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Abstract
Following Gilboa and Schmeidler (Games Econ Behav 44:184–194, 2003) we con-
sider a scenario where the decision maker holds, for every possible probabilistic 
belief about the states, a preference relation over his choices. For this setting, Gilboa 
and Schmeidler have offered conditions that allow for an expected utility representa-
tion. Their central condition is the diversity axiom  which states that for every strict 
ordering of at most four choices there should be a belief at which it obtains. It turns 
out that this axiom excludes many natural cases, even when there are no weakly 
dominated choices. We replace the diversity axiom by two new axioms—three 
choice and four choice linear preference intensity, which reflect the assumption that 
the preference intensity between two choices varies linearly with the belief. It is 
shown that in the absence of weakly dominated choices, the resulting set of axioms 
characterizes precisely those scenarios that admit an expected utility representation. 
In particular, our set of axioms covers a significantly broader class of scenarios than 
the Gilboa-Schmeidler axioms.

Keywords  Expected utility · Decision problems · Games · Conditional preference 
relation · Preference intensity · Weak dominance
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1  Introduction

Gilboa and Schmeidler (2003) have argued that the von Neumann–Morgenstern 
foundation for expected utility may be inappropriate for analyzing games. If the 
player in a game holds a probabilistic belief about the opponents’ pure strategies 
(from now on called choices), then each of his own choices may be interpreted 
as a lottery over outcomes, in line with the von Neumann–Morgenstern frame-
work. However, von Neumann and Morgenstern assume that the decision maker 
ranks all pairs of lotteries over outcomes, whereas many of these pairs cannot be 
induced by the same belief about the opponents’ choices. A second problem is 
that in a game, a player may care about more than just the physical outcome for 
himself, as he may engage in various kinds of inter-personal comparisons.

In response, Gilboa and Schmeidler (2003) developed a novel framework 
where the decision maker (DM) holds a preference relation over the available 
acts (his choices in the game) for every possible probabilistic belief about the 
states (the opponents’ choices in the game). In this paper, we refer to this object 
as a conditional preference relation. By imposing certain axioms on conditional 
preference relations, Gilboa and Schmeidler single out those that have a diver-
sified expected utility representation—a utility matrix where no row is weakly 
dominated by, or equivalent to, an affine combination of at most three other rows. 
The key axiom in their characterization is diversity, which states that for every 
strict ordering of at most four acts there must be a belief for which this ordering 
obtains.

But what can we say about those conditional preference relations that have an 
expected utility representation, but not a diversified one? This is an important 
question, because many utility matrices are non-diversified, and many natural 
conditional preference relations violate the diversity axiom. Indeed, the diversity 
axiom rules out all cases where some act is weakly dominated by another act, all 
scenarios with two states and more than two acts, all scenarios with three states 
and more than three acts, and many other plausible situations as well.

The purpose of this paper is to fill that gap, by providing a list of axioms that, 
in the absence of weakly dominated acts, is both necessary and sufficient for the 
conditional preference relation having an expected utility representation—diver-
sified or not. Indeed, our Theorem 3.1 shows that, in the absence of weakly domi-
nated acts, expected utility can be characterized if we replace Gilboa and Schmei-
dler’s diversity axiom by two new axioms: three choice linear preference intensity 
and four choice linear preference intensity. Both axioms reveal the idea that the 
intensity  with which the decision maker prefers one choice to another changes 
linearly with his belief. More precisely, the first axiom concerns three choices 
and argues that on two parallel lines of beliefs, the preference intensity between 
two choices will change at the same rate. This results in a formula that relates the 
beliefs on these two parallel lines where the decision maker is indifferent between 
the various pairs of choices. The second axiom concerns four choices, and argues 
that on a line of beliefs the relative change rates of the preference intensities 
between the different pairs of choices must be consistent with one another. Also 
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this axiom is expressed in terms of a formula, which relates the beliefs on the line 
where the decision maker is indifferent between the various pairs of choices. Both 
axioms may be viewed as testable consequences of the idea that the preference 
intensity between choices changes linearly with the belief.

If there are no weakly dominated acts, and there is a belief where the decision 
maker is indifferent between some, but not all, choices (provided there are at least 
three choices), then it is shown in Proposition 4.1 that the utility differences are 
unique up to a positive multiplicative constant. In that case, the utility differences 
between two choices a and b may be viewed as expressing the decision maker’s 
“preference intensity” between a and b. This is similar to the approaches by Ans-
combe and Aumann (1963) and Wakker (1989), where the axioms of state inde-
pendence and state independent preference intensity, respectively, guarantee that the 
utility difference between two consequences is the same at every state, and may be 
viewed as expressing the “preference intensity” between these consequences.

Our axiomatic characterization can also be extended to the general case that 
involves weakly dominated acts. In the online appendix of the book (Perea, 2024) 
it is shown how our axioms can be extended to signed beliefs  involving negative 
“probabilities”, and how these new axioms jointly characterize expected utility for 
the general case.

This paper is organized as follows. In Sect. 2 we introduce the notion of a con-
ditional preference relation and some basic regularity axioms which are based on 
Gilboa and Schmeidler (2003). In Sect. 3 we introduce the new axioms, three choice 
and four choice linear preference intensity, and derive the representation theorem 
for the case when there are no weakly dominated acts. In Sect. 4 we show that under 
our set of axioms, the utility differences are unique up to a positive multiplicative 
constant. We conclude with a discussion in Sect. 5. All the proofs, and the necessary 
mathematical definitions, can be found in the appendix.

2 � Conditional preference relations and basic axioms

In this section we formally introduce conditional preference relations as the primi-
tive notion of our model, and subsequently impose some basic regularity axioms on 
these, based on Gilboa and Schmeidler (2003). In the last part we discuss Gilboa 
and Schmeidler’s diversity axiom, and how it rules out many plausible scenarios.

2.1 � Conditional preference relations

In line with Gilboa and Schmeidler (2003), the primitive object in this paper is 
that of a conditional preference relation – a mapping that assigns to every proba-
bilistic belief over the states a preference relation over the available choices. In 
this paper, we also refer to such choices as acts. In fact, we will use the terms acts 
and choices interchangeably. Consider a decision maker (DM) who must choose 
from a finite set of acts A,   and where the finite set of states is given by S. We 
denote by B(A) the collection of all binary relations, or preference relations, on A. 
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A belief is a probability distribution p on S,  and by Δ(S) we denote the set of all 
probability distributions on S.

Definition 2.1  (Conditional preference relation) Consider a finite set of acts A  and a 
finite set of states S. A conditional preference relation relative to (A, S) is a mapping 
≿∶ Δ(S) → B(A)  that assigns to every belief p ∈ Δ(S)  a preference relation ≿p  on 
A.

We write a ≿p b to indicate that the DM weakly prefers act a to act b if his 
belief is p. In line with Gilboa and Schmeidler (2003), a conditional preference 
relation can be interpreted as follows: Imagine a player (the DM) who is anony-
mously matched with another player from a given population. Informing the DM 
about the past choices of the players within that population will then induce a 
certain belief for the DM. By varying such information in an experimental setup 
we can, in principle, induce every possible belief for the DM. If subsequently we 
elicit the DM’s preference relation over acts, we would obtain all the ingredients 
that constitute a conditional preference relation.

For two acts a and b,   we write that a ∼p b if a ≿p b and b ≿p a. Simi-
larly, we write a ≻p b if a ≿p b but not b ≿p a. For two acts a, b ∈ A we define 
the sets of beliefs Pa∼b ∶= {p ∈ Δ(S) | a ∼p b}, Pa≻b ∶= {p ∈ Δ(S) | a ≻p b} 
and Pa≿b ∶= {p ∈ Δ(S) | a ≿p b}. We say that (a) a  strictly dominates b under 
≿ if a ≻p b for all p ∈ Δ(S); (b) a weakly dominates b under ≿ if a ≿p b for all 
p ∈ Δ(S), and a ≻p b for at least one p ∈ Δ(S); (c) a is equivalent to b under ≿ if 
a ∼p b for all p ∈ Δ(S).

In the remainder of this paper we will assume that the conditional preference rela-
tion does not have equivalent acts. In the discussion section we will briefly explain 
how our analysis can easily be extended to cover equivalent acts.

An expected utility representation can be defined as follows.

Definition 2.2  (Expected-utility representation) A conditional preference relation 
≿  has an expected utility representation if there is a utility function u ∶ A × S → R  
such that for every belief p ∈ Δ(S)  and every two acts a,b ∈ A,

In this case, we say that the conditional preference relation ≿ is repre-
sented by the utility function u. For a given vector v ∈ R

S we use the notation 
u(a, v) ∶=

∑
s∈S v(s) ⋅ u(a, s). Hence, the condition above can be written as a ≿p b if 

and only if u(a, p) ≥ u(b, p).

a ≿p b if and only if
∑

s∈S

p(s) ⋅ u(a, s) ≥
∑

s∈S

p(s) ⋅ u(b, s).
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2.2 � Regularity axioms

We will start by reviewing some very basic axioms that have already been intro-
duced in Gilboa and Schmeidler (2003), and to which we refer as  regularity axioms. 

Axiom 2.1  (Completeness and transitivity) For every belief p  and any two acts 
a, b ∈ A,  either a ≿p b  or b ≿p a. Moreover, for every belief p and every three acts 
a, b, c ∈ A  with a ≿p b  and b ≿p c,  it holds that a ≿p c.

Axiom 2.2  (Continuity) For every two different acts a, b ∈ A  and every two beliefs 
p ∈ Pa≻b  and q ∈ Pb≻a,  there is some � ∈ (0, 1)  such that (1 − �)p + �q ∈ Pa∼b.

Axiom 2.3  (Preservation of indifference) For every two different acts a, b ∈ A  and 
every two beliefs p ∈ Pa∼b  and q ∈ Pa∼b,  we have that (1 − �)p + �q ∈ Pa∼b  for all 
� ∈ (0, 1).

Axiom 2.4  (Preservation of strict preference) For every two different acts a, b ∈ A  
and every two beliefs p ∈ Pa≿b  and q ∈ Pa≻b,  we have that (1 − 𝜆)p + 𝜆q ∈ Pa≻b  
for all � ∈ (0, 1).

Completeness and transitivity together resemble the ranking axiom in Gilboa and 
Schmeidler (2003). Our definition of continuity is formally different from Gilboa 
and Schmeidler (2003) version, but reveals the same idea. When taken together, our 
axioms of preservation of indifference and preservation of strict preference corre-
spond precisely to Gilboa and Schmeidler (2003) axiom of combination. 

It can be shown that for the case of two acts, the regularity axioms are both nec-
essary and sufficient for a conditional preference relation having an expected utility 
representation. A proof can be found in the appendix (see Lemma 6.4).

2.3 � Diversity axiom

The central axiom in Gilboa and Schmeidler (2003) foundation for expected utility 
is diversity. It states that for every strict ranking of four choices or less there is at 
least one belief at which this ranking obtains. In Gilboa and Schmeidler (2003) it is 
shown that this axiom, together with the regularity axioms above, characterize pre-
cisely those conditional preference relations that admit a diversified expected utility 
representation—a utility matrix where no row is weakly dominated by, or equivalent 
to, an affine combination of at most three other rows.

As it turns out, the diversity axiom rules out many natural scenarios. To start 
with, it excludes all conditional preference relations where an act is weakly 
dominated by another act. But even in settings where there is no weak dominance 
between acts it rules out a series of plausible cases. Consider, for instance, the 
conditional preference relation in Fig. 1 with three acts and three states.
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Suppose this conditional preference relation belongs to a two-player game 
where the decision maker (player 1) can select a choice from {a, b, c} and where 
the opponent (player 2) can choose from {x, y, z}. It may be verified that no choice 
of player 1 weakly dominates another choice. Yet, the diversity axiom is violated 
because there is no belief where player 1 holds the ranking c ≻ b ≻ a, and hence this 
conditional preference relation is ruled out by the Gilboa-Schmeidler axioms.

Fig. 1   Violation of diversity with three states and three choices: The area within the triangle represents 
the set Δ(S) of all probabilistic beliefs on S = {x, y, z}, with the probability 1 beliefs [x],  [y] and [z] as 
the extreme points. The two-dimensional plane represents all the vectors in RS where the sum of the 
coordinates is 1,   containing the belief simplex Δ(S) as a subset. The vector (0.7, 0, 0.3) represents the 
belief that assigns probability 0.7 to x,  probability 0 to y and probability 0.3 to z. Similarly for the other 
beliefs in the picture. Caution: the points in the triangle are probabilistic beliefs, and not lotteries on 
outcomes as the reader is perhaps used to from the decision theoretic literature

Table 1   Expected utility 
representation for the 
conditional preference relation 
in Fig. 1

x y z

a 10 17 0
b 0 7 10
c 3 0 3
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At the same time this seems a perfectly natural setting for a two-player game. 
Moreover, it may be verified that the conditional preference relation allows for an 
expected utility representation, for instance the one in Table 1.

As the conditional preference relation violates the diversity axiom it follows from 
Gilboa and Schmeidler (2003) that the expected utility representation is necessarily 
non-diversified.

Consider next the conditional preference relation in Fig. 2 with four acts and 
two states. Suppose this belongs to a two-player game where the decision maker 
(player 1) can choose from {a, b, c, d}, and the opponent (player 2) chooses from 
{x, y}. It may be verified that under this conditional preference relation no choice 
is weakly dominated by another choice. Yet, the conditional preference relation 
violates the diversity axiom as there is no belief where player 1 holds the ranking 
a ≻ b ≻ c ≻ d. Also this conditional preference relation seems perfectly natural, 
and it can be shown to have an expected utility representation. See, for instance, 
the utility matrix in Table 2. Again, in the light of Gilboa and Schmeidler (2003) 
this expected utility representation is necessarily non-diversified.

The two examples above show that there are natural instances of games where 
the diversity axiom is violated. In general, it can be shown that every condi-
tional preference relation with two states and more than two acts, and every con-
ditional preference relation with three states and more than three acts, necessar-
ily violates the diversity axiom. Yet, as we will see, our axiomatic treatment will 
still be able to cover such scenarios, provided there are no weakly dominated 
acts.

Fig. 2   Violation of diversity with four acts and two states: The numbers below the beliefs indicate the 
probability assigned to state [y]. For instance, pab assigns probability 0.05 to state [y] and is the unique 
belief where the decision maker is indifferent between a and b. Similarly for the other five beliefs. The 
vertical position of the four choices in every area indicate the ranking of the four choices held by player 1 
in that specific area, with the most preferred choice on top

Table 2   Expected utility 
representation for the 
conditional preference relation 
in Fig. 2

x y

a 6 6
b 5 25
c 8 3
d 30 0
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3 � New axioms

In this section we present the new axioms: three choice and  four choice linear 
preference intensity. For the case where no act is weakly dominated by another 
act, we show that these axioms, together with the regularity axioms from the 
previous section, jointly characterize those conditional preference relations that 
admit an expected utility representation.

3.1 � Three choice linear preference intensity

If there are more than two acts, the regularity axioms no longer suffice to guarantee 
an expected utility representation. To see this, consider the conditional preference 
relation ≿ represented by Fig. 3. It may be verified that ≿ satisfies all the regularity 
axioms. Yet, there is no expected utility representation for ≿ . To see why, suppose 
there would be a utility function u that represents ≿ . Then, the induced expected 
utilities of a and b must be equal on the line through Pa∼b , the expected utilities of 
b and c must be equal on the line through Pb∼c and the expected utilities of a and 
c must be equal on the line through Pa∼c, also at vectors that lie outside the belief 
simplex. But then, the expected utilities of a and c must be the same at the vector 
v where the lines through Pa∼b and Pb∼c intersect, which is impossible since v does 
not belong to the line through Pa∼c. This insight leads us to introduce further axioms 

Fig. 3   Why regularity axioms are not sufficient
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which do guarantee an expected utility representation, at least when no act weakly 
dominates another act.

Consider three acts a, b, c,  and beliefs pab, pac and pbc where the DM is indiffer-
ent between a and b,  between a and c,  and between b and c respectively. Suppose 
that these three beliefs lie on the same line L. Now assume that the DM displays at 
every belief and for every two choices not only a binary preference between these 
two choices, but also an “intensity” by which he prefers one choice to the other. 
Then, as we move from pab to pbc on this line, the preference intensity between a 
and b changes from 0 to some value �. Moreover, as we move from pac to pbc the 
preference intensity between a and c changes from 0 to the same value �, since at pbc 
the preference intensities between a and b and between a and c must be the same.

Consider next a line L′ that is parallel to L. If we assume that the DM’s preference 
intensities change linearly with the belief, then the preference intensity between any 
given two choices should change at the same speed at the two parallel lines L and 
L′. Now take three indifference beliefs p′

ab
, p′

ac
 and p′

bc
 on the line L′, and suppose 

that the distance between p′
ab

 and p′
bc

 on L′ is � times the distance between pab and 
pbc on L. Then, as we move from p′

ab
 to p′

bc
 the preference intensity between a and 

b changes from 0 to � ⋅ �, since we assume that the preference intensity between a 
and b changes at the same speed on L and L′. Therefore, as we move from p′

ac
 to p′

bc
, 

the preference intensity between a and c changes from 0 to � ⋅ � also. But then, the 
distance between p′

ac
 and p′

bc
 on L′ must be � times the distance between pac and pbc 

on L. As such, the ratio of the distances between pac and pbc and between pab and pbc 
must be the same as the ratio of the distances between p′

ac
 and p′

bc
 and between p′

ab
 

and p′
bc
.

For a fixed state s and two beliefs p and q on L,  or on L′, the difference p(s) − q(s) 
can be used as a measure for the distance between p and q. Then, by the equal ratio 
property above we have that

which implies that

This equality will be the content of the axiom three choice linear preference 
intensity.

To state this axiom formally, we need the following definitions. A  line of beliefs 
is a subset L ⊆ Δ(S) such that L = {(1 − �)p + �q | � ∈ [0, 1]} for some beliefs 
p, q ∈ Δ(S). Two lines of beliefs L and L′ are parallel if for every p, q ∈ L and every 
p�, q� ∈ L� there is some � ∈ R with p − q = �(p� − q�).

Axiom 3.1  (Three choice linear preference intensity) For every three acts a, b, c,  for 
every line L  of beliefs with beliefs pab, pbc, pac  where the DM is indifferent between 
the respective acts and which contains a belief where the DM is not indifferent 
between any of these acts, every line L′  parallel to L  with beliefs p′

ab
, p′

bc
, p′

ac
  where 

pac(s) − pbc(s)

pab(s) − pbc(s)
=

p�
ac
(s) − p�

bc
(s)

p�
ab
(s) − p�

bc
(s)

,

(3.1)(pab(s) − pbc(s)) ⋅ (p
�
ac
(s) − p�

bc
(s)) = (p�

ab
(s) − p�

bc
(s)) ⋅ (pac(s) − pbc(s)).
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the DM is indifferent between the respective acts and which contains a belief where 
the DM is not indifferent between any of these acts, it holds that

for every state s.

It may be verified that the conditional preference relation in Fig. 1 satisfies this 
condition. It turns out that, geometrically, this axiom can be verified in an easy way 
if the conditional preference relation has no weakly dominated choices. In this case, 
it is equivalent to checking that every vector (possible outside the belief simplex) 
which is both on a line through two points in Pa∼b and on a line through two points 
in Pb∼c, must also be on a line through two points in Pa∼c. This is the content of 
Proposition 6.1 in the appendix.1

The conditional preference relation in Fig. 3 clearly violates this property, since 
the vector v in that figure belongs to the line through Pa∼b and the line through Pb∼c, 
but not to the line through Pa∼c. Hence, in view of the insight above, it cannot satisfy 
three choice linear preference intensity.

From the proof of Proposition 6.1 in the appendix it follows that under the regu-
larity axioms, the condition of three choice linear preference intensity holds if we 
can find one line L and one parallel line L′ for which (3.1) holds. This is important 
for empirically testing the axiom, because it suffices to select six indifference beliefs 
pab, pac, pbc, p

′
ab
, p′

ac
, p′

bc
 on two parallel lines to verify the axiom.2

3.2 � Four choice linear preference intensity

We will now show that in the case of four choices or more, the linearity of pref-
erence intensity implies yet another testable condition. Consider four choices 
a, b, c, d,  a line of beliefs L,  and beliefs pab, pac, pad, pbc, pbd, pcd on that line where 
the DM is indifferent between the respective choices. Similarly to what we have seen 
above, moving from pab to pbc changes the preference intensity between a and b 
from 0 to some value �, whereas moving from pac to pbc changes the preference 
intensity between a and c from 0 to � as well. Now suppose that the DM’s prefer-
ence intensity between two choices changes linearly with the belief. Then, the ratio 

(pab(s) − pbc(s)) ⋅ (p
�
ac
(s) − p�

bc
(s))

= (p�
ab
(s) − p�

bc
(s)) ⋅ (pac(s) − pbc(s))

1  To be precise, the verbal characterization of three choice linear preference intensity in the text also 
relies on Lemma 6.1 in the appendix, which shows that under preservation of indifference every vector in 
the linear span of Pa∼b can be written as the linear combination of only two points in Pa∼b. Consequently, 
every vector in the linear span of Pa∼b where the sum of the components is 1 lies on a line through two 
points in Pa∼b.

2  On a given line of beliefs, the belief is characterized by one parameter only. To elicit the indifference 
belief pab on that line one could offer the subject a discretized version of the line, and ask for every 
associated belief whether the subject prefers a to b,   b to a,   or whether he is indifferent. Alternatively, 
one could offer the subject a slider with which he can increase or decrease the parameter of the belief, 
and ask to point at the belief where he is indifferent.
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of the speeds with which the preference intensity between b and a and the preference 
intensity between c and a change is equal to the ratio of the distance between pac and 
pbc and the distance between pab and pbc. Let us denote this ratio of speeds by rbc.

A similar property holds for the triple of choices a,  c,  d and the triple of 
choices a, b, d,  resulting in ratios of speeds rcd and rbd. Note that, by construction, 
rbd = rbc ⋅ rcd. Since we have seen above that the ratios of speed are equal to the 
ratios of the distances between the respective indifference beliefs, it follows that

where dist stands for distance. Again, for a given state s and any two beliefs p, q on 
the line L we can use p(s) − q(s) as a measure for the distance between p and q. The 
equality above can then be translated into

By cross-multiplication, we thus obtain the following condition.

Axiom 3.2  (Four choice linear preference intensity) For every four choices a, b, c, d,  
and for every line L  of beliefs with beliefs pab, pac, pad, pbc, pbd, pcd  where the DM is 
indifferent between the respective choices, and such that L  contains a belief where 
the DM is not indifferent between any of these choices, it holds that

for every state s.

It may be verified that the conditional preference relation in Fig. 2 satisfies the 
four choice linear preference intensity condition. From the proof of Theorem 3.1 in 
the appendix it follows that under the regularity axioms and three choice linear pref-
erence intensity, the condition of four choice linear preference intensity is satisfied if 
there is one  line L for which (3.2) holds. Again, this is important if we want to test 
this condition empirically, since we need only check condition (3.2) for six indiffer-
ence beliefs pab, pac, pad, pbc, pbd, pcd in total.3

3.3 � Representation theorem

If there are no weakly dominated acts, then the axioms we have gathered so far are 
not only necessary, but also sufficient, for an expected utility representation. We thus 
obtain the following representation result.

dist(pad, pbd)

dist(pab, pbd)
=

dist(pac, pbc)

dist(pab, pbc)
⋅

dist(pad, pcd)

dist(pac, pcd)
,

(3.2)
pad(s) − pbd(s)

pab(s) − pbd(s)
=

pac(s) − pbc(s)

pab(s) − pbc(s)
⋅

pad(s) − pcd(s)

pac(s) − pcd(s)
.

(pab(s) − pbc(s)) ⋅ (pac(s) − pcd(s)) ⋅ (pad(s) − pbd(s))

= (pab(s) − pbd(s)) ⋅ (pac(s) − pbc(s)) ⋅ (pad(s) − pcd(s)).

3  The six indifference beliefs on the line can be elicited according to Footnote 2.
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Theorem 3.1  (Expected utility representation) Consider a finite set of acts A, a finite 
set of states S,   and a conditional preference relation ≿ on (A, S) such that no act 
weakly dominates another act and no two acts are equivalent under ≿ . Then, ≿ has 
an expected utility representation, if and only if, it satisfies completeness, transitivity, 
continuity, preservation of indifference, preservation of strict preference, three 
choice linear preference intensity and four choice linear preference intensity.

Note that this theorem also covers conditional preference relations that violate the 
diversity axiom in Gilboa and Schmeidler (2003). For such scenarios, our result still 
provides necessary and sufficient conditions that lead to a (necessarily non-diversi-
fied) expected utility representation.

4 � Unique relative utility differences

So far we have identified a system of axioms that is both necessary and sufficient 
for an expected utility representation, provided there is no weak dominance between 
acts. But how unique is this representation? As we will see below, the expected util-
ity differences are “typically” unique up to a positive multiplicative constant.

Proposition 4.1  (Unique relative utility differences) Consider a finite set of acts A, 
a finite set of states S,   and a conditional preference relation ≿ on (A,  S),   such 
that it admits an expected utility representation, no act weakly dominates another 
act, no two acts are equivalent under ≿ , and in the case of at least three acts 
there is a belief where the DM is indifferent between some, but not all, acts. Then, 
for every two utility functions u,  v that represent ≿ there is some 𝛼 > 0 such that 
v(a, s) − v(b, s) = � ⋅ (u(a, s) − u(b, s)) for all a, b ∈ A and all s ∈ S.

Under the conditions of the proposition, there would be exactly |S| + 1 degrees 
of freedom for choosing a representing utility function: |S| degrees because we can 
choose the utilities for one of the choices freely at each of the |S| states, and another 
degree of freedom because the utility differences at each of the states may be multi-
plied by the same positive number without changing the induced conditional prefer-
ence relation.

Moreover, under these conditions the utility difference u(a, p) − u(b, p) at a 
belief p,   which is unique up to a positive multiplicative constant, may be viewed 
as expressing the “preference intensity” between a and b at p. The conditions above 
thus guarantee that the relative preference intensities are unique. As an example, 
suppose that 0 < u(a, x) − u(b, x) = 2 ⋅ (u(b, y) − u(a, y)). Then, the DM will be 
indifferent between a and b at the belief 1∕3[x] + 2∕3[y],4 which seems to reflect 
that the intensity by which the DM prefers a to b at x is twice the intensity by which 
he prefers b to a at y. This indeed corresponds to the fact that the utility difference 

4  Here, [x] denotes the denegerate belief that assigns probability 1 to the state [x]. Similarly for [y].
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between a and b at x is twice as large as at y,  in absolute terms. However, we will 
not enter the debates on whether such utility differences, or preference intensities, 
can be interpreted as reflecting neo-classical cardinal utility (see, for instance, Bac-
celli and Mongin (2016); Baumol (1958) and Moscati (2018)).

The above interpretation of the utility differences may no longer hold, 
however, if the conditions in the proposition above are not satisfied. Sup-
pose there are three acts a,  b and c,   two states x and y,   and let ≿ be such that 
a ≻p b ≻p c if p(x) > 1∕2, a ∼p b ∼p c if p(x) = 1∕2, and c ≻p b ≻p a if 
p(x) < 1∕2. Hence, the three indifference sets Pa∼b,Pa∼c and Pb∼c are all equal 
to {1∕2[x] + 1∕2[y]}, and thus there is no belief where the DM is indiffer-
ent between some, but not all, acts. Note that the utility functions u,  v given by 
u(a, x) = 3, u(b, x) = 2, u(c, x) = 0, u(a, y) = −3, u(b, y) = −2, u(c, y) = 0 and 
v(a, x) = 3, v(b, x) = 1, v(c, x) = 0, v(a, y) = −3, v(b, y) = −1, v(c, y) = 0 both repre-
sent ≿ . Yet, the utility differences in u and v differ by more than just a multiplicative 
constant. The reason is that in this case, ≿ does not provide us with sufficiently many 
data to derive the DM’s preference intensity over the three acts at the various beliefs.

5 � Discussion

(a) Comparison with Savage One important difference with the framework of Sav-
age (1954) is that we view the DM’s belief as a primitive notion, which then induces 
a preference relation over acts. This is precisely how a conditional preference rela-
tion is defined: It takes the belief as an input, and delivers the preferences over 
acts as an output. One of the beautiful features of the Savage framework is that the 
DM’s belief can be derived from his preferences over acts. That is, Savage views the 
DM’s preferences over acts as the primitive notion, which then induces his belief. 
There has been a long-standing debate about which of the two, belief or preferences, 
should be taken as the primitive object, and we do not want to enter this debate here.

Another difference with Savage lies in the role of the utility function. In our 
model, the utility function generates the DM’s preferences over acts for all possible 
beliefs over the states. As the Savage axiom system leads to a unique probabilistic 
belief over states, the utility function in the Savage framework can only be viewed in 
combination with this specific belief.

A final difference we would like to stress concerns the uniqueness of the utility 
representation. Recall from Proposition 4.1 that in the absence of weakly dominated 
acts there are |S| + 1 degrees of freedom for the utility function in our framework, 
provided there is a belief where the DM is indifferent between some, but not all, acts 
in the case of at least three acts. Unless all acts are equivalent, this is also the small-
est number of degrees of freedom possible. There may be more degrees of freedom, 
up to |A| ⋅ |S|, which would be the case if every act strictly dominates, or is strictly 
dominated by, another act.

In the Savage framework, on the other hand, the utility representation is always 
unique up to a positive affine transformation, leaving only two degrees of freedom. 
The reason is that a DM in the Savage framework holds preferences over all possible 
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mappings from states to consequences, providing us with “more data” that restrict 
the possible utilities compared to a DM in our framework. However, the two degrees 
of freedom in Savage’s framework are only possible because Savage’s axiom of 
small event continuity implies that there are infinitely many states. We assume only 
finitely many states, but our “richness of data” comes from the fact that a condi-
tional preference relation specifies a preference relation for infinitely many beliefs 
(if there are at least two states). Most comments here also apply to the framework in 
Anscombe and Aumann (1963).

(b) Related foundations for expected utility in decision problems and games The 
foundation for expected utility that is closest to ours is by Gilboa and Schmeidler 
(2003). As we have already discussed, their axiom system singles out those condi-
tional preference relations that can be represented by a diversified utility function, 
and the crucial axiom in their analysis is diversity. The diversity axiom by Gilboa 
and Schmeidler may be viewed as a “richness” condition on the set of states, and 
seems plausible if the number of states is very large, or even (countably or uncount-
ably) infinite, as is allowed by the Gilboa-Schmeidler framework. In contrast, we 
mainly concentrate on settings like finite games where, tyically, the number of states 
is relatively small. In such scenarios, the diversity axiom seems overly restrictive. 
Our axiom system, in turn, imposes no such richness condition on the set of states, 
and puts no restrictions on the utility matrix that can be used to represent the condi-
tional preference relation.

Jagau (2022) shows that the regularity axioms, together with the axioms of con-
stant preference intensity and transitive preference sensitivity, are necessary and suf-
ficient for an expected utility representation if there are no weakly dominated acts. 
Constant preference intensity and transitive preference sensitivity are strongly based 
on our axioms of three choice linear preference intensity and four choice linear pref-
erence intensity, respectively.

Perea (2020) proves that the regularity axioms, together with the axiom existence 
of a uniform preference increase, are both necessary and sufficient for an expected 
utility representation. The existence of a uniform preference increase states that 
from the conditional preference relation at hand, one should be able to increase the 
preference intensity between a fixed choice and each of the other choices by a uni-
form amount.

Luce and Raiffa (1957)’s formulation of a decision problem under uncertainty is 
rather similar to ours, in that they view the DM’s sets of actions and states as primi-
tive notions. On top of this, they assume a consequence mapping, assigning to every 
act and state the consequence that results. Battigalli et al. (2017) show how the Ans-
combe-Aumann model can be reconciled with the Luce-Raiffa framework, by letting 
the DM hold preferences over mixed actions in the Luce-Raiffa model, and propos-
ing an axiomatic characterization of expected utility within this setup.

Fishburn (1976) and Fishburn and Roberts (1978) concentrate on games, and 
assume that every player holds a preference relation over the combinations of ran-
domized choices—or mixed strategies—of all the players. Combinations of mixed 
strategies may be viewed as lotteries with objective probabilities on the set of 
possible (pure) choice combinations in the game. By imposing certain axioms on 
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these preference relations over mixed strategy combinations, they are able to iden-
tify those that admit an expected utility representation. It may thus be viewed as a 
generalization of von Neumann and Morgenstern (1947) axiomatic characterization 
of expected utility for lotteries. The crucial difference with our approach is that we 
do not consider randomizations over choices, and that we use conditional prefer-
ence relations as the primitive, rather than preferences over lotteries with objective 
probabilities.

Still, probabilities enter our analysis, but at a different level: Within a game-the-
oretic setting we assume that players choose pure strategies, but hold probabilis-
tic beliefs about the opponents’ pure strategy combinations. For two players such 
beliefs are identical to mixed strategies of the opponent,5 but their interpretation is 
different: Whereas a mixed strategy represents a conscious randomization over pure 
strategies, a probabilistic belief represents the player’s uncertainty about the other 
player’s pure strategy choice.

In Aumann and Drèze (2002), a game is modelled as a mapping that assigns to 
every choice combination by the players a lottery over consequences for each of the 
players. The DM (a player in the game) is then assumed to hold a preference rela-
tion on the probability distributions over such mappings. Aumann and Drèze (2005) 
take a different approach, by supposing that the DM in a game holds a preference 
relation on lotteries which are defined over his own choices and over the possible 
consequences in the game. In both papers, it is shown that certain axioms on the 
preference relation lead to an expected utility representation that involves a unique, 
or essentially unique, probabilistic belief for the DM about the opponents’ choice 
combinations. In that sense, these results are similar to Savage (1954).

Mariotti (1995) points out that a DM in Savage (1954) is required to hold pref-
erences over acts that do not belong to his actual decision problem, and finds this 
problematic. Mariotti (1995) goes even further, and shows that certain game-theo-
retic principles are inconsistent with the axioms of completeness and monotonic-
ity in Savage’s framework, thus establishing a degree of “incompatibility” between 
games on the one hand and the framework of Savage on the other hand.

(c) Comparison with case-based decision theory  Case-based decision theory, as 
originally formulated in Gilboa and Schmeidler (1995), assumes that the DM evalu-
ates an act based on how this act performed in previous decision problems. More 
precisely, assume that C represents the collection of decision problems, or cases, 
the DM faced in the past, and that s(c) measures the similarity of decision problem 
c to the present decision problem. Then, the desirability of an act a in the present 
decision problem is measured by 

∑
c∈C s(c) ⋅ u(a, c), where u(a, c) is the utility that 

selecting act a generated in decision problem c.
Our framework can be embedded into case-based decision theory as follows: If a 

conditional preference relation is represented by a utility function u,  then the desir-
ability of an act a in the present decision problem, for a given p ∈ Δ(S), is given by 

5  For more than two players, a probabilistic belief about the opponents’ pure strategy combinations may 
differ, mathematically, from a profile of mixed strategies, as the beliefs concerning the pure strategies of 
two different opponents may be correlated.
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∑
s∈S p(s) ⋅ u(a, s). Now suppose that the states s represent decision problems that 

the DM faced in the past, and that p(s) measures the similarity of problem s to the 
decision problem he is facing now. Then, the measure for the desirability of act a 
resembles exactly that in Gilboa and Schmeidler (1995).

Alternatively, one could still interpret p as a probabilistic belief over states, and 
identify every state s with the degenerate belief [s] that assigns probability 1 to s. 
Suppose that, for some reason, the DM has had each of these degenerate beliefs 
[s] in the past, and remembers the utility u(a,  s) that each act a generated under 
that belief. Then, every belief [s] can be viewed as a case in the Gilboa-Schmeidler 
framework. If the DM’s actual belief is p,   then the belief probability p(s) can be 
viewed as the similarity of the actual belief p to the past belief [s]. Also in this sce-
nario, the measure for the desirability of act a in the actual problem, with the actual 
belief p,  coincides with that of the Gilboa-Schmeidler framework.

(d) Utility differences as preference intensities In Proposition 4.1 we have shown 
that under certain conditions, the utility differences are unique up to a positive mul-
tiplicative constant. In that case, the expected utility difference between two acts a 
and b at a state s may be interpreted as the “preference intensity” between a and b 
at the state s. This is similar to how utility differences are interpreted in Anscombe 
and Aumann (1963) and Wakker (1989). The  state independence axiom in Ans-
combe and Aumann (1963) states that the preference relation over objective lotter-
ies on consequences must be independent of the state. This implies, in turn, that 
the utility differences between two consequences must be the same at every state, 
and these may be viewed as expressing the “preference intensity” between the two 
consequences.

The key condition in Wakker (1989) axiom system is state independent prefer-
ence intensity. The main idea is that the “preference intensity” between two con-
sequences c1 and c2 at a state s can be measured by taking two acts, where one is 
strictly preferred to the other, and replacing the two acts at state s by c1 and c2, 
respectively, such that the DM becomes indifferent between the two new acts. State 
independent preference intensity requires that if the preference intensities between 
c1 and c2 and between c3 and c4 coincide at one state, then they must coincide at all 
states. In that case, the utility difference between two consequences will always be 
the same at all states, and may thus be viewed as expressing the “preference inten-
sity” between the two consequences.6

(e) Linear preference intensity The axiomatic characterization in this paper shows 
that expected utility may be viewed as an expression of linear preference intensity. 
Indeed, some of the regularity axioms for two choices, and the axioms of three and 
four choice linear preference intensity for more than two choices, represent conse-
quences of scenarios where the preference intensity between two choices changes 
linearly with the belief. But how natural is this idea of linear preference inten-
sity? From a behavioral and empirical point of view, one could conduct behavioral 

6  Also in vNM-settings, expected utility differences are often interpreted as representing preference 
intensities. See, for instance, Börgers and Postl (2009), which focusus on voting scenarios between two 
parties.
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experiments to test these axioms. On a more theoretical basis, the idea states that (i) 
the change in preference intensity should only depend on the change in belief, not on 
the particular initial and final belief, thereby revealing a specific type of invariance, 
and (ii) for a given direction of belief change, the change in preference intensity 
must be proportional to the size of the belief change. Conceptually, it thus represents 
the simplest possible way in which the preference intensity can vary with the belief. 
A problem, of course, is that preference intensity cannot be measured directly, but 
our axioms represent verifiable properties that logically follow from the assumption 
of linear preference intensity.

(f) Belief revision A conditional preference relation does not only specify the 
DM’s preferences over acts for a given belief, but also describes how these prefer-
ences would change if he were to  revise his belief in the light of new information. In 
a dynamic game it may happen, for instance, that some opponent’s strategy is ruled 
out by some new information, forcing the DM to change his belief in response. And 
such information events may even take place sequentially, such that more and more 
opponents’ strategies can be ruled out. The notion of a conditional preference rela-
tion is thus able to describe how the DM’s preferences would change as a result of 
belief revision during the course of a dynamic game.

(g) Game theory with conditional preference relations In principle we could build 
a theory of games based on conditional preference relations, which may or may not 
satisfy our system of axioms. In a game, the DM would be a player i,  his set of acts 
Ai would be the set of pure strategies in the game, and the states would be the set 
Si = ×j≠iAj of opponents’ pure strategy profiles. Fix a conditional preference relation 
≿i for every player i. A Nash equilibrium (Nash, 1950, 1951) could be defined as a 
tuple of probability distributions (�i)i∈I , with �i ∈ Δ(Ai) for every player i,  such that 
𝜎i(ai) > 0 only if ai is optimal for the induced preference relation ≿i

𝜎−i
. Here, �−i 

denotes the product of the probability distributions �j for j ≠ i, which is a probabil-
ity distribution over A−i and hence a belief for player i. With this definition, a Nash 
equilibrium is thus interpreted as a tuple of beliefs about the opponents’ pure strate-
gies, as in Aumann and Brandenburger (1995).

Similarly, correlated rationalizability (Brandenburger and Dekel, 1987; Bern-
heim, 1984; Pearce, 1984) could be defined by the recursive procedure where 
A0
i
∶= Ai for all players i,  and

for every k ≥ 1.

In fact, many concepts for static games, including the various equilibrium and 
rationalizability concepts, could be generalized in terms of conditional preference 
relations. In particular, every conditional preference relation in a static game set-
ting induces for every player i a best response correspondence Ri ∶ Δ(×j≠iAj) ↠ Ai, 
given by

Ak
i
∶= {ai ∈ Ak−1

i
|ai optimal for ≿i

pi
for some pi ∈ Δ(Ak−1

−i
)}

Ri(pi) ∶= {ai ∈ Ai|ai optimal for ≿i
pi
}



	 A. Perea 

for every pi ∈ Δ(×j≠iAj), generalizing the standard best response correspondences 
based on expected utility.

The analysis could also be extended to dynamic games, since we have seen in (f) 
that conditional preference relations are able to model how belief revision about the 
opponents’ strategies changes a player’s preference relation over his own strategies. 
As such, conditional preference relations can be used to provide a generalized ver-
sion of sequential equilibrium (Kreps and Wilson, 1982) or of dynamic game ration-
alizability concepts like strong rationalizability (Pearce, 1984; Battigalli, 1997) (also 
known as extensive-form rationalizability),  backward dominance (Perea, 2014) and 
backwards rationalizability (Perea, 2014; Penta, 2015; Catonini and Penta, 2022).

(h) Equivalent acts. In this paper we have restricted attention to scenarios where 
no two acts are equivalent. In fact, our entire analysis can easily be extended to 
the case where equivalent acts are allowed. Suppose we start with a set of acts A 
where some acts are equivalent. Then, we can partition A into equivalence classes 
{A1,A2,… ,AK} with representative acts a1, a2,… , aK , and subsequently restrict 
the conditional preference relation ≿ to the set A� = {a1, a2,… , aK}, resulting in a 
new conditional preference relation ≿′ . Then, Theorem 3.1 can be generalized as 
follows: The conditional preference relation ≿ has an expected utility representa-
tion, if and only if, ≿′ satisfies the conditions in Theorem 3.1. The proof is easy: 
If ≿′ satisfies the conditions in the theorem, then by the same theorem it is repre-
sented by a utility function u. Extend u to a utility function v on A × S by setting 
v(a, s) ∶= u(ak, s) for all acts a ∈ A and all s ∈ S, where a ∈ Ak. Clearly, v will then 
represent ≿ . In the same way, the other results in this paper can also be extended to 
cases that allow for equivalent acts.

Appendix

Mathematical Definitions

In this section we introduce the mathematical definitions and notation needed for 
this paper, mainly from linear algebra. For a finite set X,  we denote by RX the set of 
all functions v ∶ X → �. Scalar multiplication and addition on RX are defined in the 
usual way: For a function v ∈ R

X and a number � ∈ R, the function � ⋅ v is given by 
(� ⋅ v)(x) = � ⋅ v(x) for all x ∈ X. Similarly, for functions v,w ∈ R

X , the sum v + w is 
given by (v + w)(x) = v(x) + w(x) for all x ∈ X. The set RX together with these two 
operations constitutes a linear space, and elements in RX are called vectors. By 0 we 
denote the vector in RX where 0(x) = 0 for all x ∈ X.

A subset V ⊆ R
X is called a linear subspace of RX if for every v,w ∈ V  and every 

�, � ∈ R, we have that �v + �w ∈ V . For a subset V ⊆ R
X , we denote by

span(V) ∶=

{
K∑

k=1

�kvk | K ≥ 1, �k ∈ R and vk ∈ V for all k ∈ {1,… ,K}

}
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the set of all (finite) linear combinations of elements in V,   and call it the (linear) 
span of V. Here, 

∑K

k=1
�kvk is called a linear combination of the vectors v1,… , vK . A 

linear combination v = �1v1 +⋯ + �KvK , where v1,… , vK ∈ R
X and �1,… , �K ∈ R, 

is called a convex combination if �1,… , �K ≥ 0 and �1 +⋯ + �K = 1.

The set span(V) is always a linear subspace, and if V itself is a linear subspace then 
span(V) = V  . Vectors v1,… , vK ∈ R

X are called linearly independent if none of the 
vectors is a linear combination of the other vectors. The set of vectors {v1,… , vK} 
is a basis for V if v1,… , vK are linearly independent, and span({v1,… , vK}) = V . 
Every basis for V has the same number of vectors, and this number is called the  
dimension of V,  denoted by dim(V). If V = {0}, then dim(V) = 0.

A probability distribution on X is a vector p ∈ R
X such that 

∑
x∈X p(x) = 1 and 

p(x) ≥ 0 for all x ∈ X. The set of probability distributions on X is denoted by Δ(X). 
For a given element x ∈ X, we denote by [x] the probability distribution in Δ(X) 
where [x](x) = 1 and [x](y) = 0 for all y ∈ X�{x}. A probability distribution p has 
full support if p(x) > 0 for all x ∈ X.

For every two vectors v,w ∈ R
X , the vector product is given by 

v ⋅ w ∶=
∑

x∈X v(x)w(x). A hyperplane is a set of the form H = {v ∈ R
X | v ⋅ w = c}, 

where w ∈ R
X�{0} and c ∈ �. If c = 0 then H is a linear subspace of dimension 

|X| − 1, where |X| denotes the number of elements in X.

Proof of Theorem 3.1

In this subsection we will prove Theorem 3.1. Before doing so, we first derive some 
preparatory results. The first characterizes the span of the set of beliefs where the 
DM is indifferent between a and b.

Lemma 6.1  (Span of an indifference set) Consider a conditional preference relation 
≿ that satisfies preservation of indifference, and two choices a and b. Then,

Proof  Let

We will show that span(Pa∼b) = A. Clearly, A ⊆ span(Pa∼b). Hence, it remains to 
show that span(Pa∼b) ⊆ A. Take some p ∈ span(Pa∼b). Then, there are some beliefs 
p1,… , pk, pk+1,… , pk+m ∈ Pa∼b and numbers 𝜆1,… , 𝜆k, 𝜆k+1,… , 𝜆k+m > 0 such 
that

Let �1 ∶= �1 +⋯ + �k and �2 ∶= �k+1 +⋯ + �k+m. If 𝛼1 > 0 and 𝛼2 > 0, then 
define the vectors

span(Pa∼b) = {�1p1 + �2p2|p1, p2 ∈ Pa∼b and �1, �2 ∈ R}.

A ∶= {�1p1 + �2p2|p1, p2 ∈ Pa∼b and �1, �2 ∈ R}.

(6.1)p = �1p1 +⋯ + �kpk − �k+1pk+1 −⋯ − �k+mpk+m.
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It may be verified that q1 and q2 are convex combinations of beliefs in Pa∼b. Hence, 
by repeatedly using preservation of indifference, it follows that q1, q2 ∈ Pa∼b. By 
(6.1) we have that p = �1q1 − �2q2, and thus p ∈ A.

If 𝛼1 > 0 and �2 = 0, then we have that p = �1q1 + 0 ⋅ q1, which is in A. The 
case when �1 = 0 and 𝛼2 > 0 is similar. Finally, when �1 = 0 and �2 = 0, then 
p = 0 ⋅ p1 + 0 ⋅ p2 for two arbitrary beliefs p1, p2 ∈ Pa∼b, and hence p ∈ A.

In general, we thus see that every p ∈ span(Pa∼b) is also in A,   and thus 
span(Pa∼b) ⊆ A. Together with the observation above that A ⊆ span(Pa∼b), we con-
clude that span(Pa∼b) = A. This completes the proof. 	� ◻

The second preparatory result contains some further properties of the set of 
beliefs where the DM is indifferent between a and b,  gathered in Lemma 6.2. In 
this lemma, we denote by Sa∼b the set of states s where a ∼[s] b. Moreover, we say 
that there are preference reversals between a and b if there are beliefs p, q ∈ Δ(S) 
such that a ≻p b and b ≻q a.

Lemma 6.2  (Linear structure of indifference sets) Suppose there are two 
choices, a and b,   and n states. Consider a conditional preference relation ≿ 
that satisfies the regularity axioms. Then, the following properties hold: (a) 
Pa∼b = span(Pa∼b) ∩ Δ(S); (b) if ≿ has preference reversals between a and b,  then 
span(Pa∼b) is a hyperplane with dimension n − 1, and there is a full support belief 
p ∈ Pa∼b with p(s) > 0 for all s ∈ S;(c) if a weakly dominates b under ≿ then 
Pa∼b = {p ∈ Δ(S) | 

∑
s∈Sa∼b

p(s) = 1}.

Proof  (a) Clearly, Pa∼b ⊆ span(Pa∼b) ∩ Δ(S). It remains to show that 
span(Pa∼b) ∩ Δ(S) ⊆ Pa∼b. Take some p ∈ span(Pa∼b) ∩ Δ(S). Then, by Lemma 6.1, 
there are beliefs p1, p2 ∈ Pa∼b and numbers �1, �2 such that p = �1p1 + �2p2. Since 
p ∈ Δ(S), we must have that 

∑
s∈S p(s) = 1. Moreover, as p1, p2 are beliefs, it holds 

that 
∑

s∈S p1(s) =
∑

s∈S p2(s) = 1. But then, it must be that �1 + �2 = 1.

Suppose first that �1 = 0. Then, �2 = 1, and hence p = p2, which is in Pa∼b. The 
case where �2 = 0 is similar. Assume next that 𝜆1, 𝜆2 > 0. As �1 + �2 = 1, it follows 
that p is a convex combination of p1 and p2, which are both in Pa∼b. By preservation 
of indifference, it follows that p ∈ Pa∼b.

Suppose now that 𝜆1 > 0 and 𝜆2 < 0. Since �1 + �2 = 1, it must be that 𝜆1 > 1. 
Hence, we have that

since �2 = 1 − �1. As 𝜆1 > 1, it follows that p1 is a convex combination of p and p2, 
where p1 and p2 are both in Pa∼b.

We will show that p must be in Pa∼b. Suppose, on the contrary, that p ∉ Pa∼b. 
Assume, without loss of generality, that p ∈ Pa≻b. Then, it follows from (6.2) and 

q1 ∶=
�1
�1

p1 +⋯ +
�k
�1

pk and q2 ∶=
�k+1

�2
pk+1 +⋯ +

�k+m

�2
pk+m.

(6.2)p1 =
1

�1
p −

�2
�1

p2 =
1

�1
p +

(
1 −

1

�1

)
p2
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preservation of strict preference that p1 ∈ Pa≻b, which is a contradiction. Hence, 
p ∈ Pa∼b. The case where 𝜆1 < 0 and 𝜆2 > 0 is similar. In general, we conclude 
that every p ∈ span(Pa∼b) ∩ Δ(S) is also in Pa∼b. Hence, span(Pa∼b) ∩ Δ(S) ⊆ Pa∼b. 
As we have already seen that Pa∼b ⊆ span(Pa∼b) ∩ Δ(S), we have that 
Pa∼b = span(Pa∼b) ∩ Δ(S).

(b) Suppose that ≿ has preference reversals on {a, b}. Then, there must be a state 
x where a ≻x b, and another state y where b ≻y a . Here, we write a ≻x b as a short-
cut for a ≻[x] b. By continuity, there must be a belief p2 = (1 − �2)[x] + �2[y] on the 
line segment between [x] and [y] where a ∼p2

b. Now, let the remaining states be 
numbered s3,… , sn such that

We choose (i) for every k ∈ {3,… ,m} a belief pk = (1 − �k)[sk] + �k[y] with 
a ∼pk

b, (ii) for every k ∈ {m + 1,… ,m + l} a belief pk = (1 − �k)[sk] + �k[x] with 
a ∼pk

b, and (iii) for every k ∈ {m + l + 1,… , n} the belief pk = [sk] with a ∼pk
b.

We will now show that p2,… , pn are linearly independent. Take some numbers 
�2,… , �n such that 

∑n

k=2
�k ⋅ pk = 0. By construction, this sum is equal to

As the vectors [x], [y], [s3],… , [sn] are linearly independent, and 0 < 𝜆k < 1 for all 
k ∈ {2,… ,m + l}, it follows that �k = 0 for all k ∈ {3,… , n}. This, in turn, implies 
that also �2 = 0. Hence, the indifference beliefs p2,… , pn ∈ Pa∼b are linearly 
independent.

As a consequence, the dimension of span(Pa∼b) is at least n − 1. The dimension of 
span(Pa∼b) cannot be n,  since otherwise we would have that span(Pa∼b) = R

S, and 
hence, by (a), Pa∼b = R

S ∩ Δ(S) = Δ(S). This would contradict the assumption that 
there are preference reversals between a and b. We thus conclude that the dimension 
of span(Pa∼b) must be n − 1, and therefore span(Pa∼b) is a hyperplane.

To show that Pa∼b contains a belief p with p(s) > 0 for every state s,  consider the 
vector p ∶=

1

n−1
p2 +⋯ +

1

n−1
pn. It may be verified that p is a belief. Moreover, by 

construction of the beliefs p2,… , pn, we have that p(s) > 0 for all states s.

a ≻sk
b for all k ∈ {3,… ,m},

b ≻sk
a for all k ∈ {m + 1,… ,m + l}, and

a ∼sk
b for all k ∈ {m + l + 1,… , n}.

�2((1 − �2)[x] + �2[y]) +

m∑

k=3

�k((1 − �k)[sk] + �k[y])

+

m+l∑

k=m+1

�k((1 − �k)[sk] + �k[x]) +

n∑

k=m+l+1

�k[sk]

=

(
�2(1 − �2) +

m+l∑

k=m+1

�k�k

)
[x] +

(
�2�2 +

m∑

k=3

�k�k

)
[y]

+

m+l∑

k=3

�k(1 − �k)[sk] +

n∑

k=m+l+1

�k[sk] = 0.
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(c) Let A = {p ∈ Δ(S) | 
∑

s∈Sa∼b
p(s) = 1}. To show that Pa∼b ⊆ A, take 

some p ∈ Pa∼b . Assume, contrary to what we want to show, that p ∉ A. Then, 
p(s) > 0 for some s ∈ Sa≻b, where Sa≻b is the set of states t with a ≻t b. As 
p =

∑
s∈Sa∼b

p(s) ⋅ [s] +
∑

s∈Sa≻b
p(s) ⋅ [s] it follows by preservation of indiffer-

ence and preservation of strict preference that p ∈ Pa≻b. This is a contradiction to 
the assumption that p ∈ Pa∼b. We thus conclude that p ∈ A. Hence, Pa∼b ⊆ A. The 
inclusion A ⊆ Pa∼b follows directly by preservation of indifference. We thus see that 
Pa∼b = A. This completes the proof. 	�  ◻

The third preparatory result provides sufficient conditions for an expected utility 
representation between two choices.

Lemma 6.3  (Sufficient conditions for expected utility representation) Consider a 
conditional preference relation ≿ that satisfies the regularity axioms, two choices 
a and b,  and a utility function u. Suppose that ≿ has preference reversals between 
a and b,   and that there are n states. If there is a belief p∗ with a ≻p∗ b and 
u(a, p∗) > u(b, p∗), and n − 1 linearly independent vectors v1,… , vn−1 in span(Pa∼b) 
with u(a, vk) = u(b, vk) for all k ∈ {1,… , n − 1}, then u represents ≿ on {a, b}.

Proof  Let Pu(a)=u(b) be the set of beliefs p with u(a, p) = u(b, p), and similarly for 
Pu(a)>u(b) . To show that u represents ≿ on {a, b}, it is thus sufficient to show that 
Pa∼b = Pu(a)=u(b) and Pa≻b = Pu(a)>u(b).

We start by showing that Pa∼b = Pu(a)=u(b). Consider the set Vu(a)=u(b) ∶= {v ∈ R
S 

| u(a, v) = u(b, v)}. It may be verified that Vu(a)=u(b) is a linear space. Moreover, 
Pu(a)=u(b) = Vu(a)=u(b) ∩ Δ(S). We now show that span(Pa∼b) = Vu(a)=u(b). We first 
prove that span(Pa∼b) ⊆ Vu(a)=u(b). In Lemma 6.2 (b) we have seen that span(Pa∼b) 
has dimension n − 1. Since the vectors v1,… , vn−1 in span(Pa∼b) are linearly inde-
pendent, we conclude that {v1,… , vn−1} is a basis of span(Pa∼b). Take some 
v ∈ span(Pa∼b). Then, we can write v = �1v1 +⋯ + �n−1vn−1 for some numbers 
�1,… , �n−1. Since vk ∈ Vu(a)=u(b) for all k ∈ {1,… , n − 1} and Vu(a)=u(b) is a linear 
subspace, it follows that v ∈ Vu(a)=u(b). Thus, span(Pa∼b) ⊆ Vu(a)=u(b).

We now show that Vu(a)=u(b) = span(Pa∼b). Since Vu(a)=u(b) is a linear subspace 
of RS , its dimension can be at most n. Moreover, as span(Pa∼b) ⊆ Vu(a)=u(b) and 
span(Pa∼b) has dimension n − 1, the dimension of Vu(a)=u(b) is at least n − 1. Suppose, 
contrary to what we want to prove, that Vu(a)=u(b) ≠ span(Pa∼b). Then, the dimen-
sion of Vu(a)=u(b) must be n,   and hence Vu(a)=u(b) = R

S. However, this is a contra-
diction since u(a, p∗) > u(b, p∗), and hence p∗ ∉ Vu(a)=u(b). We thus conclude that 
Vu(a)=u(b) = span(Pa∼b). Since Pu(a)=u(b) = Vu(a)=u(b) ∩ Δ(S) and, by Lemma 6.2 (a), 
Pa∼b = span(Pa∼b) ∩ Δ(S), we conclude that Pa∼b = Pu(a)=u(b).

We next prove that Pa≻b = Pu(a)>u(b). Let p∗ be the belief where a ≻p∗ b and 
u(a, p∗) > u(b, p∗). Consider the set

A ∶= {p ∈ Δ(S)| there is no � ∈ [0, 1] with (1 − �)p + �p∗ ∈ Pa∼b}.
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We show that Pa≻b = A. To prove that Pa≻b ⊆ A, take some p ∈ Pa≻b. Since 
p∗ ∈ Pa≻b it follows by preservation of strict preference that (1 − 𝜆)p + 𝜆p∗ ∈ Pa≻b 
for every � ∈ [0, 1], and hence p ∈ A. Thus, Pa≻b ⊆ A.

To show that A ⊆ Pa≻b, take some p ∈ A. Suppose that p ∉ Pa≻b. Since p ∈ A, 
we must have that p ∉ Pa∼b, and hence p ∈ Pb≻a. By continuity, there must then be 
some � ∈ (0, 1) with (1 − �)p + �p∗ ∈ Pa∼b. This, however, contradicts the assump-
tion that p ∈ A. Hence, p ∈ Pa≻b, which yields A ⊆ Pa≻b. Altogether, we conclude 
that Pa≻b = A.

We next show that Pu(a)>u(b) = A. Since Pa∼b = Pu(a)=u(b), it follows that

As p∗ ∈ Pu(a)>u(b) by construction, it can be shown in a similar same way as above 
that Pu(a)>u(b) = A. As such, Pa≻b = A = Pu(a)>u(b).

Since Pa∼b = Pu(a)=u(b) and Pa≻b = Pu(a)>u(b), the utility function u represents ≿ on 
{a, b}. This completes the proof. 	�  ◻

The following result contains an axiomatic characterization of expected utility for 
the case of two choices.

Lemma 6.4  (Characterization of expected utility for two choices) Consider a set A 
consisting of two acts, a finite set of states S,  and a conditional preference relation 
≿ on (A, S). Then, ≿ has an expected utility representation, if and only if, it satisfies 
completeness, transitivity, continuity, preservation of indifference and preservation 
of strict preference.

Proof of Lemma 6.4  Suppose first that ≿ has an expected utility representation u. 
Then, it can easily be verified that ≿ satisfies the regularity axioms. We leave this to 
the reader.

Assume next that ≿ satisfies the regularity axioms. We will show that ≿ has an 
expected utility representation. We distinguish three cases: (a) there are preference 
reversals between a and b,  (b) a weakly dominates b,  and (c) b weakly dominates a. 
For the remainder of this proof, we assume that the number of states is n.

(a) Suppose that there are preference reversals between a and b. Since we know 
from Lemma 6.2 (b) that span(Pa∼b) has dimension n − 1, there are n − 1 linearly 
independent beliefs p1,… , pn−1 ∈ Pa∼b. Moreover, there must be some state x 
with a ≻[x] b. As [x] ∉ Pa∼b, we know from Lemma 6.2 (a) that [x] ∉ span(Pa∼b), 
and hence the beliefs p1,… , pn−1, [x] are linearly independent. Fix some number 
𝛼 < u(a, x), and find the unique utilities {u(b, s) | s ∈ S} such that u(b, x) = 𝛼 < u(a, x) 
and u(b, pk) = u(a, pk) for all k ∈ {1,… , n − 1}. By Lemma 6.3 it then follows that 
u represents ≿ .

(b) Suppose that a weakly dominates b. Choose a utility function u such that, for 
every state s,   we have u(a, s) > u(b, s) when [s] ∈ Pa≻b, and u(a, s) = u(b, s) when 
[s] ∈ Pa∼b. It then follows by Lemma 6.2 (c) that Pa∼b = Pu(a)=u(b). Since every belief 
p is either in Pa∼b or Pa≻b, it follows that Pa≻b = Pu(a)>u(b). We thus conclude that the 
utility function u represents ≿ .

A = {p ∈ Δ(S)| there is no � ∈ [0, 1] with (1 − �)p + �p∗ ∈ Pu(a)=u(b)}.
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(c) This proof is similar to that for (b). The proof is hereby complete. 	�  ◻

The following result guarantees the existence of a line of beliefs with certain 
properties.

Lemma 6.5  (Line containing three indifference beliefs) Consider a conditional 
preference relation ≿ that has preference reversals for all pairs of choices, and 
satisfies the regularity axioms. Then, for every three choices a, b, c,  there is a line 
of beliefs that contains full support beliefs pab, pac, pbc where the DM is indifferent 
between the respective choices, and that contains a belief where the DM is not 
indifferent between any of these three choices.

Proof  Suppose first that there is a full support belief p ∈ Pa∼b ∩ Pb∼c. Then, by 
transitivity, p ∈ Pa∼c. We can then choose a line of beliefs through p that contains a 
belief where the DM is not indifferent between any of the three choices. Such a line 
will satisfy the statement in the lemma.

Assume next that there is no full support belief in Pa∼b ∩ Pb∼c. By transitivity, 
there will be no full support belief in Pa∼b ∩ Pa∼c or Pb∼c ∩ Pa∼c either. Let Δ+(S) be 
the set of full support beliefs. Then, the sets Pa∼b,Pa∼c and Pb∼c will be pairwise dis-
joint on Δ+(S). As, by Lemma 6.2 (a), these indifference sets are the intersections of 
hyperplanes with Δ(S), it must be that one of these indifference sets is “in between” 
the other two. Suppose, without loss of generality, that Pb∼c is in between Pa∼b and 
Pa∼c. By Lemma 6.2 (b), there is a full support belief pab ∈ Pa∼b and a full support 
belief pac ∈ Pa∼c. Let l be the line of beliefs that goes through pab and pac. As the 
set Pb∼c is in between Pa∼b and Pa∼c, there must be a belief pbc ∈ Pb∼c on the line l 
between pab and pac. Moreover, pbc is a full support belief, since pab and pac are full 
support beliefs. Finally, the full support beliefs pab and pac can be chosen such that 
l contains a belief where the DM is not indifferent between any of the three choices. 
The line l thus satisfies the requirements of the lemma. This completes the proof. 	
� ◻

The following result provides a geometric characterization of three choice lin-
ear preference intensity.

Proposition 6.1  (Characterization of three choice linear preference intensity) 
Consider a conditional preference relation ≿ that has no weakly dominated choices 
and that satisfies the regularity axioms. Then, ≿ satisfies three choice linear 
preference intensity, if and only if, for every three choices a,  b,  c it holds that 
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c).

Proof  Consider a conditional preference relation ≿ that has no weakly dominated 
choices and satisfies the regularity axioms. Since we exclude equivalent choices, it 
must be that ≿ has preference reversals between every pair of choices.

(a) Assume first that ≿ satisfies three choice linear preference intensity. Consider 
three choices a, b and c. We must show that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c). 
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Take some q ∈ span(Pa∼b) ∩ span(Pb∼c). We distinguish two cases: (1) ∑
s∈S q(s) ≠ 0, and (2) 

∑
s∈S q(s) = 0.

Case 1. Assume that 
∑

s∈S q(s) ≠ 0. Then, there is some number � ≠ 0 such that 
q̂ ∶= 𝜆q satisfies 

∑
s∈S q̂(s) = 1. Moreover, q̂ ∈ span(Pa∼b) ∩ span(Pb∼c) also. By 

Lemma 6.5 there is a line l that contains full support beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c 
and pac ∈ Pa∼c . Then, there is some � ∈ (0, 1) small enough such that (i) the vec-
tors p�

ab
∶= (1 − 𝜀)pab + 𝜀q̂, p�

bc
∶= (1 − 𝜀)pbc + 𝜀q̂ and p� ∶= (1 − 𝜀)pac + 𝜀q̂ are 

all in Δ(S), and (ii) the line l′ through p′
ab

 and p′
bc

 contains a belief p�
ac
∈ Pa∼c. Since 

p�
ab
− p�

bc
= (1 − �) ⋅ (pab − pbc), we conclude that the lines l and l′ are parallel. 

Moreover, the lines l and l′ can be chosen such that they contain beliefs where the 
DM is not indifferent between any of the three choices. Hence, by preservation of 
strict preference, p′

ac
 is the unique belief in Pa∼c on the line l′. Also, the lines l and l′ 

can be chosen such that the probability of no state is constant on l or l′.
Recall that q̂ ∈ span(Pa∼b). Thus, we conclude that p�

ab
∈ span(Pa∼b) ∩ Δ(S). By 

Lemma 6.2 (a) it follows that p�
ab

∈ Pa∼b. As q̂ ∈ span(Pb∼c) it can be shown in a 
similar way that p�

bc
∈ Pb∼c.

Recall that p� ∶= (1 − 𝜀)pac + 𝜀q̂. We will now show that p�
ac
= p�. Suppose first 

that pab = pbc. Then, by transitivity, pac = pab = pbc. Moreover, by definition of 
p′
ab

 and p′
bc

 it follows that p�
ab

= p�
bc
, and hence by transitivity we must have that 

p�
ac
= p�

ab
= p�

bc
. Thus, p� = (1 − 𝜀)pac + 𝜀q̂ = (1 − 𝜀)pab + 𝜀q̂ = p�

ab
= p�

ac
.

Suppose now that pab ≠ pbc. Then, by transitivity, the beliefs pab, pbc and pac are 
pairwise different. By definition of p′

ab
 and p′

bc
, we then have that p′

ab
≠ p′

bc
. Hence, 

by transitivity, the beliefs p′
ab
, p′

bc
 and p′

ac
 are pairwise different. By three choice lin-

ear preference intensity, we have for every state s that

Note that, by definition, (p�
ab
(s) − p�

bc
(s)) = (1 − �)(pab(s) − pbc(s)). Since the beliefs 

pab, pbc and pac are pairwise different, the beliefs p′
ab
, p′

bc
 and p′

ac
 are pairwise differ-

ent, and no state has constant probability on the lines l and l′, it follows together with 
(6.3) that (p�

ac
(s) − p�

bc
(s)) = (1 − �)(pac(s) − pbc(s)), and thus

As this holds for every state s,   we conclude that p�
ac
= p�. Thus, the belief 

p� = (1 − 𝜀)pac + 𝜀q̂ is in Pa∼c. As such, q̂ =
1

𝜀
p� + (1 −

1

𝜀
)pac ∈ span(Pa∼c), which 

implies that q ∈ span(Pa∼c) also.
Case 2. Assume next that 

∑
s∈S q(s) = 0. Let V0 ∶= {v ∈ R

S | 
∑

s∈S v(s) = 0}. 
We distinguish two subcases: (2.1) span(Pa∼b) ∩ span(Pb∼c) ⊈ V0, and (2.2) 
span(Pa∼b) ∩ span(Pb∼c) ⊆ V0.

Case 2.1. Assume that span(Pa∼b) ∩ span(Pb∼c) ⊈ V0. Then, there is some 
r ∈ span(Pa∼b) ∩ span(Pb∼c) with 

∑
s∈S r(s) ≠ 0. Hence, we know by Case 1 that 

r ∈ span(Pa∼c). Moreover, as q, r ∈ span(Pa∼b) ∩ span(Pb∼c), we conclude that 
q − r ∈ span(Pa∼b) ∩ span(Pb∼c) also, with 

∑
s∈S(q − r)(s) ≠ 0. Hence, by Case 1, 

also q − r ∈ span(Pa∼c). As q = r + (q − r), and both r and q − r are in span(Pa∼c), it 
follows that q ∈ span(Pa∼c).

(6.3)(pab(s) − pbc(s)) ⋅ (p
�
ac
(s) − p�

bc
(s)) = (p�

ab
(s) − p�

bc
(s)) ⋅ (pac(s) − pbc(s)).

p�
ac
(s) = (1 − 𝜀)(pac(s) − pbc(s)) + p�

bc
(s) = (1 − 𝜀)pac(s) + 𝜀q̂(s) = p�(s).
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Case 2.2. Suppose that span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. It can be shown 
that span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0. To see this, note first that 
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼b) ∩ V0, since span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. 
Moreover, we also know that span(Pa∼b) ≠ span(Pb∼c), since otherwise 
span(Pa∼b) ∩ span(Pb∼c) would contain beliefs in Pa∼b which would clearly 
not be in V0 . Since, by Lemma 6.2 (b), span(Pa∼b) and span(Pb∼c) are lin-
ear subspaces of dimension n − 1, it follows that span(Pa∼b) ∩ span(Pb∼c) 
is a linear subspace of dimension n − 2. Now, consider the linear subspace 
span(Pa∼b) ∩ V0. Clearly, span(Pa∼b) ≠ V0, since span(Pa∼b) contains beliefs in 
Pa∼b which are not in V0. Since span(Pa∼b) and V0 are linear subspaces of dimen-
sion n − 1, it follows that span(Pa∼b) ∩ V0 is a linear subspace of dimension 
n − 2. Since span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼b) ∩ V0 and both linear sub-
spaces have the same dimension, n − 2, both spaces must be equal. Hence, 
span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0.

Moreover, it must be that span(Pa∼b) ∩ span(Pa∼c) ⊆ V0 also. To see this, 
assume on the contrary that span(Pa∼b) ∩ span(Pa∼c) ⊈ V0. Then, it would fol-
low from Case 2.1 that span(Pa∼b) ∩ span(Pa∼c) ⊆ span(Pb∼c), and thus 
span(Pa∼b) ∩ span(Pa∼c) ⊆ span(Pa∼b) ∩ span(Pb∼c) ⊆ V0. This would be a con-
tradiction. Hence, we conclude that span(Pa∼b) ∩ span(Pa∼c) ⊆ V0. It can then be 
shown, in the same way as above, that span(Pa∼b) ∩ span(Pa∼c) = span(Pa∼b) ∩ V0.

By combining the latter two equalities, we get

which implies that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c). As 
q ∈ span(Pa∼b) ∩ span(Pb∼c), it follows that q ∈ span(Pa∼c). This completes the 
proof of (a).

(b) Suppose now that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c) for all three choices 
a, b, c. We must show that ≿ satisfies three choice linear preference intensity. Con-
sider two parallel lines of beliefs l, l′ that (i) contain beliefs where the DM is not 
indifferent between any two choices from {a, b, c}, (ii) where l contains indiffer-
ence beliefs pab ∈ Pa∼b, pbc ∈ Pb∼c and pac ∈ Pa∼c, and (iii) l′ contains indifference 
beliefs p�

ab
∈ Pa∼b, p

�
bc
∈ Pb∼c and p�

ac
∈ Pa∼c. Let lab be the line through pab and 

p′
ab
, let lbc be the line through pbc and p′

bc
, and lac the line through pac and p′

ac
. Note 

that all these lines belong to the same two-dimensional plane: the plane that goes 
through l and l′.

Assume first that the lines lab, lbc and lac are all parallel. Then, there is a vector 
q such that p�

ab
= pab + q, p�

bc
= pbc + q and p�

ac
= pac + q. As a consequence, for 

every state s, 

Hence, the formula for three choice linear preference intensity is satisfied.
Assume next that the lines lab, lbc and lac are not all parallel. Without loss of gen-

erality, we suppose that lab and lbc are not parallel. Since these two lines lie in the 

span(Pa∼b) ∩ span(Pb∼c) = span(Pa∼b) ∩ V0 = span(Pa∼b) ∩ span(Pa∼c),

(pab(s) − pbc(s)) ⋅ (p
�
ac
(s) − p�

bc
(s)) =(pab(s) − pbc(s)) ⋅ (pac(s) − pbc(s))

=(p�
ab
(s) − p�

bc
(s)) ⋅ (pac(s) − pbc(s)).
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same two-dimensional plane, they must intersect at a unique vector q. Since q lies 
on lab, which goes through pab and p′

ab
 in Pa∼b, we conclude that q ∈ span(Pa∼b). 

Similarly, as q lies on lbc, it follows that q ∈ span(Pb∼c). Since we assume that 
span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c), we conclude that q ∈ span(Pa∼c) too.

Let V be the two-dimensional plane that goes through the lines l and l′. Since, by 
condition (i) above, l and l′ contain beliefs where the DM is not indifferent between 
a and c,   it follows that span(Pa∼c) ∩ V = lac. As q ∈ span(Pa∼c) ∩ V , we conclude 
that q lies on the line lac.

As q lies on lab, lbc and lac, the beliefs pab, pbc, pac lie on l,  the beliefs p′
ab
, p′

bc
 and 

p′
ac

 lie on l′, and the lines l and l′ are parallel, there is a unique number � such that 
p�
ab

= (1 − �)q + �pab, p�bc = (1 − �)q + �pbc and p�
ac
= (1 − �)q + �pac. Hence, for 

every state s we have that

Thus, the formula for three choice linear preference intensity is satisfied. We there-
fore conclude that ≿ satisfies three choice linear preference intensity. This completes 
the proof. 	�  ◻

In our last preparatory result, we characterize the span of an indifference set Pa∼b 
in case of an expected utility representation.

Lemma 6.6  (Span of indifference set under utility representation) Consider a 
conditional preference relation ≿ with an expected utility representation u. Suppose 
there are preferene reversals between choices a and b. Then,

Proof  Let A ∶= {q ∈ R
S| u(a, q) = u(b, q)}. We first show that span(Pa∼b) ⊆ A. Take 

some q ∈ span(Pa∼b). Then, by Lemma 6.1, there are p1, p2 ∈ Pa∼b and numbers 
�1, �2 such that q = �1p1 + �2p2. As u(a, p1) = u(b, p1) and u(a, p2) = u(b, p2), it 
follows that u(a, q) = u(b, q), and hence q ∈ A. Thus, span(Pa∼b) ⊆ A. By Lemma 
6.2 (b) we know that span(Pa∼b) has dimension n − 1. Since A is a linear subspace 
with dimension n − 1 also, and span(Pa∼b) ⊆ A, it must be that span(Pa∼b) = A. This 
completes the proof. 	�  ◻

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (a)  Suppose first that ≿ has an expected utility representation 
u. From Lemma 6.4, we know that ≿ satisfies the regularity axioms.

To show three choice linear preference intensity it suffices, in view of Prop-
osition 6.1, to show that span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c) for all three 
choices a,  b,  c. Take some q ∈ span(Pa∼b) ∩ span(Pb∼c). Then, by Lemma 6.1, 
there are p1

ab
, p2

ab
∈ Pa∼b, p1

bc
, p2

bc
∈ Pb∼c and numbers �1, �2,�1,�2 such that 

(pab(s) − pbc(s)) ⋅ (p
�
ac
(s) − p�

bc
(s)) =� ⋅ (pab(s) − pbc(s)) ⋅ (pac(s) − pbc(s))

=(p�
ab
(s) − p�

bc
(s)) ⋅ (pac(s) − pbc(s)).

span(Pa∼b) = {q ∈ R
S|u(a, q) = u(b, q)}.
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q = �1p
1
ab
+ �2p

2
ab

= �1p
1
bc
+ �2p

2
bc
. As u(a, p1

ab
) = u(b, p1

ab
) and u(a, p2

ab
) = u(b, p2

ab
), 

it follows that u(a, q) = u(b, q). In a similar fashion, it follows that u(b, q) = u(c, q), 
and hence u(a, q) = u(c, q). By Lemma 6.6 it thus follows that q ∈ span(Pa∼c). 
Hence, span(Pa∼b) ∩ span(Pb∼c) ⊆ span(Pa∼c), which implies by Proposition 6.1 
that ≿ satisfies three choice linear preference intensity.

We finally show four choice linear preference intensity. Consider a line of 
beliefs l,   and four choices a, b, c, d such that there is a belief on the line where 
the DM is not indifferent between any pair of choices in {a, b, c, d}. Moreover, let 
pab, pac, pad, pbc, pbd and pcd be corresponding indifference beliefs on this line. Con-
sider some state s. If the probability of s is constant on the line l,  then the formula 
for four choice linear preference intensity holds trivially.

We therefore assume from now on that the probability of s is not constant on l,   
so that every belief on l is uniquely given by the probability it assigns to s. Suppose 
that pab = pac. Then, by transitivity, it must be that pab = pac = pbc , and the formula 
for four choice linear preference intensity would hold trivially. Similarly, the for-
mula would trivially hold if pab = pad or pac = pad.

We now assume that pab, pac, pad are pairwise different. Then, by transitivity, pbc 
is different from pab and pac, the belief pbd is different from pab and pad, and the 
belief pcd is different from pac and pad.

Consider two arbitrary, but different, beliefs p1, p2 on l,  and define

As there is a belief on the line where the DM is indifferent between a and b,   and 
another belief on the line where the DM is not, we must have that Δ(u(a) − u(b)) ≠ 0. 
In a similar way, we define Δ(u(a) − u(c)) and Δ(u(a) − u(d)).

By applying the arguments from Section  4.3 to expected utility differences, 
instead of preference intensity, it follows that

Recall that also Δ(u(a) − u(c)) ≠ 0. Moreover, since pab ≠ pbc and the belief on the 
line is uniquely given by its probability on s,  we have that pab(s) ≠ pbc(s). Thus, the 
two ratios above are well-defined. In a similar fashion, it follows that

As, by definition,

it follows by (6.4) and (6.5) that the formula for four choice linear preference inten-
sity obtains. Thus, ≿ satisfies four choice linear preference intensity.

Δ(u(a) − u(b)) ∶= (u(a, p1) − u(b, p1)) − (u(a, p2) − u(b, p2)).

(6.4)
Δ(u(a) − u(b))

Δ(u(a) − u(c))
=

pac(s) − pbc(s)

pab(s) − pbc(s)
.

(6.5)
Δ(u(a) − u(c))

Δ(u(a) − u(d))
=

pad(s) − pcd(s)

pac(s) − pcd(s)
and

Δ(u(a) − u(b))

Δ(u(a) − u(d))
=

pad(s) − pbd(s)

pab(s) − pbd(s)
.

Δ(u(a) − u(b))

Δ(u(a) − u(d))
=

Δ(u(a) − u(b))

Δ(u(a) − u(c))
⋅

Δ(u(a) − u(c))

Δ(u(a) − u(d))
,
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(b) Suppose that ≿ satisfies the regularity axioms, three choice linear preference 
intensity and four choice linear preference intensity. If there are only two choices, 
then we know from Lemma 6.4 that there is an expected utility representation. We 
therefore assume, from now on, that there are at least three choices.

To show that ≿ has an expected utility representation, we distinguish two cases: 
(1) Pa∼b = Pc∼d for every two pairs of choices {a, b} and {c, d} , and (2) Pa∼b ≠ Pc∼d 
for some pairs of choices {a, b} and {c, d}.

Case 1. Suppose that Pa∼b = Pc∼d for every two pairs of choices {a, b} and {c, d}. 
Let A ∶= Pa∼b for some pair of choices {a, b}. Note that A ≠ Δ(S), as we assume 
that no two choices are equivalent under ≿ . Since we also assume that no choice 
weakly dominates another choice, there will be preference reversals between all 
pairs of choices. Let x be a state where [x] ∉ A. Hence, [x] ∉ Pa∼b for every two 
choices a and b. By transitivity, we can order the choices c1, c2,… , cK such that

Choose numbers v1,… , vK with v1 > v2 > ⋯ > vK.
For choice c1, set u(c1, x) = v1, and set the utilities u(c1, s) for states s ≠ x 

arbitrarily.
By Lemma 6.2 (b) we know that span(A) has dimension n − 1, where n is the 

number of states. Let {p1,… , pn−1} be a basis for span(A). As [x] ∉ span(A), we 
know that {p1,… , pn−1, [x]} is a basis for RS. For every choice ck with k ≥ 2 find the 
unique utilities u(ck, s) such that

We will show that the utility function u represents ≿ .

Take two choices a, b with a ≻[x] b. Then, by construction of the utility function, 
we have that u(a, pk) = u(b, pk) for all k ∈ {1,… , n − 1}, and u(a, x) > u(b, x). As 
{p1,… , pn−1} is a basis for span(Pa∼b), we know that p1,… , pn−1 are linearly inde-
pendent. It thus follows by Lemma 6.3 that u represents ≿ on the pair of choices {a, b}. 
As this holds for every pair of choices {a, b}, we conclude that u represents ≿ .

Case 2. Suppose that Pa∼b ≠ Pc∼d for some pairs of choices {a, b} and {c, d}. Then, 
there must be some choices a, b, c such that Pa∼c ≠ Pb∼c. To see this, suppose on the 
contrary that Pa∼c = Pb∼c for all three choices a, b, c. Then, take two arbitrary pairs of 
choices {a, b} and {c, d} where {a, b} ∩ {c, d} = �. By assumption we would then have 
that Pa∼b = Pb∼c = Pc∼d, and hence Pa∼b = Pc∼d for all pairs {a, b} and {c, d} . This 
would be a contradiction. Hence, Pa∼c ≠ Pb∼c for some choices a, b, c.

Now take some choice d different from a,  b and c,   if it exists. Then, 
either Pa∼d ≠ Pb∼d or Pa∼d ≠ Pc∼d. To see this, suppose on the contrary that 
Pa∼d = Pb∼d = Pc∼d. Define A ∶= Pa∼d = Pb∼d = Pc∼d. Since, by transitiv-
ity, Pa∼d ∩ Pb∼d ⊆ Pa∼b and Pb∼d ∩ Pc∼d ⊆ Pb∼c, it follows that A ⊆ Pa∼b ∩ Pb∼c. 
Thus, span(A) ⊆ span(Pa∼b) ∩ span(Pb∼c). However, since Pa∼c ≠ Pb∼c we have, 
by transitivity, that Pa∼b ≠ Pb∼c. As, by Lemma 6.2 (b), both span(Pa∼b) and 
span(Pb∼c) have dimension n − 1, it must be that span(Pa∼b) ∩ span(Pb∼c) has 
dimension n − 2. However, A has dimension n − 1, and hence it cannot be that 

c1 ≻[x] c2 ≻[x] c3 ≻[x] ⋯ ≻[x] cK .

(6.6)u(ck, p1) = u(c1, p1),… , u(ck, pn−1) = u(c1, pn−1) and u(ck, x) = vk.
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span(A) ⊆ span(Pa∼b) ∩ span(Pb∼c). We thus obtain a contradiction, and conclude that 
either Pa∼d ≠ Pb∼d or Pa∼d ≠ Pc∼d.

Based on the two insights above, we can order the choices c1, c2,… , cK such that 
Pc3∼c1

≠ Pc3∼c2
, and for every k ≥ 4 either Pck∼c1

≠ Pck∼c2
 or Pck∼c1

≠ Pck∼c3
. Let the 

utilities for c1 and c2 be given as in the proof of Lemma 6.4. For the other choices, we 
define their utilities according to the following procedure:

Utilities for c3 : By Lemma 6.2 (b), there are n − 1 linearly independent beliefs 
p1,… , pn−1 ∈ Pc3∼c1

. Choose a belief pn ∈ Pc3∼c2
�Pc3∼c1

. Note that this is possi-
ble since Pc3∼c1

≠ Pc3∼c2
, and because of Lemma 6.2 (a) and (b). By Lemma 6.2 (a), 

pn ∉ span(Pc3∼c1
), and hence p1,… , pn−1, pn are linearly independent. Find the unique 

utilities {u(c3, s) | s ∈ S} such that

Utilities for c4,… , cK . For every k ≥ 4, inductively define the utilities for ck as fol-
lows. From above, we know that either Pck∼c1

≠ Pck∼c2
 or Pck∼c1

≠ Pck∼c3
. Sup-

pose that Pck∼c1
≠ Pck∼c2

. Like above, we can choose linearly independent beliefs 
p1,… , pn−1, pn where p1,… , pn−1 ∈ Pck∼c1

 and pn ∈ Pck∼c2
�Pck∼c1

. Find the unique 
utilities {u(ck, s) | s ∈ S} such that

If Pck∼c1
≠ Pck∼c3

, the utilities can be defined analogously,
We will now show that these utilities represents the conditional preference 

relation ≿ .

We prove, by induction on k,  that u represents ≿ on {c1,… , ck}. For k = 2 we 
know this is true, in the light of the proof of Lemma 6.4.

Suppose now that k ≥ 3, and that u represents ≿ on {c1,… , ck−1}. We must 
show that u represents ≿ on all pairs {ck, cm} where m ∈ {1,… , k − 1}.

We start by showing that u represents ≿ on {ck, c1}. Assume, without loss 
of generality, that Pck∼c1

≠ Pck∼c2
. Then, by (6.7) and (6.8) we know that 

u(ck, pn) = u(c2, pn). As pn ∈ Pck∼c2
�Pck∼c1

, we may assume, without loss of gen-
erality, that pn ∈ Pck≻c1

. As pn ∈ Pck∼c2
, it follows that pn ∈ Pc2≻c1

, and hence 
u(c2, pn) > u(c1, pn). As, by (6.7) and (6.8), u(ck, pn) = u(c2, pn), we conclude that 
u(ck, pn) > u(c1, pn). Thus, pn ∈ Pck≻c1

 is such that u(ck, pn) > u(c1, pn). Together 
with (6.7) and ( 6.8), we conclude from Lemma 6.3 that u represents ≿ on {ck, c1}.

We next show that u represents ≿ on {ck, c2}. As Pck∼c1
≠ Pck∼c2

, it fol-
lows by transitivity that Pck∼c1

≠ Pc1∼c2
. Hence, it follows by Lemma 6.2 (a) 

and (b) that span(Pck∼c1
) ∩ span(Pc1∼c2

) has dimension n − 2. Take a basis 
{q1,… , qn−2} for span(Pck∼c1

) ∩ span(Pc1∼c2
). By Proposition 6.1 we know that 

span(Pck∼c1
) ∩ span(Pc1∼c2

) ⊆ span(Pck∼c2
), and hence the vectors q1,… , qn−2 

are all in span(Pck∼c2
). As each of these vectors qm is in span(Pck∼c1

), it follows 
by Lemma 6.1 that qm can be written as qm = �1r1 + �2r2, where �1, �2 ∈ R and 
r1, r2 ∈ Pck∼c1

. Since u represents ≿ on {ck, c1}, we know that u(ck, r1) = u(c1, r1) 
and u(ck, r2) = u(c1, r2), which implies that u(ck, qm) = u(c1, qm) . As qm is also 

(6.7)
u(c3, pm) = u(c1, pm) for all m ∈ {1,… , n − 1}, and u(c3, pn) = u(c2, pn).

(6.8)
u(ck, pm) = u(c1, pm) for all m ∈ {1,… , n − 1}, and u(ck, pn) = u(c2, pn).
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in span(Pc1∼c2
), and u represents ≳ on {c1, c2}, it follows in a similar way that 

u(c1, qm) = u(c2, qm). Hence, we conclude that

where the last equality follows from (6.7) and (6.8). Moreover, as pn ∉ Pck∼c1
, we 

know that pn ∉ span(Pck∼c1
) ∩ span(Pc1∼c2

), and hence the n − 1 vectors above are 
linearly independent.

Since Pck∼c1
≠ Pck∼c2

, there is a belief p ∈ Pck∼c1
�Pck∼c2

. Assume, with-
out loss of generality, that p ∈ Pck≻c2

. As p ∈ Pck∼c1
, it follows by transitiv-

ity that p ∈ Pc1≻c2
. As u represents ≿ on {ck, c1} and {c1, c2}, it follows that 

u(ck, p) = u(c1, p) and u(c1, p) > u(c2, p), which implies that u(ck, p) > u(c2, p). 
Hence, there is some belief p with Pck≻c2

 and u(ck, p) > u(c2, p). Together with (6.9 
) and Lemma 6.3, we conclude that u represents ≿ on {ck, c2}.

We finally show that u represents ≿ on {ck, cm} for every m ∈ {3,… , k − 1}. 
Take some m ∈ {3,… , k − 1}. Then, necessarily, k ≥ 4. To abbreviate 
the notation, we define spanml ∶= span(Pcm∼cl

) for every m, l ∈ {1,… , k}. 
We distinguish two cases: (1) spank1 ∩ span1m ≠ spank2 ∩ span2m or 
spank1 ∩ span1m ≠ spank3 ∩ span3m, and (2) spank1 ∩ span1m = spank2 ∩ span2m 
and spank1 ∩ span1m = spank3 ∩ span3m.

Case 1. Assume, without loss of generality, that 
spank1 ∩ span1m ≠ spank2 ∩ span2m. Since, by Lemma 6.2 (b), the four linear 
spans have dimension n − 1, it follows that the two intersections have dimension 
n − 2 or n − 1. Moreover, as the two intersections are different, we conclude that

has dimension n − 1 or n. Moreover, we know from Proposition 6.1 that 
spank1 ∩ span1m and spank2 ∩ span2m are both subsets of spankm, and hence 
A ⊆ spankm also. As ck and cm are not equivalent, A cannot have dimension n,  and 
thus the dimension of A must be n − 1.

Take a basis {q1,… , qn−1} for A,  where every ql is either in spank1 ∩ span1m or in 
spank2 ∩ span2m. Suppose that ql is in spank1 ∩ span1m. As u represents ≿ on {ck, c1} 
and {c1, cm}, it can be shown in the same way as above that u(ck, ql) = u(c1, ql) 
and u(c1, ql) = u(cm, ql), which implies that u(ck, ql) = u(cm, cl). If ql is in 
spank2 ∩ span2m, it can be shown in a similar way that u(ck, ql) = u(cm, ql) also. We 
thus see that

Since Pck∼c1
≠ Pck∼c2

, either Pck∼c1
�Pck∼cm

 or Pck∼c2
�Pck∼cm

 must be non-empty. 
Assume, without loss of generality, that Pck∼c1

�Pck∼cm
 is non-empty. Take some 

p ∈ Pck∼c1
�Pck∼cm

. Assume, without loss of generality, that p ∈ Pck≻cm
. As 

p ∈ Pck∼c1
, it follows by transitivity that p ∈ Pc1≻cm

. Since u represents ≿ on {ck, c1} 
and {c1, cm} , we know that u(ck, p) = u(c1, p) and u(c1, p) > u(cm, p), and thus 
u(ck, p) > u(cm, p). We have thus found a belief p ∈ Pck≻cm

 with u(ck, p) > u(cm, p). 
Together with (6.10) and Lemma 6.3 we conclude that u represents ≿ on {ck, cm}.

(6.9)u(ck, qm) = u(c2, qm) for all m ∈ {1,… , n − 2} and u(ck, pn) = u(c2, pn),

A ∶= span[(spank1 ∩ span1m)) ∪ (spank2 ∩ span2m)]

(6.10)ql ∈ spankm and u(ck, ql) = u(cm, ql) for every l ∈ {1,… , n − 1}.
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Case 2. Suppose that spank1 ∩ span1m = spank2 ∩ span2m and 
spank1 ∩ span1m = spank3 ∩ span3m.

Claim. There are i, j ∈ {1, 2, 3} such that for every triple a, b, c ∈ {ci, cj, cm, ck} 
the sets Pa∼b,Pa∼c and Pb∼c are pairwise different.

Proof of claim. We first show that Pck∼c1
≠ Pc1∼cm

. Suppose not. 
Then, Pck∼c1

= Pc1∼cm
 and hence, by transitivity, Pck∼c1

= Pck∼cm
. Thus, 

spank1 ∩ span1m = spank1 = spankm. Since spank1 ∩ span1m = spank2 ∩ span2m, 
it follows that spank2 ∩ span2m = spankm, which can only be if 
Pck∼c2

= Pc2∼cm
= Pck∼cm

. As such, Pck∼c1
= Pck∼cm

= Pck∼c2
, which contradicts the 

assumption that Pck∼c1
≠ Pck∼c2

. Hence, Pck∼c1
≠ Pc1∼cm

. By transitivity, Pck∼c1
,Pc1∼cm

 
and Pck∼cm

 are pairwise different.
As a consequence, spank1 ∩ span1m has dimension n − 2. Since 

spank1 ∩ span1m = spank2 ∩ span2m it follows that spank2 ∩ span2m has dimension 
n − 2 also, which can only be if Pck∼c2

≠ Pc2∼cm
. Thus, by transitivity, Pck∼c2

,Pc2∼cm
 

and Pck∼cm
 are pairwise different. As spank1 ∩ span1m = spank3 ∩ span3m, it follows 

in a similar way that Pck∼c3
,Pc3∼cm

 and Pck∼cm
 are pairwise different also.

Consider the sets A = {c1, c2, cm, ck}, B = {c1, c3, cm, ck} and C = {c2, c3, cm, ck}. 
Suppose, contrary to what we want to show, that in each of these sets there is a triple 
a, b, c such that Pa∼b = Pa∼c = Pb∼c. Since, by assumption, Pck∼c1

≠ Pck∼c2
, and we 

have seen above that Pck∼c1
,Pc1∼cm

 and Pck∼cm
 are pairwise different and Pck∼c2

,Pc2∼cm
 

and Pck∼cm
 are pairwise different, we must have in set A that Pc1∼c2

= Pc2∼cm
= Pc1∼cm

.

By a similar argument, we must have in set B that either Pc1∼c3
= Pc3∼cm

= Pc1∼cm
 

or Pc1∼c3
= Pc3∼ck

= Pc1∼ck
. However, if Pc1∼c3

= Pc3∼cm
= Pc1∼cm

 then, by the insight 
above that Pc1∼c2

= Pc1∼cm
, it would follow that Pc1∼c2

= Pc1∼c3
, which is a contradic-

tion to the fact that Pc1∼c2
≠ Pc1∼c3

 . We must thus have that Pc1∼c3
= Pc3∼ck

= Pc1∼ck
.

By a similar argument, we must have in set C that either Pc2∼c3
= Pc3∼cm

= Pc2∼cm
 

or Pc2∼c3
= Pc3∼ck

= Pc2∼ck
. If Pc2∼c3

= Pc3∼cm
= Pc2∼cm

 then, together with the 
insight above that Pc1∼c2

= Pc2∼cm
, it would follow that Pc1∼c2

= Pc2∼c3
. This would 

contradict the assumption that Pc1∼c2
≠ Pc2∼c3

 . If Pc2∼c3
= Pc3∼ck

= Pc2∼ck
 then, 

together with the fact above that Pc1∼c3
= Pc3∼ck

, it would follow that Pc1∼c3
= Pc2∼c3

. 
This would contradict the assumption that Pc1∼c3

≠ Pc2∼c3
 . We thus arrive at a 

general contradiction, and hence there are i, j ∈ {1, 2, 3} such that for every triple 
a, b, c ∈ {ci, cj, cm, ck} the sets Pa∼b,Pa∼c and Pb∼c are pairwise different. This com-
pletes the proof of the claim.

According to the claim, we can choose i, j ∈ {1, 2, 3} such that for every triple 
a, b, c ∈ {ci, cj, cm, ck} the sets Pa∼b,Pa∼c and Pb∼c are pairwise different. Define the 
set of choices D ∶= {ci, cj, cm, ck}, and let

We show that A has dimension n − 2, that A ⊆ span(Pa∼b) for all a, b ∈ D, and that 
A = span(Pa∼b) ∩ span(Pc∼d) whenever Pa∼b ≠ Pc∼d.

Since by the choice of i,  j we have that Pck∼ci
≠ Pci∼cm

, it follows that A 
has dimension n − 2. Note by Proposition 6.1 that A ⊆ spankm. Moreover, as 
we assume in Case 2 that spanki ∩ spanim = spankj ∩ spanjm, it follows that 

A ∶= spanki ∩ spanim.
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A = spanki ∩ spanim ∩ spankj, and thus we have by Proposition 6.1 that A ⊆ spanij 
also. Hence, A ⊆ span(Pa∼b) for all a, b ∈ D.

Now, let Pa∼b ≠ Pc∼d for some a, b, c, d ∈ D. Then span(Pa∼b) ∩ span(Pc∼d) has 
dimension n − 2. As A ⊆ span(Pa∼b) ∩ span(Pc∼d) and A has dimension n − 2 as 
well, it must be that A = span(Pa∼b) ∩ span(Pc∼d).

Let Δ+(S) ∶= {p ∈ Δ(S) | p(s) > 0 for all s ∈ S} be the set of full support 
beliefs. We distinguish two cases: (2.1) A ∩ Δ+(S) is empty, and (2.2) A ∩ Δ+(S) is 
non-empty.

Case 2.1. Suppose that A ∩ Δ+(S) is empty. Recall from Lemma 6.2 (b) that each 
of the indifference sets Pa∼b, where a, b ∈ D, has a full support belief in Δ+(S), and 
thus Pa∼b ∩ Δ+(S) is non-empty. Moreover, recall from above that Pa∼b ∩ Pc∼d = A 
whenever Pa∼b ≠ Pc∼d. As A ∩ Δ+(S) is empty, it follows that Pa∼b ∩ Pc∼d ∩ Δ+(S) is 
empty whenever Pa∼b ≠ Pc∼d and a, b, c, d ∈ D.

Let {P1,… ,PR} be the collection of pairwise different indifference sets that 
remains if from {Pa∼b | a, b ∈ D} we remove all duplicate sets. Since i, j have been 
chosen such that for every triple a, b, c in D the sets Pa∼b,Pa∼c and Pb∼c are pairwise 
different, we know that R ≥ 3.

As Pa∼b ∩ Pc∼d ∩ Δ+(S) is empty whenever Pa∼b ≠ Pc∼d, it follows that the sets 
P1 ∩ Δ+(S),… ,PR ∩ Δ+(S) are pairwise disjoint. Moreover, we have seen that each of 
the latter sets are non-empty. Since span(P1),… , span(PR) are hyperplanes of dimen-
sion n − 1 , we can order the sets P1,… ,PR such that P2 ∩ Δ+(S),… ,PR−1 ∩ Δ+(S) 
are in between P1 ∩ Δ+(S) and PR ∩ Δ+(S). Take some p1 ∈ P1 ∩ Δ+(S) and 
pR ∈ PR ∩ Δ+(S), and let l be the line through p1 and pR. Then, the corresponding line 
segment from p1 to pR is included in Δ+(S). As P2 ∩ Δ+(S),… ,PR−1 ∩ Δ+(S) are in 
between P1 ∩ Δ+(S) and PR ∩ Δ+(S) , the line l contains for every r ∈ {2,… ,R − 1} a 
unique belief pr in Pr. In particular, for every pair of choices a, b in D,  there is a unique 
belief pab ∈ Pa∼b on the line l,   and the line l contains a belief where the DM is not 
indifferent between any of the choices in D.

Recall that for every triple a, b, c in D the sets Pa∼b,Pa∼c and Pb∼c are pairwise 
different. As Pa∼b ∩ Pc∼d ∩ Δ+(S) is empty whenever Pa∼b ≠ Pc∼d, we must have for 
every triple a, b, c in D that pab, pac and pbc are pairwise different.

Let s be a state such that the probability of s is not constant on the line l. By four 
choice linear preference intensity, we have that

where a ∶= ci, b ∶= cj, c ∶= cm and d ∶= ck. Note that both fractions are well-
defined since pad ≠ pcd, pab ≠ pbc and pad ≠ pbd. Moreover, as pac, pad, pcd are pair-
wise different, we have that pac(s) − pcd(s) ≠ pad(s) − pcd(s), and hence the fraction 
on the lefthand side is not equal to 1. As such, the fraction on the righthand side is 
not equal to 1 either. Let this fraction on the righthand side be called F. Then, by 
(6.11), pcd is the unique belief on l where

(6.11)
pac(s) − pcd(s)

pad(s) − pcd(s)
=

(pab(s) − pbd(s))(pac(s) − pbc(s))

(pab(s) − pbc(s))(pad(s) − pbd(s))
,

(6.12)pcd(s) =
F ⋅ pad(s) − pac(s)

F − 1
.
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Remember that A ⊆ span(Pc∼d), that A has dimension n − 2, and that span(Pc∼d) has 
dimension n − 1. Let {q2,… , qn−1} be a basis for A. As pcd ∈ Pc∼d is not in A,  we 
conclude that {pcd, q2,… , qn−1} is a basis for span(Pc∼d).

Now, let ≿u be the conditional preference relation generated by the utility func-
tion u. We have already seen that u represents ≿ on all pairs of choices in {a, b, c, d}, 
except {c, d}. In particular, we thus know that

As we have seen in part (a) of the proof that ≿u satisfies four choice linear preference 
intensity, the unique belief on the line l where the DM is indifferent between c and d 
under ≿u is given by (6.12). Therefore,

Recall that A = span(Pd∼a) ∩ span(Pa∼c). As u represents ≿ on {d, a} and {a, c}, it fol-
lows that u(d, v) = u(a, v) and u(a, v) = u(c, v) for every v ∈ span(Pd∼a) ∩ span(Pa∼c). 
Therefore, u(c, v) = u(d, v) for every v ∈ A. In particular,

where {q2,… , qn−1} is a basis for A. Moreover, we have seen that {pcd, q2,… , qn−1} 
is a basis for span(Pc∼d).

Recall that A = span(Pck∼c1
) ∩ span(Pc1∼cm

) has dimension n − 2, and thus 
Pck∼c1

≠ Pc1∼cm
. Thus, Pd∼a ≠ Pa∼c. We can thus choose some p ∈ Pd∼a�Pa∼c. 

Assume, without loss of generality, that p ∈ Pa≻c. By transitivity, we then have that 
p ∈ Pd≻c. Since u represents ≿ on {d, a} and {a, c}, we know that u(d, p) = u(a, p) 
and u(a, p) > u(c, p), and hence

In view of (6.13), (6.14) and (6.15), it follows by Lemma 6.3 that u represents ≿ on 
{c, d} = {ck, cm}.

Case 2.2. Suppose that A ∩ Δ+(S) is non-empty. Then, there is some full support 
belief p∗ in A,  with p∗(s) > 0 for all states s. As we have seen that A ⊆ span(Pa∼b) 
for all a, b ∈ D, it follows that p∗ ∈ Pa∼b for all pairs a, b ∈ D.

Since we have seen that A has dimension n − 2, the linear subspace A is contained 
in some hyperplane containing the zero vector. Hence, there is some vector nA ∈ R

S 
such that

Moreover, we can choose the vector nA such that for every pair a, b ∈ D there is 
some p ∈ Pa∼b with nA ⋅ p ≠ 0.

In that case, there is for every pair a, b ∈ D some p ∈ Pa∼b with nA ⋅ p > 0. 
To see this, suppose that a,  b are such that nA ⋅ p ≤ 0 for every p ∈ Pa∼b. As 
there is some p ∈ Pa∼b with nA ⋅ p ≠ 0, there must be some p ∈ Pa∼b with 
nA ⋅ p < 0. Since p∗ ∈ Δ+(S), there is some 𝜆 > 1 close enough to 1 such that 

u(a, pab) = u(b, pab), u(a, pac) = u(c, pac),

u(a, pad) = u(d, pad), u(b, pbc) = u(c, pbc) and u(b, pbd) = u(d, pbd).

(6.13)u(c, pcd) = u(d, pcd).

(6.14)u(c, qk) = u(d, qk) for every k ∈ {2,… , n − 1},

(6.15)u(d, p) > u(c, p) for some p ∈ Pd≻c.

(6.16)nA ⋅ v = 0 for all v ∈ A.
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q ∶= (1 − �)p + �p∗ ∈ Δ(S). Note that p∗ ∈ A ⊆ span(Pa∼b) and p ∈ Pa∼b, which 
implies that q ∈ span(Pa∼b) ∩ Δ(S) = Pa∼b. At the same time we know, by (6.16) 
and the fact that p∗ ∈ A, that nA ⋅ p∗ = 0. Since nA ⋅ p < 0 and 𝜆 > 1, it follows that 
nA ⋅ q = (1 − 𝜆) ⋅ (nA ⋅ p) + 𝜆 ⋅ (nA ⋅ p∗) > 0. Thus,

Let P+ ∶= {p ∈ Δ(S) | nA ⋅ p > 0}. Then, in view of (6.17),

Recall that Pa∼b ∩ Pc∼d = A for every a, b, c, d ∈ D with Pa∼b ≠ Pc∼d. In view of 
(6.16) and (6.18) we conclude that Pa∼b ∩ Pc∼d ∩ P+ is empty whenever Pa∼b ≠ Pc∼d. 
Hence, (Pa∼b ∩ P+) and (Pc∼d ∩ P+) are disjoint whenever Pa∼b ≠ Pc∼d. But then, the 
different sets in {Pa∼b | a, b ∈ D} can be numbered P1,… ,PR, with R ≥ 3, such that 
P2 ∩ P+,… ,PR−1 ∩ P+ are in between P1 ∩ P+ and PR ∩ P+. In a similar way as in 
Case 2.1, it can then be shown that u represents ≿ on {ck, cm}.

We thus conclude that u represents ≿ on {c1,… , ck}. By induction on k,  the proof 
is complete. 	�  ◻

Proof of Proposition 4.1

Proof of Proposition 4.1  Let u,  v be two different utility representations for ≿ . To 
prove the statement, we distinguish three cases: (1) there are two choices, (2) there 
are three choices, and (3) there are at least four choices.

Case 1. Suppose there are two choices, a and b. Since there are preference rever-
sals on {a, b}, there is some p∗ ∈ Pa≻b. Define

We show that

As there are preference reversals on {a, b}, it follows by Lemma 6.2 (b) that 
there are n − 1 linearly independent beliefs p1,… , pn−1 in Pa∼b. Moreover, 
by Lemma 6.2 (a) we know that p∗ ∉ span(Pa∼b) . Hence, {p1,… , pn−1, p

∗} 
are linearly independent, and thus form a basis for RS. As, by construction, 
v(a, pk) − v(b, pk) = � ⋅ (u(a, pk) − u(b, pk)) = 0 for all k ∈ {1,… , n − 1} and, by 
(6.19), v(a, p∗) − v(b, p∗) = � ⋅ (u(a, p∗) − u(b, p∗)), it follows that (6.20) holds for 
every p in the basis {p1,… , pn−1, p

∗}. Now, take some arbitrary belief p ∈ Δ(S). 
Then, p = �1p1 +⋯ + �n−1pn−1 + �np

∗ for some numbers �1,… , �n. Thus,

(6.17)for every a, b ∈ D there is some p ∈ Pa∼b with n
A
⋅ p > 0.

(6.18)Pa∼b ∩ P+ is non-empty for all a, b ∈ D.

(6.19)� ∶=
v(a, p∗) − v(b, p∗)

u(a, p∗) − u(b, p∗)
.

(6.20)v(a, p) − v(b, p) = � ⋅ (u(a, p) − u(b, p)) for all beliefs p ∈ Δ(S).
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which establishes (6.20).
Case 2. Suppose there are three choices, a, b and c. Since, by assumption, there 

is a belief where the DM is indifferent between some, but not all, choices, it must 
be that Pc∼a ≠ Pc∼b. Let the number � be given by (6.19). We show, for every two 
choices d, e ∈ {a, b, c}, that

By the proof of Case 1, we know that (6.21) holds for the choices a and b. We now 
show that (6.21) holds for the choices c and a. Let p1,… , pn−1 ∈ Δ(S) be a basis for 
span(Pc∼a). Then,

Since Pc∼a ≠ Pc∼b, there is a belief pn ∈ Pc∼b�Pc∼a. By Lemma 6.2 (a) we must 
then have that pn ∉ span(Pc∼a), and hence {p1,… , pn−1, pn} is a basis for RS. As 
pn ∈ Pc∼b, it must be that

Moreover, we know from Case 1 that

If we combine (6.23) and (6.24), we get

From (6.22) and (6.25) we conclude, in a similar way as in the proof of Case 1, that

In a similar fashion we can show (6.21) for the choices c and b.
Case 3. Suppose there are at least four choices. By assumption, there is a belief 

where the DM is indifferent between some, but not all, choices. That is, there are 
choices a,  b,  c,  d such that Pa∼b ≠ Pc∼d. Following the proof of Theorem  3.1, it 
can then be shown that there are three choices a, b and c with Pc∼a ≠ Pc∼b. Let the 
number � be given by (6.19). Then, we know by Case 2 that (6.21) holds for every 
d, e ∈ {a, b, c}.

v(a, p) − v(b, p) =

n−1∑

k=1

�k ⋅ (v(a, pk) − v(b, pk)) + �n ⋅ (v(a, p
∗) − v(b, p∗))

=� ⋅

(
n−1∑

k=1

�k ⋅ (u(a, pk) − u(b, pk)) + �n ⋅ (u(a, p
∗) − u(b, p∗))

)

=� ⋅ (u(a, p) − u(b, p)),

(6.21)v(d, p) − v(e, p) = � ⋅ (u(d, p) − u(e, p)) for all beliefs p ∈ Δ(S).

(6.22)
v(c, pk) − v(a, pk) = � ⋅ (u(c, pk) − u(a, pk)) = 0 for all k ∈ {1,… , n − 1}.

(6.23)v(c, pn) − v(b, pn) = � ⋅ (u(c, pn) − u(b, pn)) = 0.

(6.24)v(b, pn) − v(a, pn) = � ⋅ (u(b, pn) − u(a, pn)).

(6.25)

v(c, pn) − v(a, pn) =(v(c, pn) − v(b, pn)) + (v(b, pn) − v(a, pn))

=� ⋅ (u(c, pn) − u(b, pn)) + � ⋅ (u(b, pn) − u(a, pn))

=� ⋅ (u(c, pn) − u(a, pn)).

v(c, p) − v(a, p) = � ⋅ (u(c, p) − u(a, p)) for all beliefs p.
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We now show (6.21) for choices d and a,   where d is some arbitrary choice not 
in {a, b, c}. From the proof of Theorem  3.1 we know that either Pd∼a ≠ Pd∼b or 
Pd∼a ≠ Pd∼c. Assume, without loss of generality, that Pd∼a ≠ Pd∼b. Then it can be 
shown in a similar way as for Case 2 that (6.21) holds for the choices d and a.

Now, take some choice d ∉ {a, b, c}, and some arbitrary choice e ∉ {a, d}. Since 
we know that (6.21) holds for the choices d and a,  and for the choices e and a,  it 
follows that

and

This implies that

Hence, (6.21) holds for every two choices d, e. This completes the proof. 	�  ◻
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