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Abstract
We introduce the idea that a player believes at every stage of a dynamic game that 
his opponents will choose rationally in the future and have chosen rationally in a 
restricted way in the past. This is summarized by the concept of common belief in 
future and restricted past rationality, which is defined epistemically. Moreover, it is 
shown that every properly rationalizable strategy of the normal form of a dynamic 
game can be chosen in the dynamic game under common belief in future and 
restricted past rationality. We also present an algorithm that uses strict dominance, 
and show that it selects exactly those strategies that can be chosen under common 
belief in future and restricted past rationality.
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1 Introduction

Epistemic game theory deals with the reasoning processes of an individual about 
his opponents before he makes a decision. This requires a belief about the choices 
of his opponents, but also a belief about the opponents’ beliefs about their oppo‑
nents’ choices, and so on.

Such reasoning processes have been studied thoroughly in the framework of 
static games, in various forms of the concept of common belief in rationality. 
However, the extension of these concepts to the framework of dynamic games 
is not entirely trivial. One possible way to extend the idea of common belief 
in rationality would require that the players believe their opponents make only 
rational choices, in particular that past choices have been rational. However, in 
many cases this is not possible, since there may be stages in the game where play‑
ers have to conclude that an opponent has chosen irrationally in the past.

To solve this problem some alternative concepts have been proposed. Battigalli 
and Siniscalchi (2002) propose the concept of common strong belief in rational‑
ity, in which players, whenever possible, must believe that their opponents are 
implementing rational strategies. Perea (2014) proposed the concept of common 
belief in future rationality, in which at each decision point a player must believe 
that all players are rational in the present and in the future, but allows players to 
believe that irrational choices have been made in the past. This concept is similar 
to sequential rationalizability, proposed by Dekel et al. (1999; 2002), and Asheim 
and Perea (2005).

Reny (1992, 1993) studies the idea of common belief in past and future ration‑
ality at all information sets, coming to the conclusion that in most games, it is not 
possible to reason under such concept.

However, taking as a starting point the concept of common belief in future 
rationality in which we allow players to believe that past choices were irrational, 
we consider a concept in which a restricted notion of belief in past rationality is 
assumed. The example presented in Fig. 1 will be used to illustrate the concepts 
that are being discussed, while it also serves as one of the motivations for devel‑
oping a new rationality concept.

The key idea in the new concept we propose is that a player does not only 
believe that his opponents choose rationally in the future, but also that the deci‑
sions made in the past were rational among a restricted set of choices. In Fig. 1 we 
can see that at ∅ the optimal choice for player 1 is c. However, if the game were 
to reach h1 , player 2 must believe that a suboptimal choice was made at ∅ . Under 
the concept of common belief in future rationality player 2 can assume either a or 
b was chosen at ∅ , as there is no restriction on the beliefs about choices made in 
the past. We propose that player 2 should reason about the choice made at ∅ by 
considering only those choices that reach h1 and from those find which are opti‑
mal: in this case, we can see that a is the best choice for player 1 from those that 
reach h1 assuming he would choose f afterwards. Hence, under the new concept, 
player 2 must believe at h1 that player 1 chose a in the past.
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The concept proposed here, which we call “common belief in future and restricted 
past rationality” is a refinement of common belief in future rationality. The differ‑
ence is that common belief in future rationality does not reason about the choices 
made in the past, while the addition of “restricted past rationality” makes players 
consider the subset of past choices that reach an information set and find the optimal 
choice in this subset. In other terms, the important factor in what is proposed is that 
a player, at an information set h, may still believe that the opponents chose irration‑
ally in the past, but if that is the case, he must believe that the opponents chose the 
“least irrational” strategies among the strategies that reach h. A key feature of our 
new concept is that belief in the opponents restricted past rationality is always pos‑
sible, whereas belief in the opponents’ (unrestricted) past rationality is only useful 
when studying strategies that fall on the path of those that are rational, while disre‑
garding the rest of the game.

Since we are ranking the possible mistakes, we can tell there should be a con‑
nection between the concepts of proper rationalizability, proposed by Schuhmacher 
(1999) and Asheim (2001), for the normal form of a dynamic game and common 
belief in future and restricted past rationality for a dynamic game. In Theorem 1 it 
is shown that properly rationalizable strategies in the normal form can rationally be 
chosen under common belief in future and restricted past rationality. And since we 
know that there are properly rationalizable strategies for every finite normal form 
game, then we have that there are strategies that can rationally be chosen under com‑
mon belief in future and restricted past rationality for every finite dynamic game. 
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Fig. 1  Example of a dynamic game
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This shows that common belief in future and restricted past rationality has plausible 
restrictions which, when studying the normal form, allows players to make reason‑
able decisions in the dynamic game. In addition we propose an algorithm for this 
concept, and we show that it delivers exactly the strategies that can rationally be 
chosen under common belief in future and restricted past rationality.

Note that the example presented in Fig. 1 has unobserved past choices. This is 
intentional, because we can easily show that for games with observable past choices 
in which we possibly allow for simultaneous moves, common belief in future ration‑
ality and common belief in future and restricted past rationality are equivalent. To 
see this, note that under observable choices, every information set for every player is 
a singleton which implies that each player knows exactly what the previous choices 
were. Since this happens, players do not have to reason about what possible choices 
were made earlier, since such choices are already given and known to everyone, 
reducing the reasoning only to future choices. This also shows that the algorithm 
presented here and the backward dominance procedure proposed in Perea (2014) 
coincide when the games have observable past choices, as the description of the sec‑
ond set Ŝk

−i
(h) in Step k of Algorithm 1 reduces to a description that is equivalent to 

the sets Γk(h) in the inductive step of the backward dominance procedure.
For one‑shot games, common belief in future rationality and common belief in 

future and restricted past rationality both coincide with common belief in rationality, 
and hence are equivalent. Since it is well known that common belief in rationality 
is weaker than proper rationalizability, there are one‑shot games in which a strategy 
can rationally be chosen under common belief in future and restricted past rational‑
ity, but that same strategy is not properly rationalizable in the normal form. Hence, 
the converse of Theorem 1 does not hold. Such a game is presented in Fig. 2, which 
does not have generic payoffs. In this game, strategies b and d can rationally be cho‑
sen under common belief in future and restricted past rationality, but b and d are not 
properly rationalizable. We conjecture that for generic payoffs, proper rationalizabil‑
ity is equivalent to common belief in future and restricted past rationality.

It was shown by Asheim (2001) that every choice that has positive probability in 
some proper equilibrium is optimal for some properly rationalizable type. Therefore 
proper rationalizability can be seen as the non‑equilibrium analogue to proper equi‑
libria. van Damme (1984) proves that for every dynamic game, the proper equilibria 
of its normal form induce quasi‑perfect equilibria of the dynamic game. In this way 
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Fig. 2  Counterexample to the converse of Theorem 1



1 3

Common belief in future and restricted past rationality  

he shows that it is possible to reason about a dynamic game in terms of the normal 
form and obtain equilibria of the dynamic game by looking at the normal form only. 
This is precisely one of the driving ideas behind the present paper, in which the con‑
cept of proper rationalizability, which is less restrictive than proper equilibrium, is 
linked to a concept for dynamic games that, in contrast to common belief in future 
rationality, takes into account a restricted version of rationality in the past. Also in 
contrast to strong belief in rationality, it makes players reason about the optimality 
of choices at every information set, even if an information set can only be reached 
by past choices that are suboptimal.

Another motivation for proposing a new reasoning concept is that common belief 
in future rationality only reasons about what can happen from a certain point in time 
onwards, without caring about how the game got to this instance. On the other hand, 
strong belief in rationality may impose no restrictions at information sets that can 
only be reached by irrational past choices. Our concept, in contrast, may impose 
restrictions even in such situations.

Indeed, if the game reaches a certain information h, the player that has to choose 
knows the game could reach such information set only if his opponents have previ‑
ously made choices that can reach h. Therefore, according to our concept, this player 
believes his opponents chose the most plausible among the choices that actually 
reach h. That is, he concentrates on those opponents’ strategies that reach h, that are 
optimal at all future information sets, and that are optimal at all past information sets 
among strategies that reach h.

The structure of the paper is as follows. In Sect.  2 we discuss a few exam‑
ples that highlight some properties of our new concept. In Sect.  3 we introduce 
dynamic games. In Sect.  4 we present the concept of proper rationalizability for 
the normal form of a dynamic game. In Sect.  5 we introduce the notion of com‑
mon belief in future and restricted past rationality for a dynamic game. In Sect. 6 
both of these rationalizability concepts are connected, by showing that the strate‑
gies that are proper rationalizable can also be chosen under common belief in future 
and restricted past rationality. In Sect. 7 we describe an algorithm and show that it 
yields precisely those strategies that can be chosen under common belief in future 
and restricted past rationality. Section 8 has some concluding remarks and Sect. 9 
contains all the proofs of this paper.

2  Examples

We present some examples that show some properties of the concept of common 
belief in future and restricted past rationality that differentiate it from previously 
known concepts for dynamic games.

The example in Fig. 1 has shown that common belief in future and restricted past 
rationality can be more restrictive than common belief in future rationality in terms 
of strategies. The example presented in Fig. 3 shows that it can also be more restric‑
tive in terms of outcomes.

Under common belief in future rationality, player 2 can rationally choose d or e, 
and hence player 1 can rationally choose a or c. Therefore, common belief in future 
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rationality allows for the outcomes (a, d), (a, e) and c. However, since a is better 
than b for player 1, common belief in future and restricted past rationality requires 
player 2 to believe at h1 that player 1 chose a. Therefore, player 2 must choose d and 
player 1 must choose a. Hence, common belief in future and restricted past rational‑
ity only allows for the outcome (a, d).

Moreover, it is not forward induction that is being used in the concept presented 
here. To see this, consider the game in Fig. 4, which is the Battle of the sexes with 
an “Outside” option.

Under forward induction, the only possible outcome is player 1 choosing a and 
player 2 choosing d, since player 2, on noticing the game has reached h1 reasons that 
player 1 must have chosen a since that is the only way player 1 can get more than by 
choosing c. Therefore, player 2 must choose d.

Under our concept however, the only choice that is eliminated is b for player 
1. That is because b is strictly dominated by c at ∅ . However, player 2 can still 
believe at h1 that player 1 chose b. Indeed, if player 1 believes that player 2 
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Fig. 3  An example where common belief in future and restricted past rationality is more restrictive, in 
terms of outcomes, than common belief in future rationality

1

∅

2, 2

2

h1

3, 1

0, 0

0, 0

1, 3

a

b

c

d

e

d

e

Fig. 4  Battle of the sexes with an “Outside” option
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chooses e, strategy b is better than a, and hence player 2 may believe at h1 that 
player 1 chose b. Consequently, player 2 may choose e under our concept, and 
player 1 may choose c. However, c is not the forward induction strategy for 
player 1.

Now, for the example shown in Fig.  5 it can be seen why in the definition 
for the concept presented here it is required for players to reason about every 
past information set and not just a few of the previous information sets. Note 
that a is better than b for player 1 at ∅ , and that f is better than g for player 1 
at h2 . Therefore, under our concept, player 2 must believe at h4 that the second 
node has been reached, so player 2 must choose � . To reach this conclusion, it is 
important that player 2 reasons about both ∅ and h2 . Reasoning only about ∅ , or 
reasoning only about h2 and h3 , would not be sufficient to draw this conclusion.
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Fig. 5  Game with more than one information set for each player
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3  Dynamic games

In this section we define the dynamic games we consider, and some general notions 
that will be used throughout the paper. In what follows we assume the players have 
perfect recall.

Definition 1 (Dynamic game) A dynamic game G is a tuple

where

• I is the finite set of players;
• Ci is the finite set of choices for each player i ∈ I;
• X is the set of non‑terminal histories, which are sequences of profiles of choices 

x = (x1,… , xk) , with xm = (ci)i∈Î ∈ ×i∈Î Ci for some non‑empty Î ⊆ I , and for 
all � < k , (x1,… , x

�
) is also a history. As Î may contain more than one player, 

simultaneous moves are allowed;
• Z is the set of terminal histories of the game. In this case, if z = (x1,… , xk) ∈ Z , 

then for every � < k , (x1,… , x
�
) ∈ X;

• Hi is a finite collection of information sets for player i. The information sets 
h ∈ Hi are non‑empty sets of non‑terminal histories. If h contains more than one 
history, then player i does not know with certainty which history was realized to 
arrive at h. The collections of information sets for each player are not necessar‑
ily disjoint since we allow for simultaneous moves, so the same information set 
might belong to two or more players at the same time. The collection of all infor‑
mation sets for all players in the game is denoted by H;

• Ci(h) ⊆ Ci is the finite set of choices available for player i at the information set 
h ∈ Hi . We say c ∈ Ci(h) if there is a history x ∈ X and xm = (cj)j∈Î such that 
x ∈ h , i ∈ Î , ci = c and (x, xm) = x� ∈ X ∪ Z ; and

• ui ∶ Z → ℝ is player i’s utility function.

As an example, for the game described in Fig. 1 we have a dynamic game in its 
extensive form. This two‑player game has the sets of histories X = {∅, (a), (b), (a, d)} 
and Z = {(c), (a, e), (b, d), (b, e), (a, d, f ), (a, d, g)} ; the collections of information 
sets H1 = {∅, h2} and H2 = {h1} , where h1 = {(a), (b)} and h2 = {(a, d)} ; and the 
sets of choices C1(∅) = {a, b, c} , C1(h2) = {f , g} , C2(h1) = {d, e}.

We define a partial order on the information sets of a game. An information set 
h′ immediately follows h, or h immediately precedes h′ , if there exist a non‑empty 
Î ⊆ I , ci ∈ Ci(h) for every i ∈ Î , and x ∈ h such that (x, (ci)i∈Î) ∈ h�.

An information set h′ weakly follows h, or h weakly precedes h′ , if h = h� or 
there is a sequence h0, h1, h2,… , h

�
 such that ht immediately follows ht−1 for 

t ∈ {1, 2,… ,�} , where h0 = h and h
�
= h� . If h ≠ h′ , we say h strictly precedes h′.

During the game, each player makes one or more choices, sometimes depend‑
ing on his previous choices or on the choices of other players. However, if a 

G = (I, (Ci)i∈I ,X, Z, (Hi)i∈I , (Ci(h))i∈I,h∈Hi
, (ui)i∈I),
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player’s choice prevents himself from making some other choices, there is no rea‑
son to make a plan that includes both the former choice and any of the latter 
ones. Therefore, we restrict ourselves to studying those plans that only prescribe 
choices at information sets that are reachable under the earlier choices: a “plan 
of action”, as described in Rubinstein (1991). These plans we will call strategies. 
We also identify those strategies that can potentially reach an information set.

Looking at the game shown in Fig. 1 the sets of strategies for each player are 
S1 = {(a, f ), (a, g), b, c} , and S2 = {d, e} . In classical game theory, other sequences 
such as (b, f) would also qualify as strategies, however, player 1 prevents himself 
from choosing f by choosing b at an earlier information set, rendering the choice 
f unnecessary.

Let h ∈ H , h� ∈ Hi , where h′ strictly precedes h. We say a choice ci ∈ Ci(h
�) 

leads to h if there exist x ∈ h� , Î ⊆ I with i ∈ Î , and cj ∈ Cj(h
�) for every j ∈ Î⧵{i} 

such that (x, (cj)j∈Î) weakly precedes h.
An information set h ∈ H is reachable via si ∶ H̃i → ∪h∈H̃i

Ci(h) , with H̃i ⊆ Hi , 
if at every information set h� ∈ H̃i that strictly precedes h, the choice si(h�) leads 
to h. We say si is a strategy if H̃i contains exactly those histories in Hi that are 
reachable via si . A strategy si leads to h ∈ H if h is reachable via si.

The set of strategies for player i is denoted by Si . The set of strategy combina‑
tions for the opponents of i is denoted by S−i = ×j≠i Sj . A strategy combination for 
all players is given by (si, s−i) where si ∈ Si and s−i ∈ S−i.

The set of strategies for player i that lead to h is denoted by Si(h) . In Example 
1, S1(h1) = {(a, f ), (a, g), b} , S1(h2) = {(a, f ), (a, g)} , S2(h2) = {d}.

The set of strategy combinations for the opponents of i that lead to h is denoted 
by S−i(h) . The set of information sets for player i that strategy si leads to is 
denoted by Hi(si).

Finally we identify those strategy combinations that reach a particular informa‑
tion set. Let (si, s−i) ∈ Si × S−i be a strategy combination for all players. We define 
H(si, s−i) as the class of information sets h such that si ∈ Si(h) and s−i ∈ S−i(h) . 
H(si, s−i) are the information sets that can be reached with the strategy combina‑
tion (si, s−i).

4  Proper rationalizability

To connect the rationalizability concepts in dynamic games with related ration‑
alizability concepts in normal form games, we also need to connect a dynamic 
game with a related game in its normal form.

Definition 2 (Normal form of a dynamic game) Let G be a dynamic game. 
The normal form of G is the game G� = (I, (Si)i∈I , (vi)i∈I) in which all players i 
choose simultaneously a strategy si ∈ Si , and each player i receives the utility 
vi(si, s−i) = ui(z(si, s−i)) where z(si, s−i) is the terminal history reached by (si, s−i).
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We define a structure called an epistemic model with types, which serves as a 
compact way to encode belief hierarchies, so we can derive the various levels of 
belief for each type in the epistemic model. Then we define strategy‑type combi‑
nations, which are the objects on which beliefs are constructed, and lexicographic 
beliefs.

A lexicographic belief bi for player i on a finite set A is a sequence (b1
i
;… ;bm

i
) 

where each bk
i
 is a probability distribution on A. The belief bk

i
 is called the level k of 

the lexicographic belief.

Definition 3 (Epistemic model for a normal form game) An epistemic model 
M = (Ti, bi)i∈I for a normal form game G� = (I, (Si)i∈I , (vi)i∈I) consists of a finite set 
of types Ti for each player i, and for each type ti ∈ Ti we define a lexicographic belief 
bi(ti) = (b1

i
(ti);… ;bm

i
(ti)) on S−i × T−i = ×k≠i(Sk × Tk) , which is the set of strategy‑

type combinations of i’s opponents.

To derive a lexicographic belief hierarchy for every type, consider a type ti and its 
lexicographic belief bi(ti) = (b1

i
(ti);… ;bm

i
(ti)).

For the first order of the lexicographic belief hierarchy of ti , we have that player i 
deems the strategies in the support of b1

i
(ti) infinitely more likely than the strategies 

that are in the support of b2
i
(ti) but not in the support of b1

i
(ti) ; and deems the strate‑

gies in the support of b2
i
(ti) infinitely more likely than the strategies that are in the 

support of b3
i
(ti) but not in the supports of b1

i
(ti) or b2

i
(ti) ; and so on.

On the second order of the lexicographic belief hierarchy of ti , we have that player 
i deems the lexicographic beliefs of each type that appears in b1

i
(ti) infinitely more 

likely than the lexicographic beliefs of each type that appears in b2
i
(ti) but didn’t 

appear in b1
i
(ti) ; and deems the lexicographic beliefs of each type that appears in 

b2
i
(ti) but didn’t appear in b1

i
(ti) infinitely more likely than the lexicographic beliefs 

of each type that appears in b3
i
(ti) but didn’t appear in a previous level; and so on. 

Continuing this way it is possible to obtain the full lexicographic belief hierarchy.
We say type tj is deemed possible by type ti for the lexicographic belief 

bi(ti) = (b1
i
(ti);… ;bm

i
(ti)) if there exists a strategy‑type combination 

(s−i, t−i) ∈ (Sj × {tj}) × ×k≠i,j(Sk × Tk) such that b�
i
(ti)(s−i, t−i) > 0 for some 

� ∈ {1,… ,m} . The set of types for player j deemed possible by bi(ti) is denoted by 
Tj(ti).

If positive probability is assigned to a strategy‑type combination in level � , ear‑
lier than another strategy‑type combination in a level k, with � < k , we say that the 
first combination is deemed infinitely more likely than the second one.

Definition 4 (Strategy-type combinations deemed infinitely more likely) Let 
bi(ti) = (b1

i
(ti);… , bm

i
(ti)) be a lexicographic belief for type ti for player i. We say 

ti deems a strategy‑type combination (s−i, t−i) infinitely more likely than (s�
−i
, t�
−i
) if 

there exists k ∈ {1,… ,m} such that 

1. for all � ≤ k , b�
i
(ti)(s

�
−i
, t�
−i
) = 0 ; and

2. bk
i
(ti)(s−i, t−i) > 0.
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We focus on a particular type of lexicographic beliefs, which are such that for 
every type combination for i’s opponents that is deemed possible in the belief, every 
strategy combination for i’s opponents must receive positive probability at some 
level k.

Definition 5 (Cautious lexicographic belief) Consider an epistemic model 
M = (Ti, bi)i∈I . Let bi(ti) = (b1

i
(ti);… ;bm

i
(ti)) be a lexicographic belief for type 

ti ∈ Ti for player i. We say bi(ti) is cautious if for each (s−i, t−i) ∈ ×j≠i(Sj × Tj(ti)) 
there is a k ∈ {1,… ,m} such that

In order to compare strategies for a player we define the expected utility for a 
given lexicographic belief. Note that it is defined by levels, and the comparison is 
made at the first level in which two strategies disagree in their expected utility.

Given a type ti for player i and a lexicographic belief bi(ti) = (b1
i
(ti);… ;bm

i
(ti)) we 

define the expected utility of choosing strategy si at level k as

A type ti with a lexicographic belief bi(ti) = (b1
i
(ti);… , bm

i
(ti)) for player i prefers 

strategy si to s′
i
 if there exists k ∈ {1,… ,m} such that 

1. for all � < k , v�
i
(si, bi(ti)) = v�

i
(s�

i
, bi(ti)) ; and

2. vk
i
(si, bi(ti)) > vk

i
(s�

i
, bi(ti)).

Given a lexicographic belief bi(ti) for type ti , a strategy si is optimal for ti if there is 
no other s�

i
∈ Si such that ti prefers s′

i
 to si.

Now we define the notion of rationalizability that will be used for normal form 
games: respect of preferences, due to Asheim (2001), which in turn defines the con‑
cept of proper rationalizability.

Definition 6 (Respect of preferences) Consider an epistemic model M = (Ti, bi)i∈I . 
Let bi(ti) = (b1

i
(ti);… ;bm

i
(ti)) be a lexicographic belief for type ti for player i. We say 

ti respects j’s preferences if for every type tj of player j deemed possible by ti , and 
strategies sj, s�j ∈ Sj such that tj prefers sj to s′

j
 , ti deems at least one strategy‑type 

combination in ×k∈I⧵{i,j}(Sk × Tk(ti)) × {(sj, tj)} infinitely more likely than every 
strategy‑type combination in ×k∈I⧵{i,j}(Sk × Tk(ti)) × {(s�

j
, tj)}.

We say ti respects the opponents’ preferences if ti respects j’s preferences for all 
j ∈ I⧵{i}.

Definition 7 (k‑fold and common full belief in caution) 

1. Type ti expresses 1‑fold full belief in caution if ti only deems possible opponents’ 
types that are cautious.

bk
i
(ti)(s−i, t−i) > 0.

vk
i
(si, bi(ti)) =

∑

(s−i,t−i)∈S−i×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i).
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2. For every k > 1 , type ti expresses k‑fold full belief in caution if ti only deems pos‑
sible opponents’ types that express (k − 1)‑fold full belief in caution.

3. Type ti expresses common full belief in caution if ti expresses k‑fold full belief in 
caution for all k ∈ ℕ.

In a similar way we can define k‑fold and common full belief in respect of 
preferences. Now we can define proper rationalizability, which was introduced 
by Schuhmacher (1999). However, in this section we use the characterization of 
this concept given by Asheim (2001) which uses lexicographic beliefs.

Definition 8 (Proper rationalizability) Type ti is properly rationalizable if ti is cau‑
tious, respects the opponents’ preferences and expresses common full belief in cau‑
tion and common full belief in respect of preferences.

A strategy si for player i is properly rationalizable if there exists an epistemic 
model M = (Ti, bi)i∈I and some type ti ∈ Ti such that ti is properly rationalizable, 
and strategy si is optimal for type ti.

For the game in Fig.  1, consider the epistemic model given in Table  1. 
The first level of belief b1(t1) is the Dirac measure that assigns probability 1 
to the strategy‑type pair (d, t2) , and the second level is the Dirac measure that 
assigns probability 1 to (e, t2) . Analogously the belief b2(t2) is also shorthand 
for a collection of Dirac measures. We shall check that each type is properly 
rationalizable.

Type t1 only deems possible type t2 , and the strategy‑type combinations (d, t2) 
and (e, t2) appear at some level of b1(t1) , so t1 is cautious. Similarly t2 only deems 
possible type t1 , and the strategy‑type combinations ((a, f ), t1) , ((a, g), t1) , (b, t1) 
and (c, t1) appear at some level of b2(t2) , so t2 is cautious.

Type t1 believes player 2 is of type t2 , which believes at the first level of b2(t2) 
that player 1 will choose c, and at the second level that player 1 will choose 
(a, f), in which case the order of preference for player 2 is d, then e, so t1 respects 
the opponent’s preferences.

Type t2 believes player 1 is of type t1 , which believes at the first level of b1(t1) 
that player 2 will choose d, in which case the order of preference for player 1 
is c, then (a,  f), followed by b and finally (a,  g), so t2 respects the opponent’s 
preferences.

Since all the types in the epistemic model are cautious and respect the oppo‑
nent’s preferences, all the types are properly rationalizable. For player 1, c is a 
strategy that is optimal for t1 , and for player 2, d is a strategy that is optimal for 
t2 . Therefore c and d are properly rationalizable.

Table 1  An epistemic model for the normal form of Fig. 1

T1 = {t1} , T2 = {t2}

b1(t1) = ((d, t2);(e, t2))

b2(t2) = ((c, t1);((a, f ), t1);(b, t1);((a, g), t1))
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5  Common belief in future and restricted past rationality

Now we turn to dynamic games, and we will define the concept of common belief 
in future and restricted past rationality. In Sect. 6 we will connect the concept to 
proper rationalizability of the normal form.

We first define an epistemic model for a dynamic game, which is rather similar 
to the definition for normal form games, except the beliefs depend on the infor‑
mation set.

Definition 9 (Epistemic model for a dynamic game) An epistemic model 
M̂ = (T̂i, 𝛽i)i∈I for a dynamic game G consists of a finite set of types T̂i for each player 
i, and for each type t̂i ∈ T̂i and each information set h ∈ Hi of player i we define a 
conditional belief 𝛽i(t̂i, h) which is a probability distribution over S−i(h) × T̂−i , the 
set of strategy‑type combinations of i’s opponents that lead to h ∈ Hi.

Given a type t̂i , an information set h for player i, and a conditional belief 
𝛽i(t̂i, h) we define the expected utility of choosing strategy si ∈ Si(h) as

where z(si, s−i) is the terminal history reached by (si, s−i).
Given a conditional belief 𝛽i(t̂i, h) for type t̂i at the information set h, a strategy 

si ∈ Si(h) is optimal for t̂i at h if for all s�
i
∈ Si(h)

Now we define the key conditions that will be used: belief in future rationality as has 
been defined in Perea (2014), Bayesian updating, and a new notion that we propose, 
which requires players to think about the past rationality of the opponents, insofar 
as it concerns the strategies that reach the information set at which the player is. We 
define all three notions separately, then we define common belief in future rational‑
ity and common belief in restricted past rationality in an iterative way, to combine 
them into one concept that refines common belief in future rationality.

We should point out that in Definitions 10 and 13 we allow for information sets 
that weakly follow or precede another. That is because it is possible for the same 
information set to belong to two or more players with our definition of a dynamic 
game, as we allow for simultaneous moves.

Definition 10 (Belief in the opponents’ future rationality) We say that a type t̂i 
believes in j’s future rationality if at every h ∈ Hi , 𝛽i(t̂i, h)(sj, t̂j) > 0 only if for every 
h� ∈ Hj(sj) that weakly follows h:

for every s�
j
∈ Sj(h

�).

ui(si, 𝛽i(t̂i, h)) =
∑

(s−i,t̂−i)∈S−i×T̂−i

𝛽i(t̂i, h)(s−i, t̂−i)ui(z(si, s−i)),

ui(si, 𝛽i(t̂i, h)) ≥ ui(s
�
i
, 𝛽i(t̂i, h)).

uj(sj, 𝛽j(t̂j, h
�)) ≥ uj(s

�
j
, 𝛽j(t̂j, h

�))
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Type t̂i believes in the opponents’ future rationality if t̂i believes in j’s future 
rationality for all players j ∈ I⧵{i}.

Definition 11 (k‑fold and common belief in future rationality) 

1. Type t̂i expresses 1‑fold belief in future rationality if t̂i believes in the opponents’ 
future rationality.

2. For every k > 1 , type t̂i expresses k‑fold belief in future rationality if at every 
information set h ∈ Hi , t̂i only assigns positive probability to opponents’ types 
that express (k − 1)‑fold belief in future rationality.

3. Type t̂i expresses common belief in future rationality if t̂i expresses k‑fold belief 
in future rationality for every k ∈ ℕ.

Definition 12 (Bayesian updating) A type t̂i satisfies Bayesian updating if for every 
h, h� ∈ Hi such that h′ follows h and 𝛽i(t̂i, h)(S−i(h�) × T̂−i) > 0 , it holds that

for every strategy‑type combination (s−i, t̂−i) ∈ S−i(h
�) × T̂−i of player i’s opponents.

Definition 13 (Belief in the opponents’ restricted past rationality) We say that a type 
t̂i believes in j’s restricted past rationality if at every h ∈ Hi , 𝛽i(t̂i, h)(sj, t̂j) > 0 only if 
for every h� ∈ Hj(sj) such that h′ weakly precedes h:

for every s�
j
∈ Sj(h) ∩ Sj(h

�).
Type t̂i believes in the opponents’ restricted past rationality if t̂i believes in j’s 

restricted past rationality for all players j ∈ I⧵{i}.

The previous definition establishes that type t̂i must reason at h about those 
strategies of his opponents that can be chosen at a previous information set h′ , but 
only if those strategies can reach the information set h too. That is, i considers at 
h only those strategies at h′ that give the highest utility to the opponent at h′ from 
those strategies that actually reach h.

We can define k‑fold and common belief in restricted past rationality, and 
k‑fold and common belief in Bayesian updating in an analogous way to the defini‑
tion of k‑fold and common belief in future rationality.

A strategy si for player i can rationally be chosen under common belief in 
future and restricted past rationality and common belief in Bayesian updating if 
there exists an epistemic model M̂ = (T̂i, 𝛽i)i∈I and some type t̂i ∈ T̂i such that t̂i 
expresses common belief in future and restricted past rationality and common 
belief in Bayesian updating, and strategy si is optimal for type t̂i at every informa‑
tion set h ∈ Hi(si).

𝛽i(t̂i, h
�)(s−i, t̂−i) =

𝛽i(t̂i, h)(s−i, t̂−i)

𝛽i(t̂i, h)(S−i(h
�) × T̂−i)

uj(sj, 𝛽j(t̂j, h
�)) ≥ uj(s

�
j
, 𝛽j(t̂j, h

�))
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Returning to the example shown in Fig. 1, consider the epistemic model given in 
Table 2, for which we check that every type expresses common belief in future and 
restricted past rationality and satisfies Bayesian updating.

At ∅ ∈ H1 , t̂1 believes that player 2 chooses d and is of type t̂2 . Type t̂2 believes 
at h1 , which weakly follows ∅ , that player 1 chooses (a, f), so the optimal strategy in 
S2(h1) = {d, e} for player 2 is d. Therefore t̂1 believes in the opponent’s future ration‑
ality at ∅ . Since there are no information sets for player 2 that weakly precede ∅ , t̂1 
believes in the opponent’s restricted past rationality at ∅.

At h2 ∈ H1 there are no information sets for player 2 that weakly follow h2 , so 
t̂1 believes in the opponent’s future rationality at h2 . Now, type t̂1 believes at h2 
that player 2 chooses d and is of type t2 ; in fact S2(h1) ∩ S2(h2) = {d} . Therefore 
t̂1 believes in the opponent’s restricted past rationality at h2 . Moreover, t̂1 satisfies 
Bayesian updating if the game moves from ∅ to h2.

At h1 ∈ H2 , t̂2 believes that player 1 chooses (a,  f) and is of type t̂1 . Type t̂1 
believes at h2 , which weakly follows h1 , that player 2 chooses d at h1 , so the optimal 
strategy in S1(h2) for player 1 is (a, f). Therefore t̂2 believes in the opponent’s future 
rationality. Type t̂1 believes at ∅ , which weakly precedes h1 , that player 2 chooses 
d at h1 , so the optimal strategy in S1(∅) ∩ S1(h1) = {(a, f ), (a, g), b} for player 1 is 
(a, f). Therefore t̂2 believes in the opponent’s restricted past rationality. Finally it can 
easily be seen that t̂2 satisfies Bayesian updating, as h1 is player 2’s only information 
set. We can see that among all strategies in S1(∅) , (a, f) is not optimal for t̂1 at ∅ , as 
c gives a higher utility.

Since all the types in the epistemic model believe in the opponent’s future and 
restricted past rationality and satisfy Bayesian updating, then all the types express 
common belief in future and restricted past rationality and common belief in Bayes‑
ian updating. For player 1, c is optimal for type t̂1 at information set ∅ , and for player 
2, d is optimal for type t̂2 at information set h1 . Therefore c and d can rationally be 
chosen under common belief in future and restricted past rationality and common 
belief in Bayesian updating.

6  Connection with proper rationalizability

In this section we prove one of our main theorems, which states that proper ration‑
alizability of a strategy in the normal form implies optimality of the same strategy 
under common belief in future and restricted past rationality with Bayesian updating 
in the dynamic game.

Table 2  An epistemic model for the dynamic form of Fig. 1

T̂1 = {t̂1} , T̂2 = {t̂2}

𝛽1(t̂1,∅) = (d, t̂2)

𝛽1(t̂1, h2) = (d, t̂2)

𝛽2(t̂2, h1) = ((a, f ), t̂1)
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In order to do so, we break down the proof into four smaller parts. We start by 
showing that optimality of a strategy for a cautious type in the normal form of the 
game implies optimality of the same strategy for the induced type in the dynamic 
game. Then we go on to show that respect of the opponent’s preferences in the 
normal form implies belief in the opponent’s future and restricted past rationality 
and Bayesian updating in the dynamic game. As a consequence, proper rational‑
izability in the normal form implies common belief in future and restricted past 
rationality and common belief in Bayesian updating in the dynamic game. This 
finally implies that every strategy which is properly rationalizable in the normal 
form can rationally be chosen under common belief in future and restricted past 
rationality with Bayesian updating in the dynamic game.

Theorem 1 Consider a dynamic game G. If a strategy si is properly rationalizable 
in the normal form of G, then si can rationally be chosen under common belief in 
future and restricted past rationality and common belief in Bayesian updating in the 
dynamic game G.

This result has a connection with van Damme (1984), who showed that every 
proper equilibrium in the normal form of a game implies a quasi‑perfect equi‑
librium in the dynamic game, which in turn implies a sequential equilibrium in 
the dynamic game. The non‑equilibrium analogue for proper equilibria is proper 
rationalizability. Moreover, every sequential equilibrium is a subgame perfect 
equilibrium, which, as shown by Perea and Predtetchinski (2019), is the equilib‑
rium counterpart of common belief in future rationality in the case of two‑player 
games. In this way, our theorem may be viewed as a non‑equilibrium analogue to 
van Damme’s result.

As a first step to establishing Theorem 1, we define a way to transform an epis‑
temic model of the normal form into an epistemic model for the dynamic game.

Let M = (Ti, bi)i∈I be an epistemic model for the normal form of the game 
where every type ti ∈ Ti is cautious for all i ∈ I . We define the induced epistemic 
model for the dynamic game M̂ = (T̂i, 𝛽i)i∈I in the following way: for each player 
i take the bijective mapping fi ∶ Ti → T̂i , effectively a renaming of the types, and 
let the conditional belief of type fi(ti) at the information set h ∈ Hi be defined as

where k is the smallest number for which bk
i
(ti)(S−i(h) × T−i) > 0 . Here,

that is, we take the first level k of the lexicographic belief for ti in which there is 
at least one strategy combination for i’s opponents that reaches h, and normalize 
the probabilities accordingly. By doing this, the conditional beliefs of the types are 
such that the types for the dynamic game satisfy Bayesian updating. Although some 

�i(fi(ti), h)(s−i, f−i(t−i)) =
bk
i
(ti)(s−i, t−i)

bk
i
(ti)(S−i(h) × T−i)

,

bk
i
(ti)(S−i(h) × T−i) =

∑

(s−i,t−i)∈S−i(h)×T−i

bk
i
(s−i, t−i),
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information that could be useful for tie‑breaking is lost when constructing the condi‑
tional beliefs for the dynamic game, such information is not required for our model.

To illustrate how to transform cautious lexicographic beliefs into conditional 
beliefs, we consider the game from Fig. 1. Suppose the epistemic model for its nor‑
mal form is the one in Table 3, then the epistemic model induced for the dynamic 
game is the one in Table 4.

Now that we have a way to relate epistemic models of the normal form with those 
of the dynamic game, we will see how the rationalizability concepts relate to each 
other. First we show that optimality of a strategy for a cautious type in the normal 
form of the game implies optimality of the same strategy for the induced type in the 
dynamic game. This is presented in the following lemma.

Lemma 1 Let M be an epistemic model of the normal form in which all types are 
cautious, h ∈ Hi , h′ an information set that weakly follows or weakly precedes h, and 
ti a type for player i in M. If si ∈ Si(h) ∩ Si(h

�) is not optimal for fi(ti) among strate-
gies in Si(h) ∩ Si(h

�) at h ∈ Hi , then there exists ŝi ∈ Si(h) ∩ Si(h
�) such that ti prefers 

ŝi to si.1

The optimality implication described above will be very useful to show the rela‑
tions between the rationalizability concepts that we are studying. The next step is to 

Table 3  An epistemic model for the normal form

T1 = {t1, t
�
1
} , T2 = {t2, t

�
2
}

b1(t1) = ((d, t2);(e, t2))

b1(t
�
1
) = (

1

4
(d, t�

2
) +

3

4
(e, t�

2
))

b2(t2) = ((c, t�
1
);((a, f ), t�

1
);(b, t�

1
);((a, g), t�

1
)))

b2(t
�
2
) = (

1

4
(c, t1) +

1

4
(b, t1) +

1

2
((a, f ), t1);((a, g), t1))

Table 4  The epistemic model of the dynamic game induced by Table 3

T̂1 = {t̂1, t̂
�
1
} , T̂2 = {t̂2, t̂

�
2
}

𝛽1(t̂1,∅) = (d, t̂2)

𝛽1(t̂1, h2) = (d, t̂2)

𝛽1(t̂
�
1
,∅) = (

1

4
(d, t̂�

2
) +

3

4
(e, t̂�

2
))

𝛽1(t̂
�
1
, h2) = ((d, t̂�

2
))

𝛽2(t̂2, h1) = ((a, f ), t̂�
1
)

𝛽2(t̂
�
2
, h1) = (

1

3
(b, t̂1) +

2

3
((a, f ), t̂1))

1 For our purposes, we only require that h′ is an information set for player j ≠ i . Yet the lemma still 
holds when h′ is an information set for player i.
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show that respect of preferences in the normal form of the game implies belief in 
future and restricted past rationality.

Lemma 2 If ti respects player j’s preferences, then fi(ti) believes in j ’s future and 
restricted past rationality and fi(ti) satisfies Bayesian updating.

And also, the notion of proper rationalizability implies common belief in future 
and restricted past rationality.

Lemma 3 If ti is properly rationalizable, then fi(ti) expresses common belief in future 
and restricted past rationality and common belief in Bayesian updating.

Since we know that for every normal form game there exists at least one properly 
rationalizable type for every player (cf. Asheim 2001; Perea 2012), then Lemma 3 
implies the following result.

Corollary 1 For every dynamic game G there exists for every player i an epistemic 
model M and a type t̂i in it that expresses common belief in future and restricted past 
rationality and common belief in Bayesian updating.

Once we have all of these results, Lemmas 1 and 3 imply Theorem  1. There‑
fore, if we transform a dynamic game into its normal form and proceed to find an 
epistemic model in which the types express proper rationalizability, we can find an 
induced epistemic model for the dynamic game in which the types express com‑
mon belief in future and restricted past rationality and common belief in Bayesian 
updating. Moreover, from Theorem 1 we have that the strategies that can be chosen 
under proper rationalizability can also be chosen under common belief in future and 
restricted past rationality and common belief in Bayesian updating.

We can check that the epistemic model in Table 2 is induced by the epistemic 
model in Table 1 via the transformation described before, and we have seen that all 
types in Table 1 are properly rationalizable. Since strategy c is optimal for type t1 
and strategy d is optimal for type t2 , both strategies can rationally be chosen under 
common belief in future and restricted past rationality and common belief in Bayes‑
ian updating according to Theorem 1.

As we can see, at information sets ∅ and h2 , type t1 of player 1 believes type t2 
of player 2 will be and has been rational. However, if the game reaches information 
set h1 , then this means that player 1 was not rational before. Nevertheless, player 2 
believes that if h1 was reached, then player 1 is choosing optimally among strategies 
that lead to h1 . Therefore, type t2 believes that player 1 will choose (a,  f). Hence, 
player 2 can only rationally choose d under common belief in future and restricted 
past rationality and common belief in Bayesian updating.

Under common strong belief in rationality, if player 2 sees that h1 has been 
reached, then, if possible, he must believe that player 1 made a choice that is rational 
at ∅ . But choosing c at ∅ gives the highest utility for player 1, so it is not possible 
for player 2 to believe that player 1 made a rational choice under common strong 
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belief in rationality. Therefore, player 2 can believe player 1 chose any strategy that 
leads to h1 , so both d and e can rationally be chosen at h1 under common strong 
belief in rationality.

Under common belief in future rationality, if player 2 sees that h1 was reached, 
then he may believe that player 1 chose irrationally at ∅ , but he must believe that 
from now on, player 1 will choose rationally. Therefore, player 2 can believe player 
1 chose a or b at ∅ , so both d and e can rationally be chosen under common belief in 
future rationality.

7  Algorithm

In this section, whenever we say common belief in future and restricted past ration‑
ality, we actually mean common belief in future and restricted past rationality and 
common belief in Bayesian updating. Hence, we always assume common belief in 
Bayesian updating.

In order to find the strategies that can rationally be chosen under common belief 
in future and restricted past rationality, we propose an algorithm based on the back‑
ward dominance procedure in Perea (2014). Then we show that the strategies that 
survive the algorithm are exactly those strategies that can be chosen under common 
belief in future and restricted past rationality.

As can be seen from the proof in Sect. 9, the algorithm also characterizes those 
strategies that can be chosen under common belief in future and restricted past 
rationality without requiring (common belief in) Bayesian updating. Hence, for the 
strategies that can rationally be chosen it is not relevant whether we require Bayes‑
ian updating or not.

Definition 14 (Full and reduced decision problems at an information set) Let 
h ∈ Hi be an information set for player i. The pair Γ0

i
(h) = (S0

i
(h), Ŝ0

−i
(h)) is called 

the full decision problem for player i at h, where S0
i
(h) = Si(h) and Ŝ0

−i
(h) = S−i(h) . 

A pair Γk
i
(h) = (Sk

i
(h), Ŝk

−i
(h)) is a reduced decision problem for player i at h, with 

Sk
i
(h) ⊆ S0

i
(h) and Ŝk

−i
(h) ⊆ Ŝ0

−i
(h).

Definition 15 (Strict dominance by a randomization) Let h ∈ Hi be an information 
set for player i, and Γk

i
(h) = (Sk

i
(h), Ŝk

−i
(h)) be a reduced decision problem for player 

i at h. A strategy si ∈ Sk
i
(h) is strictly dominated on Ŝk

−i
(h) by a randomization on 

Ai ⊆ Si(h) if there is �i ∈ Δ(Ai) such that

for all s−i ∈ Ŝk
−i
(h).

Algorithm  1 Set S0
i
(h) = Si(h) and Ŝ0

−i
(h) = S−i(h) for all i ∈ I and all h ∈ Hi . For 

every k ≥ 1 we have:
Step k: For every player i and every information set h ∈ Hi , we define

∑

s�
i
∈Ai

𝜌i(s
�
i
)ui(z(s

�
i
, s−i)) > ui(z(si, s−i))
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The algorithm ends after K steps if SK+1
i

(h) = SK
i
(h) and ŜK+1

−i
(h) = ŜK

−i
(h) for every 

i ∈ I and every h ∈ Hi.

Now we have the following result showing that the algorithm identifies the strat‑
egies that can be chosen under k‑fold belief in future and restricted past rational‑
ity, and those that can be chosen under common belief in future and restricted past 
rationality.

Theorem 2 For every k ≥ 1 the strategies that can rationally be chosen by a type 
that expresses up to k‑fold belief in future and restricted past rationality and up to 
k‑fold belief in Bayesian updating are exactly the strategies si such that si ∈ Sk+1

i
(h) 

for all h ∈ Hi(si) , surviving the first k + 1 steps of the algorithm.

The strategies that can rationally be chosen by a type that expresses common 
belief in future and restricted past rationality and common belief in Bayesian updat-
ing are exactly the strategies that survive the full algorithm, that is, the strategies si 
such that si ∈ Sk

i
(h) for all k ≥ 1 and all h ∈ Hi(si).

To illustrate the algorithm, we use the game from Fig.  1. We have that 
H1 = {∅, h2} and H2 = {h1} and the initial sets of strategies:

After the first step is applied, we obtain the following reduced decision problems:

Observe that at ∅ , b is strictly dominated by (a, f ) ∈ S0
1
(h1) ∩ S0

1
(∅) . We also have 

that at h2 , (a, g) is strictly dominated by (a, f ) ∈ S0
1
(h2) . Therefore the only strategy 

that remains in Ŝ1
−2
(h1) is (a, f).

At the second iteration of the algorithm we obtain:

Sk
i
(h) = {si ∈ Sk−1

i
(h) ∣ si is not strictly dominated on Ŝk−1

−i
(h)

by a randomization on Si(h)},

Ŝk
−i
(h) = {(sj)j≠i ∈ Ŝk−1

−i
(h) ∣ for all j ≠ i, sj is not strictly dominated

on Ŝk−1
−j

(h�) by a randomization on Sj(h
�)

for every h� ∈ Hj(sj) weakly following h,

and sj is not strictly dominated on Ŝk−1
−j

(h��)

by a randomization on Sj(h) ∩ Sj(h
��)

for every h�� ∈ Hj(sj) weakly preceding h}.

S0
1
(∅) = {(a, f ), (a, g), b, c}, Ŝ0

−1
(∅) = {d, e},

S0
2
(h1) = {d, e}, Ŝ0

−2
(h1) = {(a, f ), (a, g), b},

S0
1
(h2) = {(a, f ), (a, g)}, Ŝ0

−1
(h2) = {d}.

S1
1
(∅) = {c}, Ŝ1

−1
(∅) = {d, e},

S1
2
(h1) = {d, e}, Ŝ1

−2
(h1) = {(a, f )},

S1
1
(h2) = {(a, f )}, Ŝ1

−1
(h2) = {d}.
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We see that at h1 , e is strictly dominated on Ŝ1
−2
(h1) by d, so the only strategy in 

Ŝ2
−1
(∅) and S2

2
(h1) is d.

Since all the sets are singletons, the algorithm stops. Therefore the surviving 
strategies are c for player 1 and d for player 2, which are exactly the strategies that 
we found in Sect. 5 as those that can be chosen under common belief in future and 
restricted past rationality.

8  Concluding remarks

A new reasoning concept for dynamic games was introduced, which not only 
assumes rationality of the opponents in the future, but also assumes players rea‑
son about what happened in the past in the following way: if the game reaches an 
information set, players should consider only those strategies that actually reach 
that information set and believe that the opponent has chosen rationally in the past 
among that restricted set of strategies. In this way, players are reasoning at every 
information set about the past, but only a restricted part of it. We have also presented 
the fact that common belief in future and restricted past rationality can be obtained 
from using proper rationalizability in the normal form of the dynamic game, con‑
necting these two concepts. Additionally, it was possible to define a procedure that 
starts from the decision problems in the dynamic game, and using strict dominance, 
selects the strategies that can be chosen under common belief in future and restricted 
past rationality.

An interesting continuation could involve the study of the robustness of the con‑
cept presented here to inessential transformations of the dynamic game as defined 
in Thompson (1952) and Kohlberg and Mertens (1986). For a quick glance, we can 
see that in Example 1 it is possible to transform the game by first allowing player 1 
to choose between “c” and “not c”. If player 1 chooses not c then he has the chance 
to choose between a and b. It is even possible to switch around the order in which 
decisions are taken after not c as in Fig. 6, and in spite of that, we obtain the same 
prediction to the game under common belief in future and restricted past rational‑
ity, whereas concepts such as common belief in future rationality would fail to stay 
indifferent under these transformations.

We can see that in the original game player 1 can choose c, whereas player 2 
can choose both d and e under common belief in future rationality. However, in 
the modified game player 1 can choose c, while player 2 can only choose d under 
common belief in future rationality, since player 2 must believe at h1 that player 
1 will rationally choose a and f in the future. Under common belief in future and 
restricted past rationality, in the modified game we also get that player 1 must 
choose c and player 2 must choose d. It would require some further analysis but 

S2
1
(∅) = {c}, Ŝ2

−1
(∅) = {d},

S2
2
(h1) = {d}, Ŝ2

−2
(h1) = {(a, f )},

S2
1
(h2) = {(a, f )}, Ŝ2

−1
(h2) = {d}.
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from this example we can see common belief in future and restricted past ration‑
ality appears to be more robust to inessential transformations than common belief 
in future rationality.

Some more future research could include the application of this concept to 
other classes of games such as infinite games, repeated games and stochastic 
games, as well as finding an algorithm in each case that finds the choices that can 
be made under common belief in future and restricted past rationality.

Another problem that could be investigated in future work is whether we 
can find an equilibrium analogue to common belief in future and restricted past 
rationality, and how it would relate to existing equilibrium concepts for dynamic 
games. Such a search for an equilibrium analogue could be based on Perea and 
Predtetchinski (2019) who have shown that for two‑player stochastic dynamic 
games with perfect information, subgame perfect equilibrium is equivalent to 
common belief in future rationality with a correct beliefs assumption. Since play‑
ers have perfect information, the addition of restricted past rationality does not 
affect the result, so a natural extension would be to study the case of dynamic 
games with imperfect information.

Chen and Micali (2013) and Perea (2017) have proven that for finite dynamic 
games, the outcomes obtained under common strong belief in rationality are also 
reachable under common belief in future rationality, proving that common strong 
belief in rationality is a more restrictive concept in terms of outcomes. It would 
be interesting to study the relation in terms of outcomes of the concept of com‑
mon strong belief in rationality and common belief in future and restricted past 
rationality.

1

2

h1

3, 3

1

h3

1

h2

1, 0

2, 1

1, 1

2, 2

0, 0

not c

c

d

e

a

b

a

b

f

g

Fig. 6  Modification of the dynamic game
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9  Proofs

9.1  Proofs for Section 5

Proof (Lemma 1) Let si ∈ Si(h) ∩ Si(h
�) be a suboptimal choice for fi(ti) among 

strategies in Si(h) ∩ Si(h
�) at h. Then there is at least one s�

i
∈ Si(h) ∩ Si(h

�) such that

Define ŝi as

First we show that ŝi ∈ Si(h) ∩ Si(h
�).

Since si ∈ Si(h) , there is s−i ∈ S−i(h) such that (si, s−i) reaches h. Then at every 
h�� ∈ H(si, s−i) such that h follows h′′ , we have ŝi(h��) = si(h

��) . Hence h ∈ H(ŝi, s−i) 
and ŝi ∈ Si(h).

To show that ŝi ∈ Si(h
�) we distinguish two cases: whether h′ weakly precedes h 

or h′ weakly follows h.
If h′ weakly precedes h, then ŝi ∈ Si(h

�) since ŝi ∈ Si(h).
Assume now that h′ weakly follows h. Since s�

i
∈ Si(h

�) , there is s−i ∈ S−i(h
�) such 

that (s�
i
, s−i) reaches h′ . Then at every h�� ∈ H(s�

i
, s−i) weakly following h and weakly 

followed by h′ we have by definition ŝi(h��) = s�
i
(h��) , and at every h�� ∈ H(s�

i
, s−i) 

such that h follows h′′ we know that ŝi(h��) = si(h
��) . But by perfect recall of player 

i, there exists a unique choice c∗
i
(h��) at the information set h′′ such that h can be 

reached. Since both si, s�i ∈ Si(h) , both strategies must choose c∗
i
(h��) . Therefore 

si(h
��) = s�

i
(h��) for all h′′ such that h follows h′′.

Hence, ŝi(h��) = s�
i
(h��) at every h�� ∈ H(s�

i
, s−i) such that h weakly follows h′′ . 

Since we have seen that ŝi(h��) = s�
i
(h��) for all h�� ∈ H(s�

i
, s−i) weakly following h 

and weakly preceding h′ , the strategy combination (ŝi, s−i) reaches h′ , and ŝi ∈ Si(h
�).

By the two results above, we have that ŝi ∈ Si(h) ∩ Si(h
�).

Now we will show that ti prefers ŝi to si . Let bi(ti) = (b1
i
(ti);b

2
i
(ti);… ;bm

i
(ti)) be 

the cautious lexicographic belief for type ti . Let k be the smallest number such that 
bk
i
(ti)(S−i(h) × T−i) > 0.
For � < k , b�

i
(ti)(S−i(h)) = 0 . Hence by (1a):

for all � < k . Moreover

ui(s
�
i
, 𝛽i(fi(ti), h)) > ui(si, 𝛽i(fi(ti), h)). (∗)

(1a)ŝi(h
��) = si(h

��) for all h�� ∈ Hi(si) if h
�� does not weakly follow h,

(1b)ŝi(h
��) = s�

i
(h��) for all h�� ∈ Hi(s

�
i
) if h�� weakly follows h.

v�
i
(ŝi, bi(ti)) = v�

i
(si, bi(ti))
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where (1a) and (1b) have been used in the third equality, and the inequality is 
obtained using ( ∗ ) and the fact that bk

i
(ti)(S−i(h) × T−i) > 0 . Hence we have the result 

we wanted to prove.   ◻

Proof (Lemma 2) First we prove that respect of preferences implies belief in future 
rationality.

Let h ∈ Hi . Suppose fi(ti) does not believe at h in player j’s future rationality. 
Then

for some sj ∈ Sj(h
�) that is a suboptimal strategy for fj(tj) at some h′ that weakly fol‑

lows h.
By Lemma 1 there exists ŝj ∈ Sj(h) ∩ Sj(h

�) such that tj prefers ŝj to sj . By the 
hypothesis, ti respects j’s preferences, so it must deem (ŝj, tj) infinitely more likely 

vk
i
(ŝi, bi(ti)) =

∑

(s−i,t−i)∈S−i×T−i

bk
i
(ti)(s−i, t−i)vi(ŝi, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bk
i
(ti)(s−i, t−i)vi(ŝi, s−i)

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(ŝi, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bk
i
(ti)(s−i, t−i)vi(s

�
i
, s−i)

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

= bk
i
(ti)(S−i(h) × T−i)

×
∑

(s−i,t−i)∈S−i(h)×T−i

𝛽i(fi(ti), h)(s−i, f−i(t−i))ui(z(s
�
i
, s−i))

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

= bk
i
(ti)(S−i(h) × T−i)ui(s

�
i
, 𝛽i(fi(ti), h))

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

> bk
i
(ti)(S−i(h) × T−i)ui(si, 𝛽i(fi(ti), h))

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

=
∑

(s−i,t−i)∈S−i(h)×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

+
∑

(s−i,t−i)∈(S−i⧵S−i(h))×T−i

bk
i
(ti)(s−i, t−i)vi(si, s−i)

= vk
i
(si, bi(ti)),

𝛽i(fi(ti), h)(sj, fj(tj)) > 0
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than (sj, tj) . Hence, there is some k such that bk
i
(ti)(ŝj, tj) > 0 and bm

i
(ti)(sj, tj) = 0 for 

all m ≤ k . Since ŝj ∈ Sj(h) , this implies that

by construction of the conditional belief at h. But this is a contradiction. Therefore, 
fi(ti) believes at h in player j’s future rationality for all h ∈ Hi.

Now we prove with a similar argument that respect of preferences implies belief 
in restricted past rationality.

Let h ∈ Hi . Suppose fi(ti) does not believe at h in player j’s restricted past ration‑
ality. Then

for some sj ∈ Sj(h) ∩ Sj(h
��) that is a suboptimal strategy for fj(tj) among strat‑

egies in Sj(h) ∩ Sj(h
��) at h′′ that weakly precedes h. By Lemma 1 there exists 

ŝj ∈ Sj(h) ∩ Sj(h
��) such that tj prefers ŝj to sj . By the hypothesis, ti respects j’s prefer‑

ences, so it must deem (ŝj, tj) infinitely more likely than (sj, tj) . Since ŝj ∈ Sj(h) , then 
by construction of the conditional belief at h

by an analogous argument as above, which is a contradiction. Therefore fi(ti) 
believes at h in player j’s restricted past rationality. Finally, by construction, fi(ti) 
satisfies Bayesian updating.   ◻

We define the set T∗(ti) as the set of types in ti ’s belief hierarchy in the normal 
form, that is, T∗(ti) is the smallest set with the property that ti ∈ T∗(ti) , and for 
every tj ∈ T∗(ti) , if tj deems possible tk , then tk ∈ T∗(ti).

Similarly we define T̂∗(t̂i) as the set of types in t̂i ’s belief hierarchy in the 
dynamic form. More precisely, T̂∗(t̂i) is the smallest set such that t̂i ∈ T̂∗(t̂i) and 
for every t̂j ∈ T̂∗(t̂i) , if 𝛽j(t̂j, h)(sk, t̂k) > 0 for some h ∈ Hj , then t̂k ∈ T̂∗(t̂i).

Proof (Lemma 3) Let ti ∈ Ti and construct the set T∗(ti) . Since ti is properly rational‑
izable, every type in T∗(ti) is cautious and respects the opponents’ preferences.

By construction, every type in T∗(ti) induces a type in T̂∗(fi(ti)) . It then follows, 
by Lemma 2, that all types in T̂∗(fi(ti)) believe in the opponents’ future and restricted 
past rationality and believe the opponents satisfy Bayesian updating.

Then by definition, since all of the types in T̂∗(fi(ti)) only refer to types in 
T̂∗(fi(ti)) , all express common belief in future and restricted past rationality and 
common belief in Bayesian updating.

Hence, in particular, fi(ti) expresses common belief in future and restricted past 
rationality and common belief in Bayesian updating.   ◻

Proof (Theorem  1) Since si is properly rationalizable, there is a type ti that is 
properly rationalizable such that si is optimal for ti . By Lemma 3, fi(ti) expresses 

�i(fi(ti), h)(sj, fj(tj)) = 0.

𝛽i(fi(ti), h)(sj, fj(tj)) > 0

�i(fi(ti), h)(sj, fj(tj)) = 0
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common belief in future and restricted past rationality and common belief in Bayes‑
ian updating.

Now we show that si is also optimal for type fi(ti) at every information set 
h ∈ Hi(si).

Suppose that si is suboptimal for fi(ti) at information set h. By Lemma 1, choos‑
ing h� = h , there is a strategy ŝi ∈ Si(h) such that ti prefers ŝi to si . Then si is not an 
optimal strategy for ti , which is a contradiction.   ◻

9.2  Proofs for Section 6

Before we prove Theorem  2 we require some auxiliary results, and the construc‑
tion of an epistemic model according to the algorithm, which will have the desired 
properties.

We state the following result, first proved in Pearce (1984) for games with two 
players. A general proof can be found in Perea (2012).

Theorem  3 (Pearce’s lemma) Consider a reduced decision problem 
Γk
i
(h) = (Sk

i
(h), Ŝk

−i
(h)) , Ai ⊆ Sk

i
(h) and si ∈ Ai . Then si is optimal among strategies 

in Ai for some belief bi ∈ Δ(Ŝk
−i
(h)) if and only if si is not strictly dominated on Ŝk

−i
(h) 

by a randomization on Ai.

For i ∈ I , h ∈ Hi and k ≥ 1 let Bk
−i
(h) be the set of opponents’ strategy combina‑

tions (sj)j≠i ∈ S−i(h) such that there is some type ti expressing up to k‑fold belief in 
future and restricted past rationality that at h assigns positive probability to (sj)j≠i.

Lemma 4 For every player i ∈ I , every information set h ∈ Hi and every k ≥ 1 we 
have that Bk

−i
(h) ⊆ Ŝk

−i
(h).

Proof We prove this statement by induction on k.
Let k = 1 . Consider a player i ∈ I , an information set h ∈ Hi and let s−i ∈ B1

−i
(h) . 

Then there is a type ti expressing up to 1‑fold belief in future and restricted past 
rationality such that ti assigns positive probability to s−i at h.

Now consider an opponent j ≠ i . Since ti believes in j’s future and restricted 
past rationality, then for every h� ∈ Hj(sj) weakly following h we can find a condi‑
tional belief �j(tj, h�) for which sj is optimal among strategies in Sj(h�) , and for every 
h�� ∈ Hj(sj) weakly preceding h we can find a conditional belief �j(tj, h��) for which sj 
is optimal among strategies in Sj(h) ∩ Sj(h

��).
Then by Pearce’s lemma, for every h� ∈ Hj(sj) weakly following h, sj is not strictly 

dominated on Ŝ0
−j
(h�) by a randomization on Sj(h�) and for every h�� ∈ Hj(sj) weakly 

preceding h, sj is not strictly dominated on Ŝ0
−j
(h��) by a randomization on 

Sj(h) ∩ Sj(h
��) . Therefore (sj)j≠i ∈ Ŝ1

−i
(h) . Hence B1

−i
(h) ⊆ Ŝ1

−i
(h) , and this is true for 

all players i ∈ I and every information set h ∈ Hi.
Now we proceed with the induction step. Fix k ≥ 2 and assume that for every 

player i ∈ I and every information set h ∈ Hi , Bk−1
−i

(h) ⊆ Ŝk−1
−i

(h).
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Consider a player i, and let (sj)j≠i ∈ Bk
−i
(h) . Then there is a type ti that expresses 

up to k‑fold belief in future and restricted past rationality such that ti assigns positive 
probability to (sj)j≠i at h.

Take an opponent j ≠ i . Then there must be some type tj expressing up to (k − 1)‑
fold belief in future and restricted past rationality such that sj is optimal for tj at every 
h� ∈ Hj(sj) weakly following h among strategies in Sj(h�) , and at every h�� ∈ Hj(sj) 
weakly preceding h among strategies in Sj(h) ∩ Sj(h

��).
By the induction assumption, since tj assigns at every h� ∈ Hj positive probability 

only to opponents’ strategies in Bk−1
−j

(h�) , then tj must assign, at every h� ∈ Hj posi‑
tive probability only to opponents’ strategies in Ŝk−1

−j
(h�) . Then sj is optimal at every 

h� ∈ Hj(sj) weakly following h among strategies in Sj(h�) for some conditional belief 
�j(tj, h

�) on Ŝk−1
−j

(h�) , and at every h�� ∈ Hj(sj) weakly preceding h among strategies in 
Sj(h) ∩ Sj(h

��) for some conditional belief �j(tj, h��) on Ŝk−1
−j

(h��) . Therefore by 
Pearce’s lemma, at every h� ∈ Hj(sj) weakly following h, sj is not strictly dominated 
on Ŝk−1

−j
(h�) by a randomization on Sj(h�) , and at every h�� ∈ Hj(sj) weakly preceding 

h, sj is not strictly dominated on Ŝk−1
−j

(h��) by a randomization on Sj(h) ∩ Sj(h
��) . 

Hence, (sj)j≠i ∈ Ŝk
−i
(h) . Then Bk

−i
(h) ⊆ Ŝk

−i
(h) and this is true for every player i ∈ I 

and every information set h ∈ Hi.  ◻

For i ∈ I and k ≥ 1 let BRk
i
 be the set of strategies for player i that are opti‑

mal for some type that expresses up to k‑fold belief in future and restricted 
past rationality and common belief in Bayesian updating. We also define 
Sk
i
= {si ∈ Si ∣ si ∈ Sk

i
(h) for all h ∈ Hi(si)}.

Lemma 5 For every player i ∈ I and every k ≥ 1 , BRk
i
⊆ Sk+1

i
.

Proof Fix i ∈ I and k ≥ 1 . Let si ∈ BRk
i
 , then there is a type ti that expresses up to 

k‑fold belief in future and restricted past rationality such that si is optimal for ti at 
every h ∈ Hi(si) . By definition, at every h ∈ Hi(si) , ti assigns positive probability to 
(sj)j≠i only if (sj)j≠i ∈ Bk

−i
(h) . By Lemma 4, at every h ∈ Hi(si) , ti assigns positive 

probability to (sj)j≠i only if (sj)j≠i ∈ Ŝk
−i
(h) . Therefore, si is optimal at h ∈ Hi(si) for 

some conditional belief �i(ti, h) on Ŝk
−i
(h) . Hence by Pearce’s lemma, si is not strictly 

dominated at h ∈ Hi(si) on Ŝk
−i
(h) by a randomization on Si(h) . This implies that 

si survives step k + 1 of the algorithm, that is, si ∈ Sk+1
i

 . Then BRk
i
⊆ Sk+1

i
 and this 

holds for every player i ∈ I and every k ≥ 1.  ◻

Lemma 6 Let �i = (�i(h))h∈Hi
 be a conditional belief vector, where �i(h) ∈ Δ(S−i(h)) 

for every h ∈ Hi . Let h�, h�� ∈ Hi be such that h′ precedes h′′ , 𝛽i(h�)(S−i(h��)) > 0, and

for all s−i ∈ S−i(h
��). Consider some h ∈ H and si ∈ Si(h

��) ∩ Si(h), and suppose that 
si is optimal for �i(h�) among strategies in Si(h�) ∩ Si(h) . Then, si is optimal for �i(h��) 
among strategies in Si(h��) ∩ Si(h).

�i(h
��)(s−i) =

�i(h
�)(s−i)

�i(h
�)(S−i(h

��))
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Proof Suppose that si is optimal for �i(h�) among strategies in Si(h�) ∩ Si(h) . Then,

Here, the third equality follows from the assumption that

for all s−i ∈ S−i(h
��).

Assume now, contrary to what we want to prove, that si is not optimal for �i(h��) 
among strategies in Si(h��) ∩ Si(h). That is, there is some strategy s�

i
∈ Si(h

��) ∩ Si(h) 
for which

Let s′′
i
 be the strategy that coincides with s′

i
 at all information sets in Hi weakly 

following h′′ , and that coincides with si at all other information sets in Hi . As 
si, s

�
i
∈ Si(h

��) ∩ Si(h) , it follows that s��
i
∈ Si(h

��) ∩ Si(h) . Since h′ precedes h′′ , it fol‑
lows that s��

i
∈ Si(h

�) ∩ Si(h) . Moreover, by construction of s′′
i
,

ui(si, �i(h
�)) =

∑

s−i∈S−i(h
�)

�i(h
�)(s−i)ui(z(si, s−i))

=
∑

s−i∈S−i(h
��)

�i(h
�)(s−i)ui(z(si, s−i))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

�i(h
�)(s−i)ui(z(si, s−i))

= �i(h
�)(S−i(h

��))
∑

s−i∈S−i(h
��)

�i(h
��)(s−i)ui(z(si, s−i))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

�i(h
�)(s−i)ui(z(si, s−i))

= �i(h
�)(S−i(h

��))ui(si, �i(h
��))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

�i(h
�)(s−i)ui(z(si, s−i)).

�i(h
��)(s−i) =

�i(h
�)(s−i)

�i(h
�)(S−i(h

��))

ui(si, 𝛽i(h
��)) < ui(s

�
i
, 𝛽i(h

��)).

ui(s
��
i
, 𝛽i(h

�)) = 𝛽i(h
�)(S−i(h

��))ui(s
��
i
, 𝛽i(h

��))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

𝛽i(h
�)(s−i)ui(z(s

��
i
, s−i))

= 𝛽i(h
�)(S−i(h

��))ui(s
�
i
, 𝛽i(h

��))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

𝛽i(h
�)(s−i)ui(z(si, s−i))

> 𝛽i(h
�)(S−i(h

��))ui(si, 𝛽i(h
��))

+
∑

s−i∈S−i(h
�)⧵S−i(h��)

𝛽i(h
�)(s−i)ui(z(si, s−i))

= ui(si, 𝛽i(h
�)).
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For the inequality, we have been using the assumption that 𝛽i(h�)(S−i(h��)) > 0 . 
However, this would mean that ui(s��i , 𝛽i(h

�)) > ui(si, 𝛽i(h
�)) . As s��

i
∈ Si(h

�) ∩ Si(h) , 
this contradicts our assumption that si is optimal for �i(h�) among strategies in 
Si(h

�) ∩ Si(h). Hence, si must be optimal for �i(h��) among strategies in Si(h��) ∩ Si(h) . 
This completes the proof.   ◻

Lemma 7 Let h, h� ∈ Hi be such that h′ precedes h. Then if s−i ∈ Ŝk
−i
(h�) ∩ S−i(h) we 

have that s−i ∈ Ŝk
−i
(h).

Proof Let s−i ∈ Ŝk
−i
(h�) ∩ S−i(h) , with s−i = (sj)j≠i . Then, for every player j ≠ i , we 

have for every information set h�� ∈ Hj(sj) weakly following h′ that sj is not strictly 
dominated on Ŝk−1

−j
(h��) by a randomization on Sj(h��) , and for every information set 

h��� ∈ Hj(sj) weakly preceding h′ that sj is not strictly dominated on Ŝk−1
−j

(h���) by a 
randomization on Sj(h�) ∩ Sj(h

���).
Take an information set h�� ∈ Hj(sj) that weakly follows h. Then h′′ weakly fol‑

lows h′ , and we know from above that sj is not strictly dominated on Ŝk−1
−j

(h��) by a 
randomization on Sj(h��).

Now take an information set h��� ∈ Hj(sj) that weakly precedes h. Then either h′′′ 
weakly precedes h′ , or h′′′ weakly follows h′.

If h′′′ weakly precedes h′ , then we know from above that sj is not strictly domi‑
nated on Ŝk−1

−j
(h���) by a randomization on Sj(h�) ∩ Sj(h

���) . As Sj(h) ⊆ Sj(h
�) , we con‑

clude that sj is not strictly dominated on Ŝk−1
−j

(h���) by a randomization on 
Sj(h) ∩ Sj(h

���).
On the other hand, if h′′′ weakly follows h′ , then we know from above that sj is 

not strictly dominated on Ŝk−1
−j

(h���) by a randomization on Sj(h���) . Hence, in particu‑
lar, sj is not strictly dominated on Ŝk−1

−j
(h���) by a randomization on Sj(h) ∩ Sj(h

���).
All this implies that s−i ∈ Ŝk

−i
(h).   ◻

For every i ∈ I , h ∈ H and k ≥ 1 we define Rk
i
(h) as the set of strategies si ∈ Si(h) 

such that si is not strictly dominated on Ŝk−1
−i

(h�) at every h� ∈ Hi(si) weakly fol‑
lowing h among strategies in Si(h�) , and si is not strictly dominated on Ŝk−1

−i
(h��) at 

every h�� ∈ Hi(si) weakly preceding h among strategies in Si(h) ∩ Si(h
��) . Notice that 

Rk
i
(h) ⊆ Sk

i
(h) for all i ∈ I , h ∈ Hi and k ≥ 1.

Suppose that the algorithm ends after K steps, that is SK+1
i

(h) = SK
i
(h) and 

ŜK+1
−i

(h) = ŜK
−i
(h) for every player i ∈ I and every information set h ∈ Hi . In order 

to prove that Sk+1
i

⊆ BRk
i
 we construct an epistemic model with the following 

characteristics: 

1. For every information set h, every player i and every strategy si ∈ R1
i
(h) there is 

a type tsi,h
i

 such that si is optimal for tsi,h
i

 at every h� ∈ Hi(si) weakly following h 
among strategies in Si(h�) , and at every h�� ∈ Hi(si) weakly preceding h among 
strategies in Si(h) ∩ Si(h

��).
2. For every k ≥ 2 , if si ∈ Rk

i
(h) then the associated type tsi,h

i
 expresses up to (k − 1)

‑fold belief in future and restricted past rationality.
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3. If si ∈ RK
i
(h) then the associated type tsi,h

i
 expresses common belief in future and 

restricted past rationality.
4. Every type satisfies Bayesian updating.

Construction of the epistemic model

We start with the construction of beliefs for the model. For i ∈ I take an informa‑
tion set h ∈ H and let Dk

i
(h) = Rk

i
(h)⧵Rk+1

i
(h) for all k ≥ 1.

Consider k ∈ {1, 2,… ,K − 1} and si ∈ Dk
i
(h) . By definition and Pearce’s 

lemma, for every h� ∈ Hi(si) weakly following h there is a conditional 
belief 𝛽si,h

i
(h�) on Ŝk−1

−i
(h�) such that si is optimal for 𝛽si,h

i
(h�) among strategies in 

Si(h
�) , and for every h�� ∈ Hi(si) weakly preceding h there is a conditional belief 

𝛽
si,h

i
(h��) on Ŝk−1

−i
(h��) such that si is optimal for 𝛽si,h

i
(h��) among strategies in 

Si(h) ∩ Si(h
��) . For every other h��� ∈ Hi , define 𝛽si,h

i
(h���) on Ŝk−1

−i
(h���) arbitrarily.

Consider si ∈ RK
i
(h) . Then si ∈ RK+1

i
(h) as well. By definition of RK+1

i
(h) , 

for every h� ∈ Hi(si) weakly following h there is a conditional belief 𝛽si,h
i

(h�) on 
ŜK
−i
(h�) such that si is optimal for 𝛽si,h

i
(h�) among strategies in Si(h�) , and for every 

h�� ∈ Hi(si) weakly preceding h there is a conditional belief 𝛽si,h
i

(h��) on ŜK
−i
(h��) 

such that si is optimal for 𝛽si,h
i

(h��) among strategies in Si(h) ∩ Si(h
��) . For every 

other h��� ∈ Hi , define 𝛽si,h
i

(h���) on ŜK
−i
(h���) arbitrarily.

For every k ≥ 1 and every h� ∈ Hi , we define Rk
−i
(h�) = ×j≠i R

k
j
(h�). Then, by 

construction, Ŝk
−i
(h�) = Rk

−i
(h�) . Hence, for every si ∈ Dk

i
(h) with 

k ∈ {1, 2,… ,K − 1} , we have that 𝛽si,h
i

(h�) ∈ Δ(Rk−1
−i

(h�)) for all h� ∈ Hi . Moreo‑
ver, for every si ∈ RK

i
(h) we have that 𝛽si,h

i
(h�) ∈ Δ(RK

−i
(h�)) for all h� ∈ Hi.

Take some si ∈ R1
i
(h) . We now transform the conditional belief vector 

𝛽
si,h

i
= (𝛽

si,h

i
(h�))h�∈Hi

 into a conditional belief vector �si,h
i

 that satisfies Bayesian 
updating, as follows. Consider an information set h� ∈ Hi . Suppose first that there 
is some h�� ∈ Hi preceding h′ with 𝛽si,h

i
(h��)(S−i(h

�)) > 0 . Then, let h′′ be the unique 
information set in Hi such that h′′ precedes h′ , 𝛽si,h

i
(h��)(S−i(h

�)) > 0 , and there is 
no h��� ∈ Hi preceding h′′ with 𝛽si,h

i
(h���)(S−i(h

�)) > 0 . In that case, define

for every s−i ∈ S−i(h
�) . If, on the other hand, there is no h�� ∈ Hi preceding h′ with 

𝛽
si,h

i
(h��)(S−i(h

�)) > 0 , then we let

for every s−i ∈ S−i(h
�).

(1)𝛽
si,h

i
(h�)(s−i) ∶=

𝛽
si,h

i
(h��)(s−i)

𝛽
si,h

i
(h��)(S−i(h

�))

(2)𝛽
si,h

i
(h�)(s−i) ∶= 𝛽

si,h

i
(h�)(s−i)
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By construction, the conditional belief vector �si,h
i

 satisfies Bayesian updating. 
We now show that, for every h� ∈ Hi(si) weakly preceding or weakly following h, 
the strategy si is optimal for �si,h

i
(h�) among strategies in Si(h�) ∩ Si(h) . Consider 

some h� ∈ Hi(si) weakly preceding or weakly following h. If there is no h�� ∈ Hi 
preceding h′ with 𝛽si,h

i
(h��)(S−i(h

�)) > 0 then by (2), 𝛽si,h
i

(h�) = 𝛽
si,h

i
(h�) . Since, by 

construction, si is optimal for 𝛽si,h
i

(h�) among strategies in Si(h�) ∩ Si(h) , it follows 
that si is optimal for �si,h

i
(h�) among strategies in Si(h�) ∩ Si(h) . Suppose now that 

there is some h�� ∈ Hi preceding h′ with 𝛽si,h
i

(h��)(S−i(h
�)) > 0 . Then, �si,h

i
(h�) is 

obtained from 𝛽si,h
i

(h��) by (1), where h�� ∈ Hi preceeds h′ , 𝛽si,h
i

(h��)(S−i(h
�)) > 0 , 

and there is no h��� ∈ Hi preceding h′′ with 𝛽si,h
i

(h���)(S−i(h
�)) > 0 . By construction, 

si is optimal for 𝛽si,h
i

(h��) among strategies in Si(h��) ∩ Si(h) . As h�� ∈ Hi precedes 
h� ∈ Hi , it follows by (2) and Lemma 6 that si is optimal for �si,h

i
(h�) among strate‑

gies in Si(h�) ∩ Si(h) . Hence, we conclude that for every h� ∈ Hi(si) weakly preced‑
ing or weakly following h, the strategy si is optimal for �si,h

i
(h�) among strategies 

in Si(h�) ∩ Si(h).
Suppose that si ∈ Dk

i
(h) for some k ∈ {1, 2,… ,K − 1} . We prove that 

�
si,h

i
(h�) ∈ Δ(Rk−1

−i
(h�)) for all h� ∈ Hi . Take some h� ∈ Hi , and suppose there is no 

h�� ∈ Hi preceding h′ with 𝛽si,h
i

(h��)(S−i(h
�)) > 0 . Then by (2), 𝛽si,h

i
(h�) = 𝛽

si,h

i
(h�) . 

As 𝛽si,h
i

(h�) ∈ Δ(Rk−1
−i

(h�)) , it follows that �si,h
i

(h�) ∈ Δ(Rk−1
−i

(h�)) . Assume next 
that there is some h�� ∈ Hi preceding h′ with 𝛽si,h

i
(h��)(S−i(h

�)) > 0 . Then, �si,h
i

(h�) is 
obtained from 𝛽si,h

i
(h��) by (1), where h�� ∈ Hi precedes h′ , 𝛽si,h

i
(h��)(S−i(h

�)) > 0 , 
and there is no h��� ∈ Hi preceding h′′ with 𝛽si,h

i
(h���)(S−i(h

�)) > 0 . Take some 
s−i ∈ S−i(h

�) with 𝛽si,h
i

(h�)(s−i) > 0 . By (1) we then must have that 𝛽si,h
i

(h��)(s−i) > 0 . 
Since we have seen that 𝛽si,h

i
(h��) ∈ Δ(Rk−1

−i
(h��)) , it must be that s−i ∈ Rk−1

−i
(h��) . 

Hence, s−i ∈ Rk−1
−i

(h��) ∩ S−i(h
�) . Since Rk−1

−i
(h��) = Ŝk−1

−i
(h��) , we know that 

s−i ∈ Ŝk−1
−i

(h��) ∩ S−i(h
�) . As h′′ precedes h′ , by Lemma 7, s−i ∈ Ŝk−1

−i
(h�) = Rk−1

−i
(h�) . 

Since this holds for every s−i ∈ S−i(h
�) with 𝛽si,h

i
(h�)(s−i) > 0 , we conclude that 

�
si,h

i
(h�) ∈ Δ(Rk−1

−i
(h�)) . In the same fashion, it can be shown that for every si ∈ RK

i
(h) , 

we have that �si,h
i

(h�) ∈ Δ(RK
−i
(h�)) for all h� ∈ Hi.

Now we proceed with the construction of types for the epistemic model. For 
player i ∈ I we define the set of types Ti = {t

si,h

i
∣ h ∈ H and si ∈ R1

i
(h)} . For 

every player i ∈ I , every information set h ∈ H and every k ∈ {1,… ,K} let 
Tk
i
(h) = {t

si,h

i
∣ si ∈ Rk

i
(h)} . Since RK

i
(h) ⊆ RK−1

i
(h) ⊆ ⋯ ⊆ R2

i
(h) ⊆ R1

i
(h) , then 

TK
i
(h) ⊆ TK−1

i
(h) ⊆ ⋯ ⊆ T2

i
(h) ⊆ T1

i
(h) for every player i ∈ I and every information 

set h ∈ H.
For every player i, every k ≥ 1 , and every two information sets h, h′ where h pre‑

cedes h′ , we know by Lemma 7 that Rk
i
(h) ∩ Si(h

�) ⊆ Rk
i
(h�) . Hence, if tsi,h

i
∈ Tk

i
(h) 
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with si ∈ Rk
i
(h) ∩ Si(h

�) , then si ∈ Rk
i
(h�) . In that case, we identify the types tsi,h

i
 and 

t
si,h

′

i
 . Hence, formally, tsi,h

i
= t

si,h
�

i
 whenever h precedes h′ and si ∈ Si(h

�).
For every player i ∈ I and every information set h ∈ H we now construct the beliefs 

for each type in T1
i
(h).

Consider tsi,h
i

 with si ∈ D1
i
(h) , that is, tsi,h

i
∈ T1

i
(h)⧵T2

i
(h) . We define the conditional 

belief vector �i(t
si,h

i
) in the following way: For each j ≠ i take an arbitrary type t̂j and 

consider an information set h� ∈ Hi . Let

Then at every h� ∈ Hi , type tsi,h
i

 holds the same belief about the opponents’ strategy 
choices as �si,h

i
 . Moreover, tsi,h

i
 satisfies Bayesian updating, as �si,h

i
 satisfies Bayesian 

updating. By construction of the beliefs, si is optimal for �si,h
i

(h�) at every h� ∈ Hi(si) 
weakly following h among strategies in Si(h�) and si is optimal for �si,h

i
(h��) at every 

h�� ∈ Hi(si) weakly preceding h among strategies in Si(h) ∩ Si(h
��).

Therefore si is optimal for type tsi,h
i

 at every h� ∈ Hi(si) weakly following h among 
strategies in Si(h�) and at every h�� ∈ Hi(si) weakly preceding h among strategies in 
Si(h) ∩ Si(h

��).
Now consider t

si,h

i
 with si ∈ Dk

i
(h) for some k ∈ {2, 3,… ,K − 1} . Hence 

t
si,h

i
∈ Tk

i
(h)⧵Tk+1

i
(h) . We define the conditional belief vector �i(t

si,h

i
) as follows: For 

every information set h� ∈ Hi let �i(t
si,h

i
, h�) be the conditional belief at h′ about the 

opponents’ strategy‑type pairs given by:

We first show that type tsi,h
i

 satisfies Bayesian updating. Suppose that h�, h�� ∈ Hi 
are such that h′ precedes h′′ and 𝛽i(t

si,h

i
, h�)(S−i(h

��) × T−i) > 0 . Then by (3), 
𝛽
si,h

i
(h�)(S−i(h

��)) > 0 . As �si,h
i

 satisfies Bayesian updating, we must have that

for all (sj)j≠i ∈ S−i(h
��) . Now, let 𝛽i(t

si,h

i
, h��)((sj, tj)j≠i) > 0 . Then by (3), tj = t

sj,h
��

j
 for 

every j ≠ i . Since sj ∈ Sj(h
��) and h′ precedes h′′ we know by construction, that 

t
sj,h

�

j
= t

sj,h
��

j
 for every j ≠ i . This implies that

𝛽i(t
si,h

i
, h�)((sj, tj)j≠i) =

{

𝛽
si,h

i
(h�)((sj)j≠i) if tj = t̂j for every j ≠ i,

0 otherwise.

(3)�i(t
si,h

i
, h�)((sj, tj)j≠i) =

{

�
si,h

i
(h�)((sj)j≠i) if tj = t

sj,h
�

j
for every j ≠ i,

0 otherwise.

(4)�
si,h

i
(h��)((sj)j≠i) =

�
si,h

i
(h�)((sj)j≠i)

�
si,h

i
(h�)(S−i(h

��))
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Here, the first and the last equality follow from the fact that tj = t
sj,h

��

j
 for every j ≠ i , 

the second equality from (3) applied to h′′ , the third equality from (4), the fourth 
equality from (3) applied to h′ , and the fifth equality from the fact that tsj,h

�

j
= t

sj,h
��

j
 

for every j ≠ i . Hence, we conclude that tsi,h
i

 satisfies Bayesian updating.
By construction of the beliefs, strategy si is optimal for �si,h

i
(h�) at every h� ∈ Hi(si) 

weakly following h among strategies in Si(h�) and si is optimal for �si,h
i

(h��) at every 
h�� ∈ Hi(si) weakly preceding h among strategies in Si(h) ∩ Si(h

��) . Therefore si is 
optimal for type tsi,h

i
 at every h� ∈ Hi(si) weakly following h among strategies in 

Si(h
�) and at every h�� ∈ Hi(si) weakly preceding h among strategies in Si(h) ∩ Si(h

��).
Recall that at every h� ∈ Hi, the belief �si,h

i
(h�) ∈ Δ(Rk−1

−i
(h�)) assigns positive 

probability only to opponents’ strategies in Rk−1
j

(h�) . Hence type tsi,h
i

 assigns at 
every h� ∈ Hi positive probability only to opponents’ types t

sj,h
′

j
 where 

sj ∈ Rk−1
j

(h�) . That is, type tsi,h
i

 assigns at every h� ∈ Hi positive probability only to 
opponents’ types in Tk−1

j
(h�).

Finally, consider types tsi,h
i

 with si ∈ RK
i
(h) , that is, tsi,h

i
∈ TK

i
(h) . We define the 

conditional belief vector �i(t
si,h

i
) as follows: For every h� ∈ Hi let �i(t

si,h

i
, h�) be the 

conditional belief at h′ about the opponents’ strategy‑type pairs given by:

In the same way as above, it can be concluded that tsi,h
i

 satisfies Bayesian updating, 
that strategy si is optimal for type tsi,h

i
 at every h� ∈ Hi(si) weakly following h among 

strategies in Si(h�) and at every h�� ∈ Hi(si) weakly preceding h among strategies in 
Si(h) ∩ Si(h

��) , and that type tsi,h
i

 assigns at every h� ∈ Hi positive probability only to 
opponents’ types in TK

j
(h�).  ⧫

�i(t
si,h

i
, h��)((sj, tj)j≠i) = �i(t

si,h

i
, h��)((sj, t

sj,h
��

j
)j≠i)

= �
si,h

i
(h��)((sj)j≠i)

=
�
si,h

i
(h�)((sj)j≠i)

�
si,h

i
(h�)(S−i(h

��))

=
�i(t

si,h

i
, h�)((sj, t

sj,h
�

j
)j≠i)

�i(t
si,h

i
, h�)(S−i(h

��) × T−i)

=
�i(t

si,h

i
, h�)((sj, t

sj,h
��

j
)j≠i)

�i(t
si,h

i
, h�)(S−i(h

��) × T−i)

=
�i(t

si,h

i
, h�)((sj, tj)j≠i)

�i(t
si,h

i
, h�)(S−i(h

��) × T−i)
.

�i(t
si,h

i
, h�)((sj, tj)j≠i) =

{

�
si,h

i
(h�)((sj)j≠i) if tj = t

sj,h
�

j
for every j ≠ i,

0 otherwise.
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Now we proceed to prove some properties of this epistemic model.

Lemma 8 For the epistemic model constructed above, every type ti ∈ Tk
i
(h) 

expresses up to (k − 1) -fold belief in future and restricted past rationality and com-
mon belief in Bayesian updating for k ≥ 2.

Proof Since all types in the epistemic model satisfy Bayesian updating, all types 
express common belief in Bayesian updating. We prove the result by induction on k.

Let k = 2 , and consider a player i ∈ I and an information set h ∈ H . Take 
ti ∈ T2

i
(h) , then ti = t

si,h

i
 for some si ∈ R2

i
(h) . By construction, type tsi,h

i
 assigns at 

every h� ∈ Hi positive probability only to opponents’ strategy‑type pairs (sj, t
sj,h

�

j
) 

where sj ∈ R1
j
(h�) and tsj,h

�

j
∈ T1

j
(h�).

For every such strategy‑type pair (sj, t
sj,h

�

j
) , strategy sj is optimal for type tsj,h

′

j
 at 

every h�� ∈ Hj(sj) weakly following h′ among strategies in Sj(h��) , and at every 
h��� ∈ Hj(sj) weakly preceding h′ among strategies in Sj(h�) ∩ Sj(h

���) . Therefore type 
t
si,h

i
 assigns at every h� ∈ Hi positive probability only to opponents’ strategy‑type 

pairs (sj, t
sj,h

�

j
) where sj is optimal for type tsj,h

′

j
 at every h�� ∈ Hj(sj) weakly following 

h′ among strategies in Sj(h��) , and at every h��� ∈ Hj(sj) weakly preceding h′ among 
strategies in Sj(h�) ∩ Sj(h

���) . This means that tsi,h
i

 believes in the opponents’ future 
and restricted past rationality. Then tsi,h

i
 expresses up to 1‑fold belief in future and 

restricted past rationality.
Now the induction step. Fix k ≥ 3 and assume that for every player i ∈ I and 

every information set h ∈ H , every type ti ∈ Tk−1
i

(h) expresses up to (k − 2)‑fold 
belief in future and restricted past rationality.

Consider a player i ∈ I and an information set h ∈ H . Take ti ∈ Tk
i
(h) , which 

means ti = t
si,h

i
 for some si ∈ Rk

i
(h) . Type tsi,h

i
 assigns at every h� ∈ Hi positive prob‑

ability only to opponents’ strategy‑type pairs (sj, t
sj,h

�

j
) where sj ∈ Rk−1

j
(h�) and 

t
sj,h

�

j
∈ Tk−1

j
(h�) . For every such strategy‑type pair, sj is optimal for type tsj,h

′

j
 at every 

h�� ∈ Hj(sj) weakly following h′ among strategies in Sj(h��) , and at every h��� ∈ Hj(sj) 
weakly preceding h′ among strategies in Sj(h�) ∩ Sj(h

���).

By the induction assumption, since type tsj,h
�

j
∈ Tk−1

j
(h�) then tsj,h

′

j
 expresses up to 

(k − 2)‑fold belief in future and restricted past rationality. Then type tsi,h
i

 assigns at 
every h� ∈ Hi positive probability only to opponents’ strategy‑type pairs (sj, t

sj,h
�

j
) 

where sj is optimal for type tsj,h
′

j
 at every h�� ∈ Hj(sj) weakly following h′ among 

strategies in Sj(h��) , and at every h��� ∈ Hj(sj) weakly preceding h′ among strategies 

in Sj(h�) ∩ Sj(h
���) , and type tsj,h

�

j
∈ Tk−1

j
(h�) expresses up to (k − 2)‑fold belief in 

future and restricted past rationality. Hence, tsi,h
i

 expresses up to (k − 1)‑fold belief in 
future and restricted past rationality. This holds for all players i ∈ I and all informa‑
tion sets h ∈ H , so every type ti ∈ Tk

i
(h) expresses up to (k − 1)‑fold belief in future 

and restricted past rationality. By induction, the result is true for every k ≥ 2.  ◻
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Lemma 9 Given the epistemic model constructed above, for every k ≥ K − 1 , every 
type ti ∈ TK

i
(h) expresses up to k -fold belief in future and restricted past rationality 

and expresses common belief in Bayesian updating.

Proof As before, all types in the epistemic model satisfy Bayesian updating so all 
types express common belief in Bayesian updating. The result is proven by induc‑
tion on k.

Let k = K − 1 . By Lemma 8 we know that every type ti ∈ TK
i
(h) expresses up to 

(K − 1)‑fold belief in future and restricted past rationality, so the result is true for 
k = K − 1.

Now we do the induction step. Fix k ≥ K and assume that for every player i ∈ I 
and every information set h ∈ H , every type ti ∈ TK

i
(h) expresses up to (k − 1)‑fold 

belief in future and restricted past rationality. Consider a player i ∈ I , an information 
set h ∈ H and a type ti ∈ TK

i
(h) , that is ti = t

si,h

i
 for some si ∈ RK

i
(h) . By construc‑

tion, tsi,h
i

 assigns at every h� ∈ Hi positive probability only to opponents’ strategy‑
type pairs (sj, t

sj,h
�

j
) where sj ∈ RK

j
(h�) and tsj,h

�

j
∈ TK

j
(h�) . Then for every such pair 

(sj, t
sj,h

�

j
) the strategy sj is optimal for type tsj,h

′

j
 at every h�� ∈ Hj(sj) weakly following 

h′ among strategies in Sj(h��) and at every h��� ∈ Hj(sj) weakly preceding h′ among 
strategies in Sj(h�) ∩ Sj(h

���).
By the induction assumption, every type tsj,h

�

j
∈ TK

j
(h�) expresses up to (k − 1)‑

fold belief in future and restricted past rationality. Therefore, type tsi,h
i

 assigns at 
every h� ∈ Hi positive probability only to opponents’ strategy‑type pairs (sj, t

sj,h
�

j
) 

where sj is optimal for type tsj,h
′

j
 at every h�� ∈ Hj(sj) weakly following h′ among 

strategies in Sj(h��) , and at every h��� ∈ Hj(sj) weakly preceding h′ among strategies 

in Sj(h�) ∩ Sj(h
���) , and type tsj,h

�

j
∈ TK

j
(h�) expresses up to (k − 1)‑fold belief in future 

and restricted past rationality. Then type tsi,h
i

 expresses up to k‑fold belief in future 
and restricted past rationality, and this holds for every player i ∈ I and every infor‑
mation set h ∈ H . Hence, every type ti ∈ TK

i
(h) expresses up to k‑fold belief in 

future and restricted past rationality. By induction, the result holds for every 
k ≥ K − 1 .   ◻

The next result follows from Lemma 9 and the definition of common belief in 
future and restricted past rationality.

Corollary 2 Given the epistemic model constructed above, every type ti ∈ TK
i
(h) 

expresses common belief in future and restricted past rationality and expresses com-
mon belief in Bayesian updating.

Now we proceed with the proof for Theorem 2.

Proof (Theorem  2) The first part of the theorem can be stated as BRk
i
= Sk+1

i
 for 

every player i and every k. We show this holds by dividing the proof in two parts.
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First we prove that Sk+1
i

⊆ BRk
i
 for every player i and every k. Consider a player 

i ∈ I and k ≥ 1 . Take some si ∈ Sk+1
i

 . Then si ∈ Sk+1
i

(h) for all h ∈ Hi(si) . This 
implies that si ∈ Rk+1

i
(∅) . Hence, type tsi,∅

i
 is in Tk+1

i
(∅) , so by Lemma 8, tsi,∅

i
 

expresses up to k‑fold belief in future and restricted past rationality and expresses 
common belief in Bayesian updating. Moreover, si is optimal for tsi,∅

i
 at every 

h ∈ Hi(si) weakly following ∅ among strategies in Si(h) . Therefore si ∈ BRk
i
 . So 

every strategy si ∈ Sk+1
i

 is also in BRk
i
 , that is Sk+1

i
⊆ BRk

i
 , and this holds for all play‑

ers i ∈ I and k ≥ 1 . Moreover, from Lemma 5 we know that BRk
i
⊆ Sk+1

i
 . Hence 

BRk
i
= Sk+1

i
.

For the second part of the theorem, consider a strategy si that can rationally be 
chosen by a type that expresses common belief in future and restricted past ration‑
ality and expresses common belief in Bayesian updating. Then si ∈ BRk

i
= Sk+1

i
 for 

all k, so si survives the full algorithm. Hence, every strategy si that can rationally be 
chosen by a type that expresses common belief in future and restricted past rational‑
ity and common belief in Bayesian updating survives the full algorithm.

Now, take a strategy si that survives the full algorithm. Hence, si ∈ SK
i
(h) for 

all h ∈ Hi(si) . Then si ∈ RK
i
(∅) , and by Corollary 2 we know type tsi,∅

i
∈ TK

i
(∅) 

expresses common belief in future and restricted past rationality and expresses com‑
mon belief in Bayesian updating. Moreover, by the construction of the epistemic 
model, the strategy si is optimal for the type tsi,∅

i
 at every h ∈ Hi(si) weakly follow‑

ing ∅ among strategies in Si(h) . Hence si is optimal for a type that expresses com‑
mon full belief in future and restricted past rationality and expresses common belief 
in Bayesian updating. Therefore, every strategy si that survives the full algorithm is 
optimal for a type that expresses common belief in future and restricted past ration‑
ality and expresses common belief in Bayesian updating.   ◻
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