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Abstract

The solution concept of iterated strict dominance for static games with complete in-
formation recursively deletes choices that are inferior. Here, we devise such an algo-
rithm for the more general case of incomplete information. The ensuing solution
concept of generalized iterated strict dominance is characterized in terms of
common belief in rationality as well as in terms of best response sets. Besides, we
provide doxastic conditions that are necessary and sufficient for modelling complete
information from a one-person perspective.

JEL classification: C72.

1. Introduction

The most basic game-theoretic model of an interactive decision situation is a static game

with complete information. Accordingly, a set of players with a choice set for every player

is given as well as the payoff structure of the game defined by specifying for every player a

unique utility function that maps choice combinations to payoff values. Such a model

describes the essential features of an interactive situation. In game theory different solution

concepts are then proposed which identify for every player some choices—in line with a

reasonability criterion or decision rule—as the solution of the game.

According to a fundamental idea in game theory a choice that fares worse than some

other choice or some randomization over choices against every possible combination of

opponents’ choices is called strictly dominated and is deemed to be an unreasonable option

for the corresponding player. The widespread solution concept of iterated strict dominance

builds on this idea. In a first round all strictly dominated choices are eliminated for every

player. The ensuing reduced game is then considered and in a second round all strictly

dominated choices are eliminated for every player therein. It is continued in this fashion
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until no more strict dominance relations can be identified. The surviving choices for each

player of this algorithm form the solution of the game. For finite games iterated strict dom-

inance exhibits the convenient properties of stopping after finitely many rounds, resulting

in a non-empty output, and being order-independent. In fact, historically the idea of itera-

tively eliminating strictly dominated choices can be traced back to the early days of game

theory (e.g. Nash, 1951, pp. 292–93).

In static games with complete information players do not face any uncertainty about the

payoff structure. All utility functions are commonly known among the players. However,

in many interactive decision situations in the real world this assumption is not satisfied. For

instance, a firm does typically not know the cost structure and thus the profit function of a

competitor or a participant in an auction is usually not certain about the valuation of the

other participants. It is thus relevant to explore strategic decision situations involving pay-

off uncertainty too. The corresponding game-theoretic framework is provided by static

games with incomplete information. A direct way to accommodate payoff uncertainty sim-

ply specifies a set of—rather than unique—utility functions for every player. Complete in-

formation can thus be viewed as the special case of incomplete information, where all sets

of utility functions are singletons.

The analysis of incomplete information has been pioneered by Harsanyi (1967–68). He

models payoff uncertainty by the notion of a type and proposes the solution concept of

Bayesian equilibrium. Intuitively, his solution concept embeds a best response property in a

type structure that determines the belief hierarchies on the players’ utility functions based

on a common prior. In relation to the special case of complete information, Bayesian equi-

librium can actually be shown to constitute the incomplete information counterpart to cor-

related equilibrium (cf. Battigalli and Siniscalchi, 2003a; Bach and Perea, 2017).

While Bayesian equilibrium has become the most prevalent solution concept for incom-

plete information games, more recently, the idea of rationalizability—due to Bernheim

(1984) and Pearce (1984)—has been generalized to incomplete information games. In par-

ticular, the solution concepts of weak and strong D-rationalizability have been introduced

by Battigalli (2003), and further analysed by Battigalli and Siniscalchi (2003a, 2007),

Battigalli et al. (2011), Battigalli and Prestipino (2013), as well as Dekel and Siniscalchi

(2015). Intuitively, D-rationalizability concepts iteratively delete choice utility pairs by

some best response requirement and allow for exogenous restrictions on the first-order

beliefs. D-rationalizability has been applied to auctions by Battigalli and Siniscalchi

(2003b), to signalling games by Battigalli (2006), as well as to static implementation by

Ollar and Penta (2017). A backward inductive variant of rationalizability for dynamic

games with incomplete information has been proposed by Penta (2017) and applied to dy-

namic implementation by Penta (2015). Yet other incomplete information generalizations

of rationalizability are given by Ely and Pęski (2006)’s interim independent rationalizability

as well as by Dekel et al.’s (2007) interim correlated rationalizability. While the former so-

lution concept in its iterative procedure requires a player’s belief about the opponents’

choices conditional on the opponents’ types to be independent, the latter solution concept

does not impose any independence restriction. In contrast to D-rationalizability the two in-

complete information notions of interim rationalizability fix the belief hierarchies on util-

ities. This constitutes the essential difference between interim independent rationalizability

and interim correlated rationalizability on the one hand and D-rationalizability on the other

hand.
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Actually, Battigalli and Siniscalchi (1999) as well as Battigalli (2003) indicate that

D-rationalizability notions are equivalent to iterated strict dominance procedures for the

class of static games. A characterization of D-rationalizability in terms of an iterated elimin-

ation procedure based on the notion of D-dominance is given by Cappelletti (2010) and for

the special case of no exogenous belief restrictions in terms of so-called interim iterated

dominance by Battigalli et al. (2011). A similar iterated elimination procedure has also

been formulated and used in the context of mechanism design by Bergemann and Morris

(2003).

Here, we propose a simple solution concept for incomplete information games called

generalized iterated strict dominance as a direct analogue to the complete information solu-

tion concept of iterated strict dominance. Intuitively, a game is expressed from a one-

person perspective in terms of decision problems which are then iteratively reduced by

some strict dominance requirement and the resulting output yields choice utility function

pairs for every player. Our solution concept as well as the incomplete information frame-

work is kept entirely non-doxastic. Neither types nor beliefs appear in any form. In this

sense, our approach is basic and as sparse as possible. Doxastic notions only appear in the

reasoning realm based on epistemic models for games. A clear dichotomy between the clas-

sical sphere—game model as well as solution concept—and the epistemic sphere—epistemic

model and reasoning concept—thus ensues. Moreover, we epistemically characterize gener-

alized iterated strict dominance in terms of common belief in rationality and also give a

characterization in terms of best response sets. Besides, we provide doxastic correctness

conditions on belief hierarchies, within the mind of a single reasoner, that are necessary

and sufficient for modelling the special case of complete information.

Compared to D-rationalizability, generalized iterated strict dominance does not invoke

any best response requirements or beliefs whatsoever. By merely using strict dominance

arguments our solution concept constitutes a very elementary and practical tool for the

class of games with payoff uncertainty. In terms of output generalized iterated strict domin-

ance coincides with D-rationalizability, if no exogenous belief restrictions are admitted.

Also, without such doxastic restrictions, generalized iterated strict dominance becomes es-

sentially equivalent to some particular way of iterating D-dominance. In terms of formula-

tion generalized iterated strict dominance—by using the notion of decision problem and by

being constructed in a type-free incomplete information framework—differs from the

D-rationalizability and D-dominance concepts.

The pioneering work on incomplete information by Harsanyi (1967–68) is based on a

one-person perspective. Accordingly, the strategic situation is analysed entirely from the

viewpoint of a single player. For instance, as Harsanyi (1967–68, p. 170) writes it is some

[. . .] player j (from whose point of view we are analyzing the game) [. . .], and Harsanyi

(1967–68, p. 175) states that [. . .] we are interested only in the decision rules that player j

himself will follow [. . .]. Philosophically, a one-person perspective approach treats game

theory as an interactive extension of decision theory. While game theoretic notions are of

course inherently interactive, one-person perspective modelling formalizes solution con-

cepts or reasoning patterns entirely within the mind of a single player. Such an approach

departs from the standard way game theory proceeds, which simultaneously imposes condi-

tions on the beliefs and actions of all players. The typical multi-player modelling results in

the notion of state which fixes for every player his actual choice as well as his actual beliefs.

In contrast, a one-person perspective modus operandi utterly dispenses with states as only

the actual beliefs of a single player are modelled—doxastic conditions concerning the
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opponents only enter as conditions on the actual higher-order beliefs of one player.

Intuitively, a person involved in an interactive choice situation deliberates about the think-

ing of his opponents and their possible choices. All of these interactive cognitive processes

occur solely in his mind. Philosophically, a one-person perspective approach thus appears

to be a rather natural way of conducting game theory.

Inspired by Harsanyi (1967–68) and the above philosophical considerations we take a

one-person perspective approach here. Notably, we construct the solution concept of gener-

alized iterated strict dominance based on a one-person perspective representation of a game

in terms of decision problems. In the reasoning realm our definition of the pivotal notion of

rational choice under common belief in rationality in the context of payoff uncertainty

merely imposes conditions on the reasoner himself. Also, our characterization of the special

case of payoff certainty only restricts the thinking of a single player.

We keep our formal framework as basic and accessible as possible. In particular, games

with incomplete information are defined in a minimal way without invoking any types and

are thus belief-free. Doxastic notions are left entirely for the reasoning realm of epistemic

models. The intended simplicity and practicability of our framework and solution concept

is supposed to facilitate and encourage the use of generalized iterated strict dominance for

applications in economics or beyond such as management or political theory. For instance,

in pricing games firms may have no information about their competitors’ characteristics

such as their cost structures. Furthermore, in auctions participants can be uncertain about

each other’s valuations, which is indeed typically assumed in public auctions or Internet

auctions. More generally, incomplete information settings of mechanism design or imple-

mentation could be analysed with this non-equilibrium solution concept.

The idea of generalized iterated strict dominance is now illustrated by means of an ex-

ample. Suppose that Alice as well as Bob are both attending a party and have to decide

what colour to wear. Their wardrobes are similar in the sense that only garments of three

colours can be found inside: blue, red, and yellow. While Alice prefers blue to red to yellow,

she cannot remember the precise colour preferences of Bob. Alice merely recalls that he ei-

ther prefers red to yellow to blue or yellow to blue to red. Both players dislike most wearing

a garment of equal colour at the party. This interactive decision situation—or game—is rep-

resented from a one-person perspective by the decision problem CAliceðuAliceÞ for Alice and

the two decision problems CBobðuBobÞ and CBobðu0BobÞ for Bob in Fig. 1, where a decision

problem contains choices of the respective player, choices of his opponent, as well as pay-

offs for choice combinations.

Fig. 1. One-person perspective representation in terms of decision problems
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In its first round generalized iterated strict dominance searches for strict dominance rela-

tions for each of the decision problems. Given Alice’s utility function uAlice, her choice yel-

low is strictly dominated by the randomized choice that assigns probability 0.4 to blue and

0.6 to red, and hence yellow is eliminated in Alice’s decision problem CAliceðuAliceÞ. Given

Bob’s utility function uBob, his choice blue is strictly dominated by the randomized choice

that assigns probability 0.4 to red and 0.6 to yellow, and thus blue is deleted in Bob’s deci-

sion problem CBobðuBobÞ. Given Bob’s utility function u0Bob, his choice red is strictly domi-

nated by the randomized choice that assigns probability 0.6 to blue and 0.4 to yellow, and

hence red is eliminated in Bob’s decision problem CBobðu0BobÞ. Now, for all decision prob-

lems of Alice—in fact there merely exists a single one—yellow has been eliminated, and is

consequently also deleted in both of Bob’s decision problems. For Bob there exists no

choice that has been eliminated for all of his decision problems, and hence all of his choices

are kept in Alice’s decision problem. In the second round of the algorithm, for Bob’s utility

function u0Bob, his choice blue is strictly dominated by yellow against Alice’s reduced choice

set consisting of blue and red only. Thus, blue is deleted in Bob’s decision problem

CBobðu0BobÞ. Since blue has already been identified as a strictly dominated choice for uBob in

the preceding step, it is the case that for all decision problems of Bob blue is a strictly domi-

nated choice and is hence also eliminated in Alice’s decision problem CAliceðuAliceÞ.
However, in the third round red then emerges as a strictly dominated choice for Alice given

her utility function uAlice, since it is strictly dominated by blue against Bob’s reduced choice

set consisting of red and yellow only, and blue remains as her unique choice in her decision

problem CAliceðuAliceÞ. Consequently, in the fourth round, given Bob’s utility function uBob

his choice yellow becomes a strictly dominated choice, as it is strictly dominated by red

against Alice’s reduced choice set consisting of blue only. It is thus the case that in decision

problem CBobðuBobÞ for Bob’s utility function uBob the choice red survives, and in his deci-

sion problem CBobðu0BobÞ for his utility function u0Bob the choice yellow remains. Therefore,

generalized iterated strict dominance yields fðblue;uAliceÞg � fðred;uBobÞ; ðyellow;u0BobÞg as

the solution of the game. In other words, Alice will choose a blue dress for the party, while

Bob will appear in a red suit, if he prefers red to yellow to blue, and in a yellow suit, if he

prefers yellow to blue to red.

We proceed as follows. First of all, in Section 2, the formal framework is laid out and

some basic notation fixed. In particular, incomplete information as well as common belief

in rationality are defined and illustrated by means of an example. Then, in Section 3, the so-

lution concept of generalized iterated strict dominance is constructed as an algorithm on de-

cision problems using strict dominance arguments. Roughly speaking, for a given player a

decision problem is formed for each of his payoff structures in every round, with all oppo-

nents’ choices being deleted that are strictly dominated in every decision problem of the re-

spective opponent in the previous round, and subsequently the player’s choices that are

then strictly dominated are eliminated. An example illustrates the application of generalized

iterated strict dominance to specific games. Moreover, in Section 4, two characterizations

of our solution concept are provided. In terms of reasoning the output of generalized iter-

ated strict dominance is shown to be equivalent to rational choice under common belief in

rationality (Theorem 1). Also, a characterization of generalized iterated strict dominance—

without recourse to any iterative procedure—is given by means of best response sets

(Theorem 2). Finally, in Section 5, the special case of complete information is considered. A

characterization of complete information is given in terms of doxastic correctness condi-

tions imposed on a single player’s reasoning (Theorem 3). Thereby a purely doxastic

C.W. BACH AND A. PEREA 5

D
ow

nloaded from
 https://academ

ic.oup.com
/oep/advance-article-abstract/doi/10.1093/oep/gpz075/5701536 by guest on 14 January 2020



foundation is provided for payoff uncertainty from a one-person perspective. Besides, our

solution concept is shown to coincide with iterated strict dominance for static games with

complete information in terms of output.

2. Preliminaries

A static game with incomplete information can be formally represented by a tuple:

C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ

where I denotes a finite set of players, Ci denotes player i’s finite choice set, and Ui denotes

the finite set of player i’s possible utility functions. Every utility function ui 2 Ui is of the

form: ui : �j2ICj ! R.

In order to express beliefs and interactive beliefs about choices and utility functions an

epistemic structure needs to be added to the game. Formally, let C ¼ ðI; ðCiÞi2I;UiÞi2IÞ be a

static game with incomplete information. An epistemic model of C is a tuple:

MC ¼ ððTiÞi2I; ðbiÞi2IÞ

where Ti is a finite set of types, and bi : Ti ! DðC�i � T�i �U�iÞ assigns to every type ti 2
Ti a probability measure bi½ti� on the set of opponents’ choice type utility function combina-

tions. Note that for every type an infinite belief hierarchy about the respective opponents’

choices and utility functions can be derived. Also, marginal beliefs can be inferred from a

type. For instance, every type ti 2 Ti induces a belief on the opponents’ choice combinations

by marginalizing the probability measure bi½ti� on the space C�i. For simplicity sake, no

additional notation is introduced for marginal beliefs. In the sequel, it should always be

clear from the context which belief bi½ti� refers to.

In our epistemic approach payoff uncertainty is treated symmetrically to strategic uncer-

tainty. As the latter concerns the respective opponents’ choices, the former is also defined in

terms of the probability measures in the epistemic models with respect to the respective

opponents’ utility functions only. A player’s own choices and utility functions enter his rea-

soning exclusively via higher-order beliefs. In particular, players thus entertain no uncer-

tainty about their own utility functions in our epistemic approach. This treatment is in line

with Harsanyi (1967–68), who also assumes that each player knows his own utility func-

tion, and more generally, that the uncertainty concerns the opponents of the player from

whose point of view the game is analysed.1 However, the special case of players being un-

certain about their own payoffs could be accommodated by extending the space of uncer-

tainty for every player i 2 I from C�i � T�i �U�i to C�i � T�i � ð�j2IUjÞ. Alternatively, a

reasoner’s actual utility function could be defined as the expectation over the set Ui. This

modelling choice does not affect the subsequent results. In our treatment, a type only speci-

fies the epistemic mental state of a player, not his utility function. In this sense we follow

Harsanyi’s (1967–68) approach, which separates the utility component from the epistemic

component.2

Some further notions and notation are now introduced. For that purpose consider a

game C, an epistemic modelMC of it, and fix two players i; j 2 I such that i 6¼ j. A type ti 2
Ti of i is said to deem possible some choice type utility function combination ðc�i; t�i; u�iÞ

1 Cf. Harsanyi (1967–68), p. 163 and p. 170.

2 Cf. Harsanyi (1967–68), pp. 169–171.
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of his opponents, if bi½ti� assigns positive probability to ðc�i; t�i; u�iÞ. Analogously, ti deems

possible some type tj of his opponent, if bi½ti� assigns positive probability to tj. For each

choice-type-utility function combination ðci; ti; uiÞ, the expected utility is given by

viðci; ti; uiÞ ¼
P

c�i2C�i
bi½ti�ðc�iÞ � uiðci; c�iÞ. A choice ci 2 Ci is said to be optimal for the

type utility function pair (ti, ui), if viðci; ti;uiÞ � viðc0i; ti; uiÞ for all c0i 2 Ci. Moreover, a type

ti 2 Ti is said to believe in the opponents’ rationality, if ti only deems possible choice type

utility function combinations ðc�i; t�i; u�iÞ such that cj is optimal for (tj, uj) for every op-

ponent j 2 I n fig. Interactive belief in rationality with payoff uncertainty can then be

defined by iterating belief in rationality. A type ti 2 Ti expresses 1-fold belief in rationality,

if ti believes in the opponents’ rationality, and k-fold belief in rationality for some k>1, if

ti only assigns positive probability to types tj 2 Tj for all j 2 I n fig such that tj expresses

ðk� 1Þ-fold belief in rationality. Common belief in rationality then ensues as interactive be-

lief in rationality throughout the reasoner’s belief hierarchy. Formally, a type ti 2 Ti

expresses common belief in rationality, if ti expresses k-fold belief in rationality for all

k � 1.

In a game a player reasons about his opponents as well as the game and then makes a

choice. While reasoning patterns can be modelled as conditions on belief hierarchies, a deci-

sion rule connects the reasoning with a choice. The basic decision rule of rational choice

under common belief in rationality can be defined in the context of payoff uncertainty as

follows.

Definition 1 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information, i 2
I some player, and ui 2 Ui some utility function of player i. A choice ci 2 Ci of player i is ra-

tional for utility function ui under common belief in rationality, if there exists an epistemic

model MC of C with a type ti 2 Ti of player i such that ci is optimal for (ti, ui) and ti
expresses common belief in rationality.

Note that the decision rule of rational choice for some utility function under common

belief in rationality is formulated here from a one-person perspective in Definition 1.

Indeed, conditions are exclusively imposed on the reasoner himself: his mind, i.e. his type

(or equivalently his implicit belief hierarchy), his preferences, and his choice. No conditions

on other players’ actual thinking or choices are invoked.

The epistemic notion of common belief in rationality for incomplete information games

has been formalized and employed in different forms for epistemic foundations of the D-

rationalizability variants by Battigalli and Siniscalchi (1999, 2002, 2007), Battigalli et al.

(2011), as well as Battigalli and Prestipino (2013). Besides, Battigalli et al. (2011) also give

an epistemic foundation of interim correlated rationalizability in terms of common belief in

rationality.

An illustration of the concept of common belief in rationality is provided by the follow-

ing example.

Example 1 Consider the static game with incomplete information between Alice and

Bob depicted in Fig. 2. Let the utility functions of Alice represented in the first and second

matrices of Fig. 2 be denoted by uA and the ones represented by the third and fourth

matrices by u0A. Similarly, let the utility functions of Bob represented in the first and third

matrices in Fig. 2 be denoted by uB and the ones represented by the second and fourth

matrices by u0B.
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Suppose the epistemic model MC of C given by the sets of types

TAlice ¼ ftA; t
0
Ag; TBob ¼ ftB; t

0
Bg, and the following induced belief functions

– bAlice½tA� ¼ ðe; tB;uBÞ,
– bAlice½t0A� ¼ ðd; t0B;u0BÞ,
– bBob½tB� ¼ ða; tA; uAÞ,
– bBob½t0B� ¼ 1

2 a; t0A; uAÞ þ 1
2 b; t0A; u

0
AÞ

��
.

Accordingly, type tA assigns probability 1 to the choice type utility function combination

ðe; tB; uBÞ. Analogously, the induced beliefs of types t0A and tB are obtained. Bob’s type t0B
assigns probability 1

2 to the choice type utility function combination ða; t0A;uAÞ and probabil-

ity 1
2 to the choice type utility function combination ðb; t0A; u0AÞ. Note that Alice’s type tA

does not believe in Bob’s rationality, as e is not optimal for the type utility function pair (tB,

uB) she believes him to be characterized by. In particular, it follows that tA does not express

common belief in rationality. However, Alice’s type t0A expresses common belief in rational-

ity. Indeed, t0A believes in Bob’s rationality, as d is optimal for Bob’s type utility function

pair ðt0B;u0BÞ. Also, t0B believes in Alice’s rationality, since a is optimal for Alice’s type utility

function pair ðt0A; uAÞ and b is optimal for Alice’s type utility function pair ðt0A; u0AÞ. As t0A
only deems possible Bob’s type t0B, and t0B only deems possible Alice’s type t0A, it follows in-

ductively that t0A expresses common belief in rationality. Hence, a is rational for uA under

common belief in rationality, b is rational for u0A under common belief in rationality, and d

is rational for u0B under common belief in rationality. |

3. Generalized iterated strict dominance

Games can be expressed from a one-person perspective based on the notion of decision prob-

lems. Formally, given a game C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ, a player i 2 I, and a utility function

ui 2 Ui, a decision problem CiðuiÞ ¼ ðDi;D�i;uiÞ for player i consists of choices Di � Ci

for i, choice combinations D�i � C�i for i’s opponents, as well as the utility function ui

restricted to Di �D�i. The special case of CiðuiÞ ¼ ðCi;C�i;uiÞ is called a full decision

problem of player i. A game can then be expressed as a set of full decision problems for

every player, and the tuple ð[ui2Ui
fðCi;C�i; uiÞgÞi2I constitutes the one-person perspective

form of C.

In decision problems, choice rules such as strict dominance can be formally defined.

Indeed, given a utility function ui 2 Ui for player i and his corresponding decision problem

CiðuiÞ ¼ ðDi;D�i; uiÞ, a choice ci 2 Di is called strictly dominated, if there exists a probabil-

ity measure ri 2 DðDiÞ such that uiðci; c�iÞ <
P

c0
i
2Di

riðc0iÞ � uiðc0i; c�iÞ for all c�i 2 D�i.

With the notions of decision problem and strict dominance on decision problems, the

solution concept of generalized iterated strict dominance is defined as follows.

Definition 2 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information and

ð[ui2Ui
fðCi;C�i; uiÞgÞi2I the one-person perspective form of C.

Fig. 2. A two player static game with incomplete information

8 GENERALIZED ITERATED STRICT DOMINANCE

D
ow

nloaded from
 https://academ

ic.oup.com
/oep/advance-article-abstract/doi/10.1093/oep/gpz075/5701536 by guest on 14 January 2020



Round 1 For every player i 2 I and for every utility function ui 2 Ui consider the initial de-

cision problem C0
i ðuiÞ :¼ ðC0

i ðuiÞ;C0
�iðuiÞ; uiÞ, where C0

i ðuiÞ :¼ Ci and C0
�iðuiÞ :¼ C�i.

Step 1.1 Set C1
�iðuiÞ :¼ C0

�iðuiÞ.
Step 1.2 Form C1

i ðuiÞ :¼ ðC1
i ðuiÞ;C1

�iðuiÞ;uiÞ, where C1
i ðuiÞ � C0

i ðuiÞ only contains choices ci 2
Ci for player i that are not strictly dominated in the decision problem ðC0

i ðuiÞ;C1
�iðuiÞ; uiÞ.

Round k>1 For every player i 2 I and for every utility function ui 2 Ui consider the

reduced decision problem Ck�1
i ðuiÞ :¼ ðCk�1

i ðuiÞ;Ck�1
�i ðuiÞ;uiÞ.

Step k:1 Form Ck
�iðuiÞ � Ck�1

�i ðuiÞ by eliminating from Ck�1
�i ðuiÞ every opponents’ choice com-

bination c�i 2 Ck�1
�i ðuiÞ that contains for some opponent j 2 I n fig a choice cj 2 Cj for which

there exists no utility function uj 2 Uj such that cj 2 Ck�1
j ðujÞ.

Step k:2 Form Ck
i ðuiÞ :¼ ðCk

i ðuiÞ;Ck
�iðuiÞ; uiÞ, where Ck

i ðuiÞ � Ck�1
i ðuiÞ only contains choices

ci 2 Ck�1
i ðuiÞ for player i that are not strictly dominated in the decision problem

ðCk�1
i ðuiÞ;Ck

�iðuiÞ; uiÞ.

The set GISD :¼ �i2IGISDi � �i2IðCi �UiÞ constitutes the output of generalized iterated

strict dominance, where for every player i 2 I the set GISDi � Ci �Ui only contains choice

utility function pairs ðci; uiÞ 2 Ci �Ui such that ci 2 Ck
i ðuiÞ for all k � 0.

The algorithm is initiated from the one-person perspective form of the game and iteratively

eliminates strictly dominated choices from decision problems for all players. In every round

a decision problem for a player is formed by first eliminating all opponents’ choices that are

strictly dominated in every decision problem for that opponent in the previous round, and

subsequently eliminating the player’s choices that are strictly dominated. In fact, for every

player the algorithm yields a set of choice utility function pairs as output. Due to the pres-

ence of incomplete information the algorithm thus identifies choices relative to payoffs.

The following remark draws attention to some useful properties of the generalized iter-

ated strict dominance algorithm.

Remark 1 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information. The

solution concept of generalized iterated strict dominance yields a non-empty output, i.e.

GISD 6¼1, is finite, i.e. there exists n 2 N such that Ck
i ðuiÞ ¼ Cn

i ðuiÞ for all k � n, for all

utility functions ui 2 Ui, and for all players i 2 I, as well as qualifies as order-independent,

i.e. the final output of generalized iterated strict dominance does not depend on the specific

order of elimination.

The non-emptiness of the algorithm follows from the fact that at no round it is possible to

delete all choices for a given player by definition of strict dominance. As there are only fi-

nitely many choices for every player, the algorithm stops after finitely many rounds. As a

choice remains strictly dominated if a decision problem is reduced, the order of elimination

does not affect the eventual output of the algorithm.

Finally, generalized iterated strict dominance is illustrated by applying the algorithm to

the two player game introduced in Example 1.

Example 2 Consider again the two player static game with incomplete information from

Example 1. In order to apply generalized iterated strict dominance the game is first

expressed in its one-person perspective form. Accordingly, a decision problem for every

player and for each of the respective utility functions is formed in Fig. 3, where the choices
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of the respective decision-making player are represented as rows and the opponent’s choices

as columns.

In both C0
AðuAÞ and C0

Aðu0AÞ the choice c is strictly dominated by b. For Bob the choice f is

strictly dominated by e in his decision problems C0
BðuBÞ and C0

Bðu0BÞ. There are no further

choices that can be ruled out for Alice or Bob with strict dominance given either of their

utility functions. The 1-fold reduced decision problems C1
A and C1

B result as in Fig. 4.

In both C1
AðuAÞ and C1

Aðu0AÞ those choices of Bob are eliminated that are strictly domi-

nated in all initial decision problems C0
B for Bob, i.e. choice f. Then, the choice b can be

deleted for Alice given uA as it is strictly dominated by a in ðfa;bg; fd; eg; uAÞ, but not given

u0A as it is not strictly dominated in ðfa;bg; fd; eg; u0AÞ. Moreover, in both C1
BðuBÞ and

C1
Bðu0BÞ those choices of Alice are eliminated that are strictly dominated in all initial deci-

sion problems C0
A for Alice, i.e. choice c. Then, the choice e can be deleted for Bob given uB

as it is strictly dominated by d in ðfd; eg; fa; bg;uBÞ, but not given u0B as it is not strictly

dominated in ðfd; eg; fa; bg; u0BÞ. The 2-fold reduced decision problems C2
A and C2

B result as

in Fig. 5.

Since there are no strict dominance relations in any of the 2-fold reduced decision prob-

lems C2
A and C2

B, the algorithm stops and returns the set GISD ¼ GISDAlice �GISDBob ¼
fða; uAÞ; ða; u0AÞ; ðb; u0AÞg � fðd; uBÞ; ðd; u0BÞ; ðe; u0BÞg as a solution to this two player game

with incomplete information. |

4. Characterization

A fundamental result in game theory—so-called Pearce’s Lemma—due to Pearce (1984,

Lemma 3) connects strict dominance and rationality. Accordingly, a choice in a two-player

static game with complete information is strictly dominated, if and only if, it is irrational,

i.e. not optimal for any belief about the opponent’s choices. Formally, a choice ci 2 Ci of

some player i 2 I is called optimal for a belief p 2 DðC�iÞ about the opponents’ choices, ifP
c�i2C�i

pðc�iÞ � uiðci; c�iÞ �
P

c�i2C�i
pðc�iÞ � uiðc0i; c�iÞ for all c0i 2 Ci. Similarly, in a game

Fig. 4. 1-fold reduced decision problems for Alice and Bob

Fig. 5. 2-fold reduced decision problems for Alice and Bob

Fig. 3. Initial decision problems for Alice and Bob
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with incomplete information, a choice ci 2 Ci is said to be optimal for a belief utility func-

tion pair (pi, ui), where pi 2 DðC�iÞ and ui 2 Ui, if
P

c�i2C�i
piðc�iÞ � uiðci; c�iÞ �P

c�i2C�i
piðc�iÞ � uiðc0i; c�iÞ for all c0i 2 Ci.

A slight generalization of Pearce’s Lemma to finite incomplete information games in

one-person perspective form is given by the following result.

Lemma 1 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information,

ð[ui2Ui
fðCi;C�i; uiÞgÞi2I the one-person perspective form of C, i 2 I some player, ui 2 Ui

some utility function of player i, and CiðuiÞ ¼ ðDi;D�i;uiÞ some decision problem of player

i. A choice ci 2 Di is strictly dominated in CiðuiÞ, if and only if, there exists no probability

measure p 2 DðD�iÞ such that ci is optimal for ðp; uiÞ in CiðuiÞ.

Proof. Consider the game C0 ¼ ðfi; jg; fD0i;D0jg; fu0i;u0jgÞ, where D0i ¼ Di; D0j ¼ fd
d�i

j : d�i 2

D�ig; u0iðdi; d
d�i

j Þ ¼ uiðdi; d�iÞ for all di 2 D0i and for all dd�i

j 2 D0j, as well as u0jðdi; d
d�i

j Þ ¼ 0

for all di 2 D0i and for all dd�i

j 2 D0j. Note that a choice ci 2 Di is strictly dominated in the

decision problem CiðuiÞ, if and only if, it is strictly dominated in the two person game C0.

By Pearce’s Lemma applied to C0, it then follows that ci is strictly dominated in CiðuiÞ,
if and only if, there exists no probability measure pi 2 DðD�iÞ such that ci is optimal for (pi,

ui) in CiðuiÞ. �

Equipped with the generalized version of Pearce’s Lemma the solution concept of general-

ized iterated strict dominance can be epistemically characterized by common belief in ra-

tionality for static games with incomplete information.

Theorem 1 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information, i 2
I some player, ci 2 Ci some choice for player i, and ui 2 Ui some utility function of player i.

The choice ci is rational for ui under common belief in rationality, if and only if,

ðci; uiÞ 2 GISDi.

Proof. For the only if direction of the theorem define a set ðCi �UiÞCBR :¼ fðci; uiÞ 2
Ci �Ui : ci is rational for ui under common belief in rationalityg for every player i 2 I.

It is shown, by induction on k � 0, that for every player i 2 I and for every choice utility

function pair ðci; uiÞ 2 ðCi �UiÞCBR, it is the case that ci 2 Ck
i ðuiÞ. Note that ci 2 C0

i ðuiÞ dir-

ectly holds for all ðci; uiÞ 2 ðCi �UiÞCBR and for all i 2 I, as C0
i ðuiÞ ¼ Ci for all ui 2 Ui and

for all i 2 I. Now consider some k � 0 and suppose that ci 2 Ck
i ðuiÞ holds for every player

i 2 I and for every choice utility function pair ðci; uiÞ 2 ðCi �UiÞCBR. Let i 2 I be some

player and take some ðci; uiÞ 2 ðCi �UiÞCBR. Then, there exists an epistemic modelMC of

C with a type ti 2 Ti that expresses common belief in rationality such that ci is optimal for

(ti, ui). Take some ðcj; tj; ujÞ 2 Cj � Tj �Uj such that bi½ti�ðcj; tj;ujÞ > 0. As ti expresses com-

mon belief in rationality, tj expresses common belief in rationality too, and cj is optimal for

ðtj;ujÞ. Thus, ðcj; ujÞ 2 ðCj �UjÞCBR, and, by the inductive assumption, cj 2 Ck
j ðujÞ. Hence,

for every choice cj 2 suppðbi½ti�Þ it is the case that cj 2 Ck
j ðujÞ for some utility function

uj 2 Uj, and thus ti only assigns positive probability to choices cj contained in a decision

problem Ck
j ðujÞ for some uj 2 Uj for every opponent j 2 I n fig. Consequently, ti only

assigns positive probability to choice combinations in Ckþ1
�i ðuiÞ. Since ci is optimal for
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(ti, ui), it follows from Lemma 1 that ci 2 Ckþ1
i ðuiÞ. Therefore, by induction, ðci;uiÞ 2

GISDi obtains.

For the if direction of the theorem, suppose that the algorithm stops after k � 0 rounds.

Then, for every ðci; uiÞ 2 GISDi it is the case that ci 2 Ck
i ðuiÞ. By Lemma 1, ci is optimal for

some (pi, ui), where pi 2 DðCk
�iðuiÞÞ. Observe that every c�i 2 Ck

�iðuiÞ only contains, for

every player j 2 I n fig, choices cj 2 Cj such that ðcj;u
cj

j Þ 2 GISDj for some u
cj

j 2 Uj. Define

a probability measure p
ðci ;uiÞ
i 2 DðGISD�iÞ by:

p
ðci ;uiÞ
i ðc�i;u�iÞ ¼ piðc�iÞ; if c�i 2 Ck

�iðuiÞ and u�i ¼ uc�i

�i

0; otherwise

�

for all ðc�i; u�iÞ 2 C�i �U�i. Construct an epistemic model MC ¼ fðTiÞi2I; ðbiÞi2Ig of C,

where Ti :¼ ftðci ;uiÞ
i : ðci; uiÞ 2 GISDig for all i 2 I and:

bi½tðci ;uiÞ
i �ðc�i; t�i;u�iÞ ¼

p
ðci ;uiÞ
i ðc�i; u�iÞ; if ðc�i;u�iÞ 2 GISD�i and tj ¼ t

ðcj ;ujÞ
j for all j 2 I n fig

0; otherwise

(

for all ðc�i; t�i; u�iÞ 2 C�i � T�i �U�i, for all t
ðci ;uiÞ
i 2 Ti and for all i 2 I. Observe that, by

construction, for every player i 2 I and for every ðci;uiÞ 2 GISDi, the choice ci is optimal

for ðtðci ;uiÞ
i ; uiÞ. Hence, every type t

ðci ;uiÞ
i believes in the opponents’ rationality. It then follows

inductively that every such type t
ðci ;uiÞ
i also expresses common belief in rationality.

Therefore, for every choice utility function pair ðci; uiÞ 2 GISDi, there exists a type t
ðci ;uiÞ
i

within MC such that t
ðci ;uiÞ
i expresses common belief in rationality and ci is optimal for

ðtðci ;uiÞ
i ; uiÞ. Hence, ci is rational for ui under common belief in rationality. �

In terms of reasoning generalized iterated strict dominance thus corresponds to common

belief in rationality. In fact, similar epistemic characterizations have been provided for the

incomplete information solution concept of D-rationalizability in the literature. Notably,

Battigalli and Siniscalchi (1999, Proposition 4), Battigalli (2003, Proposition 3.8) as well as

Battigalli et al. (2011, p. 15) establish an equivalence between common belief in rationality

and D-rationalizability.3 It follows from these results in the literature and Theorem 1 that

D-rationalizability and generalized iterated strict dominance are output equivalent, if no ex-

ogenous restrictions on the players’ beliefs are imposed. The solution concept of interim

correlated rationalizability due to Dekel et al. (2007) can also be epistemically character-

ized—for fixed marginal belief hierarchies on utilities—in terms of common belief in ration-

ality (Battigalli et al., 2011, Theorem 1). Due to the rigidity of marginal belief hierarchies

on utilities, interim correlated rationalizability cannot be directly compared to D-rationaliz-

ability or generalized iterated strict dominance. However, if interim correlated rationaliz-

ability is applied to a given game for all possible marginal belief hierarchies on utilities,

then the union of the corresponding solutions are equal to the output of D-rationalizability

without any exogenous doxastic restrictions, and thus also to the output of generalized iter-

ated strict dominance.

3 The special case of D-rationalizability which does not impose any exogenous restrictions on the

players’ beliefs is also called belief-free rationalizability and is explicitly characterized in terms of

common belief in rationality by Battigalli et al. (2011, p. 14) too.
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Besides the epistemic characterization in terms of iterated mutual belief in rationality,

the solution concept of iterated strict dominance can also be characterized without recourse

to any iterative procedure. An illuminating way of doing so is based on Pearce’s (1984,

Definition 2) complete information notion of best response property. Intuitively, a tuple of

sets of choices of all players exhibits the best response property, whenever for every player

the respective set only contains choices that are optimal for some belief about the oppo-

nents’ choices only assigning positive probability to choices from the opponents’ respective

sets. In the context of incomplete information the idea of best response sets can then be for-

mally defined as follows.

Definition 3 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information,

and Di � Ci �Ui a set of choice utility function pairs for every player i 2 I. A tuple ðDiÞi2I

is called best response set tuple, if there exists, for every player i 2 I and for every choice

utility function pair ðci; uiÞ 2 Di, a probability measure li 2 DðD�iÞ such that ci is optimal

for ðli;uiÞ.

Similarly to Pearce’s (1984, Proposition 2) characterization of his iterated procedure of

rationalizability, our solution concept of generalized iterated strict dominance can also be

shown to be equivalent to a best response set formulation.

Theorem 2 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information, i 2
I some player, ci 2 Ci some choice of player i, and ui 2 Ui some utility function of player i.

There exists a best response set tuple ðDiÞi2I such that ðci; uiÞ 2 Di, if and only if,

ðci; uiÞ 2 GISDi.

Proof. For the only if direction of the theorem it is shown, by induction on k � 0, that

ci 2 Ck
i ðuiÞ for all ðci;uiÞ 2 Di, for all k � 0 and for all i 2 I. Let i 2 I be some player and

ðci; uiÞ 2 Di. It then holds that ci 2 C0
i ðuiÞ ¼ Ci. Now, consider some ðci;uiÞ 2 Di and as-

sume that k � 0 is such that cj 2 Ck
j ðujÞ for every j 2 I and for every ðcj; ujÞ 2 Dj. Fix some

ðci; uiÞ 2 Di, and note that ci is optimal for ðli; uiÞ, where li 2 DðD�iÞ is some probability

measure. By the inductive assumption, cj 2 Ck
j ðujÞ for every ðcj; ujÞ 2 Dj and for every

j 2 I n fig. Hence, li only assigns positive probability to opponents’ choices cj 2 Cj which

are contained in Ck
j ðujÞ for some uj 2 Uj. Therefore, li only assigns positive probability to

opponents’ choice combinations c�i 2 Ckþ1
�i ðuiÞ. It follows, by Lemma 1, that ci is not strict-

ly dominated in the decision problem ðCk
i ðuiÞ;Ckþ1

�i ðuiÞ; uiÞ. Thus, ci 2 Ckþ1
i ðuiÞ and, by in-

duction on k � 0, it holds that ðci;uiÞ 2 GISDi.

For the if direction of the theorem, it is shown that ðGISDiÞi2I is a best response set

tuple. For every uj 2 Uj, let C�j ðujÞ :¼ fcj 2 Cj : ðcj; ujÞ 2 GISDjg and C�j :¼ fcj 2 Cj :

ðcj; ujÞ 2 GISDj for some uj 2 Ujg. Fix ðci;uiÞ 2 GISDi. Consequently, ci is not strictly

dominated in the decision problem ðC�i ðuiÞ;C��i;uiÞ. By Lemma 1, ci is optimal for (pi, ui)

for some pi 2 DðC��iÞ. Hence, ci is optimal for ðli; uiÞ for some li 2 DðGISD�iÞ. Therefore

ðGISDiÞi2I is a best response set tuple. �

Besides, it is actually the case that the algorithm of generalized iterated strict dominance al-

ways yields the largest best response set tuple as output.

Corollary 1 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information.

The set GISD � �i2IðCi �UiÞ is the largest best response set tuple.
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Proof. Let i 2 I be some player. By the proof of the if-direction of Theorem 2, ðGISDjÞj2I

is a best response set tuple. Consider some element ðci; uiÞ 2 Di of a best response set tuple

ðDjÞj2I for player i. By Theorems 1 and 2, it follows that ðci; uiÞ 2 GISDi. Hence, GISDi is

the largest best response set tuple for player i. �

Accordingly, every best response set tuple is included in GISD and thus the set GISD can

be interpreted as the largest fixed point of the generalized iterated strict dominance

algorithm.

Since the solution concept of generalized iterated strict dominance corresponds to com-

mon belief in terms of reasoning by Theorem 1, it directly follows that rational choice for

some utility function under common belief in rationality can also be given a non-iterative

characterization in terms of the best response property.

Remark 2 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information, i 2 I

some player, ci 2 Ci some choice of player i, and ui 2 Ui some utility function of player i.

There exists a best response set tuple ðDiÞi2I such that ðci; uiÞ 2 Di, if and only if, ci is ra-

tional for ui under common belief in rationality.

5. Complete information

The assumption of complete information eliminates any uncertainty about the payoff struc-

ture of the game. Formally, complete information constitutes the special case of incomplete

information with the sets of utility functions all being singletons for every player. In line

with a one-person perspective approach the question can be posed what conditions on the

thinking of the reasoner in incomplete information games dissolve payoff uncertainty in his

mind. Before tackling this issue, the notion of complete information needs to be formally

defined within the framework of epistemic models.

Intuitively, complete information signifies that there exists no uncertainty about any

opponent’s utility function at any level of the reasoner’s interactive thinking. Given some

player i 2 I, a type utility function pair ðti; uiÞ 2 Ti �Ui can then be said to express com-

plete information, if there exists for every opponent j 2 I n fig a utility function uj 2 Uj

such that ti’s marginal belief hierarchy tU
i on utilities is generated by ðui; ðujÞj2InfigÞ. That is,

bi½ti�ððujÞj2InfigÞ ¼ 1, for every opponent j 2 I n fig player i only deems possible types tj 2 Tj

such that bj½tj�ððukÞk2InfjgÞ ¼ 1, and for every opponent j 2 I n fig player i only deems pos-

sible types tj 2 Tj that for every opponent k 2 I n fjg only deem possible types tk 2 Tk such

that bk½tk�ððulÞl2InfkgÞ ¼ 1, etc. Note that complete information is not defined simply for a

type but for a type utility function tuple with the reasoner’s actual utility function.

Also, the notion of correct beliefs needs to be invoked in the context of the players’ util-

ity functions. A type utility function tuple (ti, ui) is said to believe some opponent j to be

correct about his utility function and marginal belief hierarchy tU
i on utilities, if ti only

deems possible types tj such that bj½tj�ðuiÞ ¼ 1 and bj½tj� assigns probability 1 to tU
i .

Compared to complete information correct beliefs are defined for a type utility function

tuple instead of merely for a type, since correct beliefs in the context of payoff uncertainty

also concern the reasoner’s utility function. With complete information and correct beliefs

formally defined, the following theorem characterizes complete information by means of

three doxastic correctness conditions.
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Theorem 3 Let C ¼ ðI; ðCiÞi2I; ðUiÞi2IÞ be a static game with incomplete information,MC

some epistemic model of it, i 2 I some player, ti 2 Ti some type of player i, and ui 2 Ui

some utility function of player i. The type utility function tuple (ti, ui) expresses complete

information, if and only if,

– for every opponent j 2 I n fig, type ti only deems possible types tj 2 Tj that are correct

about i’s utility function ui and marginal belief hierarchy on utilities (Condition 1),

– for every opponent j 2 I n fig, type ti only deems possible type utility function pairs

ðtj;ujÞ 2 Tj �Uj that only deem possible types t0i 2 Ti that are correct about j’s utilities

and j’s marginal belief hierarchy on utilities (Condition 2),

– for all opponents j 2 I n fig and k 2 nfi; jg, type ti only deems possible types tj 2 Tj

that have the same marginal belief on k’s utilities and on k’s marginal belief hierar-

chies on utilities as ti has (Condition 3).

Proof. Since only ti’s marginal belief hierarchy on utilities is affected by incomplete infor-

mation and the three doxastic conditions, attention can be restricted to the induced margin-

al type tU
i .

For the if direction of the theorem suppose that i’s utility function is ui 2 Ui and that ti

satisfies the three conditions. It is first shown that ti’s marginal type tU
i only deems possible a

unique marginal type tU
j and a unique utility function uj 2 Uj for every opponent j 2 I n fig.

Towards a contradiction assume that tU
i assigns positive probability to at least two marginal

type utility function pairs ðtU
j ;ujÞ and ðtU0

j ;u
0
jÞ for some opponent j 2 I n fig. Since ti believes

that j is correct about his utility function and marginal belief hierarchy on utilities, ti believes

that j only deems possible ðtU
i ;uiÞ. Consequently, the marginal type utility function pairs

ðtU
j ; ujÞ and ðtU0

j ;u
0
jÞ both only deem possible ðtU

i ; uiÞ. Consider marginal type tU
j and note

that ðtU
j ; ujÞ believes that i deems it possible that j is characterized by the marginal type utility

function tuple ðtU0

j ;u
0
jÞ. Hence, ðtU

j ; ujÞ does not believe that i is correct about his utility func-

tion and marginal belief hierarchy on utilities. It follows that ti deems it possible that j does

not believe that i is correct about his utility function and marginal belief hierarchy on utilities,

a contradiction. For every opponent j 2 I n fig, type ti’s marginal type tU
i thus assigns prob-

ability 1 to a single marginal type utility function tuple ðtU
j ; ujÞ and the corresponding type tj

assigns probability 1 to ðtU
i ;uiÞ. By the third condition in Theorem 3 it is ensured that for

each opponent the respective other opponents share the same marginal belief on utilities, thus

it follows, by induction, that ti’s marginal belief hierarchy on utilities is generated by ðujÞj2I,

and therefore (ti, ui) expresses complete information.

For the only if direction of the theorem, suppose that (ti, ui) expresses complete informa-

tion and let ðujÞj2I 2 �j2IUj be the tuple of utility functions generating ti’s marginal belief

hierarchy on utilities. Then, it directly follows by construction that the three doxastic cor-

rectness conditions hold. �

From a conceptual point of view complete information can thus be modelled entirely within

the mind of the reasoner satisfying the three conditions of Theorem 3 instead of restricting

the game specification. Accordingly, the specific case of payoff certainty can also be

obtained subjectively. In contrast, the objective realization of complete information restricts

all players’ sets of utility functions to singletons. Consequently, Theorem 3 can be inter-

preted as providing reasoning foundations for the complete information assumption in

games from a one-person perspective.
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From a technical point of view the question emerges whether the three doxastic correct-

ness conditions in Theorem 3 are independent from each other. Since these conditions only

affect the marginal belief hierarchies on types and utility functions, the independence issue

can be investigated without reference to choices of any underlying game.

First of all, consider some three player game with I ¼ fAlice;Bob;Claireg;
UAlice ¼ fuAliceg; UBob ¼ fuBobg, and UClaire ¼ fuClaire; u

0
Claireg, as well as some epistemic

model of the game with TAlice ¼ ftAliceg; TBob ¼ ftBobg, and TClaire ¼ ftClaireg. The induced

probability measures are defined as bAlice½tAlice� ¼ ððtBob;uBobÞ; ðtClaire;uClaireÞÞ;
bBob½tBob� ¼ ððtAlice; uAliceÞ; ðtClaire;u

0
ClaireÞÞ, and bClaire½tClaire� ¼ ððtAlice;uAliceÞ; ðtBob;uBobÞÞ.

Observe that the pair ðtAlice;uAliceÞ satisfies Condition 1 and Condition 2 but violates

Condition 3.

Secondly, consider some two player game with I ¼ fAlice;Bobg; UAlice ¼ fuAliceg, and

UBob ¼ fuBob; u
0
Bobg, as well as some epistemic model of the game with TAlice ¼ ftAliceg, and

TBob ¼ ftBobg. The induced probability measures are defined as bAlice½tAlice� ¼
1
2 ðtBob; uBobÞ þ 1

2 tBob; u
0
BobÞ

�
, and bBob½tBob� ¼ ðtAlice; uAliceÞ. Observes that the pair

ðtAlice;uAliceÞ satisfies Condition 1 and Condition 3 but violates Condition 2.

Thirdly, consider some two player game with I ¼ fAlice;Bobg; UAlice ¼ fuAlice;u
0
Aliceg,

and UBob ¼ fuBobg, as well as some epistemic model of the game with TAlice ¼ ftAliceg, and

TBob ¼ ftBobg. The induced probability measures are defined as bAlice½tAlice� ¼ ðtBob;uBobÞ,
and bBob½tBob� ¼ 1

2 ðtAlice;uAliceÞ þ 1
2 tAlice; u

0
AliceÞ

�
. Observe that the pair ðtAlice;uAliceÞ satisfies

Condition 2 and Condition 3 but violates Condition 1.

It can thus be concluded that the three doxastic correctness conditions are independent

from each other.

Generalized iterated strict dominance joins the class of solution concepts for static

games with incomplete information. In fact, for complete information games the algorithm

is equivalent to iterated strict dominance. To recall the definition of iterated strict domin-

ance, let C ¼ ðI; ðCiÞi2I; ðfuigÞi2IÞ be a static game with complete information, and consider

the sets C0
i :¼ Ci and

Ck
i :¼ Ck�1

i n fci 2 Ci : there exists ri 2 DðCk�1
i Þ

such that uiðci; c�iÞ <
X
c0

i
2Ci

riðc0iÞ � uiðc0i; c�iÞ for all c�i 2 Ck�1
�i g

for all k>0 and for all i 2 I. The output of iterated strict dominance is then defined as

ISD :¼ �i2IISDi � �i2ICi, where ISDi :¼ \k�0 Ck
i for every player i 2 I. With complete in-

formation there is for every player i and for every round k a unique decision problem

Ck
i ðuiÞ ¼ ðCk

i ðuiÞ;Ck
�iðuiÞ;uiÞ, as payoff uncertainty vanishes. Thus, Ck

�iðuiÞ ¼ �j2InfigC
k
j ;

Ck
i ðuiÞ ¼ Ck

i , and Definition 2 then becomes a formulation of iterated strict dominance in

terms of decision problems. The following remark thus holds.

Remark 3 Let C ¼ ðI; ðCiÞi2I; ðfuigÞi2IÞ be a static game with complete information. Then,

�i2IGISDi ¼ �i2IðISDi � fuigÞ.

Accordingly, generalized iterated strict dominance for incomplete information games with a

single utility function for every player is equivalent to iterated strict dominance for complete

information games. Therefore, our solution concept of generalized iterated strict dominance

qualifies as the incomplete information analogue of iterated strict dominance for static games.
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