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h i g h l i g h t s

• The solution concept of generalized Nash equilibrium for static games with incomplete information is illustrated with an intuitive example
embedded in a story.

• An existence construction for generalized Nash equilibrium is provided (Theorem 1). This result can be viewed as an incomplete information
generalization of the classical (Nash, 1950) result.

• An epistemic characterization of generalized Nash equilibrium is given (Theorem 2) in a way that common belief in rationality is neither assumed
nor implied (Remark 1).

• As a side result an epistemic characterization of Nash equilibrium for static games with complete information ensues (Corollary 1).

a r t i c l e i n f o

Article history:
Received 23 February 2019
Received in revised form 28 June 2019
Accepted 9 July 2019
Available online 15 July 2019

JEL classification:
C72

Keywords:
Common belief in rationality
Complete information
Epistemic characterization
Epistemic game theory
Existence
Generalized Nash equilibrium
Incomplete information
Interactive epistemology
Nash equilibrium
Solution concepts
Static games

a b s t r a c t

We provide an existence result for the solution concept of generalized Nash equilibrium, which can
be viewed as the direct incomplete information analogue of Nash equilibrium. Intuitively, a tuple
consisting of a probability measure for every player on his choices and utility functions is a generalized
Nash equilibrium, whenever some mutual optimality property is satisfied. This incomplete information
solution concept is then epistemically characterized in a way that common belief in rationality is
neither used nor implied. For the special case of complete information, an epistemic characterization
of Nash equilibrium ensues as a corollary.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In game theory Nash’s (1950) and (1951) notion of equilib-
rium constitutes one of the most prevalent solution concepts for
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static games with complete information. Existence of this solution
concept has been established by Nash (1950) based on Kaku-
tani’s generalized fixed point theorem (Kakutani, 1941, Theorem
1) for the class of finite static games with complete informa-
tion. Besides, Nash (1951) gives a different proof of existence by
only relying on Brouwer’s original fixed point theorem (Brouwer,
1911, Satz 4).

In order to unveil the reasoning assumptions underlying Nash
equilibrium, epistemic foundations have been provided for this
classical solution concept by, for instance, Aumann and Bran-
denburger (1995), Perea (2007), Barelli (2009), as well as Bach
and Tsakas (2014). In each of these epistemic foundations some
correct beliefs assumption is needed to obtain Nash equilibrium.
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Fig. 1. Utility functions of Alice and Bob.

Fig. 2. Interactive representation of the two-player game with incomplete
information and utility functions as specified in Fig. 1.

As correct beliefs seems to be a rather demanding requirement,
Nash equilibrium does actually impose non-trivial conditions on
the players’ reasoning.

In static games with incomplete information, players face un-
certainty about the opponents’ utility functions. For this more
general class of games the most widespread solution concept is
Harsanyi’s (1967-68) Bayesian equilibrium. In fact, Bayesian equi-
librium does not generalize Nash equilibrium but correlated equi-
librium to incomplete information (cf. Battigalli and Siniscalchi,
2003; Bach and Perea, 2017).

However, a direct incomplete information analogue to Nash
equilibrium can be defined, by extending its mutual optimality
property to payoff uncertainty. Accordingly, a tuple consisting of
beliefs about each player’s choice and utility function is called a
generalized Nash equilibrium, whenever each belief only assigns
positive probability to choice utility function pairs such that the
choice is optimal for the utility function and the product measure
of the beliefs on the opponents’ choices. Coinciding with the
mutual optimality property definition of Nash equilibrium in the
case of complete information with mixed strategies interpreted
as beliefs, the notion of generalized Nash equilibrium thus pro-
vides a direct generalization of Nash equilibrium to incomplete
information.

As an illustration of the incomplete information solution con-
cept of generalized Nash equilibrium, suppose a game between
two players Alice and Bob who are both invited to a party. They
need to – simultaneously and independently – choose the colour
of their outfits to be black or pink, or alternatively, to stay at
home. Alice prefers wearing the same colour as Bob to staying at
home, but prefers staying at home to attending the party with a
different colour than Bob. Alice is not sure about Bob’s preferences.
She thinks that he either entertains the same preferences as she
or that he prefers attending the party with a different colour
than she to staying at home, but prefers staying at home to
attending the party with the same colour as she. The utility func-
tions for Alice and Bob are provided in Fig. 1, and an interactive
representation of the game is given in Fig. 2.

Consider the two beliefs (black, uA) about Alice’s choice and
utility function as well as 3

4 · (black, uB) +
1
4 · (pink, u′

B) about
Bob’s choice and utility function. Note that black is optimal for
Alice’s utility function uA, if she believes Bob to wear black with
probability 3

4 and pink with probability 1
4 . Also, black is optimal

for Bob’s utility function uB, if he believes Alice to wear black, and
pink is optimal for Bob’s utility function u′

B, if he believes her to
wear black. The two beliefs (black, uA) and

( 3
4 · (black, uB) +

1
4 ·

(pink, u′

B)
)
thus form a generalized Nash equilibrium.

This note first establishes the existence of generalized Nash
equilibrium for the class of static games with incomplete in-
formation. Then, an epistemic characterization of this solution

concept is provided. The epistemic conditions are intended to be
as minimal as possible. In particular, it is shown that they actually
do not imply common belief in rationality. Similarly to the special
case of complete information with Nash equilibrium, a correct
beliefs assumption also emerges as the decisive property for play-
ers to reason in line with generalized Nash equilibrium. Besides,
for complete information games an epistemic characterization of
Nash equilibrium ensues as a corollary.

2. Generalized Nash equilibrium

A game with incomplete information is modelled as a tuple
Γ =

(
I, (Ci)i∈I , (Ui)i∈I

)
, where I is a finite set of players, Ci denotes

player i’s finite choice set, and the finite set Ui contains player
i’s utility functions, where a utility function ui : ×j∈ICj → R
from Ui assigns a real number ui(c) to every choice combination
c ∈ ×j∈ICj. Complete information obtains as a special case, if the
set Ui is a singleton for every player i ∈ I .

Before the solution concept of generalized Nash equilibrium
for games with incomplete information is defined, attention is
restricted to complete information and the classical solution con-
cept of Nash equilibrium is recalled. For a given game Γ =(
I, (Ci)i∈I , ({ui})i∈I

)
with complete information, a tuple (σi)i∈I ∈

×i∈I∆(Ci) of probability measures constitutes a Nash equilibrium,
whenever for all i ∈ I and for all ci ∈ Ci, if σi(ci) > 0,
then

∑
c−i∈C−i

σ−i(c−i) · ui(ci, c−i) ≥
∑

c−i∈C−i
σ−i(c−i) · ui(c ′

i , c−i)
for all c ′

i ∈ Ci.1 A direct generalization of Nash equilibrium to
incomplete information obtains as follows.

Definition 1. Let Γ be a game with incomplete information, and
(βi)i∈I ∈ ×i∈I

(
∆(Ci × Ui)

)
be a tuple of probability measures. The

tuple (βi)i∈I constitutes a generalized Nash equilibrium, whenever
for all i ∈ I and for all (ci, ui) ∈ Ci × Ui, if βi(ci, ui) > 0, then∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(ci, c−i)

≥

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(c ′

i , c−i)

for all c ′

i ∈ Ci.

Intuitively, the mutual optimality property of the players’ sup-
ports required by the complete information solution concept of
Nash equilibrium is extended to the augmented uncertainty space
of choices and utility functions. In the specific case of complete
information, i.e. Ui = {ui} for all i ∈ I , the notion of generalized
Nash equilibrium formally indeed reduces to Nash equilibrium. In
other words, generalized Nash equilibrium imposes the analogous
condition on the – due to payoff uncertainty extended – space
×i∈I

(
∆(Ci × Ui)

)
that Nash equilibrium imposes on the space

×i∈I∆(Ci). Note that for the game represented in Fig. 2, the tuple(
(black, uA), 3

4 · (black, uB) +
1
4 · (pink, u′

B)
)
indeed constitutes a

generalized Nash equilibrium.
In order to characterize decision-making in line with gen-

eralized Nash equilibrium, the notion of optimal choice in a
generalized Nash equilibrium is defined next.

1 Given collection {Xi : i ∈ I} of sets and probability measures pi ∈ ∆(Xi)
for all i ∈ I , the set X−i refers to the product set ×j∈I\{i}Xj and the probability
measure p−i refers to the product measure Πj∈I\{i}pj ∈ ∆(X−i) on X−i .
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Definition 2. Let Γ be a game with incomplete information,
i ∈ I a player, and ui ∈ Ui some utility function of player i. A
choice ci ∈ Ci of player i is optimal for the utility function ui in
a generalized Nash equilibrium, if there exists a generalized Nash
equilibrium (βi)i∈I ∈ ×i∈I

(
∆(Ci × Ui)

)
such that∑

(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(ci, c−i)

≥

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(c ′

i , c−i)

for all c ′

i ∈ Ci.

In fact, it can be shown that in terms of optimal choices gen-
eralized Nash equilibrium refines Harsanyi’s (1967-68) solution
concept of Bayesian equilibrium (cf. Bach and Perea, 2017).

Solution concepts are always defined relative to a class of
games. An existence result ensures that a solution concept always
generates a tuple of non-empty strategy sets – sometimes also
called prediction – for any game within the respective class. In
particular, existence excludes that a solution concept can only
be applied to some strict subset of the intended class of games.
For static games with complete information Nash (1950) provides
an existence result for the solution concept of Nash equilibrium
based on Kakutani’s generalized fixed point theorem (Kakutani,
1941, Theorem 1). Also using Kakutani’s generalized fixed point
theorem the existence of generalized Nash equilibrium within
the class of static games with incomplete information can be
established as follows.

Theorem 1. Let Γ be a game with incomplete information, and
βU
i ∈ ∆(Ui) a probability measure for every player i ∈ I . Then, there

exists a generalized Nash equilibrium (βi)i∈I ∈ ×i∈I
(
∆(Ci×Ui)

)
such

that margUi
βi = βU

i for all i ∈ I .

Proof. For every player i ∈ I , and for every set Xi ⊆ Ci × Ui

define a set ∆βU
i (Xi) := {βi ∈ ∆(Xi) : margUi

βi = βU
i }, as well as a

correspondence fi : ×j∈I
(
∆

βU
j (Cj × Uj)

)
↠ ∆βU

i (Ci × Ui) such that
fi
(
(βj)j∈I

)
:= ∆βU

i
(
{(ci, ui) ∈ Ci×Ui :

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i)
·ui(ci, c−i)

)
≥

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) ·ui(c ′

i , c−i) for all c ′

i ∈

Ci}. Consider the correspondence f : ×j∈I
(
∆

βU
j (Cj × Uj)

)
↠

×j∈I
(
∆

βU
j (Cj × Uj)

)
, where f

(
(βj)j∈I

)
:= ×j∈I fj

(
(βk)k∈I

)
for all

(βj)j∈I ∈ ×j∈I
(
∆

βU
j (Cj × Uj)

)
. Observe that the set ×j∈I

(
∆

βU
j (Cj ×

Uj)
)
as well as for all (βi)i∈I the image set f

(
(βi)i∈I

)
are non-

empty, compact, and convex. Let
(
(βj)nj∈I

)
n∈N be some converging

sequence with limit (βj)j∈I , where βn
j ∈ ∆(Cj × Uj) for all j ∈ I

and for all n ∈ N. Consider some player i ∈ I and suppose
that β̂n

i ∈ fi
(
(βn

j )j∈I
)
for all n ∈ N as well as that the sequence

(β̂n
i )n∈N is converging with limit βi. It is then the case that β̂i ∈

fi
(
(βj)j∈I

)
. Consequently, the function f is upper semi-continuous.

By Kakutani (1941, Theorem 1) it follows that there exists a tuple
(β∗

i )i∈I ∈ ×i∈I∆
βU
i (Ci×Ui) such that (β∗

i )i∈I ∈ f
(
(β∗

i )i∈I
)
. Therefore,

(β∗

i )i∈I constitutes a generalized Nash equilibrium of Γ such that
margUi

β∗

i = βU
i for all i ∈ I . ■

Accordingly, for every incomplete information game and for
every tuple of probability measures about utility functions, it is
possible to construct a generalized Nash equilibrium that matches
these probability measures about utility functions. As an imme-
diate corollary of Theorem 1 an existence result analogous to
Nash (1951, Theorem 1) ensues: every finite game with incomplete

information has a generalized Nash equilibrium.2 However, Theo-
rem 1 is stronger, since it requires generalized Nash equilibrium
to satisfy additional conditions by fixing the probability measures
about utility functions. Intuitively, no matter what beliefs about
payoffs agents may hold in a specific context of a complete
information game, a corresponding generalized Nash equilibrium
always exists. Besides, note that in a sense the formulation of
Theorem 1 is similar to how Ely and Pȩski (2006) as well as
Dekel et al. (2007) define their incomplete information solution
concepts of interim rationalizability by fixing the players’ belief
hierarchies on utility functions.

3. Common belief in rationality

From the perspective of a single player there exist two basic
sources of uncertainty with respect to Γ . A player faces strategic
uncertainty, i.e. what choices his opponents make, as well as
payoff uncertainty, i.e. what utility functions represent the op-
ponents’ preferences. The notion of an epistemic model provides
the framework to describe the players’ reasoning about these two
sources of uncertainty. Formally, an epistemic model of Γ is a
tuple MΓ

=
(
(Ti)i∈I , (bi)i∈I

)
, where for every player i ∈ I , the set

Ti contains all of i’s types and the function bi : Ti → ∆(C−i×T−i×

U−i) assigns to every type ti ∈ Ti a probability measure bi[ti] on
the set of opponents’ choice type utility function combinations.
Given a game and an epistemic model of it, belief hierarchies,
marginal beliefs, as well as marginal belief hierarchies can be
derived from every type. For instance, every type ti ∈ Ti induces
a belief on the opponents’ choice combinations by marginalizing
the probability measure bi[ti] on the space C−i. For simplicity
sake, no additional notation is introduced for marginal beliefs. It
should always be clear from the context which belief bi[ti] refers
to.

Some further notions are now introduced. For that purpose
consider a game Γ , an epistemic model MΓ of it, and fix two
players i, j ∈ I such that i ̸= j. A type ti ∈ Ti of i is said
to deem possible some choice type utility function combination
(c−i, t−i, u−i) ∈ C−i × T−i × U−i of his opponents, if bi[ti](c−i, t−i,
u−i) > 0. Analogously, a type ti ∈ Ti deems possible some
opponent j’s type tj ∈ Tj, if bi[ti](tj) > 0. For each choice type
utility function combination (ci, ti, ui) ∈ Ci × Ti × Ui, the expected
utility is given by

vi(ci, ti, ui) =

∑
c−i∈C−i

(
bi[ti](c−i) · ui(ci, c−i)

)
for every player i ∈ I . Optimality can be viewed as a property of
choices given a type utility function pair. Formally, given some
utility function ui ∈ Ui and some type ti ∈ Ti of player i, a choice
ci ∈ Ci is optimal for (ti, ui), if vi(ci, ti, ui) ≥ vi(c ′

i , ti, ui) for all
c ′

i ∈ Ci. A player believes in his opponents’ rationality, if he only
deems possible choice type utility function triples – for each of
his opponents – such that the choice is optimal for the type utility
function pair, respectively. Formally, a type ti ∈ Ti believes in the
opponents’ rationality, if ti only deems possible choice type utility

2 If no specific probability measures on utility functions are imposed on
generalized Nash equilibrium as additional conditions, then our solution concept
can also be constructed in a more direct way based on Nash’s existence theorem.
For a given incomplete information game

(
I, (Ci)i∈I , (Ui)i∈I

)
, fix a utility function

u∗

i ∈ Ui for every player i ∈ I and consider the complete information game(
I, (Ci)i∈I , ({u∗

i })i∈I
)
. By Nash (1951, Theorem 1) a Nash equilibrium (σi)i∈I exists.

Define for every player i ∈ I a probability measure βi ∈ ∆(Ci × Ui) where

βi(ci, ui) :=

{
σi(ci), if ui = u∗

i ,

0, otherwise,

for all (ci, ui) ∈ Ci ×Ui . It then follows that (βi)i∈I constitutes a generalized Nash
equilibrium.
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function combinations (c−i, t−i, u−i) ∈ C−i × T−i × U−i such that
cj is optimal for (tj, uj) for every opponent j ∈ I \ {i}.

Iterating belief in rationality gives rise to the interactive rea-
soning concept of common belief in rationality.

Definition 3. Let Γ be a game with incomplete information, MΓ

an epistemic model of it, and i ∈ I some player.

– A type ti ∈ Ti expresses 1-fold belief in rationality, if ti
believes in the opponents’ rationality.

– A type ti ∈ Ti expresses k-fold belief in rationality for some
k > 1, if ti only deems possible types tj ∈ Tj for all j ∈ I \ {i}
such that tj expresses k − 1-fold belief in rationality.

– A type ti ∈ Ti expresses common belief in rationality, if ti
expresses k-fold belief in rationality for all k ≥ 1.

A player satisfying common belief in rationality entertains
a belief hierarchy in which the rationality of all players is not
questioned at any level. Observe that if an epistemic model con-
tains for every player only types that believe in the opponents’
rationality, then every type also expresses common belief in ra-
tionality. This fact is useful when constructing epistemic models
with types expressing common belief in rationality.

4. Epistemic characterization

Before the incomplete information solution concept of gener-
alized Nash equilibrium can be characterized epistemically, some
further epistemic notions need to be invoked. For this purpose,
consider a game with incomplete information Γ , some epistemic
model MΓ of it, and fix some player i ∈ I .

A type ti ∈ Ti of player i is said to have projective beliefs, if for
every opponent j ∈ I \ {i} it is the case that bi[ti](tj) > 0 implies
that bi[ti](ck, uk) = bj[tj](ck, uk) for all (ck, uk) ∈ Ck×Uk and for all
k ∈ I \{i, j}. Intuitively, a player with projective beliefs thinks that
every opponent shares his belief on every other player’s choice
utility function combination.

Moreover, a type ti ∈ Ti of player i is said to have inde-
pendent beliefs, if bi[ti](c−i, u−i, t−i) = Πj∈I\{i}bi[ti](cj, uj, tj) for
all (c−i, t−i, u−i) ∈ C−i × T−i × U−i. Intuitively, a player with
independent beliefs excludes the possibility that his opponents’
choice utility function pairs could be correlated.

In addition, for every opponent j ∈ I \{i}, a type ti ∈ Ti believes
that j is correct about i’s belief about the opponents’ choice utility
function combinations, if bi[t ′i ](c−i, u−i) = bi[ti](c−i, u−i) for all
t ′i ∈ supp(bj[tj]), for all tj ∈ supp(bi[ti]), and for all (c−i, u−i) ∈

C−i × U−i.
Furthermore, a type ti ∈ Ti of player i is said to have connected

beliefs, if for two opponents j, k ∈ I \ {i} such that j ̸= k, it
is the case that tk ∈ supp(bj[tj]) or tj ∈ supp(bk[tk]) for all
tj, tk ∈ supp(bi[ti])

Besides, for every opponent j ∈ I \ {i}, a type ti ∈ Ti of player
i is said to believe that j expresses a certain property, if ti only
deems possible types tj ∈ Tj of player j that express the property.

Using these epistemic notions, the following epistemic char-
acterization of generalized Nash equilibrium emerges.

Theorem 2. Let Γ be a game with incomplete information, i ∈ I
some player, and u∗

i ∈ U some utility function of player i. A choice
c∗

i ∈ Ci is optimal for u∗

i in a generalized Nash equilibrium, if and
only if, there exists an epistemic model MΓ of Γ with a type ti ∈ Ti
of player i such that c∗

i is optimal for (ti, u∗

i ) and ti satisfies the
following conditions:

(i) ti has projective beliefs,
(ii) ti believes that every opponent j ∈ I \{i} has projective beliefs,
(iii) ti has independent beliefs,

(iv) ti believes that every opponent j ∈ I \ {i} has independent
beliefs,

(v) ti believes in the opponents’ rationality,
(vi) ti believes that every opponent j ∈ I \ {i} believes in the

opponents’ rationality,
(vii) ti believes that every opponent j ∈ I \ {i} deems possible ti,
(viii) ti believes that every opponent j ∈ I \ {i} is correct about i’s

belief about the opponents’ choice utility function combina-
tions,

(ix) ti believes that every opponent j ∈ I \ {i} believes that i
is correct about j’s belief about the opponents’ choice utility
function combinations.

(x) ti has connected beliefs.

Proof. For the only if direction of the theorem, let c∗

i be optimal
for u∗

i in a generalized Nash equilibrium (βj)j∈I . Construct an
epistemic model MΓ

=
(
(Tj)j∈I , (bj)j∈I

)
of Γ , where Tj := {tj}

and bj[tj](c−j, t−j, u−j) := β−j(c−j, u−j) for all (c−j, u−j) ∈ C−j ×U−j
and for all j ∈ I .

As

vi(c∗

i , ti, u
∗

i ) =

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗

i (c
∗

i , c−i)

≥

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗

i (ci, c−i)

= vi(ci, ti, u∗

i )

for all ci ∈ Ci, it is the case that c∗

i is optimal for (ti, u∗

i ).
Observe that by definition of the marginal beliefs of bk[tk]

about the opponents’ choice type utility function combinations
to be the product measure Πl∈I\kβl for all k ∈ I , it directly holds
that every type has projective and independent beliefs. It thus
also directly follows that every type believes every opponent to
have projective and independent beliefs.

Consider some opponent j ∈ I \{i} of player i and a choice type
utility function tuple (cj, tj, uj) ∈ Cj ×{tj}×Uj of player j such that
bi[ti](cj, tj, uj) > 0. Then, βj(cj, uj) > 0 and

vj(cj, tj, uj) =

∑
(c−j,u−j)∈C−j×U−j

β−j(c−j, u−j) · uj(cj, c−j)

≥

∑
(c−j,u−j)∈C−j×U−j

β−j(c−j, u−j) · uj(c ′

j , c−j)

= vj(c ′

j , tj, uj)

for all c ′

j ∈ Cj, by construction of bi[ti] and by virtue of (βj)j∈I being
a generalized Nash equilibrium. Thus, cj is optimal for (tj, uj).
Therefore, ti believes in the opponents’ rationality. Analogously,
it can be shown that every type tj of every player j ∈ I \ {i}
also believes in the opponents’ rationality. As bi[ti](tj) = 1 for
all j ∈ I \ {i}, it follows that ti believes his opponents to believe
in the opponents’ rationality.

Note that it directly holds that ti believes every opponent
j ∈ I \ {i} to deem possible his true type ti, as there exists only
this single type of i in the epistemic model MΓ .

Moreover, ti’s marginal belief on C−i × U−i coincides with
Πj∈I\{i}βj. Since bi[ti](tj) = 1 and bj[tj](ti) = 1 holds for every
opponent j ∈ I\{i} of player i, type ti believes that every opponent
j believes that i’s marginal belief on C−i × U−i is indeed given by
Πj∈I\{i}βj. Analogously, it can be shown that the single type tj ∈ Tj
for every player j ∈ I \{i} believes that every respective opponent
k ∈ I \ {j} is correct about j’s marginal belief on C−j × U−j. As for
all j ∈ I \ {i} it is the case that bi[ti](tj) = 1 and tj believes that i
is correct about j’s marginal beliefs on C−j × U−j, it follows that
ti believes every opponent j to believe that i is correct about j’s
marginal belief on C−j × U−j.
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Finally, as there exists only one type for each player, every
type must have connected beliefs.

For the if direction of the theorem, consider an epistemic
model MΓ of Γ with a type ti ∈ Ti of player i that satisfies
conditions (i) − (x) and such that c∗

i is optimal for (ti, u∗

i ).
Construct a tuple (βj)j∈I ∈ ∆

(
×j∈I (Cj × Uj)

)
of probability

measures such that βj(cj, uj) := bi[ti](cj, uj) for all (cj, uj) ∈ Cj ×Uj
and for all j ∈ I \ {i}, and βi(ci, ui) := bm[t̂m](ci, ui) for all
(ci, ui) ∈ Ci × Ui and for some m ∈ I \ {i} and for some t̂m ∈ Tm
with bi[ti](t̂m) > 0.

We first show that for all players j, k ∈ I \ {i}, for every type
tj ∈ Tj such that bi[ti](tj) > 0 and for every type tk ∈ Tk such
that bi[ti](tk) > 0, it is the case that bj[tj](ci, ui) = bk[tk](ci, ui)
for all (ci, ui) ∈ Ci × Ui. Fix some (ci, ui) ∈ Ci × Ui. Suppose that
j = k and consider tj, t ′j ∈ Tj with bi[ti](tj) > 0 and bi[ti](t ′j ) > 0.
Towards a contradiction assume that bj[tj](ci, ui) ̸= bj[t ′j ](ci, ui).
By condition (vii), it is the case that bj[tj](ti) > 0. Hence, tj deems
it possible that i is not correct about j’s belief about i’s choice
utility function combination, a contradiction with condition (ix).
Now, suppose that j ̸= k and consider tj ∈ Tj as well as tk ∈ Tk
with bi[ti](tj) > 0 and bi[ti](tk) > 0. By condition (x) and without
loss of generality, it is the case that bj[tj](tk) > 0. By condition
(ii), it follows that bj[tj](ci, ui) = bk[tk](ci, ui).

Next, we show that (βj)j∈I constitutes a generalized Nash equi-
librium. Consider player i and suppose that βi(ci, ui) > 0. Then,
bm[t̂m](ci, ui) > 0, and there thus exists a type t ′i ∈ Ti of player
i such that bm[t̂m](ci, t ′i , ui) > 0. By conditions (viii) and (iii), it
follows that bi[t ′i ](c−i, u−i) = bi[ti](c−i, u−i) = β−i(c−i, u−i). By
condition (vi), ci is optimal for (t ′i , ui), and hence ci is optimal for
(ti, ui). Therefore,∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(ci, c−i) = vi(ci, ti, ui)

≥ vi(c ′

i , ti, ui) =

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · ui(c ′

i , c−i)

for all c ′

i ∈ Ci.
Now, consider some player j ∈ I \ {i} and suppose that

βj(cj, uj) > 0 for some (cj, uj) ∈ Cj × Uj. Then, bi[ti](cj, uj) >

0, and consequently bi[ti](cj, tj, uj) > 0 for some type tj ∈ Tj
of player j with bi[ti](tj) > 0. By condition (i), it holds that
bj[tj](ck, uk) = bi[ti](ck, uk) = βk(ck, uk) for all (ck, uk) ∈ Ck × Uk
and for all k ∈ I \ {i, j}. Since βi(ci, ui) = bm[t̂m](ci, ui) for all
(ci, ui) ∈ Ci × Ui, and as bi[ti](tj) > 0, it follows from above that
bj[tj](ci, ui) = bm[t̂m](ci, ui) = βi(ci, ui) for all (ci, ui) ∈ Ci × Ui.
By condition (iv), it thus holds that bj[tj](c−j, u−j) = β−j(c−j, u−j).
Moreover, by condition (v), the choice cj is optimal for (tj, uj), and
thus ∑
(c−j,u−j)∈C−j×U−j

β−j(c−j, u−j) · uj(cj, c−j) = vj(cj, tj, uj)

≥ vj(c ′

j , tj, uj) =

∑
(c−j,u−j)∈C−j×U−j

β−j(c−j, u−j) · uj(c ′

j , c−j)

holds for all c ′

j ∈ Cj. Consequently, (βj)j∈I constitutes a generalized
Nash equilibrium.

Since bi[ti](c−i) = β−i(c−i) and c∗

i is optimal for (ti, u∗

i ), it is
the case that∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗

i (c
∗

i , c−i) = vi(c∗

i , ti, u
∗

i )

≥ vi(ci, ti, u∗

i ) =

∑
(c−i,u−i)∈C−i×U−i

β−i(c−i, u−i) · u∗

i (ci, c−i)

for all ci ∈ Ci. As (βj)j∈I constitutes a generalized Nash equilib-
rium, c∗

i is optimal for u∗

i in a generalized Nash equilibrium. ■

Fig. 3. A two player game between Alice and Bob.

The preceding theorem shows that correct beliefs conditions
are inherently linked to the incomplete information solution con-
cept of generalized Nash equilibrium. In fact, conditions (vii)−(ix)
together form the correct beliefs assumption that is needed. Intu-
itively, with the presence of incomplete information the correct
beliefs assumption naturally does not only apply to strategic but
also to payoff uncertainty.

However, only two layers of common belief in rationality are
needed for the epistemic characterization of generalized Nash
equilibrium. In fact, the epistemic conditions of Theorem 2 do not
even imply common belief in rationality.

Remark 1. There exists a game Γ with incomplete information,
an epistemic model MΓ of Γ , i ∈ I some player, and some type
ti ∈ Ti of player i such that ti satisfies conditions (i) − (x) of
Theorem 2, but ti does not express common belief in rationality.

As complete information is a special case of incomplete infor-
mation, the following example of a two person complete infor-
mation game establishes Remark 1.

Example 1. Consider the two player game between Alice in Bob
represented in Fig. 3. Construct an epistemic model MΓ of Γ

given by TAlice = {tA, t ′A, t
′′

A } and TBob = {tB, t ′B} with bAlice[tA] =

(c, tB), bAlice[t ′A] = (c, t ′B), and bAlice[t ′′A ] = (d, tB), as well as
bBob[tB] = 0.5 · (a, tA)+ 0.5 · (a, t ′A), and bBob[t ′B] = (a, t ′′A ). Observe
that tA satisfies conditions (i) − (x) of Theorem 2. However, tA
does not express common belief in rationality, as tA believes that
tB deems possible that Alice is of type t ′A, which believes that Bob
is of type t ′B, which in turn believes Alice to be of type t ′′A and to
choose a, i.e. which believes Alice to choose irrationally. ♣

Restricting attention to the specific class of complete informa-
tion games, the epistemic characterization of generalized Nash
equilibrium provides an epistemic characterization of the solu-
tion concept’s complete information analogue i.e. Nash equilib-
rium. The result is a direct consequence of Theorem 2, if payoff
uncertainty is eliminated.

Corollary 1. Let Γ be a game with complete information, and i ∈ I
some player. A choice ci ∈ Ci is optimal in a Nash equilibrium, if and
only if, there exists an epistemic model MΓ of Γ with a type ti ∈ Ti
of player i such that ci is optimal for ti and ti satisfies the conditions
(i) − (x) of Theorem 2.

With Corollary 1 a new epistemic characterization of Nash
equilibrium is added to the analysis of static games with complete
information.

5. Related literature

The solution concept of Nash equilibrium for static games
with incomplete information has been explored in terms of its
underlying epistemic assumptions notably by Aumann and Bran-
denburger (1995), Perea (2007), Barelli (2009), as well as Bach
and Tsakas (2014). The relation of our work to this previous
literature is now discussed.

Most importantly, our epistemic characterization (Theorem 2)
differs from the previous epistemic literature on Nash equilib-
rium by considering the more general framework of incomplete
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information. Also, the formulation of the solution concept of
generalized Nash equilibrium does explicitly involve payoff un-
certainty. From a classical game theoretic perspective, Theorem 1
can be viewed as an incomplete information analogue to Nash
(1951, Theorem 1).

In contrast to Theorem 2, the epistemic characterizations by
Aumann and Brandenburger (1995), Perea (2007), Barelli (2009),
as well as Bach and Tsakas (2014) are all restricted to the special
case of complete information. However, Corollary 1 provides an
epistemic characterization of Nash equilibrium for static games
with complete information and can thus be directly compared to
the previous literature on Nash equilibrium.

First of all, for the case of more than two players, Aumann and
Brandenburger (1995) use a common prior assumption in their
model, which essentially states that the beliefs of all players are
derived via Bayesian conditionalization from a single probability
measure. Barelli’s (2009) action consistency assumption weakens
the common prior assumption. Accordingly, any belief about the
expectation of any random variable – measurable with respect
to the players’ choices – must be equal to the expectation and
coincide for all players. Bach and Tsakas (2014) further weaken
Barelli’s global assumption by only requiring action consistency
between pairs of players on a biconnected graph. In a sense,
both the common prior assumption as well as action consistency
postulate that the players’ beliefs are sufficiently aligned. In con-
trast to the epistemic characterizations of Nash equilibrium by
Aumann and Brandenburger (1995), Barelli (2009), as well as
Bach and Tsakas (2014), Example 1 does not use any form of
common prior or action consistency.

The epistemic conditions for Nash equilibrium by Aumann
and Brandenburger (1995) imply common belief in rationality
(cf. Polak, 1999). For Perea (2007) the same holds (this follows
from some proofs in Perea, 2007). In comparison, Example 1
establishes that the epistemic conditions used by Example 1 do
actually not imply common belief in rationality.

Furthermore, the approaches by Aumann and Brandenburger
(1995), Barelli (2009), as well as Bach and Tsakas (2014) are state-
based, whereas we employ a one-person perspective approach
by modelling all epistemic conditions within the mind of the
reasoner only. The elementary epistemic operator in Aumann and
Brandenburger (1995) as well as in Barelli (2009) is knowledge,
while we use the weaker epistemic notion of belief. In contrast to
Perea’s (2007) epistemic conditions for Nash equilibrium, Corol-
lary 1 does not imply that a player believes his opponents to be
correct about his full belief hierarchy: our conditions only imply
that a player believes his opponents to be correct about his first-
order belief, i.e. the first layer in his belief hierarchy. Unlike Bach
and Tsakas (2014) we do not use any graph structure as additional
modelling component.
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