the second we only add some of the possible preference restrictions every time.
Then, first of all, Procedure 1 will at every round generate at least as many preference restrictions as Procedure 2. Namely,
at round 2 Procedure 1 generates as least as many preference restrictions, by definition. Therefore, at round 3 Procedure 1
restricts to a smaller set of lexicographic beliefs than Procedure 2. But then, under Procedure 1 it will be “easier” to generate
new preference restrictions at round 3 than under Procedure 2. Hence, at round 3 Procedure 1 will, again, generate at least
as many preference restrictions as Procedure 2, and so on. So, eventually, Procedure 1 will generate as least as many
preference restrictions as Procedure 2. The key argument here was that a larger set of preference restrictions will lead to a
smaller set of possible lexicographic beliefs, and a smaller set of possible lexicographic beliefs will in turn lead to a larger
set of induced preference restrictions. So, the algorithm is monotone in this sense.

On the other hand, it can also be shown that every preference restriction generated by Procedure 1 will also eventually
be generated by Procedure 2. Suppose, namely, that Procedure 1 would generate some preference restriction that would
not be generated at all by Procedure 2. Then, let k be the first round at which Procedure 1 would generate a preference
restriction, say (si, Ai), not generated by Procedure 2 at all. By construction of the algorithm, every lexicographic belief
for player i that respects all preference restrictions generated by Procedure 1 before round k, must assume some set D−i
on which si is weakly dominated by some μi ∈ �(Ai). By our assumption, all these preference restrictions generated by
Procedure 1 before round k are also eventually generated by Procedure 2, let us say before round m � k. But then, every
lexicographic belief for player i that respects all preference restrictions generated by Procedure 2 before round m, assumes
a set D−i on which si is weakly dominated by some μi ∈ �(Ai). Hence, Procedure 2 must add the preference restriction
(si, Ai) sooner or later, which is a contradiction since we assumed that Procedure 2 does not generate preference restriction
(si, Ai) at all. We thus conclude that every preference restriction added by Procedure 1 is also finally added by Procedure 2.
As such, Procedures 1 and 2 eventually generate exactly the same set of preference restrictions. So, indeed, the order and
speed in which we add preference restrictions is irrelevant to the algorithm.

6. Proofs

In this section we prove the main theorem (Theorem 4.6), stating that the algorithm of iterated addition of preference
restrictions selects exactly the set of properly rationalizable strategies in the game. We start by laying out three preparatory
results that will be useful for proving the main theorem.

6.1. Preparatory results

For our first preparatory result, we recall the definition of a likelihood ordering induced by an LPS as we gave it in Sec-
tion 4.5. Consider an LPS λi = (λ1

i , . . . , λ
K
i ) on S−i . Remember our convention that λi has full support on S−i , that is, every

s−i ∈ S−i receives positive probability in some level λk
i . Let Li = (L1

i , . . . , LM
i ) be the ordered sequence of disjoint subsets

Lm
i ⊆ S−i such that (a) λi deems every s−i ∈ Lm

i infinitely more likely than every s′
−i ∈ Lm+1

i , for every m ∈ {1, . . . , M − 1},
(b) for every m and every s−i, s′

−i ∈ Lm
i , the LPS λi does not deem s−i infinitely more likely than s′

−i , nor vice versa, and
(c) the union of the sets in Li is S−i . We call Li the likelihood ordering induced by λi . Our first result characterizes, for a
given strategy si and set Ai ⊆ Si , those likelihood orderings on S−i that admit an LPS under which si is weakly preferred to
all strategies in Ai .

Lemma 6.1. Let λi be an LPS on S−i , let si be a strategy and Ai ⊆ Si a subset of strategies.

(a) If under the LPS λi , strategy si is weakly preferred to all strategies in Ai , then λi does not assume any D−i ⊆ S−i on which si is
weakly dominated by a mixture on Ai .

(b) If λi does not assume any D−i ⊆ S−i on which si is weakly dominated by a mixture on Ai , then there is some LPS σi , inducing the
same likelihood ordering as λi , under which si is weakly preferred to all strategies in Ai .
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This result is actually a generalization of Lemma 4 in Pearce (1984) which shows that a strategy si is not weakly
dominated if and only if it is optimal for a full support probability distribution on S−i . Take, namely, an LPS λi on S−i
with one level only, and choose Ai = Si . By our definition of an LPS on S−i , the belief λi has full support on S−i . So, the
only subset D−i that is assumed by λi is S−i . Moreover, every LPS σi inducing the same likelihood ordering as λi must be a
single level LPS with full support on S−i , so must be a single full support probability distribution on S−i . But then, for such
choices of λi and Ai , our lemma says that (a) every si that is optimal under λi must not be weakly dominated on S−i , and
(b) every si that is not weakly dominated on S−i is optimal for some full support probability distribution σi on S−i . This is
precisely Pearce’s result.

Proof of Lemma 6.1. (a) Suppose that under the LPS λi = (λ1
i , . . . , λ

K
i ), strategy si is weakly preferred to all strategies in Ai .

Assume, contrary to what we want to prove, that λi assumes some D−i ⊆ S−i on which si is weakly dominated by some
μi ∈ �(Ai). As λi assumes D−i , we know from Section 4.2 that there must be some k ∈ {1, . . . , K } with

⋃
l�k supp(λl

i) = D−i .

Since μi weakly dominates si on D−i , we have that ui(si, λ
l
i) � ui(μi, λ

l
i) for all l � k, with strict inequality for at least some

l � k. Here, ui(si, λ
l
i) denotes the expected utility of choosing si under the belief λl

i , and ui(μi, λ
l
i) denotes the expected

utility of μi ∈ �(Ai) under λl
i . This means that for every l � k, either (1) ui(si, λ

l
i) = ui(ai, λ

l
i) for every ai ∈ Ai , or (2) there

is some ai ∈ Ai with ui(si, λ
l
i) < ui(ai, λ

l
i). Moreover, case (2) must apply for at least one l � k. This implies that there is

some ai ∈ Ai that is preferred to si under λi . However, this is a contradiction to our assumption above that si is weakly
preferred to all strategies in Ai under λi . Hence, we conclude that λi cannot assume a subset D−i on which si is weakly
dominated by some mixture on Ai .

(b) Suppose that λi = (λ1
i , . . . , λ

K
i ) does not assume any D−i ⊆ S−i on which si is weakly dominated by a mixture on Ai .

Let Li = (L1
i , . . . , LM

i ) be the induced likelihood ordering. Then, the subsets D−i that are assumed by λi are exactly the sets
L1

i ∪ · · · ∪ Lm
i for m ∈ {1, . . . , M}. Hence, for every m ∈ {1, . . . , M} strategy si is not weakly dominated by any μi ∈ �(Ai) on

L1
i ∪ · · · ∪ Lm

i . By Lemma 4 in Pearce (1984), there is for every m ∈ {1, . . . , M} some probability distribution σm
i ∈ �(L1

i ∪
· · · ∪ Lm

i ), with full support on L1
i ∪ · · · ∪ Lm

i , such that under σm
i strategy si is weakly preferred to all strategies in Ai . But

then, σi := (σ 1
i , . . . , σ M

i ) is an LPS inducing the same likelihood ordering as λi , namely Li = (L1
i , . . . , LM

i ). Moreover, under
σi strategy si is weakly preferred to all strategies in Ai . This completes the proof. �

Our second preparatory result shows that a properly rationalizable type always respects all the preference restrictions
generated by the algorithm. To state and prove this result formally, we need the following notation. For every round n in
the algorithm of iterated addition of preference restrictions, let Rn

i be the set of preference restrictions generated for player i
at round n. Similarly, let Rn

−i be the set of preference restrictions generated for i’s opponents at round n. That is, (si, Ai) is

a preference restriction in Rn
i if and only if every lexicographic belief on S−i respecting all preference restrictions in Rn−1

−i ,
assumes some D−i on which si is weakly dominated by some mixture on Ai . By R∞

i and R∞
−i we denote the sets of all

preference restrictions for player i, and i’s opponents, that have been generated when the algorithm stops.

Lemma 6.2. Let ti be a properly rationalizable type. Then, ti ’s lexicographic belief on S−i respects every preference restriction in R∞
−i .

Proof. We show that for all n, all players i, and every properly rationalizable type ti , the lexicographic belief that ti holds
on S−i respects every preference restriction in Rn

−i . We prove this by induction on n.

For n = 1 the statement is trivial since R1
−i is the empty set of preference restrictions, and hence every lexicographic

belief on S−i respects all preference restrictions in R1
−i .

Now, let n � 2 and suppose that, for all players i and every properly rationalizable type ti , the belief of ti on S−i
respects every preference restriction in Rn−1

−i . Take a properly rationalizable type ti . We prove that ti ’s belief respects every
preference restriction in Rn

−i .
As type ti is properly rationalizable, ti only considers possible opponents’ types t j that are properly rationalizable. By the

induction assumption, it follows that ti only considers possible opponents’ types t j that respect every preference restriction
in Rn−1

− j .
Take an opponent j, and a preference restriction (s j, A j) ∈ Rn

j . Then, by construction of the algorithm, every lexicographic

belief for player j that respects all preference restrictions in Rn−1
− j must assume some D− j ⊆ S− j on which s j is weakly

dominated by some mixture on A j . By part (a) in Lemma 6.1, it follows that under every lexicographic belief for player j

that respects all preference restrictions in Rn−1
− j , player j prefers some strategy in A j to s j . Since we have seen that ti only

considers possible types t j that respects all preference restrictions in Rn−1
− j , we may conclude that type ti only considers

possible types t j that prefer some strategy in A j to s j .
Since ti is properly rationalizable, it respects the opponents’ preferences, and hence ti must deem some strategy in A j

infinitely more likely than s j . Summarizing, we have seen that for every preference restriction (s j, A j) ∈ Rn
j , type ti deems

some strategy in A j infinitely more likely than s j . This, however, means that ti respects all preference restrictions in Rn
−i ,

which was to be shown. By induction, the proof is complete. �
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The third lemma describes an important property of the sets of preference restrictions that are not generated by the
algorithm. This result will be crucial for proving that every strategy that survives the algorithm, that is, is not part of any
preference restriction produced by the algorithm, is properly rationalizable. It will be the basis, namely, for constructing our
properly rationalizable types. For this lemma, we need the following notation: For a given LPS λi on S−i , and an opponent’s
strategy s j , we denote by A−

j (s j, λi) the set of strategies for player j that are not deemed infinitely more likely than s j

by λi . Hence, A−
j (s j, λi) contains those strategies that receive equal, or higher, rank than s j under the LPS λi .

Lemma 6.3 (Property of preference restrictions not generated by the algorithm). For every player i, let Rnot
i be the set of preference

restrictions not generated by the algorithm. Then, for every (si, Ai) ∈ Rnot
i there is an LPS λi on S−i such that

(1) under λi , strategy si is weakly preferred to all strategies in Ai , and
(2) for every opponent’s strategy s j , the pair (s j, A−

j (s j, λi)) is in Rnot
j .

Proof. Let (si, Ai) ∈ Rnot
i . So, (si, Ai) is not generated by the algorithm, that is, (si, Ai) /∈ R∞

i . Then, by construction of the
algorithm, there is some lexicographic belief λ′

i on S−i , respecting all preference restrictions in R∞
−i , that does not assume

any D−i on which si is weakly dominated by some mixture on Ai . By Lemma 6.1, for every such λ′
i there is a lexicographic

belief λi , inducing the same likelihood ordering as λ′
i , under which si is weakly preferred to all strategies in Ai . But then,

since λi and λ′
i induce the same likelihood ordering, also λi respects all preference restrictions in R∞

−i . Hence, for (si, Ai)

there is some lexicographic belief λi on S−i , respecting all preference restrictions in R∞
−i , under which si is weakly preferred

to all strategies in Ai . This proves (1).
Now, take an opponent’s strategy s j . By definition, λi deems no strategy in A−

j (s j, λi) infinitely more likely than s j .

As λi respects all preference restrictions in R∞
j , it must thus be the case that (s j, A−

j (s j, λi)) is not in R∞
j , and hence

(s j, A−
j (s j, λi)) is in Rnot

j . This proves (2). �
Our last preparatory result provides a method of “blowing up” an LPS on S−i without changing the induced preference

relation on Si .

Lemma 6.4 (Blow up lemma). Let λi = (λ1
i , . . . , λ

K
i ) and σi = (σ 1

i , . . . , σ L
i ) be two LPS’s on S−i such that for every k ∈ {1, . . . , K }

there is some l(k) ∈ {1, . . . , L} with the property that (1) σ
l(k)
i = λk

i , and (2) σm
i ∈ {λ1

i , . . . , λ
k−1
i } for every m < l(k). So, σi can be

seen as a “blown up” version of λi .
Then, λi and σi induce the same preference relation on Si .

Proof. Take some strategies si, s′
i ∈ Si . We show that si is preferred to s′

i under λi if and only if si is preferred to s′
i under σi .

(a) Suppose that si is preferred to s′
i under λi . Then, there is some k ∈ {1, . . . , K } such that ui(si, λ

k
i ) > ui(s′

i, λ
k
i ) and

ui(si, λ
m
i ) = ui(s′

i, λ
m
i ) for all m < k. But then, ui(si, σ

l(k)
i ) > ui(s′

i, σ
l(k)
i ) and ui(si, σ

l
i ) = ui(s′

i, σ
l
i ) for all l < l(k). So, si is

preferred to s′
i under σi .

(b) Suppose that si is preferred to s′
i under σi . Then, there is some l ∈ {1, . . . , L} such that ui(si, σ

l
i ) > ui(s′

i, σ
l
i ) and

ui(si, σ
m
i ) = ui(s′

i, σ
m
i ) for all m < l. Consequently, there is no copy of σ l

i that appears before level l in σi , and hence l = l(k)

for some k ∈ {1, . . . , K }. This implies that ui(si, λ
k
i ) > ui(s′

i, λ
k
i ) and ui(si, λ

m
i ) = ui(s′

i, λ
m
i ) for all m < k, and hence si is

preferred to s′
i under λi . This completes the proof. �

6.2. Proof of the main theorem

In this subsection we prove our main theorem (Theorem 4.6), which states that a strategy is properly rationalizable if
and only if it survives the procedure of iterated addition of preference restrictions. We thus must prove two directions:
(a) Every properly rationalizable strategy survives the procedure of iterated addition of preference restrictions, and (b) Every
strategy that survives this procedure is properly rationalizable. As we will see, (b) is the more difficult direction to prove.

Proof of (a): Every properly rationalizable strategy survives the algorithm. As before, let R∞
i be the final set of preference

restrictions for player i, and R∞
−i the final set of preference restrictions for i’s opponents, generated by the algorithm. Take a

properly rationalizable strategy si for player i. We must show that si is not part of any preference restriction (si, Ai) in R∞
i .

Since si is properly rationalizable, there is a properly rationalizable type ti for which si is optimal. That is, for type ti
strategy si is weakly preferred to all strategies in Si . Hence, by part (a) in Lemma 6.1, type ti ’s lexicographic belief on S−i
does not assume any D−i on which si is weakly dominated by some mixture on Si . Moreover, as ti is properly rationalizable,
it follows from Lemma 6.2 that ti respects all preference restrictions in R∞

−i . Summarizing, we thus see that ti ’s lexicographic
belief on S−i respects all preference restrictions in R∞

−i , but does not assume any D−i on which si is weakly dominated by
a mixture on Si . But then, by construction of the algorithm, si cannot be part of any preference restriction (si, Ai) in R∞

i .
So, si survives the algorithm.
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Proof of (b): Every strategy that survives the algorithm is properly rationalizable. As before, let Rnot
i be the set of preference

restrictions for player i that are not generated by the algorithm. Then, by Lemma 6.3 we know that for every (si, Ai) in Rnot
i

there is an LPS λi(si, Ai) on S−i such that

• under λi(si, Ai), strategy si is weakly preferred to all strategies in Ai , and

• for every opponent’s strategy s j , the pair (s j, A−
j (s j, λi(si, Ai))) is in Rnot

j .

Remember that A−
j (s j, λi(si, Ai)) contains those strategies that receive equal, or higher, rank than s j under the LPS λi(si, Ai).

The idea will now be to construct, for every (si, Ai) ∈ Rnot
i , some properly rationalizable type ti(si, Ai). We define, for

every player i, the set of types

Ti = {
ti(si, Ai)

∣∣ (si, Ai) ∈ Rnot
i

}
.

Our task will be to assign to every type ti(si, Ai) an LPS σi(si, Ai) on S−i × T−i such that:

• every σi(si, Ai) induces the same preference relation on Si as λi(si, Ai) does,
• every σi(si, Ai) is cautious, and
• every σi(si, Ai) respects the opponents’ preferences.

Suppose we would have completed this task. Then, first of all, every type in Ti would be properly rationalizable, since
it would be cautious and respect the opponents’ preferences, and consider possible only opponents’ types in T−i which are
all cautious and respect the opponents’ preferences, and so on.

Next, consider a strategy si that survives the algorithm, that is, which is not part of a preference restriction (si, Ai) in R∞
i .

Then, (si, Si) is in Rnot
i , and hence ti(si, Si) ∈ Ti . By construction, under the LPS λi(si, Si) strategy si is weakly preferred to

all strategies in Si . Since type ti(si, Si) holds the LPS σi(si, Si), and σi(si, Si) induces the same preference relation on Si
as λi(si, Si), strategy si is optimal for type ti(si, Si). As ti(si, Si) is properly rationalizable, we conclude that strategy si is
properly rationalizable. Hence, every strategy si that survives the algorithm would be properly rationalizable. This would
complete the proof of the main theorem.

So, if we can carry out our task above, the proof would be complete. We construct the LPS’s σi(si, Ai) in two steps. In
Step 1, we assign to every type ti(si, Ai) an LPS ρi(si, Ai) on S−i × T−i such that:

• every ρi(si, Ai) induces the same preference relation on Si as λi(si, Ai) does, but
• ρi(si, Ai) is not yet cautious.

We shall refer to the belief levels in ρi(si, Ai) as the “main levels”. In Step 2, we make a blown up version σi(si, Ai) of
the LPS ρi(si, Ai), by adding “blow up levels” in the sense of Lemma 6.4, such that:

• every σi(si, Ai) induces the same preference relation on Si as ρi(si, Ai) does,
• every σi(si, Ai) is cautious, and
• every σi(si, Ai) respects the opponents’ preferences.

Step 1 (Construction of main levels). Fix a pair (si, Ai) in Rnot
i . Consider the associated LPS λi(si, Ai) = (λ1

i , . . . , λ
K
i ) on S−i .

Recall that under λi(si, Ai) strategy si is weakly preferred to all strategies in Ai , and that for every opponent’s strategy s j ,
the pair (s j, A−

j (s j, λi(si, Ai))) is in Rnot
j . So, for every opponent’s strategy s j , we have that t j(s j, A−

j (s j, λi(si, Ai))) is a type

in T j . To reduce notation, let us from now on write A−
j (s j) instead of A−

j (s j, λi(si, Ai)), since we will fix the LPS λi(si, Ai).

The LPS ρi(si, Ai) = (ρ1
i , . . . , ρK

i ) on S−i × T−i is then defined as follows: For every k ∈ {1, . . . , K },

ρk
i

(
(s j, t j) j �=i

) :=
{

λk
i ((s j) j �=i), if t j = t j(s j, A−

j (s j)) for every j �= i
0, otherwise

for every (s j, t j) j �=i ∈ S−i × T−i . Hence, ρk
i induces probability distribution λk

i on S−i for every k. Consequently, ρi(si, Ai)

induces the same preference relation on Si as λi(si, Ai) does. Moreover, ρi(si, Ai) only deems possible strategy–type pairs
(s j, t j(s j, A−

j (s j))) where s j ∈ S j .

Step 2 (Construction of blow up levels). Take an LPS ρi(si, Ai) constructed above. Note that ρi(si, Ai) is not cautious: For every
opponents’ type t j(s j, A−

j (s j)) it considers possible, there is only one strategy it considers possible, namely s j . So, in order

to extend ρi(si, Ai) to a cautious LPS, we need to add extra belief levels that cover all pairs (s′
j, t j(s j, A−

j (s j))) with s′
j �= s j .

For every opponent j, and every pair (s′
j, s j) with s′

j �= s j , we define a “blow up” level τi(s′
j, s j) ∈ �(S−i × T−i) as follows:

Let k be the first level such that ρk assigns positive probability to s′ . Then, τi(s′ , s j) is a copy of ρk , except for the fact that
i j j i
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τi(s′
j, s j) shifts the probability that ρk

i assigned to the pair (s′
j, t j(s′

j, A−
j (s′

j))) completely toward the pair (s′
j, t j(s j, A j(s j))).

In particular, τi(s′
j, s j) induces the same probability distribution on S−i as ρk

i .

Without loss of generality, let us fix an opponent j and a strategy s j ∈ S j . Let l be the first level such that ρl
i assigns

positive probability to s j . Suppose that the LPS λ j(s j, A−
j (s j)) induces the ordering (s1

j , . . . , sM
j ) on S j , meaning that under

λ j(s j, A−
j (s j)) strategy s1

j is weakly preferred to s2
j , that s2

j is weakly preferred to s3
j , and so on. Suppose further that

s j = sm
j , and that all strategies s1

j , . . . , sm−1
j are strictly preferred to s j .

We insert blow up levels τi(s1
j , s j), . . . , τi(sm−1

j , s j) between main levels ρl−1
i and ρl

i in this particular order. So, τi(s1
j , s j)

comes before τi(s2
j , s j), and so on. We then insert blow up levels τi(sm+1

j , s j), . . . , τi(sM
j , s j) after the last main level ρK

i in
this particular order.

If we do so for every opponent j and every strategy s j ∈ S j , we obtain a cautious LPS σi(si, Ai) with main levels ρk
i and

blow up levels τi(s′
j, s j) in between. This completes the construction of the LPS’s σi(si, Ai) for every (si, Ai) in Rnot

i .

Step 3 (Every LPS σi(si, Ai) induces the same preference relation on Si as ρi(si, Ai)). We now prove that every LPS σi(si, Ai) so
constructed induces the same preference relation on Si as ρi(si, Ai). By construction, the main levels in σi(si, Ai) coincide
exactly with the levels ρ1

i , . . . , ρK
i in ρi(si, Ai). Consider a blow up level τi(s′

j, s j) that comes before main level ρk
i . We

show that τi(s′
j, s j) induces the same probability distribution on S−i as some ρm

i with m < k.

By our construction above, s j must receive positive probability in some ρl
i with l � k, and under λ j(s j, A−

j (s j)) strategy

s′
j must be preferred to s j . Since, by definition of λ j(s j, A−

j (s j)), strategy s j is weakly preferred to every strategy in A−
j (s j)

under λ j(s j, A−
j (s j)), it must be that s′

j /∈ A−
j (s j). By definition, A−

j (s j) contains all those strategies that are not deemed
infinitely more likely than s j by λi(si, Ai), and hence s′

j must be deemed infinitely more likely than s j by λi(si, Ai). By
construction of ρi(si, Ai), this implies that ρi(si, Ai) deems s′

j infinitely more likely than s j . Since s j receives positive

probability in some ρl
i with l � k, strategy s′

j receives positive probability for the first time in some ρm
i with m < k. But

then, by construction of τi(s′
j, s j), the blow up level τi(s′

j, s j) is a copy of ρm
i , except for the fact that τi(s′

j, s j) shifts the

probability that ρm
i assigned to the pair (s′

j, t j(s′
j, A−

j (s′
j))) completely toward the pair (s′

j, t j(s j, A−
j (s j))). In particular,

τi(s′
j, s j) induces the same probability distribution on S−i as ρm

i . So, we have shown that every blow up level τi(s′
j, s j) that

comes before main level ρk
i induces the same probability distribution on S−i as some main level ρm

i with m < k.
Now, let σ̂i(si, Ai) be the marginal of σi(si, Ai) on S−i , and let ρ̂i(si, Ai) = (ρ̂1

i , . . . , ρ̂K
i ) be the marginal of ρi(si, Ai)

on S−i . Let τ̂i(s′
j, s j) be the marginal of the blow up level τi(s′

j, s j) on S−i . By our insight above, we may conclude that

every blow up level τ̂i(s′
j, s j) that comes before main level ρ̂k

i in σ̂i(si, Ai) is a copy of some ρ̂m
i with m < k. This means,

however, that σ̂i(si, Ai) is a blown up version of ρ̂i(si, Ai) in the sense of Lemma 6.4, and hence, by the same lemma,
σ̂i(si, Ai) induces the same preference relation on Si as ρ̂i(si, Ai). Consequently, σi(si, Ai) induces the same preference
relation on Si as ρi(si, Ai), which was to show.

Step 4 (Every LPS σi(si, Ai) respects the opponents’ preferences). We will now show that every σi(si, Ai) respects the opponent’s
preferences. Suppose that σi(si, Ai) deems possible some opponents’ type t j(s j, A j), and that t j(s j, A j) prefers s′

j to s′′
j . We

show that σi(si, Ai) deems (s′
j, t j(s j, A j)) infinitely more likely than (s′′

j , t j(s j, A j)).

Since t j(s j, A j) is deemed possible by σi(si, Ai), it must be the case that t j(s j, A j) = t j(s j, A−
j (s j)). By construction, type

t j(s j, A−
j (s j)) holds LPS σ j(s j, A−

j (s j)) which, we have seen, induces the same preference relation on S j as λ j(s j, A−
j (s j)).

Since, by assumption, the type t j(s j, A−
j (s j)) prefers s′

j to s′′
j , it follows that s′

j is preferred to s′′
j under λ j(s j, A−

j (s j)). But
then, the construction of the blow up levels in σi(si, Ai) makes sure than σi(si, Ai) deems (s′

j, t j(s j, A j)) infinitely more
likely than (s′′

j , t j(s j, A j)), which was to show.

So, we have shown that every σi(si, Ai) is cautious, respects the opponents’ preferences, and induces the same preference
relation on Si as λi(si, Ai). But, as we have seen above, this completes the proof. �
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