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a b s t r a c t

Correlated equilibrium constitutes one of the basic solution concepts for static games with complete
information. Actually two variants of correlated equilibrium are in circulation and have been used
interchangeably in the literature. Besides the original notion due to Aumann (1974), there exists a
simplified definition typically called canonical correlated equilibrium or correlated equilibrium distri-
bution. It is known that the original and the canonical version of correlated equilibrium are equivalent
from an ex-ante perspective. However, we show that they are actually distinct – both doxastically
as well as behaviourally – from an interim perspective. An elucidation of this difference emerges in
the reasoning realm: while Aumann’s correlated equilibrium can be epistemically characterized by
common belief in rationality and a common prior, canonical correlated equilibrium additionally re-
quires the condition of one-theory-per-choice. Consequently, the application of correlated equilibrium
requires a careful choice of the appropriate variant.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Correlated equilibrium has been introduced by Aumann (1974)
and represents one of the main solution concepts for static games
with complete information. Two versions of this solution concept
circulate in the literature and often no distinction is drawn
between them. Indeed, both solution concepts are equivalent in
terms of the (prior) probabilities assigned to choice profiles. Thus,
both versions are rather perceived as substitutable. However, it
turns out that the variation in defining correlated equilibrium
can be significant from the so-called interim perspective once the
probabilities are conditionalized on information. Both a player’s
belief about the opponents’ choices as well as a player’s optimal
choice in line with the two notions then becomes different. This
discrepancy can be elucidated in terms of reasoning by unveiling
the epistemic assumptions underlying the two solution concepts.
Consequently, care should be exerted when applying correlated
equilibrium. The use of the particular version of correlated equi-
librium should be driven by deliberate reflection about which
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of the – distinct – underlying epistemic assumptions are more
appropriate for the specific purpose at hand.

Formally, Aumann’s (1974) original solution concept of corre-
lated equilibrium is constructed within an epistemic framework
based on possible worlds, information partitions, and a com-
mon prior probability measure. Often, in scientific articles and
game theory textbooks, a more direct definition of correlated
equilibrium is used that simply models correlated equilibrium
as a probability measure on choice combinations. The latter so-
lution concept is sometimes called canonical correlated equilib-
rium (e.g. Forges, 1990) or correlated equilibrium distribution
(e.g. Aumann, 1987) in the literature. The question arises whether
these two definitions are actually interchangeable or whether
they constitute two different solution concepts.

The analysis of games typically distinguishes three perspec-
tives or stages: ex-ante, interim, and ex-post. From the ex-ante
perspective players have not received any private information;
epistemically players entertain prior beliefs in this stage of the
game. Then, private information is unveiled to the players who
update (or revise) their beliefs accordingly; the formation of these
posterior beliefs as well as the subsequent choices take place
in the interim stage of the game. From the ex-post perspective
the outcome of the game as combination of the players’ choices
ensues.

Besides, solution concepts can generally not be compared di-
rectly due to possibly being embedded in different structures. For
instance, the formulation of correlated equilibrium uses an epis-
temic framework, while canonical correlated equilibrium lacks
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such structure. However, since solution concepts all induce for
every player decision-relevant i.e. interim beliefs about his oppo-
nents’ choices, these beliefs as well as optimal choice in line with
them can serve as a universal benchmark. In other words, the
interim beliefs and subsequent optimal choices for every player
can be viewed as the final output of a solution concept. It is thus
always possible to compare any given solution concepts in the
interim stage of a game.

The two versions of correlated equilibrium can be compared
from an ex-ante as well as an interim perspective.1 It is well-
known that from the ex-ante perspective correlated equilibrium
and canonical correlated equilibrium coincide. More precisely,
the induced probability measure on choice combinations of a
correlated equilibrium using the common prior only (and not
the players’ information) is equal to some canonical correlated
equilibrium, and vice versa. This fact together with the conse-
quence that any correlated equilibrium can be represented by
some correlated equilibrium distribution is also known as the rev-
elation principle. However, the relevant perspective for reasoning
and decision-making in games seems to be interim. The posterior
belief of a player about his opponents’ choices – conditionalized
on his information in the case of correlated equilibrium and
conditionalized on one of his choices in the case of canonical
correlated equilibrium – constitute the outcome of the player’s
reasoning and thus his decision-relevant doxastic mental state.
In other words, the players’ posterior beliefs represent a solu-
tion concept doxastically. Optimal choice in line with a player’s
reasoning then characterizes the respective solution concept be-
haviourally. An appropriate comparison of solution concepts in
terms of their game-theoretic semantics thus needs to address
these two – doxastic and behavioural – dimensions.

Here, we show that correlated equilibrium and canonical cor-
related equilibrium are neither doxastically nor behaviourally
equivalent in the interim stage of a game. Thus, the revelation
principle even though valid from the ex-ante perspective does no
longer hold from the interim perspective. First of all, inspired by
the game in Aumann and Dreze’s (2008) Figure 2A, we illustrate
that correlated equilibrium and canonical correlated equilibrium
may induce different sets of first-order beliefs i.e. beliefs about
the respective opponents’ choice combinations, from an interim
perspective. Secondly, we construct an example where corre-
lated equilibrium and canonical correlated equilibrium also differ
behaviourally, i.e. in terms of optimal choice. In this sense, corre-
lated equilibrium and canonical correlated equilibrium constitute
two distinct solution concepts for static games.

In order to conceptually understand the difference of corre-
lated equilibrium and canonical correlated equilibrium, a reason-
ing angle is taken using the standard type-based approach. First
of all, transformations from Aumann’s epistemic framework to
type-based models and back are defined. We show that these
transformations turn correlated equilibria into epistemic mod-
els that satisfy a common prior assumption as well as contain
types expressing common belief in rationality, and vice versa. An
epistemic characterization of correlated equilibrium in terms of
common belief in rationality and a common prior from an interim
perspective consequently ensues.

We then introduce the epistemic condition of one-theory-per-
choice. Intuitively, a reasoner satisfying this condition never uses
in his entire belief hierarchy distinct first-order beliefs to explain
the same choice for any player. We give an epistemic character-
ization of canonical correlated equilibrium in terms of common

1 In the ex-post stage of the game the outcome including all players’ choices
are common knowledge. Consequently, a comparison of solution concepts or
reasoning patterns from the ex-post perspective is less insightful.

belief in rationality, a common prior, and the one-theory-per-
choice condition from an interim perspective. In terms of rea-
soning, canonical correlated equilibrium thus constitutes a more
demanding solution concept than correlated equilibrium. Concep-
tually, the one-theory-per-choice condition contains a correct be-
liefs assumption. Accordingly, the reasoner does not only always
explain a given choice by the same first-order belief throughout
his entire belief hierarchy, but he also believes his opponents to
believe he does so, and he believes his opponents to believe their
opponents to believe he does so, etc. Furthermore, the reasoner
does not only believe any opponent to explain a given choice by
the same first-order belief throughout his entire belief hierarchy,
but he also believes his opponents to believe he does so, and
he believes his opponents to believe their opponents to believe
he does so, etc. In terms of correct beliefs properties, canonical
correlated equilibrium thus is more demanding than Aumann’s
original solution concept of correlated equilibrium.

In applications caution is required which solution concept –
correlated equilibrium or canonical correlated equilibrium – is
used, since they are genuinely different in terms of reasoning and
the diacritic one-theory-per-choice condition does constitute a
substantial assumption. In cases where correct beliefs conditions
seem less plausible, correlated equilibrium rather than canonical
correlated equilibrium appears to be adequate, while in cases
where correct beliefs conditions seem more appropriate, the lat-
ter rather than the former solution concept appears to be suitable.
Importantly, note that the interpretation of our characterizations
of correlated equilibrium and canonical correlated equilibrium
does not imply that one of the two solution concepts qualifies as
superior, but that they can be concluded to be non-trivially dis-
tinct and the one-theory-per-choice condition sheds conceptual
light on this difference in terms of reasoning.

We proceed as follows. In Section 2, the two definitions of
correlated equilibrium within the framework of static games are
recalled. It is then shown in Section 3 that the two solution
concepts are neither doxastically nor behaviourally equivalent
in the interim stage. In Section 4, a reasoning framework by
means of type-based epistemic models is presented which is later
used to analyse correlated equilibrium and canonical correlated
equilibrium. Both solution concepts are characterized epistem-
ically from the perspective of the interim stage in Section 5
and their difference in terms of reasoning thereby illuminated.
Finally, some conceptual issues are addressed in Section 6. In
particular, a philosophical discussion about the relation of the two
versions of correlated equilibrium to Nash equilibrium based on
the epistemic characterization results from Section 5 is offered.

2. Preliminaries

A static game is modelled as a tuple Γ =
(
I, (Ci)i∈I , (Ui)i∈I

)
,

where I is a finite set of players, Ci denotes player i’s finite
choice set, and Ui : ×j∈ICj → R is player i’s utility function,
which assigns a real number Ui(c) to every choice combination
c ∈ ×j∈ICj. For the class of static games the solution concept of
correlated equilibrium has been introduced by Aumann (1974)
and given an epistemic foundation in terms of universal rational-
ity and a common prior from an ex-ante perspective by Aumann
(1987).2 Loosely speaking, in a correlated equilibrium the players’
choices are required to satisfy a best response property given
a probability measure on the opponents’ choice combinations

2 Note that Aumann (1987) actually gives an epistemic characterization of
canonical correlated equilibrium from an ex-ante perspective. However, since
correlated equilibrium and canonical correlated equilibrium are equivalent from
an ex-ante perspective, Aumann’s (1987) epistemic characterization also applies
to correlated equilibrium.
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derived from a common prior via Bayesian updating within some
information structure.

In fact, the notion of correlated equilibrium is embedded in
the epistemic framework of Aumann models, which describe
the players’ knowledge and beliefs in terms of information par-
titions. Formally, an Aumann model of a game Γ is a tuple
AΓ

=
(
Ω, π, (Ii)i∈I , (σi)i∈I

)
, where Ω is a finite set of all possible

worlds, π ∈ ∆(Ω) is a common prior probability measure on the
set of all possible worlds, Ii is an information partition on Ω for
every player i ∈ I such that π

(
Ii(ω)

)
> 0 for all ω ∈ Ω , with Ii(ω)

denoting the cell of Ii containing ω, and σi : Ω → Ci is an Ii-
measurable choice function for every player i ∈ I . Conceptually,
the Ii-measurability of σi ensures that i entertains no uncertainty
whatsoever about his own choice, i.e. σi(ω′) = σi(ω) for all
ω′

∈ Ii(ω). A player’s choice is thus constant across a cell from his
information partition. Formally, the choice induced by a cell Pi ∈

Ii is denoted by σi(Pi) := σi(ω) for some ω ∈ Pi. Note that beliefs
of players are explicitly expressible in Aumann models of games.
Indeed, beliefs are obtained via Bayesian conditionalization on
the common prior given the respective player’s information. More
precisely, an event E ⊆ Ω consists of possible worlds, and player
i’s belief in E at a world ω is defined as bi(E, ω) := π

(
E |

Ii(ω)
)

=
π

(
E∩Ii(ω)

)
π

(
Ii(ω)

) . For instance, given a choice combination

s−i := (sj)j∈I\{i} of player i’s opponents, the set {ω ∈ Ω : σj(ω) =

sj for all j ∈ I \ {i}} denotes the event that i’s opponents play
according to s−i. In the sequel whenever for a given player i
a combination of objects for his opponents are considered the
following notation is used: if Oj are sets for every player j ∈ I ,
then O−i := ×j∈I\{i}Oj denotes the corresponding product set of
i’s opponents and o−i := (oj)j∈I\{i} ∈ O−i denotes a combination of
objects – drawn from Oj for every j ∈ I \ {i} – for i’s opponents.

Within the framework of Aumann models, the notion of cor-
related equilibrium – sometimes also called objective correlated
equilibrium – is formally defined as follows.

Definition 1. Let Γ be a game, and AΓ an Aumann model of it
with choice functions σi : Ω → Ci for every player i ∈ I . The tuple
(σi)i∈I of choice functions constitutes a correlated equilibrium, if for
every player i ∈ I , and for every world ω ∈ Ω , it is the case that∑
ω′∈Ii(ω)

π
(
ω′

| Ii(ω)
)
· Ui

(
σi(ω), σ−i(ω′)

)
≥

∑
ω′∈Ii(ω)

π
(
ω′

| Ii(ω)
)
· Ui

(
ci, σ−i(ω′)

)
for every choice ci ∈ Ci.

Intuitively, a choice function tuple constitutes a correlated
equilibrium, if for every player, the choice function specifies at
every world a best response given the common prior conditional-
ized on the player’s information and given the opponents’ choice
functions. Note that this definition of correlated equilibrium cor-
responds precisely to Aumann’s (1974) original definition. In
particular, the imposition of the best response property on all
worlds also including the ones that may lie outside the support
of the common prior π occurs in the original definition.

Aumann structures induce for every player a probability mea-
sure at every world about the respective opponents’ choices –
typically called first-order belief – via an appropriate projection
of the conditionalized common prior. Given a game Γ a first-
order belief βi ∈ ∆(C−i) of some player i ∈ I is possible in a
correlated equilibrium, if there exists an Aumann model AΓ of Γ

such that the tuple (σj)j∈I constitutes a correlated equilibrium and
with some world ω̂ ∈ Ω such that

βi(c−i) = π
(
{ω′

∈ Ii(ω̂) : σ−i(ω′) = c−i} | Ii(ω̂)
)

for all c−i ∈ C−i.
From a behavioural viewpoint it is ultimately of interest what

choices a player can make given a particular line of reasoning
and decision-making fixed by specific epistemic assumptions or
by a specific solution concept. Formally, given a game Γ a choice
c∗

i ∈ Ci of some player i ∈ I is optimal in a correlated equilibrium, if
there exists an Aumann model AΓ of Γ such that the tuple (σj)j∈I
constitutes a correlated equilibrium and with some world ω̂ ∈ Ω
such that∑
ω′∈Ii(ω̂)

π
(
ω′

| Ii(ω̂)
)
· Ui

(
c∗

i , σ−i(ω′)
)

≥

∑
ω′∈Ii(ω̂)

π
(
ω′

| Ii(ω̂)
)
· Ui

(
ci, σ−i(ω′)

)
for all ci ∈ Ci.

Often, in the literature and in textbooks, the following more
direct – and simpler – definition of correlated equilibrium is used.

Definition 2. Let Γ be a game, and ρ ∈ ∆(×i∈ICi) a probability
measure on the players’ choice combinations. The probability
measure ρ constitutes a canonical correlated equilibrium, if for
every player i ∈ I , and for every choice ci ∈ Ci of player i such
that ρ(ci) > 0, it is the case that∑
c−i∈C−i

ρ(c−i | ci) · Ui(ci, c−i) ≥

∑
c−i∈C−i

ρ(c−i | ci) · Ui(c ′

i , c−i)

for every choice c ′

i ∈ Ci, where ρ(ci) :=
∑

c−i∈C−i
ρ(ci, c−i) as well

as ρ(c−i | ci) :=
ρ(ci,c−i)

ρ(ci)
.

Intuitively, a probability measure on the players’ choice com-
binations constitutes a canonical correlated equilibrium, if every
choice that receives positive probability is optimal given the
probability measure conditionalized on the very choice itself.

Also, the solution concept of canonical correlated equilibrium
naturally induces for every player a first-order belief for each of
his choices via Bayesian conditionalization. Given a game Γ , a
first-order belief βi ∈ ∆(C−i) of some player i ∈ I is possible
in a canonical correlated equilibrium, if there exists a canonical
correlated equilibrium ρ ∈ ∆(×j∈ICj) and a choice ĉi ∈ Ci of player
i with ρ(ĉi) > 0 such that

βi(c−i) = ρ(c−i | ĉi)

for all c−i ∈ C−i.
Finally, optimal choice with a canonical correlated equilibrium

also needs to be fixed in order to relate the two definitions of
correlated equilibrium behaviourally. Formally, given a game Γ ,
a choice c∗

i ∈ Ci of some player i ∈ I is optimal in a canonical corre-
lated equilibrium, if there exist a canonical correlated equilibrium
ρ ∈ ∆(×j∈ICj) and a choice ĉi ∈ Ci of player i with ρ(ĉi) > 0 such
that∑
c−i∈C−i

ρ(c−i | ĉi) · Ui(c∗

i , c−i) ≥

∑
c−i∈C−i

ρ(c−i | ĉi) · Ui(ci, c−i)

for all ci ∈ Ci.
It is well known that the two solution concepts of corre-

lated equilibrium and canonical correlated equilibrium induce
the same prior measure on choice profiles. For the sake of self-
containedness and as an explicit demarcation to our results a
statement and proof of the so-called revelation principle is pro-
vided.

Theorem 1 (‘‘Revelation Principle’’). Let Γ be a static game.
(i) If AΓ is an Aumann model of Γ such that (σi)i∈I consti-

tutes a correlated equilibrium, then ρ ∈ ∆(×i∈ICi), where
ρ
(
(ci)i∈I

)
:= π

(
{ω ∈ Ω : σi(ω) = ci for all i ∈ I}

)
for all

(ci)i∈I ∈ ×i∈ICi, constitutes a canonical correlated equilibrium.
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(ii) If ρ ∈ ∆(×i∈ICi) constitutes a canonical correlated equi-
librium, then there exists an Aumann model AΓ of Γ such
that π (ω) := ρ

((
σi(ω)

)
i∈I

)
for all ω ∈ Ω as well as (σi)i∈I

constitutes a correlated equilibrium.

Proof. For part (i) of the theorem, let i ∈ I be some player and
ci ∈ Ci be some choice of player i such that ρ(ci) > 0. Then,

ρ(c−i | ci) =
π

(
{ω ∈ Ω : σj(ω) = cj for all j ∈ I}

)
π

(
ω ∈ Ω : σi(ω) = ci

)
=

π
(
{ω ∈ Ω : σj(ω) = cj for all j ∈ I}

)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

)
=

∑
P̂i∈Ii:σi(P̂i)=ci

π
(
ω ∈ P̂i : σj(ω) = cj for all j ∈ I \ {i}

)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

)
=

∑
P̂i∈Ii:σi(P̂i)=ci

π (P̂i)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

)
·
π

(
ω ∈ P̂i : σj(ω) = cj for all j ∈ I \ {i}

)
π (P̂i)

=

∑
P̂i∈Ii:σi(P̂i)=ci

π (P̂i)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

)
·

∑
ω∈P̂i:σj(ω)=cj for all j∈I\{i}

π (ω | P̂i)

holds for all c−i ∈ C−i. Since (σi)i∈I constitutes a correlated
equilibrium, it follows that∑
c−i∈C−i

ρ(c−i | ci) · Ui(ci, c−i)

=

∑
P̂i∈Ii:σi(P̂i)=ci

π (P̂i)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

)
·

∑
c−i∈C−i

∑
ω∈P̂i:σj(ω)=cj for all j∈I\{i}

π (ω | P̂i) · Ui
(
ci, σ−i(ω)

)
=

∑
P̂i∈Ii:σi(P̂i)=ci

π (P̂i)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

) ·

∑
ω∈P̂i

π (ω | P̂i) · Ui
(
ci, σ−i(ω)

)
≥

∑
P̂i∈Ii:σi(P̂i)=ci

π (P̂i)
π

(
∪Pi∈Ii:σi(Pi)=ciPi

) ·

∑
ω∈P̂i

π (ω | P̂i) · Ui
(
c ′

i , σ−i(ω)
)

=

∑
c−i∈C−i

ρ(c−i | ci) · Ui(c ′

i , c−i)

for all c ′

i ∈ Ci. Consequently, ρ constitutes a canonical correlated
equilibrium.

For part (ii) of the theorem, construct an Aumann model AΓ

with Ω := {ω(cj)j∈I : (cj)j∈I ∈ ×j∈ICj such that ρ
(
(cj)j∈I

)
> 0},

Ij :=
{
{ω(cj,c−j) ∈ Ω : c−j ∈ C−j} : cj ∈ Cj with ρ(cj) > 0

}
for all j ∈ I , π

(
ω(cj)j∈I

)
:= ρ

(
(cj)j∈I

)
for all ω(cj)j∈I ∈ Ω , and

σj(ω(ck)k∈I ) = cj for all ω(ck)k∈I ∈ Ω and for all j ∈ I .3 Hence, AΓ

satisfies the property that π (ω) := ρ

((
σj(ω)

)
j∈I

)
for all ω ∈ Ω .

As ρ constitutes a canonical correlated equilibrium, observe that∑
ω∈Ii(ω

(ĉi,c−i))

π
(
ω | Ii(ω(ĉi,c−i))

)
· Ui

(
σi(ω(ĉi,c−i)), σ−i(ω)

)
3 Note that the possible worlds are indexed with the players’ choice profiles;

thus for every choice combination in Γ there is a corresponding possible world
in the Aumann model AΓ , and vice versa.

=

∑
c−i∈C−i

ρ(c−i | ĉi) · Ui(ĉi, c−i) ≥

∑
c−i∈C−i

ρ(c−i | ĉi) · Ui(c ′

i , c−i)

=

∑
ω∈Ii(ω

(ĉi,c−i))

π
(
ω | Ii(ω(ĉi,c−i))

)
· Ui

(
c ′

i , σ−i(ω)
)

holds for every choice c ′

i ∈ Ci and for every player i ∈ I , i.e. (σi)i∈I
constitutes a correlated equilibrium. ■

The essential intuition underlying Theorem 1 about the re-
lation of the two versions of correlated equilibrium could be
grasped as follows. For part (i), since the possible worlds inducing
ci via σi form a union of cells from Ii, the inequality in Definition 1
requires ci to be a best response for every cell of Ii, while
the inequality in Definition 2 only needs ci to satisfy the best
response property for the union of cells inducing ci. Since the
latter requirement is weaker than the former, a canonical corre-
lated equilibrium ensues based on a correlated equilibrium. For
part (ii), the sparser embedding of canonical correlated equilib-
rium is mimicked in the potentially richer structure of correlated
equilibrium by constructing the ‘‘canonical’’ Aumann model. The
best response property of canonical correlated equilibrium then
directly carries over and yields the correlated equilibrium.

Importantly, the revelation principle (Theorem 1) exclusively
relates the two versions of correlated equilibrium from the ex-
ante perspective before any information has been received and
processed by the players. Formally, the compared objects π and
ρ are prior probability measures. Theorem 1 thus establishes the
equivalence of correlated equilibrium and canonical equilibrium
in the ex-ante stage of games.

3. Difference of the two definitions

With two prevalent notions of correlated equilibrium in the
literature that induce the same prior measure about choice pro-
files in games, the natural question emerges whether they are
also equivalent or not from an interim perspective. In other words,
it can be investigated whether the revelation principle is robust
across the different stages of the game. From the interim per-
spective players have processed all information and formed their
decision-relevant beliefs upon which they will subsequently base
their choices. The two solution concepts can thus be compared
doxastically as well as behaviourally after information processing.

Suppose that a first-order belief βi ∈ ∆(C−i) is possible in a
canonical correlated equilibrium of some game Γ , i.e. βi(c−i) =

ρ(c−i | ĉi) for all c−i ∈ C−i for some canonical correlated
equilibrium ρ ∈ ∆(×j∈ICj) of Γ and for some choice ĉi ∈ Ci
with ρ(ĉi) > 0. Consider the constructed Aumann model AΓ

in the proof of part (ii) of Theorem 1, where (σj)j∈I constitutes
a correlated equilibrium. It is also the case that ρ(c−i | ĉi) =

π

(
{ω ∈ Ii

(
ω(ĉi,c−i)

)
: σ−i

(
ω
)

= c−i} | Ii
(
ω(ĉi,c−i)

))
. Consequently,

the following remark obtains.

Remark 1. Let Γ be a static game, i ∈ I some player, and
β∗

i ∈ ∆(C−i) some first-order belief of player i. If β∗

i is possible
in a canonical correlated equilibrium, then β∗

i is possible in a
correlated equilibrium.

The definition of optimal choice in a solution concept together
with Remark 1 directly implies that optimality in a canonical
correlated equilibrium implies optimality in a correlated equilib-
rium.

Remark 2. Let Γ be a static game, i ∈ I some player, and c∗

i ∈ Ci
some choice of player i. If c∗

i is optimal in a canonical correlated
equilibrium, then c∗

i is optimal in a correlated equilibrium.
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Fig. 1. A two player static game between Rowena and Colin.

However, it is now shown by means of an example that the
converse of Remark 1 does not hold.

Example 1. Consider the two player game between Rowena and
Colin depicted in Fig. 1, which is due to Aumann and Dreze (2008,
Figure 2A).4

Let
(
Ω, π, (Ii)i∈I , (σi)i∈I

)
be an Aumann model of the game,

where

– I = {Rowena, Colin},
– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7},
– π ∈ ∆(Ω) with π (ω1) = π (ω3) =

1
12 and π (ω) =

1
6 for all

ω ∈ Ω \ {ω1, ω3},
– IRowena =

{
{ω1}, {ω2, ω3}, {ω4, ω5}, {ω6, ω7}

}
,

– IColin =
{
{ω1, ω3, ω5}, {ω2, ω7}, {ω4, ω6}

}
,

– σRowena(ω1) = σRowena(ω2) = σRowena(ω3) = T , σRowena(ω4) =

σRowena(ω5) = M , and σRowena(ω6) = σRowena(ω7) = B,
– σColin(ω1) = σColin(ω3) = σColin(ω5) = R, σColin(ω2) =

σColin(ω7) = C , and σColin(ω4) = σColin(ω6) = L.

Observe that (σi)i∈I constitutes a correlated equilibrium of the
game. Also, the first-order belief β∗

Rowena ∈ ∆(CColin) of Rowena
such that β∗

Rowena(R) = 1 is possible in a correlated equilibrium,
as IRowena(ω1) = {ω1} and σColin(ω1) = R.

Suppose that there exists a canonical correlated equilibrium
ρ ∈ ∆(CRowena × CColin) with ρ(· | cRowena) = β∗

Rowena for some
cRowena ∈ CRowena such that ρ(cRowena) > 0. Since cRowena is optimal
for ρ(· | cRowena) = β∗

Rowena, it is the case that cRowena = T . Hence,
ρ(· | T ) = β∗

Rowena and thus ρ(R | T ) = 1. Consequently, ρ(T , R) >
0 as well as ρ(T , L) = ρ(T , C) = 0. Then, ρ(M, C) = ρ(B, C) = 0,
as otherwise C is strictly dominated by L on {M, B}, contradicting
the optimality of C given ρ(· | C) ∈ ∆({M, B}). Then, ρ(B, L) =

ρ(B, R) = 0, as otherwise B is strictly dominated by M on {L, R},
contradicting the optimality of B given ρ(· | B) ∈ ∆({L, R}).
Then, ρ(M, L) = 0, as otherwise L is strictly dominated by R on
{M}, contradicting the optimality of L given ρ(· | L) ∈ ∆({M}).
Then, ρ(M, R) = 0, as otherwise M is strictly dominated by T on
{R}, contradicting the optimality of M given ρ(· | M) ∈ ∆({R}).
Therefore, it is the case that ρ(T , R) = 1. However, R is not
optimal given ρ(· | R), a contradiction. Hence, the first-order
belief β∗

Rowena ∈ ∆(CColin) of Rowena such that β∗

Rowena(R) = 1 is
not possible in a canonical correlated equilibrium. ♣

The preceding example establishes the following remark.

Remark 3. There exist a game Γ , a player i ∈ I , and a first-
order belief β∗

i ∈ ∆(C−i) of player i such that β∗

i is possible
in a correlated equilibrium but β∗

i is not possible in a canonical
correlated equilibrium.

4 In fact, Aumann and Dreze (2008) use the game depicted in Fig. 1 to
show that Rowena’s expected payoff in a canonical correlated equilibrium can be
different if the game is doubled in the sense that each of her choices is listed
twice. The game is thus changed but only the solution concept of canonical
correlated equilibrium is considered. Here, we keep the game fixed, but switch
between the solution concepts of correlated equilibrium and canonical correlated
equilibrium.

Fig. 2. A two player static game between Alice and Bob.

Intuitively, the difference established by Remark 3 is due to
the richer structure of correlated equilibrium in terms of Au-
mann models potentially allowing for more first-order beliefs
than canonical correlated equilibrium. Consider some choice ci ∈

Ci of player i with ρ(ci) > 0. For every cell Pi ∈ Ii such that
σi(Pi) = ci there could basically exist a distinct corresponding
first-order beliefs π (· | Pi). However, with the probability mea-
sure ρ the unique first-order belief corresponding to ci is given
by ρ(· | ci). The only link between these two first-order beliefs
consists in the latter being a convex combination of the former,
as ci under canonical correlated equilibrium is equivalent to the
union of the cells inducing ci under correlated equilibrium.

Actually, in Example 1 the induced optimal choices are equal
for both solution concepts despite their difference in terms of
possible first-order beliefs. Indeed, observe that ρ ∈ ∆(CRowena ×

CColin) with ρ(c) =
1
9 for all c ∈ CRowena × CColin constitutes a

canonical correlated equilibrium of the game depicted in Fig. 1
and for every player it is the case that every choice is optimal
in ρ. Also, the correlated equilibrium (σi)i∈I of this game from
Example 1 exhibits the property that for every player it is the
case that every choice is optimal.

Yet, both definitions of correlated equilibrium can also be
distinct in terms of induced optimal choice as the next example
shows.

Example 2. Consider the two player game between Alice and Bob
depicted in Fig. 2.

Suppose the Aumann model
(
Ω, π, (Ii)i∈I , (σ̂ )i∈I

)
of the game,

where

– Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7},
– π (ω1) = π (ω2) = π (ω5) = π (ω6) = π (ω7) =

1
6 and

π (ω3) = π (ω4) =
1
12 ,

– IAlice = {{ω1, ω2}, {ω3}, {ω4, ω5}, {ω6, ω7}},
– IBob = {{ω3, ω4, ω6}, {ω1, ω7}, {ω2, ω5}},
– σAlice(ω1) = σAlice(ω2) = a, σAlice(ω3) = σAlice(ω4) =

σAlice(ω5) = b, and σAlice(ω6) = σAlice(ω7) = c ,
– σBob(ω1) = σBob(ω7) = f , σBob(ω2) = σBob(ω5) = g , and

σBob(ω3) = σBob(ω4) = σBob(ω6) = e.

Observe that (σAlice, σBob) constitute a correlated equilibrium.
Also, the choice d of Alice – even though d /∈ supp(σAlice) –
is optimal in the correlated equilibrium (σAlice, σBob), since d is
optimal for Alice at world ω3.

However, it is now shown that d cannot be optimal in a canon-
ical correlated equilibrium. Towards a contradiction, suppose that
there exists a canonical correlated equilibrium ρ ∈ ∆(CAlice×CBob),
for which d is optimal. Then, ρ(e | c1) = 1 for some choice
c1 ∈ CAlice with ρ(c1) > 0, as otherwise c would be strictly better
than d for Alice. Since c1 needs to be optimal for ρ(· | c1), it must
be the case that c1 = b or c1 = d.

Suppose that c1 = d. Then, ρ(e | d) = 1 implies that ρ(e) > 0,
which in turn implies that e is optimal for ρ(· | e). As ρ(d | e) > 0,
the choice h is thus better than e, a contradiction.
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Alternatively, suppose that c1 = b, and thus ρ(e | b) = 1.
It has to be the case that ρ(d) = 0, as otherwise d is optimal for
ρ(· | d), hence ρ(e | d) = 1, a contradiction. Because ρ(d) = 0 and
ρ(e | b) = 1, it follows that ρ(b, g) = 0 as well as ρ(d, g) = 0.
Therefore, ρ(b | g) = ρ(d | g) = 0 if ρ(g) > 0. Yet, if ρ(g) > 0,
then f is better than g against ρ(· | g), because in that case
ρ(b | g) = ρ(d | g) = 0. This is a contradiction, and thus ρ(g) = 0.
Consequently, if ρ(a) > 0, then ρ(g | a) = 0, and thus c is better
than a against ρ(· | a), a contradiction, hence ρ(a) = 0.

Since ρ(a) = ρ(d) = 0 as well as ρ(e | b) = 1, it is the case
that ρ(a, f ) = ρ(d, f ) = ρ(b, f ) = 0, and therefore ρ(c | f ) = 1
if ρ(f ) > 0. But then, if ρ(f ) > 0, the choice e is better than f
against ρ(· | f ), a contradiction, and thus ρ(f ) = 0.

As ρ(f ) = ρ(g) = 0, it is the case that ρ(f | c) = ρ(g | c) = 0 if
ρ(c) > 0. Hence, if ρ(c) > 0, the choice b is better than c against
ρ(· | c), a contradiction, and thus ρ(c) = 0.

Since ρ(a) = ρ(c) = ρ(d) = 0 as well as ρ(e | b) = 1, it is the
case that ρ(b, e) = 1. But then ρ(b | e) = 1, and thus g is better
than e against ρ(· | e), a contradiction.

Consequently, there exists no canonical correlated equilibrium
for which d is optimal. ♣

Thus, the following remark ensues.

Remark 4. There exists a game Γ , some player i ∈ I , and
some choice c∗

i ∈ Ci of player i such that c∗

i is optimal in
a correlated equilibrium but c∗

i is not optimal in a canonical
correlated equilibrium.

Intuitively, since correlated equilibrium admits more first-
order beliefs than canonical correlated equilibrium, the resulting
flexibility for supporting beliefs results in more choices being
optimal in the former solution concept than in the latter.

Due to Remarks 3 and 4 correlated equilibrium and canonical
correlated equilibrium differ both doxastically as well as be-
haviourally. Hence, the two notions actually constitute genuinely
distinct solution concepts for static games.

4. Epistemic models

Reasoning in games is usually modelled by belief hierar-
chies about the underlying space of uncertainty. Due to Harsanyi
(1967-68) types can be used as implicit representations of be-
lief hierarchies. The notion of an epistemic model provides the
framework to formally describe reasoning in games.

Definition 3. Let Γ be a static game. An epistemic model of Γ is
a tuple MΓ

=
(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I

– Ti is a finite set of types,
– bi : Ti → ∆(C−i × T−i) assigns to every type ti ∈ Ti a

probability measure bi[ti] on the set of opponents’ choice
type combinations.

Given a game and an epistemic model of it, belief hierarchies,
marginal beliefs, as well as marginal belief hierarchies can be
derived from every type. For instance, every type ti ∈ Ti induces
a belief on the opponents’ choice combinations by marginalizing
the probability measure bi[ti] on the space C−i. Note that no
additional notation is introduced for marginal beliefs, in order to
keep notation as sparse as possible. It should always be clear from
the context which belief bi[ti] refers to.

Besides, we follow a one-player perspective approach, which
considers game theory as an interactive extension of decision the-
ory. Accordingly, all epistemic concepts – including iterated ones
– are defined as mental states inside the mind of a single person.
A one-player approach seems natural in the sense that reasoning
is formally represented by epistemic concepts and any reasoning

process prior to choice does indeed take place entirely within the
reasoner’s mind. Formally, this approach is parsimonious in the
sense that states, describing the beliefs of all players, do not have
to be invoked in epistemic models of games.

Some further notions and notation are now introduced. For
that purpose consider a game Γ , an epistemic model MΓ of it,
and fix two players i, j ∈ I such that i ̸= j.

A type ti ∈ Ti is said to deem possible some choice type
combination (c−i, t−i) of his opponents, if bi[ti] assigns positive
probability to (c−i, t−i). Analogously, a type ti ∈ Ti deems possible
some opponent type tj ∈ Tj, if bi[ti] assigns positive probability to
tj.

For each choice type combination (ci, ti), the expected utility is
given by

ui(ci, ti) =

∑
c−i∈C−i

(
bi[ti](c−i) · Ui(ci, c−i)

)
.

Intuitively, the common prior assumption in economics states
that every belief in models with multiple agents is derived from
a single probability distribution, the so-called common prior. In
the epistemic framework of Definition 3 all beliefs are furnished
by the types. The common prior assumption thus imposes a
condition on the types, requiring all beliefs to be derived from
a single probability distribution on the basic space of uncertainty
and the players’ types.

Definition 4. Let Γ be a static game, and MΓ an epistemic
model of it. The epistemic model MΓ satisfies the common prior
assumption, if there exists a probability measure ϕ ∈ ∆

(
×j∈I (Cj ×

Tj)
)
such that for every player i ∈ I , and for every type ti ∈ Ti it

is the case that ϕ(ti) > 0 and

bi[ti](c−i, t−i) =
ϕ(ci, c−i, ti, t−i)

ϕ(ci, ti)

for all ci ∈ Ci with ϕ(ci, ti) > 0, and for all (c−i, t−i) ∈ C−i × T−i,
where ϕ(ti) :=

∑
t−i∈T−i

∑
c∈×i∈ICi

ϕ(c, ti, t−i) as well as ϕ(ci, ti)
:=

∑
t−i∈T−i

∑
c−i∈C−i

ϕ(ci, c−i, ti, t−i). The probability measure ϕ

is called common prior.

Accordingly, every type’s induced belief function obtains from
a single probability measure – the common prior – via Bayesian
updating. Note that the common prior is defined on the full
space of uncertainty, i.e. on the set of all the players’ choice
type combinations, while belief functions are defined on the
space of respective opponents’ choice type combinations only.
The common prior assumption could be interpreted by means
of an interim stage set-up, in which every player i ∈ I observes
the pair (ci, ti) on which he then conditionalizes. Moreover, note
that our common prior assumption according to Definition 4 is
equivalent to the conjunction of Dekel and Siniscalchi’s (2015)
Definition 12.13 with their Definition 12.15. In a sense, the com-
mon prior assumption is commonly believed by the players in an
epistemic model satisfying it, as every type of ever player believes
that all types in the epistemic model derive their beliefs from the
same prior.

Intuitively, an optimal choice yields at least as much payoff as
all other options, given what the player believes his opponents to
choose. Formally, optimality is a property of choices given a type.
A choice c∗

i ∈ Ci is said to be optimal for the type ti, if

ui(c∗

i , ti) ≥ ui(ci, ti)

for all ci ∈ Ci.
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A player believes in rationality, if he only deems possible
choice type pairs – for each of his opponents – such that the
choice is optimal for the respective type. Formally, a type ti ∈ Ti
is said to believe in rationality, if ti only deems possible choice
type combinations (c−i, t−i) ∈ C−i × T−i such that cj is optimal for
tj for every opponent j ∈ I \ {i}. Note that belief in rationality
imposes restrictions on the first two layers of a player’s belief
hierarchy, since the player’s belief about his opponents’ choices
as well as the player’s belief about his opponents’ beliefs about
their respective opponents’ choices are affected.

The conditions on interactive reasoning can be taken to further
– arbitrarily high – layers in belief hierarchies.

Definition 5. Let Γ be a static game, MΓ an epistemic model
of it, and i ∈ I some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti
believes in rationality.

– A type ti ∈ Ti expresses k-fold belief in rationality for some
k > 1, if ti only deems possible types tj ∈ Tj for all j ∈ I \ {i}
such that tj expresses k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti
expresses k-fold belief in rationality for all k ≥ 1.

A player satisfying common belief in rationality entertains
a belief hierarchy in which the rationality of all players is not
questioned at any level. Observe that if an epistemic model for
every player only contains types that believe in rationality, then
every type also expresses common belief in rationality. This fact is
useful when constructing epistemic models with types expressing
common belief in rationality.

Consider two players i ∈ I and j ∈ I not necessarily distinct.
A type tj of player j is called belief-reachable from a type ti of
player i, if there exists a finite sequence (t1, . . . , tN ) of types with
N ∈ N, where tn+1

∈ supp(bk[tn]) such that tn ∈ Tk for all
n ∈ {1, . . . ,N − 1}, and t1 = ti as well as tN = tj. Intuitively,
if a type tj is belief-reachable from a type ti, the former is not
excluded in the interactive reasoning by the latter. The set Tj(ti)
contains all belief-reachable types of player j from ti. Similarly, a
choice type pair (cj, tj) ∈ Cj × Tj is called belief-reachable from ti,
if there exists a finite sequence (t1, . . . , tN ) of types with N ∈ N,
where tn+1

∈ supp(bk[tn]) for some k ∈ I such that tn ∈ Tk
for all n ∈ {1, . . . ,N − 1}, t1 = ti as well as tN = tj, and
bk(tN−1)(cj, tj) > 0. The set of belief-reachable choice type pairs
of player j from ti is denoted by (Cj ×Tj)(ti). Intuitively, if a choice
type pair (cj, tj) is belief-reachable from a type ti, the former is
not excluded in the interactive reasoning by the latter.

The following lemma ensures that belief reachability preserves
common belief in rationality.

Lemma 1. Let Γ be a static game, MΓ an epistemic model of it,
i, j ∈ I some players, ti ∈ Ti a type of player i, and tj ∈ Tj a type of
player j. If ti expresses common belief in rationality and tj is belief
reachable from ti, then tj expresses common belief in rationality.

Proof. Assume that tj is belief reachable from ti in N > 1
steps, i.e. there exists a finite sequence (t1, . . . , tN ) of types with
tn+1

∈ supp(bk[tn]) as well as t1 = ti and tN = tj. Towards a
contradiction suppose that tj does not express common belief in
rationality. Then, there exists k > 0 such that tj does not express
k-fold belief in rationality. However, as ti deems possible tj at the
N-level of its induced belief hierarchy, ti thus violates (N+k)-fold
belief in rationality and a fortiori common belief in rationality, a
contradiction. ■

The choice rule of rationality and the reasoning concept of
common belief in rationality give rational choice under common

belief in rationality. More precisely, a choice c∗

i ∈ Ci is said to
be rational under common belief in rationality, if there exists an
epistemic model MΓ of Γ with a type ti ∈ Ti of i such that c∗

i
is optimal for ti and ti expresses common belief in rationality.
Similarly, a choice c∗

i ∈ Ci is said to be rational under common be-
lief in rationality with a common prior, if there exists an epistemic
model MΓ of Γ satisfying the common prior assumption with
a type ti ∈ Ti of i such that c∗

i is optimal for ti and ti expresses
common belief in rationality. Besides, a first-order belief β∗

i ∈

∆(C−i) is said to be possible under common belief in rationality
with a common prior, if there exists an epistemic model MΓ of
Γ satisfying the common prior assumption with a type ti ∈ Ti of
i such that bi[ti](c−i) = β∗

i (c−i) for all c−i ∈ C−i and ti expresses
common belief in rationality

5. Epistemic comparison of the two definitions

Before the two solution concepts of correlated equilibrium and
canonical correlated equilibrium are contrasted epistemically, the
structural relationship between Aumann models and epistemic
models is investigated.

On the one hand, epistemic models can be derived from Au-
mann models as follows.

Definition 6. Let Γ be a static game, and AΓ an Aumann model
of Γ . For every player i ∈ I , construct a set Ti := {tPii : Pi ∈ Ii},
a function ηi : Ω → Ti such that ηi(ω) = tIi(ω)

i for all ω ∈ Ω ,
a function bi : Ti → ∆(C−i × T−i) such that bi[t

Pi
i ](c−i, t−i) =∑

ω∈Pi:σ−i(ω)=c−i,η−i(ω)=t−i
π (ω | Pi) for all (c−i, t−i) ∈ C−i × T−i and

for all tPii ∈ Ti. The epistemic model η(AΓ ) of Γ thus obtained is
called the AΓ -induced epistemic model of Γ .

Accordingly, based on an Aumann model the functions ηi for
every player i ∈ I provide the ingredients for an epistemic model.
In particular, these epistemic models satisfy the common prior
assumption as will – among other things – be shown below
in Theorem 2. Besides, the notation tPii labels the types in the
induced epistemic model with the player’s information cells from
the Aumann model. Thus, by construction, for every cell there
exists a type, and vice versa.

Conversely, epistemic models with a common prior also in-
duce Aumann models.

Definition 7. Let Γ be a static game, and MΓ an epistemic
model of Γ satisfying the common prior assumption with com-
mon prior ϕ. Construct a set Ω := {ω(ci,ti)i∈I : ci ∈ Ci, ti ∈

Ti for all i ∈ I such that ϕ
(
(ci, ti)i∈I

)
> 0}, a function π ∈ ∆(Ω)

such that π
(
ω(ci,ti)i∈I

)
= ϕ

(
(ci, ti)i∈I

)
for all ω(ci,ti)i∈I ∈ Ω , as well

as for every player i ∈ I a function σi : Ω → Ci such that
σi

(
ω(cj,tj)j∈I

)
= ci for all ω(cj,tj)j∈I ∈ Ω , and a partition Ii of Ω such

that Ii
(
ω(cj,tj)j∈I

)
= {ω(ci,ti,c′−i,t

′
−i) ∈ Ω : c ′

−i ∈ C−i, t ′−i ∈ T−i} for all
ω(cj,tj)j∈I ∈ Ω . The Aumann model θ (MΓ ) of Γ thus obtained is
called the MΓ -induced Aumann model of Γ .

In terms of notation a possible world ω(citi)i∈I in the induced
Aumann model is labelled by a combination of players’ choices
and types from the epistemic model. This construction ensures
that there exists a possible world for every combination of play-
ers’ choices and types, and vice versa.

Note that given some game Γ , the structure η(AΓ ) can be
expressed as the image of a function from the collection of all
Aumann models of Γ as domain to the collection of all epistemic
models of Γ as range, and the structure θ (MΓ ) can be expressed
as the image of a function from the collection of all epistemic
models for Γ satisfying the common prior assumption as domain
to the collection of all Aumann models of Γ as range.
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It is now shown that the transformations between Aumann
models and epistemic models connect correlated equilibrium
with common belief in rationality and a common prior.

Theorem 2. Let Γ be a static game.

(i) Let AΓ be an Aumann model of Γ , and η(AΓ ) be the AΓ -
induced epistemic model of Γ . If (σi)i∈I in AΓ constitutes a
correlated equilibrium, then all types in η(AΓ ) express com-
mon belief in rationality and η(AΓ ) satisfies the common prior
assumption.

(ii) Let MΓ be an epistemic model of Γ satisfying the com-
mon prior assumption, and θ (MΓ ) be the MΓ -induced Au-
mann model of Γ . If all types in MΓ express common belief
in rationality, then (σi)i∈I in θ (MΓ ) constitutes a correlated
equilibrium.

Proof. For part (i) of the theorem, let ω ∈ Ω be some world
and tIi(ω)

i some type of some player i ∈ I . Consider some player
j ∈ I \ {i} and some choice type pair (cj, tj) ∈ Cj × Tj of player j
such that bi[t

Ii(ω)
i ](cj, tj) > 0. As

bi[t
Ii(ω)
i ](c−i, t−i) =

∑
ω′∈Ii(ω):σ−i(ω′)=c−i,t

I−i(ω′)
−i =t−i

π
(
ω′

| Ii(ω)
)
,

there exists a world ω′
∈ Ii(ω) such that π (ω′) > 0, σ−i(ω′) =

c−i, and tI−i(ω′)
−i = t−i. Since (σk)k∈I constitutes a correlated

equilibrium, σj(ω′) = cj is optimal for j’s first-order belief at ω′

which is the same as t
Ij(ω′)
j ’s first-order belief by construction of

η(AΓ ). Because t
Ij(ω′)
j = tj, the choice cj is optimal for tj’s first-

order belief and tIi(ω)
i thus believes in j’s rationality. As tIi(ω)

i as
well as t

Ij(ω′)
j have been chosen arbitrarily, all types in η(AΓ )

believe in rationality, and consequently express common belief
in rationality too.

Define a probability measure ϕ ∈ ∆
(
×j∈I (Cj × Tj)

)
such that

for all (cj, t
Pj
j )j∈I ∈ ×j∈I (Cj × Tj)

ϕ
(
(cj, t

Pj
j )j∈I

)
:=

{
π (∩j∈IPj), if cj = σj(Pj) for all j ∈ I,
0, otherwise.

It is now shown that η(AΓ ) satisfies the common prior assump-
tion, by establishing that for all j ∈ I and t

Pj
j ∈ Tj, it is the case that

bj[t
Pj
j ](c−j, t

P−j
−j ) =

ϕ
(
cj, t

Pj
j , c−j, t

P−j
−j

)
ϕ
(
cj, t

Pj
j

)
for all cj ∈ Cj with ϕ(cj, t

Pj
j ) > 0, and for all (c−j, t

P−j
−j ) ∈ C−j × T−j.

Note that ϕ(cj, t
Pj
j ) > 0 only holds if cj = σj(Pj). It thus has to be

established that

bj[t
Pj
j ](c−j, t

Pj
−j) =

ϕ

((
σj(Pj), t

Pj
j

)
, (c−j, t

Pj
−j)

)
ϕ
(
σj(Pj), t

Pj
j

)
for all (c−j, t

P−j
−j ) ∈ C−j × T−j and for all t

Pj
j ∈ Tj. Consider some

Pj ∈ Ij and distinguish two cases (I) and (II).
Case (I). Suppose that Pj ∩ (∩k∈I\{j}Pk) ̸= ∅ and ck = σk(Pk) for

all k ∈ I \ {j}. Observe that

bj[t
Pj
j ](c−j, t

P−j
−j ) = bj[t

Pj
j ](σ−j(P−j), t

P−j
−j )

=

∑
ω′∈Pj:σ−j(ω′)=c−j,t

I−j(ω′)
−j =t

P−j
−j

π (ω′
| Pj)

=

∑
ω′∈Pj:ω′∈Pk for all k∈I\{j}

π (ω′
| Pj)

=
π (∩k∈IPk)

π (Pj)

=
ϕ
(
σj(Pj), t

Pj
j , σ−j(P−j), t

P−j
−j

)∑
P̂−j∈I−j

π
(
Pj ∩ (∩k∈I\{j}P̂k)

)
=

ϕ
(
σj(Pj), t

Pj
j , σ−j(P−j), t

P−j
−j

)
∑

P̂−j∈I−j
ϕ
(
σj(Pj), t

Pj
j , σ−j(P̂−j), t

P̂−j
−j

)
=

ϕ
(
σj(Pj), t

Pj
j , σ−j(P−j), t

P−j
−j

)
∑

(c−j,t−j)∈C−j×T−j
ϕ
(
σj(Pj), t

Pj
j , c−j, t−j

)
=

ϕ
(
σj(Pj), t

Pj
j , σ−j(P−j), t

P−j
−j

)
ϕ
(
σj(Pj), t

Pj
j

) .

Case (II). Suppose that Pj ∩ (∩k∈I\{j}Pk) = ∅ or ck ̸= σk(Pk) for
some k ∈ I \ {j}. Then,

bj[t
Pj
j ](c−j, t

P−j
−j ) = 0 =

ϕ
(
σj(Pj), t

Pj
j , c−j, t

P−j
−j

)
ϕ
(
σj(Pj), t

Pj
j

)
holds by definition. Hence, η(AΓ ) satisfies the common prior
assumption.

For part (ii) of the theorem, let (cj, tj)j∈I ∈ ×j∈I (Cj×Tj) be some
choice type combination of all players such that ϕ

(
(cj, tj)j∈I

)
> 0.

Consider the world ω(cj,tj)j∈I ∈ Ω in θ (MΓ ) and a choice c ′

i ∈ Ci
of some player i ∈ I . Then,∑
ω′∈Ii

(
ω
(cj,tj)j∈I

) π

(
ω′

| Ii
(
ω(cj,tj)j∈I

))
· Ui

(
c ′

i , σ−i(ω′)
)

=

∑
ω′∈Ii

(
ω
(cj,tj)j∈I

)
π (ω′)

π

(
Ii

(
ω(cj,tj)j∈I

)) · Ui
(
c ′

i , σ−i(ω′)
)

=

∑
(c′

−i,t
′
−i)∈C−i×T−i:ϕ(ci,ti,c′−i,t

′
−i)>0

ϕ(ci, c ′

−i, ti, t
′

−i)
ϕ(ci, ti)

· Ui(c ′

i , c
′

−i)

=

∑
(c′

−i,t
′
−i)∈C−i×T−i:bi[ti](c′−i,t

′
−i)>0

bi[ti](c ′

−i, t
′

−i) · Ui(c ′

i , c
′

−i)

= ui(c ′

i , ti),

where the third equality follows from the fact that MΓ satis-
fies the common prior assumption with common prior ϕ. Now,
consider some world ω(cj,tj)j∈I ∈ Ω and some player i ∈ I . Since
ϕ(ci, ti) > 0, there exists a type tj ∈ Tj such that bj[tj](ci, ti) > 0
for some player j ∈ I . As tj expresses common belief in rationality,
tj believes in i’s rationality. Hence

ui(ci, ti) ≥ ui(c ′

i , ti)

for all c ′

i ∈ Ci. Because

ui(c ′

i , ti) =

∑
ω′∈Ii

(
ω
(cj,tj)j∈I

) π

(
ω′

| Ii
(
ω(cj,tj)j∈I

))
· Ui

(
c ′

i , σ−i(ω′)
)

for all c ′

i ∈ Ci, and σi
(
ω(cj,tj)j∈I

)
= ci, it follows that∑

ω′∈Ii

(
ω
(cj,tj)j∈I

) π

(
ω′

| Ii
(
ω(cj,tj)j∈I

))
· Ui

(
σi

(
ω(cj,tj)j∈I

)
, σ−i(ω′)

)
= ui(ci, ti)

≥ ui(c ′

i , ti) =

∑
ω′∈Ii

(
ω
(cj,tj)j∈I

)π
(
ω′

| Ii
(
ω(cj,tj)j∈I

))
· Ui

(
c ′

i , σ−i(ω′)
)
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holds for all c ′

i ∈ Ci, and thus (σi)i∈I constitutes a correlated
equilibrium. ■

In fact, Theorem 2 can be interpreted as a morphism between
Aumann models and epistemic models that preserves some no-
tions of optimality of choice and common prior.

An epistemic characterization of correlated equilibrium in
terms of common belief in rationality and a common prior ensues
as follows.

Theorem 3. Let Γ be a static game, i ∈ I some player, β∗

i ∈ ∆(C−i)
some first-order belief of player i, and c∗

i ∈ Ci some choice of player
i.

(i) The first-order belief β∗

i is possible in a correlated equilibrium,
if and only if, the first-order belief β∗

i is possible under common
belief in rationality with a common prior.

(ii) The choice c∗

i is optimal in a correlated equilibrium, if and
only if, the choice c∗

i is rational under common belief in
rationality with a common prior.

Proof. For the only if direction of part (i) of the theorem, let AΓ

be an Aumann model of Γ and (σj)j∈I a correlated equilibrium, in
which β∗

i is possible. Then, there exists a world ω̂ ∈ Ω such that
β∗

i (c−i) = π
(
{ω′

∈ Ii(ω̂) : σ−i(ω′) = c−i} | Ii(ω̂)
)
for all c−i ∈ C−i.

Consider the epistemic model η(AΓ ) of Γ . By Theorem 2(i), the
type tIi(ω̂)

i expresses common belief in rationality, and the epis-
temic model η(AΓ ) of Γ satisfies the common prior assumption.
Note that bi[t

Ii(ω̂)
i ](c−i, t−i) =

∑
ω∈Ii(ω̂):σ−i(ω)=c−i,η−i(ω)=t−i

π
(
ω |

Ii(ω̂)
)
for all (c−i, t−i) ∈ C−i×T−i, and thus β∗

i (c−i) = bi[t
Ii(ω̂)
i ](c−i)

for all c−i ∈ C−i. Therefore, the first-order belief β∗

i is possible
under common belief in rationality with a common prior.

For the if direction of the part (i) of the theorem, suppose
that β∗

i is possible under common belief in rationality with a
common prior. Thus, there exists an epistemic model MΓ of
Γ with a type t∗i ∈ Ti such that t∗i expresses common belief
in rationality, bi[t∗i ](c−i) = β∗

i (c−i) for all c−i ∈ C−i, and MΓ

satisfies the common prior assumption. Construct an epistemic
model (MΓ )′ =

(
(T ′

j )j∈I , (b
′

j)j∈I
)
of Γ , where for every player

j ∈ I , the set T ′

j of types contains those tj ∈ Tj from MΓ such
that tj ∈ Tj(t∗i ), i.e. tj is belief-reachable from t∗i . Note that (MΓ )′
satisfies the common prior assumption, with common prior ϕ′

∈

∆
(
×j∈I (Cj × T ′

j )
)
being ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
from MΓ restricted

to, and normalized on, ×j∈I (Cj × T ′

j ). By Lemma 1, all types in
(MΓ )′ express common belief in rationality. It then follows with
Theorem 2(ii) that (σj)j∈I constitutes a correlated equilibrium in
θ
(
(MΓ )′

)
. As the first-order beliefs of t∗i are the same in (MΓ )

and (MΓ )′, the first-order belief of t∗i equals β∗

i also in (MΓ )′.
Consider a world ω(ci,t∗i ,c−i,t−i) ∈ Ω with ϕ′(ci, t∗i , c−i, t−i) > 0
for some ci ∈ Ci, c−i ∈ C−i, and t−i ∈ T−i. Consequently,
β∗

i (c−i) = bi[t∗i ](c−i) =
∑

t−i∈T−i
ϕ(c−i, t−i | ci, t∗i ) = π

(
{ω ∈

Ii
(
ω(ci,t∗i ,c−i,t−i)

)
: σ−i

(
ω
)

= c−i} | Ii
(
ω(ci,t∗i ,c−i,t−i)

))
. Therefore, β∗

i
is possible in a correlated equilibrium.

For part (ii) of the theorem, let AΓ be an Aumann model of
Γ and (σj)j∈I a correlated equilibrium, in which c∗

i is optimal.
Then, there exists some first-order belief β∗

i ∈ ∆(C−i) possible
in AΓ for which c∗

i maximizes expected utility. By part (i) of the
corollary it then follows that β∗

i is also possible under common
belief in rationality with a common prior, and consequently c∗

i is
optimal under common belief in rationality with a common prior
too. Conversely, let MΓ be an epistemic model of Γ with a type
t∗i ∈ Ti such that t∗i expresses common belief in rationality, c∗

i is
optimal for t∗i , and MΓ satisfies the common prior assumption.
Let β∗

i ∈ ∆(Ci) be the first-order belief of t∗i . Then, β
∗

i is possible

under common belief in rationality with a common prior. By
part (i) of the corollary it then follows that β∗

i is also possible
in a correlated equilibrium, and consequently c∗

i is optimal in a
correlated equilibrium too. ■

From an epistemic perspective correlated equilibrium is thus
– doxastically and behaviourally – equivalent to common belief
in rationality with a common prior. In fact, the epistemic char-
acterization of correlated equilibrium according to Theorem 3
somewhat resembles Dekel and Siniscalchi (2015, Theorem 12.4).
However, the two epistemic characterizations differ importantly
in the sense that the latter is provided for an ex-ante perspective
while the former is furnished for an interim perspective. More
precisely, Theorem 3 characterizes the players’ (conditionalized)
first-order beliefs as well as optimal choices in line with corre-
lated equilibrium, while Dekel and Siniscalchi (2015, Theorem
12.4) focus on the (prior) beliefs corresponding to Aumann’s
original solution concept. Furthermore, a minor difference lies
in the formulation of the epistemic characterization in terms of
belief hierarchies (Dekel and Siniscalchi, 2015, Theorem 12.4) as
opposed to types (Theorem 3). Note that the conditions used
by Dekel and Siniscalchi (2015, Theorem 12.4) as well as by
Theorem 3 are weaker than in Aumann (1987), where correlated
equilibrium is characterized – also from an ex-ante in contrast
to our interim perspective – in terms of universal rationality
and a common prior. More precisely, Aumann (1987) assumes
that players are rational at all possible worlds, which is stronger
than common belief in rationality. Intuitively, in Aumann’s (1987)
model no irrationality in the system is admitted at all. Besides,
Brandenburger and Dekel (1987) characterize a variant of cor-
related equilibrium without a common prior called a posteriori
equilibrium by common knowledge of rationality for the ex-ante
stage of the game.

Next canonical correlated equilibrium is considered from an
epistemic perspective. Before the solution concept is epistem-
ically characterized, two further doxastic conditions are intro-
duced.

Definition 8. Let Γ be a static game, MΓ an epistemic model
of it, i, j ∈ I two players, ti ∈ Ti some type of player i, βj ∈ ∆(C−j)
some first-order belief of player j, and cj ∈ Cj some choice of
player j. The type ti always explains choice cj by first-order belief
βj, if for all tj ∈ Tj such that (cj, tj) ∈ (Cj ×Tj)(ti), it is the case that

bj[tj](c−j) = βj(c−j)

for all c−j ∈ C−j.

Accordingly, every given choice deemed possible a reasoner
accompanies with the same first-order belief in his entire be-
lief hierarchy. In this sense, throughout his reasoning any given
choice is explained in a unique way.

Requiring a player to always explain any choice with a fixed
first-order belief gives rise to the notion of one-theory-per-choice,
as follows.

Definition 9. Let Γ be a static game, MΓ an epistemic model
of it, i ∈ I some player, and ti ∈ Ti some type of player i. The type
ti holds one-theory-per-choice, if for all j ∈ I , and for all cj ∈ Cj,
there exists βj ∈ ∆(C−j) such that ti always explains cj by βj.

Intuitively, a player reasoning in line with one-theory-per-
choice never – i.e. nowhere in his belief hierarchy – uses dis-
tinct first-order beliefs (‘‘theories’’) for any player to explain
the same choice of this player. The reasoner does thus not use
more theories than necessary in his belief hierarchy, which is in
this sense sparse. Besides, note that in Example 2 Bob’s belief
hierarchy induced at world ω3 actually violates the one-theory-
per-choice condition. Indeed, Bob believes with probability 1

4 that
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Alice chooses b while believing him to choose e, but he also
believes with probability 1

4 that Alice chooses b while believing
him to choose e with probability 1

3 and g with probability 2
3 .

In fact, the one-theory-per-choice condition contains a rather
strong psychological assumption in terms of correct beliefs. Since
at no iteration in the full belief hierarchy of a reasoner holding
one-theory-per-choice any given choice is coupled with distinct
first-order beliefs, the reasoner believes that his opponents are
correct about how he explains any choice, he believes that his
opponents believe that their opponents are correct about how he
explains any choice, etc. Also, the reasoner does not only believe
that any opponent only uses a single theory to explain a given
choice, but also believes that his other opponents believe so, and
that they believe their opponents to believe so, etc. In particular,
the following remark thus ensues.

Remark 5. Let Γ be a static game, MΓ an epistemic model of
it, i ∈ I some player, and ti ∈ Ti some type of player i that holds
one-theory-per-choice. Consider some player j ∈ I , some choice
of player cj ∈ Cj, and some first-order belief βj ∈ ∆(C−j) of player
j such that ti always explains cj by βj.

(i) For all k ∈ I \ {i}, for all tk ∈ Tk such that bi[ti](tk) > 0, and
for all t ′i ∈ Ti such that bk[tk](t ′i ) > 0, it is the case that t ′i
always explains cj by βj.

(ii) For all l ∈ I \{i, j}, and for all tl ∈ Tl such that bi[ti](tl) > 0,
it is the case that tl always explains cj by βj.

Accordingly, the one-theory-per-choice condition thus con-
tains two correct beliefs assumptions: a reasoner believes his
opponents to be correct about all of his choice explanations as
well as projects his choice explanations on any other opponent.
It is even the case that common belief in these two properties – or
formally in properties (i) and (ii) of Remark 5 – is implied by one-
theory-per-choice, as they are taken for certain in all interactive
belief iterations.

Besides, a first-order belief βi ∈ Ci is said to be possible under
common belief in rationality with a common prior and one-theory-
per-choice, if there exists an epistemic model MΓ of Γ satisfying
the common prior assumption with a type t∗i ∈ Ti of i such
that bi[t∗i ](c−i) = β∗

i (c−i) for all c−i ∈ C−i and t∗i expresses
common belief in rationality as well as holds one-theory-per-
choice. Similarly, a choice c∗

i ∈ Ci is said to be rational under
common belief in rationality with a common prior and one-theory-
per-choice, if there exists an epistemic model MΓ of Γ satisfying
the common prior assumption with a type t∗i ∈ Ti of i such that
c∗

i is optimal for t∗i and t∗i expresses common belief in rationality
as well as holds one-theory-per-choice.

An epistemic characterization of canonical correlated equilib-
rium then ensues as follows.

Theorem 4. Let Γ be a static game, i ∈ I some player, β∗

i ∈ ∆(C−i)
some first-order belief of player i, and c∗

i ∈ Ci some choice of player
i.

(i) The first-order belief β∗

i is possible in a canonical correlated
equilibrium, if and only if, the first-order belief β∗

i is possible
under common belief in rationality with a common prior and
one-theory-per-choice.

(ii) The choice c∗

i is optimal in a canonical correlated equilib-
rium, if and only if, the choice c∗

i is rational under common
belief in rationality with a common prior and one-theory-per-
choice.

Proof. For the only if direction of part (i) of the theorem, suppose
that ρ ∈ ∆(×j∈ICj) constitutes a canonical correlated equilibrium

of Γ . For every j ∈ I define a type space Tj := {t
cj
j : ρ(cj) > 0}

with induced belief function

bj[t
cj
j ](c−j, t−j) :=

{
ρ(c−j | cj), if t−j = t

c−j
−j ,

0, otherwise,

for every type t
cj
j ∈ Tj. Also, define a probability measure ϕ ∈

∆
(
(Cj × Tj)j∈I

)
such that

ϕ
(
(cj, tj)j∈I

)
:=

{
ρ
(
(cj)j∈I

)
, if tj = t

cj
j for all j ∈ I,

0, otherwise,

for all (cj, tj)j∈I ∈ (Cj × Tj)j∈I .
Observe that

ϕ(cj, t
cj
j , c−j, t

c−j
−j )

ϕ(cj, t
cj
j )

=
ρ
(
(ck)k∈I

)
ρ(cj)

= ρ(c−j | cj) = bj[t
cj
j ](c−j, t

c−j
−j )

holds for all (cj, t
cj
j ) ∈ Cj × Tj, and thus the constructed epistemic

model
(
(Tj)j∈I , (bj)j∈I

)
satisfies the common prior assumption with

common prior ϕ.
Next consider some type t

cj
j ∈ Tj and let (ck, tk), (ck, t ′k) ∈

(Ck × Tk)(t
cj
j ) be belief-reachable from t

cj
j . By definition of Tk it

holds that tk = t ′k = tckk and thus bk[tk](c−k) = bk[t ′k](c−k)
trivially holds for all c−k ∈ C−k. Therefore, t

cj
j holds one-theory-

per-choice. As t
cj
j has been chosen arbitrarily, all types in Tj hold

one-theory-per-choice.
Furthermore, let (ck, tk) ∈ Ck × Tk such that bj[t

cj
j ](ck, tk) > 0

for some t
cj
j ∈ Tj. Then, tk = tckk and bk[t

ck
k ](c−k) = ρ(c−k | ck)

holds for all c−k ∈ C−k as well as ρ(ck) > 0. Since ρ is a canonical
correlated equilibrium, ck is optimal for ρ(· | ck) and consequently
optimal for tckk too. Hence, all types believe in rationality and a
fortiori all types express common belief in rationality.

Suppose that β∗

i is possible in the canonical correlated equi-
librium ρ. Then, there exists some choice ĉi ∈ Ci with ρ(ĉi) > 0
such that ρ(c−i | ĉi) = β∗

i (c−i) for all c−i ∈ C−i. Consider the type
t ĉii ∈ Ti, which indeed exists due to ρ(ĉi) > 0, and observe that
bi[t

ĉi
i ](c−i) = ρ(c−i | ĉi) = β∗

i (c−i) for all c−i ∈ C−i. Therefore, the
first-order belief β∗

i is possible under common belief in rationality
with a common prior and one-theory-per-choice.

For the if direction of part (i) of the theorem, let MΓ be an
epistemic model of Γ that satisfies the common prior assumption
with common prior ϕ ∈ ∆

(
×j∈I (Cj × Tj)

)
, as well as t∗i ∈ Ti

be a type such that t∗i expresses common belief in rationality,
holds one-theory-per-choice, and t∗i holds first-order belief β∗

i . It
is shown that β∗

i is possible in a canonical correlated equilibrium.
Consider some choice type pair (cj, tj) ∈ (Cj × Tj)(t∗i ) of some

player j ∈ I that is belief-reachable from t∗i . Then, there exists
a sequence (t1, . . . , tN ) of types such that t1 = t∗i , t

N
= tj,

bk[tn](tn+1) > 0 for all n ∈ {1, . . . ,N − 1}, for some k ∈ I ,
and bl[tN−1

](cj, tj) > 0. As t∗i expresses (N − 1)-fold belief in
rationality, it directly follows that cj is optimal for tj.

Define a probability measure ρ ∈ ∆(×k∈ICk) by

ρ
(
(ck)k∈I

)
:=

⎧⎨⎩
ϕ(×k∈I {ck}×Tk)

ϕ

(
×k∈I (Ck×Tk)(t∗i )

) , if ck ∈ Ck(t∗i ) for all k ∈ I,

0, otherwise,

for all (ck)k∈I ∈ ×k∈ICk, where Ck(t∗i ) := {ck ∈ Ck : (ck, tk) ∈

(Ck × Tk)(t∗i ) for some tk ∈ Tk}.
Let c̃j ∈ Cj be some choice such that ρ(c̃j) > 0. Thus, c̃j ∈ Cj(t∗i )

and there exists some type t̃j ∈ Tj such that (c̃j, t̃j) ∈ (Cj × Tj)(t∗i ).
Since t∗i expresses common belief in rationality, it follows, that c̃j
is optimal for t̃j. As MΓ satisfies the common prior assumption,
it is the case that

bj[t̃j](c−j, t−j) =
ϕ(c̃j, t̃j, c−j, t−j)

ϕ(c̃j, t̃j)
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holds, and hence

bj[t̃j](c−j) =
ϕ(c̃j, t̃j, {c−j} × T−j)

ϕ(c̃j, t̃j)

for all c−j ∈ C−j.
Since t∗i holds one-theory-per-choice, all types in the set

Tj(c̃j) := {t ′j ∈ Tj : (c̃j, t ′j ) ∈ (Cj × Tj)(t∗i )} have the same first-order
belief βj ∈ ∆(C−j). Consequently, for all t ′j ∈ Tj(c̃j) it is the case
that

bj[t ′j ](c−j) =
ϕ({c̃j, t ′j } × {c−j} × T−j)

ϕ(c̃j, t ′j )
= βj(c−j)

for all c−j ∈ C−j. Then,

ρ(c−j | c̃j) =
ρ(c̃j, c−j)

ρ(c̃j)
=

ϕ
(
{c̃j} × Tj(c̃j) × {c−j} × T−j

)
ϕ
(
{c̃j} × Tj(c̃j)

)
∑

t ′j∈Tj(c̃j)
ϕ({c̃j, t ′j } × {c−j} × T−j)∑
t ′j∈Tj(c̃j)

ϕ(c̃j, t ′j )

=

∑
t ′j∈Tj(c̃j)

βj(c−j) · ϕ(c̃j, t ′j )∑
t ′j∈Tj(c̃j)

ϕ(c̃j, t ′j )
= βj(c−j)

for all c−j ∈ C−j. Thus, t̃j’s first-order belief is βj = ρ(· | c̃j), and
– since c̃j is optimal for t̃j – it is the case that c̃j is optimal for
ρ(· | c̃j). Therefore, ρ is a canonical correlated equilibrium.

Recall that t∗i holds first-order belief β∗

i . It is shown that β∗

i is
possible in the canonical correlated equilibrium ρ. As ϕ(t∗i ) > 0,
and MΓ satisfies the common prior assumption, it follows that
(c̃i, t∗i ) ∈ (Ci × Ti)(t∗i ) for some c̃i ∈ Ci. In fact, there exists a
player l ∈ I such that bi[t∗i ](tl) > 0 and bl[tl](c̃i, t∗i ) > 0. Since t∗i
holds one-theory-per-choice, β∗

i is the unique first-order belief
attached to c̃i in t∗i ’s induced belief hierarchy. As t∗i ∈ Ti(c̃i), it
follows from above that β∗

i (c−i) = bi[t∗i ](c−i) = ρ(c−i | c̃i) for all
c−i ∈ C−i. Consequently, β∗

i is possible in a canonical correlated
equilibrium.

For part (ii) of the theorem, let ρ be a canonical correlated
equilibrium, in which c∗

i is optimal. Then, there exists some first-
order belief β∗

i ∈ ∆(C−i) possible in ρ for which c∗

i maximizes
expected utility. By part (i) of the theorem it then follows that β∗

i
is also possible under common belief in rationality with a com-
mon prior and one-theory-per-choice, thus c∗

i is optimal under
common belief in rationality with a common prior and one one-
theory-per-choice too. Conversely, let MΓ be an epistemic model
of Γ with a type t∗i ∈ Ti such that t∗i expresses common belief in
rationality, t∗i holds one-theory-per-choice, c∗

i is optimal for t∗i ,
and MΓ satisfies the common prior assumption. Let β∗

i be t∗i ’s
first-order belief. Then, β∗

i is possible under common belief in
rationality with a common prior and one-theory-per-choice. By
part (i) of the theorem it then follows that β∗

i is also possible in a
canonical correlated equilibrium, and consequently c∗

i is optimal
in a canonical correlated equilibrium too. ■

From an epistemic perspective the solution concept of canon-
ical correlated equilibrium thus is substantially stronger than
correlated equilibrium by also requiring the reasoner’s thinking
to be in line with the one-theory-per-choice condition, which in
turn contains a significant correct beliefs assumption.

It can be concluded that correlated equilibrium and canon-
ical correlated equilibrium are distinct solution concepts both
behaviourally as well as doxastically. The epistemic characteri-
zations via Theorems 3 and 4 shed light on understanding this
difference conceptually. Indeed, canonical correlated equilibrium
requires a non-trivial correct beliefs property – the one-theory-
per-choice condition – in addition to common belief in rationality

and a common prior also used by correlated equilibrium. Since a
correct beliefs assumption also constitutes the decisive reasoning
property of Nash equilibrium, canonical correlated equilibrium
appears to be closer to this solution concept, while correlated
equilibrium seems to be more distant from it. Also, canonical
correlated equilibrium can thus be seen as a more demand-
ing solution concept than correlated equilibrium in terms of
reasoning.

6. Discussion

Solution concepts and epistemic conditions. Before our formal re-
sults can be discussed philosophically, it is important to fix an
interpretation of the focal objects in general. The relevant ob-
jects are the two solution concepts of correlated equilibrium
and canonical correlated equilibrium as well as their correspond-
ing epistemic conditions. The meaning of solution concepts and
epistemic conditions thus have to be elaborated on.

Solution concepts in game theory are mechanical procedures
that give predictions about players’ choices. Typically, the input to
a solution concept is the specification of a game and the output
is a subset of all the players’ choice combinations. While being
based on implicit intuitive ideas, the actual solution concept itself
takes the shape of a black box. Furthermore, solution concepts
are not uniformly defined within the same structure. For in-
stance, correlated equilibrium is formulated in Aumann models
and imposes a property on choice functions, whereas canoni-
cal correlated equilibrium specifies a property for a probability
measure on all players’ choice combinations. Consequently, due
to their opaque character as well as possibly distinct structural
embeddings and kinds of output, it is delicate to directly interpret
solution concepts in a lucid way.

However, it is possible to indirectly furnish meaning to a
solution concept by characterizing it in terms of reasoning. The
formal framework of game forms is extended by epistemic mod-
els which allow to describe interactive reasoning patterns by
means of epistemic conditions. The characterization of a solution
concept with epistemic conditions makes explicit its underlying
intuitive ideas in a rigorous way. Accordingly, the interpretation
of a solution concept is shifted to the epistemic realm. The precise
interactive thinking that guides players to choose in line with a
solution concept thus constitutes the latter’s meaning.

Solution concepts and epistemic conditions thus form a dual-
ity. A solution concept and its corresponding epistemic conditions
are formally equivalent, yet the former constitutes a mechanic
procedure to compute choice profiles while the latter repre-
sents interactive reasoning pattern. In a sense, solution concepts
could be viewed as the syntax and epistemic conditions as the
semantics of a logic of interactive decision-making.

Besides, an epistemic model provides a uniform structure in
which solution concepts can be compared via their corresponding
epistemic conditions. Such a universal point of reference is espe-
cially crucial for perspicuously relating solution concepts that are
defined in varying formal frameworks or that generate distinct
kinds of output. For instance, to determine whether two solution
concepts are equivalent or not their corresponding epistemic
conditions can be juxtaposed. Here, this epistemic approach to
fathom solution concepts has served to establish that the solu-
tion concepts of correlated equilibrium and canonical correlated
equilibrium are semantically distinct and do not correspond to
the same lines of reasoning.
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Ex-ante versus interim. From an ex-ante perspective before any
reasoning or decision-making takes place, correlated equilibrium
and canonical correlated equilibrium induce the same probability
measures on the players’ choice combinations. This so-called
revelation principle is formally expressed by Theorem 1. Crucially,
the ensuing equivalence of correlated equilibrium and canonical
correlated equilibrium merely applies to the ex-ante stage of the
game.

However, such a prior equivalence is only of limited interest
for reasoning and decision-making in games. The posterior beliefs
and the optimal choices in line with these posterior beliefs are
the pertinent objects for reasoning and decision-making. The
two solution concepts have been shown here to differ in terms
of both their possible posterior beliefs (Remark 3) as well as
their optimal choices (Remark 4), i.e. in terms of both relevant
dimensions significant for reasoning and decision-making. The
revelation principle does thus no longer hold in the interim stage
of the game and in this sense fails to be robust.

Common belief in rationality. The one-theory-per-choice condi-
tion does not have any behavioural effect if imposed in addition
to common belief in rationality only. Intuitively, if a choice is
rational under common belief in rationality, it is well-known that
it then survives iterated elimination of strictly dominated choices.
It is possible to construct an epistemic model such that there
exists a single type for every surviving choice. As for every choice
there then exists a unique supporting type, belief in rationality
already requires a unique way of coupling opponents’ choices and
types in the support of a given player’s induced belief function.
Consequently, the one-theory-per-choice condition holds in such
an epistemic model. Therefore, a choice is rational under common
belief in rationality, if and only if, it is rational under common
belief in rationality with one-theory-per-choice.

Thus, the one-theory-per-choice-condition does not add any-
thing in terms of optimal choice to common belief in rationality.
Only if a common prior is also assumed the one-theory-per-
choice condition exhibits behavioural implications beyond
common belief in rationality resulting in canonical correlated
equilibrium and not in iterated elimination of strictly dominated
choices.

Common prior assumption. The common prior assumption is
present in both Theorems 3 and 4, and thus underlies correlated
equilibrium as well as canonical correlated equilibrium. Psycho-
logically, belief hierarchies derived from a common prior can be
interpreted as exhibiting a kind of symmetry in the reasoning
of the respective player and his opponents. While the existence
of a common prior does imply that a player believes that his
opponents assign positive probability to his true belief hierarchy,
a genuine correct beliefs property of a common prior is not
directly apparent. The exploration of belief hierarchies derived
from a common prior and any potential correct beliefs properties
represents an intriguing question for further research. In any case,
Nash equilibrium and canonical correlated equilibrium implic-
itly assume simple belief hierarchies and one-theory-per-choice,
respectively, as correct beliefs properties. Therefore, canonical
correlated equilibrium is conceptually closer to Nash equilibrium
than correlated equilibrium is to Nash equilibrium, independent
of whether the common prior assumption exhibits any correct
beliefs flavour, or not.

Besides, note that there exists further solution concept in the
literature based on the idea of correlation that entirely dispense
with the common prior assumption such as Aumann’s (1974)
subjective correlated equilibrium and Brandenburger and Dekel’s
(1987) correlated rationalizability. Our results would suggest that
an interim characterization of the former solution concept would
maintain common belief in rationality yet weaken the common

prior assumption to a subjective prior assumption in the sense
that the beliefs of every type of a given player are derived from
the same prior. In contrast, correlated rationalizability drops any
prior requirement and is simply equivalent to common belief in
rationality in terms of reasoning.5 The key distinction between
correlated equilibrium and canonical correlated equilibrium on
the one hand and subjective correlated equilibrium and corre-
lated rationalizability on the other hand thus lies in the common
prior assumption which the former solution concepts require yet
the latter notions lack.

One-theory-per-choice. A player reasoning in line with the epis-
temic condition of one-theory-per-choice uses for each of his
opponents’ choices only a single first-order belief in his whole
belief hierarchy. In other words, a player never uses two different
first-order beliefs to explain the same choice in his whole belief
hierarchy. The one-theory-per-choice condition thus keeps a be-
lief hierarchy lean. Such a sparsity condition is similar to Perea’s
(2012) epistemic notion of simple belief hierarchies, which re-
quire a belief hierarchy to be entirely generated by a tuple of first-
order beliefs. Since simple belief hierarchies are closely connected
to Nash equilibrium and the one-theory-per-choice condition to
canonical correlated equilibrium, the resemblance between the
two conditions in terms of leanness gives canonical correlated
equilibrium some Nash equilibrium flavour, which is absent from
correlated equilibrium due to lacking such a leanness condition.

Potentially, the epistemic hypothesis of one-theory-per-choice
could shed light on further game theoretic solution concepts such
as perfect correlated equilibrium. Dhillon and Mertens (1996)
introduce a correlation version of Selten’s (1975) notion of perfect
equilibrium and show that the revelation principle, i.e. the ex-
ante equivalence of perfect correlated equilibrium with a canoni-
cal representation of it, actually fails to hold. It would be interest-
ing to investigate whether the one-theory-per-choice condition –
or some variant of it – could explain this absence of the revela-
tion principle. Similarly, the idea of one-theory-per-choice might
play a role for the revelation principle of correlated equilibrium
in more general classes of games, e.g. incomplete information,
unawareness, or dynamic games. We leave such questions for
possible future research.

Nash equilibrium. The epistemic analysis of Nash equilibrium
(e.g. Aumann and Brandenburger, 1995; Perea, 2007; Barelli,
2009; Bach and Tsakas, 2014; Bonanno, 2017; Bach and Perea,
2019) has unveiled a correct beliefs assumption as the decisive
epistemic property of Nash equilibrium. In fact, a correct beliefs
property also features implicitly in the one-theory-per-choice
condition (Remark 5): the reasoner believes that his opponents
are correct about his theories, believes that his opponents believe
that their opponents are correct about his theories, etc. Thus,
canonical correlated equilibrium exhibits some Nash equilibrium
flavour, whereas correlated equilibrium does not.

To some extent, the lack of a correct beliefs assumption for
correlated equilibrium illustrates its fundamental difference to
Nash equilibrium. Intuitively, the former solution concept only
requires players to behave optimally given the opponents’ choice
functions, while the latter necessitates players to behave opti-
mally given the opponents’ actual choices.

Nash equilibrium can be characterized by common belief in
rationality together with simple belief hierarchies. The correct
beliefs assumptions due to simple belief hierarchies and one-
theory-per-choice can be compared. As the whole belief hierarchy
is generated by a single tuple of first-order beliefs, the condition

5 In fact, Brandenburger and Dekel (1987) also show that correlated rational-
izability coincides with a refinement of subjective correlated equilibrium called
a posteriori equilibrium.
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of simple belief hierarchies directly implies the one-theory-per-
choice condition. However, it is possible in a belief hierarchy sat-
isfying the one-theory-per-choice condition that different choices
of some opponent are coupled with types inducing distinct first-
order beliefs for that opponent, which is impossible for simple
belief hierarchies, as all choices of a player are explained by only
a single theory in the reasoner’s entire belief hierarchy. Besides,
simple belief hierarchies imply independence of the first-order
beliefs that they are generated with, which is not necessarily the
case with belief hierarchies satisfying the one-theory-per-choice
condition. Therefore, if a type holds a simple belief hierarchy,
then he also holds one-theory-per-choice, while it is possible
that a type holds one-theory-per-choice but no simple belief
hierarchy.

The one-theory-per-choice condition thus constitutes a
weaker correct beliefs assumption than the simplicity condition.
It can then be argued that implausibility criticisms due to implicit
correct beliefs properties affect Nash equilibrium stronger than
canonical correlated equilibrium.

Besides, correct beliefs inherent in simple belief hierarchies
or one-theory-per-choice lies entirely inside the mind of the
respective reasoner. In this one-person perspective sense the
notion of correctness used here is distinct from the truth axiom
(‘‘a proposition is implied by the belief in it’’), which is the way
correct beliefs is typically understood in philosophy. In fact, the
truth axiom cannot be expressed in the one-person perspective
type-based epistemic models used here (Definition 3), as a formal
notion of state is lacking. In a sense, correct beliefs in terms
of simple belief hierarchies and one-theory-per-choice is a sub-
jective property, while the truth axiom embodies an objective
correct beliefs trait.

Two distinct solution concepts. The epistemic characterizations
of correlated equilibrium (Theorem 3) and canonical correlated
equilibrium (Theorem 4) show that the two solution concepts are
actually distinct. In addition to common belief in rationality and
a common prior, canonical correlated equilibrium also requires a
correct beliefs assumption in form of the one-theory-per-choice
condition and thus makes stronger epistemic assumption than
correlated equilibrium. Intuitively, in a correlated equilibrium a
player can justify an opponent’s choice with two different first-
order beliefs in his reasoning, but not in canonical correlated
equilibrium. In classical terms, correlated equilibrium and its
simplified variant differ, because two information cells can induce
the same choice yet different conditional beliefs for a given player
via his choice function in a correlated equilibrium, while two dif-
ferent conditioning events, i.e. two distinct choices, always induce
different choices in a canonical correlated equilibrium, as the

conditioning events in a canonical correlated equilibrium coincide
with those choices that receive positive weight by the probability
measure on the players’ choice combinations. Hence, canonical
correlated equilibrium can be viewed as a special case of cor-
related equilibrium, where different information cells prescribe
different choices. To support a particular first-order belief in a
correlated equilibrium it may be crucial to use two information
cells inducing the same choice for a given player. There gener-
ally thus exists more flexibility to build beliefs in a correlated
equilibrium, and to consequently also make choices optimal. To
conclude, correlated equilibrium and canonical correlated equi-
librium form two distinct solution concepts for games based on
the idea of correlation.
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