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Abstract

In this survey we analyze and compare various sufficient epistemic

conditions for backward induction that have been proposed in the

literature. To this purpose we present a simple epistemic base model

for games with perfect information, and express the conditions of the

different models in terms of our base model. This will enable us to

explictly analyze the differences and similarities between the various

sufficient conditions for backward induction.

1 Introduction

Backward induction constitutes one of the oldest concepts in game theory.
Its algorithmic definition, which goes back at least to [Ze13], seems so nat-
ural at first sight that one might be tempted to argue that every player
“should” reason in accordance with backward induction in every game with
perfect information. However, on a decision theoretic level the concept is
no longer as uncontroversial as it may seem. The problem is that the back-
ward induction algorithm, when applied from a certain decision node on,
completely ignores the history that has led to this decision node, as it works
from the terminal nodes towards this decision node. At the same time, the
beliefs that the player at this decision node has about his opponents’ fu-
ture behavior may well be affected by the history he has observed so far.
For instance, a player who observes that an opponent has not chosen in
accordance with backward induction in the past may have a valid reason
to believe that this same opponent will continue this pattern in the game
that lies ahead. However, such belief revision policies are likely to induce
choices that contradict backward induction. We therefore need to impose
some non-trivial conditions on the players’ belief revision policies in order
to arrive at backward induction.

During the last decade or so, the game-theoretic literature has provided
us with various epistemic models for dynamic games in which sufficient
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epistemic conditions for backward induction have been formulated. The
objective of this survey is to discuss these conditions individually, and to
explicitly compare the different conditions with each other. The latter task
is particularly difficult since the literature exhibits a large variety of epis-
temic models, each with its own language, assumptions and epistemic oper-
ators. Some models are syntactic while others are semantic, and among the
semantic models some are based on the notion of states of the world while
others use types instead. As to the epistemic operators, some models apply
knowledge operators while others use belief operators, and there is also a
difference with respect to the “timing” of these operators. Are players en-
titled to revise their knowledge or belief during the course of the game, and
if so, at which instances can they do so? Different models provide different
answers to these, and other, questions.

As to overcome these problems we present in Section 2 an epistemic base
model, which will be used as a reference model throughout this overview.
In Section 3 we then provide for each of the papers to be discussed a brief
description of the model, followed by an attempt to formulate its epistemic
conditions for backward induction in terms of our base model. By doing
so we formulate all sufficient conditions for backward induction in the same
base model, which makes it possible to explicitly analyze the differences and
similarities between the various conditions.

Finally, a word about the limitations of this paper. In this survey, we
restrict attention to epistemic conditions that lead to the backward induc-

tion strategies for all players. There are alternative models that lead to the
backward induction outcome, but not necessarily to the backward induc-
tion strategy for each player. For instance, [Ba7Si102] and [Br1Fr2Ke104]
provide epistemic models for extensive form rationalizability [Pe084, Ba797]
and iterated maximal elimination of weakly dominated strategies, respec-
tively, which always lead to the backward induction outcome in every generic
game with perfect information, but not necessarily to the backward in-
duction strategy profile. We also focus exclusively on sufficient conditions
that apply to all generic games with perfect information. There are other
interesting papers that deal with the logic of backward induction in spe-

cific classes of games, such as Rosenthals’s centipede game [Ro381] and
the finitely repeated prisoner’s dilemma. See, among others, [Bi187, St196,
Au98, Ra098, Br3Ra099, Ca200, Pr00]. We shall, however, not discuss these
papers here. Even with the limitations outlined above, we do not claim to
offer an exhaustive list of epistemic models for backward induction. We do
believe, however, that the list of models treated here will give the reader a
good impression of the various epistemic conditions for backward induction
that exist in the literature.
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2 An epistemic base model

2.1 Games with perfect information

A dynamic game is said to be with perfect information if every player,
at each instance of the game, observes the opponents’ moves that have
been made until then. Formally, an extensive form structure S with perfect

information consists of the following ingredients:

• First, there is a rooted, directed tree T = (X, E), where X is a finite set
of nodes, and E ⊆ X × X is a finite set of directed edges. The nodes
represent the different situations that may occur during the game, and
the edges (x, y) represent moves by players that carry the game from
situation x to situation y. The root x0 ∈ X marks the beginning of
the game. For every two nodes x, y ∈ X, there is at most one path
((x1, y1), (x2, y2), . . . , (xn, yn)) in E from x to y with x1 = x, yn = y,

and yk = xk+1 for every k ∈ {1, . . . , n− 1}. We say that x precedes y

(or, y follows x) if there is a path from x to y. Since x0 is the root,
there is for every x ∈ X\{x0} a path from x0 to x. A node x ∈ X

is called a terminal node if it is not followed by any other node in
X. The set of terminal nodes is denoted Z, and represents the set of
possible outcomes for the game.

• There is a finite set I of players, and a move function m : X\Z → I

which specifies for every non-terminal node x the player m(x) ∈ I who
has to move at x. For every player i, the set of nodes

Hi := {x ∈ X\Z | m(x) = i}

is called the set of information sets1 for player i. Since every infor-
mation set hi ∈ Hi corresponds to a single node it is assumed that
a player, whenever it is his turn to move, knows exactly which node
in the game tree has been reached. That is, the game has perfect in-

formation. The root x0 is identified with the information set h0, and
by H∗

i := Hi ∪ {h0} we denote the set of player i information sets,
together with the beginning of the game. By H =

⋃
i∈I Hi we denote

the set of all information sets.

• For every player i and information set hi ∈ Hi, the set of edges

A(hi) := {(hi, y) | y ∈ X, (hi, y) ∈ E}

is called the set of actions, or moves, available at hi. By
A =

⋃
h∈H A(h) we denote the set of all actions.

1 Note that in our restricted setting an information set consists of a single node. We

could therefore also have used the term “non-terminal node” instead of “information

set”. In particular, the collection of all information sets coincides with the set of all

non-terminal nodes.
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We now turn to the definition of a strategy. Intuitively, a strategy for
player i is a plan that describes what player i would do in every possible
situation in the game where it is his turn to move. The formal definition of
a strategy we shall employ coincides with the concept of a plan of action,
as discussed in [Ru191]. The difference with the usual definition is that we
require a strategy only to prescribe an action at those information sets that
the same strategy does not avoid. Formally, let H̃i ⊆ Hi be a collection of
player i information sets, not necessarily containing all information sets, and
let si : H̃i → A be a mapping prescribing at every hi ∈ H̃i some available
action si(hi) ∈ A(hi). For a given information set h ∈ H, not necessarily
belonging to player i, we say that si avoids h if on the path

((x1, y1), . . . , (xn, yn))

from h0 to h there is some node xk in H̃i with si(xk) 6= (xk, yk). That
is, the prescribed action si(xk) deviates from this path. Such a mapping
si : H̃i → A is called a strategy for player i if H̃i is exactly the collection of
player i information sets not avoided by si. Obviously, every strategy si can
be obtained by first prescribing an action at all player i information sets,
that is, constructing a strategy in the classical sense, and then deleting from
its domain those player i information sets that are avoided by it. For a given
strategy si ∈ Si, we denote by Hi(si) the collection of player i information
sets that are not avoided by si. Let Si be the set of player i strategies. For
a given information set h ∈ H and player i, we denote by Si(h) the set of
player i strategies that do not avoid h. Then, it is clear that a profile (si)i∈I

of strategies reaches an information set h if and only if si ∈ Si(h) for all
players i.

2.2 Preferences, beliefs and types

The basic assumption in our base model is that every player has a strict2

preference relation over the terminal nodes, and holds at each of his in-
formation sets a conditional belief about the opponents’ strategy choices
and preference relations. In particular, we allow for the fact that players
may revise their beliefs about the opponents’ preferences as the game pro-
ceeds. In order to keep our model as “weak” as possible, we assume that
this conditional belief can be expressed by a set of opponents’ strategies
and preference relations. This set represents the strategies and preference
relations that the player deems possible at his information set. We thus do
not consider probabilities, and it is therefore sufficient to specify the play-
ers’ ordinal preferences over terminal nodes. Not only does a player hold
first-order conditional beliefs about the opponents’ choices and preferences,

2 In the literature, it is not always assumed that players hold strict preferences over

terminal nodes. We do so here for the sake of simplicity.
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he also holds second-order conditional beliefs about the opponents’ possible
first-order beliefs at each of his information sets. A second-order belief may
thus contain expressions of the form “player i considers it possible at infor-
mation set hi that player j considers it possible at information set hj that
player k chooses strategy sk and has preference relation Pk”. Recursively,
one may define higher-order conditional beliefs for the players. A possible
way to represent such hierarchies of conditional beliefs is by means of the
following model.

Definition 2.1 (Epistemic base model). Let S be an extensive form struc-
ture with perfect information. An epistemic base model for S is a tuple

M = (Ti, Pi, Bi)i∈I

where

(1) Ti is a set of types for player i;

(2) Pi is a function that assigns to every ti ∈ Ti some complete, strict and
transitive preference relation Pi(ti) over the terminal nodes;

(3) Bi is a function that assigns to every ti ∈ Ti and every information
set hi ∈ H∗

i some subset Bi(ti, hi) ⊆
∏

j 6=i(Sj(hi) × Tj).

Here, Bi(ti, hi) denotes the set of opponents’ strategy-type pairs which ti
deems possible at hi. We denote by Bi(ti, hi|S−i) the projection of Bi(ti, hi)
on

∏
j 6=i Sj(hi). That is, Bi(ti, hi|S−i) is ti’s belief at hi about the oppo-

nents’ strategy choices. For any player j 6= i, we denote by Bij(ti, hi) the
projection of Bi(ti, hi) on the set Sj(hi)×Tj. Hence, Bij(ti, hi) is ti’s belief
at hi about player j’s strategy-type pair.

From an epistemic base model, conditional beliefs of any order can be
derived. For instance, type ti’s belief at hi about player j’s choice is given by
the projection of Bij(ti, hi) on Sj . Let Bij(ti, hi|Sj) denote this projection,
and let Bij(ti, hi|Tj) denote its projection on Tj . Then, type ti’s belief at
hi about player j’s belief at hj about player ℓ’s choice is given by

⋃

tj∈Bij(ti,hi|Tj)

Bjℓ(tj , hj|Sℓ).

In a similar fashion, higher-order beliefs can be derived.

2.3 Common belief

Let M = (Ti, Pi, Bi)i∈I be an epistemic base model, and E ⊆
⋃

j∈I Tj a
set of types, or event. We say that type ti believes in E at information set
hi ∈ H∗

i if Bij(ti, hi|Tj) ⊆ E for all j 6= i. We say that ti initially believes
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in E if ti believes in E at h0. Common belief in the event E is defined by
the following recursive procedure:

B1
i (E) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ E for all j 6= i and all hi ∈ H∗

i }

for all i ∈ I, and

Bk+1
i (E) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ Bk

j (E) for all j 6= i and all hi ∈ H∗
i }

for all i ∈ I and all k ≥ 1.

Definition 2.2 (Common belief). A type ti ∈ Ti is said to respect common

belief in the event E if ti ∈ E and ti ∈ Bk
i (E) for all k.

Hence, ti respects common belief in E if ti belongs to E, believes through-
out the game that opponents’ types belong to E, believes throughout the
game that opponents believe throughout the game that the other players’
types belong to E, and so on. In particular, if we say that ti respects
common belief in E, this implies that ti itself should belong to E. So, for
instance, if we say that ti respects common belief in the event that types
never change their belief about the opponents’ preference relations during
the game, this implies that ti itself never changes its belief about the op-
ponents’ preference relations. We realize that this is perhaps linguistically
not correct, but we do so for the sake of brevity. Otherwise, we should have
to write, throughout this paper, that ti belongs to E, and respects common
belief in E.

In most other epistemic models in the literature, the term “common
belief” or “common knowledge” refers to the epistemic state of a group of
players, rather than to the epistemic state of a single player, as we use it.
That is, in most other models the expression “there is common belief in
E” means that “all players believe that E holds, all players believe that
all players believe that E holds, and so on.” The reason for me to use
an “individualistic” version of common belief is that we want to impose
conditions on the beliefs of one player only, and see when such individual
conditions lead to backward induction reasoning by that player. So, we
take a single-player perspective in this paper, and choose the version of
common belief accordingly. We realize this is an unusual approach, but it
is well-suited for the purposes we have in mind.

Common initial belief in the event E is defined as follows:

IB1
i (E) = {ti ∈ Ti | Bij(ti, h0|Tj) ⊆ E for all j 6= i}

for all i ∈ I, and

IBk+1
i (E) = {ti ∈ Ti | Bij(ti, h0|Tj) ⊆ IBk

j (E) for all j 6= i}

for all i ∈ I and all k ≥ 1.
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Definition 2.3 (Common initial belief). A type ti ∈ Ti is said to respect
common initial belief in the event E if ti ∈ E and ti ∈ IBk

i (E) for all k.

2.4 Belief in the opponents’ rationality

All the epistemic foundations for backward induction to be discussed here
make assumptions about the beliefs that players have about the rationality
of their opponents. More precisely, all foundations require that players
initially believe that each opponent chooses rationally at every information
set. However, the various foundations differ as to how players would revise

their beliefs upon observing that their initial belief about the opponents
was incorrect. In order to express these different belief revision procedures
in terms of our base model, we need the following definitions.

We first define what it means that a strategy is rational for a type at a
given information set. For an information set hi ∈ Hi, a strategy si ∈ Si(hi),
and an opponents’ strategy profile s−i ∈

∏
j 6=i Sj(hi), let z(si, s−i|hi) be the

terminal node that would be reached from hi if (si, s−i) were to be executed
by the players.

Definition 2.4 (Rationality at an information set). A strategy si is ra-

tional for type ti at information set hi ∈ Hi(si) if there is no s′i ∈ Si(hi)
such that Pi(ti) ranks z(s′i, s−i|hi) strictly over z(si, s−i|hi) for all s−i ∈
Bi(ti, hi|S−i).

Hence, si is rational for ti at hi is there is no other strategy s′i ∈ Si(hi)
that strictly dominates si, given the set of opponents’ strategies that ti
deems possible at hi.

We shall now define various restrictions on the beliefs that players have
about the opponents’ rationality. We need one more definition to this pur-
pose. For a given type ti ∈ Ti, information set hi ∈ H∗

i , and some oppo-
nent’s information set h ∈ H\Hi following hi, we say ti believes h to be

reached from hi if Bi(ti, hi|S−i) ⊆ S−i(h). Here, S−i(h) is a short way to
write

∏
j 6=i Sj(h).

Definition 2.5 (Belief in the opponents’ rationality).

(1) Type ti believes at information set hi ∈ H∗
i that player j chooses

rationally at information set hj ∈ Hj if for every (sj , tj) ∈ Bij(ti, hi)
it is true that sj is rational for tj at hj .

(2) Type ti initially believes in rationality at all information sets if ti
believes at h0 that every opponent j chooses rationally at all hj ∈ Hj .

(3) Type ti always believes in rationality at all future information sets if
ti believes at every hi ∈ H∗

i that every opponent j chooses rationally
at every hj ∈ Hj that follows hi.
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(4) Type ti always believes in rationality at future information sets that

are believed to be reached if ti believes at every hi ∈ H∗
i that every

opponent j chooses rationally at all those hj ∈ Hj following hi which
ti believes to be reached from hi.

(5) Type ti always believes in rationality at all future and parallel in-
formation sets if ti believes at every hi ∈ H∗

i that every opponent j

chooses rationally at every hj ∈ Hj that does not precede hi.

(6) Type ti always believes in rationality at all information sets if ti be-
lieves at every hi ∈ H∗

i that every opponent j chooses rationally at
every hj ∈ Hj .

Condition (6) is the strongest possible condition that can be imposed,
since it requires a player, under all circumstances, to maintain his belief
that his opponents have chosen rationally in the past, will choose rationally
at any stage in the future, and would have chosen rationally at all foregone
(i.e., parallel) information sets. In particular, a player is assumed to in-
terpret every observed past move as being part of an opponent’s strategy
which is rational at all information sets. In other words, every past move is
interpreted as a rational move.

Condition (5) is a weakening of (6). In condition (5), a player need not
interpret every observed past move as a rational move, since he is no longer
required to believe in the opponents’ rationality at past information sets.
That is, if a player observes an opponent’s move which surprises him, then he
may believe that this move was due to a mistake by the opponent. However,
condition (5) still requires the player to believe that this same opponent will
choose rationally all stages in the future, and would have chosen rationally
at all foregone situations. Hence, in condition (5) an observed surprising
move by an opponent should not be a reason for dropping the belief in this
opponent’s rationality at future and foregone situations.

Condition (3) is a weakening of (5), since it no longer requires that a
player, after observing a surprising move by an opponent, believes that this
opponent would have chosen rationally at foregone situations. However, the
player is still assumed to believe that the opponent will, and would, choose
rationally at all future situations, no matter whether he deems these future
situations possible or not.

Condition (4), in turn, is a weakening of (3). In condition (4) a player,
after observing a surprising move by an opponent, need not believe that
this opponent would choose rationally at future situations which he does
not deem possible. He is only required to believe that the opponent will
choose rationally at future situations which he indeed believes could take
place.
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Condition (2) is a weakening of (3) but not of (4). In condition (2), a
player believes, before anything has happened, that every opponent will,
and would, choose rationally at all future situations, no matter whether he
deems these situations possible or not. However, once the game is under
way, the player is allowed to completely drop his belief in the opponents’
rationality. Note than in condition (4), a player may initially believe that
an opponent would not choose rationally at a certain information set if he
initially believes that this information set will not be reached. Therefore,
condition (2) is not a weakening of (4). Also, condition (4) is not a weaken-
ing of (2), so there is no logical implication betweens conditions (2) and (4).

In light of the definitions we have seen so far, we may thus construct
phrases as “type ti respects common belief in the event that all types ini-
tially believe in rationality at all information sets”. Some of the epistemic
foundations for backward induction, however, use a condition that cannot
be expressed in this form, since it relies on a notion that is different from
common belief. In order to formalize this condition, we consider the follow-
ing recursive procedure:

FBSR1
i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses

rationally at all hj that follow hi}

for all i ∈ I and all hi ∈ H∗
i , and

FBSRk+1
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBSRk

j (hj) for all j 6= i

and all hj that follow hi}

for all i ∈ I, hi ∈ H∗
i and k ≥ 1.

Definition 2.6 (Forward belief in substantive rationality). A type ti is said
to respect forward belief in substantive rationality if ti ∈ FBSRk

i (hi) for all
k and all hi ∈ H∗

i .

That is, ti respects forward belief in substantive rationality if ti (1)
always believes that every opponent is rational at every future information
set, (2) always believes that every opponent, at every future information
set, believes that every opponent is rational at every future information
set, (3) always believes that every opponent, at every future information
set, believes that every opponent, at every future information set, believes
that every opponent is rational at every future information set, and so on.

The first condition above, namely that ti always believes that every
opponent is rational at every future information set, corresponds exactly
to condition (3) of Definition 2.5. However, forward belief in substantive
rationality is logically weaker than common belief in condition (3) of Def-
inition 2.5. Consider, namely, a player i information set hi and a player j

information set hj that precedes hi. Then, common belief in condition (3)
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requires that player i believes at hi that player j believes at hj that player
i chooses rationally at hi, since hi follows hj. On the other hand, forward
belief in substantive rationality does not require this, as it only restricts the
belief that player i has at hi about the beliefs that opponents have at infor-
mation sets following hi, but not preceding hi. At the same time, it can be
verified that forward belief in substantive rationality implies common initial

belief in condition (3).
We also present a weaker version of forward belief in rationality, which

we call forward belief in material rationality. Let Hj(ti, hi) be the set of
those player j information sets hj following hi which ti believes to be reached
from hi. Consider the following recursive procedure:

FBMR1
i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses

rationally at all hj in Hj(ti, hi)}

for all i ∈ I and all hi ∈ H∗
i , and

FBMRk+1
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBMRk

j (hj) for all j 6=
i and all hj in Hj(ti, hi)}

for all i ∈ I, hi ∈ H∗
i and k ≥ 1.

Definition 2.7 (Forward belief in material rationality). A type ti is said
to respect forward belief in material rationality if ti ∈ FBMRk

i (hi) for all k

and all hi ∈ H∗
i .

The crucial difference with forward belief in substantive rationality is
thus that a type is only required to believe his opponents to choose rationally
at future information sets which he believes to be reached. And a type is only
required to believe that the opponents’ types believe so at future information
sets which he believes to be reached, and so on.

The condition in the first step of the recursive procedure, namely that ti
believes at hi that every opponent j chooses rationally at all hj in Hj(ti, hi),
corresponds exactly to condition (4) of Definition 2.5. However, by the same
argument as above for forward belief in substantive rationality, it can be
verified that forward belief in material rationality is logically weaker than
common belief in condition (4) of Definition 2.5. On the other hand, forward
belief in material rationality implies common initial belief in condition (4).

3 Epistemic foundations for backward induction

In this section we provide an overview of various epistemic foundations that
have been offered in the literature for backward induction. A comparison
between these foundations is difficult, since the models used by these foun-
dations differ on many aspects.
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A first important difference lies in the way the players’ beliefs about the
opponents are expressed. Some models express the players’ beliefs directly

by means of logical propositions in some formal language. Other models
represent the players’ beliefs indirectly by a set of states of the world, and
assign to each state and every player some strategy choice for this player,
together with a belief that the player holds at this state about the state
of the world. From this model we can derive the higher-order beliefs that
players hold about the opponents’ choices and beliefs. There are yet some
other models that represent the players’ beliefs indirectly by means of types,
and assign to every type some belief about the other players’ choices and
types. Similarly to the previous approach, the players’ higher-order beliefs
can be derived from this model. We refer to these three approaches as the
syntactic model, the state-based semantic model and the type-based syntactic

model. Note that our base model from the previous section belongs to the
last category. This choice is somewhat arbitrary, since we could as well have
chosen a syntactic or state-based semantic base model.

Even within the state-based semantic model, the various papers differ
on the precise formalization of the beliefs that players have about the state
of the world. Similarly, within the type-based model different papers use
different belief operators expressing the players’ beliefs about the opponents’
choices and types.

Finally, some models impose additional conditions on the extensive form
structure, such as one information set per player, or the presence of only
two players, whereas other papers do not.

In spite of these differences, all foundations have two aspects in common.
First, all models provide a theorem, say Theorem A, which gives a sufficient
condition for backward induction. Hence, Theorem A states that if player
i’s belief revision procedure about the other players’ choices, preferences
and beliefs satisfies some condition BR, then his unique optimal choice is
his backward induction choice. Secondly, all models guarantee that this
sufficient condition BR is possible. That is, each paper provides a second
result, say Theorem B, which states that for every player i there is some
model in which player i’s belief revision procedure satisfies condition BR.
As we shall see, the various foundations differ in the sufficient condition BR

that is being employed.
In order to explicitly compare the different foundations for backward

induction, we attempt to express the various conditions BR used by the
different models in terms of our base model. By doing so, we express the
Theorems A and B used by the various foundations in the following stan-
dardized form:

Theorem A. Let S be an extensive form structure with perfect informa-
tion, and let M = (Tj, Pj , Bj)j∈I be an epistemic base model for S. Let
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(P̃j)j∈I be a profile of strict preference relations over the terminal nodes.

If type ti ∈ Ti has preference relation P̃i, and if ti’s conditional belief vec-
tor about the opponents’ strategy choices and types satisfies condition BR,

then there is a unique strategy that is rational for ti at all information sets,
namely his backward induction strategy in the game given by (P̃j)j∈I .

Theorem B. Let S be an extensive form structure with perfect informa-
tion, and let i be a player. Then, there is some epistemic base model
M = (Tj , Pj , Bj)j∈I for S and some type ti ∈ Ti such that ti’s conditional
belief vector satisfies BR.

In the overview that follows, we provide a brief description of every
model, identify the condition BR that is being used, and explain how this
condition may be expressed in terms of our base model. The models are
put in alphabetical order.

3.1 Asheim’s model

Asheim uses a type-based semantic model, restricted to the case of two play-
ers, in which the players’ beliefs are modelled by lexicographic probability
distributions [As02]. Formally, an Asheim model is given by a tuple

M = (Ti, vi, λi)i∈I

where Ti is a finite set of types, vi is a function that assigns to every ti some
von Neumann-Morgenstern utility function vi(ti) over the set of terminal
nodes, and λi is a function that assigns to every type ti some lexicographic
probability system λi(ti) on Sj × Tj with full support on Sj . Such a lexico-

graphic probability system λi(ti) is given by a vector (λ1
i (ti), . . . , λ

Ki(ti)
i (ti))

of probability distributions on Sj × Tj. The interpretation is that

λ1
i (ti), . . . , λ

Ki(ti)
i (ti) represent different degrees of beliefs, and that the kth

degree belief λk
i (ti) is infinitely more important than the (k + 1)st degree

belief λk+1
i (ti), without completely discarding the latter. The lexicographic

probability system λi(ti) induces in a natural way first-order conditional
beliefs about player j’s choices, as defined in our base model. Namely, for
every hi ∈ H∗

i , let ki(ti, hi) be the first k such that λk
i (ti) assigns positive

probability to some strategy sj ∈ Sj(hi), and let B̂ij(ti, hi) ⊆ Sj(hi) be the

set of strategies in Sj(hi) to which λ
ki(ti,hi)
i (ti) assigns positive probabil-

ity. Then, ti induces the conditional belief vector (B̂ij(ti, hi))hi∈H∗

i
about

player j’s strategy choice. For every hi, let T̂ij(ti, hi) ⊆ Tj be the set of

types to which λ
ki(ti,hi)
i (ti) assigns positive probability. Then, the induced

second-order belief of ti at hi about player j’s belief at hj about player

i’s choice is given by the union of the sets B̂ji(tj , hj) with tj ∈ T̂ij(ti, hi).
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Similarly, higher-order beliefs about strategy choices can be derived from
Asheim’s model.

In Asheim’s model, a strategy si is called rational for type ti ∈ Ti at
information set hi if si is optimal with respect to the utility function vi(ti)
and the lexicographic probability system λi(ti|hi), where λi(ti|hi) denotes
the conditional of the lexicographic probability system λi(ti) on Sj(hi)×Tj.

In particular, if si is rational for ti at hi then si is rational with respect
to the preference relation P̂i and the set-valued belief B̂ij(ti, hi), as defined

above, where P̂i is the preference relation on terminal nodes induced by
vi(ti).

Asheim’s sufficient condition for backward induction is based on the
notion of admissible subgame consistency. A type ti in an Asheim model
is said to be admissible subgame consistent with respect to a given profile
(ṽj)j∈I of utility functions if (1) vi(ti) = ṽi, and (2) for every hi ∈ H∗

i ,

the probability distribution λ
ki(ti,hi)
i (ti) only assigns positive probability to

strategy-type pairs (sj , tj) such that sj is rational for tj at all hj ∈ Hj

that follow hi. In terms of our base model, this condition can be expressed
as: (1’) Pi(ti) = P̃i, and (2’) ti always believes in rationality at all future
information sets. In fact, condition (2’) is weaker than condition (2) since
the notion of rationality in (2’) is weaker than the notion of rationality in
(2), but condition (2’) would have sufficed to prove Asheim’s theorem on
backward induction.

In Proposition 7, Asheim shows that if a type ti respects common certain
belief in the event that types are admissible subgame consistent with respect
to (ṽj)j∈I , then ti has a unique strategy that is rational at all information
sets, namely his backward induction strategy with respect to (ṽj)j∈I . Here,
“certain belief in an event E” means that type ti, in each of his probability
distributions λk

i (ti), only assigns positive probability to types in E. In terms
of our base model, this means that the type believes the event E at each of
his information sets. In Proposition 8, Asheim shows that common certain
belief in admissible subgame consistency is possible. Expressed in terms of
our base model, Asheim’s sufficient condition for backward induction may
thus be written as follows:

Asheim’s condition BR: Type ti respects common belief in the events
that (1) types hold preference relations as specified by (P̃j)j∈I , and (2) types
always believe in rationality at all future information sets.

3.2 Asheim & Perea’s model

In [AsPe205], Asheim and Perea propose a type-based semantic model that
is very similar to the model from Section 3.1. Attention is restricted to
two-player games, and an Asheim-Perea model corresponds to a tuple

M = (Ti, vi, λi, ℓi)i∈I ,
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where Ti, vi and λi are as in Asheim’s model, and ℓi is a function that
to every type ti and event E ⊆ Sj × Tj assigns some number ℓi(ti, E) ∈
{1, . . . , Ki(ti)}. (Recall that Ki(ti) denotes the number of probability dis-
tributions in λi(ti)). The interpretation of ℓi is that ℓi(ti, E) specifies the
number of probability distributions in λi(ti) that are to be used in order to
derive the conditional lexicographic probability system of λi(ti) on E. For
instance, if player i observes that his information set hi has been reached,
this would correspond to the event E = Sj(hi) × Tj . In this case, player
i would use the first ℓi(ti, E) probability distributions in λi(ti) in order to
form his conditional belief about j upon observing that hi has been reached.
Two extreme cases are ℓi(ti, E) = ki(ti, hi), where player i would only use
the first probability distribution in λi(ti) that assigns positive probability
to some player j strategy in Sj(hi), and ℓi(ti, E) = Ki(ti), where player i

would use the full lexicographic probability system λi(ti) to form his con-
ditional belief upon observing that hi is reached. Recall that ki(ti, hi) is
the first k such that λk

i (ti) assigns positive probability to some strategy
sj ∈ Sj(hi).

The sufficient condition for backward induction is based on the event
that types induce for every opponent’s type a sequentially rational behavior

strategy. Consider a type ti, and let T ti

j be the set of types to which the
lexicographic probability system λi(ti) assigns positive probability (in some
of its probability distributions). Asheim and Perea assume that for every
tj ∈ T ti

j and every sj ∈ Sj, the lexicographic probability system λi(ti)
assigns positive probability to (sj , tj). For every information set hj ∈ Hj

and action a ∈ A(hj), let Sj(hj , a) be the set of strategies in Sj(hj) that
select action a at hj . Define for every type tj ∈ T ti

j , hj ∈ Hj and a ∈ A(hj)

σ
ti|tj

j (hj)(a) :=
λk

i (ti)(Sj(hj , a) × {tj})

λk
i (ti)(Sj(hj) × {tj})

,

where k is the first number such that λk
i (ti)(Sj(hj)× {tj}) > 0. The vector

σ
ti|tj

j = (σ
ti|tj

j (hj)(a))hj∈Hj ,a∈A(hj)

is called the behavior strategy induced by ti for tj . My interpretation of

σ
ti|tj

j (hj)(a) is that it describes ti’s conditional belief about tj ’s action
choices at future and parallel information sets. Let me explain. Consider an
information set hi for player i and an information set hj for player j which

either follows hi or is parallel to hi. Then, my interpretation of σ
ti|tj

j (hj)(a)
is that type ti believes at hi that type tj at information hj chooses action

a with probability σ
ti|tj

j (hj)(a). Namely, the information that the game has
reached hi does not give type ti additional information about the action
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choice of tj at hj, and hence σ
ti|tj

j (hj) provides an intuitive candidate for
the conditional belief of ti at hi about tj ’s behavior at hj .

However, if hj precedes hi, then σ
ti|tj

j (hj)(a) does not necessarily de-
scribe ti’s belief at hi about tj ’s action choice at hj . In this case, there is

namely a unique action a∗ at hj that leads to hi, whereas σ
ti|tj

j (hj)(a
∗) may

be less than one (in fact, may be zero). On the other hand, it should be
clear that ti should believe (with probability 1) at hi that tj has chosen a∗

at hj , since it is the only action at hj that leads to hi. Hence, in this case

σ
ti|tj

j (hj)(a) cannot describe ti’s belief at hi about tj ’s choice at hj .

For every information set hj ∈ Hj , let σ
ti|tj

j |hj
be the behavioral strat-

egy that assigns probability one to all player j actions preceding hj , and

coincides with σ
ti|tj

j otherwise. The induced behavior strategy σ
ti|tj

j is said
to be sequentially rational for tj if at every information set hj ∈ Hj , the

behavior strategy σ
ti|tj

j |hj
only assigns positive probability to strategies in

Sj(hj) that are rational for tj at hj (in the sense of Asheim’s model above).
Type ti is said to induce for every opponent’s type a sequentially rational

behavior strategy if for every tj ∈ T ti

j it is true that σ
ti|tj

j is sequentially

rational for tj . As we have seen above, σ
ti|tj

j represents for every hi ∈ H∗
i

type ti’s conditional belief at hi about player j’s behavior at future and par-

allel information sets. The requirement that σ
ti|tj

j always be sequentially
rational for tj thus means that ti always believes in rationality at all future
and parallel information sets.

In Proposition 11, Asheim and Perea show that if a type ti respects
common certain belief in the events that (1) types have utility functions
as specified by (ṽj)j∈I , and (2) types induce for every opponent’s type a
sequentially rational behavior strategy, then ti has a unique strategy that is
rational at all information sets, namely his backward induction strategy with
respect to (ṽj)j∈I . The existence of such types follows from their Proposition
4 and the existence of a sequential equilibrium. In terms of our base model,
Asheim and Perea’s sufficient condition may thus be stated as follows:

Asheim & Perea’s condition BR: Type ti respects common belief in the
events that (1) types hold preference relations as specified by (P̃j)i∈I , and
(2) types always believe in rationality at all future and parallel information
sets.

3.3 Aumann’s model

Aumann proposes a state-based semantic model for extensive form struc-
tures with perfect information [Au95]. An Aumann model is a tuple

M = (Ω, (Bi, fi, vi)i∈I)
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where Ω represents the set of states of the world, Bi is a function that assigns
to every state ω ∈ Ω some subset Bi(ω) of states, fi is a function that assigns
to every state ω some strategy fi(ω) ∈ Si, and vi is a function that assigns
to every ω some von Neumann-Morgenstern utility function vi(ω) on the set
of terminal nodes. The functions Bi must have the property that ω ∈ Bi(ω)
for all ω, and for all ω, ω′ ∈ Ω it must hold that Bi(ω) and Bi(ω

′) are either
identical, or have an empty intersection. Hence, the set {Bi(ω)|ω ∈ Ω} is a
partition of Ω. The interpretation is that at state ω, player i believes that
the true state is in Bi(ω). (In fact, Aumann uses the term “knows” rather
than “believes”). The functions fi and vi must be measurable with respect
to Bi, meaning that fi(ω

′) = fi(ω) whenever ω′ ∈ Bi(ω), and similarly for
vi. The reason is that player i cannot distinguish between states ω and ω′,

and hence his choice and preferences must be the same at both states.
It is problematic, however, to formally translate this model into condi-

tional beliefs of our base model. Consider, for instance, a game with three
players, in which players 1, 2 and 3 sequentially choose between Stay and
Leave, and where Leave terminates the game. Consider a state ω where
f1(ω) = Leave and B2(ω) = {ω}. Then, at player 2’s information set, player
2 must conclude that the state cannot be ω, but must be some state ω′

with f1(ω
′) = Stay. However, there may be many such states ω′, and hence

it is not clear how player 2 should revise his belief about the state at his
information set. Since his revised belief about the state will determine his
revised belief about player 3’s choice, it is not clear how to explicitly define
player 2’s revised belief about player 3’s choice from Aumann’s model.

At the same time, Aumann’s Theorem A provides sufficient conditions
for backward induction, and hence Aumann’s model must at least implicitly
impose some restrictions on the players’ belief revision procedures, since
otherwise backward induction could not be established. The main task in
this subsection will be to identify these implicit assumptions about the belief
revision procedures, and incorporate these as explicit restrictions in our base
model. Since such an identification is a rather subjective procedure, this
approach will eventually lead to a model which is a subjective interpretation
of Aumann’s model.

The model as proposed by Aumann is essentially a static model, since for
every state ω and every player i, his belief Bi(ω) is only defined at a single
moment in time. My interpretation of these static beliefs is that players,
upon observing that one of their information sets has been reached, do not
revise more than “strictly necessary”. In fact, the only beliefs that must be
revised by player i when finding out that his information set hi has been
reached are, possibly, his beliefs about the opponents’ choices at information
sets preceding hi. That is, if player 2 in the example above finds out that
player 1 has chosen Stay, then this should not be a reason to change his
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belief about player 3’s choice. Even stronger, we interpret Aumann’s static
beliefs in this game as beliefs in which player 2 only changes his belief about
player 1’s choice, while maintaining all his other beliefs, including his beliefs
about the opponents’ beliefs. Hence, if we interpret Aumann’s model in this
way, and express it accordingly in terms of our base model, then every type
is supposed to never revise his belief about the opponents’ choices and the
opponents’ beliefs at future and parallel information sets. A type ti, when
arriving at some information set hi, may only revise his belief about the
opponents’ choices at information sets that precede hi (but not about their
types). For further reference, we call this condition the “no substantial
belief revision condition”.

The sufficient condition for backward induction presented by Aumann
is common knowledge of rationality. Let ω be a state, i a player and hi an
information set controlled by i. At state ω, player i is said to be rational at
information set hi if there is no si ∈ Si such that for every ω′ ∈ Bi(ω) it
holds that

vi(ω)(z(si, (fj(ω
′))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

′))j 6=i|hi)),

where z(si, (fj(ω
′))j 6=i|hi) is the terminal node that is reached if the game

would start at hi, and the players would choose in accordance with
(si, (fj(ω

′))j 6=i). In terms of our base model, this means that strategy fi(ω)
is rational for player i at hi with respect to the utility function vi(ω) and
his first-order belief {(fj(ω

′))j 6=i | ω′ ∈ Bi(ω)} about the opponents’ choices
after hi. Let Ωrat be the set of states ω such that at ω all players are rational
at each of their information sets.

Common knowledge of rationality can now be defined by the following
recursive procedure:

CKR1 = Ωrat;

CKRk+1 = {ω ∈ Ω | Bi(ω) ⊆ CKRk for all players i}

for k ≥ 1. Then, common knowledge of rationality is said to hold at ω if
ω ∈ CKRk for all k. In Theorem A, Aumann proves that for every profile
(ṽj)j∈I of utility functions, for every state ω at which common knowledge
of (ṽj)j∈I and common knowledge of rationality hold, and for every player
i, the strategy fi(ω) is the backward induction strategy for player i with
respect to (ṽj)j∈I . In Theorem B, Aumann proves that there is an Aumann
model and a state ω at which common knowledge of (ṽj)j∈I and common
knowledge of rationality hold.

In terms of our base model, common knowledge of rationality implies
common initial belief in rationality at all information sets. By the latter we
mean that a type (1) initially believes that all players choose rationally at
all information sets, (2) initially believes that every type initially believes
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that all players choose rationally at all information sets, and so on. To-
gether with the “no substantial belief revision condition” above, this would
imply that a type always believes that types initially believe that all play-
ers choose rationally at all information sets, and that a type always believes
that types always believe that types initially believe that players choose ra-
tionally at all information sets, and so on. Hence, a possible interpretation
of Aumann’s condition of common knowledge of rationality, together with
the “no substantial belief revision condition”, in our base model would be:
common belief in the event that players initially believe in rationality at all
information sets. Similarly, common knowledge of (ṽj)j∈I , together with the
“no substantial belief revision condition”, could be interpreted as common
belief in the event that types have preferences according to (P̃j)j∈I , where

P̃j is the preference relation that corresponds to ṽj . That is, Aumann’s suf-
ficient conditions for backward induction could be interpreted as follows in
terms of our base model:

Aumann’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , (2) types initially
believe in rationality at all information sets, and (3) types never revise
their beliefs about the opponents’ choices and beliefs at future and parallel
information sets.

In [Cl003], Clausing basically provides a reformulation of Aumann’s
model and definitions in a syntactic framework. Clausing’s sufficient condi-
tion for backward induction is a little weaker than Aumann’s, since Clausing
only requires “true (k − 1)st level belief” in rationality at all information
sets, where k is the maximal length of a path in the game tree, which is
weaker than common knowledge of rationality as defined by Aumann. Que-
sada proves, in [Qu03, Propositions 3.3 & 3.4] that Aumann’s backward
induction theorem can also be shown without imposing that ω ∈ Bi(ω) for
all ω, and without imposing that for all ω, ω′ ∈ Ω it must hold that Bi(ω)
and Bi(ω

′) are either identical, or have an empty intersection. That is,
Quesada no longer assumes a partition structure, nor does he require that
what one believes must be true. The only substantial conditions that [Qu03]
imposes on the belief operator is that fi(ω

′) = fi(ω) whenever ω′ ∈ Bi(ω),
and similarly for vi. Hence, a player must be aware of his choice and his
utility function.

However, since the models by Clausing and Quesada [Cl003, Qu03] are
identical in spirit to Aumann’s, we omit a formal discussion of these models
in this overview.

3.4 Balkenborg & Winter’s model

In [Ba3Wi297], Balkenborg and Winter present a state-based semantic model
that is almost identical to Aumann’s model, so we do not repeat it here.
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The only difference is that Balkenborg and Winter restrict attention to ex-
tensive form structures in which every player controls only one information
set. However, the sufficient conditions given for backward induction are dif-
ferent from Aumann’s conditions, as they are based on the notion of forward

knowledge of rationality rather than common knowledge of rationality.
For every player i, let hi be the unique information set controlled by

player i. The definition of player i being rational at hi is the same as in
Aumann’s model. Let Ωrat

i be the set of states ω such that at ω, player i is
rational at hi. We say that player j comes after player i if hj comes after
hi. Forward knowledge of rationality can now be defined by the following
recursive procedure. For every player i define:

FKR1
i = Ωrat

i ;

FKRk+1
i = {ω ∈ Ω | Bi(ω) ⊆ FKRk

j for all j that come after i},

for every k ≥ 1. Then, forward knowledge of rationality is said to hold at
state ω if ω ∈ FKRk

i for all i and all k. That is, player i believes that every
player after him will choose rationally, believes that every player after him
believes that every player after him will choose rationally, and so on. So,
it corresponds to our notion of forward belief in substantive rationality in
Definition 2.6.

In Theorem 2.1, Balkenborg and Winter prove that for every profile
(ṽj)j∈I of utility functions, for every state ω at which common knowledge
of (ṽj)j∈I and forward knowledge of rationality hold, and for every player i,

the strategy fi(ω) is the backward induction strategy for player i with re-
spect to (ṽj)j∈I . Balkenborg and Winter’s sufficient condition for backward
induction may thus be phrased as follows in terms of our base model:

Balkenborg & Winter’s condition BR: Type ti (1) respects common
belief in the event that types hold preferences as specified by (P̃j)j∈I , (2)
respects forward belief in substantive rationality, and (3) respects common
belief in the event that types never revise their beliefs about the opponents’
choices and beliefs at future and parallel information sets.

Quesada proves in [Qu03, Proposition 3.1] that Balkenborg and Winter’s
sufficient condition for backward induction would still be sufficient if one
weakens the conditions on the knowledge operators as explained at the end
of the previous subsection.

3.5 Clausing’s model

Clausing presents a syntactic model for games with perfect information
[Cl004]. For our purposes here it is not necessary to discuss the com-
plete formalism of Clausing’s model, and therefore we restrict ourselves to
presenting only the key ingredients. A major technical difference between
our description here and Clausing’s original model is that we shall employ
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“statements” instead of logical propositions. The reader is referred to the
original paper for the syntactic formalism employed by Clausing. For our
restricted purposes here, a Clausing model may be described as a tuple

M = (L, (B̂i, vi)i∈I)

where L is a language, or set of statements, B̂i is a function that assigns
to every statement f ∈ L some subset B̂i(f) ⊆ L of statements, and vi is a
utility function for player i on the set of terminal nodes. By “g ∈ B̂i(f)” we
mean the statement that “player i believes statement g upon learning that
f holds”. It is assumed that L contains all statements of the form “player
i chooses strategy si”, and that it is closed under the operations ¬ (not), ∧
(and) and B̂i. By the latter, we mean that if f and g are statements in L,

then so are the statements “¬f”, “f ∧ g” and “g ∈ B̂i(f)”.
Clausing’s sufficient condition for backward induction is forward belief

from the root to all information sets h in rationality at h. We say that
strategy si is rational for player i at information set hi if there is no other
strategy s′i ∈ Si(hi) such that player i would believe, upon learning that
hi has been reached, that s′i would lead to a higher utility than si. For-
mally, there should be no s′i ∈ Si(hi) and no statement f ∈ L about the
opponents’ strategy choices such that (1) player i believes f upon learning
that all opponents j have chosen a strategy in Sj(hi), and (2) for every
opponents’ strategy profile s−i compatible with f it would be true that
vi(z(s′i, s−i|hi)) > vi(z(si, s−i|hi)). Player i is said to believe at hi that
player j is rational at hj if, upon learning that hi has been reached, player
i believes the statement “player j chooses a strategy that is rational for j

at hj”. Forward belief from the root to all information sets h in rationality
at h can now be defined by the following sequence of statements:

FB1
i (hi) = “player i believes, upon learning that hi has been

reached, that every opponent j will be rational at all
hj that follow hi”

for all players i and all hi ∈ H∗
i , and

FBk+1
i (hi) = “player i believes, upon learning that hi has been

reached, the statement FBk
j (hj) for all opponents j

and all hj that follow hi”

for all players i, hi ∈ H∗
i and k ≥ 1. Player i is said to respect forward belief

from the root to all information sets h in rationality at h if for every hi,

player i believes, upon learning that hi has been reached, the statements
FBk

j (hj) for all k, all opponents j and all hj ∈ Hj that follow hi. In Propo-
sition 2, Clausing shows that this condition implies backward induction,
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whereas his Proposition 3 demonstrates that this condition is possible. In
terms of our base model, Clausing’s condition clearly corresponds to forward
belief in substantive rationality.

Clausing’s condition BR: Type ti (1) respects common belief in the
event that types hold preferences as specified by (P̃j)j∈I , and (2) respects
forward belief in substantive rationality.

3.6 Feinberg’s model

Feinberg provides a syntactic model for dynamic games which is similar to
Clausing’s model [Fe105]. Since a full treatment of Feinberg’s model would
take us too far afield, we present a highly condensed version of his model
here, which will serve for our restricted purposes. As with the discussion of
Clausing’s model, we refer to the original paper for the syntactic formalism.
For our purposes here, a Feinberg model may be described as a tuple

M = (L, (Ci, vi)i∈I)

where L is a language, or set of statements, Ci is a function that selects for
every information set hi ∈ H∗

i a set Ci(hi) ⊆ L of statements, and vi is a
utility function for player i on the set of terminal nodes. The interpretation
of f ∈ Ci(hi) is that player i is confident of statement f at information set
hi. The language L must contain all statements of the form “player i chooses
strategy si”, and must be closed under the application of the operators ¬
(not), ∧ (and) and Ci(hi). By the latter we mean that, if f is a statement
in L, then the statement “f ∈ Ci(hi)” must also be in L.

Feinberg characterizes the confidence operator by means of a list of ax-
ioms, which largely coincides with the list of classic axioms for a knowledge
operator. The single, but crucial, difference is that a player may be confi-
dent of a statement that is objectively wrong, whereas this is not possible
in the case of a knowledge operator. However, in Feinberg’s model a player
must always be confident that he is right, that is, a player must be confident
that all statements he is confident of are true.

Feinberg presents two different sufficient conditions for backward in-
duction, namely common confidence of hypothetical rationality and iterated

future confidence of rationality. Strategy si is said to be rational for player
i at hi if there is no other strategy s′i ∈ Si(hi) such that player i would be
confident at hi that s′i would lead to a higher utility than si. By the latter,
we mean that there should be no s′i ∈ Si(hi), and no statement f about the
opponents’ strategy choices, such that (1) i is confident of f at hi, and (2)
for every opponents’ strategy profile s−i compatible with f it would hold
that vi(z(s′i, s−i)|hi) > vi(z(si, s−i)|hi). We say that i is confident at hi

that j is rational at hj if the statement “player j chooses a strategy that is
rational for j at hj” belongs to Ci(hi). Common confidence in hypotheti-
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cal rationality can now be defined recursively by the following sequence of
statements:

CCHR1 = “every player i is confident at every hi that every oppo-
nent j will be rational at every hj not preceding hi”

and, for every k ≥ 1,

CCHRk+1 = “every player i is confident at every hi of CCHRk”.

Player i is said to respect common confidence in hypothetical rationality if,
for every hi and every k, player i is confident at hi of CCHRk. In Proposition
10, Feinberg shows that this condition is possible, and implies backward
induction. In terms of our base model, this condition corresponds exactly
to our definition of common belief in the event that types always believe in
rationality at all future and parallel information sets.

Feinberg’s first condition BR: Type ti respects common belief in the
events that (1) types hold preference relations as specified by (P̃j)j∈I , and
(2) types always believe in rationality at all future and parallel information
sets.

Iterated future confidence of rationality can be defined by means of the
following sequence of statements:

IFCR1
i (hi) = “player i is confident at hi that all opponents j will

be rational at all hj that follow hi”

for all i ∈ I and all hi ∈ H∗
i , and

IFCRk+1
i (hi) = “player i is confident at hi of IFCRk

j (hj) for all op-
ponents j and all hj that follow hi”

for all i ∈ I, hi ∈ H∗
i and k ≥ 1. Player i is said to respect iterated future

confidence of rationality if, for every k, every hi, every opponent j, and every
hj following hi, player i is confident at hi of IFCRk

j (hj). Feinberg shows in
his Proposition 11 that this condition is possible and leads to backward
induction. In terms of our base model, this condition corresponds to our
definition of forward belief in substantive rationality.

Feinberg’s second condition BR: Type ti (1) respects common belief
in the event that types hold preferences as specified by (P̃j)j∈I , and (2)
respects forward belief in substantive rationality.

3.7 Perea’s model

Perea proposes a type-based semantic model that is very similar to our
base model [Pe205]. The difference is that in [Pe205], the players’ initial
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and revised beliefs are assumed to be point-beliefs, that is, contain exactly
one strategy-type pair for each opponent. Moreover, in [Pe205] the model
is assumed to be complete which will be defined below. An important
difference between Perea’s model and the other models discussed here is
that Perea’s model explicitly allows for the possibility that players revise
their belief about the opponents’ preference relations over terminal nodes
as the game proceeds. A Perea model is a tuple

M = (Ti, Pi, B̂i)i∈I

where Ti is player i’s set of types, Pi assigns to every type ti ∈ Ti a
strict preference relation Pi(ti) over the terminal nodes, B̂i assigns to ev-
ery type ti ∈ Ti and every information set hi ∈ H∗

i a belief B̂i(ti, hi) ⊆∏
j 6=i(Sj(hi) × Tj) consisting of exactly one point, and the model M is

complete. The assumption that the belief B̂i(ti, hi) consists of exactly one
point means that ti, at every information set hi, is supposed to consider
only one strategy-type pair (sj , tj) possible for every opponent j. However,
this point-belief may change as the game proceeds. By a complete model,
we mean that for every player i, every strict preference relation P̂i and ev-
ery belief vector B̃i = (B̃i(hi))hi∈H∗

i
consisting of conditional point-beliefs

B̃i(hi) as described above, there is some type ti ∈ Ti with Pi(ti) = P̂i and
B̂i(ti, hi) = B̃i(hi) for all hi. Since types may revise their belief about the
opponents’ types, and different types may have different preference relations
over terminal nodes, Perea’s model allows types to revise their belief about
the opponents’ preference relations over terminal nodes.

Perea’s sufficient condition for backward induction is common belief in
the events that (1) players initially believe in (P̃i)i∈I , (2) players initially
believe in rationality at all information sets, and (3) the players’ belief
revision procedures satisfy some form of minimal belief revision. The crucial
difference with the other models discussed here is that condition (1) allows
players to revise their belief about the opponents’ preference relations as the
game proceeds. On the other hand, the conditions (2) and (3) as they have
been defined in [Pe205] can be shown to imply that players should always

believe that every opponent chooses rationally at all information sets; a
condition that cannot be realized in general if players do not revise their
beliefs about the opponents’ preference relations.

A type ti is said to initially believe in (P̃j)j∈I if for every opponent j,

the initial belief B̂i(ti, h0) about player j consists of a strategy-type pair
(sj , tj) where Pj(tj) = P̃j . In order to formalize condition (3), we need the
definition of an elementary statement. A first-order elementary statement
about player i is a statement of the form “player i has a certain preference
relation” or “player i believes at hi that opponent j chooses a certain strat-
egy”. Recursively, one can define, for every k ≥ 2, a kth order elementary
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statement about player i as a statement of the form “player i believes at hi

that ϕ” where ϕ is a (k − 1)st order elementary statement. An elementary
statement about player i is then an elementary statement about player i

of some order k. Now, let hi ∈ Hi\h0, and let h′
i be the information set

in H∗
i that precedes hi and for which no other player i information set is

between h′
i and hi. For every opponent j, let (s′j , t

′
j) be the strategy-type

pair in B̂i(ti, h
′
i), and let (sj , tj) be the strategy-type pair in B̂i(ti, hi). Type

ti is said to satisfy minimal belief revision at hi if for every opponent j the
strategy-type pair (sj , tj) is such that (1) sj is rational for tj at all infor-
mation sets, (2) there is no other strategy-type pair (s′′j , t′′j ) in Sj(hi) × Tj

satisfying (1) such that t′′j and t′j disagree on fewer elementary statements
about player j than tj and t′j do, and (3) there is no other strategy-type pair
(s′′j , t′′j ) in Sj(hi)×Tj satisfying (1) and (2) such Pj(t

′′
j ) and Pj(t

′
j) disagree

on fewer pairwise rankings of terminal nodes than Pj(tj) and Pj(t
′
j) do. It

can be shown that this notion of minimal belief revision, together with the
condition that players initially believe in rationality at all information sets,
imply that a type always believes that his opponents choose rationally at
all information sets. For the definition of minimal belief revision it is very
important that the model M is assumed to complete. [Pe205, Theorem 5.1]
shows that there is a Perea model which satisfies the sufficient condition
listed above. Theorem 5.2 in that paper demonstrates that this sufficient
condition leads to backward induction. As such, Perea’s sufficient condition
for backward induction can be stated as follows in terms of our base model:

Perea’s condition BR: Type ti respects common belief in the events that
(1) types hold point-beliefs, (2) types initially believe in (P̃j)j∈I , (3) types
always believe in rationality at all information sets, and (4) types satisfy
minimal belief revision.

3.8 Quesada’s model

Quesada presents a model for games with perfect information which is nei-
ther semantic nor syntactic [Qu02]. The key ingredient is to model the
players’ uncertainty by means of Bonanno belief systems [Bo092]. A Bon-
nano belief system is a profile β = (βi)i∈I , where βi is a belief vector that
assigns to every information set h (not necessarily controlled by player i)
some terminal node βi(h) which follows h. The interpretation is that player
i, upon learning that the game has reached information set h, believes that
he and his opponents will act in such a way that terminal node βi(h) will
be reached. A Quesada model is a pair

M = (B, (vi)i∈I)

where B is a set of Bonnano-belief systems, and vi is a utility function for
player i over the terminal nodes. Quesada’s sufficient condition for backward
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induction states that every belief system in B should be rational, and that
every belief system in B should be justifiable by other belief systems in B.

Formally, a belief system β = (βi)i∈I is said to be rational if for every player
i and every information set hi ∈ Hi it holds that vi(βi(hi)) ≥ vi(βi((hi, a)))
for every action a ∈ A(hi), where (hi, a) denotes the information set that
immediately follows action a at hi. We say that belief system β = (βi)i∈I

in B is justifiable by other belief systems in B if for every player i, every
hi ∈ Hi, every opponent j, and every hj ∈ Hj between hi and the terminal
node βi(hi) there is some belief system β′ = (β′

i)i∈I in B such that β′
j(hj) =

βi(hi). A belief system β = (βi)i∈I is called the backward induction belief
system if for every player i and every information set h, βi(h) is the terminal
node which is reached by applying the backward induction procedure (with
respect to (vi)i∈I) from h onwards. In Proposition 1, Quesada shows that
there is one, and only one, set B which satisfies the two conditions above,
namely the set containing only the backward induction belief system.

We shall now attempt to express these conditions in terms of our base
model. Take a set B of belief systems such that every belief system in B is
justifiable by other belief systems in B (and thus satisfies Quesada’s second
condition above). Then, every belief system βi in B induces, for every hi,

a point-belief about the opponents’ strategy choices as follows: For every
hi there is some opponents’ strategy profile s−i(βi, hi) ∈

∏
j 6=i Sj(hi) such

that, for every action a ∈ A(hi), the action a followed by s−i(βi, hi) leads
to the terminal node βi(hi, a). Hence, s−i(βi, hi) may be interpreted as βi’s
conditional point-belief at hi about the opponents’ strategy choices. (Note
that this belief need not be unique, as βi does not restrict player i’s beliefs at
hi about opponents’ choices at parallel information sets). The belief vector
βi also induces, for every hi, a conditional point-belief about the opponents’
belief vectors β′

j in B. Consider, namely, an information set hi ∈ Hi, some
opponent j and an information set hj between hi and the terminal node
βi(hi) such that there is no further player j information set between hi and
hj . Since B satisfies Quesada’s justifiability condition, there is some player
j belief vector βj(βi, hi) in B such that βj(βi, hi)(hj) = βi(hi). (Again, this
choice need not be unique). This belief vector βj(βi, hi) may then serve as
βi’s conditional point-belief at hi about player j’s belief vector. Summa-
rizing, every belief vector βi induces, at every hi, a conditional point-belief
about the opponents’ strategy choices and the opponents’ belief vectors.

Now, if we interpret every belief vector βi in B as a type ti(βi) in our
base model, then, by the insights above, every type ti(βi) induces, at every
hi, a conditional point-belief about the opponents’ strategy choices and
types tj(βj). Hence, similarly to Perea’s model, Quesada’s model can be
expressed in terms of our base model by imposing common belief in the
event that types hold point-beliefs. Let Ti(B) denote the set of all such types



184 A. Perea

ti(βi) induced by some belief vector βi in B. A combination of Quesada’s
rationality condition and justifiability condition implies that, whenever βi

in B believes at hi that player j chooses action a at some hj between hi and
βi(hi) (with no player j information set between hi and hj), then there is
some rational belief vector βj(βi, hi) in B such that βj(βi, hi)(hj) = βi(hi).
In particular, action a must be part of the rational belief vector βj(βi, hi),
and hence action a must be optimal with respect to βj(βi, hi). In terms
of our base model, this means that, whenever type ti(βi) believes at hi

that information set hj will be reached in the future, and believes at hi

that player j will choose action a at hj , then ti(βi) must believe at hi that
player j is of some type tj(βj) for which a is rational. In other words, every
type ti(βi) in Ti(B) always believes in rationality at future information sets
that are believed to be reached. However, since ti(βi) believes at every
information set that every opponent j is of some type tj(βj) in Tj(B), it
follows that every ti(βi) in Ti(B) always believes in the event that all types
believe in rationality at future information sets that are believed to be
reached. By recursively applying this argument, one may conclude that
every ti(βi) in Ti(B) respects common belief in the event that types always
believe in rationality at future information sets that are believed to be
reached. Quesada’s sufficient condition can thus be formulated as follows
in terms of our base model:

Quesada’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , (2) types hold point-
beliefs, and (3) types always believe in rationality at future information sets
that are believed to be reached.

3.9 Samet’s model

Samet presents a state-based semantic model which is an extension of the
models by Aumann and Balkenborg & Winter [Sa296]. A Samet model is a
tuple

M = (Ω, (Bi, fi, vi, τi)i∈I),

where Ω, Bi, fi and vi are as in the Aumann model, and τi is a so-called
hypothesis transformation that assigns to every state ω and non-empty event
E ⊆ Ω some new state ω′. My interpretation of τi is that if player i currently
believes that the state is in Bi(ω), but later observes the event E, then he
will believe that the state is in Bi(ω

′) ∩ E. Samet defines the hypothesis
transformation in a different, but equivalent, way. In Samet’s terminology,
a hypothesis transformation assigns to every initial belief Bi(ω) and event
E some new belief Bi(ω

′) for some ω′ ∈ Ω. However, this definition is
equivalent to the existence of a function τi as described in our model. The
function τi must satisfy the following two conditions: (1) Bi(τi(ω, E)) ∩ E

is nonempty for every ω and E, and (2) τi(ω, E) = ω whenever Bi(ω) has a
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nonempty intersection with E. These conditions indicate that Bi(τi(ω, E))∩
E may be interpreted as a well-defined conditional belief for player i at state
ω when observing the event E.

As to the functions fi, mapping states to strategy choices, it is assumed
that for every terminal node z there is some state ω ∈ Ω such that the profile
(fi(ω))i∈I of stategies reaches z. This implies that for every information set
hi, the event

[hi] = {ω ∈ Ω | (fi(ω))i∈I reaches hi}

is nonempty, and hence can be used as a conditioning event for the hypoth-
esis transformation τi. Samet assumes in his model a function ξ (instead
of (fi)i∈I) mapping states to terminal nodes, and assumes that for every
terminal node z there is some ω ∈ Ω with ξ(ω) = z. However, he shows that
this function ξ induces, in some precise way, a profile (fi)i∈I of strategy
functions, as we use it. We work directly with the strategy functions here,
in order to make the model as similar as possible to the Aumann model and
the Balkenborg-Winter model.

In contrast to Aumann’s model and Balkenborg and Winter’s model,
every state ω in Samet’s model formally induces a conditional belief vector in
our base model. Namely, take some state ω, a player i, and some information
set hi ∈ H∗

i . Then,

B̂i(ω, hi) := Bi(τi(ω, [hi])) ∩ [hi]

respresents player i’s conditional belief at hi about the state. Since every
state ω′ induces for player j a strategy choice fj(ω

′) and a conditional be-

lief vector (B̂j(ω
′, hj))hj∈H∗

j
, first-order conditional beliefs about the oppo-

nents’ strategies, and higher-order conditional beliefs about the opponents’
conditional beliefs can be derived at every state with the help of the hypoth-
esis transformations τi. Hence, Samet’s model can be expressed directly and
formally in terms of our base model.

Samet’s sufficient condition for backward induction is common hypoth-

esis of node rationality. At state ω, player i said to be rational at hi ∈ Hi

if (1) ω ∈ [hi], and (2) there is no si ∈ Si such that for every ω′ ∈ Bi(ω)∩[hi]
it holds that

vi(ω)(z(si, (fj(ω
′))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

′))j 6=i|hi)),

where the definition of this expression is as in Aumann’s model. Let
[rati(hi)] denote the set of states ω such that at ω, player i is rational at hi.

Common hypothesis of node rationality can now be defined by the following
recursive procedure: For every player i and information set hi ∈ H∗

i , let

CHNR(hi, hi) = [rati(hi)].
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Note that, by condition (1) above, CHNR(hi, hi) only contains states at
which hi is indeed reached. Now, let k ≥ 0, and suppose that CHNR(hi, hj)
has been defined for all information sets hi ∈ H∗

i , hj ∈ H∗
j such that hj

comes after hi, and there are at most k information sets between hi and
hj . Suppose now that hj comes after hi, and that there are exactly k + 1
information sets between hi and hj . Let h be the unique information set
that immediately follows hi and precedes hj . Define

CHNR(hi, hj) = {ω ∈ Ω | Bi(τi(ω, [h])) ∩ [h] ⊆ CHNR(h, hj)}.

Common hypothesis of node rationality is said to hold at state ω if ω ∈
CHNR(h0, h) for all information sets h. Hence, the player at h0 believes
that (1) every opponent j will choose rationally at those information sets
hj that immediately follow h0, (2) every such opponent j will believe at
every such hj that every other player k will choose rationally at those hk

that immediately follow hj , and so on.
Samet shows in Theorem 5.3 that for every profile (vi)i∈I of utility func-

tions, for every state ω at which common knowledge of (vi)i∈I and common
hypothesis of node rationality hold, the strategy profile (fi(ω))i∈I leads to
the backward induction outcome with respect to (vi)i∈I . In particular, the
player at h0 chooses the backward induction action at h0 with respect to
(vi)i∈I . In Theorem 5.4, Samet shows that there always exists some state
ω at which common knowledge of (vi)i∈I and common hypothesis of node
rationality hold.

For a given state ω and information set hi ∈ H∗
i , say that common

hypothesis of node rationality at hi holds if ω ∈ CHNR(hi, h) for all infor-
mation sets h that follow hi. Then, Samet’s Theorem 5.3 can be generalized
as follows: For every hi ∈ Hi and every ω at which common knowledge of
(vi)i∈I and common hypothesis of node rationality at hi hold, the strategy
fi(ω) chooses at hi the backward induction action with respect to hi.

In order to express this sufficient condition in terms of our base model, it
is important to understand all implications of common hypothesis of node
rationality. By definition, common hypothesis of node rationality at hi

implies that player i believes at hi that (1) every opponent j will choose
rationally at every information set hj that immediately follows hi, (2) every
such opponent j will believe at every such hj that every other player k

will choose rationally at every hk that immediately follows hj, and so on.
However, there are more implications.

Consider namely an information set hj ∈ Hj that immediately follows
hi and some information set hk ∈ Hk which immediately follows hj such
that Bi(τi(ω, [hj ])) ⊆ [hk]. Hence, in terms of our base model, player i

believes at hi that hk will be reached. Suppose that state ω is such that
common hypothesis of node rationality at hi holds at ω. By (1) above, it
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holds that (1’) Bi(τi(ω, [hj ])) ∩ [hj] ⊆ [ratj(hj)]. By (2) above, it holds for
every ω′ ∈ Bi(τi(ω, [hj]))∩ [hj ] that (2’) Bj(τj(ω

′, [hk]))∩ [hk] ⊆ [ratk(hk)].
However, since Bi(τi(ω, [hj])) ⊆ [hk], it follows that ω′ ∈ [hk] for ev-
ery ω′ ∈ Bi(τi(ω, [hj])). Since ω′ ∈ Bj(ω

′), we have that Bj(ω
′) has a

nonempty intersection with [hk], and hence (by the assumptions on τi)
τj(ω

′, [hk]) = ω′ for every ω′ ∈ Bi(τi(ω, [hj ])). We may therefore conclude
that Bj(τj(ω

′, [hk])) = Bj(ω
′) for every ω′ ∈ Bi(τi(ω, [hj ]))∩ [hj ]. By (2’) it

thus follows that Bj(ω
′) ∩ [hk] ⊆ [ratk(hk)] for every ω′ ∈ Bi(τi(ω, [hj])) ∩

[hj ]. Since ω′ ∈ Bj(ω
′), and ω′ ∈ [hk] for every ω′ ∈ Bi(τi(ω, [hj ])), it fol-

lows in particular that ω′ ∈ [ratk(hk)] for every ω′ ∈ Bi(τi(ω, [hj ])) ∩ [hj ],
which means that player i believes at hi that player k chooses rationally at
hk. Hence, we have shown that common hypothesis of node rationality at
hi implies that player i believes at hi that player k chooses rationally at hk

whenever (1) there is only one information set between hi and hk, and (2)
player i believes at hi that hk will be reached. By induction, one can now
show that common hypothesis of node rationality at hi implies that player i

believes at hi that player k chooses rationally at hk whenever (1) hk follows
hi and (2) player i believes at hi that hk can be reached.

By a similar argument, one can show that common hypothesis of node
rationality at hi implies that player i believes at hi that common hypothesis
of node rationality will hold at every future information set hj which player
i believes to be reached from hi. Together with our previous insight, this
means that common hypothesis of node rationality may be expressed, in
terms of our base model, by forward belief in material rationality (see our
Definition 2.7). Samet’s sufficient condition for backward induction can
thus be phrased as follows in terms of our base model:

Samet’s condition BR: Type ti (1) respects common belief in the event
that types hold preferences as specified by (P̃j)j∈I , and (2) respects forward
belief in material rationality.

3.10 Stalnaker’s model

Stalnaker proposes a state-based semantic model for perfect information
games in which every information set is controlled by a different player
[St198]. The model we present here is not an exact copy of Stalnaker’s
model, but captures its essential properties. A Stalnaker model is a tuple

M = (Ω, (fi, vi, λi)i∈I)

where Ω, fi and vi are as in the Aumann model, and λi is a function that
assigns to every state ω some lexicographic probability system (see Asheim’s

model) λi(ω) on Ω. That is, λi(ω) is a sequence (λ1
i (ω), . . . , λ

Ki(ω)
i (ω)) where

λk
i (ω) is a probability distribution on Ω. For every information set h let

[h] = {ω ∈ Ω | (fi(ω))i∈I reaches h}. We assume that [h] is non-empty for
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all h, and that λi(ω) has full support on Ω. By the latter, we mean that
for every ω′ ∈ Ω there is some k ∈ {1, . . . , Ki(ω)} such that λk

i (ω) assigns
positive probability to ω′. As such, λi and (fj)j 6=i induce, for every state ω,

a probabilistic belief revision policy for player i in the following way. For
every hi ∈ H∗

i , let ki(ω, hi) be the first k such that λk
i (ω) assigns positive

probability to [hi]. Then, the probability distribution µi(ω, hi) on [hi] given
by

µi(ω, hi)(ω
′) =

λ
ki(ω,hi)
i (ω′)

λ
ki(ω,hi)
i ([hi])

for every ω′ ∈ [hi] represents player i’s revised belief at ω upon observing
that hi has been reached. More generally, for every event E ⊆ Ω, the
probability distribution µi(ω, E) on E given by

µi(ω, E)(ω′) =
λ

ki(ω,E)
i (ω′)

λ
ki(ω,E)
i (E)

for every ω′ ∈ E defines player i’s revised belief upon receiving information
E. Here, ki(ω, E) is the first k such that λk

i (ω) assigns positive probability to
E. The lexicographic probability system λi(ω) naturally induces, for every
information set hi ∈ H∗

i , the non-probabilistic conditional belief

B̂i(ω, hi) := suppµi(ω, hi),

and hence Stalnaker’s model can be expressed directly in terms of our base
model.

Stalnaker’s sufficient condition for backward induction consists of com-

mon initial belief in sequential rationality, and common belief in the event

that players treat information about different players as epistemically inde-

pendent. Player i is called sequentially rational at ω if at every information
set hi ∈ H∗

i , the strategy fi(ω) is optimal given the utility function vi(ω)
and the revised belief about the opponents’ strategy choices induced by
µi(ω, hi) and (fj)j 6=i. Let Ωsrat be the set of states at which all players are
sequentially rational. Common initial belief in sequential rationality can be
defined by the following recursive procedure:

CIBSR1 = Ωsrat;

CIBSRk+1 = {ω ∈ Ω | B̂i(ω, h0) ⊆ CIBSRk for all players i}

for all k ≥ 1. Common initial belief in sequential rationality is said to hold at
ω if ω ∈ CIBSRk for all k. We say that two states ω and ω′ are indistinguish-
able for player i if fi(ω) = fi(ω

′), vi(ω) = vi(ω
′) and µi(ω, hi) = µi(ω

′, hi)
for all hi ∈ H∗

i . An event E is said to be about player i if for every two
states ω, ω′ that are indistinguishable for player i, either both ω and ω′
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are in E, or none is in E. We say that at ω player i treats information
about different players as epistemically independent if for every two dif-
ferent opponents j and ℓ, for every event Ej about player j and every
event Eℓ about player ℓ, it holds that µi(ω, Ej)(Eℓ) = µi(ω, Ω\Ej)(Eℓ)
and µi(ω, Eℓ)(Ej) = µi(ω, Ω\Eℓ)(Ej). In his theorem on page 43, Stalnaker
shows that common initial belief in sequential rationality and common be-
lief in the event that players treat information about different players as
epistemically independent lead to backward induction.

In terms of our base model, common initial belief in sequential rationality
corresponds to the condition that a type respects common initial belief in
the event that types initially believe in rationality at all information sets.
The epistemic independence condition cannot be translated that easily into
our base model. The problem is that the base model only allows for beliefs
conditional on specific events, namely events in which some information
set is reached. On the other hand, in order to formalize the epistemic
independence condition we need to condition beliefs on more general events.
There is, however, an important consequence of the epistemic independence
condition that can be expressed in terms of our base model, namely that the
event of reaching information set hi should not change player i’s belief about
the actions and beliefs of players that did not precede hi. In order to see this,
choose a player j that precedes hi and a player ℓ that does not precede hi.

Note that the event of player j choosing the action leading to hi is an event
about player j, and that the event of player ℓ choosing a certain action and
having a certain belief vector is an event about player ℓ. Hence, epistemic
independence says that player i’s belief about player ℓ’s action and beliefs
should not depend on whether player j has moved the game towards hi

or not. Moreover, it is exactly this consequence of epistemic independence
that drives Stalnaker’s backward induction result. In particular, if player i

initially believes that player ℓ chooses rationally at his information set hℓ

(which does not precede hi), then player i should continue to believe so if
he observes that hi has been reached. If we drop the assumption that every
player only controls one information set, the condition amounts to saying
that a player should never revise his belief about the actions and beliefs at
future and parallel information sets.

In terms of our base model, Stalnaker’s sufficient condition for backward
induction can thus be stated as follows:

Stalnaker’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , and (2) types do not
change their belief about the opponents’ choices and beliefs at future and
parallel information sets, and type ti respects common initial belief in the
event that (3) types initially believe in rationality at all information sets.

Halpern provides an explicit comparison between the models of Aumann
and Stalnaker [Ha001].
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Common belief in

event that types. . .

. . . initially believe in rat.

at all information sets
•

. . . always believe in rat.

at future information sets that

are believed to be reached

•

. . . always believe in rat.

at all future information sets
•

. . . always believe in rat.

at all future and

parallel information sets

• •

. . . always believe in rat.

at all information sets
•

Common initial belief

in event that types. . .

. . . initially believe in rat.

at all inf. sets
•

Forward belief in. . .

. . . substantive rationality • • •
. . .material rationality •
Common belief in

event that types. . .

. . . never revise belief

about opponents’

preference relations

• • • • • • • • • •

. . . do not revise belief

about opponents’ choices

and beliefs at future and

parallel information sets

• • •

. . .minimally revise belief

about opponents’

preferences and beliefs

•

. . . hold point-beliefs • •

Table 1. Overview of sufficient conditions for backward induction
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3.11 Summary

The discussion of the various models and sufficient conditions for backward
induction can be summarized by Table 1.

The table shows that several sufficient conditions for backward induc-
tion, although formulated in completely different epistemic models, become
equivalent once they have been expressed in terms of our base model. Note
also that there is no model assuming common belief in the events that (1)
types always believe in rationality at all information sets, and (2) types
never revise their beliefs about the opponents’ preferences over terminal
nodes. This is no surprise, since the papers [Re392, Re393] have illustrated
that these two events are in general incompatible. Perea’s model maintains
condition (1) and weakens condition (2), while the other models maintain
condition (2) and weaken condition (1). Finally observe that all models as-
sume (at least) initial common belief in the event that types initially believe
in rationality at all information sets, plus some extra conditions on the play-
ers’ belief revision procedures. If one would only assume the former, this
would lead to the concept of common certainty of rationality at the begin-

ning of the game, as defined in [BP97]. This concept is considerably weaker
than backward induction, as it may not even lead to the backward induc-
tion outcome. Hence, additional conditions on the players’ belief revision
policies are needed in each model to arrive at backward induction.

References

[As02] G.B. Asheim. On the epistemic foundation for backward in-
duction. Mathematical Social Sciences 44(2):121–144, 2002.

[AsPe205] G.B. Asheim & A. Perea. Sequential and quasi-perfect ratio-
nalizability in extensive games. Games and Economic Be-

havior 53(1):15–42, 2005.

[Au95] R.J. Aumann. Backward induction and common knowledge
of rationality. Games and Economic Behavior 8(1):6–19,
1995.

[Au98] R.J. Aumann. On the centipede game. Games and Economic

Behavior 23(1):97–105, 1998.

[Ba3Wi297] D. Balkenborg & E. Winter. A necessary and sufficient epis-
temic condition for playing backward induction. Journal of

Mathematical Economics 27(3):325–345, 1997.

[Ba797] P. Battigalli. On rationalizability in extensive games. Jour-

nal of Economic Theory 74(1):40–61, 1997.



192 A. Perea

[Ba7Si102] P. Battigalli & M. Siniscalchi. Strong belief and forward in-
duction reasoning. Journal of Economic Theory 106(2):356–
391, 2002.

[BP97] E. Ben-Porath. Rationality, Nash equilibrium and back-
wards induction in perfect-information games. Review of

Economic Studies 64(1):23–46, 1997.

[Bi187] K. Binmore. Modeling rational players, part I. Economics

and Philosophy 3:179–214, 1987.

[Bo092] G. Bonanno. Rational beliefs in extensive games. Theory

and Decision 33(2):153–176, 1992.

[Br1Fr2Ke104] A. Brandenburger, A. Friedenberg & H.J. Keisler. Admissi-
bility in games, 2004. Forthcoming.

[Br3Ra099] J. Broome & W. Rabinowicz. Backwards induction in the
centipede game. Analysis 59(264):237–242, 1999.

[Ca200] J.W. Carroll. The backward induction argument. Theory

and Decision 48(1):61–84, 2000.

[Cl003] T. Clausing. Doxastic conditions for backward induction.
Theory and Decision 54(4):315–336, 2003.

[Cl004] T. Clausing. Belief revision in games of perfect information.
Economics and Philosophy 20:89–115, 2004.

[Fe105] Y. Feinberg. Subjective reasoning—dynamic games. Games

and Economic Behavior 52(1):54–93, 2005.

[Ha001] J.Y. Halpern. Substantive rationality and backward induc-
tion. Games and Economic Behavior 37(2):425–435, 2001.

[Ho0Lo313] E.W. Hobson & A.E.H. Love, eds. Proceedings of the Fifth

International Congress of Mathematicians, Vol. 2. Cam-
bridge University Press, 1913.

[Pe084] D.G. Pearce. Rationalizable strategic behavior and the prob-
lem of perfection. Econometrica 52(4):1029–1050, 1984.

[Pe205] A. Perea. Minimal belief revision leads to backward induc-
tion, 2005. Unpublished.

[Pr00] G. Priest. The logic of backward inductions. Economics and

Philosophy 16:267–285, 2000.



Epistemic Foundations for Backward Induction 193

[Qu02] A. Quesada. Belief system foundations of backward induc-
tion. Theory and Decision 53(4):393–403, 2002.

[Qu03] A. Quesada. From common knowledge of rationality to
backward induction. International Game Theory Review

5(2):127–137, 2003.

[Ra098] W. Rabinowicz. Grappling with the centipede. Economics

and Philosophy 14:95–126, 1998.

[Re392] P.J. Reny. Rationality in extensive-form games. Journal of

Economic Perspectives 6(4):103–118, 1992.

[Re393] P.J. Reny. Common belief and the theory of games with
perfect information. Journal of Economic Theory 59(2):257–
274, 1993.

[Ro381] R.W. Rosenthal. Games of perfect information, predatory
pricing and the chain-store paradox. Journal of Economic

Theory 25(1):92–100, 1981.

[Ru191] A. Rubinstein. Comments on the interpretation of game
theory. Econometrica 59(4):909–924, 1991.

[Sa296] D. Samet. Hypothetical knowledge and games with perfect
information. Games and Economic Behavior 17(2):230–251,
1996.

[St196] R. Stalnaker. Knowledge, belief and counterfactual reason-
ing in games. Economics and Philosophy 12:133–163, 1996.

[St198] R. Stalnaker. Belief revision in games: forward and back-
ward induction. Mathematical Social Sciences 36(1):31–56,
1998.
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