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Abstract

All equilibrium concepts implicitly make a correct beliefs assumption, stating that a player believes 
that his opponents are correct about his first-order beliefs. In this paper we show that in many dy-
namic games of interest, this correct beliefs assumption may be incompatible with a very basic form 
of forward induction reasoning: the first two layers of extensive-form rationalizability (Pearce, 1984;
Battigalli, 1997, epistemically characterized by Battigalli and Siniscalchi, 2002). Hence, forward induction 
reasoning naturally leads us away from equilibrium reasoning. In the second part we classify the games for 
which equilibrium reasoning is consistent with this type of forward induction reasoning, and find that this 
class is very small.
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Fig. 1. Reny’s game.

1. Introduction

Roughly speaking, the concepts that are used nowadays to analyze games can be divided 
into two categories: equilibrium concepts and rationalizability concepts. Historically, the equi-
librium concepts came first, starting with the concept of Nash equilibrium (Nash, 1950, 1951), 
and it was only in the early eighties when rationalizability concepts systematically entered the 
game-theoretic picture, triggered by the pioneering work of Bernheim (1984), Pearce (1984) and 
Brandenburger and Dekel (1987) who developed the concept of rationalizability.

But what precisely is it that distinguishes rationalizability concepts from equilibrium con-
cepts? To answer that question we must explicitly investigate the first-order and higher-order 
beliefs1 of the players, which leads us to the field of epistemic game theory. Several papers in 
that literature show that equilibrium concepts make a correct beliefs assumption, stating that a 
player believes that his opponents are correct about his first-order belief, whereas rationalizabil-
ity concepts do not make this assumption. For the case of Nash equilibrium this has been shown 
in Brandenburger and Dekel (1987, 1989), Tan and Werlang (1988), Aumann and Brandenburger
(1995), Asheim (2006) and Perea (2007), which all provide epistemic characterizations of Nash 
equilibrium that involve, in some way, the correct beliefs assumption above. In a similar fash-
ion, epistemic characterizations of other equilibrium concepts, like perfect equilibrium (Selten, 
1975), proper equilibrium (Myerson, 1978), subgame perfect equilibrium (Selten, 1965) and se-
quential equilibrium (Kreps and Wilson, 1982), also rely on the correct beliefs assumption. In 
that light, the correct beliefs assumption may be viewed as the essential ingredient of equilibrium 
reasoning.

The main message of this paper is to show that within the class of dynamic games, the correct 
beliefs assumption, and hence equilibrium reasoning, is incompatible with a very basic form of 
forward induction reasoning. Therefore, in order to implement this type of forward induction 
reasoning we must necessarily leave the context of equilibrium reasoning. As an illustration of 
this fact, consider the game in Fig. 1, which is based on Fig. 3 in Reny (1992a). It is natural to 
assume that player 1, at the beginning of the game, believes that player 2 will not choose h at 
history h3. Suppose now that player 2, at history h1, observes that player 1 has chosen b. Since 
choice b can only be optimal for player 1 if he assigns a high probability to player 2 choosing h, 
forward induction reasoning seems to suggest that player 2, at h1, believes that player 1 assigns 
a high probability to player 2 choosing h. Player 1, anticipating on this type of forward induction 
reasoning by player 2, therefore believes that player 2, at h1, will be wrong about his actual 
first-order belief, thus violating the correct beliefs assumption.

1 By a first-order belief we mean a belief about the opponents’ choices. A second-order belief is a belief about the 
opponents’ choices and first-order beliefs, whereas higher-order beliefs can be defined in a similar fashion.
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What we have been using in this example are only the first two layers of extensive-form 
rationalizability – a very basic and natural forward induction concept developed by Pearce (1984)
and later simplified by Battigalli (1997). The first layer states that a player, whenever possible, 
must believe that his opponents are implementing rational strategies, whereas the second layer 
requires a player to believe, whenever possible, that his opponents do not only choose rationally 
but also follow the reasoning of the first layer. Battigalli and Siniscalchi (2002) call the first 
condition strong belief in the opponents’ rationality, and it provides the basis for the epistemic 
condition of common strong belief in rationality which, as is shown in Battigalli and Siniscalchi
(2002), characterizes extensive-form rationalizability. The example above thus shows that the 
correct beliefs assumption, underlying equilibrium reasoning, is in conflict with the first two 
layers of a very basic form of forward induction reasoning. In the first part of this paper we 
formalize and prove this statement in a precise language.

In the second part we ask for which games equilibrium reasoning is compatible with forward 
induction reasoning. In order to formally address this question we must specify what we mean 
by “equilibrium reasoning” and “forward induction reasoning”. Perea (2007) has shown that in 
two-player games, Nash equilibrium can be characterized by (the first two layers of) common be-
lief in rationality (Brandenburger and Dekel, 1987; Tan and Werlang, 1988) and a strong correct 
beliefs assumption, stating that player i believes that j is correct about his entire belief hierarchy, 
and that player i believes that j believes that i is correct about j ’s entire belief hierarchy. In Perea
(2012) it is shown, moreover, that the same strong correct beliefs assumption can be used to epis-
temically characterize perfect equilibrium and proper equilibrium in two-player static games,2

whereas Perea and Predtetchinski (2016) show that it can be used to characterize subgame per-
fect equilibrium in two-player dynamic games as well. In that sense, the strong correct beliefs 
assumption can be viewed as a characterization of equilibrium reasoning in two-player games, 
and we use it as such in the second part of this paper. Moreover, we identify forward induction 
reasoning with common strong belief in rationality – the epistemic concept that characterizes 
extensive-form rationalizability.

The question thus becomes for which games the strong correct beliefs assumption is consis-
tent with the conditions in common strong belief in rationality. In Theorem 5.3 we characterize 
that class of games by making use of extensive-form best response sets with unique beliefs – 
a refinement of the concept of extensive-form best response sets by Battigalli and Friedenberg
(2012). We argue that only very few games meet the conditions in that characterization, and 
hence there are only few games where the strong correct beliefs assumption is compatible with 
common strong belief in rationality.

We next focus on games with perfect information and without relevant ties. On the basis of 
Theorem 5.3 we provide, in Theorem 6.1, a necessary condition for the consistency between the 
strong correct beliefs assumption and common strong belief in rationality, which is easy to verify. 
We prove that for every two-player dynamic game with perfect information and without relevant 
ties, the backward induction path must necessarily reach all histories that are consistent with 
both players’ rationality if the strong correct beliefs assumption is to be consistent with common 
strong belief in rationality. As this condition will only very rarely be met, it follows that there 
are only very few games with perfect information where the strong correct beliefs assumption is 
consistent with common strong belief in rationality.

2 Appears as an exercise in Perea (2012).
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Despite the inconsistency between the correct beliefs assumption and common strong be-
lief in rationality, there are forward induction equilibrium concepts in the literature where the 
correct beliefs assumption is imposed on the players. Examples are justifiable sequential equi-
librium (McLennan, 1985), Cho’s forward induction equilibrium (Cho, 1987), stable sets of 
beliefs (Hillas, 1994), explicable equilibrium (Reny, 1992a), outcomes satisfying forward induc-
tion (Govindan and Wilson, 2009) and Man’s forward induction equilibrium (Man, 2012). These 
concepts, in contrast to common strong belief in rationality, impose the correct beliefs assump-
tion as an exogenous restriction on the players’ belief hierarchies. This means that players are not 
only assumed to hold belief hierarchies that satisfy the correct beliefs assumption, but are also 
restricted to attribute “unexpected” moves by the opponent to opponent’s belief hierarchies that 
satisfy the correct beliefs assumption. That is, players are restricted to reason entirely within the 
boundaries set by the correct beliefs assumption. As an illustration, take the concept of justifiable 
sequential equilibrium (McLennan, 1985), which is defined as a refinement of sequential equilib-
rium. Within this concept, players are not only assumed to hold belief hierarchies that correspond 
to a sequential equilibrium – and hence, in particular, satisfy the correct beliefs assumption – but 
in addition, when players are trying to explain an opponent’s move they did not expect, they can 
only attribute such moves to opponent’s belief hierarchies that also correspond to a sequential 
equilibrium. In other words, the reasoning of players is assumed to take place entirely within the 
context of sequential equilibrium. Unexpected moves cannot be explained by belief hierarchies 
that fall outside the boundaries set by sequential equilibrium. Similar exogenous restrictions are 
imposed by the other forward induction equilibrium concepts mentioned above. We refer the 
reader to Section 8 for the details.

Imposing the correct beliefs assumption as an exogenous restriction on the players’ reasoning 
comes at a cost, however. We show in Section 8 that none of the forward induction equilibrium 
concepts above is able to uniquely select the intuitive forward induction strategy (d, g) for player 
2 in the game of Fig. 1. The reason is that, if player 2 at h1 wishes to rationalize the “surprising” 
move b by player 1, then player 2 must believe that player 1’s belief hierarchy violates the correct 
beliefs assumption – something that is “not allowed” by the forward induction equilibrium con-
cepts above. Common strong belief in rationality, in contrast, does not impose such exogenous 
restrictions, and is therefore able to uniquely select the intuitive forward induction strategy (d, g)

for player 2.
Such exogenous restrictions on the players’ belief hierarchies in forward induction reasoning 

have been explicitly studied in Battigalli and Friedenberg (2012). They take the forward in-
duction concept of common strong belief in rationality, but do so relative to a type structure that 
does not necessarily contain all belief hierarchies. By excluding some belief hierarchies from the 
type structure, they thus impose some exogenous restriction on the players’ belief hierarchies, as 
players can only hold – and reason about – belief hierarchies that are within the type structure. 
It would be interesting to see whether some of the forward induction equilibrium concepts men-
tioned above, which do impose exogenous restrictions on the players’ belief hierarchies, can be 
characterized within the Battigalli–Friedenberg framework by common strong belief in rational-
ity relative to a suitably restricted type structure. We leave this question for future research.

Both in terms of conclusions and methodology, our work is related to Reny (1992b, 1993)
who shows that there are only very few games where “common belief in rationality” is possi-
ble at all “relevant histories”. Here, the relevant histories are those that are consistent with both 
players’ rationality, and where there is no dominant choice. Reny (1993) formalizes the idea of 
“common belief in rationality at a collection of histories” by the notion of a jointly rational belief 
system, which turns out to be rather similar to our concept of extensive-form best response sets 
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with unique beliefs. We show in Theorem 7.2 that if a collection of histories is reached by an 
extensive-form best response set with unique beliefs, then this collection of histories can also be 
sustained by a jointly rational belief system. By combining this result with Theorem 5.3, it fol-
lows that for every game where the strong correct beliefs assumption is consistent with common 
strong belief in rationality, there is a jointly rational belief system for all relevant histories. That 
is, “common belief in rationality” will be possible at all relevant histories in this case.

The outline of this paper is as follows. In Section 2 we give a formal model of dynamic 
games. In Section 3 we show how infinite hierarchies of conditional beliefs in dynamic games 
can be encoded by means of an epistemic model with types. We use this epistemic model to 
formalize the correct beliefs assumption and the concept of common strong belief in rationality. 
In Section 4 we show that in some dynamic games the correct beliefs assumption is inconsistent 
with the first two layers of common strong belief in rationality. In Section 5 we formalize the 
strong correct beliefs assumption, characterize the class of two-player dynamic games for which 
the strong correct beliefs assumption is consistent with common strong belief in rationality, and 
show that this class is actually very small. In Section 6 we concentrate on the class of perfect in-
formation games, derive an easy necessary condition that must be met if the strong correct beliefs 
assumption is consistent with common strong belief in rationality, and argue that this condition is 
only very rarely satisfied. In Section 7 we discuss the relation between our approach and Reny’s 
notion of jointly rational belief systems. In Section 8 we discuss some forward induction equilib-
rium concepts that have been proposed in the literature, and explain why these concepts, in the 
game of Fig. 1, fail to uniquely select the intuitive forward induction strategy (d, g) for player 2. 
Section 9 contains the proofs.

2. Dynamic games

In this paper we will restrict attention to dynamic games with two players and observable 
past choices. We assume moreover that the dynamic game is finite – that is, the game ends after 
finitely many moves, and every player has finitely many choices available at every moment in 
time where it is his turn to move. The first two restrictions are mainly for the ease of exposition. 
We believe that all results can be extended to more general finite dynamic games.

Formally, a finite dynamic game G with two players and observable past choices consists of 
the following ingredients.

First, there is the set of players I = {1, 2}. The instances where one or both players must make 
a choice are given by a finite set H of non-terminal histories. The possible instances where the 
game ends are described by a finite set Z of terminal histories. By ∅ we denote the beginning of 
the game.

Consider a non-terminal history h at which player i must make a choice. We assume that 
player i observes precisely which choices have been made by his opponent in the past. That is, 
we assume that the dynamic game is with observable past choices. By Ci(h) we denote the finite 
set of choices that are available to player i at h.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for non-
terminal histories h at which both players 1 and 2 make a choice. By I (h) we denote the set 
of active players at h. That is, I (h) contains those players who must make a choice at h. Every 
combination of choices (ci)i∈I (h) at h is assumed to move the game from the non-terminal his-
tory h to some other (terminal or non-terminal) history h′. By Hi we denote the collection of 
non-terminal histories where player i is active.
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Players are assumed to have preferences over the possible outcomes in the game, represented 
by utility functions over the set of terminal histories Z. Formally, for every terminal history z ∈ Z

and player i, we denote by ui(z) the utility for player i at z.
In this paper we interpret strategies as plans of action (Rubinstein, 1991). That is, choices for 

player i are only prescribed at those non-terminal histories h ∈ Hi that are still reachable, given 
the choices prescribed at earlier histories. Formally, let Ĥi ⊆ Hi be a subcollection of histories 
where player i is active, and let si be a mapping that assigns to every history h ∈ Ĥi some 
available choice si(h) ∈ Ci(h). Say that a history h ∈ Hi is reachable under si if at all h′ ∈ Ĥi

preceding h, the selected choice si(h′) is the unique choice in Ci(h
′) that leads to h. Finally, 

the mapping si , which assigns to every h ∈ Ĥi some available choice, is called a strategy if Ĥi

contains exactly those histories in Hi that are reachable under si .
For a given non-terminal history h and a player i, let Si(h) denote the set of strategies for 

player i under which h is reachable. That is, si ∈ Si(h) if and only if at every h′ ∈ Hi preceding 
h, the strategy si prescribes the unique choice in Ci(h

′) that leads to h.

3. Common strong belief in rationality

In this section we give a formal definition of the correct beliefs assumption and the forward 
induction concept of common strong belief in rationality. Before doing so, we first show how we 
can efficiently encode belief hierarchies by means of epistemic models with types.

3.1. Epistemic model

We now wish to model the players’ beliefs in a dynamic game. There are at least two compli-
cations that we face here. First, when players reason about their opponents in a dynamic game, 
they do not only hold beliefs about what other players do (first-order beliefs), but also hold 
second-order beliefs about the opponents’ first-order beliefs about what others do, and third-
order beliefs about the opponents’ second-order beliefs, and so on. So, players hold a full infinite 
belief hierarchy.

Secondly, a player in a dynamic game may have to revise his belief if the game moves from one 
history to another. That is, a player will hold at each history where he is active a new conditional 
belief about the opponent which is compatible with the event that this particular history has been 
reached. Consider some player i who observes that history h ∈ Hi has been reached. Then he 
knows that his opponent must be implementing some strategy in Sj(h) – the set of j ’s strategies 
that make reaching h possible – and hence player i must at h restrict his belief to the opponent’s 
strategies in Sj (h). And this conditional belief may be – partially or completely – contradicted 
at some later history, in which case he must change his belief there.

Summarizing, we see that we need to model conditional belief hierarchies for a player, which 
specify at each history where he is active what he believes about the opponent’s strategy choices, 
about the opponent’s first-order beliefs, about the opponent’s second-order beliefs, and so on. 
But how can we model such complicated objects?

One way to do so is by using a Harsanyi-style model with types (Harsanyi, 1967–1968) and 
adapt it to dynamic games. To see how this works, consider a player i who at history h ∈ Hi

holds a belief about the opponent’s strategies, the opponent’s first-order beliefs, the opponent’s 
second-order beliefs, and so on. In other words, this player holds at h a belief about the opponen-
t’s strategies and the opponent’s conditional belief hierarchies. So, a conditional belief hierarchy 
for player i specifies at each history in Hi a conditional belief about the opponent’s strategy 
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choices and the opponent’s conditional belief hierarchies. If we substitute the word “belief hier-
archy” by the word “type” then we obtain the following definition.

Definition 3.1 (Epistemic model). Consider a finite two-player dynamic game G with observable 
past choices. An epistemic model for G is a tuple M = (Ti, bi)i∈I where

(a) Ti is a set of types for player i,
(b) bi is a function that assigns to every type ti ∈ Ti , and every history h ∈ Hi , a probability 

distribution bi(ti , h) ∈ �(Sj (h) × Tj ).

Recall that Sj (h) is the set of j ’s strategies under which h is reachable. For every set X, 
we denote by �(X) the set of probability distributions on X with respect to some appropriately 
chosen σ -algebra on X. Clearly, player i must at h only assign positive probability to opponent’s 
strategies in Sj (h), as these are the only strategies compatible with the event that h is reached. 
This explains the condition in (b) that bi(ti , h) ∈ �(Sj (h) × Tj ).

By construction, at every history h ∈ Hi type ti holds a conditional probabilistic belief bi(ti , h)

about j ’s strategies and types. In particular, type ti holds conditional beliefs about j ’s strategies. 
As each of j ’s types holds conditional beliefs about i’s strategies, every type ti holds at every 
h ∈ Hi also a conditional belief about j ’s conditional beliefs about i’s strategy choices. And so 
on. Since a type may hold different beliefs at different histories, a type may, during the game, 
revise his belief about the opponent’s strategies, but also about the opponent’s conditional beliefs.

In fact, for a given type ti within an epistemic model, we can derive the complete belief 
hierarchy it induces. By βM

i (ti) we denote the conditional belief hierarchy induced by type ti
in the epistemic model M . See Battigalli and Siniscalchi (1999) for the precise definition of the 
induced belief hierarchy βM

i (ti).
In order to not miss out on any belief hierarchies, we must make sure that the epistemic model 

at hand contains all belief hierarchies that we are interested in. This leads to the notion of a 
terminal epistemic model (cf. Friedenberg, 2010).

Definition 3.2 (Terminal epistemic model). Consider a finite two-player dynamic game G with 
observable past choices, and an epistemic model M = (Ti, bi)i∈I for G. The epistemic model M
is terminal if for every other epistemic model M̂ = (T̂i , b̂i )i∈I for G, every player i, and every 
type t̂i ∈ T̂i , there is some type ti ∈ Ti with βM

i (ti) = βM̂
i (t̂i ).

Remember that βM
i (ti) is the conditional belief hierarchy induced by type ti in the epistemic 

model M , and similarly for βM̂
i (t̂i ). Hence, the condition above states that for every belief hier-

archy that is induced by any type in any alternative epistemic model M̂, there is already a type in 
M that induces exactly the same belief hierarchy. In other words, all possible belief hierarchies 
are already contained in M .

Battigalli and Siniscalchi (1999) have shown that for every finite dynamic game, we can 
always construct a terminal epistemic model which assumes (common belief in) Bayesian up-
dating.3 A similar construction can be employed to build a terminal epistemic model without 
Bayesian updating, as we use here.

3 In fact, Battigalli and Siniscalchi (1999) construct for every finite dynamic game a universal epistemic model, which 
– in particular – is terminal.
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3.2. Correct beliefs assumption

A common feature of all equilibrium concepts for static and dynamic games – such as 
Nash equilibrium (Nash, 1950, 1951), perfect equilibrium (Selten, 1975), proper equilibrium 
(Myerson, 1978), subgame perfect equilibrium (Selten, 1965) and sequential equilibrium (Kreps 
and Wilson, 1982) – is that they require each player to believe that his opponent is correct about 
the first-order belief he holds.

To formalize this condition within an epistemic model M = (Ti, bi)i∈I , let b1
i (ti , h) ∈

�(Sj (h)) be the induced first-order belief for type ti at history h ∈ Hi , and let b1
i (ti ) :=

(b1
i (ti , h))h∈Hi

be the induced collection of first-order beliefs. By

Ti[ti] := {t ′i ∈ Ti | b1
i (t

′
i ) = b1

i (ti )}
we denote the set of types that share the same first-order beliefs as ti , whereas

Tj (Ti[ti]) := {tj ∈ Tj | bj (tj , h)(Si(h) × Ti[ti]) = 1 for all h ∈ Hj }
is the set of types for player j that believe, throughout the game, that player i’s first order belief 
is b1

i (ti ).

Definition 3.3 (Correct beliefs assumption). Consider a finite two-player dynamic game G with 
observable past choices, and an epistemic model M = (Ti, bi)i∈I for G. Type ti ∈ Ti satisfies the 
correct beliefs assumption if bi(ti , h)(Sj (h) × Tj (Ti[ti])) = 1 for all histories h ∈ Hi .

That is, throughout the game type ti assigns probability 1 to the event that player j , throughout 
the game, assigns probability 1 to his actual first-order belief.

Note that our correct beliefs assumption is somewhat different from the correct beliefs as-
sumption that Aumann and Brandenburger (1995) use to epistemically characterize Nash equi-
librium in two-player games. Aumann and Brandenburger’s condition states that both players 
must be correct about the opponent’s actual first-order beliefs. By doing so, they consider a state 
of the world where the actual first-order beliefs of both players are given. They thus take the 
viewpoint of the analyst who knows both players’ first-order beliefs at that state.

In contrast, we take a one-player perspective in this paper, and not the perspective of an 
analyst. That is, we describe all beliefs from the viewpoint of a single player, say player i, who 
does not know the actual beliefs held by player j . Because of this, we cannot speak of the 
“actual first-order beliefs held by player j”, and can therefore not formalize statements such as 
“player i is correct about j ’s first-order beliefs”. What we can formalize is the statement that 
“player i believes that player j is correct about i’s first-order beliefs”, since player i knows 
his own first-order beliefs by positive introspection. This is precisely the approach we take here. 
Consequently, our correct beliefs assumption involves one order of belief more than Aumann and 
Brandenburger’s condition, because we view everything from the perspective of a single player, 
and not from the perspective of an omniscient analyst.

3.3. Common strong belief in rationality

The epistemic concept of common strong belief in rationality has been developed by Battigalli 
and Siniscalchi (2002). They have shown that the strategies that can rationally be chosen by 
players who reason in accordance with this concept correspond precisely to the extensive-form 
rationalizable strategies as defined by Pearce (1984) and Battigalli (1997). The main idea behind 
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common strong belief in rationality is that a player must believe in the opponent’s rationality 
whenever this is possible – a typical forward induction argument. More precisely, if player i
finds himself at history h ∈ Hi , and concludes that h could be reached if j chooses rationally, 
then player i must believe at h that j chooses rationally. We say that player i strongly believes in 
j ’s rationality. Moreover, if h could be reached if j chose rationally, then player i asks a second 
question: could h still be reached if j not only chooses rationally but also strongly believes in 
i’s rationality? If the answer is yes, then player i must believe at h that j chooses rationally and
strongly believes in i’s rationality. By iterating this argument, we arrive at common strong belief 
in rationality.

In a sense, a player tries to find, at each history where he is active, a “best possible explana-
tion” for the past opponent’s choices he has observed so far, and uses this explanation to form a 
belief about the opponent’s current and future choices. Common strong belief in rationality can 
therefore be viewed as a very basic and pure form of forward induction reasoning. To formalize 
the notion of common strong belief in rationality, let us first define what we mean by rationality
and strong belief.

Consider a type ti for player i, a history h ∈ Hi and a strategy si ∈ Si(h). By ui(si , bi(ti , h))

we denote the expected utility that player i gets if the game is at h, player i chooses si there, 
and holds the conditional belief bi(ti , h) about the opponent’s strategy-type pairs. Note that this 
expected utility does not depend on the full conditional belief that ti holds at h, but only on the 
conditional belief about the opponent’s strategy choice.

Definition 3.4 (Rational choice). Consider a type ti for player i, a history h ∈ Hi and a strategy 
si ∈ Si(h). Strategy si is rational for type ti at history h if ui(si , bi(ti , h)) ≥ ui(s

′
i , bi(ti , h)) for 

all s′
i ∈ Si(h). Strategy si is rational for type ti if it is so at every history h ∈ Hi that is reachable 

under si .

We next define the notion of strong belief.

Definition 3.5 (Strong belief). Consider a type ti within a terminal epistemic model M =
(Ti, bi)i∈I , and an event E ⊆ Sj × Tj . Type ti strongly believes the event E if bi(ti , h)(E) = 1
at every history h ∈ Hi where (Sj (h) × Tj ) ∩ E is non-empty.

That is, at every history h ∈ Hi where the event E is consistent with the event of h being 
reached, player i must concentrate his belief fully on E. The epistemic concept of common 
strong belief in rationality can now be defined as follows.

Definition 3.6 (Common strong belief in rationality). Consider a finite two-player dynamic game 
G with observable past choices, and a terminal epistemic model M = (Ti, bi)i∈I for G. For every 
player i we recursively define sets T k

i and Rk
i as follows.

Induction start. Define T 0
i := Ti and R0

i := {(si , ti ) ∈ Si × T 0
i | si rational for ti}.

Induction step. Let k ≥ 1, and suppose T k−1
i and Rk−1

i have been defined for all players i. 
Then, for both players i,

T k
i : = {ti ∈ T k−1

i | ti strongly believes Rk−1
j }, and

Rk
i : = {(si , ti ) ∈ Si × T k

i | si rational for ti}.
Common strong belief in rationality selects for every player i the set of types T ∞ := ∩k∈NT k .
i i
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For every k ≥ 1, we say that a type ti expresses up to k-fold strong belief in rationality if 
ti ∈ T k

i . We say that a type ti expresses common strong belief in rationality if ti ∈ T ∞
i . Our 

definition of common strong belief in rationality is almost identical to the definition put forward 
by Battigalli and Siniscalchi (2002), except for the fact that Battigalli and Siniscalchi additionally 
require the types to satisfy Bayesian updating. Shimoji and Watson (1998) show, however, that 
this difference does not matter for the strategies that are rational for types in T ∞

i . Obviously, the 
difference does matter for the set of belief hierarchies selected by the concept, which in our case 
is encoded by the set of types T ∞

i .
Similarly to Battigalli and Siniscalchi (2002), it can be shown that the sets of types T ∞

i are 
always non-empty for every finite dynamic game, and that the strategies which are rational for a 
type in T ∞

i are precisely the extensive-form rationalizable strategies as defined in Pearce (1984)
and Battigalli (1997). In view of the aforementioned result by Shimoji and Watson (1998), this 
epistemic characterization of extensive-form rationalizability holds independently of whether we 
impose Bayesian updating or not.

4. Inconsistency theorem

We show, by means of the game G in Fig. 1, that the correct beliefs assumption may be 
inconsistent with the first two layers of common strong belief in rationality. To that purpose, 
take an arbitrary terminal epistemic model M = (Ti, bi)i∈I for G. We show that there is no 
type t1 ∈ T 2

1 , expressing up to 2-fold strong belief in rationality, that satisfies the correct beliefs 
assumption.

Take an arbitrary type t∗1 ∈ T 2
1 . Then, t∗1 strongly believes R1

2 . This implies that
b1(t

∗
1 , ∅)(R1

2) = 1, since (S2(∅) × T2) ∩R1
2 = (S2 × T2) ∩R1

2 
= ∅. As R1
2 only contains strategy-

type pairs (s2, t2) where s2 is rational for t2, it follows that R1
2 ⊆ {c, (d, g)} × T2. Hence,

b1(t
∗
1 ,∅)({c, (d, g)} × T2) = 1. (1)

Now, take an arbitrary type t2 ∈ T 1
2 . Then, t2 strongly believes R0

1 . Since the epistemic model 
M is terminal, there is a type t1 ∈ T1 with b1(t1, ∅)({(d, h)} ×T2) = b1(t1, h2)({(d, h)} ×T2) = 1. 
Since ((b, f ), t1) ∈ (S1(h1) × T1) ∩ R0

1 , it follows that (S1(h1) × T1) ∩ R0
1 
= ∅. But then, as t2

strongly believes R0
1 , we conclude that b2(t2, h1)(R

0
1) = 1.

Since, by equation (1), type t∗1 assigns probability 0 to strategy (d, h) by player 2, there is 
no strategy s1 ∈ S1(h1) and no type t1 ∈ T1[t∗1 ], sharing the same first-order beliefs as t∗1 , for 
which (s1, t1) ∈ R0

1 . To see this, note that S1(h1) = {(b, e), (b, f )}, and both (b, e) and (b, f )

yield t1 an expected utility less than 3 – the utility it can guarantee at ∅ by choosing a. As 
b2(t2, h1)((S1(h1) × T1) ∩ R0

1) = 1, this implies that b2(t2, h1)(S1 × T1[t∗1 ]) = 0. Hence, we see 
that

b2(t2, h1)(S1 × T1[t∗1 ]) = 0 for every type t2 ∈ T 1
2 . (2)

We have seen above that b1(t
∗
1 , ∅)(R1

2) = 1, and hence, in particular,

b1(t
∗
1 ,∅)(S2 × T 1

2 ) = 1, (3)

since R1
2 ⊆ S2 × T 1

2 .
By combining (2) and (3) we see that t∗1 assigns at ∅ probability 1 to the set of types T 1

2 , 
but that every type t2 ∈ T 1

2 assigns, at h1, probability 0 to the set of types T1[t∗1 ]. This means, 
however, that type t∗ cannot satisfy the correct beliefs assumption.
1
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Since this holds for every type t∗1 ∈ T 2
1 , we conclude that there is no type t∗1 ∈ T 2

1 that satisfies 
the correct beliefs assumption. We therefore obtain the following result.

Theorem 4.1 (Inconsistency theorem). Consider the game G from Fig. 1. Then, for every terminal 
epistemic model M = (Ti, bi)i∈I for G there is no type t1 ∈ T1 for player 1 that satisfies the 
correct beliefs assumption and expresses up to 2-fold strong belief in rationality.

Hence, in the game of Fig. 1, equilibrium reasoning is incompatible with forward induction 
reasoning as embodied by the first two layers in common strong belief in rationality.

This theorem raises the natural question whether the correct beliefs assumption can already 
be in conflict with the first layer of common strong belief in rationality, that is, with the event 
that a player strongly believes in the opponent’s rationality. The answer is no. For every game 
we can, for both players i, always find a type ti that (a) always believes that j always assigns 
probability 1 to his actual type ti , and (b) strongly believes in j ’s rationality. Indeed, consider 
any type t ′i that strongly believes in j ’s rationality. We can then transform t ′i into a new type ti
that coincides with ti in its first- and second-order conditional beliefs, but possibly differs in its 
third- and higher order beliefs by imposing that ti should only consider types for player j that 
assign probability 1 to his actual type ti . Since ti holds the same first- and second-order beliefs 
as t ′i , and t ′i strongly believes in j ’s rationality, type ti strongly believes in j ’s rationality as well. 
Moreover, ti satisfies, by construction, the correct beliefs assumption. Therefore, the conflict 
between the correct beliefs assumption and common strong belief in rationality can only occur 
at the second layer of common strong belief in rationality, or higher.

The theorem above immediately raises the following question: Can we characterize those 
games for which equilibrium reasoning is compatible with forward induction reasoning? That 
will be the purpose of the following section.

5. When correct beliefs are consistent with forward induction

In this section we will ask for which games equilibrium reasoning is consistent with forward 
induction reasoning. As explained in the introduction, we identify equilibrium reasoning with 
a strong correct beliefs assumption, that we will formally define below, and we identify for-
ward induction reasoning with the concept of common strong belief in rationality. The question 
thus becomes for which games the strong correct beliefs assumption is consistent with common 
strong belief in rationality. We will characterize this class of games in Theorem 5.3, and argue 
that this class contains only very few games. For this characterization we will introduce a new 
concept called extensive-form best response set with unique beliefs – a refinement of the notion 
of extensive-form best response set as defined by Battigalli and Friedenberg (2012).

In this section we start by formally defining the strong correct beliefs assumption, after which 
we introduce the new notion of extensive-form best response sets with unique beliefs. Finally, we 
use the latter to characterize the class of games for which the strong correct beliefs assumption 
is compatible with common strong belief in rationality.

5.1. Strong correct beliefs assumption

The strong correct beliefs assumption, which characterizes equilibrium reasoning in two-
player games, states that player i believes that opponent j is correct about his entire belief 



500 A. Perea / Journal of Economic Theory 169 (2017) 489–516
hierarchy, and that player i believes that j believes that i is correct about j ’s entire belief hi-
erarchy. To formalize this condition, recall that a type in an epistemic model is a way to encode a 
belief hierarchy. If we assume that different types in the epistemic model induce different belief 
hierarchies, then the strong correct beliefs assumption states that a type for player i believes that 
j is correct about his type, and that this type believes that j believes that i is correct about j ’s 
type.

For a given type ti ∈ Ti , let Tj (ti) be set of types tj ∈ Tj for which bj (tj , h)(Si × {ti}) = 1
at all h ∈ Hj . That is, Tj (ti) contains those types for player j that always assign full probability 
to i’s type ti . Say that type ti believes that j is correct about his type if bi(ti , h)(Sj × Tj (ti)) =
1 for every h ∈ Hi . Let T ∗

j be the set of types for j that believe that i is correct about j ’s 
type. Similarly, we say that type ti believes that j believes that i is correct about j ’s type if 
bi(ti , h)(Sj × T ∗

j ) = 1 for all h ∈ Hi .

Definition 5.1 (Strong correct beliefs assumption). Consider a finite two-player dynamic game 
G with observable past choices, and an epistemic model M = (Ti, bi)i∈I for G.

We say that type ti satisfies the strong correct beliefs assumption if ti believes that j is correct 
about his type, and if ti believes that j believes that i is correct about j ’s type.

In this definition we are thus implicitly assuming that the epistemic model is non-redundant, 
in the sense that different types induce different belief hierarchies.

5.2. Extensive-form best response set with unique beliefs

In order to formally introduce extensive-form best response sets with unique beliefs, we need 
the following definitions. A conditional belief vector for player i is a tuple bi = (bi(h))h∈Hi

which assigns to every history h ∈ Hi a probabilistic belief bi(h) ∈ �(Sj (h)) on the opponent’s 
strategy choices that make h reachable. Hence, the first-order belief of a type in some epistemic 
model is a conditional belief vector in this sense. We say that the conditional belief vector bi

strongly believes an event Dj ⊆ Sj if bi(h)(Dj ) = 1 at every history h ∈ Hi where Sj (h) ∩Dj 
=
∅. Finally, a strategy si is said to be rational for the conditional belief vector bi if

ui(si , bi(h)) ≥ ui(s
′
i , bi(h)) for all s′

i ∈ Si(h)

at every history h ∈ Hi that is reachable under si .

Definition 5.2 (Extensive-form best response set with unique beliefs). A set D1 × D2 ⊆ S1 × S2
of strategy pairs is called an extensive-form best response set with unique beliefs, if for both 
players i there is a conditional belief vector bi such that for all strategies si ∈ Di

(a) si is rational for bi ,
(b) bi strongly believes Dj , and
(c) every strategy s′

i which is rational for bi is in Di .

An extensive-form best response set as defined in Battigalli and Friedenberg (2012) is a pair 
D1 × D2 ⊆ S1 × S2 such that for both players i and all strategies si ∈ Di there is a belief vector 
bi that satisfies conditions (a), (b) and (c) above. Hence, our notion of an extensive-form best 
response set with unique beliefs is a special case of an extensive-form best response set à la 
Battigalli and Friedenberg. The difference is that in the former we choose a unique conditional 
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belief vector bi that satisfies the conditions (a), (b) and (c) for every strategy si ∈ Di , whereas 
in the latter we may choose a different conditional belief vector bi for every strategy si ∈ Di we 
consider.

5.3. Characterization result

We will now characterize the class of dynamic games for which the strong correct beliefs 
assumption is consistent with common strong belief in rationality. Before we state our result, we 
need a few more definitions. We say that in a given game G the strong correct beliefs assumption 
is consistent with common strong belief in rationality, if there is a terminal epistemic model 
M = (Ti, bi)i∈I for G, and for every player i a type ti ∈ Ti that expresses the strong correct 
beliefs assumption and common strong belief in rationality. We call a strategy si ∈ Si rational
if there is a conditional belief vector bi for which si is rational. Say that a history h ∈ Hi is 
consistent with j ’s rationality if there is a rational strategy sj for opponent j under which h is 
reachable.

Theorem 5.3 (Consistency theorem). Consider a finite two-player dynamic game G with observ-
able past choices. Then, the strong correct beliefs assumption is consistent with common strong 
belief in rationality in G, if and only if, there is an extensive-form best response set D1 × D2
with unique beliefs such that for every player i, and every history h ∈ Hi that is consistent with 
j ’s rationality, there is a strategy sj ∈ Dj under which h is reachable.

The proof of this theorem can be found in Section 9. This theorem implies that in “most” 
two-player dynamic games with observable past choices, the strong correct beliefs assumption 
is inconsistent with common strong belief in rationality. Indeed, assume that in the game G the 
strong correct beliefs assumption is consistent with common strong belief in rationality. Then, 
according to Theorem 5.3, there is an extensive-form best response set D1 × D2 with unique 
beliefs such that for every player i, and every history h ∈ Hi that is consistent with j ’s rationality, 
there is a strategy sj ∈ Dj under which h is reachable. Hence, there must be a conditional belief 
vector bi for both players i such that (1) Di is the set of rational strategies for bi , (2) bi strongly 
believes Dj , and (3) for every history h ∈ Hi that is consistent with j ’s rationality there is a 
strategy sj ∈ Dj under which h is reachable. In particular, for both players i there must be a 
unique conditional belief vector bi such that every history h ∈ Hj that is consistent with i’s 
rationality must be reachable by a strategy si that is rational for bi . This, however, will typically 
not be the case, as the set of strategies that are rational for a fixed conditional belief vector 
bi is typically very small, whereas the collection of histories h ∈ Hj that is consistent with i’s 
rationality is typically very large, especially when the game G is not too small. We may therefore 
conclude that “typically”, the strong correct beliefs assumption will be inconsistent with common 
strong belief in rationality.

On the other hand, the theorem shows that if the strong correct beliefs assumption is consistent 
with the first two layers of common strong belief in rationality, then it will also be consistent with 
all layers of common strong belief in rationality. To see this, consider an extensive-form best 
response set D1 × D2 with unique beliefs, induced by conditional belief vectors b1 and b2. This 
describes a situation in which player i has the conditional belief vector bi , believes that j has 
the conditional belief vector bj , believes that j believes that i holds bi , believes that j believes 
that i believes that j holds bj , and so on. That is, player i holds a belief hierarchy that is entirely 
generated by the conditional belief vectors bi and bj , and therefore satisfies the strong correct 
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beliefs assumption. Moreover, conditions (a), (b) and (c) in the definition of an extensive-form 
best response set with unique beliefs state that player i expresses up to two-fold strong belief in 
rationality. Overall, we thus see that an extensive-form best response set with unique beliefs can 
be interpreted as a situation where a player satisfies the strong correct beliefs assumption, and 
expresses up to two-fold strong belief in rationality.

Consequently, the latter statement in Theorem 5.3 describes situations where the strong cor-
rect beliefs assumption is consistent with the first two layers of common strong belief in rational-
ity. Hence, Theorem 5.3 implies that, whenever the strong correct beliefs assumption is consistent 
with the first two layers of common strong belief in rationality, then it must be consistent with 
all layers of common strong belief in rationality.

In contrast, it can be shown that the strong correct beliefs assumption is always consistent 
with the backward induction concept of common belief in future rationality (Perea, 2014, see 
also Baltag et al., 2009 and Penta, 2015 for related concepts). Indeed, Perea and Predtetchinski
(2016) show that in every finite two-player dynamic game with observable past choices, subgame 
perfect equilibrium can be epistemically characterized by common belief in future rationality, 
mutual belief in Bayesian updating, and the strong correct beliefs assumption. In particular, in 
all such games the strong correct beliefs assumption is consistent with common belief in future 
rationality. The intuitive reason is that in a backward induction concept there is no need to revise 
your belief about the opponent’s belief hierarchy after a surprising move, as past moves need not 
be rationalized.

6. Games with perfect information

We have seen in the previous section that the strong correct beliefs assumption is very rarely 
consistent with common strong belief in rationality. In fact, we characterized the class of games 
for which the strong correct beliefs assumption is consistent with common strong belief in ratio-
nality – by relying on the concept of extensive-form best response sets with unique beliefs – and 
argued that this class is very small.

In this section we will focus on the special, yet important, class of dynamic games with perfect 
information, and show that for this class of games the strong correct beliefs assumption can only 
be consistent with common strong belief in rationality if the backward induction path reaches 
all histories that are consistent with both players’ rationality. Since, in general, the set of his-
tories that are consistent with both players’ rationality is very large, this condition will be very 
rarely met. And hence we may conclude, on the basis of this result, that also within the class of 
games with perfect information, there are only very few games where the strong correct beliefs 
assumption is consistent with common strong belief in rationality.

The reason why we include this result in this paper is that the above condition – stating that the 
backward induction path reaches all histories that are consistent with both players’ rationality – 
is very intuitive and easy to check, and hence this result is important both conceptually and 
practically.

In order to formally state this result, we need a few definitions. Consider a finite two-player 
dynamic game G with observable past choices. We say that G is with perfect information if only 
one player is active at the time. That is, for every non-terminal history h, the set of active players 
I (h) contains only one player. The game G is said to be without relevant ties (Battigalli, 1997)
if for every player i, every non-terminal history h ∈ Hi where i is active, every two different 
choices ci, c′

i ∈ Ci(h), every terminal history z following ci and every terminal history z′ fol-
lowing c′ , we have that ui(z) 
= ui(z

′). It is easy to see that in the absence of relevant ties the 
i
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Fig. 2. Converse of Theorem 6.1 is false.

backward induction procedure selects a unique strategy for both players, and hence induces a 
unique backward induction path. Finally, recall that we called a strategy si ∈ Si rational if it is 
rational for at least one conditional belief vector. We say that a non-terminal history h is consis-
tent with both players’ rationality if h is reached by a strategy pair (s1, s2) ∈ S1 × S2 where s1
and s2 are rational.

Theorem 6.1 (Games with perfect information). Let G be a finite two-player dynamic game 
with perfect information and without relevant ties. If the strong correct beliefs assumption is 
consistent with common strong belief in rationality in G, then the unique backward induction 
path in G must reach all non-terminal histories that are consistent with both players’ rationality.

The proof, which can be found in Section 9, relies heavily on Theorem 5.3, Proposition 6 
in Battigalli and Siniscalchi (2002) which shows that common strong belief in rationality leads 
to the extensive-form rationalizable strategies, and Theorem 4 in Battigalli (1997) which proves 
that in all perfect information games without relevant ties, every combination of extensive-form 
rationalizable strategies induces the backward induction path. Indeed, the main steps in the proof 
may be summarized as follows: If the strong correct beliefs assumption is consistent with com-
mon strong belief in rationality, then Theorem 5.3 guarantees that there is an extensive-form best 
response set with unique beliefs D1 ×D2 which reaches all histories that are consistent with both 
players’ rationality. It can be shown that all strategies in D1 and D2 are possible under common 
strong belief in rationality, and hence Proposition 6 in Battigalli and Siniscalchi (2002) implies 
that all strategies in D1 and D2 are extensive-form rationalizable. But then, by Theorem 4 in 
Battigalli (1997), every strategy combination in D1 × D2 induces the backward induction path. 
Since D1 ×D2 reaches all histories that are consistent with both players’ rationality, we conclude 
that the backward induction path must reach all histories that are consistent with both players’ 
rationality.

We will now show, by means of an example, that the other direction in Theorem 6.1 is not true. 
Consider the game in Fig. 2. It can easily be checked that this perfect information game is without 
relevant ties. Clearly, the backward induction path is b, leading to the terminal history with 
utilities 10 and 7. Moreover, as b is the only rational strategy for player 1, the only non-terminal 
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history that is consistent with both players’ rationality is ∅. Consequently, the backward induction 
path reaches all non-terminal histories that are consistent with both players’ rationality.

Despite this fact, we will show that the strong correct beliefs assumption is not consistent with 
common strong belief in rationality in this game. In order to show this, we rely on Theorem 5.3. 
More precisely, we will prove that there is no extensive-form best response set D1 × D2 with 
unique beliefs such that every history h ∈ H1 that is consistent with 2’s rationality is reachable 
under strategies in D2.

Note first that (c, g, j) and (c, h, i) are rational strategies for player 2 in this game. Indeed, 
strategy (c, g, j) is rational for the conditional belief vector b(c,g,j)

2 where

b
(c,g,j)

2 (h1) = (a, e, k,m), b
(c,g,j)

2 (h3) = (a, e, k,m), b
(c,g,j)

2 (h4) = (a, f,p, r).

Here, b(c,g,j)

2 (h1) = (a, e, k, m) denotes the conditional belief at h1 that assigns probability 1 to 
1’s strategy (a, e, k, m), and similarly for the other two conditional beliefs. Similarly, strategy 
(c, h, i) is rational for the conditional belief vector b(c,h,i)

2 where

b
(c,h,i)
2 (h1) = (a, f, o, q), b

(c,h,i)
2 (h3) = (a, e, l, n), b

(c,h,i)
2 (h4) = (a, f, o, q).

Since (c, g, j) and (c, h, i) are rational strategies for player 2, it follows that the non-terminal 
histories h6 and h8 in H1 are both consistent with player 2’s rationality.

We will show that there is no extensive-form best response set D1 × D2 with unique beliefs 
such that both h6 and h8 are reachable under strategies in D2. Consider an arbitrary extensive-
form best response set D1 × D2 with unique beliefs. Then, there is a conditional belief vector b∗

2
for player 2 such that D2 contains exactly those strategies for player 2 that are rational for b∗

2.
Now suppose, contrary to what we want to prove, that both h6 and h8 are reachable under 

strategies in D2. Note that (c, h, i) and (c, h, j) are the only strategies for player 2 under which 
h6 is reachable. Since strategy d is always better than (c, h, j) at h1, it follows that (c, h, j)

cannot be rational for b∗
2, and hence (c, h, j) /∈ D2. Since, by our assumption, h6 is reachable 

under a strategy in D2, it must be that (c, h, i) ∈ D2. Similarly, note that (c, g, j) and (c, h, j)

are the only strategies for player 2 under which h8 is reachable. As, by our argument above, 
(c, h, j) /∈ D2, and, by our assumption, h8 is reachable under a strategy in D2, it must be that 
(c, g, j) ∈ D2. We thus conclude that both (c, g, j) and (c, h, i) are in D2. Hence, both (c, g, j)

and (c, h, i) must be rational for the same conditional belief vector b∗
2.

Since (c, g, j) is rational for b∗
2, it must hold that

u2((c, g, j), b∗
2(h1)) ≥ u2(d, b∗

2(h1)) = 8.

This implies that

b∗
2(h1)(S1(h2, e)) ≥ 8

10
, (4)

where S1(h2, e) denotes the set of strategies in S1(h2) that select the choice e at h2.
Similarly, since (c, h, i) is rational for b∗

2, it must hold that

u2((c, h, i), b∗
2(h1)) ≥ u2(d, b∗

2(h1)) = 8.

This implies that

b∗
2(h1)(S1(h2, f )) ≥ 8

, (5)

9
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where S1(h2, f ) denotes the set of strategies in S1(h2) that select the choice f at h2. Clearly, 
the conditions (4) and (5) are incompatible, and hence there is no extensive-form best response 
set D1 × D2 with unique beliefs such that both h6 and h8 are reachable under strategies in D2. 
Since h6 and h8 are consistent with 2’s rationality, this implies, by Theorem 5.3, that the strong 
correct beliefs assumption is inconsistent with common strong belief in rationality in the game 
of Fig. 2. However, the unique backward induction path reaches all non-terminal histories that 
are consistent with both players’ rationality. Hence, the converse of Theorem 6.1 does not hold.

7. Jointly rational belief systems

In the last two sections we have shown that there are only very few games where the strong 
correct beliefs assumption is consistent with common strong belief in rationality. Similarly, Reny 
(1992b, 1993) proves that the class of games where “common belief in rationality” is possible 
at all “relevant histories” is very small. Here, a history is called “relevant” if it is consistent 
with both players’ rationality, and if no player has a dominant choice there. Although the two 
questions asked above are very different, we will see that Reny’s approach is similar to ours in 
terms of the concept being used.

More precisely, Reny (1993) proposes jointly rational belief systems as a way to formalize the 
idea of “common belief in rationality at a collection of histories”, and we will see that it is rather 
similar to the notion of extensive-form best response sets with unique beliefs that we have used in 
Section 5. This relation is confirmed by Theorem 7.2 below, where we show that every collection 
of histories that is reached by an extensive-form best response set with unique beliefs, is possible 
under a jointly rational belief system. From this result and Theorem 5.3 it then follows that for 
every game where the strong correct beliefs assumption is consistent with common strong belief 
in rationality, common belief in rationality will be possible at all relevant histories.

7.1. Definition

Formally speaking, Reny (1993) only considers two-player games with perfect information,
but his notion of jointly rational belief systems can easily be extended to games with observable 
past choices, as we will do here. Contrary to our model, Reny (1993) assumes that players hold 
a conditional belief at every non-terminal history in the game, also at those where they are not 
active. To make Reny’s model fully compatible with ours, we assume in this section that both 
players are active at all non-terminal histories in the game. This can be assumed without loss of 
generality, as we can let a player choose from a singleton choice set at those histories where in 
reality he is not active.

Definition 7.1 (Jointly rational belief system). Let Ĥ ⊆ H be a collection of non-terminal his-
tories. A jointly rational belief system for Ĥ is a non-empty set D1 × D2 ⊆ S1 × S2 of strategy 
pairs such that for both players i,

Di = {si ∈ Si | si is rational for some conditional belief vector bi

with bi(h)(Dj ) = 1 for all h ∈ Ĥ }.

Battigalli and Siniscalchi (1999) show that jointly rational belief systems can be epistemi-
cally characterized by rationality and common certainty of the opponent’s rationality given Ĥ , 
confirming that it indeed formalizes the idea of “common belief in rationality at a collection of 
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histories”. If we choose Ĥ = {∅}, that is, Ĥ contains only the beginning of the game, then the 
induced concept is common certainty of rationality at the beginning of the game as studied in 
Ben-Porath (1997).

Battigalli and Siniscalchi (1999) prove, moreover, that the largest jointly rational belief system 
for Ĥ can be obtained by the following inductive procedure: For both players i, let

R
Ĥ,0
i := {si ∈ Si | si is rational for some conditional belief vector bi},

and for every round k ≥ 1 and both players i, let

R
Ĥ,k
i = {si ∈ Si | si is rational for some conditional belief vector bi

with bi(h)(R
Ĥ ,k−1
j ) = 1 for all h ∈ Ĥ }.

Then, the limit set RĤ
1 × RĤ

2 := ∩k≥0(R
Ĥ,k
1 × R

Ĥ,k
2 ), provided it is non-empty, is the largest 

jointly rational belief system for Ĥ . We will use this property in the proof of Theorem 7.2 below.
A jointly rational belief system need not always exist for every collection of non-terminal 

histories Ĥ . Indeed, Reny (1993) shows that there are only very few games where a jointly 
rational belief system exists for the collection of all relevant histories. In these cases, the limit 
set RĤ

1 × RĤ
2 above will be empty. Following Reny (1993), we can say that “common belief in 

rationality is possible at a collection of histories Ĥ” precisely when there is a jointly rational 
belief system for Ĥ .

7.2. Connection to our work

To see the similarity with our notion of extensive-form best response sets with unique be-
liefs, note that a set D1 × D2 ⊆ S1 × S2 of strategy pairs is an extensive-form best response set 
with unique beliefs precisely when for both players i there is a conditional belief vector bi with 
bi(h)(Dj ) = 1 for every h at which Sj (h) ∩ Dj 
= ∅, such that

Di = {si ∈ Si | si is rational for bi}.
This follows immediately from Definition 5.2. This characterization seems rather similar to, and 
in some sense “more restrictive than”, the notion of jointly rational belief systems. Indeed, in 
Theorem 7.2 below we show that whenever a collection Ĥ is reached by an extensive-form best 
response set with unique beliefs, then there will be a jointly rational belief system for Ĥ .

In this theorem, we say that a collection of non-terminal histories Ĥ is reached by an 
extensive-form best response set with unique beliefs, if there is an extensive-form best response 
set D1 × D2 with unique beliefs such that every h ∈ Ĥ is reached by some strategy pair in 
D1 × D2.

Theorem 7.2 (Connection with jointly rational belief systems). Consider a finite two-player dy-
namic game G with observable past choices, and a collection Ĥ ⊆ H of non-terminal histories. 
If Ĥ is reached by an extensive-form best response set with unique beliefs, then there is a jointly 
rational belief system for Ĥ .

The proof can be found in Section 9. In combination with Theorem 5.3 this result implies that, 
whenever in a given game the strong correct beliefs assumption is consistent with common strong 
belief in rationality, then there will be a jointly rational belief system for all relevant histories. 
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We can actually show a little more. Recall that a strategy si is called rational if it is rational for 
some conditional belief vector bi . Let

Hrat := {h ∈ H | there are rational strategies s1, s2 such that (s1, s2) reach h}
be the collection of non-terminal histories that are consistent with both players’ rationality. Then 
we can show that for every game where the strong correct beliefs assumption is consistent with 
common strong belief in rationality, there will be a jointly rational belief system for Hrat , which 
includes the set of all relevant histories as a subset.

Corollary 7.3 (Jointly rational belief system for all relevant histories). Consider a finite two-
player dynamic game G with observable past choices. If the strong correct beliefs assumption 
is consistent with common strong belief in rationality in G, then there is a jointly rational belief 
system for Hrat .

The proof is immediate. If the strong correct beliefs assumption is consistent with common 
strong belief in rationality, then Theorem 5.3 guarantees that there is an extensive-form best 
response set D1 × D2 with unique beliefs such that for both players i, and every history h ∈ H

that is consistent with i’s rationality, there is a strategy si ∈ Di ∩ Si(h). In particular, every 
h ∈ Hrat will be reached by some strategy pair (s1, s2) ∈ D1 ×D2, and hence Hrat is reached by 
an extensive-form best response set with unique beliefs. By Theorem 7.2 above it then follows 
that there is a jointly rational belief system for Hrat .

The converse of Corollary 7.3 is not true. To see this, consider the game in Fig. 2 where 
Hrat = {∅}. It may be verified that {b} ×{d} is a jointly rational belief system for Hrat . However, 
as we have seen in the previous section, the strong correct beliefs assumption is not consistent 
with common strong belief in rationality in this game.

Corollary 7.3 implies that if the strong correct beliefs assumption is consistent with common 
strong belief in rationality, then in particular there is a jointly rational belief system for the 
collection of all relevant histories. Reny (1993) and Battigalli and Siniscalchi (1999) have shown, 
in turn, that for games with perfect information and without relevant ties, there is a jointly rational 
belief system for the collection of all relevant histories, if and only if, the backward induction 
path reaches all relevant histories. By combining these two results, we conclude that if in a 
game with perfect information and without relevant ties, the strong correct beliefs assumption is 
consistent with common strong belief in rationality, then the backward induction path must reach 
all relevant histories. This is consistent with our Theorem 6.1 which states that in this case, the 
backward induction path must reach all histories that are consistent with both players’ rationality 
(and not only the relevant histories).

8. Forward induction equilibrium concepts

8.1. Comparison in terms of strategies

In Section 4 we have seen that the correct beliefs assumption, which is implicitly assumed 
by all equilibrium concepts, is inconsistent with the first two layers of common strong belief in 
rationality. At the same time, the literature offers a broad spectrum of forward induction equi-
librium concepts which – by construction – are consistent with the correct beliefs assumption, 
and which incorporate some particular form of forward induction. In this section we will show, 
however, that none of these forward induction equilibrium concepts can single out the intuitive 
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forward induction strategy (d, g) of player 2 in the game of Fig. 1. The reason for this is that 
each of these concepts imposes some exogenous restrictions on the players’ reasoning which 
may substantially obscure, or weaken, the forward induction reasoning.

Let us go back to the dynamic game in Fig. 1. Why is (d, g) the intuitive forward induction 
strategy of player 2 here? If player 2 must make a choice at h1 he knows that player 1 has chosen 
b, and not a, at the beginning. But choosing b can only be optimal for player 1 at the beginning 
if he subsequently chooses f , and believes that player 2, with high probability, will make the 
irrational choice h. Hence, player 2 must conclude that player 1 will subsequently choose f . As 
such, the only natural forward induction strategy for player 2 is to choose (d, g).

Note that, in order for player 2 to carry out this forward induction reasoning, he must consider 
the possibility that player 1 ascribes a high probability to the irrational strategy (d, h). We will 
see that this is exactly where the forward induction equilibrium concepts fall short: in each of 
the equilibrium concepts player 2 does not even consider the possibility that player 1 may assign 
a positive probability to 2’s irrational strategy (d, h), and therefore none of these equilibrium 
concepts is able to uniquely select the intuitive forward induction strategy (d, g) of player 2.

Let us now be more precise about these claims. The forward induction equilibrium concepts 
I am aware of consist of justifiable sequential equilibrium (McLennan, 1985), Cho’s forward 
induction equilibrium (Cho, 1987), stable sets of beliefs (Hillas, 1994), explicable equilibrium
(Reny, 1992a), outcomes satisfying forward induction (Govindan and Wilson, 2009) and Man’s 
forward induction equilibrium (Man, 2012).4 Of these concepts, the former three are formu-
lated as refinements of sequential equilibrium (Kreps and Wilson, 1982),5 the fourth and fifth 
are defined as refinements of weak sequential equilibrium (Reny, 1992a),6 whereas the last is a 
refinement of normal-form perfect equilibrium (Selten, 1975).

The game of Fig. 1 has a unique sequential equilibrium, in which player 2 chooses c. Conse-
quently, justifiable sequential equilibrium, Cho’s forward induction equilibrium and stable sets 
of beliefs – being refinements of sequential equilibrium – will uniquely select the strategy c for 
player 2, which is not the intuitive forward induction strategy, as we have seen.

In every weak sequential equilibrium of the game in Fig. 1, player 1 assigns probability 0 to 
player 2 choosing (d, h). As the reasoning of players in explicable equilibrium and outcomes 
satisfying forward induction takes place entirely within the framework of weak sequential equi-
libria, player 2 – in these concepts – cannot even reason about the possibility that player 1 assigns 
a positive probability to strategy (d, h). As such, in these concepts player 2 cannot give a plau-
sible explanation at h1 for the event that player 1 has chosen b and not a. Consequently, both 
explicable equilibrium and outcomes satisfying forward induction impose no restrictions on what 
player 2 believes at h1 about 1’s choice at h2. In particular, both explicable equilibrium and out-
comes satisfying forward induction allow for the strategies c and (d, g) by player 2, and therefore 
fail to single out the intuitive forward induction strategy (d, g) for player 2.

4 There are other forward induction equilibrium concepts that are only applicable to signaling games, such as the 
intuitive criterion (Cho and Kreps, 1987), divine equilibrium (Banks and Sobel, 1987), perfect sequential equilibrium
(Grossman and Perry, 1986) and undefeated equilibrium (Mailath et al., 1993).

5 Strictly speaking, Hillas’ concept of stable sets of beliefs imposes restrictions on sets of sequential equilibria, rather 
than on individual sequential equilibria. However, these conditions can be translated into conditions on individual se-
quential equilibria.

6 More precisely, Govindan and Wilson (2009) impose restrictions on outcomes rather than weak sequential equilibria. 
However, these restrictions may be translated into restrictions on weak sequential equilibria directly.



A. Perea / Journal of Economic Theory 169 (2017) 489–516 509
Since every normal-form perfect equilibrium induces a weak sequential equilibrium (see 
Reny, 1992a, Proposition 1), player 1 must also assign probability 0 to player 2’s irrational 
strategy (d, h) in every normal-form perfect equilibrium. As the reasoning of players in Man’s 
forward induction equilibrium is restricted to the setting of normal-form perfect equilibria, it 
follows with the same arguments as above that also Man’s forward induction equilibrium allows 
for the strategies c and (d, g) by player 2, and thus fails to uniquely select the intuitive forward 
induction strategy (d, g) for player 2.

We thus conclude that none of the forward induction equilibrium concepts above uniquely 
selects the intuitive forward induction strategy (d, g) of player 2. What prevents these forward 
induction equilibrium concepts from uniquely selecting the intuitive forward induction strategy 
(d, g) for player 2 is that each of these concepts imposes some exogenous restrictions on the 
beliefs of the players which interfere with – and in some situations are in conflict with – forward 
induction reasoning. For instance, the first three concepts impose, as an exogenous restriction, 
that players reason in accordance with sequential equilibrium, which is a backward induction
concept. That is, the first three concepts assume that players – above all – reason in accordance 
with backward induction, and on top of this impose some forward induction restrictions. As a 
result we obtain concepts that are a mix of backward induction and forward induction arguments. 
As backward induction reasoning alone already singles out the backward induction strategy c by 
player 2, the forward induction arguments in the first three concepts have no bite in the game of 
Fig. 1, and still uniquely lead to the backward induction strategy c for player 2.

The last three concepts impose, as an exogenous restriction, that player 1 will always assign 
probability 0 to 2’s irrational strategy (d, h). As player 2, under these circumstances, cannot give 
a rational explanation at h1 for player 1 choosing b, the forward induction arguments in the last 
three concepts have no bite either in the game of Fig. 1.

In contrast, the “pure” forward induction concept of common strong belief in rationality im-
poses no exogenous restrictions on the beliefs of the players, and therefore allows player 2 to 
reason about a scenario in which player 1 assigns a high probability to player 2’s irrational strat-
egy (d, h). This, eventually, makes it possible for common strong belief in rationality to uniquely 
filter the intuitive forward induction strategy (d, g) for player 2.

8.2. Comparison in terms of outcomes

Some of the forward induction equilibrium concepts above, including Govindan and Wilson’s 
(2009) notion of outcomes satisfying forward induction, focus on outcomes rather than strategies. 
For such concepts, the relevant question thus becomes whether it uniquely selects the “intuitive” 
forward induction outcome(s), rather than strategies. In the game of Fig. 1, for instance, Govindan 
and Wilson’s concept still uniquely selects the intuitive forward induction outcome a, although 
it does not uniquely select player’s 2’s intuitive forward induction strategy (d, g).

However, we can also find games where common strong belief in rationality leads to a unique 
outcome which is not uniquely filtered by Govindan and Wilson’s (2009) concept. Consider, for 
instance, the game in Fig. 3. Here, players 1 and 2 simultaneously choose from {c, d, e} and 
{f, g, h}, respectively, at history h1.

It can be shown that common strong belief in rationality uniquely leads to the outcome 
((a, e), h), whereas Govindan and Wilson’s concept allows for the outcome b. To see the for-
mer, note that player 2, at h1, believes that player 1 will either choose d or e if he strongly 
believes in 1’s rationality, as the strategy (a, c) will always yield player 1 less than 2. If player 
2, in addition, chooses rationally at h1, he will either choose g or h. Hence, if player 1 expresses 
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Fig. 3. Govindan and Wilson’s (2009) concept allows for outcomes that are not possible under common strong belief in 
rationality,

up to 2-fold strong belief in rationality, he must believe that player 2 will choose g or h. Player 
1 should therefore choose e at h1. If player 2 anticipates on this, he must choose h at h1. But if 
player 1 expects player 2 to choose h, his optimal strategy is to choose (a, e). Hence, the only 
outcome to be expected under common strong belief in rationality is ((a, e), h).

However, we will show that the outcome b satisfies forward induction according to Govindan 
and Wilson’s concept.7 Consider the combination (σ1, σ2, β1, β2) of behavioral strategies and 
beliefs, where

σ1 = (b, d) and σ2 = g

are the players’ behavioral strategies, and

β1 = g and β2 = (a, d)

are the players’ beliefs. Here, β1 = g represents the conditional belief vector for player 1 where 
he assigns probability 1 to player 2’s strategy g at histories ∅ and h1. Similarly, β2 = (a, d) is the 
conditional belief vector for player 2 where he assigns probability 1 to player 1’s strategy (a, d)

at h1.
It may be verified that (σ1, σ2, β1, β2) is a weak sequential equilibrium8 leading to the out-

come b. Moreover, player 1’s strategy (a, d) is relevant for the outcome b, in Govindan and 
Wilson’s terminology, since this strategy is optimal in another weak sequential equilibrium 
(σ ′

1, σ
′
2, β

′
1, β

′
2), with

σ ′
1 = (b, c), σ ′

2 = f, β ′
1 = f, β ′

2 = (a, c),

that leads to the same outcome b. Therefore, player 2’s belief β2 in the first weak sequential 
equilibrium satisfies the forward induction condition in Govindan and Wilson, as it only assigns 
positive probability to strategies of player 1 that are relevant for the outcome b. As such, the 
outcome b satisfies forward induction in Govindan and Wilson’s terminology.

7 We refer the reader to Govindan and Wilson (2009) for the precise definitions.
8 Note that player 1’s behavioral strategy (b, d) is not optimal at h1 given his belief β1 there. This, however, is not 

required by weak sequential equilibrium, since the history h1 is precluded by the behavioral strategy (b, d) itself. Weak 
sequential equilibrium requires a behavioral strategy only to be optimal at histories that it does not preclude from being 
reached.
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We thus see that in the game of Fig. 3, Govindan and Wilson’s (2009) forward induction 
concept allows an outcome, b, which is not possible under common strong belief in rationality. 
The main reason is that Govindan and Wilson’s forward induction condition only invokes two 
reasoning steps: that player 2, at h1, only assigns positive probability to relevant strategies of 
player 1, and that player 1 anticipates on this reasoning by player 2. Common strong belief in 
rationality, on the other hand, assumes more than two reasoning steps by the players in this 
game.

8.3. Common strong belief in rationality with exogenous restrictions

Recently, Battigalli and Friedenberg (2012) have started to study variants of the concept of 
common strong belief in rationality in which they do impose exogenous restrictions on the beliefs 
of the players. To achieve this, Battigalli and Friedenberg use epistemic models that are not nec-
essarily terminal. That is, the epistemic model may not contain all possible belief hierarchies for 
the players. As players can only hold belief hierarchies within the epistemic model, and can only 
reason about opponent’s belief hierarchies that are within that same epistemic model, choosing a 
non-terminal epistemic model imposes some exogenous restrictions on the players’ belief hier-
archies, which may have drastic consequences for the type of forward induction reasoning they 
use.

In the game of Fig. 1, such an exogenous restriction could be that we only allow for types 
of player 1 that assign probability 0 to 2’s irrational strategy (d, h). With such an exogenous 
restriction, common strong belief in rationality loses all of its bite in the game of Fig. 1, as player 
2, at h1, can no longer rationalize the event that player 1 has chosen b. Consequently, common 
strong belief in rationality would allow player 2 to choose either c or (d, g), and hence would no 
longer uniquely select the intuitive forward induction strategy (d, g) for player 2.

It would be interesting to see whether some of the forward induction equilibrium concepts 
above can be characterized in the spirit of Battigalli and Friedenberg (2012) by common strong 
belief in rationality relative to a suitably restricted epistemic model. We leave this question for 
future research.

9. Proofs

Proof of Theorem 5.3. Let M = (Ti, bi)i∈I be an arbitrary terminal epistemic model for G, 
and let T ∞

i be the set of types in Ti that express common strong belief in rationality, for both 
players i.
(a) Suppose first that the strong correct beliefs assumption is consistent with common strong 
belief in rationality at G. We will show that there is an extensive-form best response set D1 ×D2

with unique beliefs such that for every player i and every history h ∈ Hi that is consistent with 
j ’s rationality there is a strategy sj ∈ Dj under which h is reachable.

As the strong correct beliefs assumption is consistent with common strong belief in rationality 
at G, there is for both players i a type t∗i ∈ T ∞

i that satisfies the strong correct beliefs assumption. 
Consider a player i who is active at ∅ – the beginning of the game.

Claim. There is a unique type t∗j ∈ T ∞
j such that bi(t

∗
i , h)(Sj × {t∗j }) = 1 for all h ∈ Hi , and 

bj (t
∗, h)(Si × {t∗}) = 1 for all h ∈ Hj .
j i
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Proof of claim. Since t∗i satisfies the strong correct beliefs assumption, type t∗i believes that j
is correct about his type. That is, bi(t

∗
i , h)(Sj × Tj (t

∗
i )) = 1 for every h ∈ Hi , where

Tj (t
∗
i ) = {tj ∈ Tj | bj (tj , h)(Si × {t∗i }) = 1 for all h ∈ Hj }.

We first show that there is a single type t∗j ∈ Tj (t
∗
i ) such that bi(t

∗
i , h)(Sj × {t∗j }) = 1 for all 

h ∈ Hi .
Suppose not. Then, for every tj ∈ Tj (t

∗
i ) there is some h ∈ Hi with bi(t

∗
i , h)(Sj × {tj }) < 1. 

Take an arbitrary tj ∈ Tj (t
∗
i ). Then, we know from the above that there is some h ∈ Hi with

bi(t
∗
i , h)(Sj × {tj }) < 1. (6)

Moreover, as tj ∈ Tj (t
∗
i ) we know that

bj (tj , h
′)(Si × {t∗i }) = 1 for all h′ ∈ Hj . (7)

From (6) and (7) we conclude that type tj does not believe that i is correct about j ’s type. Since 
this holds for every tj ∈ Tj (t

∗
i ), and bi(t

∗
i , h)(Sj ×Tj (t

∗
i )) = 1 for every h ∈ Hi , it follows that t∗i

does not believe that j believes that i is correct about j ’s type. This, however, is a contradiction, 
since t∗i satisfies the strong correct beliefs assumption. We may thus conclude that there is some 
t∗j ∈ Tj (t

∗
i ) such that bi(t

∗
i , h)(Sj × {t∗j }) = 1 for all h ∈ Hi .

Since t∗j ∈ Tj (t
∗
i ), it immediately follows that bj (t

∗
j , h)(Si × {t∗i }) = 1 for all h ∈ Hj . More-

over, as player i is active at ∅ and t∗i ∈ T ∞
i expresses common strong belief in rationality, it 

follows that bi(t
∗
i , ∅)(Sj × T ∞

j ) = 1, which implies that t∗j ∈ T ∞
j .

Hence, there is a unique type t∗j ∈ T ∞
j such that bi(t

∗
i , h)(Sj × {t∗j }) = 1 for all h ∈ Hi , and 

bj (t
∗
j , h)(Si × {t∗i }) = 1 for all h ∈ Hj , which completes the proof of the claim.

Now, let D∗
i be the set of strategies that are rational for t∗i , and let D∗

j be the set of strategies 
that are rational for t∗j . We show that D∗

i ×D∗
j is an extensive-form best response set with unique 

beliefs such that for every player i and every history h ∈ Hi that is consistent with j ’s rationality 
there is a strategy sj ∈ D∗

j under which h is reachable.
We first prove that D∗

i × D∗
j is an extensive-form best response set with unique beliefs. Let 

b∗
i be the first-order conditional belief vector of type t∗i , and b∗

j the first-order conditional belief 
vector of type t∗j . Then, by construction, D∗

i is the set of strategies that are rational for b∗
i . 

Moreover, as t∗i expresses common strong belief in rationality, we have in particular that t∗i
strongly believes

R0
j = {(sj , tj ) ∈ Sj × Tj | sj rational for tj }.

Together with the fact that bi(t
∗
i , h)(Sj × {t∗j }) = 1 for all h ∈ Hi , this implies that t∗i strongly 

believes the event

R0
j ∩ (Sj × {t∗j }) = {(sj , t∗j ) ∈ Sj × {t∗j } | sj rational for t∗j }

= D∗
j × {t∗j }.

Hence, t∗i ’s first-order conditional belief vector b∗
i strongly believes D∗

j . Summarizing, we see 
that D∗

i is the set of strategies that are rational for b∗
i , and that b∗

i strongly believes D∗
j . As the 

same applies to D∗
j and b∗

j , we may conclude that D∗
i × D∗

j is an extensive-form best response 
set with unique beliefs.

We finally show that for every player i and every history h ∈ Hi that is consistent with j ’s 
rationality there is a strategy sj ∈ D∗ under which h is reachable. For an arbitrary player i, take 
j
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an arbitrary history h ∈ Hi that is consistent with j ’s rationality. We must prove that there is 
some sj ∈ D∗

j under which h is reachable.
As history h is consistent with j ’s rationality, we have that

R0
j ∩ (Sj (h) × Tj ) 
= ∅.

Since t∗i expresses common strong belief in rationality, it strongly believes R0
j , and hence

bi(t
∗
i , h)(R0

j ) = 1.

Moreover, as bi(t
∗
i , h)(Sj × {t∗j }) = 1, it follows that

bi(t
∗
i , h)(R0

j ∩ (Sj (h) × {t∗j }))
= bi(t

∗
i , h)({(sj , t∗j ) ∈ Sj × {t∗j } | sj rational for t∗j })

= bi(t
∗
i , h)(D∗

j × {t∗j }) = 1,

which implies that there must be a strategy sj ∈ D∗
j under which h is reachable. We thus conclude 

that for every player i and every history h ∈ Hi that is consistent with j ’s rationality there is a 
strategy sj ∈ D∗

j under which h is reachable.
We have therefore shown that D∗

i × D∗
j is an extensive-form best response set with unique 

beliefs such that for every player i and every history h ∈ Hi that is consistent with j ’s rationality 
there is a strategy sj ∈ D∗

j under which h is reachable. This concludes the proof of part (a).

(b) Suppose now that there is an extensive-form best response set D1 × D2 with unique beliefs 
such that for every player i and every history h ∈ Hi that is consistent with j ’s rationality there is 
a strategy sj ∈ Dj under which h is reachable. We show that the strong correct beliefs assumption 
is consistent with common strong belief in rationality at G.

Take an extensive-form best response set D∗
1 × D∗

2 with unique beliefs such that for every 
player i and every history h ∈ Hi that is consistent with j ’s rationality there is a strategy sj ∈ D∗

j

under which h is reachable. Then, by definition, there is for both players i a conditional belief 
vector b∗

i such that D∗
i is the set of strategies that are rational for b∗

i , and b∗
i strongly believes 

D∗
j . Let t∗1 ∈ T1 and t∗2 ∈ T2 be types such that for both players i,

bi(t
∗
i , h)({(sj , t∗j )}) := b∗

i (h)(sj ) (8)

for all histories h ∈ Hi and all sj ∈ Sj (h). As M = (Ti, bi)i∈I is a terminal epistemic model, 
such types t∗1 and t∗2 exist. By (8) it immediately follows that

b1(t
∗
1 , h)(S2 × {t∗2 }) = 1 for all h ∈ H1,

and

b2(t
∗
2 , h)(S1 × {t∗1 }) = 1 for all h ∈ H2,

and hence both types t∗1 and t∗2 satisfy the strong correct beliefs assumption.
We will now show that t∗1 and t∗2 also express common strong belief in rationality. To that 

purpose we prove, by induction on k, that t∗1 ∈ T k
1 and t∗2 ∈ T k

2 for all k ≥ 0, where T k
i is defined 

as in Definition 3.6.
For k = 0 the statement is trivial, since T 0

i = Ti for both players i.
Take now some k ≥ 1, and assume that t∗i ∈ T k−1

i for both players i. Choose a player i. In 
order to show that t∗i ∈ T k

i , it only remains to prove that t∗i strongly believes Rk−1
j , as t∗i ∈ T k−1

i

by the induction assumption.
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Consider a history h ∈ Hi where Rk−1
j ∩ (Sj (h) ×Tj ) 
= ∅. Then, in particular, h is consistent 

with j ’s rationality. By our assumption above, there is a strategy sj ∈ D∗
j under which h is 

reachable. That is, Sj (h) ∩ D∗
j 
= ∅. As b∗

i strongly believes D∗
j , it follows that b∗

i (h)(D∗
j ) = 1. 

But then, by (8) it follows that

bi(t
∗
i , h)(D∗

j × {t∗j }) = 1. (9)

By construction, D∗
j is the set of rational strategies for b∗

j , and hence also the set of rational 
strategies for t∗j , since b∗

j is the first-order conditional belief vector of t∗j . Since, by the induction 

assumption, t∗j ∈ T k−1
j , it follows that

D∗
j × {t∗j } ⊆ Rk−1

j . (10)

If we combine (9) and (10), we obtain that

bi(t
∗
i , h)(Rk−1

j ) = 1.

Hence, we have shown that bi(t
∗
i , h)(Rk−1

j ) = 1 for every h ∈ Hi where Rk−1
j ∩(Sj (h) ×Tj ) 
= ∅, 

which means that t∗i strongly believes Rk−1
j . Hence, by definition, it follows that t∗i ∈ T k

i . As this 
holds for both players i, it follows by induction that t∗1 ∈ T ∞

1 and t∗2 ∈ T ∞
2 , as was to show.

Overall, we see that there are types t∗1 ∈ T ∞
1 and t∗2 ∈ T ∞

2 that satisfy the strong correct beliefs 
assumption. Hence, the strong correct beliefs assumption is consistent with common strong belief 
in rationality at G. This completes the proof of the theorem. �
Proof of Theorem 6.1. Suppose that the strong correct beliefs assumption is consistent with 
common strong belief in rationality in G. We must show that in G, every non-terminal history h
that is consistent with both players’ rationality lies on the backward induction path.

By Theorem 5.3, there is an extensive-form best response set D1 × D2 with unique beliefs, 
such that for both players i, and every non-terminal history h ∈ Hi that is consistent with j ’s ra-
tionality, there is a strategy sj ∈ Dj under which h is reachable. Let b∗

1 and b∗
2 be the conditional 

belief vectors associated with D1 × D2. That is, for both players i we have that Di is the set of 
strategies that are rational for b∗

i , and b∗
i strongly believes Dj .

Consider an arbitrary terminal epistemic model M = (Ti, bi)i∈I for G. Let t∗1 ∈ T1 and t∗2 ∈ T2
be types such that for both players i,

bi(t
∗
i , h)({sj , t∗j }) := b∗

i (h)(sj )

for all histories h ∈ Hi and all sj ∈ Sj (h). As M = (Ti, bi)i∈I is a terminal epistemic model, 
such types t∗1 and t∗2 exist in M .

Following the proof of Theorem 5.3, we know that the types t∗1 and t∗2 express common strong 
belief in rationality. Consider, for a given player i, a strategy si ∈ Di . Then, by construction, si is 
rational for the conditional belief vector b∗

i . Since b∗
i is the first-order belief of type t∗i , it follows 

that si is also rational for type t∗i . Hence, we conclude that all strategies in Di are rational for 
the type t∗i which expresses common strong belief in rationality. By Proposition 6 in Battigalli 
and Siniscalchi (2002), it then follows that all strategies in Di are extensive-form rationalizable 
in the sense of Pearce (1984) and Battigalli (1997).

Consider now an arbitrary strategy pair (s1, s2) ∈ D1 ×D2. Since both s1 and s2 are extensive-
form rationalizable, (s1, s2) induces an extensive-form rationalizable outcome. Since the game 
G is a finite dynamic game with perfect information and without relevant ties, Theorem 4 in 
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Battigalli (1997) shows that the only extensive-form rationalizable outcome in G is the back-
ward induction outcome. Hence, we conclude that every strategy pair (s1, s2) ∈ D1 ×D2 induces 
the unique backward induction path in G.

Take now an arbitrary non-terminal history h that is consistent with both players’ rationality. 
For a given player i, consider the last history h′ ∈ Hi that weakly precedes h. Here, by “weakly 
precede” we mean that either h′ precedes h, or h′ = h. As h is consistent with both players’ 
rationality, we know that h′ is consistent with j ’s rationality. By our assumption above, we then 
know that there is a strategy ŝj ∈ Dj under which h′ is reachable. Hence, ŝj ∈ Dj prescribes all 
the player j choices that precede h. As this holds for both players i, we conclude that there is 
a strategy pair (s1, s2) ∈ D1 × D2 such that s1 prescribes all the player 1 choices preceding h, 
and s2 prescribes all the player 2 choices preceding h. But then, (s1, s2) leads to h. As (s1, s2) ∈
D1 × D2, we know from above that (s1, s2) induces the backward induction path. Hence, h lies 
on the backward induction path.

We have thus shown that in G, every non-terminal history h that is consistent with both 
players’ rationality lies on the backward induction path. This completes the proof. �
Proof of Theorem 7.2. Suppose that Ĥ is reached by an extensive-form best response set with 
unique beliefs. Then, there is an extensive-form best response set D1 × D2 with unique beliefs 
such that every h ∈ Ĥ is reached by a strategy pair in D1 × D2. By definition, for both players 
i there is a conditional belief vector bi , with bi(h)(Dj ) = 1 for all h satisfying Sj (h) ∩ Dj 
= ∅, 
such that Di = {si ∈ Si | si is rational for bi}. Since every h ∈ Ĥ is reached by a strategy pair in 
D1 × D2, it follows in particular that bi(h)(Dj ) = 1 for all h ∈ Ĥ .

For both players i, let (RĤ,k
i )k≥0 be the sequence of strategy sets in Battigalli and Siniscalchi’s 

(1999) inductive procedure yielding the limit set RĤ
1 × RĤ

2 . We then know that RĤ
1 × RĤ

2 , if 
non-empty, is the largest jointly rational belief system for Ĥ . In order to show that there is a 
jointly rational belief system for Ĥ , it is thus sufficient to show that RĤ

1 × RĤ
2 is non-empty. To 

that purpose we will show, by induction on k, that D1 × D2 ⊆ R
Ĥ,k
1 × R

Ĥ,k
2 for all k ≥ 0.

For k = 0, consider a player i and a strategy si ∈ Di . Then, by construction, si is rational 

for the conditional belief vector bi and hence si ∈ R
Ĥ,0
i . As this holds for both players i and all 

si ∈ Di , it follows that D1 × D2 ⊆ R
Ĥ,0
1 × R

Ĥ,0
2 .

Now, take some k ≥ 1 and assume that D1 × D2 ⊆ R
Ĥ,k−1
1 × R

Ĥ,k−1
2 . Take some player 

i and some si ∈ Di . Then, si is rational for the conditional belief vector bi which satisfies 

bi(h)(Dj ) = 1 for all h ∈ Ĥ . By the induction assumption we know that Dj ⊆ R
Ĥ,k−1
j , and 

therefore bi(h)(R
Ĥ ,k−1
j ) = 1 for all h ∈ Ĥ . Hence, we conclude that si ∈ R

Ĥ,k
i . As this holds for 

both players i and every si ∈ Di , it follows that D1 × D2 ⊆ R
Ĥ,k
1 × R

Ĥ,k
2 .

By induction, we thus conclude that D1 ×D2 ⊆ RĤ
1 ×RĤ

2 , and hence RĤ
1 ×RĤ

2 is non-empty. 

It then follows that RĤ
1 × RĤ

2 is the largest jointly rational belief system for Ĥ . In particular, 
there is a jointly rational belief system for Ĥ , which completes the proof. �
References

Asheim, G.B., 2006. The Consistent Preferences Approach to Deductive Reasoning in Games. Theory and Decision 
Library. Springer, Dordrecht, The Netherlands.

http://refhub.elsevier.com/S0022-0531(17)30030-3/bib41736832303036s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib41736832303036s1


516 A. Perea / Journal of Economic Theory 169 (2017) 489–516
Aumann, R., Brandenburger, A., 1995. Epistemic conditions for Nash equilibrium. Econometrica 63, 1161–1180.
Baltag, A., Smets, S., Zvesper, J.A., 2009. Keep ‘hoping’ for rationality: a solution to the backward induction paradox. 

Synthese 169, 301–333 (Knowledge, Rationality and Action 705–737).
Banks, J.S., Sobel, J., 1987. Equilibrium selection in signaling games. Econometrica 55, 647–661.
Battigalli, P., 1997. On rationalizability in extensive games. J. Econ. Theory 74, 40–61.
Battigalli, P., Friedenberg, A., 2012. Forward induction reasoning revisited. Theor. Econ. 7, 57–98.
Battigalli, P., Siniscalchi, M., 1999. Hierarchies of conditional beliefs and interactive epistemology in dynamic games. J. 

Econ. Theory 88, 188–230.
Battigalli, P., Siniscalchi, M., 2002. Strong belief and forward induction reasoning. J. Econ. Theory 106, 356–391.
Ben-Porath, E., 1997. Rationality, Nash equilibrium and backwards induction in perfect information games. Rev. Econ. 

Stud. 64, 23–46.
Bernheim, B.D., 1984. Rationalizable strategic behavior. Econometrica 52, 1007–1028.
Brandenburger, A., Dekel, E., 1987. Rationalizability and correlated equilibria. Econometrica 55, 1391–1402.
Brandenburger, A., Dekel, E., 1989. The role of common knowledge assumptions in game theory. In: Hahn, Frank (Ed.), 

The Economics of Missing Markets, Information and Games. Oxford University Press, Oxford, pp. 46–61.
Cho, I.-K., 1987. A refinement of sequential equilibrium. Econometrica 55, 1367–1389.
Cho, I.-K., Kreps, D.M., 1987. Signaling games and stable equilibria. Q. J. Econ. 102, 179–221.
Friedenberg, A., 2010. When do type structures contain all hierarchies of beliefs? Games Econ. Behav. 68, 108–129.
Govindan, S., Wilson, R., 2009. On forward induction. Econometrica 77, 1–28.
Grossman, S.J., Perry, M., 1986. Perfect sequential equilibrium. J. Econ. Theory 39, 97–119.
Harsanyi, J.C., 1967–1968. Games with incomplete information played by “bayesian” players, I–III’. Manag. Sci. 14, 

159–182, 320–334, 486–502.
Hillas, J., 1994. Sequential equilibria and stable sets of beliefs. J. Econ. Theory 64, 78–102.
Kreps, D.M., Wilson, R., 1982. Sequential equilibria. Econometrica 50, 863–894.
Mailath, G.J., Okuno-Fujiwara, M., Postlewaite, A., 1993. Belief-based refinements in signalling games. J. Econ. The-

ory 60, 241–276.
Man, P.T.Y., 2012. Forward induction equilibrium. Games Econ. Behav. 75, 265–276.
McLennan, A., 1985. Justifiable beliefs in sequential equilibria. Econometrica 53, 889–904.
Myerson, R.B., 1978. Refinements of the Nash equilibrium concept. Int. J. Game Theory 7, 73–80.
Nash, J.F., 1950. Equilibrium points in N -person games. Proc. Natl. Acad. Sci. USA 36, 48–49.
Nash, J.F., 1951. Non-cooperative games. Ann. Math. 54, 286–295.
Pearce, D.G., 1984. Rationalizable strategic behavior and the problem of perfection. Econometrica 52, 1029–1050.
Penta, A., 2015. Robust dynamic implementation. J. Econ. Theory 160, 280–316.
Perea, A., 2007. A one-person doxastic characterization of Nash strategies. Synthese 158, 251–271 (Knowledge, Ratio-

nality and Action, 341–361).
Perea, A., 2012. Epistemic Game Theory: Reasoning and Choice. Cambridge University Press.
Perea, A., 2014. Belief in the opponents’ future rationality. Games Econ. Behav. 83, 231–254.
Perea, A., Predtetchinski, A., 2016. An Epistemic Approach to Stochastic Games. Working Paper.
Reny, P.J., 1992a. Backward induction, normal form perfection and explicable equilibria. Econometrica 60, 627–649.
Reny, P.J., 1992b. Rationality in extensive-form games. J. Econ. Perspect. 6, 103–118.
Reny, P.J., 1993. Common belief and the theory of games with perfect information. J. Econ. Theory 59, 257–274.
Rubinstein, A., 1991. Comments on the interpretation of game theory. Econometrica 59, 909–924.
Selten, R., 1965. Spieltheoretische Behandlung eines Oligopolmodells mit Nachfragezeit. Z. Gesammte Staatswiss. 121, 

301–324, 667–689.
Selten, R., 1975. Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game 

Theory 4, 25–55.
Shimoji, M., Watson, J., 1998. Conditional dominance, rationalizability, and game forms. J. Econ. Theory 83, 161–195.
Tan, T., Werlang, S.R.C., 1988. The bayesian foundations of solution concepts of games. J. Econ. Theory 45, 370–391.

http://refhub.elsevier.com/S0022-0531(17)30030-3/bib41756D42726131393935s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42616C6574616C32303039s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42616C6574616C32303039s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42616E536F6231393837s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42617431393937s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42617446726932303132s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42617453696E31393939s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42617453696E31393939s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42617453696E32303032s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42656E31393937s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42656E31393937s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42657231393834s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42726144656B31393837s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42726144656B31393839s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib42726144656B31393839s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib43686F31393837s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib43686F4B726531393837s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib46726932303130s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib476F7657696C32303039s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib47726F50657231393836s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib486172313936372D2D31393638s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib486172313936372D2D31393638s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib48696C31393934s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4B726557696C31393832s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4D61696574616C31393933s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4D61696574616C31393933s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4D616E32303132s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4D634C31393835s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4D796531393738s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4E617331393530s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib4E617331393531s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50656131393834s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50656E32303135s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50657232303037s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50657232303037s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50657232303132s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50657232303134s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib50657250726532303136s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib52656E3139393261s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib52656E3139393262s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib52656E31393933s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib52756231393931s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib53656C31393635s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib53656C31393635s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib53656C31393735s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib53656C31393735s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib53686957617431393938s1
http://refhub.elsevier.com/S0022-0531(17)30030-3/bib54616E57657231393838s1

	Forward induction reasoning and correct beliefs
	1 Introduction
	2 Dynamic games
	3 Common strong belief in rationality
	3.1 Epistemic model
	3.2 Correct beliefs assumption
	3.3 Common strong belief in rationality

	4 Inconsistency theorem
	5 When correct beliefs are consistent with forward induction
	5.1 Strong correct beliefs assumption
	5.2 Extensive-form best response set with unique beliefs
	5.3 Characterization result

	6 Games with perfect information
	7 Jointly rational belief systems
	7.1 Deﬁnition
	7.2 Connection to our work

	8 Forward induction equilibrium concepts
	8.1 Comparison in terms of strategies
	8.2 Comparison in terms of outcomes
	8.3 Common strong belief in rationality with exogenous restrictions

	9 Proofs
	References


