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Abstract
In this chapter we review some of the most important ideas, concepts and results in

epistemic game theory, with a focus on the central idea of common belief in rationality. We
start by showing how belief hierarchies can be encoded by means of epistemic models with
types, and how this encoding can be used to formally de�ne common belief in rationality.
We next indicate how the induced choices can be characterized by a recursive elimination
procedure, and how the concept relates to Nash equilibrium. Finally, we investigate how
the idea of common belief in rationality can be extended to dynamic games, by looking at
several plausible ways in which players may revise their beliefs.

1 Introduction

Classical game theory, pioneered by the seminal work of von Neumann (1928), von Neumann
and Morgenstern (1944) and Nash (1950, 1951), is mainly concerned with the choices of players
in a game, and often leaves the reasoning preceeding such choices as a black box. The purpose of
epistemic game theory is to open this black box by explicitly describing, and investigating, the
reasoning that players may undertake before making a choice. As such, epistemic game theory
is a descriptive theory that attempts to model various plausible ways of reasoning, without
making any normative statements about the particular type of reasoning or choices that should
be employed by people.

The end product of such reasoning can be described by beliefs that players have, about the
choices of other players, but also about the beliefs that their opponents hold about the choices of
others, and so on. These belief hierarchies constitute, in a sense, the language of epistemic game
theory. Indeed, many contributions in epistemic game theory propose plausible restrictions that
may be imposed on such belief hierarchies, or investigate the consequences that these restrictions
have for the choices that players make in the game.

As with many disciplines in science, it is di¢ cult to say when epistemic game theory really
started o¤. Morgenstern (1935), more than eighty years ago, already stressed the importance
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of reasoning and belief hierarchies in economic analysis, but it took a long time before belief
hierarchies structurally entered the analysis of human behavior in economic systems and games.
A possible reason for this long delay lies in the complexity of a belief hierarchy. Despite being a
very natural object, it is quite di¢ cult to work with because it involves in�nitely many layers.

The purpose of this chapter is to provide an overview of some of the most important ideas and
results in epistemic game theory, with a focus on the central reasoning concept of common belief
in rationality. The outline is as follows. In Section 2 we show how in�nite belief hierarchies
in static games can conveniently be encoded by means of epistemic models with types, and
use it in Section 3 to formally de�ne common belief in rationality. In Section 4 we present a
recursive elimination procedure that characterizes the choices that can rationally be made under
common belief in rationality. In Section 5 we discuss the epistemic gap between common belief
in rationality and the famous notion of Nash equilibrium. In Section 6, �nally, we discuss how
the idea of common belief in rationality can be extended to dynamic games.

For a more comprehensive overview of epistemic game theory, the reader is referred to the
overview paper by Brandenburger (2007), the textbook by Perea (2012), the handbook chapter
of Dekel and Siniscalchi (2015), the encyclopedia entry by Pacuit and Roy (2015) and the
forthcoming book by Battigalli, Friedenberg and Siniscalchi (2018).

2 Belief Hierarchies and Types

The central idea in epistemic game theory is that of common belief in rationality. Informally, it
states that you do not only choose rationally yourself, but also believe that your opponents will
choose rationally, that your opponents believe that the other players will choose rationally, and
so on. Most other reasoning concepts in epistemic game theory may be viewed as re�nements,
or variants, of common belief in rationality. The intuitive idea of common belief in rationality
is already present in Spohn (1982) and in the concept of rationalizability (Bernheim (1984) and
Pearce (1984)), although the latter two papers do not formally de�ne the notion.

An important question is how the idea of common belief in rationality can be de�ned formally.
Consider a �nite static game G = (Ci; ui)i2I ; where I is the �nite set of players, Ci the �nite
set of choices for player i; and ui : �j2ICj ! R player i�s utility function. When we say
that player i believes in the opponents�rationality, we mean that player i believes that every
opponent j chooses optimally, given what player i believes that player j believes about his
opponents�choices. For this to be formally de�ned we need to specify i�s belief about j�s choice
� a �rst-order belief � together with i�s belief about j�s belief about his opponents� choices,
which is a second-order belief. Similarly, to formally de�ne that player i believes that player
j believes in his opponents�rationality, we need to additionally specify the belief that i holds
about the belief that j holds about the belief that every opponent k holds about the other
players�choices, which is a third-order belief. By continuing in this fashion we see that a formal
de�nition of common belief in rationality requires, for a given player i; a �rst-order belief about
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e f g h

a 0; 0 4; 1 4; 4 4; 3
b 3; 2 0; 0 3; 4 3; 3
c 2; 2 2; 1 0; 0 2; 3
d 1; 2 1; 1 1; 4 0; 0

Table 1: A two-player game

the opponents�choices, a second-order belief about the opponents��rst-order beliefs, a third-
order belief about the opponents�second-order beliefs, and so on. Such in�nite strings of beliefs
are called belief hierarchies, and constitute, in a sense, the language of epistemic game theory.

An important practical problem with belief hierarchies is that these are in�nite strings,
making it impossible to write them down explicitly. In order to work with belief hierarchies we
must thus �nd a way to encode these in an easy and compact way. One way to do so is by
means of epistemic models with types �an idea that goes back to Harsanyi (1967�1968). The
main idea is as follows: In a belief hierarchy, player i holds, for every opponent j; a belief about
j�s choice, j�s �rst-order belief, j�s second-order belief, and so on. That is, a belief hierarchy for
player i speci�es, for every opponent j; a belief about j�s choice and j�s belief hierarchy. If we
replace the word �belief hierarchy�by �type�, and formalize beliefs by probability distributions,
we obtain the following de�nition of an epistemic model with types.

De�nition 2.1 (Epistemic model with types) Consider a �nite static gameG = (Ci; ui)i2I :
A �nite epistemic model for G is a tuple M = (Ti; bi)i2I where Ti is the �nite set of types for
player i, and bi : Ti ! �(C�i � T�i) is i�s belief mapping which assigns to every type ti 2 Ti a
probabilistic belief bi(ti) 2 �(C�i � T�i) on the choice-type combinations of i�s opponents.

In this de�nition we have used the following pieces of notation: For every �nite set X; we
denote by �(X) the set of probability distributions on X: By C�i � T�i := �j 6=i(Cj � Tj) we
denote the set of choice-type combinations for i�s opponents.

A �nite epistemic model may be viewed as a convenient way to encode belief hierarchies
in a �nite manner. Indeed, for every type in an epistemic model we may derive the full belief
hierarchy it induces.

To see how this works, consider the two-player game in Table 1, where player 1�s choices are
in the rows and player 2�s choices are in the columns, together with an epistemic model in Table
2. Please ignore the superscripts of the types for the moment. These will become clear later.
The expression b1(tc1) = (0:6) � (e; te2) + (0:4) � (f; t

g
2) means that type t

c
1 assigns probability 0:6

to the event that player 2 chooses e and is of type te2; and assigns probability 0:4 to the event
that player 2 chooses f and is of type tg2:

Consider the type tb1: As t
b
1 believes that, with probability 1, player 2 chooses e and is of

type te2; the induced �rst-order belief is that player 1 believes that, with probability 1, player
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Types T1 = fta1; tb1; tc1g; T2 = fte2; t
g
2; t

h
2g

Beliefs for
player 1

b1(t
a
1) = (g; tg2)

b1(t
b
1) = (e; te2)

b1(t
c
1) = (0:6) � (e; te2) + (0:4) � (f; t

g
2)

Beliefs for
player 2

b2(t
e
2) = (0:6) � (c; tc1) + (0:4) � (d; ta1)

b2(t
g
2) = (a; ta1)

b2(t
h
2) = (c; tc1)

Table 2: An epistemic model for the game in Table 1

2 chooses e. Moreover, as player 2�s type te2 has the belief (0:6) � (c; tc1) + (0:4) � (d; ta1) about
player 1, the second-order belief induced by type tb1 is that player 1 assigns probability 1 to the
event that player 2 assigns probability 0:6 to player 1 choosing c and probability 0:4 to player 1
choosing d: In a similar fashion we can derive the higher-order beliefs, and hence the full belief
hierarchy, for the type tb1; and for all the other types in the epistemic model.

In the game theoretic literature people often use in�nite instead of �nite epistemic models,
because they wish to work with models that encode all possible belief hierarchies. Such exhaus-
tive models are also called terminal type structures. That terminal type structures exist for
every �nite static game �something that is far from obvious �has been shown by Armbruster
and Böge (1979), Böge and Eisele (1979), Mertens and Zamir (1985) and Brandenburger and
Dekel (1993). For this chapter we have chosen to work with �nite epistemic models instead, for
two reasons. First, �nite epistemic models are easier to work with than terminal type structures,
since no advanced measure theoretic or topological machinery is needed. Moreover, as we will
see, this choice does not a¤ect the main results we discuss.

The game theoretic literature also uses alternative ways of encoding belief hierarchies, such
as Kripke structures (Kripke (1963)) and Aumann structures (Aumann (1974, 1976)). The �rst
is the predominant model in the logical and philosophical literature, whereas the latter is often
used by economists. Both models use states instead of types, and assign to every state and every
player i a choice for player i; together with a belief for player i about the states. In a similar
way as above, one can then derive from such a structure a belief hierarchy for every player at
every state. In this chapter we have chosen to encode belief hierarchies by means of types, but
the complete chapter could have been written by using Kripke structures or Aumann structures
instead.
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3 Common Belief in Rationality

In the previous section we have seen that belief hierarchies, which are fundamental for the idea
of common belief in rationality, can be encoded by means of epistemic models with types. This
now enables us to provide a formal de�nition of common belief in rationality. We will do so step
by step, starting from the �rst layer of common belief in rationality which states that player i
believes that every opponent chooses rationally.

To express this event within the formalism of epistemic models with types, we must �rst
de�ne what it means for a choice to be optimal for a type. Consider an epistemic model
M = (Ti; bi)i2I for a static game G = (Ci; ui)i2I ; a type ti 2 Ti; and a choice ci 2 Ci: Then,

ui(ci; ti) :=
X

(c�i;t�i)2C�i�T�i

bi(ti)(c�i; t�i) � ui(ci; c�i)

denotes the expected utility for type ti of choosing ci: We say that choice ci is optimal for type
ti if ui(ci; ti) � ui(c

0
i; ti) for all c

0
i 2 Ci: In the epistemic model of Table 2, it can be veri�ed

that a is optimal for the type ta1; b is optimal for the type t
b
1 and c is optimal for the type t

c
1:

Similarly, e is optimal for player 2�s type te2; g is optimal for the type t
g
2 and h is optimal for the

type th2 :
Remember that a type ti holds a probabilistic belief bi(ti) on the opponents� choice-type

combinations. For a type ti to believe in the opponents�rationality means that bi(ti) must only
assign positive probability to opponents�choice-type pairs where the choice is optimal for the
type.

De�nition 3.1 (Belief in the opponents�rationality) Consider a �nite epistemic model
M = (Ti; bi)i2I for a �nite static game G = (Ci; ui)i2I : A type ti 2 Ti believes in the op-
ponents�rationality if bi(ti)((cj ; tj)j 6=i) > 0 only if, for every opponent j 6= i; choice cj is optimal
for type tj :

In the epistemic model of Table 2 it can be veri�ed that types ta1; t
b
1; t

g
2 and t

h
2 believe in the

opponent�s rationality, but the other two types do not. Indeed, the type tc1 for player 1 assigns
positive probability to player 2�s choice-type pair (f; tg2) where f is not optimal for the type
tg2; and hence t

c
1 does not believe in 2�s rationality. Similarly, player 2�s type t

e
2 assigns positive

probability to player 1�s choice-type pair (d; ta1) where d is not optimal for t
a
1; and hence t

e
2 does

not believe in player 1�s rationality.
With the de�nition of belief in the opponents�rationality at hand we can now recursively

de�ne k-fold belief in rationality for all k � 1; which �nally enables us to formalize common
belief in rationality.

De�nition 3.2 (Common belief in rationality) Consider a �nite epistemic model M =
(Ti; bi)i2I for a �nite static game G = (Ci; ui)i2I :
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(Induction start) A type ti 2 Ti expresses 1-fold belief in rationality if ti believes in the oppo-
nents�rationality.

(Induction step) For k > 1; a type ti 2 Ti expresses k-fold belief in rationality if bi(ti)((cj ; tj)j 6=i) >
0 only if, for every opponent j 6= i; type tj expresses (k � 1)-fold belief in rationality.
A type ti 2 Ti expresses common belief in rationality if ti expresses k-fold belief in rationality
for every k � 1:

Hence, 2-fold belief in rationality entails that a type only assigns positive probability to
opponents� types that express 1-fold belief in rationality. In other words, the player believes
that every opponent believes in his opponents�rationality. Similarly, 3-fold belief in rationality
corresponds to the event that a player believes that his opponents believe that their opponents
believe in their opponents�rationality, and so on.

Within a �nite static game G = (Ci; ui)i2I ; we say that player i can rationally choose ci 2 Ci
under common belief in rationality if there is a �nite epistemic model M = (Ti; bi)i2I and a
type ti 2 Ti such that ti expresses common belief in rationality and ci is optimal for ti: That is,
choice ci can be supported by some belief hierarchy that expresses common belief in rationality.

In the epistemic model of Table 2 it can be veri�ed that types tc1 and t
e
2 do not express 1-fold

belief in rationality, that types tb1 and t
h
2 express 1-fold but not 2-fold belief in rationality, and

that types ta1 and t
g
2 express common belief in rationality. Consequently, player 1 can rationally

choose a and player 2 can rationally choose g under common belief in rationality.

4 Recursive Procedure

Suppose that in a given static game we are interested in the choices that the players can rationally
make under common belief in rationality. Is there an easy method to �nd these choices, without
having to resort to epistemic models with types? That is the question that will be addressed in
this section.

The key to answering this question is Lemma 3 in Pearce (1984), which we will reproduce
below. To state the lemma formally, we need the following de�nitions. Consider a �nite static
game G = (Ci; ui)i2I ; a choice ci; and a belief bi 2 �(C�i) about the opponents�choices. Then,

ui(ci; bi) :=
X

c�i2C�i

bi(c�i) � ui(ci; c�i)

denotes the expected utility of choice ci under the belief bi: Choice ci is called optimal in G for
the belief bi if ui(ci; bi) � ui(c0i; bi) for all c0i 2 Ci: Choice ci is called strictly dominated in G if
there is some randomization ri 2 �(Ci) such that

ui(ci; c�i) <
X
c0i2Ci

ri(c
0
i) � ui(c0i; c�i) for all c�i 2 C�i:
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In the literature, such randomizations ri 2 �(Ci) are typically called mixed strategies or ran-
domized choices, and are often interpreted as real objects of choice for player i. In this chapter,
however, we assume that players do not randomize when making a decision, and these random-
izations ri are merely used as an auxiliary device to characterize choices that are optimal for
some belief. The reason is that players are assumed to be expected utility maximizers, and
hence a player can never increase his expected utility by randomizing over his choices.

Lemma 3 in Pearce (1984) can now be stated as follows.

Lemma 4.1 (Pearce (1984)) Consider a �nite static game G = (Ci; ui)i2I and a choice ci 2
Ci: Then, there is a belief bi 2 �(C�i) such that ci is optimal in G for bi; if and only if, ci is not
strictly dominated in G:

This lemma can be used to characterize the choices a player can rationally make if he believes
in his opponents�rationality. Let G1 be the reduced game that remains if we eliminate, for every
player, the choices that are strictly dominated in G: For a player to believe in the opponents�
rationality thus means, by Lemma 4.1, that his belief is fully concentrated on opponents�choices
in G1: By applying Lemma 4.1 to the reduced game G1 we thus conclude that, for every player,
the choices he can rationally make if he believes in the opponents�rationality are exactly the
choices in G1 that are not strictly dominated in G1: That is, these are the choices that survive
two rounds of elimination of strictly dominated choices. In a similar vein it can be shown that
the choices that can rationally be made if a player believes in his opponents�rationality, and
believes that his opponents believe in their opponents�rationality (that is, if he expresses up to
two-fold belief in rationality) are exactly the choices that survive three rounds of elimination of
strictly dominated choices. By continuing in this fashion we arrive at the following elimination
procedure.

De�nition 4.1 (Iterated elimination of strictly dominated choices) Consider a �nite sta-
tic game G = (Ci; ui)i2I :

(Induction start) Let G0 := G be the full game:

(Induction step) For every k � 1 let Gk be the reduced game that remains if we eliminate from
Gk�1 all choices that are strictly dominated in Gk�1:

A choice ci 2 Ci survives iterated elimination of strictly dominated choices if ci is in Gk for all
k � 1:

By the argument above, we thus see that G2 contains exactly those choices that can rationally
be made if a player believes in the opponents� rationality. By iterating this argument, we
conclude that, for every k � 2; the k-fold reduced game Gk contains exactly those choices that
can rationally be made under some belief hierarchy that expresses up to (k � 1)-fold belief in
rationality. This argument already appears in Spohn (1982). In particular, the choices that
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survive the full procedure will be exactly those choices that can rationally be made under
common belief in rationality. This leads to the following central result, which is based on
Theorems 5.2 and 5.3 in Tan and Werlang (1988), and which Brandenburger (2014) has called
the �fundamental theorem of epistemic game theory�. Brandenburger and Dekel (1987) o¤er in
Proposition 2.1 a similar result, characterizing common belief in rationality by �best reply sets�
instead of an elimination procedure.

Theorem 4.1 (Fundamental theorem of epistemic game theory) Consider a �nite sta-
tic game G = (Ci; ui)i2I and a choice ci 2 Ci: Then, ci can rationally be made under common
belief in rationality, if and only if, ci survives iterated elimination of strictly dominated choices.

The fundamental theorem would remain una¤ected if we would use terminal type structures
(hence, in�nite epistemic models) instead of �nite epistemic models to de�ne common belief in
rationality. To illustrate the procedure of iterated elimination of strictly dominated choices and
the theorem above, consider the game G from Table 1. In the full game G; it is easily veri�ed
that player 1�s choice d is strictly dominated by the randomization that assigns probability 0:5
to his choices a and b, and that player 2�s choice f is strictly dominated by the randomization
that assigns probability 0:5 to his choices g and h: No other choices are strictly dominated.
Hence, G1 is the game obtained after eliminating the choices d and f: Within the 1-fold reduced
game G1; player 1�s choice c is strictly dominated by b (or rather, the randomization that assigns
probability 1 to b), and player 2�s choice e is strictly dominated by h. Hence, G2 is the game
obtained from G1 after eliminating the choices c and e: Finally, within G2 player 1�s choice b
is strictly dominated by a, and player 2�s choice h is strictly dominated by g. As such, only
the choices a and g survive iterated elimination of strictly dominated choices, and hence, by
Theorem 4.1, these are the only choices that can rationally be made under common belief in
rationality.

5 Nash Equilibrium

For many decades, the concept of Nash equilibrium (Nash (1950, 1951)) has dominated the clas-
sical approach to game theory, inspiring many re�nements such as perfect equilibrium (Selten
(1975)) and proper equilibrium (Myerson (1978)) for static games, and subgame perfect equilib-
rium (Selten (1965)) and sequential equilibrium (Kreps and Wilson (1982)) for dynamic games.
However, for a long time it remained unclear what epistemic conditions are needed for players
to choose in accordance with Nash equilibrium. The purpose of this section is to investigate
Nash equilibrium from an epistemic perspective, and to link it to the conditions of common
belief in rationality that we have explored so far. Let us start by giving the de�nition of Nash
equilibrium.

De�nition 5.1 (Nash equilibrium) Consider a �nite static game G = (Ci; ui)i2I : A Nash
equilibrium in G is a tuple (�i)i2I ; where �i 2 �(Ci) for every player i; such that �i(ci) > 0
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only if X
c�i=(cj)j 6=i2C�i

�Q
j 6=i �j(cj)

�
� ui(ci; c�i) �

X
c�i=(cj)j 6=i2C�i

�Q
j 6=i �j(cj)

�
� ui(c0i; c�i)

for all c0i 2 Ci:

In other words, a Nash equilibrium is a tuple of probability distributions on choices such that
a choice only receives positive probability if it is optimal against the probability distributions on
the opponents�choices. Traditionally, these probability distributions �i have been interpreted as
conscious randomizations, or mixed strategies, by the players. A more recent approach, adopted
by Spohn (1982), Aumann and Brandenburger (1995) and other authors, is to interpret �i as
the (common) probabilistic belief that i�s opponents have about i�s choice, and this is also the
interpretation we use here.

A Nash equilibrium (�i)i2I induces, in a natural way, a belief hierarchy for player i in
which his (�rst-order) belief about the opponents�choices is given by (�j)j 6=i; his (second-order)
belief about j�s belief about his opponents�choices is given by (�k)k 6=j ; and so on. Such belief
hierarchies are called simple in Perea (2012). Moreover, this belief hierarchy can be shown to
express common belief in rationality, relying on the optimality conditions in a Nash equilibrium.
To see this, consider the belief hierarchy for player i induced by a Nash equilibrium (�i)i2I .
Then, player i only assigns positive probability to a choice cj of player j if �j(cj) > 0: By the
optimality condition of Nash equilibrium, this is only the case if cj is optimal against (�k)k 6=j ;
which is what player i believes that player j believes about his opponents�choices. Altogether,
we see that player i only assigns positive probability to cj if cj is optimal for player j; given
what player i believes that player j believes about his opponents�choices. That is, with this
belief hierarchy player i believes in j�s rationality. In a similar vein it can be shown that with
this belief hierarchy, induced by a Nash equilibrium, player i also believes that every opponent
j believes in his opponents�rationality, and so on. Hence, every Nash equilibrium induces, for
every player, a belief hierarchy that expresses common belief in rationality. We can thus say
that Nash equilibrium implies common belief in rationality.

But is the other direction also true? Does common belief in rationality necessarily lead to
Nash equilibrium? The answer, as we will see, is �no�. Consider the two-player game in Table
3. It may be veri�ed that all three choices can rationally be made under common belief in
rationality. However, there is only one Nash equilibrium (�1; �2) in this game, where �1 assigns
probability 1 to c and �2 assigns probability 1 to f . Hence, in this example Nash equilibrium
imposes more restrictions than just common belief in rationality. But what are these extra
restrictions?

To see this most clearly, consider the epistemic model, together with its graphical represen-
tation, in Figure 1. It may be veri�ed that all types in the epistemic model express common
belief in rationality. Moreover, the superscript of the types indicate the choice that is optimal
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d e f

a 0; 3 3; 0 0; 2
b 3; 0 0; 3 0; 2
c 2; 0 2; 0 2; 2

Table 3: A two-player game

Types T1 = fta1; tb1; tc1g; T2 = ftd2; te2; t
f
2g

Beliefs for
player 1

b1(t
a
1) = (e; te2)

b1(t
b
1) = (d; td2)

b1(t
c
1) = (f; tf2)

Beliefs for
player 2

b2(t
d
2) = (a; ta1)

b2(t
e
2) = (b; tb1)

b2(t
f
2) = (c; tc1)

Player 1

(a; ta1)

(b; tb1)

(c; tc1)

Player 2

(d; td2)

(e; te2)

(f; tf2)

Player 1

(a; ta1)

(b; tb1)

(c; tc1)

HHHHHHj��
��

��*

-

-

-

-

Figure 1: Epistemic model for the game in Table 3, and a graphical representation
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for that type. Remember that only the choices c and f are supported by a Nash equilibrium in
this game.

Consider the type ta1 that supports the choice a �a choice that is not supported by a Nash
equilibrium. The induced belief hierarchy states that, on the one hand, player 1 believes that
player 2 chooses e but, on the other hand, believes that 2 believes that 1 believes that 2 chooses
d. That is, player 1 believes that player 2 is incorrect about 1�s �rst-order belief. The same can
be said about his type tb1: In contrast, the type t

c
1 that supports the Nash equilibrium choice c

induces a belief hierarchy in which 1 believes that 2 is correct about 1�s �rst-order belief.
It turns out that in two-player games, this correct beliefs assumption �that is, that a player

believes that his opponent is correct about his �rst-order belief � is exactly what separates
common belief in rationality from Nash equilibrium. This is re�ected in Spohn�s (1982) theorem
on page 253, and Aumann and Brandenburger�s (1995) Theorem A, which both state that in
two-player games, mutual belief in rationality, together with mutual belief in the actual �rst-
order beliefs, leads to Nash equilibrium. Here, mutual belief in rationality means that player 1
believes in 2�s rationality, and player 2 believes in 1�s rationality. Similarly, mutual belief in the
actual �rst-order beliefs means that player 1 is correct about 2�s �rst-order belief, and player 2
is correct about player 1�s �rst-order belief. From a one-person perspective (in which conditions
are imposed on the belief hierarchy of a single player i) the Spohn-Aumann-Brandenburger
conditions thus state that player i believes that j is rational, believes that j believes that i is
rational, that i believes that j is correct about i�s �rst-order belief, and that i believes that
j believes that i is correct about j�s �rst-order belief. In particular, Spohn, Aumann and
Brandenburger show that the �rst two layers of common belief in rationality, together with
the correct beliefs assumptions above, are enough to imply Nash equilibrium. Not all layers of
common belief in rationality are needed. Polak (1999) shows, however, that if mutual belief in
the actual �rst-order beliefs is strengthened to common belief in the actual �rst-order beliefs,
then the Spohn-Aumann-Brandenburger conditions would imply common belief in rationality.
Other epistemic foundations for Nash equilibrium in two-player games, which in some way or
another involve the correct beliefs assumptions above, can be found in Tan and Werlang (1988),
Brandenburger and Dekel (1989), Asheim (2006) and Perea (2007a). As the reasonability of
the correct beliefs assumption can be debated �after all, why should an opponent be correct
about your �rst-order belief? � these papers implicitly point at the problematic assumptions
underlying Nash equilibrium.

For more than two players the above conditions are no longer enough to characterize Nash
equilibrium. For such games, Nash equilibrium additionally implies that i�s belief about j�s
choice must be stochastically independent from i�s belief about k�s choice, and that i�s belief
about j�s belief about k�s choice must be the same as i�s belief about k�s choice. The �rst
property follows from the fact that in a Nash equilibrium (�i)i2I ; the belief of i about the
opponents� choices is given by the independent probability distributions (�j)j 6=i; whereas the
second condition is implied by the property that i�s belief about j�s belief about k�s choice
and i�s belief about k�s choice are both given by �k: These two conditions are not implied by
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Figure 2: Reny�s game

common belief in rationality, and hence the gap between Nash equilibrium and common belief in
rationality is even bigger in games with more than two players. Epistemic foundations for Nash
equilibrium in games with more than two players can be found in Brandenburger and Dekel
(1987), Aumann and Brandenburger (1995), Perea (2007a), Barelli (2009) and Bach and Tsakas
(2014).

6 Dynamic Games

So far we have been exploring static games, where all players only make one choice, and players
choose in complete ignorance of the opponents�choices. We now investigate how the idea of
common belief in rationality can be translated to dynamic games. In a dynamic game, players
may choose one after the other, may choose more than once, and may fully or partially observe
what the opponents have done in the past when it is their turn to move. As a consequence, a
player may need to revise his belief about the opponents when he discovers that his previous
belief has been contradicted by some of the opponents�past choices. As an illustration, consider
the game from Figure 2 which is based on Reny (1992).

If player 1 believes that player 2 would rationally choose g at his last move, then he would
choose a at the beginning. Common belief in rationality thus seems to suggest that player 2
should initially believe that player 1 chooses a: However, when it is player 2�s turn to move, this
initial belief has been contradicted by player 1�s past play, and hence player 2 must revise his
belief about player 1. But how? As we will see, there are at least two plausible ways for player
2 to revise his belief.

One option is to interpret player 1�s past move b as a mistake, yet at the same time maintain
the belief that player 1 would choose rationally at his second move, and maintain the belief
that player 1 believes that would player 2 would rationally choose g at his second move. In
that case, player 2 would believe, upon observing b; that player 1 would choose e at this second
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move, and therefore player 2 would choose c: This type of reasoning, in which the players
are free to interpret �surprising� past moves as mistakes, but believe that the opponents will
choose rationally in the future, believe that the opponents always believe that their opponents
will choose rationally in the future, and so on, is called backward induction reasoning, and is
formally captured by the concept of common belief in future rationality (Perea (2014)). Similar
lines of reasoning are present in Penta (2015), Baltag, Smets and Zvesper (2006) and the concept
of sequential rationalizability (Dekel, Fudenberg and Levine (1999, 2002) and Asheim and Perea
(2005)). Backward induction reasoning is also implicitly present in the backward induction
procedure (see Perea (2007b) for a survey on the various epistemic foundations for backward
induction) and the equilibrium concepts of subgame perfect equilibrium (Selten (1965)) and
sequential equilibrium (Kreps and Wilson (1982)) (see Perea and Predtetchinski (2017) for a
formal statement).

Another option for player 2, after observing the �surprising�move b; is to interpret b as
a conscious, optimal choice for player 1. However, this is only possible if player 2 believes
that player 1 would choose f afterwards, and if player 2 believes that player 1 assigns a high
probability to player 2 making the suboptimal choice h at his second move. Consequently,
player 2 would choose d and, in case he is asked to make a second move, choose g. This type
of reasoning, where a player, whenever possible, tries to interpret �surprising�past choices as
conscious, optimal choices, is called forward induction reasoning. The concepts that most closely
implement this type of reasoning are extensive form rationalizability (Pearce (1984), Battigalli
(1997)), epistemically characterized by common strong belief in rationality in Battigalli and
Siniscalchi (2002), and explicable equilibrium (Reny (1992)). See also Battigalli and Friedenberg
(2012) who study forward induction with exogenous restrictions on the players�beliefs.

As the example above illustrates, backward induction and forward induction reasoning may
lead to di¤erent strategy choices. Indeed, player 2 chooses c under backward induction reasoning,
but would choose (d; g) under forward induction reasoning. However, both types of reasoning
lead to the same outcome, which is the terminal history following a: Battigalli (1997) has shown
that the latter is always true in dynamic games with perfect information without relevent ties, by
proving that in every such game, the forward induction concept of extensive form rationalizability
always uniquely leads to the backward induction outcome. This result is remarkable, as forward
induction and backward induction represent two completely di¤erent lines of reasoning. The
connection between these two lines of reasoning in general dynamic games is one of the many
intriguing problems in epistemic game theory that need further exploration.
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