
Mathematical Social Sciences 119 (2022) 11–30

A
E

t
a
a
f
p
h
i
d
c
m
e
H
c
i
p
d
o
p
t
r

h
0

Contents lists available at ScienceDirect

Mathematical Social Sciences

journal homepage: www.elsevier.com/locate/mss

Common belief in rationality in gameswith unawareness✩

ndrés Perea
picenter and Department of Quantitative Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

a r t i c l e i n f o

Article history:
Received 16 March 2021
Received in revised form 13 April 2022
Accepted 31 May 2022
Available online 11 June 2022

Keywords:
Unawareness
Common belief in rationality
Epistemic game theory
Elimination procedure

a b s t r a c t

This paper investigates static games with unawareness, where players may be unaware of some of
the choices that can be made. That is, different players may have different views on the game. We
propose an epistemic model that encodes players’ belief hierarchies on choices and views, and use it
to formulate the basic reasoning concept of common belief in rationality . We do so for two scenarios:
one in which we only limit the possible views that may enter the players’ belief hierarchies, and
one in which we fix the players’ belief hierarchies on views. For both scenarios we design a recursive
elimination procedure that yields for every possible view the choices that can rationally be made under
common belief in rationality.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A standard assumption in game theory is that all ingredients of
he game – the players, their choices and their utility functions –
re perfectly transparent to everybody involved. However, there
re many situations of interest in which players may not be
ully informed about some of these ingredients. For instance, a
layer may be uncertain about the precise utility functions of
is opponents. Such situations may be modeled as games with
ncomplete information, and Harsanyi (1967–1968) opened the
oor towards a formal analysis of this class of games. In some
ases the lack of information may even be more basic, as a player
ay be unaware of certain choices that can be made, or may
ven be unaware of the presence of certain players in the game.
arsanyi (1967–1968, pp.167–168) argued that unawareness of
hoices can also be modeled within the framework of incomplete
nformation, by assigning a very low utility to the choices that
layers are unaware of. But conceptually this still seems very
ifferent from being truly unaware of these choices.1 This type
f situations, where players are unaware of certain choices or the
resence of certain players in the game, has recently given rise
o the study of games with unawareness. For an overview of the
elatively young literature in this field, see Schipper (2014).

✩ I would like to thank Joseph Halpern, Aviad Heifetz, Niels Mourmans,
Burkhard Schipper and Marciano Siniscalchi for their valuable feedback. I am
also grateful to the participants at LOFT 2018 in Milano, the participants at
Bayes by the Sea 2019 in Ancona, seminar audiences at the University of Bath,
UC Davis, UC Irvine, Maastricht University and the University of Zürich, and
some editors and referees for useful comments on the paper.

E-mail address: a.perea@maastrichtuniversity.nl.
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1 See Hu and Stuart (2001) and Meier and Schipper (2014, p.227) for a
discussion of this issue.
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In terms of reasoning there is a crucial difference between
these two classes of games. In a game with incomplete informa-
tion, a player may not be informed about the true utility function
of an opponent, yet at the same time may reason about all the
possible utility functions that this opponent may have. And he
may reason about an opponent reasoning about all the possible
utility functions that some third player may have, and so on. That
is, if we list all the possible utility functions that the players may
have, then there is no limit to the players’ reasoning about these
utility functions.

The same is not true for games with unawareness, however.
If a player is unaware of an opponent’s choice c , then he cannot
reason about other players who are aware of c. In a sense, the
choice c is not part of his language, or state space, and hence
this choice c cannot enter at any level of his reasoning. These
endogenous constraints on the players’ reasoning constitute the
key factor that distinguishes games with unawareness from other
classes of games.

At the same time, this reasoning about the level of unaware-
ness of other players is at the central stage of games with un-
awareness. Indeed, if a player in a game with unawareness must
decide what to do, then he must base his choice not only on his
own (possibly partial) view of the game, but also on what he be-
lieves about the opponents’ views of the game, what he believes
that his opponents believe about the views of other players, and
so on. In other words, a player holds a belief hierarchy on the
players’ views of the game, and bases his choice upon this belief
hierarchy.

In that light, the reasoning of players in games with unaware-
ness is considerably more complex than in standard games, as a
player must form beliefs about the opponents’ choices and the
opponents’ views, where his beliefs about the opponents’ choices
will depend on his belief about their views. In the literature,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.mathsocsci.2022.05.005
http://www.elsevier.com/locate/mss
http://www.elsevier.com/locate/mss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mathsocsci.2022.05.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:a.perea@maastrichtuniversity.nl
http://www.epicenter.name/Perea/
https://doi.org/10.1016/j.mathsocsci.2022.05.005
http://creativecommons.org/licenses/by/4.0/


A. Perea Mathematical Social Sciences 119 (2022) 11–30

t
t
u

c
i
j

t
c
g
i
u
i
h

i
u
l
c
w
b

he reasoning about views has typically been disentangled from
he reasoning about choices, as most models for games with
nawareness exogenously specify a belief hierarchy on views for

every player. The strategic reasoning is then modeled by using
an equilibrium or rationalizability concept that assumes these
exogenously given belief hierarchies on views.

In this paper we take a different approach by combining the
players’ reasoning about views and choices into one belief hier-
archy that models both. More precisely, we propose a model of
static games with unawareness that no longer fixes the players’
belief hierarchies on views, but where we only limit the possible
views that may enter the players’ belief hierarchies. We impose
no restrictions, however, on how these views enter the belief hi-
erarchies, or what probabilities these views receive at the various
levels of a belief hierarchy. Subsequently, we encode the players’
belief hierarchies on choices and views by an appropriately de-
signed epistemic model with types. Types in this epistemic model
thus simultaneously describe the players’ reasoning about views
and their strategic reasoning — something that proves to be very
convenient for an epistemic analysis. Another difference with
most of the existing literature is that we allow for probabilistic
beliefs about the opponents’ views, and not only deterministic
beliefs. We find this important, as a player who is truly uncertain
about the level of unawareness of his opponent may well ascribe
positive probability to various possible views for this opponent.
Such probabilistic beliefs on views can naturally be captured by
our choice of an epistemic model.

We use our epistemic model to investigate the strategic rea-
soning of players in games with unawareness, which is the main
purpose of this paper. To do so, we focus on the central yet basic
reasoning concept of common belief in rationality (Spohn, 1982;
Brandenburger and Dekel, 1987; Tan and Werlang, 1988) which
in standard two-player static games characterizes rationalizability
(Bernheim, 1984; Pearce, 1984), while characterizing correlated
rationalizability (Brandenburger and Dekel, 1987) and the iter-
ated strict dominance procedure in standard static games with
two players or more.2 In the context of games with unawareness,
this concept states that a player believes that his opponents
choose optimally given their views of the game, that a player
believes that his opponents believe that the other players choose
optimally given their views of the game, and so on. It turns out that
this concept can naturally be formulated within the language of
our epistemic model which, as we saw, encodes belief hierarchies
on choices and views.

A natural question is whether we can find a recursive elimi-
nation procedure à la iterated strict dominance that characterizes
precisely those choices that can rationally be made under com-
mon belief in rationality. We indeed propose such a procedure,
and call it iterated strict dominance for unawareness. The main
difference with the standard strict dominance procedure is that,
in every round and for every player, we eliminate choices for
every possible view that this player can hold in the game. More
precisely, at a given view vi for player i we first eliminate those
choices for opponent j that have not survived the previous round
for any possible view of player j that player i can reason about
when holding the view vi. Subsequently, at view vi we eliminate
for player i those choices that are strictly dominated, given the
current set of opponents’ choices.

We show in Theorem 5.2 that this procedure selects, for every
player and every view, precisely those choices that this player

2 The difference between rationalizability (Bernheim, 1984; Pearce, 1984) and
orrelated rationalizability (Brandenburger and Dekel, 1987) is that the former,
n games with three players or more, requires player i’s belief about opponent
’s choice to be independent from his belief about another opponent k’s choice.
The latter concept does not impose this independence condition.
12
can make with this particular view under common belief in ratio-
nality. Since the procedure always yields a non-empty output, it
immediately follows that for every static game with unawareness
there is for every player and every view at least one belief
hierarchy on choices and views that expresses common belief in
rationality.

Moreover, the output of the procedure is shown to be indepen-
dent of the order and speed by which we eliminate the choices
at the various views. This enables us to define a variant of the
procedure, called bottom-up procedure, in which we start by doing
all the eliminations for the smallest views, after which we do all
the eliminations at the views that only contain smallest views
as subviews, and so on. Since this alternative procedure merely
corresponds to a change of the order and speed of elimination,
it yields precisely the same output. The main advantage of the
bottom-up procedure is that it allows us to do the eliminations on
a view-by-view basis, making it more attractive from a practical
point of view.

The procedure iterated strict dominance for unawareness is
very similar to the generalized iterated strict dominance procedure
(Bach and Perea, 2020) which has been designed for static games
with incomplete information. The main difference is that in the
latter procedure, choices are being eliminated at every possible
utility function that a player can have in the game, instead of at
every possible view that a player can hold.

As a second step, we reconcile the concept of common belief in
rationality with the common assumption that the players’ belief
hierarchies on views are fixed. The new concept then selects,
for every view and every fixed belief hierarchy on views, those
choices that a player can rationally make under common belief
in rationality if he holds this particular view and belief hierarchy
on views. Also for this concept we design a recursive elimination
procedure, called iterated strict dominance with fixed beliefs on
views, that yields precisely these choices. See our Theorem 6.2.

To define this procedure we first encode the given belief
hierarchy on views by means of an epistemic model with types,
similar to the one mentioned above. The difference is that there
is no reference to choices in this epistemic model, only to views.
Types in this epistemic model are called view-types, as they
encode belief hierarchies on views only. More precisely, every
view-type in the model can be identified with a view and a
probability distribution on the opponents’ view-types. The new
procedure is more refined as above, as it now eliminates, in every
round and for every player, choices at every possible view-type
for that player. Moreover, at a given view-type ri for player i, the
first-order beliefs that can be eliminated at ri are based on the
probability distribution that ri induces on the opponents’ view-
ypes. In that sense, the procedure is closely related to the interim
orrelated rationalizability procedure (Dekel et al., 2007) for static
ames with incomplete information. The key difference is that
n the latter procedure, choices are being eliminated at pairs of
tility functions and belief hierarchies on utility functions, whereas
n this paper choices are eliminated at pairs of views and belief
ierarchies on views.
With these two procedures we thus characterize the behav-

oral consequences of common belief in rationality in games with
nawareness in two scenarios: the basic scenario where we only
imit the possible views that may enter the players’ belief hierar-
hies, but where no other restrictions are imposed, and a scenario
here the belief hierarchies on views are fixed. Moreover, if the
elief hierarchies on views are fixed and deterministic, then our

procedure becomes equivalent to the extensive-form rationaliz-
ability procedure in Heifetz et al. (2013b) when applied to static
games with unawareness. Our analysis is also closely related to
Feinberg (2021) who investigates the concept of rationalizabil-

ity for static games with unawareness. Most other papers on



A. Perea Mathematical Social Sciences 119 (2022) 11–30

g
o

w
S
m
d
a
d
i
I
p
b
c
h
p
T
d
m

2

a
T
h
p
i
f

e

g
c
t
b
o

n
v

c

t
t
a
c
o
t
e
t

d
a
h
o
i

s
t
d
i
u

c
c
h
i
v
o
e

f
s
t
b
p
p
f
r
T
f
a
h
o
w
c
t
i
h
b
S
h
v

v
c
s
i

S
a
s
b

ames with unawareness investigate equilibrium concepts instead
f rationalizability concepts.
The rest of the paper is organized as follows. In Section 2

e provide our definition of static games with unawareness. In
ection 3 we encode belief hierarchies on choices and views by
eans of an epistemic model with types, and use it to formally
efine common belief in rationality for static games with un-
wareness in Section 4. In Section 5 we present the iterated strict
ominance procedure for unawareness and show that it character-
zes the behavioral consequences of common belief in rationality.
n Section 6 we impose a fixed belief hierarchy on views for every
layer, present the iterated strict dominance procedure with fixed
eliefs on views, and show that it characterizes the behavioral
onsequences of common belief in rationality with fixed belief
ierarchies on views. In Section 7 we relate our work to other pa-
ers on unawareness in the literature. We conclude in Section 8.
he Appendix contains all proofs, and shows how to formally
erive belief hierarchies on views from types in an epistemic
odel.

. Static games with unawareness

In this paper we restrict to static games, and focus on un-
wareness about the possible choices that the players can make.
hat is, a player may be unaware of certain choices that he, or
is opponents, can make in the game. Feinberg (2021) allows
layers, in addition, to be unaware of some of the other players
n the game. Such unawareness, however, will not be part of our
ramework.

Before we can analyze games with unawareness, we must first
stablish how we describe the possible unawareness of players

about some of the choices in the game. We will do so by defining,
for every player, a collection of partial descriptions of the full
ame, which contain some – but not necessarily all – possible
hoices that can be made. These partial descriptions will be called
he possible views that the player can hold. Every view can thus
e interpreted as a personal, and possibly incomplete, perception
f the full game.
Formally, a static game is a tuple G = (Ci, ui)i∈I where I is a

finite set of players, Ci is a finite set of choices, and ui : ×j∈ICj → R
is a utility function for every player i. A view of the game G is a
tuple v = (Di)i∈I where Di ⊆ Ci is a non-empty, possibly reduced
set of choices for every player i. The interpretation is that a player
with view v = (Di)i∈I is only aware of the choices in Di for every
player i. We implicitly assume that a player with view v = (Di)i∈I
believes that the utilities induced by the choice combinations in
v coincide with those of the game G. For that reason, it is not
ecessary to specify new utility functions for a view. For any two
iews v = (Di)i∈I and v′

= (D′

i)i∈I we write v ⊆ v′ if Di ⊆ D′

i for all
players i. In this case, we say that view v is contained in view v′.
That is, all choices considered possible in v are also considered
possible in v′. An important principle in this – and any other
– paper on unawareness is that a player with view v can only
reason about views that are contained in v.

We can now define a static game with unawareness as a tuple
consisting of a full static game, containing all choices that the
players can possibly make, and for every player a finite collection
of possible views of the full game.

Definition 2.1 (Static Game with Unawareness). A static game with
unawareness is a tuple Gu

= (Gbase, (Vi)i∈I ) where Gbase is a static
game, and Vi is a non-empty finite collection of views for player
i of the game Gbase. Moreover, for every player i, every view vi in
Vi, and every opponent j ̸= i there must be a view in Vj that is
ontained in v .
i S

13
Here, we refer to Gbase as the base game. The condition above
thus guarantees that for every possible view vi ∈ Vi that player i
can have, there is for every opponent j at least one view vj ∈ Vj
hat player i can reason about. This property plays a key role in
his paper. Moreover, it implies that every “smallest” view will
lways be shared by all the players in the game. To see this,
onsider a smallest view vi ∈ Vi in the game, meaning that no
ther view vj ∈ Vj for any player j is strictly contained in vi. By
he property above, it must then necessarily hold that vi ∈ Vj for
very player j, and hence every smallest view vi is shared by all
he players.

Unlike most other definitions in game theory, not all ingre-
ients in a static game with unawareness are commonly known
mong the players. In particular, if player i holds a certain view vi,
e will not be aware of – and hence, not know of – the existence
f views in the model that are not contained in vi. This will be
llustrated below in Example 1.

It is still possible that a player with view v feels he is missing
omething, but cannot state exactly what. That is, he believes
hat the actual set of choices is larger than his view, but cannot
escribe exactly what choices are missing. In the literature, this
s known as “awareness of unawareness”. However, this type of
nawareness will not be modeled in this paper.
Note that, for every player i, the collection of views Vi need not

ontain all possible views of the game Gbase. By considering limited
ollections of views, we put restrictions on the possible belief
ierarchies on views that we allow for. Indeed, for every player
we restrict to belief hierarchies in which i only deems possible
iews in Vj for every opponent j, believes that every opponent j
nly deems possible views in Vk for every player k ̸= j (possibly
qual to i himself), and so on.
The reasons for imposing such restrictions are two-fold. First,

or a specific game-theoretic context, some views just make more
ense than other views, and it thus seems reasonable to restrict
o the more plausible views. Second, the concept of common
elief in rationality, which is the main object of study in this
aper, would hardly have any bite if we were to allow for all
ossible views. In that case, every choice that would be optimal
or at least some belief about the opponents’ choices could be
ationalized under the concept of common belief in rationality.
o see this, consider some choice ci for player i that is optimal
or some belief bi about the opponents’ choices. If all views are
llowed, then player i is free to believe that every opponent only
as one available choice, that every opponent believes that every
ther player only has one available choice, and so on. In that
ay, we can trivially embed the belief bi in a belief hierarchy on
hoices and views that expresses common belief in rationality,
hus rationalizing the choice ci under common belief in rational-
ty. However, by imposing some restrictions on the possible belief
ierarchies on views, we may be able to derive some non-trivial
ehavioral consequences from common belief in rationality. In
ection 6 we will impose further restrictions on the players’ belief
ierarchies on views by assuming a unique belief hierarchy on
iews for every player.
As another special case of our model, one may select the “full

iew” (Ci)i∈I as the only possible view for every player. In that
ase, the game with unawareness would reduce to a traditional
tatic game in which all players agree that the game being played
s Gbase and no other.

The model that perhaps comes closest to ours is Meier and
chipper (2014), which focuses on static games with unawareness
nd incomplete information. Some other models of unawareness,
uch as Rêgo and Halpern (2012), Heifetz et al. (2013b) and Fein-
erg (2021),3 are explicitly about dynamic games. An additional

3 Additional papers that model games with unawareness can be found in
ection 7.
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Table 1
“A day at the beach”, modeled as a game with unawareness.

Gbase Faraway Distant Nextdoor Closeby

Base game

Faraway 0,0 4,1 4,4 4,3
Distant 3,2 0,0 3,4 3,3
Nextdoor 2,2 2,1 0,0 2,3
Closeby 1,2 1,1 1,4 0,0

v1 Faraway Distant Nextdoor Closeby v′

1 Nextdoor Closeby

Your views

Faraway 0 4 4 4 Nextdoor 0 2
Distant 3 0 3 3 Closeby 1 0
Nextdoor 2 2 0 2
Closeby 1 1 1 0

v2 Faraway Distant Nextdoor Closeby v′

2 Nextdoor Closeby

Barbara’s views

Faraway 0 2 2 2 Nextdoor 0 4
Distant 1 0 1 1 Closeby 3 0
Nextdoor 4 4 0 4
Closeby 3 3 3 0
a
i
B
v
y
b
a
y
c

v

difference between our model and the three models above is
that the latter fix for every player a view and a belief hierarchy
n views, whereas we do not. That is, these papers exogenously
escribe, for every player, the view he holds on the game, what
he player believes about the opponents’ views, what he believes
bout the opponents’ beliefs about the views by the other players,
nd so on. In contrast, we allow players to hold any view and any
elief hierarchy on views they wish, as long as these only use
iews from the collections (Vi)i∈I . As we already said, the case of
ixed belief hierarchies on views will be explored in Section 6.

Moreover, in our model we allow such belief hierarchies on
iews to be probabilistic, whereas Feinberg (2021) restricts to de-
erministic belief hierarchies on views. Rêgo and Halpern (2012)
nd Heifetz et al. (2013b), in turn, do allow for probabilistic belief
ierarchies on views through the introduction of chance moves.
A last difference we wish to outline is that the models by

êgo and Halpern (2012) and Heifetz et al. (2013b) were specif-
cally designed for dynamic games with unawareness. But their
definitions capture static games as a special case.

We now illustrate the definition of a static game with un-
awareness by means of an example.

Example 1 (A Day at the Beach). You and Barbara can go to four
ossible beaches: the Nextdoor Beach, the Closeby Beach, the
araway Beach and the Distant Beach. The first two beaches are
lose to the hotel, whereas the latter two are more remote and
ard to find. You happen to know about the two remote beaches,
ut are unsure whether Barbara is aware of these. The question
s: To which beach do you go?

As to the utilities, suppose you had an argument with Barbara
esterday, and therefore you would both prefer to avoid each
ther by going to different beaches today. Assume, moreover, that
ou prefer the Faraway Beach to the Distant Beach, the Distant
each to the Nextdoor Beach, and the Nextdoor Beach to the
loseby Beach. You know that Barbara prefers the Nextdoor Beach
o the Closeby Beach, and suspect that she prefers the Closeby
each to the Faraway Beach, and the Faraway Beach to the Distant
each in case she is aware of the two remote beaches.
This situation can be represented by the game with unaware-

ess in Table 1, where Gbase is the base game, V1 = {v1, v
′

1}

ontains the views for you and V2 = {v2, v
′

2} contains the views
or Barbara that are relevant for the situation at hand. In the base
ame, your choices are in the rows and Barbara’s choices are
n the columns. In both of your possible views v1 and v′

1, your
choices are in the rows and Barbara’s choices in the columns. In
the corresponding cells we have put your utilities. In Barbara’s
views v2 and v′

2 we have put her choices in the rows and your
choices in the columns, and have written the induced utilities
14
for her in the cells. This is a general convention we adopt for
depicting views of a player i: we always put i’s choices in the
rows, the opponents’ choice combinations in the columns, and
the induced utilities for player i in the corresponding cells.

The view v1 represents your actual view, in which you are
ware of all four beaches. Since you are unsure whether Barbara
s aware of the two remote beaches or not, you believe that
arbara’s view is either v2 or v′

2. If you believe that Barbara’s
iew is v′

2, you must necessarily believe that Barbara believes that
our view is v′

1. Indeed, if Barbara is not aware of the two remote
eaches, she cannot even reason about the possibility that you
re aware of these remote beaches. It may be verified that Table 1
ields a well-defined static game with unawareness, meeting the
ondition on views as specified in Definition 2.1.
Note that this scenario allows for multiple belief hierarchies on

iews for you, provided your view is v1, and similarly for Barbara
if her view is v2. Indeed, if your view is v1, then one possible belief
hierarchy on views is that you believe that Barbara holds the view
v2, that you believe that Barbara believes that you hold the view
v1, and so on. Another belief hierarchy could be that you believe
that Barbara’s view is v′

2, that you believe that Barbara believes
that you hold the view v′

1, and so on.
However, if your view is v′

1, then you can only reason about
the view v′

2 for Barbara and the view v′

1 for yourself. Hence, the
only possible belief hierarchy on views would be the one where
you believe that Barbara’s view is v′

2, believe that Barbara believes
that your view is v′

1, and so on.
Note that not all the ingredients of this game with unaware-

ness are common knowledge among the two players. Consider,
for instance, the case where Barbara’s view is v′

2. Then, she only
has mental access to the views v′

1 and v′

2 in the model, and is not
even aware of the existence of the other views v1 and v2.

Finally, we wish to mention that a specific view vi for player i
only specifies the choices – for himself, but also for the opponents
– that he is aware of himself, but does not specify what player i
believes about the awareness of other players. For instance, the
view v1 above only tells us that you are aware of the four beaches
yourself. In particular, you are aware of four possible choices
for Barbara. This does not mean, however, that you believe that
Barbara is aware of these four choices also.

3. Epistemic models

In this section we will introduce epistemic models with types
for games with unawareness, as a convenient way to encode
belief hierarchies about the players’ choices and views in the
game. We start by laying out the definition, and discussing some
of its key properties. Afterwards, we illustrate it by means of
the example “A day at the beach”. Finally, we relate it to other
definitions in the literature.
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.1. Definition

The idea of common belief in rationality (Spohn, 1982; Bran-
enburger and Dekel, 1987; Tan and Werlang, 1988) is that a
layer believes that every opponent chooses optimally given his
iew, that he believes that every opponent believes that every
ther player chooses optimally given his view, and so on. In order
o formally define this idea for static games with unawareness,
e must specify (i) what a player believes about the possible
hoices and views of his opponents, (ii) what he believes about
he opponents’ beliefs about their opponents’ choices and views,
nd so on. Such belief hierarchies can be encoded by means of
pistemic models with types, where every type holds a view and
probabilistic belief about the opponents’ choices and types.
To formally define the notion of an epistemic model, we need

he following pieces of notation. For every finite set X , we denote
y ∆(X) the set of probability distributions on X . Now, consider
static game with unawareness Gu

= (Gbase, (Vi)i∈I ). Then, by
:= ∪i∈IVi we denote the collection of all views in Gu. For a

iven view v = (Di)i∈I , we denote by Ci(v) := Di the set of
hoices for player i that a player with view v can reason about.
y C−i(v) := ×j̸=iCj(v) we denote the set of opponents’ choice
ombinations that player i can reason about while having the
iew v.

efinition 3.1 (Epistemic Model). Consider a static game with
nawareness Gu

= (Gbase, (Vi)i∈I ). An epistemic model for Gu is
tuple M = (Ti, v̂i, bi)i∈I where, for every player i,

a) Ti is a finite set of types,
b) the view mapping v̂i assigns to every type ti ∈ Ti some view
v̂i(ti) ∈ Vi. For a given type ti and a player j ̸= i, we denote by
j(v̂i(ti)) the set of types tj ∈ Tj with view v̂j(tj) ⊆ v̂i(ti), and
efine T−i(v̂i(ti)) := ×j̸=iTj(v̂i(ti)),
c) the belief mapping bi assigns to every type ti ∈ Ti some
probabilistic belief bi(ti) ∈ ∆(C−i(v̂i(ti)) × T−i(v̂i(ti))),

(d) for every type ti ∈ Ti, the belief bi(ti) only assigns positive
probability to opponents’ choice-type pairs (cj, tj) where cj ∈

Cj(v̂j(tj)).

Condition (c) thus guarantees that a type ti only assigns prob-
abilities to opponents’ choices and views that he is aware of. In
fact, we assume that type ti is unaware of all opponents’ choices
cj that are not in Cj(v̂i(ti)) and all opponents’ types that are not
in Tj(v̂i(ti)). In other words, the choices, views and types in the
epistemic model that are not contained in his own view v̂i(ti) are
not in ti’s vocabulary.

By the same condition (c), a type ti also believes this to be
true for all opponents’ types tj that it can reason about: For all
such opponents’ types tj, type ti believes that tj is unaware of
all choices, views and types that are outside its view v̂j(tj). This
follows by applying condition (c) to type tj. By applying this
argument recursively, we conclude that type ti, within its entire
belief hierarchy, will only consider types tj which are unaware of
all choices, views and types that are outside its view v̂j(tj).

As such, the complete epistemic model may be viewed as a
description from the modeler’s point of view, whereas the various
types in the model may only have mental access to a part of the
epistemic model.4

Condition (d), finally, reflects the fact that a player j with type
tj can only make choices that are contained in his own view v̂j(tj).

4 More precisely, take the perspective of a player i with type ti and view
= v̂i(ti). Then, this player can reason about all types tj for opponent j where

ˆ j(tj) ⊆ v, and can reason about each of his own types t ′i where v̂i(t ′i ) ⊆ v. The
atter is important, since player i may reason about an opponent j who reasons
bout i’s (that is, his own) type.
15
owever, if tj’s view is contained in ti’s view then, possibly, player
with type ti could still reason about choices for j that player j
ith type tj is not aware of.
Now, consider for player i a type t∗i in the epistemic model.

hen, we can derive for t∗i a full infinite belief hierarchy about
he choices and views of the players. Indeed, t∗i ’s first-order belief
bout the opponents’ choices would simply be the marginal of
he probability distribution bi(t∗i ) on C−i(v̂i(ti)). As bi(t∗i ) induces
probability distribution on T−i(v̂i(ti)), and every opponent’s type
olds a view, we can also derive t∗i ’s first-order belief about the
pponents’ views. Hence, for t∗i we can derive its first-order belief
bout the opponents’ choices and views in this way.
The second-order beliefs for t∗i can be derived as follows.

imilarly as above, we can derive for every opponent’s type tj its
first-order belief about the other players’ choices and views. As t∗i
has a belief bi(t∗i ) about the opponents’ types, we can derive the
belief that t∗i has about the first-order belief that every opponent
has about the other players’ choices and views. This yields the
econd-order belief that type t∗i has. By continuing in this fashion
e can also derive the third-order belief, and all higher-order
eliefs, for the type t∗i , representing t∗i ’s belief hierarchy about
he players’ choices and views. How this works precisely will be
llustrated later by means of an example.

The belief hierarchy of type t∗i will have some natural prop-
rties, which follow from the definition of the epistemic model.
ondition (c) guarantees, for instance, that at all layers of the
elief hierarchy, t∗i will only consider views and choices that
re in his vocabulary, that t∗i believes that all other players will,
hroughout their entire belief hierarchy, only consider choices
nd views that are in their vocabulary, and so on. In fact, as stated
bove, t∗i is not aware of any choices, views and types that go
eyond his own view v̂i(ti), and in his belief hierarchy he will only
onsider opponents’ types that share this property.
In particular, within his belief hierarchy type t∗i will only

eason about views that are smaller (or equal) than his own,
elieves that other players share this property, believes that other
layers believe that other players share this property, and so
n. We refer to this property as common belief in smaller views.
imilar properties can be found in other papers on games with
nawareness. Indeed, this condition corresponds to condition
2 in Rêgo and Halpern (2012), condition I4 in Heifetz et al.
2013b), condition (iii)(a) from Definition 1 in Heinsalu (2014),
he “confinement” condition in Heifetz et al. (2013a) and Meier
nd Schipper (2014), and Condition 2 in Feinberg (2021).
The condition of common belief in smaller views is the main

ngredient that distinguishes epistemic models for unawareness
rom epistemic models for incomplete information. In the latter
cenario no condition of this kind is needed, as a player with
certain utility function has in principle mental access to all
ther utility functions in the model, and hence no restrictions
eed to be imposed on belief hierarchies on utility functions.
ne could say that, a priori, all belief hierarchies on utility func-
ions are equally plausible. This is not the case for games with
nawareness.

.2. Example

As an illustration of an epistemic model, consider the one in
able 2 for the game “A day at the beach”. It may be verified that
onditions (c) and (d) in Definition 3.1 are satisfied. The beliefs
or the types should be read as follows: Type t∗1 for you assigns
robability 1 to the event that Barbara chooses Nextdoor Beach
nd has type t2. Type t ′2 for Barbara is not aware of the views v1
nd v2, and hence of the existence of Faraway Beach and Distant
each, and assigns probability 0.6 to the event that you choose
extdoor Beach and have type t ′ , and assigns probability 0.4 to the
1
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Table 2
An epistemic model for “A day at the beach”.
Types T1 = {t∗1 , t∗∗

1 , t1, t ′1}, T2 = {t2, t ′2, t
′′

2 }

Beliefs and
views for you

v̂1(t∗1 ) = v1 and b1(t∗1 ) = (Nextdoor, t2)
v̂1(t∗∗

1 ) = v1 and b1(t∗∗

1 ) = (Faraway, t ′2)
v̂1(t1) = v′

1 and b1(t1) = (Nextdoor, t2)
v̂1(t ′1) = v′

1 and b1(t∗1 ) = (Closeby, t ′′2 )

Beliefs and
views for Barbara

v̂2(t2) = v′

2 and b2(t2) = (Closeby, t1)
v̂2(t ′2) = v2 and b2(t ′2) = (0.6) · (Nextdoor, t ′1)

+ (0.4) · (Closeby, t1)
v̂2(t ′′2 ) = v′

2 and b2(t ′′2 ) = (Nextdoor, t ′1)
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event that you choose Closeby Beach and have type t1. Similarly
for the other types.

The belief hierarchy for type t∗∗

1 can be derived as follows.
Type t∗∗

1 believes that Barbara chooses Faraway Beach and has
type t ′2. As type t ′2 has view v2, the first-order belief for t∗∗

1 is that
you believe that Barbara chooses Faraway Beach and that Barbara
has the full view v2.

Note that Barbara’s type t ′2 assigns probability 0.6 to the event
hat you choose Nextdoor Beach and have type t ′1, and assigns
probability 0.4 to the event that you choose Closeby Beach and
ave type t1. As your types t1 and t ′1 both have view v′

1, the
second-order belief for type t∗∗

1 is that you believe that (i) Barbara
assigns probability 0.6 to you choosing Nextdoor Beach and prob-
ability 0.4 to you choosing Closeby Beach, and (ii) Barbara assigns
probability 1 to your holding the restricted view v′

1. The higher-
order beliefs for t∗∗

1 can be derived in a similar fashion. In the
same way we can also derive the belief hierarchy for your type
t∗1 , which also holds the full view v1.

3.3. Related definitions

As we have seen, we use an epistemic model to encode a
player’s belief hierarchy about the possible choices and views
in the game. Other papers that use epistemic models to encode
belief hierarchies in games with unawareness include Meier and
Schipper (2014), Heinsalu (2014) and Guarino (2020).

Meier and Schipper (2014), following Heifetz et al. (2013a),
start with a lattice of disjoint state spaces, ordered by “degree
of expressiveness”, where every state space in this lattice cor-
responds to a certain awareness level of a player. These state
spaces may thus be compared with the different views in our
model. For every player there is (i) a choice awareness mapping,
assigning to every state the set of choices he is aware of, (ii) a
choice mapping, assigning to every state a probability distribution
over his choices, and (iii) a belief mapping, assigning to every
state a probabilistic belief over the states. When combined, these
three mappings induce for every state and every player a belief
hierarchy about the players’ choices and views in the game.

Heinsalu (2014) shows the existence of a universal type space
for static games with unawareness. In particular, for every pos-
sible belief hierarchy on choices and views there will be a type
in this space that generates this belief hierarchy. Guarino (2020)
proves the existence of a universal type space for dynamic games
with unawareness. An important difference with Heinsalu’s ap-
proach is that Guarino explicitly shows how to construct this
universal type space. Also a working paper version of Heifetz et al.
(2013b) constructs a universal type space, much along the lines
of the Mertens–Zamir construction (Mertens and Zamir, 1985).

Different from the papers above, we do not perform our epis-
temic analysis with respect to a fixed epistemic model, but we
ather create for every question we wish to answer a new, tai-
or made epistemic model which addresses that question. More
16
specifically, we are interested in the following question in this
paper: Given a particular view v and choice ci, can player i
rationally choose ci if his view is v and reasons in accordance
with common belief in rationality? To answer this question af-
firmatively, it is sufficient to design an epistemic model where
all views are contained in v, and where there is a type for player
i that expresses common belief in rationality (see Section 4) and
for which the choice ci is optimal.

4. Common belief in rationality

In the previous section we have seen how to encode belief
hierarchies on choices and views, by means of an epistemic model
with types. The next step towards a formal definition of common
elief in rationality is to define optimal choice for a particular
iew, and belief in the opponents’ rationality. Fix an epistemic
odel M = (Ti, v̂i, bi)i∈I . For a given type ti in M , and a choice

i ∈ Ci(v̂i(ti)) that ti is aware of, we denote by

i(ci, ti) :=

∑
(c−i,t−i)∈C−i(v̂i(ti))×T−i(v̂i(ti))

bi(ti)(c−i, t−i) · ui(ci, c−i)

he expected utility induced by choice ci under ti’s first-order belief
bout the opponents’ choice combinations. We now define what
t means for a choice to be optimal for a type ti.

efinition 4.1 (Optimal Choice). Consider an epistemic model
= (Ti, v̂i, bi)i∈I and type ti ∈ Ti. A choice ci ∈ Ci(v̂i(ti)) is

ptimal for ti if

i(ci, ti) ≥ ui(c ′

i , ti) for all c
′

i ∈ Ci(v̂i(ti)).

We next define what it means to believe in the opponents’
ationality. In words, it means that you only deem possible com-
inations of choices and types for the opponent where the choice
s optimal for the type.

efinition 4.2 (Belief in the Opponents’ Rationality). Consider an
pistemic model M = (Ti, v̂i, bi)i∈I , and a type ti ∈ Ti. We say that
ype ti believes in the opponents’ rationality if bi(ti) only assigns
ositive probability to opponents’ choice-type pairs (cj, tj) where
j is optimal for tj.

In the epistemic model of Table 2, it may be verified that all
ypes believe in the opponent’s rationality. With this definition
t hand, we can now define common belief in rationality in an
terative fashion.

efinition 4.3 (Common Belief in Rationality). Consider an epis-
emic model M = (Ti, v̂i, bi)i∈I . A type ti ∈ Ti expresses 1-fold
elief in rationality if it believes in the opponents’ rationality.
or k > 1, we recursively say that a type ti expresses k -fold
elief in rationality if b (t ) only assigns positive probability to
i i
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pponents’ types that express (k − 1)-fold belief in rationality.
type ti expresses common belief in rationality if it expresses

-fold belief in rationality for every k ≥ 1.

Hence, type ti believes in the opponents’ rationality, believes
hat the opponents believe in the other players’ rationality, and
o on. Rational choice under common belief in rationality with a
articular view can be defined as follows.

efinition 4.4 (Rational Choice Under Common Belief in Rational-
ty). Consider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ),
view vi ∈ Vi, and a choice ci ∈ Ci(vi) available at that

iew. Choice ci can rationally be made under common belief
n rationality with the view vi if there is an epistemic model
M = (Tj, v̂j, bj)j∈I , and a type t∗i ∈ Ti with view v̂i(t∗i ) = vi, such
that t∗i expresses common belief in rationality, and ci is optimal
for t∗i .

The definition above thus states that there must be a belief
hierarchy for player i with view vi which expresses common
belief in rationality, and such that ci is optimal given this belief
hierarchy and the view vi. Note that no restrictions are being im-
posed on the belief hierarchy, beyond the conditions of common
belief in rationality, and the fact that the belief hierarchy must
be “feasible” given the view vi. That is, we look at “all possible
stories” that are compatible with the view vi and common belief
in rationality, without further restricting the belief hierarchy on
views.

To illustrate these notions, consider again the epistemic model
from Table 2. As all types believe in the opponent’s rationality,
it follows that your types t∗1 and t∗∗

1 express common belief in
rationality. Note that Faraway Beach is optimal for your type t∗1 ,
and Distant Beach is optimal for your type t∗∗

1 . As t∗1 and t∗∗

1 both
have the full view v1, it follows that with the view v1 you can
rationally choose Faraway Beach and Distant Beach under common
belief in rationality. In the next section we will see that these
are also the only choices you can rationally make under common
belief in rationality while holding the view v1.

5. Recursive procedure

In this section we wish to characterize the choices a player can
rationally make under common belief in rationality while holding
a particular view. To that purpose we introduce a recursive elimi-
nation procedure, called iterated strict dominance for unawareness,
which iteratively eliminates choices from every possible view in
the game. We show that the procedure delivers, for every view,
exactly those choices that can rationally be made under common
belief in rationality with that particular view.

5.1. Definition

To formally define the procedure, we need some additional
terminology. A decision problem for player i is a pair (Di,D−i)
where Di ⊆ Ci and D−i ⊆ C−i. We say that ci ∈ Di is strictly
dominated within the decision problem (Di,D−i) if there is some
randomized choice ρi ∈ ∆(Di) such that

ui(ci, c−i) <
∑
c′i∈Di

ρi(c ′

i ) · ui(c ′

i , c−i) for all c−i ∈ D−i.

In the procedure below we start by defining, for every player
i and every possible view vi ∈ Vi, the full decision problem
(Ci(vi), C−i(vi)) that corresponds to the view vi. Recall that Ci(vi)
is the set of player i’s choices and C−i(vi) the set of opponents’
choice combinations that player i is aware of with the view vi. At
every round we then recursively reduce these decision problems
at the various views by eliminating choices and opponents’ choice
combinations.
17
Definition 5.1 (Iterated Strict Dominance for Unawareness). Con-
sider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ).
(Initial step) For every player i and every view vi ∈ Vi, define the
full decision problem (C0

i (vi), C0
−i(vi)) := (Ci(vi), C−i(vi)).

(Inductive step) For k ≥ 1, every player i, and every view vi ∈ Vi,
efine
k
−i(vi) := {(cj)j̸=i ∈ Ck−1

−i (vi)| for all j ̸= i choice cj is in

Ck−1
j (vj) for some view vj ⊆ vi},

nd
k
i (vi) := {ci ∈ Ck−1

i (vi)| ci not strictly dominated within
the decision problem (Ck−1

i (vi), Ck
−i(vi))}.

choice-view pair (ci, vi) is said to survive the procedure if ci ∈
k
i (vi) for every k ≥ 0.

Hence, in this procedure we recursively restrict, for every view
i, the possible beliefs that player i can hold about his opponents’
hoices, through the sets Ck

−i(vi), and the possible choices that
layer i can make himself, through the sets Ck

i (vi). In that sense,
t is very similar to the generalized iterated strict dominance pro-
edure (Bach and Perea, 2020) for static games with incomplete
nformation. The latter procedure recursively restricts such beliefs
nd choices for every possible utility function that player i can
ave in the game with incomplete information, instead of for
very possible view in the game, as we do here.
An important difference is that in the case of incomplete

nformation, a player with a certain utility function is able to
eason about all other utility functions in the model – in a sense,
he collection of all utility functions is common knowledge among
he players – whereas the same is not true for views in a game
ith unawareness. Indeed, a player with a certain view can only
eason about views in the model that are contained in his own
iew. This fact is reflected in the procedure above, by the way
he sets Ck

−i(vi) are defined. Note that in Ck
−i(vi) we only keep

hose opponents’ choices cj that are in Ck−1
j (vj) for some view vj

hat is contained in vi. A similar condition is not present in the
eneralized iterated strict dominance procedure for games with
ncomplete information.

Observe that in the special case where Vi only contains the
full view” (Cj)j∈I for every player i, the procedure above re-
uces to the well-known iterated strict dominance procedure for
tandard static games without unawareness.
The procedure is also similar to the procedure in Meier and

chipper (2012) that characterizes, for dynamic games with un-
wareness, the strategies that are extensive-form rationalizable
Heifetz et al., 2013b). Like our procedure, also the one in Meier
nd Schipper (2012) proceeds by iteratively eliminating strategies
hat are strictly dominated, although they use conditional strict
ominance rather than plain strict dominance.
In the following subsection we will show that our procedure

lways delivers a non-empty set of choices for every possible
iew, and indeed characterizes precisely those choice-view pairs
here the choice is possible for the view under common belief

n rationality.

.2. Non-empty output and characterization result

We first show that the iterated strict dominance procedure for
nawareness always yields a non-empty output. More precisely,
e show that for every possible view in the game, there is always
t least one choice for the respective player that survives the
rocedure.

heorem 5.1 (Non-Empty Output). Consider a static game with
nawareness Gu

= (Gbase, (Vi)i∈I ). Then, for every player i and every
iew vi ∈ Vi there is some choice ci ∈ Ci such that (ci, vi) survives
he iterated strict dominance procedure for unawareness.
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We next present the main result in this section, showing that
he iterated strict dominance procedure for unawareness selects
or every view precisely those choices that can rationally be made
nder common belief in rationality.

heorem 5.2 (Characterization of Common Belief in Rationality).
onsider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ). Then,
or every player i, every view vi ∈ Vi and every choice ci ∈ Ci(vi),
hoice ci can rationally be made under common belief in rationality
ith the view vi, if and only if, (ci, vi) survives the procedure of

terated strict dominance for unawareness.

Consider now the special case where Vi contains all possible
iews for every player i. That is, we do not impose any restrictions
n the players’ belief hierarchies on views. Then, for every k ≥ 1
e have that Ck

−i(vi) = C0
−i(vi) for every player i and view vi,

ecause every opponent’s choice cj in vi is optimal for a view of
layer j that is contained in vi and in which cj appears as the
nique choice for player j. Consequently, the procedure termi-
ates already at round 1, and every choice ci ∈ C1

i (vi) survives
he procedure at vi. In view of Theorem 5.2 we thus see that in
his case, every choice that is optimal for some belief at a certain
iew can automatically be chosen rationally under common belief
n rationality with that particular view. Hence, the concept of
ommon belief in rationality is very permissive if we allow for
ll possible views in the game.
One direction of Theorem 5.2 states that if (ci, vi) survives the

rocedure, then we can always find an epistemic model, and a
ype ti ∈ Ti for player i within that epistemic model with view vi,
uch that ti expresses common belief in rationality, and the choice
i is optimal for ti. For the construction of this epistemic model
e rely on Theorem 5.1, which guarantees that for every player

, and every view vj, there is at least one choice cj that survives
he procedure at vj.

In particular, this direction implies that for every finite static
ame with unawareness, we can always construct for every
layer i, and every view vi, an epistemic model, and a type ti with
iew vi, such that ti expresses common belief in rationality.

orollary 5.1 (Common Belief in Rationality Is Always Possible).
onsider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ). Then,
or every player i and every view vi ∈ Vi, there is an epistemic model

= (Tj, v̂j, bj)j∈I , and a type t∗i ∈ Ti with view v̂i(t∗i ) = vi, such
hat t∗i expresses common belief in rationality.

In other words, for every view it is always possible to reason
n accordance with common belief in rationality.

.3. Example

In this subsection we will illustrate the iterated strict domi-
ance procedure for unawareness by means of the example we
iscussed above. To save space, we use the abbreviations f , d, n
nd c for the four beaches.

xample 2 (Procedure for ‘‘A day at the beach’’). Consider the game
ith unawareness as depicted in Table 1. At the beginning of the
rocedure we have the full decision problems at the different
iews, given by

C0
1 (v1) = {f , d, n, c}, C0

−1(v1) = {f , d, n, c},
C0
1 (v

′

1) = {n, c}, C0
−1(v

′

1) = {n, c},
C0
2 (v2) = {f , d, n, c}, C0

−2(v2) = {f , d, n, c}
0 ′ 0 ′
C2 (v2) = {n, c}, C

−2(v2) = {n, c}.
18
Round 1. By definition we have that C1
−1(v1) = C0

−1(v1), C1
−1(v

′

1) =
0
−1(v

′

1), C
1
−2(v2) = C0

−2(v2) and C1
−2(v

′

2) = C0
−2(v

′

2). Note that c is
trictly dominated for you by the randomized choice (0.5) · f +

0.5) · d within the decision problem (C0
1 (v1), C1

−1(v1)), and that d
s strictly dominated for Barbara by (0.5) · n+ (0.5) · c within her
ecision problem (C0

2 (v2), C1
−2(v2)). No other choices are strictly

ominated in this round. We can therefore eliminate your choice
from C0

1 (v1) and Barbara’s choice d from C0
2 (v2), yielding the

educed decision problems

C1
1 (v1) = {f , d, n}, C1

−1(v1) = {f , d, n, c},
C1
1 (v

′

1) = {n, c}, C1
−1(v

′

1) = {n, c},
C1
2 (v2) = {f , n, c}, C1

−2(v2) = {f , d, n, c},
C1
2 (v

′

2) = {n, c}, C1
−2(v

′

2) = {n, c}.

ound 2. As Barbara’s choice d is not in her decision problems
t v2 and v′

2 anymore, we can eliminate Barbara’s choice d from
our current decision problem at v1. That is, C2

−1(v1) = {f , n, c}
nd C2

−1(v
′

1) = {n, c}. Note that we cannot eliminate your choice c
rom Barbara’s decision problems at v2 and v′

2, since your choice
is still present in C1

1 (v
′

1), and your view v′

1 is contained in both
2 and v′

2. We thus have that C2
−2(v2) = {f , d, n, c} and C2

−2(v
′

2) =

n, c}.
In your decision problem (C1

1 (v1), C2
−1(v1)) = ({f , d, n}, {f , n,

}) at v1, your choice n is strictly dominated by d, and can thus
e eliminated from C1

1 (v1). No other choices can be eliminated in
his round. We thus obtain the reduced decision problems

C2
1 (v1) = {f , d}, C2

−1(v1) = {f , n, c},
C2
1 (v

′

1) = {n, c}, C2
−1(v

′

1) = {n, c},
C2
2 (v2) = {f , n, c}, C2

−2(v2) = {f , d, n, c},
C2
2 (v

′

2) = {n, c}, C2
−2(v

′

2) = {n, c}.

After this round no further choices can be eliminated at any
f the possible views, and hence the procedure terminates at the
nd of round 2. The choice-view pairs that survive for you are
f , v1), (d, v1), (n, v′

1) and (c, v′

1), whereas the choice-view pairs
urviving for Barbara are (f , v2), (n, v2), (c, v2), (n, v′

2) and (c, v′

2).
Hence, in view of Theorem 5.2, these are exactly the choice-

iew pairs that are possible under common belief in rationality.
hat is, under common belief in rationality, you can rationally
hoose Faraway Beach and Distant Beachwith the view v1, you can
ationally choose Nextdoor Beach and Closeby Beachwith the view
′

1, Barbara can rationally choose Faraway Beach, Nextdoor Beach
nd Closeby Beach with the view v2, and can rationally choose
extdoor Beach and Closeby Beach with the view v′

2.

.4. Order independence

Suppose that at every round of the procedure, we would at
very view eliminate some – but not necessarily all – choices
hat could be eliminated. Would this matter for the final output?
he answer, as we will see, is no, provided we do not forget
o eliminate a choice forever. In that sense, the iterated strict
ominance procedure for unawareness is order independent.
To formally define this property, we will first see how the

riginal procedure can be viewed as the iterated application of
reduction operator. A collection of decision problems is a tuple

= (Di(vi),D−i(vi))i∈I,vi∈Vi
here Di(vi) ⊆ Ci(vi) and D−i(vi) ⊆ C−i(vi) for every player i
nd view vi ∈ Vi. For two collections of decision problem D =

Di(vi),D−i(vi))i∈I,vi∈Vi and E = (Ei(vi), E−i(vi))i∈I,vi∈Vi , we write
⊆ E if Di(vi) ⊆ Ei(vi) and D−i(vi) ⊆ E−i(vi) for all players i

nd v ∈ V .
i i
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The reduction operator r assigns to every collection of decision
roblems D = (Di(vi),D−i(vi))i∈I,vi∈Vi a new collection of decision
roblems

(D) = (Ei(vi), E−i(vi))i∈I,vi∈Vi
here

−i(vi) := {(cj)j̸=i ∈ D−i(vi) | for all j ̸= i choice cj is in Dj(vj)
for some vj ⊆ vi}

nd

i(vi) := {ci ∈ Di(vi) | ci not strictly dominated within
(Di(vi), E−i(vi))}.

hen, by definition, iterated strict dominance for unawareness cor-
esponds to the iterated application of the reduction operator
to the collection of full decision problems D0

= (Ci(vi), C−i
vi))i∈I,vi∈Vi .

Similarly to Definition 3.1 in Perea (2018), an elimination order
or iterated strict dominance for unawareness is a sequence of
ollections of decision problems (D0,D1, . . . ,DK ) where (i) D0

s the collection of full decision problems above, (ii) r(Dk) ⊆
k+1

⊆ Dk for every k ∈ {0, . . . , K − 1}, and (iii) r(DK ) = DK .
ere, (ii) states that at every round and at every view, some,
ut not necessarily all, choices are eliminated that could have
een eliminated according to the original procedure. Property
iii) guarantees that no further eliminations are possible at DK ,
nd hence the elimination order will not forget to eliminate a
hoice forever. An elimination order can thus be viewed as an
lternative, slower way of eliminating choices.
The following result guarantees that choosing a different elim-

nation order will not alter the output of the procedure.

heorem 5.3 (Order Independence). Let (D0, . . . ,DK ) and (E0, . . . ,
L) be two elimination orders for iterated strict dominance for
nawareness. Then, DK

= EL.

In the following subsection we will present an easy-to-use
limination order which, by the theorem above, will produce
xactly the same output as the original procedure.

.5. Bottom-up procedure

If there are many different views in the game the procedure
bove may become unattractive from a practical point of view,
ince at every round we must do the eliminations at all the
ifferent views. In such cases we may use an alternative, more
fficient procedure that yields exactly the same output. The idea
s that we start by visiting the smallest views individually, and
erform the well-known iterated elimination of strictly domi-
ated choices there. Next, we turn to the views that only contain
he smallest views as subviews, again on a one-by-one basis, and
o our eliminations there. At such views v, however, we would
lways keep a choice c that has survived the eliminations at a
mallest view v′ contained in v. The reason is that a player with
iew v may believe that an opponent has the smaller view v′

nd chooses c . In all subsequent rounds we would visit larger
nd larger views until we have exhausted all views in the game.
his procedure will be called the bottom-up procedure.5 Since it is
btained by choosing an alternative elimination order for iterated
trict dominance for unawareness, it will deliver the same output
n the light of Theorem 5.3.

To formally define the bottom-up procedure we need some
ew terminology. A view v ∈ V is called smallest if there is no
′

∈ V\{v} with v′
⊆ v. For every view v, we define its rank

5 I thank an anonymous referee for suggesting this procedure.
19
as follows: Every smallest view v has rank 1. Now, suppose that
m ≥ 2, and that the views with ranks 1, . . . ,m − 1 have been
identified. Then, a view v has rank m precisely when (i) every
subview v′

∈ V\{v} with v′
⊆ v has a rank in {1, . . . ,m − 1},

and (ii) there is at least one subview v′
∈ V\{v} with v′

⊆ v

which has rank m − 1. In the example “A day at the beach”, for
instance, the views v′

1 and v′

2 have rank 1, whereas the views v1
and v2 have rank 2. For every view v, we denote by I(v) := {i ∈ I
v ∈ Vi} the set of players for whom that view is feasible.

efinition 5.2 (Bottom-Up Procedure). Consider a static game with
nawareness Gu

= (Gbase, (Vi)i∈I ) where the highest rank of a view
s M.

(Views with rank 1). For every view v ∈ V with rank 1 we
erform the following steps. Define, for every player i ∈ I , the

full decision problem (C0
i (v), C

0
−i(v)) := (Ci(v), C−i(v)). For every

≥ 1 recursively define, for every player i,

Ck
−i(v) := ×j̸=iCk−1

j (v)

nd
k
i (v) := {ci ∈ Ck−1

i (v) | ci not strictly dominated within
the decision problem (Ck−1

i (v), Ck
−i(v))}.

or every player i, let C∗

i (v) be the set of choices ci ∈ Ci(v) with
ci ∈ Ck

i (v) for all k ≥ 0. Do this for all views v with rank 1.

Views with ranks 2, . . . ,M). Consider some m ∈ {2, . . . ,M}, and
uppose that C∗

i (v) has been determined for every view v ∈ Vi
ith rank 1, 2, . . . ,m−1 and every player i ∈ I(v). For every view
∈ V with rank m we perform the following steps. Define, for

very player i ∈ I(v), the full decision problem (C0
i (v), C

0
−i(v)) :=

Ci(v), C−i(v)). For every k ≥ 1 recursively define, for every player
∈ I(v),
k
−i(v) := {(cj)j̸=i ∈ Ck−1

−i (v)| for all j ̸= i, either cj ∈ C∗

j (vj)

for some vj ⊆ v with vj ̸= v,

or cj ∈ Ck−1
j (v) if j ∈ I(v)},

nd
Ck
i (v) := {ci ∈ Ck−1

i (v) | ci not strictly dominated within
the decision problem (Ck−1

i (v), Ck
−i(v))}.

For every player i ∈ I(v), let C∗

i (v) be the set of choices ci ∈ Ci(v)
with ci ∈ Ck

i (v) for all k ≥ 0. Do this for all views v with rank m.

A choice-view pair (ci, vi) is said to survive the bottom-up
rocedure if ci ∈ C∗

i (vi).

By the last condition in Definition 2.1, every smallest view
ust be shared by all players, and hence I(v) = I for all views
with rank 1. At such views v, the procedure above applies the

terated elimination of strictly dominated choices.
Note that the bottom-up procedure corresponds to an alterna-

ive elimination order for iterated strict dominance for unaware-
ess where (i) we first do the eliminations only at the views
ith rank 1 until no further eliminations are possible, (ii) we
ubsequently do the eliminations only at views with rank 2 until
o further eliminations are possible, and so on, until we have
overed all views. By Theorem 5.3 we thus know that the bottom-
p procedure will always yield the same output as the original
rocedure. Especially when there are many views in the game, the
ottom-up procedure may be more user-friendly than the original
rocedure, since at every round we only have to deal with one
iew at the time.
On a qualitative level, the bottom-up procedure is similar to

he backwards order of elimination (Perea, 2012, Section 8.10)
or the backward dominance procedure (Perea, 2014) for dynamic
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ames. According to the backwards order of elimination, we first
o all the eliminations at the last information sets in the dynamic
ame until no further eliminations are possible. Subsequently, we
o all the eliminations at the information sets just before the last
nformation sets, and so on, until all information sets are covered.
lso this elimination order is a kind of bottom-up order, where
e start at the end of the game and gradually move backwards.

n the bottom-up procedure above we start at the smallest views,
nd gradually move to larger and larger views.
As an illustration, let us apply the bottom-up procedure to the

xample “A day at the beach” in Table 1. Here, the views with
ank 1 are v′

1 and v′

2. In fact, as v′

1 and v′

2 are identical, we can
rite v′

:= v′

1 = v′

2, with I(v′) = {1, 2}. Since no choices can be
liminated at v′ we have that
∗

1 (v
′) = {n, c} and C∗

2 (v
′) = {n, c}.

We then turn to the views with rank 2, which are v1 and v2.
gain, v1 and v2 are identical, so we can write v := v1 = v2, with

I(v) = {1, 2}.

Round 1. By definition we have that C1
−1(v) = {f , d, n, c}. As

our choice c is strictly dominated by (0.5) · f + (0.5) · d in
C0
1 (v), C

1
−1(v)), we have that

1
1 (v) = {f , d, n}.

Similarly, C1
−2(v) = {f , d, n, c}. Since Barbara’s choice d is

trictly dominated by (0.5) · n + (0.5) · c , it follows that
1
2 (v) = {f , n, c}.

ound 2. By construction, C2
−1(v) = {f , n, c} as choice d for

arbara is not in C1
2 (v) and not in C∗

2 (v
′). But then, your choice

is strictly dominated by d in (C1
1 (v), C

2
−1(v)), and thus

2
1 (v) = {f , d}.

In turn, C1
−2(v) = {f , d, n, c}, since your choices f , d and n are

n C1
1 (v), and your choice c is in C∗

1 (v
′). But then,

2
2 (v) = C1

2 (v) = {f , n, c}.

Since the procedure terminates here, we conclude that the
hoice-view pairs for you surviving the bottom-up procedure are
f , v), (d, v), (n, v′) and (c, v′), whereas the choice-view pairs that
urvive for Barbara are (f , v), (n, v), (c, v), (n, v′) and (c, v′). Note
hat this output is exactly the same as in the original procedure.

. Fixed beliefs on views

In the literature on games with unawareness, it is typically
ssumed that every player holds some exogenously given belief
ierarchy on views. See, for instance, Rêgo and Halpern (2012),
eifetz et al. (2013b) and Feinberg (2021). Following this ap-
roach, we reconcile in this section the concept of common belief
n rationality with the assumption that the belief hierarchy on
iews is fixed. One important difference with Feinberg (2021) is
hat we allow for truly probabilistic belief hierarchies on views,
nd not only belief hierarchies consisting of probability 1 beliefs
n views. The reason is that we wish to allow for situations in
hich a player is uncertain about the precise view adopted by
is opponent, and therefore assigns positive probability to various
ossible views for this opponent.

.1. Common belief in rationality with fixed beliefs on views

Different from Rêgo and Halpern (2012), Heifetz et al. (2013b),
nd Feinberg (2021) but in accordance with, for instance, Hein-
alu (2014), Heifetz et al. (2013a), Meier and Schipper (2014) and
 t

20
uarino (2020), we decide to encode belief hierarchies on views
y means of epistemic models with types.6 The reason is that such
ncodings are easy to work with, and turn out to be convenient
or designing proofs and an associated elimination procedure as
ell. Such an epistemic model may be seen as a reduced version
f the one used in Section 3, since now a type only holds a belief
bout the opponents’ types, instead of the opponents’ choices and
ypes.

efinition 6.1 (Epistemic Model for Views). An epistemic model
or views is a tuple Mview

= (Ri, ŵi, pi)i∈I where, for every player
,

a) Ri is a finite set of types,
b) the view mapping ŵi assigns to every type ri ∈ Ri some view
ˆ i(ri) ∈ Vi. For a given type ri and a player j ̸= i, we denote by
j(ŵi(ri)) the set of types rj ∈ Rj with view ŵj(rj) ⊆ ŵi(ri), and
efine R−i(ŵi(ri)) := ×j̸=iRj(ŵi(ri)),
c) the belief mapping pi assigns to every type ri ∈ Ri some
robabilistic belief pi(ri) ∈ ∆(R−i(ŵi(ri))).
Similarly to Section 3, condition (c) guarantees that a type ri

nly assigns probabilities to opponents’ views that it is aware
f. More than this, we assume that type ri is not aware of any
pponents’ views and types that are outside R−i(ŵi(ri)). As such,
he whole epistemic model may be viewed as a description from
he modeler’s point of view, whereas the various types ri may
nly be aware of a part of the epistemic model.
We call the types in this model view-types, since they generate

elief hierarchies on views. For every view-type ri ∈ Ri, let hi(ri)
e the belief hierarchy on views induced by ri. The precise con-
truction of this belief hierarchy can be found in Appendix A.2.1
f the Appendix.
Compare this to the epistemic models we considered in Defini-

ion 3.1, used to encode belief hierarchies on choices and views. In
uch an epistemic model M = (Ti, v̂i, bi)i∈I , every type ti induces
belief hierarchy on choices and views, and hence also on views
lone. Let hi(ti) be the induced belief hierarchy on views. The
recise construction of hi(ti) can be found in Appendix A.2.2 of
he Appendix.

With these definitions at hand, we can now formally define
hat we mean by common belief in rationality with fixed beliefs
n views.

efinition 6.2 (Common Belief in Rationality with Fixed Beliefs on
iews). Consider a static game with unawareness Gu

= (Gbase,
Vi)i∈I ), an epistemic model

view
= (Ri, ŵi, pi)i∈I for views, and a view-type pair (vi, ri) ∈

i × Ri where vi = ŵi(ri). A choice ci ∈ Ci(vi) can rationally be
ade under common belief in rationality with the view vi and

he belief hierarchy on views induced by ri, if there is an epistemic
odel M = (Tj, v̂j, bj)j∈I for choices and views, and a type t∗i ∈ Ti
ith view v̂i(t∗i ) = vi, such that hi(t∗i ) = hi(ri), type t∗i expresses
ommon belief in rationality, and ci is optimal for t∗i .
In contrast to Section 4, we now fix the belief hierarchy on

iews. In other words, among all possible stories that are compat-
ble with common belief in rationality and the view vi, we restrict
o those stories that are consistent with the given belief hierarchy
i on views.
In the following sections we will design a procedure that

ields precisely the choices that can rationally be made under
his concept, and show that it is always possible to reason in
ccordance with this concept.

6 Here, we use the term “epistemic model” in a broad sense, describing any
odel that encodes any sort of belief hierarchies. In this case, the model we
resent encodes belief hierarchies about views alone. Hence, the belief hierarchy
and also the types in the model) do not involve beliefs about choices. This is
ifferent from how epistemic models are defined at other places, where the
ypes are required to specify beliefs about the opponents’ choices.
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.2. Recursive procedure

We will now present a recursive elimination procedure, called
terated strict dominance with fixed beliefs on views, that charac-
erizes precisely those choices that can rationally be made, with
very possible view, under common belief in rationality with a
ixed belief hierarchy on views. Not surprisingly, the procedure is
uite similar to iterated strict dominance for unawareness (without
ixed belief hierarchies on views). There are two important differ-
nces. The first is that decision problems will now be defined for
very view-type ri ∈ Ri rather than for every view. Moreover, the
ets Ck

−i(vi) of opponents’ choice combinations as defined in iter-
ted strict dominance with unawareness, restricting the possible
eliefs that player i can hold at round k, will now be replaced
y sets of possible probabilistic beliefs Bk

i (ri), representing the
ossible probabilistic beliefs that player i can hold at round k if he

holds view ŵi(ri) and has the belief hierarchy on views induced
by ri.

To define the procedure formally, we need some additional no-
tation. Consider some Euclidean space Rn, some subsets A1, . . . ,

K of Rn, and some numbers x1, . . . , xK ∈ R. Then, by

∑
k∈{1,...,K }

xk · Ak :=

⎧⎨⎩ ∑
k∈{1,...,K }

xk · ak | ak ∈ Ak for all k ∈ {1, . . . , K }

⎫⎬⎭
e define the corresponding “linear combination” of these sets
1, . . . , AK .

efinition 6.3 (Iterated Strict Dominance with Fixed Beliefs on
iews). Consider a static game with unawareness Gu

= (Gbase,

Vi)i∈I ) and an epistemic model
view

= (Ri, ŵi, pi)i∈I for views.
Initial step) For every player i, and every view-type ri ∈ Ri, define
0
i (ri) :=

∑
(rj)j̸=i∈R−i(ŵi(ri))

pi(ri)((rj)j̸=i) · ∆(×j̸=iCj(ŵj(rj))),

nd C0
i (ri) := Ci(ŵi(ri)).

Inductive step) For k ≥ 1, every player i, and every view-type
i ∈ Ri, define
k
i (ri) :=

∑
(rj)j̸=i∈R−i(ŵi(ri))

pi(ri)((rj)j̸=i) · ∆(×j̸=iCk−1
j (rj)),

nd

Ck
i (ri) := {ci ∈ Ck−1

i (ri)| ci is optimal for some belief βi ∈ Bk
i (ri)

among choices in Ck−1
i (ri)}.

pair (ci, ri), consisting of a choice and view-type, is said to
urvive the procedure if ci ∈ Ck

i (ri) for every k ≥ 0.

More precisely, this procedure is the iterated strict dominance
procedure with fixed beliefs on views as given by Mview . As a
short-hand, we will refer to this procedure as the iterated strict
dominance procedure for Mview .

Consider now the special case where every view-type in Mview

assigns probability 1 to one specific view for every opponent.
Then, it may be verified that the procedure above is equivalent
to the extensive-form rationalizability procedure in Heifetz et al.
(2013b), when applied to the special case of static games. The
procedure in Heifetz et al. (2013b) is designed for dynamic games
with unawareness, and hence can also be applied to static games.

Our procedure above is quite similar to the procedures of
interim correlated rationalizability (Dekel et al., 2007) and interim
independent) rationalizability Ely and Pęski (2006) for games with
ncomplete information. Also interim correlated rationalizability
ssumes a fixed belief hierarchy, not on views but on utility
 p

21
unctions. The interim correlated rationalizability procedure then
ecursively restricts, for every possible utility function and every
elief hierarchy on utilities, the set of choices for the respective
layer. In turn, we recursively restrict the player’s set of choices
or every possible view and belief hierarchy on views (as encoded
y a view-type ri). Also Schipper (2016) offers an interim ratio-
alizability concept for a context with network formation and
nawareness.
Similarly to the case without fixed belief hierarchies on views,

here is still an important difference between the two procedures.
n the case of unawareness, not every belief hierarchy on views
an be chosen, because this belief hierarchy must express com-
on belief in smaller views for an appropriately chosen view
f the respective player. A similar condition is not present in
he case of incomplete information, as in principle every pos-
ible belief hierarchy on utility functions may be regarded as
easonable. The reason, again, is that in the context of incomplete
nformation, a player with a certain utility function has mental
ccess to all utility functions in the model — something that is

not true for views in games with unawareness.
To conclude this subsection, we compare the case of fixed be-

lief hierarchies on views to the case where these belief hierarchies
are left free. Clearly, if for a given view vi we look at each individ-
ual belief hierarchy on views hi, then this is the same as putting
no restrictions on the belief hierarchy on views. Consequently,
if for every such belief hierarchy on views hi we derive the
hoices that player i can rationally make under common belief in
ationality with the view vi and this particular belief hierarchy on
iews hi (as defined in this section), then we should obtain exactly
he choices that player i can rationally make under common
elief in rationality with the view vi (as defined in Section 5). We
now by Theorem 6.2 that the choices that player i can rationally
ake under common belief in rationality with the view vi and

he fixed belief hierarchy on views hi are given by the iterated
trict dominance procedure with fixed beliefs on views. On the
ther hand, Theorem 5.2 guarantees that the choices that player
can rationally make under common belief in rationality with
he view vi are given by the iterated strict dominance procedure
or unawareness. Consequently, if for a given view vi and every
ossible belief hierarchy on views hi that is accessible from vi, we
un the iterated strict dominance procedure with fixed beliefs on
iews, and collect all the delivered choices for player i at view
i, this will deliver exactly the same output as when we would
un the iterated strict dominance procedure for unawareness
without fixed beliefs on views) and look at the delivered choices
or player i at vi.

.3. Non-empty output and characterization result

Like in Section 5, we first show that the procedure always
elivers a non-empty output, and subsequently prove that the
rocedure yields, for every view-type, exactly those choices that
an rationally be made under common belief in rationality with
his particular view-type.

heorem 6.1 (Non-Empty Output). Consider a static game with
nawareness
Gu

= (Gbase, (Vi)i∈I ) and an epistemic model Mview
= (Ri, ŵi,

i)i∈I for views. Then, for every player i, and every view-type ri ∈ Ri,
here is some choice ci ∈ Ci such that (ci, ri) survives the iterated
trict dominance procedure for Mview .

The reader will note that the proof for this result is very similar
o the one we gave for Theorem 5.1. We thus conclude that, no
atter which belief hierarchy on views we impose, it is always

ossible for a player to reason in accordance with this particular
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elief hierarchy on views, while respecting common belief in
ationality.

We next show that the procedure selects, for every view and
very belief hierarchy on views encoded by Mview , exactly those
hoices that can rationally be made under common belief in
ationality for this specific view and belief hierarchy on views.

heorem 6.2 (Characterization of Common Belief in Rationality).
onsider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ) and
n epistemic model Mview

= (Ri, ŵi, pi)i∈I for views. Then, for every
layer i, every choice ci ∈ Ci, every view vi ∈ Vi, and every view-
ype ri ∈ Ri with ŵi(ri) = vi, player i can rationally choose ci under
ommon belief in rationality with the view vi and the belief hierarchy
n views induced by ri, if and only if, (ci, ri) survives the iterated
trict dominance procedure for Mview .

Also here, the proof follows a similar structure as the one for
heorem 5.2. From Theorem 6.1 we know that the procedure
lways delivers a non-empty set of choices for every possible
iew-type in the game. The “if” direction of Theorem 6.2 therefore
mplies that for every view vi and view-type ri with ŵi(ri) = vi,
e can always construct an epistemic model, and a type t∗i within

t with view vi that expresses common belief in rationality, and
hich holds the belief hierarchy on views induced by ri. The

ollowing result thus obtains.

orollary 6.1 (Common Belief in Rationality is Always Possible).
onsider a static game with unawareness Gu

= (Gbase, (Vi)i∈I ) and
n epistemic model Mview

= (Ri, ŵi, pi)i∈I for views. Then, for every
layer i, every view vi, and every view-type ri ∈ Ri with ŵi(ri) = vi,
here is an epistemic model M = (Tj, v̂j, bj)j∈I , and a type t∗i ∈ Ti,
uch that t∗i has view vi, has the belief hierarchy on views induced
y ri, and expresses common belief in rationality.

In other words, it is always possible to reason in accordance
ith common belief in rationality, while respecting the bounds
et by a fixed view and a fixed belief hierarchy on views.

.4. Example

To see how the procedure of iterated strict dominance with fixed
eliefs on views works, consider the example “A day at the beach”.

xample 3 (Procedure for ‘‘A day at the Beach’’). Recall that you
re unsure whether Barbara is aware of the two remote beaches
r not. Assume now that you deem the event that she is aware of
hese two beaches equally likely as the event that she is not. In
ase Barbara is aware of the two remote beaches, you believe that
arbara believes that you are also aware of these two beaches.
ndeed, you know by experience that Barbara believes that you
re aware of everything that she is aware of herself. In case
arbara is not aware of these two beaches, she must of course
elieve that you are also not aware of these. This situation can
e summarized by Table 3, with the fixed belief hierarchy on
iews induced by your view-type r1 at the bottom of the table.
his belief hierarchy on views is also graphically represented by
he arrows between the various views. Indeed, if you have view
1 and view-type r1, then the induced belief hierarchy on views
atches exactly the story above.

The iterated strict dominance procedure for Mview proceeds as
ollows.
nitial step. The initial sets of beliefs are given by
0
1(r1) = (0.5) · ∆(C2(v2)) + (0.5) · ∆(C2(v′

2))
= (0.5) · ∆({f , d, n, c}) + (0.5) · ∆({n, c})
= {β ∈ ∆({f , d, n, c})|β (f ) + β (d) ≤ 0.5}
1 1 1 v

22
0
1(r

′

1) = ∆(C2(v′

2)) = ∆({n, c}),
0
2(r2) = ∆(C1(v1)) = ∆({f , d, n, c}),
0
2(r

′

2) = ∆(C1(v′

1)) = ∆({n, c}),

hereas the initial sets of choices are
0
1 (r1) = {f , d, n, c}, C0

1 (r
′

1) = {n, c},
0
2 (r2) = {f , d, n, c}, C0

2 (r
′

2) = {n, c}.

ound 1. By definition, the sets of beliefs remain the same as in
he initial step. Note that choices n and c are not optimal for you
t view v1 for any belief in B1

1(r1), and that Barbara’s choice d is
ot optimal for her at view v2 for any belief in B1

2(r2). Hence, we
btain
1
1 (r1) = {f , d}, C1

1 (r
′

1) = {n, c},
1
2 (r2) = {f , n, c}, C1

2 (r
′

2) = {n, c}.

ound 2. The new sets of beliefs are
2
1(r1) = (0.5) · ∆(C1

2 (r2)) + (0.5) · ∆(C1
2 (r

′

2))
= (0.5) · ∆({f , n, c}) + (0.5) · ∆({n, c})
= {β1 ∈ ∆({f , n, c})|β1(f ) ≤ 0.5}

2
1(r

′

1) = ∆(C1
2 (r

′

2)) = ∆({n, c}),
2
2(r2) = ∆(C1

1 (r1)) = ∆({f , d}),
2
2(r

′

2) = ∆(C1
1 (r

′

1)) = ∆({n, c}).

hen, Barbara’s choices f and c are not optimal at her view v2 for
ny belief in B2

2(r2). The new sets of choices are thus given by
2
1 (r1) = {f , d}, C2

1 (r
′

1) = {n, c},
2
2 (r2) = {n}, C2

2 (r
′

2) = {n, c}.

ound 3. The new sets of beliefs are
3
1(r1) = (0.5) · ∆(C2

2 (r2)) + (0.5) · ∆(C2
2 (r

′

2))
= (0.5) · ∆({n}) + (0.5) · ∆({·n, c})
= {β1 ∈ ∆({n, c})|β1(c) ≤ 0.5},

3
1(r

′

1) = ∆(C2
2 (r

′

2)) = ∆({n, c}),
3
2(r2) = ∆(C2

1 (r1)) = ∆({f , d}),
3
2(r

′

2) = ∆(C2
1 (r

′

1)) = ∆({n, c}).

ote that at your view v1, your choice d is not optimal for any
elief in B3

1(r1). Hence, the new sets of choices are
3
1 (r1) = {f }, C3

1 (r
′

1) = {n, c},
3
2 (r2) = {n}, C3

2 (r
′

2) = {n, c}.

ound 4. The new sets of beliefs are
4
1(r1) = {β1 ∈ ∆({n, c})|β1(c) ≤ 0.5}
4
1(r

′

1) = ∆(C3
2 (r

′

2)) = ∆({n, c}),
4
2(r2) = ∆(C3

1 (r1)) = ∆({f }),
4
2(r

′

2) = ∆(C3
1 (r

′

1)) = ∆({n, c}).

ince no further choices can be eliminated from C3
1 (r1), C

3
1 (r

′

1),
3
2 (r2) and C3

2 (r
′

2) we have that
4
1 (r1) = C3

1 (r1) = {f }, C4
1 (r

′

1) = C3
1 (r

′

1) = {n, c},
4
2 (r2) = C3

2 (r2) = {n}, C4
2 (r

′

2) = C3
2 (r

′

2) = {n, c},

nd the procedure terminates.
We thus conclude that you can only rationally go to the

araway Beach under common belief in rationality with the view
and the belief hierarchy on views induced by r .
1 1
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Table 3
“A day at the beach” with fixed beliefs on views.

Gbase Faraway Distant Nextdoor Closeby

Base game

Faraway 0,0 4,1 4,4 4,3
Distant 3,2 0,0 3,4 3,3
Nextdoor 2,2 2,1 0,0 2,3
Closeby 1,2 1,1 1,4 0,0

v1 Faraway Distant Nextdoor Closeby v′

1 Nextdoor Closeby

Your views

Faraway 0 4 4 4 Nextdoor 0 2
Distant 3 0 3 3 Closeby 1 0
Nextdoor 2 2 0 2
Closeby 1 1 1 0

↓ (0.5) (0.5) ↘ ↓

↑ ↑

v2 Faraway Distant Nextdoor Closeby v′

2 Nextdoor Closeby

Barbara’s views

Faraway 0 2 2 2 Nextdoor 0 4
Distant 1 0 1 1 Closeby 3 0
Nextdoor 4 4 0 4
Closeby 3 3 3 0

Epistemic model for views Mview

R1 = {r1, r ′

1}, R2 = {r2, r ′

2}

ŵ1(r1) = v1 and p1(r1) = (0.5) · r2 + (0.5) · r ′

2

ŵ1(r ′

1) = v′

1 and p1(r ′

1) = r ′

2

ŵ2(r2) = v2 and p2(r2) = r1
ŵ2(r ′

2) = v′

2 and p2(r ′

2) = r ′

1

t
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Table 4
Base game in Feinberg’s example.

b1 b2 b3
a1 0,2 3,3 0,2
a2 2,2 2,1 2,1
a3 1,0 4,0 0,1

Compare this to the case where we did not fix the belief
ierarchy on views. As we saw in Section 5, you could rationally
isit the Faraway Beach and the Distant Beach under common
elief in rationality with the view v1 if we allow for any belief
ierarchy on views that is cognitively feasible for v1. Indeed, the
pistemic model from Table 2 shows that under common belief in
ationality with the view v1, you can rationally choose the Distant
each if you hold the belief hierarchy induced by type t ′1. In that
elief hierarchy, you believe that Barbara has view v2, believe
hat Barbara believes that you have view v′

1, believe that Barbara
elieves that you believe that Barbara has view v′

2, and so on.
learly, this belief hierarchy is different from the one induced by
1.

6.5. Different elimination orders

Similarly as we have done in Section 5.4 for the procedure
ithout fixed beliefs on views, it can be shown that the procedure

n this section is also order independent. That is, no matter in
hich order, and with what speed, we eliminate the beliefs and
hoices at the various view-types, we will always end up with
he same output. In order to save space, we leave the proof to
he reader.

This property allows us to choose, for a specific instance of a
ame with unawareness, and a given epistemic model for views,
n order of elimination that is most convenient for this situation.
n many cases, such an order will be similar to the bottom-up
rder of elimination that we discussed in Section 5.5 for the case
ithout fixed beliefs on views. To illustrate this, we consider
he following classical example by Feinberg (2005), which also
ppears in Heinsalu (2014) and Meier and Schipper (2014).

xample 4 (Feinberg’s Example). Consider the base game in
able 4 between two players, Alice and Bob. The choices for Alice
 o

23
(player 1) are in the rows, whereas the choices for Bob (player
2) are in the columns. Suppose that Bob is aware of all choices
in the base game, believes that Alice is aware of all choices, but
believes that Alice believes that Bob is unaware of her choice a3.
What choices could Bob then rationally choose under common
belief in rationality?

As a first step towards answering the question, we first model
this story as a static game with unawareness, with an associ-
ated epistemic model for views. See Table 5. The story above
corresponds with view-type r2 for Bob.

We will apply iterated strict dominance with fixed beliefs
on views with the “most convenient” order of elimination. This
means that we will start with the view-types r ′

1 and r ′

2 and do all
he eliminations there, since these view-types have the smallest
iew v′

:= v′

1 = v′

2. We first eliminate choice b3 for Bob since
t is not optimal for any belief. Since no further choices for Alice
r Bob can be removed after this elimination, we are done for
iew v′ and the associated view-types r ′

1 and r ′

2. Hence, for the
iew-types r ′

1 and r ′

2 all choices survive except b3.
We then turn to the view-type r1 for Alice, which believes

hat, with probability 1, Bob’s view-type is r ′

2. As b3 has been
liminated for r ′

2, Alice believes that Bob will not choose b3. But
hen, a1 cannot be optimal for Alice at r1. After removing a1, no
urther eliminations are possible at r1.

Finally, we move to view-type r2 for Bob which believes that,
ith probability 1, Alice has view-type r1. As a1 has been elim-

nated for Alice at r1, Bob believes that Alice will not choose a1.
s a consequence, b2 cannot be optimal for Bob. After removing
2 for Bob at r2, no further eliminations are possible.
In particular, we see that only the choices b1 and b3 survive for

ob at r2. That is, given the story above Bob can only rationally
hoose b1 and b3 under common belief in rationality.

. Related literature

Roughly speaking, the literature on unawareness can be di-
ided into two categories. The first category explores the logical
oundations of unawareness in a single agent and multi-agent set-
ing, without an explicit reference to games, whereas the second
ategory applies the logic of unawareness to games. For a survey
f this literature we refer the reader to Schipper (2014).
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Table 5
Feinberg’s example as a static game with unawareness with fixed beliefs on views.

Gbase b1 b2 b3

Base game
a1 0,2 3,3 0,2
a2 2,2 2,1 2,1
a3 1,0 4,0 0,1

v1 b1 b2 b3 v′

1 b1 b2 b3

Alice’s views
a1 0 3 0 a1 0 3 0
a2 2 2 2 a2 2 2 2
a3 1 4 0

↘ ↓

↑ ↑

v2 a1 a2 a3 v′

2 a1 a2

Bob’s views
b1 2 2 0 b1 2 2
b2 3 1 0 b2 3 1
b3 2 1 1 b3 2 1

Epistemic model for views Mview

R1 = {r1, r ′

1}, R2 = {r2, r ′

2}

ŵ1(r1) = v1 and p1(r1) = r ′

2

ŵ1(r ′

1) = v′

1 and p1(r ′

1) = r ′

2

ŵ2(r2) = v2 and p2(r2) = r1
ŵ2(r ′

2) = v′

2 and p2(r ′

2) = r ′

1

c
h

f
g
c
w

An important question being addressed by the first category is
ow unawareness can be modeled in a meaningful way, both syn-
actically and semantically. See, for instance, Fagin and Halpern
1988), Dekel et al. (1998), Modica and Rustichini (1999), Halpern
2001), Heifetz et al. (2006, 2008, 2013a), Halpern and Rêgo
2008) and Li (2009).

A general conclusion in this literature is that in a multi-agent
etting, every agent must be endowed with his own, subjective
tate space that only contains those objects he is aware of, and
hich therefore may be substantially smaller than the full state
pace. This principle is also reflected in our definition of a game
ith unawareness, and how we set up an epistemic model to
ncode belief hierarchies about choices and views.
To model a game with unawareness, we assume for every

layer a finite collection of possible views on the game. The
mplicit understanding is that a player with a certain view only
as mental access to those choices that are part of his view, and to
hose views in the model that are smaller than his own. In other
ords, the subjective state space for a player with view vi only
ontains the choices inside vi, and the views for the opponents
nd himself that are contained in vi.
Papers in the second category deal specifically with static

r dynamic games with unawareness, and can thus be seen as
pplications of the logic of unawareness. See, for instance, Fein-
erg (2004), Feinberg (2021), Čopič and Galeotti (2006), Rêgo
nd Halpern (2012), Heifetz et al. (2013b), Grant and Quiggin
2013), Halpern and Rêgo (2014), Meier and Schipper (2014) and
chipper (2021). Our paper clearly falls within this category as
ell.
As we already mentioned in Section 2, an important difference

etween our way of modeling games with unawareness and that
f most other papers is that we do not exogenously specify a
nique belief hierarchy on views for every player. In fact, of
he abovementioned papers only Čopič and Galeotti (2006) and
eier and Schipper (2014) do not fix the belief hierarchies on
iews in their model. Moreover, we allow for probabilistic belief
ierarchies on views, whereas most papers above – exceptions
eing Feinberg (2004), Rêgo and Halpern (2012), Halpern and
êgo (2014), Heifetz et al. (2013a) and Meier and Schipper (2014)
restrict to deterministic belief hierarchies on views. We find

uch probabilistic beliefs on views important, as they allow for
24
ases where a player is truly uncertain about the precise view
eld by an opponent.
In terms of the approach adopted, this paper is one of the

ew to provide an epistemic analysis of the players’ reasoning in
ames with unawareness, through the epistemic conditions of
ommon belief in rationality. Another example is Guarino (2020),
ho offers an epistemic characterization of extensive-form ratio-

nalizability (Pearce, 1984; Battigalli, 1997; Heifetz et al., 2013b)
for dynamic games with unawareness.

Like our paper, also Heifetz et al. (2013b) and Feinberg (2021)
investigate the implications of common (strong) belief in rational-
ity by studying the concepts of rationalizability and extensive-form
rationalizability, respectively. One difference with our approach
is that the latter papers do not investigate these concepts on an
epistemic basis.

8. Concluding remarks

The goal of this paper has been to investigate the reason-
ing of players in static games with unawareness through the
basic concept of common belief in rationality. Our approach has
been primarily epistemic, as we started by formulating the epis-
temic conditions that constitute common belief in rationality,
and subsequently designed a recursive elimination procedure that
characterizes exactly those choices that can rationally be made,
for every possible view, under this epistemic concept. We did
so for two scenarios: one in which we only restrict the possible
views that may enter the players’ belief hierarchies, and one in
which we fix the players’ belief hierarchies on views.

An interesting open question is how one can epistemically
characterize various equilibrium concepts that have been pro-
posed for games with unawareness, such as action-awareness
equilibrium (Čopič and Galeotti, 2006), extended Nash equilib-
rium (Feinberg, 2021), generalized Nash equilibrium (Halpern and
Rêgo, 2014), generalized sequential equilibrium (Rêgo and Halpern,
2012), sequential equilibrium (Grant and Quiggin, 2013), equilib-
rium of Bayesian game with unawareness (Meier and Schipper,
2014) and self-confirming equilibrium (Schipper, 2021).

Another problem that could be addressed in the future is how
one could formulate the backward induction concept of common
belief in future rationality (Perea, 2014) for dynamic games with
unawareness. Moreover, it could be explored how this concept
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ould relate to the forward induction concept of extensive-form
ationalizability as defined by Heifetz et al. (2013b) for dynamic
games with unawareness. These, and other, open problems are
left for future research.

Appendix

A.1. Proofs of Section 5

For the proofs of Section 5 we heavily rely on Lemma 3
n Pearce (1984). We will present this result below within the
ramework of decision problems, because we can then readily
pply it for our specific purposes. Consider a decision problem
Di,D−i), a choice ci ∈ Di and a probabilistic belief βi ∈ ∆(D−i)
bout the opponents’ choice combinations. Choice ci is said to be
ptimal for βi within the decision problem (Di,D−i) if∑
−i∈D−i

βi(c−i) · ui(ci, c−i) ≥

∑
c−i∈D−i

βi(c−i) · ui(c ′

i , c−i) for all c ′

i ∈ Di.

emma 3 in Pearce (1984) states that a choice is optimal for at
east one belief, if and only if, the choice is not strictly dominated.

emma A.1 (Pearce, 1984). Consider a decision problem (Di,D−i)
and an available choice ci ∈ Di. Then, ci is optimal for some
probabilistic belief within the decision problem (Di,D−i), if and only
if, ci is not strictly dominated within the decision problem (Di,D−i).

As we will see, this result is the cornerstone to the proofs of
Section 5.

Proof of Theorem 5.1. Note that in the iterated strict dominance
procedure for unawareness, Ck+1

i (vi) ⊆ Ck
i (vi) for every player i,

every view vi ∈ Vi and every round k ≥ 0. Since there are only
finitely many choices and views in the game, the procedure must
terminate after finitely many rounds. That is, there is some K ≥ 0
such that Ck

i (vi) = CK
i (vi) and Ck

−i(vi) = CK
−i(vi) for every player i,

view vi ∈ Vi and every k ≥ K . As such, it is sufficient to show that
Ck
i (vi) is always non-empty for every player i, every view vi ∈ Vi

and every k ≥ 0. We prove so by induction on k.
For k = 0 this is clear since C0

i (vi) = Ci(vi), which is
non-empty.

Take now some k ≥ 1 and assume that Ck−1
j (vj) is non-empty

for every player j and every view vj ∈ Vj. Consider some player i
and some view vi ∈ Vi. We show that Ck

i (vi) is non-empty.
For every opponent j ̸= i, take some view vj ∈ Vj that is

contained in vi. Note that such view vj exists by Definition 2.1.
For every opponent j ̸= i, take a choice cj ∈ Ck−1

j (vj), which
is possible because Ck−1

j (vj) is non-empty by the induction as-
sumption. Then, by construction, the choice combination (cj)j̸=i
is in Ck

−i(vi). Let the choice ci ∈ Ci(vi) be optimal, among all
choices in Ci(vi), for the belief βi that assigns probability 1 to
(cj)j̸=i. Hence, βi ∈ ∆(Ck

−i(vi)). By Lemma A.1 it then follows
that ci is not strictly dominated within the decision problem
(Ci(vi), Ck

−i(vi)). In particular, ci is not strictly dominated within
the decision problem (Ck−1

i (vi), Ck
−i(vi)), and hence ci ∈ Ck

i (vi). We
thus conclude that Ck

i (vi) is non-empty.
By induction, it follows that Ck

i (vi) is always non-empty for
every player i, every view vi ∈ Vi and every round k ≥ 0. As we
have seen, this completes the proof. ■

Proof of Theorem 5.2. (a) Suppose that choice c∗
m can rationally

be made under common belief in rationality with view v∗
m. We

show that (c∗
m, v∗

m) will survive the procedure.
For every player i and every view vi ∈ Vi, let C cbr

i (vi) be the
set of choices in C (v ) that player i can rationally make under
i i c

25
common belief in rationality with the view vi. We show, by
induction on k, that C cbr

i (vi) ⊆ Ck
i (vi) for every k ≥ 0, every player

i and every view vi ∈ Vi.
For k = 0 this is obviously true since C0

i (vi) = Ci(vi).
Now, consider some k ≥ 1 and assume that C cbr

i (vi) ⊆ Ck−1
i (vi)

or every player i and every view vi ∈ Vi. Consider some player
, some view vi, and assume that ci ∈ C cbr

i (vi). By the induction
ssumption we know that ci ∈ Ck−1

i (vi). As ci ∈ C cbr
i (vi), there

s some epistemic model M = (Tj, v̂j, bj)j∈I , and some type ti ∈

i with v̂i(ti) = vi, such that ti expresses common belief in
ationality and ci is optimal for ti. Let bCi (ti) be the marginal of
he belief bi(ti) on C−i. Then, in light of the above,

∑
c−i∈C−i(vi)

bCi (ti)(c−i) · ui(ci, c−i) ≥

∑
c−i∈C−i(vi)

bCi (ti)(c−i) · ui(c ′

i , c−i)

for all c ′

i ∈ Ci(vi).

(A.1)

ince ti expresses common belief in rationality, we conclude that
C
i (ti)((cj)j̸=i) > 0 only if, for every j ̸= i, choice cj is in C cbr

j (vj) for
ome view vj ⊆ vi. Since by the induction assumption we have
hat C cbr

j (vj) ⊆ Ck−1
j (vj), we conclude that bCi (ti)((cj)j̸=i) > 0 only

f, for every j ̸= i, choice cj is in Ck−1
j (vj) for some view vj ⊆ vi.

ence, by definition of the procedure, bCi (ti) ∈ ∆(Ck
−i(vi)).

In view of (A.1) we thus conclude that ci ∈ Ck−1
i (vi) is optimal

or the belief bCi (ti) ∈ ∆(Ck
−i(vi)) within the reduced decision

roblem (Ck−1
i (vi), Ck

−i(vi)). By Lemma A.1 it then follows that
i is not strictly dominated for the reduced decision problem
Ck−1
i (vi), Ck

−i(vi)), and hence ci ∈ Ck
i (vi), by definition of the

rocedure. As this holds for every ci ∈ C cbr
i (vi), we conclude that

cbr
i (vi) ⊆ Ck

i (vi), which was to show. By induction on k we
onclude that C cbr

i (vi) ⊆ Ck
i (vi) for every k, every player i and

very view vi ∈ Vi.
Now, let us return to the choice c∗

m and the view v∗
m such that

∗
m can rationally be made under common belief in rationality
ith the view v∗

m. Then, c
∗
m ∈ C cbr

m (v∗
m) and hence, by the analysis

bove, c∗
m ∈ Ck

m(v
∗
m) for every k ≥ 0. Hence, (c∗

m, v∗
m) survives the

rocedure, which completes the proof of part (a).
b) Suppose that (c∗

m, v∗
m) survives the procedure. We show that

∗
m can rationally be made under common belief in rationality
ith the view v∗

m.
For every player i, and every view vi ∈ Vi, let C∞

i (vi) :=

k≥0Ck
i (vi) be the set of choices that survive the procedure for

iew vi, and let C∞

−i (vi) := ∩k≥0Ck
−i(vi) be the set of opponents’

hoice combinations that survive the procedure at vi. By The-
rem 5.1 we know that all these sets C∞

i (vi) and C∞

−i (vi) are
on-empty.
By construction, every choice ci ∈ C∞

i (vi) is not strictly
ominated within the decision problem (C∞

i (vi), C∞

−i (vi)). Hence,
y Lemma A.1, there is for every choice ci ∈ C∞

i (vi) some belief
ci,vi
i ∈ ∆(C∞

−i (vi)) such that ci is optimal for β
ci,vi
i within the

ecision problem (C∞

i (vi), C∞

−i (vi)). We will show that, in fact, ci
s optimal for β

ci,vi
i within the decision problem (Ci(vi), C∞

−i (vi)).
et c∗

i ∈ Ci(vi) be optimal for β
ci,vi
i within the decision problem

Ci(vi), C∞

−i (vi)). Then, by Lemma A.1, c∗

i is not strictly dominated
ithin the decision problem (Ci(vi), C∞

−i (vi)), and hence c∗

i must
e in C∞

i (vi). As ci is optimal for β
ci,vi
i within the decision problem

C∞

i (vi), C∞

−i (vi)), it follows that

∑
∞

β
ci,vi
i (c−i) · ui(ci, c−i) ≥

∑
∞

β
ci,vi
i (c−i) · ui(c∗

i , c−i).

−i∈C−i (vi) c−i∈C−i (vi)



A. Perea Mathematical Social Sciences 119 (2022) 11–30

A
(
s
∆

o
c

O
w
t
c

T

M
a
g

b

T
t

N
a

u

R
a
n
t
t
c

d
t
p
b
i
E

t
i

d
t

e
a
s
E

n
a
w
s
t

t
p
w

o
w
m

A

A

W
c
t
b
f
o

s c∗

i is optimal for β
ci,vi
i within the decision problem (Ci(vi), C∞

−i
vi)), it follows that ci is optimal for β

ci,vi
i within the deci-

ion problem (Ci(vi), C∞

−i (vi)) as well. Moreover, since β
ci,vi
i ∈

(C∞

−i (vi)) we know, by construction of the procedure, that β
ci,vi
i

nly assigns positive probability to opponents’ choices cj where
j ∈ C∞

j (vj[ci, vi, cj]) for some view vj[ci, vi, cj] ⊆ vi.
Let us return to the pair (c∗

m, v∗
m) that survives the procedure.

n the basis of the beliefs β
ci,vi
i and views vj[ci, vi, cj] above, we

ill construct an epistemic model M = (Ti, v̂i, bi)i∈I such that
here is some type t∗m in M with view v̂m(t∗m) = v∗

m for which
∗
m is optimal.
In M , let the set of types for every player i be given by

i := {tci,vii | vi ∈ Vi(v∗

m) and ci ∈ C∞

i (vi)}.

oreover, for every type tci,vii ∈ Ti, let the view be v̂i(t
ci,vi
i ) := vi,

nd let the belief bi(t
ci,vi
i ) on ∆(C−i(v̂i(t

ci,vi
i )) × T−i(v̂i(t

ci,vi
i ))) be

iven by

i(t
ci,vi
i )((cj, tj)j̸=i) :=

⎧⎪⎨⎪⎩
β

ci,vi
i ((cj)j̸=i), if tj = t

cj,vj[ci,vi,cj]
j

for all j ̸= i,
0, otherwise.

hen, it may be verified that conditions (c) and (d) in Defini-
ion 3.1 are satisfied, and hence M = (Ti, v̂i, bi)i∈I is an epistemic
model.

Note that every type tci,vii has the belief β
ci,vi
i about the op-

ponents’ choices. Since we have seen above that ci is optimal for
β

ci,vi
i among all choices in Ci(vi), it follows that ci is optimal for

tci,vii as well. By construction, every type tci,vii only assigns positive
probability to pairs (cj, t

cj,vj
j ) for every opponent j ̸= i, where

cj ∈ C∞

j (vj). Since we have seen that cj is optimal for t
cj,vj
j , it

follows that every type tci,vii in the epistemic model believes in
the opponents’ rationality. As a consequence, every type in the
epistemic model expresses common belief in rationality.

Now, consider the pair (c∗
m, v∗

m) that we started with. As v∗
m ∈

Vm(v∗
m) and c∗

m ∈ C∞
m (v∗

m), it follows that tc
∗
m,v∗

m
m ∈ Tm. We

have seen above that c∗
m is optimal for tc

∗
m,v∗

m
m , and that tc

∗
m,v∗

m
m

expresses common belief in rationality. As v̂m(t
c∗m,v∗

m
m ) = v∗

m, it thus
follows that c∗

m can rationally be chosen under common belief in
rationality with the view v∗

m. This completes the proof. ■

Proof of Theorem 5.3. Let (D0, . . . ,DK ) be the “full speed” elim-
ination order, where Dk+1

= r(Dk) for all k, and let (E0, . . . , EL)
be a different elimination order for iterated strict dominance for
unawareness. We will show that DK

= EL.
To show this, we first prove, by induction on k, that Dk

⊆ Ek

for all k.
For k = 0 this is true, since D0 and E0 are both the collection

of full decision problems. Suppose now that k ≥ 1, and make the
induction assumption that Dk−1

⊆ Ek−1. Then, Dk
= r(Dk−1) and

r(Ek−1) ⊆ Ek
⊆ Ek−1. (A.2)

We show that Dk
⊆ Ek. Let Dk

= (Dk
i (vi),Dk

−i(vi))i∈I,vi∈Vi and
Ek

= (Ek
i (vi), Ek

−i(vi))i∈I,vi∈Vi . Take some (cj)j̸=i ∈ Dk
−i(vi). As Dk

=

r(Dk−1) we know, by definition, for every j ̸= i that cj ∈ Dk−1
j (vj)

for some vj ⊆ vi. By the induction assumption, it follows for every
j ̸= i that cj ∈ Ek−1

j (vj) for some vj ⊆ vi. That is, (cj)j̸=i belongs
to the set of opponents’ choice combinations of r(Ek−1) at view
vi. Together with (A.2) we conclude that (cj)j̸=i ∈ Ek

−i(vi). We thus
have shown that Dk

−i(vi) ⊆ Ek
−i(vi).

Next, take some ci ∈ Dk
i (vi). As Dk

= r(Dk−1) we know, by def-
inition, that c is not strictly dominated within (Dk−1(v ),Dk (v )).
i i i −i i

26
By Lemma A.1, there is a probabilistic belief βi ∈ ∆(Dk
−i(v)) such

that

ui(ci, βi) ≥ ui(c ′

i , βi) for all c ′

i ∈ Dk−1
i (vi). (A.3)

We will show that, in fact, (A.3) holds for all c ′

i ∈ Ci(vi). Suppose
not. Then, there is some c ′

i ∈ Ci(vi) with

u(ci, βi) < ui(c ′

i , βi). (A.4)

ow, let c ′′

i be the choice in Ci(vi) that is optimal for the belief βi
mongst all choices in Ci(vi). Then, by (A.4),

i(ci, βi) < ui(c ′

i , βi) ≤ ui(c ′′

i , βi). (A.5)

ecall that βi ∈ ∆(Dk
−i(vi)). Since c ′′

i is optimal for βi ∈ ∆(Dk
−i(v))

mongst all choices in Ci(vi), it follows by Lemma A.1 that c ′′

i is
ot strictly dominated within (Ci(vi),Dk

−i(vi)). Hence, it must be
hat c ′′

i ∈ Dk
i (vi) and hence, in particular, c ′′

i ∈ Dk−1
i (vi). However,

his insight together with (A.5) would contradict (A.3). We thus
onclude that (A.3) holds for all c ′

i ∈ Ci(vi).
By Lemma A.1 we may thus conclude that ci is not strictly

ominated in (Ci(vi),Dk
−i(vi)). As Dk

−i(vi) ⊆ Ek
−i(vi), it follows

hat ci is not strictly dominated in (Ci(vi), Ek
−i(vi)) and hence, in

articular, ci is not strictly dominated in (Ek−1
i (vi), Ek

−i(vi)). Thus,
y definition, ci is in r(Ek−1) at view vi. This, together with (A.2),
mplies that ci ∈ Ek

i (vi). Hence, we have shown that Dk
i (vi) ⊆

k
i (vi).
Since we have already shown that Dk

−i(vi) ⊆ Ek
−i(vi), it follows

hat Dk
⊆ Ek. By induction on k, this holds for all k. In particular,

t follows that DK
⊆ EL.

We next show, by induction on k, that EL
⊆ Dk for every k.

For k = 0 this is obviously true, since D0 is the collection of full
ecision problems. Let k ≥ 1 and make the induction assumption
hat EL

⊆ Dk−1.
Take first some (cj)j̸=i ∈ EL

−i(vi). As r(EL) = EL, it must be, for
very j ̸= i, that cj ∈ EL

j (vj) for some vj ⊆ vi. By the induction
ssumption, we thus know, for every j ̸= i, that cj ∈ Dk−1

j (vj) for
ome vj ⊆ vi. Hence, (cj)j̸=i ∈ Dk

−i(vi). We have thus shown that
L
−i(vi) ⊆ Dk

−i(vi).
Next, take some ci ∈ EL

i (vi). As r(EL) = EL, it must be that ci is
ot strictly dominated within (EL

i (vi), EL
−i(vi)). In the same way as

bove, it can be shown that, in fact, ci is not strictly dominated
ithin (Ci(vi), EL

−i(vi)). As EL
−i(vi) ⊆ Dk

−i(vi), it follows that ci is not
trictly dominated within (Ci(vi),Dk

−i(vi)). This, in turn, implies
hat ci ∈ Dk

i (vi). Hence, we have shown that EL
i (vi) ⊆ Dk

i (vi).
Since we have already shown that EL

−i(vi) ⊆ Dk
−i(vi), it follows

hat EL
⊆ Dk. By induction on k, this holds for every k. In

articular, EL
⊆ DK . Together with the insight above that DK

⊆ EL

e conclude that DK
= EL.

So far, we have shown that for the “full speed” elimination
rder (D0, . . . ,DK ) and any other elimination order (E0, . . . , EL)
e have that DK

= EL. But then, every two elimination orders
ust yield the same output, which completes the proof. ■

.2. Belief hierarchies on views induced by types

.2.1. Epistemic models for views
Consider an epistemic model for views Mview

= (Ri, ŵi, pi)i∈I .
e show how, for every player i and every view-type ri ∈ Ri, we

an derive the induced belief hierarchy hi(ri) on views. Formally,
his belief hierarchy can be written as an infinite sequence of
eliefs hi(ri) = (h1

i (ri), h
2
i (ri), . . .), where h1

i (ri) is the induced
irst-order belief, h2

i (ri) is the induced second-order belief, and so
n.
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We will inductively define, for every n, the nth order beliefs
nduced by types ri in Mview , building upon the (n − 1)th order
eliefs that have been defined in the preceding step. We start by
efining the first-order beliefs.
For a given view vi, let Ri[vi] := {ri ∈ Ri | ŵi(ri) = vi}. If

v−i = (vj)j̸=i, then we define R−i[v−i] := ×j̸=iRj[vj].
For every player i, and every type ri ∈ Ri, define the first-order

belief h1
i (ri) ∈ ∆(V−i) by

h1
i (ri)(v−i) := pi(ri)(R−i[vi]) for all v−i ∈ V−i.

Now, suppose that n ≥ 2, and assume that the (n− 1)th order
beliefs hn−1

i (ri) have been defined for all players i, and every type
ri ∈ Ri. Let

hn−1
i (Ri) := {hn−1

i (ri) | ri ∈ Ri}

be the finite set of (n − 1)th order beliefs for player i induced by
types in Ri. For every hn−1

i ∈ hn−1
i (Ri), let

Ri[hn−1
i ] := {ri ∈ Ri | hn−1

i (ri) = hn−1
i }

be the set of types in Ri that have the (n− 1)th order belief hn−1
i .

Let hn−1
−i (R−i) := ×j̸=ihn−1

j (Rj), and for a given hn−1
−i = (hn−1

j )j̸=i

in hn−1
−i (R−i) let
R−i[hn−1

−i ] := ×j̸=iRj[hn−1
j ].

For every type ri ∈ Ri, let the nth order belief hn
i (ri) ∈ ∆(V−i ×

hn−1
−i (R−i)) be given by

hn
i (ri)(v−i, hn−1

−i ) := pi(ri)(R−i[v−i] ∩ R−i[hn−1
−i ])

for every v−i ∈ V−i and every hn−1
−i ∈ hn−1

−i (R−i).
Finally, for every type ri ∈ Ri, we denote by

hi(ri) := (hn
i (ri))n∈N

the belief hierarchy on views induced by ri.

A.2.2. Epistemic models for choices and views
Consider an epistemic model for choices and views M =

(Ti, v̂i, bi)i∈I . We show how, for every player i and every type
ti ∈ Ti, we can derive the induced belief hierarchy hi(ti) on
views. Formally, this belief hierarchy can be written as an infi-
nite sequence of beliefs hi(ti) = (h1

i (ti), h
2
i (ti), . . .), where h1

i (ti)
is the induced first-order belief on views, h2

i (ti) is the induced
second-order belief on views, and so on.

We will inductively define, for every n, the nth order beliefs
on views induced by types ti in M , building upon the (n − 1)th
order beliefs on views that have been defined in the preceding
step. We start by defining the first-order beliefs.

For a given view vi, let Ti[vi] := {ti ∈ Ti | v̂i(ti) = vi}. If
v−i = (vj)j̸=i, then we define T−i[v−i] := ×j̸=iTj[vj].

For every player i, and every type ti ∈ Ti, define the first-order
belief on views h1

i (ti) ∈ ∆(V−i) by

h1
i (ti)(v−i) := bi(ti)(C−i × T−i[v−i]) for all v−i ∈ V−i.

Now, suppose that n ≥ 2, and assume that the (n− 1)th order
beliefs on views hn−1

i (ti) have been defined for all players i, and
every type ti ∈ Ti. Let

hn−1
i (Ti) := {hn−1

i (ti) | ti ∈ Ti}

be the finite set of (n − 1)th order beliefs for player i induced by
types in Ti. For every hn−1

i ∈ hn−1
i (Ti), let

Ti[hn−1
i ] := {ti ∈ Ti | hn−1

i (ti) = hn−1
i }

be the set of types in Ti that have the (n− 1)th order belief hn−1
i .

Let hn−1
−i (T−i) := ×j̸=ihn−1

j (Tj), and for a given hn−1
−i = (hn−1

j )j̸=i
n−1
in h
−i (T−i) let h

27
T−i[hn−1
−i ] := ×j̸=iTj[hn−1

j ].
For every type ti ∈ Ti, let the nth order belief on views hn

i (ti) ∈

∆(V−i × hn−1
−i (T−i)) be given by

hn
i (ti)(v−i, hn−1

−i ) := bi(ti)(C−i × (T−i[v−i] ∩ T−i[hn−1
−i ]))

for every v−i ∈ V−i and every hn−1
−i ∈ hn−1

−i (T−i).
Finally, for every type ti ∈ Ti, we denote by

hi(ti) := (hn
i (ti))n∈N

the belief hierarchy on views induced by ti.

A.3. Proofs of Section 6

Proof of Theorem 6.1. Note that Ck+1
i (ri) ⊆ Ck

i (ri) for every
player i, every view-type ri ∈ Ri, and every round k ≥ 0.
Since there are only finitely many choices and view-types, the
procedure must terminate after finitely many rounds. That is,
there is some K ≥ 0 such that for every k ≥ K , Ck

i (ri) = CK
i (ri) for

very player i and every view-type ri ∈ Ri. As such, it is sufficient
o show that Ck

i (ri) is always non-empty for every player i, every
iew-type ri ∈ Ri, and every k ≥ 0. We prove so by induction on
.
For k = 0 this is clear since C0

i (ri) = Ci(ŵi(ri)), which is
on-empty.
Take now some k ≥ 1 and assume that Ck−1

j (rj) is non-empty
or every player j and every view-type rj ∈ Rj. Consider some
layer i, and some view-type ri ∈ Ri. Then, Bk

i (ri) is non-empty,
ince the choice sets Ck−1

j (rj) are non-empty for every j ̸= i and
very rj ∈ Rj.
Now, take some bi ∈ Bk

i (ri) and some choice ci ∈ Ci(ŵi(ri)) that
s optimal for bi among choices in Ci(ŵi(ri)). Then, ci will also be
ptimal for bi among choices in Ck−1

i (ri), and hence ci ∈ Ck
i (ri).

e thus conclude that Ck
i (ri) is non-empty.

By induction, it follows that Ck
i (ri) is always non-empty for

very player i, every view-type ri ∈ Ri , and every round k ≥ 0.
s we have seen, this completes the proof. ■

roof of Theorem 6.2. (a) Take r∗
m ∈ Rm with ŵm(r∗

m) = v∗
m, and

uppose that c∗
m can rationally be chosen under common belief

n rationality with view v∗
m and the belief hierarchy on views

nduced by r∗
m. We show that (c∗

m, r∗
m) survives the procedure.

Assume, without loss of generality, that different types in
view induce different belief hierarchies on views. For every
layer i and every view-type ri ∈ Ri, let C cbr

i (ri) be the set
f choices in Ci(ŵi(ri)) that player i can rationally make under
ommon belief in rationality with the view ŵi(ri) and the belief
ierarchy on views induced by ri. We show, by induction on k,
hat C cbr

i (ri) ⊆ Ck
i (ri) for every k ≥ 0, every player i, and every

iew-type ri ∈ Ri.
For k = 0 this is obviously true since C0

i (ri) = Ci(ŵi(ri)).
Now, consider some k ≥ 1 and assume that C cbr

i (ri) ⊆ Ck−1
i (ri)

or every player i and every view-type ri ∈ Ri. Consider some
layer i and some view-type ri ∈ Ri, and assume that ci ∈ C cbr

i (ri).
hen, there is some epistemic model M = (Tj, v̂j, bj)j∈I , and some
ype ti ∈ Ti, such that v̂i(ti) = ŵi(ri), hi(ti) = hi(ri), type ti
xpresses common belief in rationality, and where ci is optimal
or ti.

Let bCi (ti) be the marginal of the belief bi(ti) on C−i. Later, we
ill show that bCi (ti) ∈ Bk

i (ri). In order to do so, we need two
reliminary observations.
First, since hi(ti) = hi(ri), there is for every opponent j, and

very view-type rj that receives positive probability under pi(ri),
ome set of types Tj(rj) such that
j(tj) = hj(rj) for all tj ∈ Tj(rj), (A.6)
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i(ti)(×j̸=i(Cj × Tj(rj))) = pi(ri)((rj)j̸=i) (A.7)

or all (rj)j̸=i in R−i with pi(ri)((rj)j̸=i) > 0. Here, we use the
ssumption above that different types in Mview induce different
elief hierarchies on views.
Second, since ti expresses common belief in rationality, we

ave that bi(ti)((cj, tj)j̸=i) > 0 only if for every opponent j ̸= i, type
j expresses common belief in rationality, and cj is optimal for tj.
ote that in this case, there must be some rj ∈ Rj with tj ∈ Tj(rj),
n view of (A.7). Hence, by (A.6), we know that hj(tj) = hj(rj).
ogether with the facts that cj is optimal for tj, and tj expresses
ommon belief in rationality, it follows that cj ∈ C cbr

j (rj) in this
ase. By the induction assumption, C cbr

j (rj) ⊆ Ck−1
j (rj). We thus

onclude that

i(ti)((cj, tj)j̸=i) > 0 only if tj ∈ Tj(rj) and cj ∈ Ck−1
j (rj) (A.8)

or all opponents j ̸= i.
We will now use (A.7) and (A.8) to prove that bCi (ti) ∈ Bk

i (ri).
hat is, we must show that
C
i (ti) =

∑
(rj)j̸=i∈R−i

pi(ri)((rj)j̸=i) · β
(rj)j̸=i
i , (A.9)

here β
(rj)j̸=i
i ∈ ∆(×j̸=iCk−1

j (rj)) for all (rj)j̸=i with pi(ri)((rj)j̸=i) >

.
Let

∗

−i := {(rj)j̸=i ∈ R−i | pi(ri)((rj)j̸=i) > 0}.

or every (rj)j̸=i ∈ R∗

−i, define β
(rj)j̸=i
i by

(rj)j̸=i
i ((cj)j̸=i) :=

bi(ti)(×j̸=i{cj} × Tj(rj))
pi(ri)((rj)j̸=i)

. (A.10)

Then, it may be verified that β
(rj)j̸=i
i is a probability distribution

on C−i, since

β
(rj)j̸=i
i (C−i) =

bi(ti)(×j̸=i(Cj × Tj(rj)))
pi(ri)((rj)j̸=i)

= 1

ecause of (A.7).
We next show that β

(rj)j̸=i
i only assigns positive probability to

cj)j̸=i ∈ ×j̸=iCk−1
j (rj). Indeed, suppose that β

(rj)j̸=i
i ((cj)j̸=i) > 0.

Then, by (A.10), bi(ti)(×j̸=i{cj}×Tj(rj)) > 0, and hence we conclude
by (A.8) that cj ∈ Ck−1

j (rj) for every j ̸= i. Hence, (cj)j̸=i ∈

×j̸=iCk−1
j (rj). We may thus conclude that

β
(rj)j̸=i
i ∈ ∆(×j̸=iCk−1

j (rj)) for every (rj)j̸=i ∈ R∗

−i. (A.11)

We finally show (A.9). By definition, for every (cj)j̸=i in C−i, we
have that

bCi (ti)((cj)j̸=i) =

∑
(tj)j̸=i∈T−i

bi(ti)((cj, tj)j̸=i)

=

∑
(rj)j̸=i∈R∗

−i

bi(ti)(×j̸=i{cj} × Tj(rj))

=

∑
(rj)j̸=i∈R∗

−i

pi(ri)((rj)j̸=i) ·
bi(ti)(×j̸=i{cj} × Tj(rj))

pi(ri)((rj)j̸=i)

=

∑
(rj)j̸=i∈R∗

−i

pi(ri)((rj)j̸=i) · β
(rj)j̸=i
i ((cj)j̸=i),

hich implies (A.9). Here, the second equality follows from (A.7),
hereas the fourth equality follows from (A.10). But then, we
onclude from (A.9) and (A.11) that bC (t ) ∈ Bk(r ).
i i i i

28
Remember from above that ci is optimal for ti. Hence, ci is
optimal for the marginal belief bCi (ti) ∈ Bk

i (ri) among choices in
i(ŵi(ri)), which implies that ci ∈ Ck

i (ri). As this holds for every
i ∈ C cbr

i (ri), we conclude that C cbr
i (ri) ⊆ Ck

i (ri). By induction on k,
e may then conclude that C cbr

i (ri) ⊆ Ck
i (ri) for every k.

Now, return to the triple (c∗
m, v∗

m, r∗
m) where ŵm(r∗

m) = v∗
m, and

uch that c∗
m can rationally be chosen under common belief in

ationality with the view v∗
m and the belief hierarchy on views

nduced by r∗
m. Then, by definition, c∗

m ∈ C cbr
m (r∗

m). By the con-
lusion above that C cbr

m (r∗
m) ⊆ Ck

m(r
∗
m) for every k, it follows that

∗
m ∈ Ck

m(r
∗
m) for every k. Hence, (c∗

m, r∗
m) survives the procedure.

his completes the proof of part (a).

b) Suppose that (c∗
m, r∗

m) survives the procedure, with ŵm(r∗
m) =

∗
m. We show that c∗

m can rationally be chosen under common
elief in rationality with view v∗

m and belief hierarchy on views
nduced by r∗

m. To that purpose, we will construct an epistemic
odel M = (Ti, v̂i, bi)i∈I with a type t∗m ∈ Tm that has the view

ˆm(t∗m) = v∗
m and where hm(t∗m) = hm(r∗

m), such that t∗m expresses
ommon belief in rationality, and c∗

m is optimal for t∗m.
For every player i and every view-type ri ∈ Ri, let C∞

i (ri) :=

k≥0Ck
i (ri) be the set of choices that survive the procedure for

iew-type ri, and let B∞

i (ri) := ∩k≥0Bk
i (ri) be the set of beliefs

hat survive the procedure at ri. By Theorem 6.1 we know that
ll these sets C∞

i (ri) and B∞

i (ri) are non-empty.
By construction, every choice ci ∈ C∞

i (ri) is optimal for some
elief β

ci,ri
i ∈ B∞

i (ri) among choices in C∞

i (ri). We will show
hat, in fact, ci is optimal for β

ci,ri
i among choices in Ci(ŵi(ri)). Let

∗

i ∈ Ci(ŵi(ri)) be optimal for β
ci,ri
i among choices in Ci(ŵi(ri)).

hen, c∗

i is in C∞

i (ri). As ci is optimal for β
ci,ri
i among choices in

∞

i (ri), it follows that∑
−i∈C−i(ŵi(ri))

β
ci,ri
i (c−i)·ui(ci, c−i) ≥

∑
c−i∈C−i(ŵi(ri))

β
ci,ri
i (c−i)·ui(c∗

i , c−i).

s c∗

i is optimal for β
ci,ri
i among choices in Ci(ŵi(ri)), it follows

hat ci is optimal for β
ci,ri
i among choices in Ci(ŵi(ri)) as well.

Moreover, since
ci,ri
i ∈ B∞

i (ri) =

∑
(rj)j̸=i∈R−i

pi(ri)((rj)j̸=i) · ∆(×j̸=iC∞

j (rj)),

here is for every (rj)j̸=i ∈ R−i that receives positive probability
nder pi(ri), some belief γ

ci,ri
i [(rj)j̸=i] ∈ ∆(×j̸=iC∞

j (rj)) such that

ci,ri
i =

∑
(rj)j̸=i∈R−i

pi(ri)((rj)j̸=i) · γ
ci,ri
i [(rj)j̸=i]. (A.12)

Recall the triple (c∗
m, v∗

m, r∗
m) above, where (c∗

m, r∗
m) survives the

rocedure and ŵm(r∗
m) = v∗

m. On the basis of the beliefs β
ci,ri
i

bove we now construct the following epistemic model M =

Ti, v̂i, bi)i∈I . Let the set of types for every player i be given by

i = {tci,rii | ri ∈ Ri, ŵi(ri) ∈ Vi(v∗

m) and ci ∈ C∞

i (ri)}.

oreover, for every type tci,rii ∈ Ti, let the view be v̂i(t
ci,ri
i ) :=

ˆ i(ri), and let the belief bi(t
ci,ri
i ) on C−i × T−i be given by

i(t
ci,ri
i )((cj, tj)j̸=i)

:=

{
pi(ri)((rj)j̸=i) · γ

ci,ri
i [(rj)j̸=i]((cj)j̸=i), if tj = tcj,rjj for all j ̸= i,

0, otherwise
.

(A.13)

To show that the epistemic model M satisfies conditions (c)
nd (d) in Definition 3.1, suppose that type tci,rii assigns positive
robability to some choice-type pair (cj, t

cj,rj
j ). Then, by (A.13),

i(ri) assigns positive probability to rj. By condition (c) in Defi-
ition 6.1, this is only possible when ŵ (r ) ⊆ ŵ (r ). As v̂ (tci,ri ) =
j j i i i i
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ˆ i(ri) and v̂j(t
cj,rj
j ) = ŵj(rj), it thus follows that v̂j(t

cj,rj
j ) ⊆

ˆ i(t
ci,ri
i ). Hence, t

cj,rj
j ∈ Tj(v̂i(t

ci,ri
i )). This establishes condition (c)

n Definition 3.1.
Moreover, if type tci,rii assigns positive probability to some

hoice-type pair (cj, t
cj,rj
j ), then by (A.13) the belief γ ci,ri

i [(rj)j̸=i] as-
igns positive probability to cj. Since γ

ci,ri
i [(rj)j̸=i] ∈ ∆(×j̸=iC∞

j (rj)),
t follows that cj ∈ C∞

j (rj), and hence cj ∈ Cj(ŵj(rj)). Since
ˆ j(t

cj,rj
j ) = ŵj(rj), we thus conclude that cj ∈ Cj(v̂j(t

cj,rj
j )). Hence,

ondition (d) in Definition 3.1 is satisfied.
Altogether, we see that M satisfies (c) and (d) in Definition 3.1,

and hence M is an epistemic model.
We next show that every type tci,rii holds the belief β

ci,ri
i about

the opponents’ choices. Let bCi (t
ci,ri
i ) be the marginal belief of type

tci,rii on C−i. Then, for every (cj)j̸=i ∈ C−i we have that

bCi (t
ci,ri
i )((cj)j̸=i) =

∑
(tj)j̸=i∈T−i

bi(t
ci,ri
i )((cj, tj)j̸=i)

=

∑
(rj)j̸=i∈R−i

bi(t
ci,ri
i )((cj, t

cj,rj
j )j̸=i)

=

∑
(rj)j̸=i∈R−i

pi(ri)((rj)j̸=i) · γ
ci,ri
i [(rj)j̸=i]((cj)j̸=i)

= β
ci,ri
i ((cj)j̸=i),

where the second and third equality follow from (A.13), and the
last equality follows from (A.12). Hence, we conclude that tci,rii
holds the belief β

ci,ri
i about the opponents’ choices.

Note that, by construction, ci ∈ C∞

i (ri) for every type tci,rii ∈

Ti. Since we have seen above that ci is optimal for β
ci,ri
i among

choices in Ci(ŵi(ri)), and that tci,rii holds the belief β
ci,ri
i about the

opponents’ choices, it follows that ci is optimal for tci,rii .
We use this to show that every type tci,rii believes in the

opponents’ rationality. Suppose that bi(t
ci,ri
i )((cj, t

cj,rj
j )j̸=i) > 0.

Since t
cj,rj
j holds the belief β

cj,rj
j about the opponents’ choices, and

cj is optimal for β
cj,rj
j among the choices in Cj(ŵj(rj)), it follows

that cj is optimal for t
cj,rj
j for every j ̸= i. Hence, tci,rii indeed

believes in the opponents’ rationality. As this holds for all types
in the epistemic model M , we conclude that all types in M with
view v∗

m express common belief in rationality.
We finally show that every type tci,rii has the belief hierarchy

n views induced by the view-type ri. For every (rj)j̸=i ∈ R−i we
ave that∑

(cj)j̸=i∈C−i

bi(t
ci,ri
i )((cj, t

cj,rj
j )j̸=i)

=

∑
(cj)j̸=i∈C−i

pi(ri)((rj)j̸=i) · γ
ci,ri
i [(rj)j̸=i]((cj)j̸=i)

= pi(ri)((rj)j̸=i) ·

∑
(cj)j̸=i∈C−i

γ
ci,ri
i [(rj)j̸=i]((cj)j̸=i)

= pi(ri)((rj)j̸=i), (A.14)

where the first equality follows from (A.13), and the last equality
follows from the fact that γ

ci,ri
i [(rj)j̸=i] is a probability distribution

on C−i, and hence∑
(cj)j̸=i∈C−i

γ
ci,ri
i [(rj)j̸=i]((cj)j̸=i) = 1.

Eq. (A.14) thus states that the probability that type tci,rii assigns
to the set of tuples {(t

cj,rj
j )j̸=i | (cj)j̸=i ∈ C−i} is the same as the

probability that view-type ri assigns to the tuple (rj)j̸=i. Since this
holds for every type tci,rii in the epistemic model M , we conclude
that every type tci,rii in M has the belief hierarchy on views
induced by r . That is, h (tci,ri ) = h (r ) for every type tci,ri in M .
i i i i i i

29
Let us return to the triple (c∗
m, v∗

m, r∗
m) above, where (c∗

m, r∗
m)

survives the procedure and ŵm(r∗
m) = v∗

m. Then, c
∗
m ∈ C∞

m (r∗
m).

s ŵm(r∗
m) = v∗

m ∈ V (v∗
m), it follows that tc

∗
m,r∗m

m ∈ Tm. We have
een above that c∗

m is optimal for tc
∗
m,r∗m

m , that tc
∗
m,r∗m

m expresses
ommon belief in rationality, that hm(t

c∗m,r∗m
m ) = hm(r∗

m) and that
∗
m has the view v∗

m. It thus follows that c∗
m can rationally be

hosen under common belief in rationality with the view v∗
m and

he belief hierarchy on views induced by r∗
m. This completes the

roof. ■
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