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Abstract Pearce’s (Econometrica 52:1029–1050, 1984) extensive-form rationaliz-
ablity (EFR) is a solution concept embodying a best-rationalization principle (Batti-
galli, Games Econ Behav 13:178–200, 1996; Battigalli and Siniscalchi, J Econ Theory
106:356–391, 2002) for forward-induction reasoning. EFR strategies may hence be
distinct from backward-induction (BI) strategies. We provide a direct and transparent
proof that, in perfect-information games with no relevant ties, the unique BI outcome
is nevertheless identical to the unique EFR outcome, even when the EFR strategy
profile and the BI strategy profile are distinct.

Keywords Backward induction · Extensive-form rationalizability ·
Forward induction
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1 Introduction

Subgame perfect equilibrium is one of the most fundamental solution concepts for
extensive-form games with perfect information. In many such games, subgame per-
fection rules out implausible Nash equilibria which are based on incredible threats.
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Moreover, there is a unique subgame perfect equilibrium in games with generic pay-
offs, or games that only have irrelevant payoff ties.1 This unique subgame perfect
equilibrium can be singled out via the backward induction (BI) procedure.

By definition, subgame-perfection (recursively) analyzes each subgame on its own,
abstracting from the question what on earth could have led the players to reach this
subgame in the first place. This question is particularly wanting for subgames which
can only be reached if, on the path leading to the subgame, some player makes a
dominated choice, or a choice which can only be rationalized if this player believes
that one of her opponents will subsequently make a dominated choice, etc. In such
subgames, it is therefore questionable why the other players should assume that this
player will behave rationally in the future, or will believe her opponents will behave
rationally in the future, and so forth. However, BI hinges on these assumptions of
rationality and common belief in future rationality (see Perea 2014), unattending to
past behavior. Thus, a hidden anchor underwriting BI is that all past instances of
irrational behavior (or past beliefs about others’ forthcoming irrationality, etc.) are to
be interpreted as transient, unintended mistakes, which can be safely ignored when a
given subgame is analyzed—no matter how often such instances of irrationality have
already figured in the course of play leading to that subgame.

If, in contrast, one is reluctant to ignore past instances of irrationality as mere
transient fluctuations in the player’s healthy reasoning, a completely different set of
considerations is called for, namely considerations of forward induction. The player’s
past behavior is then to be interpreted as bearing on her future choices and indicative
for it. In particular, if a player has already manifested irrational behavior, there need
not be any gurantee that she will behave optimally henceforth. Similarly, if a player’s
past behavior was optimal only under a belief of hers that her rivals will choose
suboptimally in the future, there is no guarantee that she will attribute rationality to
her rivals in any subsequent subgame; and so on.

Such forward induction considerations are very different from those underlying BI,
and hence call for a different solution concept. Extensive-form rationalizability (EFR)
is a solution concept formulated by Pearce (1984) which embodies such forward induc-
tion considerations. In particular, it relies on a best-rationalization principle (Battigalli
1996): when a player’s future behavior is to be divined, she is ascribed the highest
degree of rationality, belief in her rivals’ rationality, belief in their belief of their rivals’
rationality etc. compatible with the player’s past observed behavior. In epistemic terms
this best-rationalization principle is akin to the notion of ‘strong belief in rationality’2,
which is indeed part and parcel of a characterization of EFR (Battigalli and Siniscalchi
2002).

Given the conceptual chasm between backward and forward induction, no wonder
that there exist games in which some player’s BI strategies are different from her EFR
strategies. In particular, Reny (1992) gave an example of a generic game, in which

1 That is, games where each player’s payoffs are distinct from one another in the leaves which follow each
of this player’s decision nodes.
2 Somewhat of a misnomer—if the player at the root of the game has a dominated move and she chooses
it, at subsequent nodes the other players ‘strongly believe she is rational’ by attributing to her up-front
irrationality.
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a player has a unique BI strategy which is distinct from her unique EFR strategy.
A related example appears in Perea (2012). Nevertheless, in these examples the
outcome induced by the players’ unique profile of BI strategies is identical to the
outcome reached by their unique though distinct profile of EFR strategies. Even more
surprisingly, Battigalli (1997) proved that in all games with no relevant ties, the unique
BI outcome is identical to the unique EFR outcome.

This result is of fundamental importance, because it records why, in generic perfect-
information games, BI never clashes—outcome-wise—with forward induction con-
siderations. Had there existed such clashes, proponents of forward induction would
have called to abandon subgame perfection as implausible at least in some games.
But in view of the outcome equivalence theorem, any conceptual argument in favor of
forward induction over backward induction simply remains mute for generic perfect-
information games.

But what is the intuition behind the outcome equivalence of these very different
modes of solving the game? Battigalli (1997)’s original proof was not transparent in
this regard, because it relied on properties of fully stable sets (Kohlberg and Mertens
1986)—a complex notion which does not lend a direct intuition for confronting the two
modes of reasoning. In fact, Battigalli’s proof technique is based on Reny (1992), who
also used properties of fully stable sets to show that in generic perfect-information
games, the unique outcome induced by explicable equilibrium3 is the BI outome.
More recent proofs are not direct either. Perea (2012) suggests a method of proof
which relies on the epistemic characterizations of backward and forward induction
reasoning in games with potentially imperfect information. Chen and Micali (2011)
provide a proof (see their Theorem 3) which relies on another result of theirs (Chen
and Micali 2013) on the outcome equivalence under different orders of elimination
of strategies in games with possibly imperfect information. The latter result relies
in turn on the ‘diamond property’ of Church and Rosser (1936). Arieli and Aumann
(2012) provide a proof designed for generic games with perfect information, but here
again relying on an argument, devised by Gretlein (1983) for showing the outcome
equivalence of various elimination orders of strategies in such games. In a similar vein,
one can also prove the result by applying the notion of “nice weak dominance” (Marx
and Swinkels 1997, 2000) to generic perfect-information games, and using Theorem 2
in Marx and Swinkels (1997).

In view of the complexity of all these arguments, our aim in this paper is to provide
a direct proof of the outcome equivalence of BI and EFR, and thus shed more light on
this important result.

We proceed, inductively, by trimming the leaves of the tree by BI. Obviously, the
truncated tree has less room for forward induction considerations: wherever a player
originally had to choose among several leaves, that decision node of hers is now
replaced, in the truncated tree, by a leaf with payoffs corresponding to her original
optimal choice at that decision node. Viewed from an earlier stage of the game, after
the trimming the other players have now less decision nodes left to speculate about
and wonder (on the basis of past behavior) how the player is going to choose in them.

3 Like EFR, also explicable equilibrium is based on some kind of best-rationalization principle. However,
the two concepts are different.
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In Lemma 4—the ‘truncation lemma’—we show, in particular, that this intuition is
correct and has an important implication. If some outcome can, originally, be ratio-
nalized up to level k + 1 (i.e. with a profile of strategies each of which was rational,
supported by a belief that others are rational when choosing strategies which are them-
selves rationalized by beliefs that the others’ rivals are rational ... [k + 1 steps]), then
in the truncated game the same outcome can be rationalized up to level k—though
with, possibly, a different profile of strategies. The crux of the argument is to con-
struct, explicitly, the possibly different strategies in the folded game embodying this
possibly lower level of rationality. Conversely, if an outcome can be rationalized up
to level k in the truncated game, it can also be rationalized up to level k in the original
game—again, possibly with a different strategy profile, that we construct explicitly.

Hence, an EFR outcome of the original game, which was supported by a profile of
strategies rationalized to level n for every n ∈ N, is supported by a (possibly different)
profile of strategies that, in the game truncated once by BI, are rationalized to level
n − 1 for every n ∈ N. But this is the same as saying that the strategies in this profile
are rationalized for every k ∈ N, and hence that the outcome induced by this profile is
EFR also in the truncated game. And conversely, every outcome rationalized to level k
in the trimmed game for every k ∈ N is rationalized to level k for every k ∈ N also in
the original game for every k ∈ N—implying that the EFR outcomes in the trimmed
game are also EFR outcomes of the original game. This is the content of Lemma 5.

Continuing to fold the game by BI, the above argument shows that each EFR
outcome is maintained after each folding step. As the game has no relevant ties and the
BI procedure therefore halts after finitely many folding steps with a unique outcome,
we conclude that this outcome is also the unique EFR outcome of all the folded games,
and in particular also the unique EFR outcome of the full, original game—as we headed
to show.

Strictly speaking, to prove Battigalli’s theorem we only need one direction in
Lemma 5, namely that every EFR outcome in the original game is also an EFR out-
come in the truncated game. We do not really need the other inclusion. But since the
other inclusion actually comes for free in our proof, we have decided to state Lemma 5
as described above. Moreover, we believe that the current content of Lemma 5, which
states that the set of EFR outcomes actually remains identical when truncating the
game, is interesting in its own right. More details on this issue can be found in Sect. 3.3.

The paper is organized as follows. Section 2 is dedicated to definitions. In Sect. 3
we state Battigalli’s theorem, give a sketch of our proof, and illustrate the main steps
in the proof by means of an example. A complete and formal proof is given in Sect. 4.
In Sect. 5 we derive two auxiliary results that follow from our proof of Battigalli’s
theorem. The first result states that in perfect-information games with no relevant ties,
truncating a game once by BI can decrease the rationality level of each decision node
(i.e. the highest k for which the node is reached by a profile of strategies rationalized
up to level k) by at most 1. This formalizes the idea described above that trimming
the game once by BI leaves less room for forward induction reasoning. The second
result states that whenever a decision node is followed by at most k actions, and this
decision node can be reached by a profile of strategies that is rationalized to level k,
then the player at that node will always make the BI choice in any such strategy profile
that is rationalized to level k.
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2 Definitions

2.1 Extensive-form games with perfect information

In this paper we focus on extensive-form games with perfect information. For every
such game G we use the following notation: I denotes the set of players, Ni denotes
the set of decision nodes for player i , at every decision node n ∈ Ni we denote by
Ci (n) the set of available choices for player i at n, Z denotes the set of terminal nodes,
and at every terminal node z ∈ Z we denote by ui (z) the utility for player i at z.

Throughout the paper we assume that the sets I, Ni , Ci (n) and Z are all finite—that
is, we restrict attention to finite games—and that the game G is without relevant ties
(Battigalli 1997) which means that for every player i , every decision node n ∈ Ni , and
every two distinct terminal nodes z, z′ ∈ Z following n, we have that ui (z) �= ui (z′).

2.2 Truncation and backward induction

Consider a finite extensive-form game G with perfect information and without relevant
ties. Let Nlast be the set of decision nodes that are not followed by any other decision
node. Consider some last decision node n ∈ Nlast at which player i must make a
choice. Since G is without relevant ties, there is a unique optimal choice c∗(n) ∈ Ci (n)

for player i at n. Let tr(G) be the truncated game obtained from G if we replace every
last decision node n ∈ Nlast by a terminal node z at which the utility for every player
i coincides with the utility he obtains in G if the player moving at n chooses c∗(n).
Clearly, tr(G) will again be a game without relevant ties.

If we repeatedly apply the truncation operator tr to the game G, we eventually end
up with a trivial game G∗ in which there is only one terminal node z∗. As G is without
relevant ties, there is a unique terminal node z in the original game G for which the
utilities of all players match with the utilities in G∗ at z∗. This terminal node z in G
is called the BI outcome of G.

2.3 Extensive-form rationalizability

For every player i we denote by Si the set of strategies in the game G, whereas
S := ×i∈I Si denotes the set of strategy profiles. By S−i := × j �=i S j we denote the set
of strategy profiles for i’s opponents. For a given decision node n, let S(n) be the set
of strategy profiles s ∈ S that reach n. Accordingly, let Si (n) be the set of strategies
si ∈ Si for which there is some s−i ∈ S−i such that (si , s−i ) ∈ S(n). Similarly,
let S−i (n) be the set of strategy profiles s−i ∈ S−i for which there is some si ∈ Si

such that (si , s−i ) ∈ S(n). We say that Si (n) contains those strategies for player i
that reach n, and that S−i (n) contains those strategy profiles for i’s opponents that
reach n.

A belief vector for player i is a vector bi = (bi (n))n∈Ni where bi (n) ∈ �(S−i (n))

for every n ∈ Ni . Here, �(S−i (n)) denotes the set of probability distributions on
S−i (n). That is, a belief vector bi associates with every decision node n ∈ Ni for
player i some probability distribution bi (n) over the opponents’ strategy profiles that
reach n. We denote by Bi the set of all belief vectors for player i in G.
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If si is a strategy of player i and bi (n) ∈ �(S−i (n)) is a belief of player i at the
node n, we say that (si , bi (n)) reaches a node ñ ∈ N if for some s−i ∈ S−i (n)

for which bi (n) (s−i ) > 0, the strategy profile (si , s−i ) reaches ñ. Here, we denote
by N the set of all decision nodes in the game. Accordingly, for a subset of nodes
Ñ ⊆ N , we say that (si , bi (n)) only reaches Ñ if for every s−i ∈ S−i (n) for which
bi (n) (s−i ) > 0, the strategy profile (si , s−i ) only reaches nodes in Ñ , and no nodes
outside Ñ .

For a given strategy si , belief vector bi , and decision node n ∈ Ni , let ui (si , bi (n)|n)

be the expected utility that results for player i if the game reaches n, player i holds
the belief bi (n) at n over the opponents’ strategy profiles, and chooses according to
si in the subgame that starts at n. Strategy si is said to be optimal for player i at n
for the belief bi (n) if ui (si , bi (n)|n) ≥ ui (s′

i , bi (n)|n) for all s′
i ∈ Si . Strategy si is

said to be optimal for the belief vector bi if, for every n ∈ Ni , the strategy si is opti-
mal at n for bi (n). Note that we require optimality at n even when si does not reach
n! This is different from Pearce (1984) and Battigalli (1997) notion of optimality,
who require si only to be optimal at those decision nodes n ∈ Ni that are actu-
ally reached by si . This difference will have consequences for the eventual strategies
selected, but not for the plans of action (Rubinstein 1991) and hence neither for the out-
comes selected by EFR. Since we are eventually interested in the outcomes selected
by extensive-form rationalizability, this difference is not crucial for what we do in
this paper.

The concept of EFR (Pearce 1984; Battigalli 1997) recursively defines, for every
k ≥ 0, sets of strategies Sk

i and sets of belief vectors Bk
i , as follows.

Definition 1 (Extensive-form rationalizability) Consider a finite extensive-form game
G with perfect information and without relevant ties.

Induction start. Define S0
i := Si and B0

i := Bi for all players i .
Induction step. Let k ≥ 1, and suppose that Sk−1

i and Bk−1
i have already been

defined for all players i . Then, Sk
i is defined as the set of strategies for player i that are

optimal for some belief vector in Bk−1
i . Moreover, Bk

i is defined as the set of belief
vectors bi ∈ Bk−1

i for which bi (n) ∈ �(Sk
−i ∩ S−i (n)) at every decision node n ∈ Ni

where Sk
−i ∩ S−i (n) is nonempty.

Here, Sk
−i := × j �=i Sk

j , and by �(Sk
−i ∩ S−i (n)) we denote the set of probability

distributions on S−i (n) that only assign positive probability to strategy profiles in Sk
−i .

So, the condition that characterizes Bk
i states that, whenever there is an opponents’

strategy profile in Sk
−i that reaches n, the belief bi (n) should only assign positive

probability to strategy profiles in Sk
−i . This is actually the forward-induction element

in the definition, reflecting the best-rationalization principle (Battigalli 1996).
For every player i , we denote by S∞

i := ∩k≥0Sk
i the set of extensive-form rational-

izable strategies, whereas S∞ := ×i∈I S∞
i is the set of extensive-form rationalizable

strategy profiles. Every terminal node z that is reached by some profile s ∈ S∞ is
called an extensive-form rationalizable outcome.

Our definition of EFR differs in two ways from the original definitions by Pearce
(1984) and Battigalli (1997). Namely, in our definition we do not require the belief
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On the outcome equivalence of BI and EFR 43

vectors in B0
i to satisfy Bayesian updating where possible, whereas the defini-

tions by Pearce and Battigalli do4. However, Shimoji and Watson (1998) have
shown that this difference is of no relevance5. We have chosen not to impose
Bayesian updating merely for the sake of simplicity, as it makes the procedure
above easier. By doing so, we actually view the EFR procedure above as a purely
algorithmic procedure that yields us the extensive-form rationalizable strategies.
One should bear in mind, however, that the underlying concept of EFR does
assume Bayesian updating. This conceptually makes sense, as Bayesian updat-
ing guarantees that the players in the dynamic game will be dynamically consis-
tent. As such, every player will have at least one strategy that is optimal at each
of his information sets, and such strategies can be found through a folding back
procedure.

The second difference, as we already mentioned above, lies in the way we define
optimality of a strategy si for some belief vector bi . We require that si be optimal for
bi (n) at every decision node n ∈ Ni —no matter whether n is reached by si or not.
In turn, Pearce and Battigalli only require si to be optimal for bi (n) at all n ∈ Ni

that are reached by si . This difference will have consequences for the set of strategies
S∞

i obtained at the end, but not for the plans of action6 (Rubinstein 1991) induced by
the strategies in S∞

i . In particular, this difference will not matter for the outcome(s)
reached by S∞, which is the primary focus of this paper.

In what follows, we often write Sk
i (G) and S∞

i (G) instead of Sk
i and S∞

i , to indicate
that it corresponds to a specific game G. The same holds for all the other objects we
have defined in this section. So, we often write Si (G), Ni (G), and so on, to make clear
that these objects are defined for a specific game G.

3 Sketch of proof

In this section we state Battigalli’s theorem, highlight the main steps in our proof, and
illustrate these steps by means of an example. We hope that this section will help the
reader to understand the formal proof of the theorem in the next section.

3.1 Main steps in proof

The purpose of this paper is to provide an elementary proof for the following well-
known result.

4 To be more precise, the condition in Pearce and Battigalli is equivalent to Bayesian updating, in the sense
that it gives the same probability ratios for strategies that are not ruled out by information sets, but it does
not require “normalization”.
5 It can be shown, namely, that whenever a strategy is optimal for a belief vector that strongly believes a set
of opponents’ strategy profiles, then it is also optimal for an equivalent belief vector that strongly believes
this same set of strategy profiles, and which satisfies Bayesian updating.
6 Here, a plan of action represents a class of behaviorally equivalent strategies, that is, a class of strategies
that reach the same decision nodes for player i , and make the same choices at these decision nodes. Actually,
it can be shown that not only the plans of action induced by S∞

i are the same in our setting as in Pearce’s

and Battigalli’s, but also the plans of action induced by Sk
i , at every step k of the procedure.
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Theorem 2 (Battigalli (1997)) Consider a finite extensive-form game G with perfect
information and without relevant ties. Then, G has a unique extensive-form rational-
izable outcome, and this outcome coincides with the backward induction outcome.

In the next section we will provide a complete and formal proof for this result. Our
main idea in the proof is to show that, for every finite extensive-form game G with
perfect information and without relevant ties, the set of extensive-form rationalizable
outcomes does not change by truncating the game G—see Lemma 5. This result
then implies Theorem 2 above. To see this, take a game G with perfect information
and without relevant ties. Then, by repeatedly truncating the game, we finally obtain a
game G∗ with only one possible outcome—the BI outcome in G. At the same time, the
sequence of games we obtain by repeatedly truncating the game G contains only games
without relevant ties. Therefore, Lemma 5 guarantees that the set of extensive-form
rationalizable outcomes does not change when we move from one game to another in
this sequence. In particular, the set of extensive-form rationalizable outcomes in the
original game G must be the same as in the final game G∗ in this sequence. But the
final game G∗ contains only one outcome, which is the BI outcome in G. As such, the
only extensive-form rationalizable outcome in G∗ is the BI outcome in G. Hence, we
can conclude that G contains only one extensive-form rationalizable outcome, which
coincides with the BI outcome in G—precisely what we want to show.

But how do we prove that the set of extensive-form rationalizable outcomes does
not change when truncating the game? The key will be to prove the following property,
which we refer to as the ‘truncation lemma’—see Lemma 4. To formally state the
lemma, let Sk

i (G) be the set of strategies for player i in G that survive the first k
steps in the EFR procedure, and let N k(G) be the set of decision nodes in G that
are reached by some strategy profile in Sk(G) := ×i∈I Sk

i (G). Moreover, when we
take subsets N ′ ⊆ N (G) and N ′′ ⊆ N (tr(G)), we write N ′ ⊆∗ N ′′ whenever
N ′ ∩ N (tr(G)) ⊆ N ′′.

Truncation Lemma: Consider a finite extensive-form game G with perfect informa-
tion and without relevant ties, and let G ′ := tr(G) be the truncated game. Then, for
all k ≥ 0 :
(a) there is a mapping f k

i : Sk+1
i (G) → Sk

i (G ′) such that si and f k
i (si ) are identical

on N k(G) for every si ∈ Sk+1
i (G),

(b) there is a mapping gk
i : Sk

i (G ′) → Sk
i (G) such that σi and gk

i (σi ) are identical on
N k−1(G ′) for every σi ∈ Sk

i (G ′),
(c) N k+1(G) ⊆∗ N k(G ′) ⊆ N k(G).

In part (b), we define N−1(G ′) := N (G ′).
So, part (a) states that for every strategy si that survives the first k + 1 steps of

EFR in the original game, we can find a corresponding strategy in the truncated game
that (1) survives the first k steps of EFR in the truncated game and (2) coincides
with si on the nodes in G that can still be reached under Sk(G). In particular, for
every strategy profile s that survives the first k + 1 steps in the original game, we can
find a corresponding strategy profile σ that survives the first k steps in the truncated
game, and which coincides with s on the nodes in G that can still be reached under
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Sk(G). But since s is in Sk+1(G)—and hence in Sk(G)—it follows that s and σ

behave identically on the path of s, and must therefore induce the same outcome. We
thus conclude that for every strategy profile s in Sk+1(G) there is a corresponding
strategy profile σ in Sk(G ′) which induces the same outcome as s. By letting k → ∞,
we obtain that for every extensive-form rationalizable strategy profile s ∈ S∞(G)

in the original game, there is a corresponding extensive-form rationalizable strategy
profile σ ∈ S∞(G ′) in the truncated game generating the same outcome as s. In other
words, every extensive-form rationalizable outcome in the original game G is also an
extensive-form rationalizable outcome in the truncated game G ′.

In a similar fashion, we can derive from (b) that every extensive-form rationalizable
outcome in the truncated game G ′ is also an extensive-form rationalizable outcome in
the original game G. By combining these two insights, we conclude that the extensive-
form rationalizable outcomes in G are exactly the same as in the truncated game G ′,
which yields Lemma 5. So, indeed, the truncation lemma implies the result in Lemma 5.

3.2 Example

To illustrate how to construct the “outcome preserving” mappings f k
i and gk

i in the
truncation lemma, consider the game G in Fig. 1, together with the truncated game
G ′. By n1, ..., n5 we denote the decision nodes in G. Note that Nlast (G) = n5 and
c∗(n5) = i . Hence, replacing the decision node n5 in G by a terminal node with
utilities (6, 2, 6) leads to the truncated game G ′, with decision nodes n1, ..., n4.

It may be verified that the sets of strategies Sk
i (G) and Sk

i (G ′), which underly the
definition of EFR, are given by Table 1. To see this, let us first concentrate on the
original game G. Note that strategy (d, g) can never be optimal for player 2 at n2, as
c gives him 5 for sure, whereas (d, g) yields him at most 4. So, (d, g) is not in S1

2(G).

Fig. 1 Illustration of the truncation lemma
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Table 1 Sets of strategies Sk
i in the games G and G′

S0
1 (G) = {(a, i), (a, j),

(b, i), (b, j)} S0
2 (G) = {(c, g), (c, h),

(d, g), (d, h)} S0
3 (G) = {e, f }

S1
1 (G) = {(a, i), (b, i)} S1

2 (G) = {(c, g), (c, h), (d, h)} S1
3 (G) = {e, f }

S2
1 (G) = {(a, i), (b, i)} S2

2 (G) = {(c, g)} S2
3 (G) = { f }

S3
1 (G) = {(a, i)} S3

2 (G) = {(c, g)} S3
3 (G) = { f }

S0
1 (G′) = {a, b} S0

2 (G′) = {(c, g), (c, h),

(d, g), (d, h)} S0
3 (G′) = {e, f }

S1
1 (G′) = {a, b} S1

2 (G′) = {(c, g)} S1
3 (G′) = {e, f }

S2
1 (G′) = {a} S2

2 (G′) = {(c, g)} S2
3 (G′) = {e, f }

As (b, i) is the only strategy in S1
1(G) that leads to n2, player 2 must believe in B1

2 (G),
at his decision node n2, that player 1 will continue with i . But then, player 2 must
choose c at n2 in S2

2 (G). Similarly, (b, i) is the only strategy in S1
1(G) that leads to n4,

and hence player 2 must believe in B1
2 (G), at his decision node n4, that player 1 will

continue with i . But then, player 2 must choose g at n4 in S2
2 (G). So, we conclude that

S2
2 (G) = {(c, g)}. Observe also that (b, i) is the only strategy in S1

1(G) that leads to
n3, and (d, h) is the only strategy in S1

2(G) that leads to n3. Therefore, player 3 must
in B1

3 (G) believe, at his decision node n3, that player 1 will continue with i , and that
player 2 will continue with h. But then, player 3’s only optimal strategy in S2

3 (G) is f .
In B2

1 (G), player 1 must therefore believe, at the beginning of the game, that player
2 will choose (c, g)—his only strategy in S2

2 (G). But then, player 1’s only optimal
strategy in S3

1(G) is (a, i). Clearly, S∞
i (G) = S3

i (G) for all players i in the game. In
particular, player 3’s only extensive-form rationalizable strategy in the game is f .

Let us now turn to the truncated game G ′. Note that after the truncation, the only
optimal choice for player 2 at n2 is c, and the only optimal choice for player 2 at n4
is g. Therefore, S1

2(G ′) = {(c, g)}. As there is no player 2 strategy in S1
2(G ′) leading

to n3 anymore, player 3 is free to hold any belief at n3 in B1
3 (G ′), which means that

S2
3 (G ′) = {e, f }. Actually, for every k ≥ 2 there will be no strategy in Sk

2 (G ′) leading
to n3, and hence player 3 is free to hold any belief at n3 in Bk

3 (G ′) for every k ≥ 2. This
means that S∞

3 (G ′) = {e, f }. Note that in the truncated game, S∞
i (G ′) = S2

i (G ′) for
all players i . So, we see that player 3 has two extensive-form rationalizable strategies
in G ′—namely e and f —whereas in the original game he only had one—namely
f . However, the extensive-form rationalizable outcome in both games is the same.
Namely, as S∞

1 (G) = {(a, i)} and S∞
1 (G ′) = {a}, the extensive-form rationalizable

outcome in both games is the outcome which results from player 1 choosing a at the
beginning.

We now show how to construct the “outcome preserving” mappings f k
i and gk

i

in the truncation lemma. By definition, we must construct f k
i : Sk+1

i (G) → Sk
i (G ′)

such that the strategies f k
i (si ) and si are always indentical on N k(G). Similarly, the

mapping gk
i : Sk

i (G ′) → Sk
i (G) must be such that the strategies gk

i (σi ) and σi are
always identical on N k−1(G ′). We have summarized the sets N k(G) and N k(G ′) in

123



On the outcome equivalence of BI and EFR 47

Table 2 Sets N k in games G
and G′ N 0(G) = {n1, n2, n3, n4, n5}

N 1(G) = {n1, n2, n3, n4, n5}
N 2(G) = {n1, n2}
N 3(G) = N∞(G) = {n1}

N 0(G′) = {n1, n2, n3, n4}
N 1(G′) = {n1, n2}
N 2(G′) = N∞(G′) = {n1}

Table 3 The “outcome preserving” mappings f k
i and gk

i between G and G′

g0
1 : S0

1 (G′) → S0
1 (G) g0

2 : S0
2 (G′) → S0

2 (G) g0
3 : S0

3 (G′) → S0
3 (G)

g0
1 : {a, b} → {(a, i), (a, j),

(b, i), (b, j)} g0
2 : {(c, g), (c, h),

(d, g), (d, h)} → g0
3 : {e, f } → {e, f }

{(c, g), (c, h),

(d, g), (d, h)}
g0

1(a) = (a, i), g0
1(b) = (b, i) g0

2 = id g0
3 = id

f 0
1 : S1

1 (G) → S0
1 (G′) f 0

2 : S1
2 (G) → S0

2 (G′) f 0
3 : S1

3 (G) → S0
3 (G′)

f 0
1 : {(a, i), (b, i)} → {a, b} f 0

2 : {(c, g), (c, h),

(d, h)} → f 0
3 : {e, f } → {e, f }

{(c, g), (c, h),

(d, g), (d, h)}
f 0
1 (a, i) = a, f 0

1 (b, i) = b f 0
2 = id f 0

3 = id

g1
1 : S1

1 (G′) → S1
1 (G) g1

2 : S1
2 (G′) → S1

2 (G) g1
3 : S1

3 (G′) → S1
3 (G)

g1
1 : {a, b} → {(a, i), (b, i)} g1

2 : {(c, g)} → g1
3 : {e, f } → {e, f }

{(c, g), (c, h),

(d, h)}
g1

1(a) = (a, i), g1
1(b) = (b, i) g1

2(c, g) = (c, g) g1
3 = id

f 1
1 : S2

1 (G) → S1
1 (G′) f 1

2 : S2
2 (G) → S1

2 (G′) f 1
3 : S2

3 (G) → S1
3 (G′)

f 1
1 : {(a, i), (b, i)} → {a, b} f 1

2 : {(c, g)} → {(c, g)} f 1
3 : { f } → {e, f }

f 1
1 (a, i) = a, f 1

1 (b, i) = b f 1
2 (c, g) = (c, g) f 1

3 ( f ) = f

g2
1 : S2

1 (G′) → S2
1 (G) g2

2 : S2
2 (G′) → S2

2 (G) g2
3 : S2

3 (G′) → S2
3 (G)

g2
1 : {a} → {(a, i), (b, i)} g2

2 : {(c, g)} → {(c, g)} g2
3 : {e, f } → { f }

g2
1(a) = (a, i) g2

2(c, g) = (c, g) g2
3(e) = g2

3( f ) = f

f 2
1 : S3

1 (G) → S2
1 (G′) f 2

2 : S3
2 (G) → S2

2 (G′) f 2
3 : S3

3 (G) → S2
3 (G′)

f 2
1 : {(a, i)} → {a} f 2

2 : {(c, g)} → {(c, g)} f 2
3 : { f } → {e, f }

f 2
1 (a, i) = a f 2

2 (c, g) = (c, g) f 2
3 ( f ) = f

Table 2, and have listed the “outcome preserving” mappings f k
i and gk

i in Table 3.
In this table, id denotes the identity mapping. So, for instance, f 0

2 : {(c, g), (c, h),

(d, h)} → {(c, g), (c, h), (d, g), (d, h)} is the identity mapping that maps (c, g) to
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(c, g), (c, h) to (c, h) and (d, h) to (d, h). The “critical” transformation in this table
is the mapping g2

3 : {e, f } → { f }. This transformation maps the strategy e in S2
3 (G ′)

to the different strategy f in S2
3 (G). Note, however, that N 1(G ′) = {n1, n2} (see

Table 2), and hence the strategies e and g2
3(e) = f are identical on N 1(G ′), as they

are supposed to be.
The reader may use this example and the associated Tables 1, 2 and 3 as a guideline

when going through the proof of the truncation lemma.

3.3 “Redundancies” in Proof

Some critical readers will have noticed that the proof outlined above actually shows
more than we really need. To show Battigalli’s theorem, it sufficies to prove that
when we truncate the game G, then every extensive-form rationalizable outcome in
the original game G will also be an extensive-form rationalizable outcome in the
truncated game G ′. We do not really need the other inclusion. That is, we only need
one direction in Lemma 5.

To see this, suppose that for every game G with perfect information and with-
out relevant ties, every extensive-form rationalizable outcome in G will also be an
extensive-form rationalizable outcome in the truncated game G ′ (but not necessar-
ily vice versa). Again, by repeatedly truncating the game G, we eventually arrive
at a trivial game G∗ with a unique outcome—the BI outcome in G. By repeatedly
using the (weaker) result above, we can still conclude that every extensive-form
rationalizable outcome in G must be an extensive-form rationalizable outcome in
G∗, which can only be the BI outcome in G. Hence, there is only one possible
extensive-form rationalizable outcome in G, namely the BI outcome in G. Since
we know, by Pearce (1984), that the set of extensive-form rationalizable strategies—
and hence the set of extensive-form rationalizable outcomes—is always non-empty,
we conclude that G contains exactly one extensive-form rationalizable outcome,
namely the BI outcome. So, Battigalli’s theorem still follows by this one direction of
Lemma 5.

In order to prove this one direction in Lemma 5, it suffices to show part (a) in the
truncation lemma above. We do not need part (b) for that purpose. So, the reader may
ask why we did not concentrate exclusively on part (a) in the truncation lemma, since
that is really all we need. The reason is that we prove part (a) in the truncation lemma
by induction on k, and to prove step k of part (a) we need the induction assumption on
step k−1 of part (b). Or, at least, we do not know how to prove step k of part (a) without
using the statement of step k − 1 of part (b). In other words, part (b) in the truncation
lemma helps us to prove part (a)—the part that is really crucial for our purposes.

But, once we have both part (a) and part (b) in the truncation lemma, it not only
follows that every extensive-form rationalizable outcome in the original game G is an
extensive-form rationalizable outcome in the truncated game G ′, but also the converse
easily follows. That is, it follows that by truncating the game we do not change the
set of extensive-form rationalizable outcomes. Since we believe this property to be
interesting in its own right, we have stated it as such in Lemma 5, although it states
more than we strictly need to prove Battigalli’s theorem.
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4 Formal Proof

In this section we will provide a complete and formal proof of Battigalli’s theorem
(Theorem 2) which we stated in the previous section. The keys to proving this result
are the two lemmas we state below.

Lemma 3 (Sufficiency principle) Consider a finite extensive-form game G with per-
fect information and without relevant ties. For a player i and any k ≥ 0, consider
some belief vector bi ∈ Bk

i , a decision node n ∈ Ni and two strategies si , s′
i

where ui (si , bi (n)|n) < ui (s′
i , bi (n)|n). Then, there is some s′′

i ∈ Sk
i such that

ui (si , bi (n)|n) < ui (s′′
i , bi (n)|n).

Proof of Lemma 3 Follows from the Claim on p.54 in Battigalli (1997) and from the
proof of Lemma 9.8.3 in Perea (2012). ��

From Lemma 3 it follows that, for checking the optimality of a strategy si at a
decision node n ∈ Ni against a belief bi ∈ Bk

i , it is sufficient to check that si is optimal
among strategies in Sk

i only. For that reason, we have called this lemma “sufficiency
principle”.

For the next lemma—the “truncation lemma”—we need the following additional
definitions and notation. Consider some finite extensive-form game G with perfect
information and without relevant ties. Let N (G) be the set of all decision nodes in
G. For every k ≥ 0, denote by N k(G) the set of decision nodes that are reached by
some s ∈ Sk(G). Remember that tr(G) denotes the truncation of the game G, and
that Nlast (G) is the set of decision nodes in G that are not followed by any other
decision node in G. So, Nlast (G) contains precisely those decision nodes that are
in G but not in tr(G). Hence, N (G) = N (tr(G)) ∪ Nlast (G). In the sequel, when
we take subsets N ′ ⊆ N (G) and N ′′ ⊆ N (tr(G)), we write N ′ ⊆∗ N ′′ whenever
N ′ ∩ N (tr(G)) ⊆ N ′′.

Now, take a strategy si for player i in G, a strategy σi for player i in tr(G), and
some subset of decision nodes N̄ ⊆ N (G). We say that si and σi are identical on
N̄ if (a) si and σi prescribe the same choice at every n ∈ N̄ ∩ Ni (tr(G)), and (b)
si prescribes at every n ∈ Ni (G) ∩ Nlast (G) the unique optimal choice c∗(n). By
construction, if si and σi are identical on N̄ , then si and σi always induce the same
expected utility on every n ∈ Ni (G) ∩ N̄ .

The following lemma describes the effect that truncation of a game has on the sets
Sk

i that underly the definition of EFR. For that reason we call it the ‘truncation lemma’.
For the sake of clarity, we write strategies in G as si , and strategies in tr(G) as σi .

Lemma 4 (Truncation Lemma) Consider a finite extensive-form game G with perfect
information and without relevant ties, and let G ′ := tr(G) be the truncated game.
Then, for all k ≥ 0:

(a) there is a mapping f k
i : Sk+1

i (G) → Sk
i (G ′) such that si and f k

i (si ) are identical

on N k(G) for every si ∈ Sk+1
i (G),
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(b) there is a mapping gk
i : Sk

i (G ′) → Sk
i (G) such that σi and gk

i (σi ) are identical
on N k−1(G ′) for every σi ∈ Sk

i (G ′),
(c) N k+1(G) ⊆∗ N k(G ′) ⊆ N k(G).

In part (b), we define N−1(G ′) := N (G ′).
Proof of Lemma 4 To make the reading easier, we write strategies in G as si , belief
vectors in G as bi , and utilities in G as ui , whereas we write strategies in G ′ as σi ,
belief vectors in G ′ as βi , and utilities in G ′ as vi . We prove the statements (a), (b)
and (c) by induction on k.

Induction start. Let us first consider the case k = 0.

(a) Take some strategy si ∈ S1
i (G). Then, si must be optimal for some belief vector

bi ∈ B0
i (G), and hence at every last decision node n ∈ Ni (G) ∩ Nlast (G) it must

prescribe the optimal choice c∗(n). Let f 0
i (si ) simply be the restriction of si to

the decision nodes in Ni (G ′). Then, clearly, f 0
i (si ) ∈ S0

i (G ′), and is identical to
si on N 0(G) = N (G).

(b) Take some σi ∈ S0
i (G ′). Let g0

i (σi ) be the strategy in G that coincides with σi

on decision nodes in Ni (G ′), and that at every n ∈ Ni (G) ∩ Nlast (G) prescribes
the optimal choice c∗(n). Then, clearly, g0

i (σi ) ∈ S0
i (G), and is identical to σi on

N−1(G ′) = N (G ′).
(c) By definition, N 1(G) ⊆∗ N 0(G ′) ⊆ N 0(G).

Induction step. Take now some k ≥ 1, and assume that (a), (b) and (c) are true for all
k′ ≤ k − 1.
(a) We will construct the “outcome preserving” mapping f k

i : Sk+1
i (G) → Sk

i (G ′).
Take some strategy si ∈ Sk+1

i (G). Then, in particular, si ∈ S1
i (G), and hence si

prescribes the optimal choice c∗(n) at every n ∈ Ni (G) ∩ Nlast (G). We define the
strategy f k

i (si ) in G ′ as follows. Choose some arbitrary strategy σ ∗
i ∈ Sk

i (G ′). For
every decision node n ∈ Ni (G ′), define

( f k
i (si ))(n) :=

{
si (n), if n ∈ N k(G)

σ ∗
i (n), if n /∈ N k(G)

.

First of all, observe that f k
i (si ) is identical to si on N k(G). Hence, it remains to

show that f k
i (si ) ∈ Sk

i (G ′). That is, we must show that f k
i (si ) is optimal for some

belief vector βi ∈ Bk−1
i (G ′). So, at every n ∈ Ni (G ′) we must find some belief

βi (n) ∈ Bk−1
i (G ′, n) such that f k

i (si ) is optimal at n for the belief βi (n). Here,
Bk−1

i (G ′, n) denotes the set of beliefs that are possible at n in Bk−1
i (G ′). Take some

n ∈ Ni (G ′). We distinguish two cases: (1) n ∈ N k(G) and (2) n /∈ N k(G).

Case 1 Assume that n ∈ N k(G).
Since si ∈ Sk+1

i (G), strategy si is optimal at n for some belief bi (n) ∈ Bk
i (G, n).

As n ∈ N k(G), there is some s−i ∈ Sk
−i (G) that reaches n. But then, by definition of

Bk
i (G), we must have that bi (n) ∈ �(Sk

−i (G) ∩ S−i (G, n)). We transform the belief
bi (n) into a new belief βi (n) in G ′ as follows. Let βi (n) : S−i (G ′) → [0, 1] be given
by
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βi (n)(σ−i ) :=
∑

s−i ∈Sk−i (G): f k−1
−i (s−i )=σ−i

bi (n)(s−i ) (1)

for all σ−i ∈ S−i (G ′). Here, for a given s−i = (s j ) j �=i ∈ Sk
−i (G), we define f k−1

−i (s−i )

as ( f k−1
j (s j )) j �=i . Recall that f k−1

j : Sk
j (G) → Sk−1

j (G ′), which implies that f k−1
−i :

Sk
−i (G) → Sk−1

−i (G ′). Hence, f k−1
−i (s−i ) is well-defined for every s−i ∈ Sk

−i (G).
We show (i) that βi (n) is a probability distribution on S−i (G ′), (ii) that βi (n) ∈

Bk−1
i (G ′, n)), and (iii) that f k

i (si ) is optimal at n for βi (n).

(i) By definition, βi (n)(σ−i ) ≥ 0 for all σ−i ∈ S−i (G ′). It remains to show that∑
σ−i ∈S−i (G ′) βi (n)(σ−i ) = 1. By (1),

∑
σ−i ∈S−i (G ′)

βi (n)(σ−i ) =
∑

σ−i ∈S−i (G ′)

∑
s−i ∈Sk−i (G): f k−1

−i (s−i )=σ−i

bi (n)(s−i )

=
∑

s−i ∈Sk−i (G)

bi (n)(si ) = 1,

where the latter equality follows from the assumption that bi (n) ∈ �(Sk
−i (G)).

(ii) As n ∈ N k(G), we know by induction assumption on (c) that n ∈ N k−1(G ′).
So, there is some σ−i ∈ Sk−1

−i (G ′) that reaches n. Hence, to show that βi (n) ∈
Bk−1

i (G ′, n), we must prove that βi (n) ∈ �(Sk−1
−i (G ′) ∩ S−i (G ′, n)). To this

purpose, we first show that βi (n) ∈ �(Sk−1
−i (G ′)), and then we prove that βi (n) ∈

�(S−i (G ′, n)).
We start by showing that βi (n) ∈ �(Sk−1

−i (G ′)). Suppose that βi (n)(σ−i ) > 0

for some σ−i ∈ S−i (G ′). Then, by (1), σ−i = f k−1
−i (s−i ) for some s−i ∈ Sk

−i (G)

with bi (n)(s−i ) > 0. So, s−i = (s j ) j �=i with s j ∈ Sk
j (G) for every j �= i . By our

induction assumption on (a), we know that f k−1
j (s j ) ∈ Sk−1

j (G ′) for every j �= i .

Hence, σ−i = f k−1
−i (s−i ) ∈ Sk−1

−i (G ′). So, we conclude that βi (n)(σ−i ) > 0 only

if σ−i ∈ Sk−1
−i (G ′), and hence βi (n) ∈ �(Sk−1

−i (G ′)).
We now show that βi (n) ∈ �(S−i (G ′, n)). Suppose that βi (n)(σ−i ) > 0 for
some σ−i ∈ S−i (G ′). Then, by (1), σ−i = f k−1

−i (s−i ) for some s−i ∈ Sk
−i (G)

with bi (n)(s−i ) > 0. As bi (n) ∈ �(Sk
−i (G) ∩ S−i (G, n)), we know that

s−i ∈ S−i (G, n). So s−i = (s j ) j �=i with s j ∈ S j (G, n) for all j �= i . That
is, s j chooses at every player j node before n the choice leading to n. By
our induction assumption on (a) we know that f k−1

j (s j ) is identical to s j on

N k−1(G). As n ∈ N k(G), all player j nodes before n are in N k−1(G), and
hence also f k−1

j (s j ) chooses at every player j node before n the choice lead-

ing to n. So, f k−1
j (s j ) ∈ S j (G ′, n). But then, σ−i = f k−1

−i (s−i ) ∈ S−i (G ′, n).
So, we conclude that βi (n)(σ−i ) > 0 only if σ−i ∈ S−i (G ′, n), and hence
βi (n) ∈ �(S−i (G ′, n)).
We thus conclude that βi (n) ∈ �(Sk−1

−i (G ′)∩S−i (G ′, n)). This, however, implies

that βi (n) ∈ Bk−1
i (G ′, n), which was to show in (ii).
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(iii) We next show that f k
i (si ) is optimal at n for βi (n). Suppose not. Then, there is

some σ ′
i ∈ Si (G ′) such that

vi ( f k
i (si ), βi (n)|n) < vi (σ

′
i , βi (n)|n),

where vi , as announced above, denotes the utility function for player i in the
game G ′. As βi (n) ∈ Bk−1

i (G ′, n), it follows by Lemma 3 that there is some
σi ∈ Sk−1

i (G ′) such that

vi ( f k
i (si ), βi (n)|n) < vi (σi , βi (n)|n). (2)

By our induction assumption on (b) we know that the strategy gk−1
i (σi ) ∈

Sk−1
i (G) is identical to σi on N k−2(G ′). By the induction assumption on (c),

N k−1(G) ⊆∗ N k−2(G ′), and hence gk−1
i (σi ) ∈ Sk−1

i (G) is identical to σi on
N k−1(G).

Recall that bi (n) ∈ �(Sk
−i (G)). As gk−1

i (σi ) ∈ Sk−1
i (G), it follows that

(gk−1
i (σi ), bi (n)) only reaches nodes in N k−1(G). By this, remember, we mean that

for every opponents’ strategy profile s−i ∈ S−i (G) with bi (n)(s−i ) > 0, the strat-
egy profile (gk−1

i (σi ), s−i ) only reaches nodes in N k−1(G). As bi (n) ∈ �(Sk
−i (G)),

the belief bi (n) only assigns positive probability to (s j ) j �=i where s j ∈ Sk
j (G). By

the induction assumption on (a), we know that every such s j ∈ Sk
j (G) is identical

to f k−1
j (s j ) on N k−1(G). So, by (1), bi (n) yields the same expected utility as βi (n)

on N k−1(G). As (gk−1
i (σi ), bi (n)) only reaches nodes in N k−1(G), and gk−1

i (σi ) is
identical to σi on N k−1(G), it follows that

vi (σi , βi (n)|n) = ui (g
k−1
i (σi ), bi (n)|n). (3)

Moreover, as si ∈ Sk+1
i (G), and bi (n) ∈ �(Sk

−i (G)), we have that (si , bi (n)) only
reaches nodes in N k(G). We have seen above that bi (n) yields the same expected utility
as βi (n) on N k−1(G), and hence, in particular, bi (n) yields the same expected utility
as βi (n) on N k(G). As (si , bi (n)) only reaches nodes in N k(G) and si is identical to
f k
i (si ) on N k(G), we may conclude that

vi ( f k
i (si ), βi (n)|n) = ui (si , bi (n)|n). (4)

By combining (2), (3) and (4), it follows that

ui (si , bi (n)|n) < ui (g
k−1
i (σi ), bi (n)|n),

which contradicts our assumption that si is optimal at n for the belief bi (n).
Hence, we must conclude that f k

i (si ) is optimal at n for βi (n). As βi (n) ∈
Bk−1

i (G ′, n), we see that f k
i (si ) is optimal at n for some belief βi (n) ∈ Bk−1

i (G ′, n),
which completes Case 1.
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Case 2 Assume that n /∈ N k .
Then, all nodes following n are also not in N k . Hence, by construction, f k

i (si )

coincides with σ ∗
i at n and all nodes n′ ∈ Ni (G ′) following n. Remember that σ ∗

i was
chosen to be in Sk

i (G ′). Hence, there is some belief βi (n) ∈ Bk−1
i (G ′, n) such that

σ ∗
i is optimal at n for βi (n). But then, as f k

i (si ) coincides with σ ∗
i at n and all nodes

n′ ∈ Ni (G ′) following n, we also have that f k
i (si ) is optimal at n for βi (n). Hence,

f k
i (si ) is optimal at n for some βi (n) ∈ Bk−1

i (G ′, n), which completes Case 2.
By combining Case 1 and Case 2, we conclude that for every n ∈ Ni (G ′) there is

some belief βi (n) ∈ Bk−1
i (G ′, n) such that f k

i (si ) is optimal at n for βi (n). Hence,
f k
i (si ) is optimal for some belief vector βi ∈ Bk−1

i (G ′), which means that f k
i (si ) ∈

Sk
i (G ′). This completes the induction step for (a).

(b) The proof for part (b) is very similar to the proof for part (a). We will construct
the “outcome preserving” mapping gk

i : Sk
i (G ′) → Sk

i (G). Take some strategy σi ∈
Sk

i (G ′). We define the strategy gk
i (σi ) in G as follows. Choose some arbitrary strategy

s∗
i ∈ Sk

i (G). For every decision node n ∈ Ni (G), define

(gk
i (σi ))(n) :=

{
σi (n), if n ∈ N k−1(G ′)
s∗

i (n), if n /∈ N k−1(G ′) .

In particular, at every last decision node n ∈ Ni (G) ∩ Nlast (G) we have that
(gk

i (σi ))(n) = s∗
i (n) since n /∈ N (G ′). As s∗

i ∈ Sk
i (G) and k ≥ 1, we have that

s∗
i (n) = c∗(n) at all n ∈ Ni (G) ∩ Nlast (G), where c∗(n) is the unique optimal

choice at n. Hence, (gk
i (σi ))(n) = c∗(n) for all n ∈ Ni (G) ∩ Nlast (G). But then,

it immediately follows that gk
i (σi ) is identical to σi on N k−1(G ′). Hence, it remains

to show that gk
i (σi ) ∈ Sk

i (G). So, at every n ∈ Ni (G) we must find some belief
bi (n) ∈ Bk−1

i (G, n) such that gk
i (σi ) is optimal at n for the belief bi (n). Take some

n ∈ Ni (G). We distinguish two cases: (1) n ∈ N k−1(G ′), and (2) n /∈ N k−1(G ′).
Case 1 Assume that n ∈ N k−1(G ′).

Since σi ∈ Sk
i (G ′), strategy σi is optimal at n for some belief βi (n) ∈ Bk−1

i (G ′, n).
As n ∈ N k−1(G ′), there is some σ−i ∈ Sk−1

−i (G ′) that reaches n. But then, by definition

of Bk−1
i (G ′), we must have that βi (n) ∈ �(Sk−1

−i (G ′) ∩ S−i (G ′, n)). We transform
the belief βi (n) into a belief bi (n) in G as follows. Let bi (n) : S−i (G) → [0, 1] be
given by

bi (n)(s−i ) :=
∑

σ−i ∈Sk−1
−i (G ′):gk−1

−i (σ−i )=s−i

βi (n)(σ−i ) (5)

for all s−i ∈ S−i (G). Here, for a given σ−i = (σ j ) j �=i ∈ Sk−1
−i (G ′), we define

gk−1
−i (σ−i ) as (gk−1

j (σ j )) j �=i . Recall that gk−1
j : Sk−1

j (G ′) → Sk−1
j (G), which implies

that gk−1
−i : Sk−1

−i (G ′) → Sk−1
−i (G). Hence, gk−1

−i (σ−i ) is well-defined for every σ−i ∈
Sk−1
−i (G ′).

We will show (i) that bi (n) is a probability distribution on S−i (G), (ii) that bi (n) ∈
Bk−1

i (G, n), and (iii) that gk
i (σi ) is optimal at n for bi (n).
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(i) In exactly the same way as in (a) it can be shown that
∑

s−i ∈S−i (G) bi (n)(s−i ) = 1,
and hence bi (n) is a probability distribution on S−i (G).

(ii) As n ∈ N k−1(G ′), we know by induction assumption on (c) that n ∈ N k−1(G).
So, there is some s−i ∈ Sk−1

−i (G) that reaches n. Hence, to show that bi (n) ∈
Bk−1

i (G, n), we must prove that bi (n) ∈ �(Sk−1
−i (G) ∩ S−i (G, n)). To this

purpose, we first show that bi (n) ∈ �(Sk−1
−i (G)), and then we prove that

bi (n) ∈ �(S−i (G, n)).
We first show that bi (n) ∈ �(Sk−1

−i (G)). Suppose that bi (n)(s−i ) > 0 for some

s−i ∈ S−i (G). Then, by (5), s−i = gk−1
−i (σ−i ) for some σ−i ∈ Sk−1

−i (G ′) with

βi (n)(σ−i ) > 0. So, σ−i = (σ j ) j �=i with σ j ∈ Sk−1
j (G ′) for every j �= i . By our

induction assumption on (b), we know that gk−1
j (σ j ) ∈ Sk−1

j (G) for every j �= i .

Hence, s−i = gk−1
−i (σ−i ) ∈ Sk−1

−i (G). So, bi (n)(s−i ) > 0 only if s−i ∈ Sk−1
−i (G).

We may thus conclude that bi (n) ∈ �(Sk−1
−i (G)).

We now show that bi (n) ∈ �(S−i (G, n)). Suppose that bi (n)(s−i ) > 0 for some
s−i ∈ S−i (G). Then, by (5), s−i = gk−1

−i (σ−i ) for some σ−i ∈ Sk−1
−i (G ′) with

βi (n)(σ−i ) > 0. As βi (n) ∈ �(Sk−1
−i (G ′) ∩ S−i (G ′, n)), it follows that σ−i ∈

S−i (G ′, n). Hence, σ−i = (σ j ) j �=i with σ j ∈ S j (G ′, n) for all j �= i . That is, σ j

chooses at every player j node before n the choice leading to n. By our induction
assumption on (b) we know that gk−1

j (σ j ) is identical to σ j on N k−2(G ′). As

n ∈ N k−1(G ′), all player j nodes before n are in N k−2(G ′), and hence also
gk−1

j (σ j ) chooses at every player j node before n the choice leading to n. So,

gk−1
j (σ j ) ∈ S j (G, n). But then, s−i = gk−1

−i (σ−i ) ∈ S−i (G, n). So, we conclude
that bi (n)(s−i ) > 0 only if s−i ∈ S−i (G, n), and hence bi (n) ∈ �(S−i (G, n)).
In total, it follows that bi (n) ∈ �(Sk−1

−i (G)∩ S−i (G, n)). This, however, implies

that bi (n) ∈ Bk−1
i (G, n), which was to show in (ii).

(iii) We next show that gk
i (σi ) is optimal at n for bi (n). Suppose not. Then, there is

some s′
i ∈ Si (G) such that

ui (g
k
i (σi ), bi (n)|n) < ui (s

′
i , bi (n)|n).

As bi (n) ∈ Bk−1
i (G, n)), it follows by Lemma 3 that there is some si ∈ Sk−1

i (G)

such that
ui (g

k
i (σi ), bi (n)|n) < ui (si , bi (n)|n). (6)

By our induction assumption on (a) we know that the strategy f k−2
i (si ) ∈

Sk−2
i (G ′) is identical to si on N k−2(G). By induction assumption on (c),

N k−2(G ′) ⊆ N k−2(G), and hence f k−2
i (si ) ∈ Sk−2

i (G ′) is identical to si on
N k−2(G ′).

Recall that βi (n) ∈ �(Sk−1
−i (G ′)). As f k−2

i (si ) ∈ Sk−2
i (G ′), it follows that

( f k−2
i (si ), βi (n)) only reaches nodes in N k−2(G ′). As βi (n) ∈ �(Sk−1

−i (G ′)), the

belief βi (n) only assigns positive probability to (σ j ) j �=i where σ j ∈ Sk−1
j (G ′). By

induction assumption on (b), we know that every such σ j ∈ Sk−1
j (G ′) is identical to
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gk−1
j (σ j ) on N k−2(G ′). So, by ( 5), βi (n) yields the same expected utility as bi (n)

on N k−2(G ′). As ( f k−2
i (si ), βi (n)) only reaches nodes in N k−2(G ′), and f k−2

i (si ) is
identical to si on N k−2(G ′), it follows that

ui (si , bi (n)|n) = vi ( f k−2
i (si ), βi (n)|n). (7)

Moreover, as σi ∈ Sk
i (G ′), and βi (n) ∈ �(Sk−1

−i (G ′)), we have that (σi , βi (n)) only
reaches nodes in N k−1(G ′). We have seen above that βi (n) yields the same expected
utility as bi (n) on N k−2(G ′), and hence, in particular, on N k−1(G ′). As (σi , βi (n))

only reaches nodes in N k−1(G ′) and σi is identical to gk
i (σi ) on N k−1(G ′), we may

conclude that
ui (g

k
i (σi ), bi (n)|n) = vi (σi , βi (n)|n). (8)

By combining (6), (7) and (8), it follows that

vi (σi , βi (n)|n) < vi ( f k−2
i (si ), βi (n)|n),

which contradicts our assumption that σi is optimal at n for the belief βi (n).
Hence, we must conclude that gk

i (σi ) is optimal at n for bi (n). As bi (n) ∈
Bk−1

i (G, n), we see that gk
i (σi ) is optimal at n for some belief bi (n) ∈ Bk−1

i (G, n),
which completes Case 1.

Case 2 Assume that n /∈ N k−1(G ′).
Then, all nodes following n are also not in N k−1(G ′). Hence, by construction,

gk
i (σi ) coincides with s∗

i at n and all nodes n′ ∈ Ni (G) following n. Remember that
s∗

i was chosen to be in Sk
i (G). Hence, there is some belief bi (n) ∈ Bk−1

i (G, n) such
that s∗

i is optimal at n for bi (n). But then, as gk
i (σi ) coincides with s∗

i at n and all nodes
n′ ∈ Ni (G) following n, we also have that gk

i (σi ) is optimal at n for bi (n). Hence,
gk

i (σi ) is optimal at n for some bi (n) ∈ Bk−1
i (G, n), which completes Case 2.

By combining Case 1 and Case 2, we conclude that for every n ∈ Ni (G) there is
some belief bi (n) ∈ Bk−1

i (G, n) such that gk
i (σi ) is optimal at n for bi (n). Hence,

gk
i (σi ) is optimal for some belief vector bi ∈ Bk−1

i (G), which means that gk
i (σi ) ∈

Sk
i (G). This completes the induction step for (b).

(c) To show that N k+1(G) ⊆∗ N k(G ′), take some n ∈ N k+1(G)\Nlast (G). Hence,
there is some strategy profile (si )i∈I in G reaching n where si ∈ Sk+1

i (G) for every
i . By part (a), f k

i (si ) ∈ Sk
i (G ′) and is identical to si on N k(G). As all nodes before n

are in N k(G), it follows that the strategy profile ( f k
i (si ))i∈I is identical to (si )i∈I at

all nodes before n, and hence reaches n too. So we see that n is reached by the strategy
profile ( f k

i (si ))i∈I , and that f k
i (si ) ∈ Sk

i (G ′) for all i . But then, n ∈ N k(G ′). So, every
n ∈ N k+1(G)\Nlast (G) is also in N k(G ′), which means that N k+1(G) ⊆∗ N k(G ′).

To show that N k(G ′) ⊆ N k(G), take some n ∈ N k(G ′). Hence, there is some
strategy profile (σi )i∈I in G ′ reaching n where σi ∈ Sk

i (G ′) for every i . By part (b),
gk

i (σi ) ∈ Sk
i (G) and is identical to σi on N k−1(G ′). As all nodes before n are in

N k−1(G ′), it follows that the strategy profile (gk
i (σi ))i∈I is identical to (σi )i∈I at all

nodes before n, and hence reaches n too. So we see that n is reached by the strategy

123



56 A. Heifetz, A. Perea

profile (gk
i (σi ))i∈I , and that gk

i (σi ) ∈ Sk
i (G) for all i . But then, n ∈ N k(G). So, every

n ∈ N k(G ′) is also in N k(G), which means that N k(G ′) ⊆ N k(G). This completes
the induction step for (c).

By induction on k, the statements (a), (b) and (c) follow for all k, which completes
the proof. ��

With Lemma 4 at hand, we can now easily show that truncating a game does not
change the extensive-form rationalizable outcomes. To formalize this statement, let us
denote by Z∞(G) the set of extensive-form rationalizable outcomes of the game G.

Lemma 5 (Truncation does not change EFR outcomes) Consider a finite extensive-
form game G with perfect information and without relevant ties, and let G ′ = tr(G)

be the truncated game. Then, for every z ∈ Z∞(G) there is some z′ ∈ Z∞(G ′) which
yields the same utilities as z for all players, and vice versa.

Proof of Lemma 5 Take some extensive-form rationalizable outcome z ∈ Z∞(G) in
the original game G. Then, there is some strategy profile (si )i∈I ∈ S∞(G) that reaches
z. Clearly, there must be some K such that SK

i (G) = S∞
i (G) and SK

i (G ′) = S∞
i (G ′)

for all players i . As (si )i∈I ∈ SK+1(G), it follows by Lemma 4, part (a), that the
strategy profile ( f K

i (si ))i∈I is in SK (G ′) = S∞(G ′), and that it is identical to (si )i∈I

on N K (G). As (si )i∈I only reaches nodes in N K (G), we conclude that (si )i∈I induces
the same utilities for all players as ( f K

i (si ))i∈I . Let z′ be the terminal node in G ′
reached by ( f K

i (si ))i∈I . Then, z′ ∈ Z∞(G ′), and z′ induces the same utilities as z.
Take now some extensive-form rationalizable outcome z′ ∈ Z∞(G ′) in the trun-

cated game G ′. Then, there is some strategy profile (σi )i∈I ∈ S∞(G ′) that reaches
z. As (σi )i∈I ∈ SK (G ′), it follows by Lemma 4, part (b), that the strategy profile
(gK

i (σi ))i∈I is in SK (G) = S∞(G), and that it is identical to (σi )i∈I on N K−1(G ′).
As (σi )i∈I only reaches nodes in N K−1(G ′), we conclude that (σi )i∈I induces the
same utilities for all players as (gK

i (σi ))i∈I . Let z be the terminal node in G reached
by (gK

i (σi ))i∈I . Then, z ∈ Z∞(G), and z induces the same utilities as z′. ��
We are now in a position to prove Theorem 2.

Proof of Theorem 2 By repeatedly applying the truncation operator to G, we finally
end up with a trivial game G∗ that only has one terminal node z∗. Now, take some
arbitrary extensive-form rationalizable outcome z ∈ Z∞(G) in the original game G.
By repeated application of Lemma 5, we conclude that z must yield the same utilities
as z∗. By construction, the utilities at z∗ are exactly the utilities of the unique BI
outcome z′ in G. So, the utilities at z must be the same as the utilities of the unique
BI outcome z′ in G. Since the game G is without relevant ties, z must be equal to the
BI outcome in G. So, there is only one extensive-form rationalizable outcome in G,
namely the BI outcome. ��

5 Two auxiliary results

In this section we state, and prove, two auxiliary results that follow from our proof
of Theorem 2. Consider some finite extensive-form game G with perfect information
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and without relevant ties. For every node n in G—which may be either a decision
node or a terminal node—we define rat (n, G) as the highest level k such that n is
reached by some strategy profile in Sk(G), and call it the rationality level of node n.

More formally:

Definition 6 (Rationality level of decision nodes) For every node n in G, the rationality
level of n is defined as

rat (n, G) =
⎧⎨
⎩

k < ∞, if n is reached by some s ∈ Sk(G),

but not by some s ∈ Sk+1(G),

∞, if n is reached by some s ∈ S∞(G)

.

From the truncation lemma above—Lemma 4— we can prove that after truncating
the game, the rationality level of every node will either stay the same, or decrease by
exactly one. Moreover, if the rationality level in the original game is ∞, then it will
stay ∞ in the truncated game. We think this is an interesting property by itself, as
it nicely shows how the rationality levels induced by EFR change if we truncate the
game. Therefore, we state this property as a formal result here.

Corollary 7 (Truncation and rationality levels) Let G be some finite extensive-form
game with perfect information and without relevant ties. Let G ′ := tr(G) be the
truncated game. Then, for every node n in G ′ we have that

rat (n, G ′) =
{

rat (n, G) or rat (n, G) − 1, if rat (n, G) < ∞
∞, if rat (n, G) = ∞ .

Proof Take some node n in the truncated game G ′. Then, n is a decision node in the
original game G. We distinguish two cases, namely when rat (n, G) < ∞ and when
rat (n, G) = ∞.

Suppose first that rat (n, G) = k < ∞. Then, by definition, n ∈ N k(G). By
part (c) in Lemma 4 it follows that n ∈ N k−1(G ′), and hence n is reached by some
s ∈ Sk−1(G ′). So, rat (n, G ′) ≥ k − 1. Suppose, contrary to what we want to show,
that rat (n, G ′) ≥ k + 1. Then, n would be reached by some s ∈ Sk+1(G ′), and hence
n ∈ N k+1(G ′). But then, by part (c) in Lemma 4 , it would follow that n ∈ N k+1(G),
which would mean that rat (n, G) ≥ k + 1. This, however, would contradict the
assumption that rat (n, G) = k. So, we conclude that rat (n, G ′) ≤ k. As we already
saw that rat (n, G ′) ≥ k − 1, it follows that rat (n, G ′) is either k or k − 1. Hence,
rat (n, G ′) is either rat (n, G) or rat (n, G) − 1.

Suppose next that rat (n, G) = ∞. Then, n ∈ N k(G) for all k. Hence, by part
(c) in Lemma 4, n ∈ N k−1(G ′) for all k, which means that rat (n, G ′) = ∞. This
completes the proof. ��

We may use Corollary 7 to derive an interesting insight about the relation between
BI and EFR. To formally state this insight, we must first define the depth of a decision
node n. Within a fixed extensive-form game G with perfect information, the depth of
a decision node n is the maximal number of choices between n and a terminal node. In
other words, it is the length of a longest path starting at n. The following result states
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that at every decision node n with depth k, the player at n will choose the BI choice
in any strategy profile reaching n that survives the first k steps of the EFR procedure.

At first sight, this result may suggest that the EFR-procedure also corresponds to
some kind of BI procedure, in which we start at the last decision nodes (with depth
1), conclude that 1 round of EFR induces the BI choice there, then turn to decision
nodes of depth 2, conclude that 2 rounds of EFR induce the BI choice there, and so on.
This conclusion is false, however. Namely, for a particular decision node n with depth
k, there may be no strategy profile reaching n that survives the first k rounds of the
EFR-procedure. In that case, we cannot conclude that k rounds of the EFR-procedure
induces the BI choice at n.

Corollary 8 (EFR and BI-choices) Consider a finite extensive-form game G with
perfect information and without relevant ties. Let n be a decision node with depth
k ≥ 1, and s ∈ Sk(G) a strategy profile that reaches n. Then, s prescribes the
backward induction choice at n.

Proof Let c(n) be the choice prescribed by s at n, and let n′ be the node in G that
immediately follows choice c(n) at n. As s ∈ Sk(G) reaches n, it also reaches n′,
and hence, by definition, rat (n′, G) ≥ k. Let Gk−1 := tr k−1(G) be the (k − 1)-fold
truncation of G. Then, n′ is a terminal node in Gk−1, and n is a last decision node in
Gk−1, since n has depth k, and n′ immediately follows n. By repeated application of
Corollary 7, we obtain that

rat (n′, Gk−1) ≥ rat (n′, G) − (k − 1) ≥ k − (k − 1) = 1.

That is, within the game Gk−1 the terminal node n′ is reached by some s′ ∈ S1(Gk−1).
But then, the choice c(n) that precedes n′ must be optimal at the last decision node n
within Gk−1, since every s′ ∈ S1(Gk−1) must prescribe the unique optimal choice at
every last decision node in Gk−1. By construction, the unique optimal choice in Gk−1

at the last decision node n is precisely the BI choice within G at n. Hence, c(n) must
be the BI choice within G at n. So, the strategy profile s ∈ Sk must prescribe the BI
choice at n. This completes the proof. ��
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