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a b s t r a c t

We consider a game Gn played by two players. There are n independent random variables Z1, . . . , Zn, each
of which is uniformly distributed on [0,1]. Both players know n, the independence and the distribution of
these random variables, but only player 1 knows the vector of realizations z :¼ (z1, . . . , zn) of them. Player
1 begins by choosing an order zk1

; . . . ; zkn of the realizations. Player 2, who does not know the realizations,
faces a stopping problem. At period 1, player 2 learns zk1

. If player 2 accepts, then player 1 pays zk1
euros

to player 2 and play ends. Otherwise, if player 2 rejects, play continues similarly at period 2 with player 1
offering zk2

euros to player 2. Play continues until player 2 accepts an offer. If player 2 has rejected n � 1
times, player 2 has to accept the last offer at period n. This model extends Moser’s (1956) problem, which
assumes a non-strategic player 1.

We examine different types of strategies for the players and determine their guarantee-levels.
Although we do not find the exact max–min and min–max values of the game Gn in general, we provide
an interval In = [an,bn] containing these such that the length of In is at most 0.07 and converges to 0 as n
tends to infinity. We also point out strategies, with a relatively simple structure, which guarantee that
player 1 has to pay at most bn and player 2 receives at least an. In addition, we completely solve the spe-
cial case G2 where there are only two random variables. We mention a number of intriguing open ques-
tions and conjectures, which may initiate further research on this subject.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

For many years, scientists from different disciplines have
explored the well-known ‘‘secretary problem”. This is a stopping
problem in which n secretaries are invited, in a random order, for
an interview to fill a secretarial position. The employer knows
the number of secretaries, and is aware that the order is random.
After every interview, the employer can rank the secretaries inter-
viewed so far from best to worst without ties, and must decide
whether or not to hire the last candidate. His task is to find a stop-
ping rule that maximizes the probability of hiring the best secre-
tary. The optimal stopping rule has the following form: Reject
the first rn secretaries, and then hire the first secretary who is bet-
ter than all the preceding ones. If no such secretary arrives after
round rn, then the best candidate was among the first rn secretaries,
and it therefore does not make a difference whether or not to hire
the last secretary. For large n, the optimal choice of rn is approxi-
mately n/e, and the probability of hiring the best secretary is
approximately 1/e. For a historical overview of this classical secre-
tary problem the reader is referred to Ferguson (1989).

The secretary problem has been extended in a number of impor-
tant directions. In particular, versions have been studied in which
the payoff depends on the rank of the selected candidate, even if
he or she is not the best. This seems more realistic than the classical
scenario, as hiring the second best candidate is obviously better
than hiring the third best. We can further extend this situation by
assuming that every secretary has a cardinal value distributed
according to some probability measure, but where the payoff solely
depends on the rank of the selected candidate (see Gnedin and
Krengel (1995) and the references therein, and Bearden (2006)).
In this case, however, it is perhaps more natural to assume that
the payoff is exactly equal to the cardinal value of the selected can-
didate, instead of its relative rank. For instance, if there are two sec-
retaries with neighbouring ranks, then selecting the best amongst
these two is less relevant if their values are close, and more relevant
if the difference in values is high. This is exactly the model as stud-
ied by Moser (1956), who assumes that the values are indepen-
dently and uniformly distributed on [0,1]. In fact, Moser’s model
is a variant of a problem considered by Arthur Cayley in the nine-
teenth century. (See Ferguson (1989) for a description of Cayley’s
problem.)

In the present paper we take Moser’s model, but assume in
addition that there is an adversary who knows the values of the
secretaries, and chooses the order of the secretaries strategically.
The employer, on the other hand, does not know these values,

0377-2217/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ejor.2010.08.027

⇑ Corresponding author. Tel.: +31 43 3883922.
E-mail addresses: J.Flesch@maastrichtuniversity.nl (J. Flesch), A.Perea@maas

trichtuniversity.nl (A. Perea).

European Journal of Operational Research 209 (2011) 73–82

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor



Author's personal copy

but only knows the number of secretaries, and the distribution of
their respective values. We thus obtain a zero-sum game with
incomplete information on the employer’s side. We are not the first
to take a game theoretic approach to the problem.1 See, for in-
stance, Gilbert and Mosteller (1966), Gnedin and Krengel (1995)
and de Carvalho et al. (2008).

The adversary’s main problem is how to optimally exploit his
private information. This is a difficult problem since the adversary,
by using his private information, would make choices that would
reveal part of his private information to the employer. In our anal-
ysis, however, we mainly focus on the employer, in line with the
literature on the secretary problem. In particular, we will be inter-
ested in his max–min strategies, that is, strategies for which the
worst-case expected payoff is as high as possible.

For the case of two secretaries, we prove that the value exists,
and show that the employer’s unique2 optimal strategy is to hire
the first secretary precisely when her value is at least 0.5. This strat-
egy guarantees an expected payoff of 7/12 to the employer. An opti-
mal strategy for the adversary is to first send the secretary whose
value is closer to 0.5.

If there are more than two secretaries, we are not able to find
exact max–min strategies for the employer. However, we provide
strategies with a simple structure that approach the max–min va-
lue within a distance of at most 0.07. The class of strategies we fo-
cus on are threshold strategies, and they work as follows: For every
period k choose a threshold ak, which may depend on the values of
the rejected secretaries, and hire the current secretary precisely
when her value is at least ak. Such a threshold strategy is called sta-
tionary if ak is constant throughout the game, except for the last
period where the employer must accept the last candidate. The
strategy is a Markov threshold strategy if ak depends on the period
k, but not on the values of the rejected secretaries.

We show that the best stationary threshold strategy is to choose
the threshold equal to (1/n)1/(n�1), where n is the number of secre-
taries. This threshold converges (slowly) to 1 if n tends to infinity.
Interestingly, this is also the best stationary threshold strategy in
Moser’s model, where the order of the secretaries is not chosen
strategically. We show that this stationary threshold strategy per-
forms relatively well in general, as it approximates the max–min
value by at most 0.08.

We then turn to Markov threshold strategies. We show that the
best amongst these involves thresholds that are non-increasing
over time. For the case of two and three secretaries, this strategy
is in fact the best stationary threshold strategy discussed above.
So, for these cases choosing different thresholds over time does
not yield higher payoffs. We conjecture, supported by numerical
simulations, that this remains to be true for more than three secre-
taries as well.

However, for at least three secretaries, we show that the best
threshold strategy must base its thresholds not only on the period,
but also on the values of the rejected secretaries. Nevertheless, it
remains true that the thresholds should be non-increasing over
time. We prove that the employer, by using such general threshold
strategies, can approach the max–min value by at most 0.07.

It turns out to be very difficult to provide effective strategies for
the adversary. We do, however, provide some suggestions at the
end of the paper.

1.1. Some open problems

We end this introduction by providing an overview of some
interesting open problems, which may initiate some further re-
search in this area. (1) Find out if the value and optimal strategies
exist for more than two secretaries. And if these exist, determine
the exact value, and optimal strategies, of the game; (2) Verify
whether, in general, pure optimal strategies always exist, and
whether this can be a threshold strategy for player 2; (3) Explore
if, in general, Markov threshold strategies are not better for player
2 than the best stationary threshold strategy.

1.2. Outline of the paper

In Section 2 we introduce the model. In Section 3 we describe
the optimal strategy for the employer if the order of secretaries
is not chosen strategically. After this section we will explore the
situation where the adversary is strategic, that is, chooses the order
of secretaries to his own advantage. Section 4 covers the case of
two secretaries. In Section 5 we turn to the case of more than
two secretaries, and examine stationary threshold strategies for
the employer. General threshold strategies are explored in Section
6. Section 7 contains some concluding remarks, also on effective
strategies for the adversary. Some technical proofs have been
moved to the appendix.

2. The Model

2.1. The game

Consider the following game Gn, where n 2 N, played by two
players. There are n independent random variables Z1, . . . , Zn, each
of which is uniformly distributed on [0,1]. We assume that both
players know n, the independence and the distribution of these
random variables, but only player 1 knows the vector of realiza-
tions z :¼ (z1, . . . ,zn) of these. The game is played as follows. Let
N = {1, . . . ,n}. At period 1, player 1 chooses one of {zi}i2N, say zk1 ,
and offers zk1 euros to player 2. If player 2 accepts, then player 1
pays zk1 euros to player 2 and play ends. Otherwise, if player 2 re-
jects, play continues at period 2, where player 1 chooses one of the
remaining amounts fzigi2N�fk1g , say zk2 . Player 1 subsequently of-
fers zk2 euros to player 2, who either accepts or rejects. If player
2 accepts, then player 1 pays zk2 euros to player 2 and play ends,
whereas if player 2 rejects, then player 1 has to offer one of the
remaining amounts fzigi2N�fk1 ;k2g. This continues until player 2 ac-
cepts an offer. If player 2 has rejected n � 1 times, player 2 has
to accept the last offer at period n.

In terms of the secretary problem as described in the intro-
duction, player 1 corresponds to the adversary whereas player
2 plays the role of employer. The realizations of the random
variables Z1, . . . ,Zn are the values of the n secretaries.

2.2. Strategies

Let X :¼ [0,1] be the space of realizations. For every k 2 N, let
Xk :¼ [0,1]k be endowed with the Borel r-algebra. Let /(N) denote
the set of all permutations of N. Note that player 1, after a vector of
realizations, could as well just choose one permutation in /(N) in
advance, instead of choosing period by period. A pure strategy
for player 1 is a measurable function s1 which specifies a permuta-
tion in /(N) for each possible vector of realizations z 2Xn. By S1 we
denote the set of pure strategies for player 1, which we endow with
the product topology. Let BðS1Þ be the induced Borel r-algebra on
S1. A mixed strategy for player 1 is a probability measure r1 on
ðS1;BðS1ÞÞ. Denote by R1 the set of mixed strategies for player 1.

1 Most of the models are interested in the relative rank of the chosen secretary, and
not in the cardinal value as we are. There is, however, a relationship between the two
approaches. Bruss and Ferguson (1993) show, namely, that there is a strong
correlation between the cardinal values and their associated ranks. See also Bruss
(2005).

2 To be precise, unique up to behavior on a set of measure zero.
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Note that a pure strategy s1 can be identified with a mixed strategy
r1 putting probability 1 on {s1}.

At any decision point for player 2, the history observed by player
2 is the sequence consisting of all amounts that player 1 has offered
before the current period. A pure strategy for player 2 is a collection
s2 of functions s2

k , k 2 {1, . . . ,n}, where s2
k is a measurable function

which assigns a member from {Accept, Reject} to any vector of real-
izations in Xk. The interpretation of s2

k is that player 2 makes a deci-
sion at period k, based on the history and the currently offered
amount. By S2 we denote the set of pure strategies for player 2,
which again we endow with the product topology. Let BðS2Þ be
the induced Borel r-algebra on S2. A mixed strategy for player 2 is
a probability measure r2 on ðS2;BðS2ÞÞ. Denote by R2 the set of
mixed strategies for player 2. Again, a pure strategy s2 can be iden-
tified with a mixed strategy r2 putting probability 1 on {s2}.

A pure strategy s2 for player 2 is called a threshold strategy if,
after any history h of player 2, there exists a threshold
a(h) 2 [0,1] such that s2 prescribes to accept the current offer y
when y P a(h) and prescribes to reject it when y < a(h). If these
thresholds only depend on the period, then s2 is called a Markov
threshold strategy, whereas if there is just one threshold then s2

is called a stationary threshold strategy.3 Markov threshold strate-
gies for player 2 are given and denoted by the sequence of thresholds
a :¼ (a1 , . . . ,an�1) for the first n � 1 periods, whereas a stationary
threshold strategy of player 2 is simply a threshold a 2 [0,1].

2.3. Utility

With respect to a pair of (mixed) strategies (r1,r2) and a vector
of realizations z 2Xn, let Uz(r1,r2) denote the expected amount
that player 1 has to pay to player 2. Denote by Pn the uniform dis-
tribution on Xn, and let

Uðr1;r2Þ :¼
Z

z2Xn
Uzðr1;r2ÞdPn

;

be the expected amount that player 1 must pay to player 2, prior to
the realization. Note that U(r1,r2) is well-defined because Uz(r1,r2)
is a bounded and measurable function of z 2Xn, and therefore inte-
grable on Xn with respect to Pn. We also refer to U(r1,r2) as the ex-
pected utility. We evaluate every strategy r1 of player 1 by

w1ðr1Þ ¼ sup
r2

Uðr1;r2Þ;

which is the worst-case scenario for what player 1 has to pay in
expectation. Similarly, for every strategy r2 of player 2, let

w2ðr2Þ ¼ inf
r1

Uðr1;r2Þ:

A strategy r1 for player 1 is called a best reply to a strategy r2 of
player 2, if U(r1,r2) = w2(r2). Similarly, a strategy r2 for player 2
is called a best reply to a strategy r1 of player 1, if U(r1,
r2) = w1(r1).

2.4. The min–max and max–min values

The min–max value of the game is given by

w1 :¼ inf
r1

w1ðr1Þ:

So, player 1 can guarantee not to pay more than w1 by appropriately
choosing a strategy r1 (up to an arbitrarily small error term). A
strategy r1 is called an � -min–max strategy, where �P 0, if

w1ðr1Þ 6 w1 þ �:

Similarly, we define the max–min value by

w2 :¼ sup
r2

w2ðr2Þ;

which is the highest possible payment that player 2 can guarantee
for himself by appropriately choosing a strategy r2 (up to an arbi-
trarily small error term). A strategy r2 is called an �-max–min strat-
egy, where �P 0, if

w2ðr2ÞP w2 � �:

It is known that w1 P w2. If they are equal, then this amount is
called the value of the game, and is denoted by vn. If vn exists, then
a strategy r1 for player 1 is called optimal if w1(r1) = vn, whereas a
strategy r2 for player 2 is called optimal if w2(r2) = vn. It is clear that
r1 and r2 are optimal if and only if they are best replies to each
other.

We note that we are able to prove that the value exists for n = 2
(see Section 4), but it is still an open problem whether it exists for
n P 3. Our conjecture is that it exists for n P 3 as well.

3. Playing against a non-strategic player 1

In this section, we examine the situation in which player 1 does
not manipulate the order of the realizations z1, . . . , zn, and simply
chooses zk for period k. For every n, let s1

n denote this strategy for
player 1, and let ev n denote the best utility player 2 can achieve
against s1

n, i.e. ~vn ¼ w1 s1
n

� �
.

The most important properties of this situation are summarized
below. Most of these were already proven by Moser (1956).

Theorem 1 (Non-strategic player 1).

(1) Player 2’s best reply to s1
n, unique up to a set of measure zero, is

the Markov threshold strategy which, for period k 2 {1, . . . ,n},
prescribes threshold bk :¼ ~vn�k. (Recall that ~vn�k is player 2’s
best utility against s1

n�k).
(2) Player 2’s best utility ~vn satisfies the recursion ~v1 ¼ 1

2, and
~vn ¼ 1

2þ 1
2 ð~vn�1Þ2 for all n P 2.

(3) The sequence ~vn is strictly increasing and limn!1~vn ¼ 1.
(4) Player 2’s best amongst the stationary threshold replies to s1

n is
a�n ¼ 1

n

� � 1
n�1, i.e. for any stationary threshold strategy a for player

2 we have U s1
n; a

�
n

� �
P U s1

n; a
� �

. The strategy a�n, while not
being a best reply to s1

n for any n P 3, is asymptotically a best
reply, i.e. limn!1U s1

n; a
�
n

� �
¼ limn!1~vnð¼ 1Þ.

Proof. First, we show part 1. Consider period 1. If player 2 decides
to reject, then n � 1 amounts will remain, yielding ~vn�1 in expecta-
tion at a best continuation. Hence, if player 2 is offered at least ~vn�1

at period 1, then he accepts, otherwise he rejects. This argument
holds for any later period, which proves part 1.

Next, we prove part 2. At period 1, with regard to the strategy
prescribed in part 1, player 2 accepts with probability 1� ~vn�1,
with conditional expected amount 1

2 ð~vn�1 þ 1Þ, and rejects with
probability ~vn�1. Therefore,

~vn ¼ ð1� ~vn�1Þ �
1
2
ð~vn�1 þ 1Þ þ ~vn�1 � ~vn�1 ¼

1
2
þ 1

2
ð~vn�1Þ2: ð1Þ

It is obvious that ~v1 ¼ 1
2, so part 2 has been verified.

Part 3 is simple and intuitive. Take some n P 2. Then, ~vn > ~vn�1

because by (1)

~vn ¼ ð1� ~vn�1Þ �
1
2
ð1þ ~vn�1Þ þ ~vn�1 � ~vn�1

> ð1� ~vn�1Þ � ~vn�1 þ ~vn�1 � ~vn�1 ¼ ~vn�1:

3 In accordance with the literature on dynamic games, we use the term Markov to
emphasize that the thresholds only depend on the current period but not on the
specific history. Similarly, we use stationary to emphasize the time and history
independence of the thresholds.
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Here we used that ~vn�1 2 ð0;1Þ. Since the sequence ~vn is strictly
increasing and ~vn 6 1 for all n, we may conclude that limn!1~vn ex-
ists. By part 2,

lim
n!1

~vn ¼
1
2
þ 1

2
lim
n!1
ð~vnÞ2;

yielding limn!1~vn ¼ 1.
Finally, we show part 4. Take a stationary threshold strategy a

for player 2. With probability an�1, we have zi < a for all
i 2 {1, . . . ,n � 1}, in which case player 2 rejects all z1, . . . , zn�1 and
must accept zn, yielding a conditional expectation of 1

2. On the other
hand, with probability 1 � an�1, we have zi P a for at least one
i 2 {1, . . .,n � 1}, hence player 2 will accept the first amount above a,
yielding a conditional expectation of 1

2 ðaþ 1Þ. Thus, strategy a gives

Uðs1
n; aÞ ¼ an�1 � 1

2
þ ð1� an�1Þ � 1

2
ðaþ 1Þ ¼ 1

2
ð1þ a� anÞ:

By taking derivatives, it easily follows that U s1
n; a

� �
has a unique

maximum at a�n ¼ 1
n

� � 1
n�1, which is in [0,1].

Note that

U s1
n; a

�
n

� �
¼ 1

2
1þ a�n �

1
n

a�n

� �
;

which, in view of Lemma 9, implies

lim
n!1

Uðs1
n; a

�
nÞ ¼

1
2

1þ lim
n!1

a�n
� �

¼ 1:

Hence, a�n is an asymptotically best reply to s1
n.

Finally, it is clear in view of parts 1 and 3 that a�n is not optimal
when n P 3, since in this case different thresholds must be used at
periods 1 and 2. h

Remark. The following table shows an approximation of ~vn for
some values of n:

n 2 3 4 5 10 20 50 100

~vn �0.63 �0.70 � 0.74 �0.78 �0.86 �0.92 �0.96 �0.98

In fact, Moser (1956) and Gilbert and Mosteller (1966) showed
that

~vn � 1� 2
nþ lnðnÞ þ b

;

if n is large. Here, b is a constant approximately equal to 1.7680.

4. The special case of two random variables (The Game G2)

From now on, we will focus on the situation in which there is a
strategic adversary. In this section, we examine in detail the case
when we have two random variables, that is, n = 2. So, player 1
must choose an order for the realizations z1 and z2. In this game
both players only have to make a choice at period 1. Therefore,
whenever we speak about a player’s choice we always mean his
choice at period 1. We show the following results.

Theorem 2 (Properties of the game G2).

(1) An optimal strategy for player 1 is to choose (in period 1) the
amount closer to 1

2, i.e. to choose z1 if z1 � 1
2

�� �� 6 z2 � 1
2

�� ��, and
to choose z2 otherwise.

(2) Player 2’s optimal strategy, unique up to a set of measure zero,
is the stationary threshold strategy a ¼ 1

2.
(3) The value is v2 ¼ 7

12.

Proof. Let r1 and a denote the strategies described in part 1 and
part 2, respectively. It is sufficient to show that (1) r1 is a best reply
to a, (2) a is a best reply to r1, unique up to a set of measure zero,
and (3) the induced expected utility is Uðr1; aÞ ¼ 7

12. In the follow-
ing, let x1 :¼min{z1,z2} and x2 :¼max{z1,z2}.

Step 1: We show that r1 is a best reply to a. We distinguish the
following cases (we assume that x1 – x2, otherwise player 1’s
strategy is surely a best reply):

Case 1: x1 < x2 <
1
2. In this case, r1 offers x2, which a rejects,

yielding x1 as the outcome, which is the best possible
amount for player 1.
Case 2: 1

2 6 x1 < x2. In this case, r1 offers x1, which a accepts,
yielding x1 as the outcome, which is the best possible
amount for player 1.
Case 3: x1 <

1
2 6 x2. In this case, r1 offers either x1 or x2,

depending on the exact values of x1 and x2, but a is going
to reject x1 and accept x2. Thus, the outcome is x2. Observe
that player 1 cannot achieve x1 given player 2’s threshold
strategy a ¼ 1

2.

In conclusion, r1 is a best reply to a in all cases.
Step 2: We show that a is a best reply to r1. It will be clear from
the proof that the best reply is unique up to a set of measure
zero. Suppose player 1 offers some amount x (which is either
x1 or x2). Let y denote the other amount.

Assume first that x P 1
2. Given player 1’s strategy, either y 6 1 � x

or y P x, otherwise player 1 would offer y instead of x. Thus,
given x is offered, y is uniformly distributed over
[0,1 � x] [ [x,1], and therefore has conditional expectation 1

2.
Assume now that x < 1

2. Given x is offered, we obtain similarly
that y is uniformly distributed over [0,x] [m � x,1], and there-
fore has conditional expectation 1

2 again.
Hence, we see that the conditional expectation of y is always 1

2,
and therefore a best reply for player 2 is to accept x if and only if
x P 1

2, in accordance with a.
Step 3: We prove that Uðr1; aÞ ¼ 7

12. We distinguish the follow-
ing cases:

Case 1: z1 <
1
2 and z2 <

1
2 (cf. case 1 in step 1): This occurs with

probability 1
4, and the outcome is x1 = min{z1,z2} with condi-

tional expectation 1
6 (cf. Lemma 8 in appendix).

Case 2: z1 P 1
2 and z2 P 1

2 (cf. case 2 in step 1): This occurs
with probability 1

4, and the outcome is x1 = min{z1,z2} with
conditional expectation 2

3 (cf. Lemma 8 in appendix).
Case 3: z1 <

1
2 6 z2 or z2 <

1
2 6 z1 (cf. case 3 in step 1): This

occurs with probability 1
2, and the outcome is x2 = max

{z1,z2} with conditional expectation 3
4.

Hence,

Uðr1; aÞ ¼ 1
4
� 1
6
þ 1

4
� 2
3
þ 1

2
� 3
4
¼ 7

12
;

completing the proof. h

Remark. In the game G2, player 1 in fact has many different opti-
mal strategies, one of which is described in the theorem above. All
optimal strategies coincide, up to a set of measure zero, with r1 in
cases 1 and 2 of step 1, but may show different behavior in case 3.
The reason is that in case 3 any behavior for player 1 is a best reply
against a ¼ 1

2.

5. Stationary threshold strategies for player 2

In this section, we identify the best strategy that player 2 has
amongst all stationary threshold strategies. It turns out that this
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strategy is exactly the same as the one we found in Section 3. This
means that player 2, if he is restricted to stationary threshold strat-
egies, will behave identically irrespective of whether player 1
chooses strategically or not.

Theorem 3 (Best stationary threshold strategy). Consider the game
Gn. Player 2’s best stationary threshold strategy is a�n ¼ 1

n

� � 1
n�1, i.e. for

any stationary threshold strategy a of player 2 we have
w2 a�n
� �

P w2ðaÞ. Moreover, a�n guarantees

w2 a�n
� �

¼ 1
nþ 1

þ a�n � a�n
� �n ¼ 1

nþ 1
þ n� 1

n
a�n:

Proof. It is clear that a = 0 or a = 1 cannot be player 2’s best sta-
tionary threshold strategy. Therefore, take an arbitrary a 2 (0,1).
In order to find w2(a), we identify a best reply for player 1. In the
following, let x1, . . . , xn be a permutation of z1, . . . , zn such that
x1 6 x26� � �6 xn. We distinguish two cases:

Case 1: x16� � �6xn < a. This case occurs with probability an, and
the outcome with best play by player 1 is x1 (player 1 should
keep x1 for the last period when it has to be accepted). The con-
ditional expectation of x1 is

n � 0þ a
nþ 1

¼ a
nþ 1

;

(cf. Lemma 8 in appendix).
Case 2: x16� � �6xk < a 6 xk+16� � �6xn with some k 2 {0, . . . ,n � 1}.
This case occurs with probability

n

k

� �
� ak � ð1� aÞn�k

;

and the outcome with best play by player 1 is xk+1 (all x1, . . . , xk are
rejected by player 2, and the lowest amount player 2 accepts is
xk+1). The conditional expectation of xk+1 is

ðn� kÞ � aþ 1
n� kþ 1

;

(cf. Lemma 8 in appendix).
So the expected utility when player 1 uses a best reply r1 to a is

Uðr1;aÞ¼ an � a
nþ1

þ
Xn�1

k¼0

n
k

� �
�ak � ð1�aÞn�k � ðn�kÞ �aþ1

n�kþ1
:

Somewhat surprisingly, Lemma 10 guarantees that the above
expression reduces to

Uðr1; aÞ ¼ 1
nþ 1

þ a� an:

By taking derivatives, it easily follows that U(r1,a) has a unique
maximum at a�n ¼ 1

n

� � 1
n�1, which is in [0,1]. h

Remark. Lemma 9 shows that a�n ¼ 1
n

� � 1
n�1 converges to 1 when n

tends to infinity. Note also that the probability of the maximal
amount max{z1, . . . ,zn} being at least a�n is exactly

an :¼ 1� a�n
� �n ¼ 1� 1

n
a�n:

Hence, if player 2 uses the stationary threshold strategy a�n, then the
probability that player 2 eventually accepts an amount above the
threshold a�n is also exactly an. Since an converges to 1 when n tends
to infinity, the strategy a�n will accept an amount above a�n with
probability close to 1, for large n. This, of course, also means that
w2 a�n
� �

converges to 1, although this also follows directly from the

expression for w2 a�n
� �

in Theorem 3. The following table shows an
approximation of a�n and w2 a�n

� �
for some values of n:

n 2 3 4 5 10 20 50 100

a�n =0.5 �0.58 �0.63 �0.67 �0.77 �0.85 �0.92 �0.95

w2 a�n
� � �0.58 �0.63 �0.67 �0.70 �0.79 �0.86 �0.92 �0.95

Interestingly, a�nþ1 ¼ 1
nþ1

� �1
n

is a very good approximation of
w2 a�n
� �

for all n, i.e. a�nþ1 P w2 a�n
� �

for all n P 2 and

max
nP2

a�nþ1 � w2ða�nÞ
� �

¼ a�3 � w2 a�2
� �

� 0:006:

Regarding the comparison between w2 a�n
� �

and ~vn (cf. Section 3), we
remark that ~vn P w2 a�n

� �
for all n P 2 and that

max
nP2

~vn � w2 a�n
� �� �

6 0:08: ð2Þ

Since the max–min value of the game Gn belongs to the interval
w2 a�n
� �

; ~vn
	 


, the stationary threshold strategy a�n is quite effective
for all n P 2.

6. General threshold strategies for player 2

In this section, we examine general threshold strategies for
player 2. First we show that we may restrict our investigation to
threshold strategies r2 with the following property: if r2 pre-
scribes threshold bk at period k, and the offered amount is below
bk and gets rejected by r2, then the new threshold bk+1 at period
k + 1 satisfies bk P bk+1. Thus, the thresholds are non-increasing
during any play.

Theorem 4 (Thresholds are non-increasing). Consider an arbitrary
threshold strategy r2 for player 2. Define another threshold strategyer2 for player 2 as follows: At period 1, the strategy ~r2 prescribes the
same threshold as r2, i.e. ~r2ð;Þ :¼ r2ð;Þ, where ; denotes the empty
history at period 1. At any period k P 2, if (y1, . . . , yk�1) denotes the
sequence of past rejected amounts, then let

~r2ðy1; . . . ; yk�1Þ :¼ min
‘¼1;...;k

r2ðy1; . . . ; y‘�1Þ:

Then, ~r2 has the following properties:

1. The threshold strategy ~r2 is at least as good as r2, i.e.
w2ð~r2ÞP w2ðr2Þ.

2. With respect to ~r2, the thresholds are non-increasing during any
play: at any period k P 2 and for any sequence (y1, . . . , yk�1) of past
amounts that ~r2 has rejected, we have

~r2ðy1; . . . ; yk�2ÞP ~r2ðy1; . . . ; yk�1Þ:

Proof. Property (2) is obvious, so we only have to show the prop-
erty (1). Let s1 be a pure best reply of player 1 to ~r2. Take an arbi-
trary realization vector z = (z1, . . . ,zn), and suppose that s1

prescribes the realizations in the order y1, . . . , yn. Let m denote
the period at which ~r2 accepts ym. Thus, ym ¼ Uzðs1; ~r2Þ and
ym P ~r2ðy1; . . . ; ym�1Þ. If m > 1, we may assume without loss of gen-
erality that ym < ~r2ðy1; . . . ; ym�2Þ, because otherwise s1 could just
as well offer ym already at period m � 1 since ~r2 would accept it.
This means

~r2ðy1; . . . ; ym�1Þ 6 ym < ~r2ðy1; . . . ; ym�2Þ;

which implies

~r2ðy1; . . . ; ym�1Þ ¼ r2ðy1; . . . ; ym�1Þ: ð3Þ
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We now show that Uz(s1,r2) = ym. Since the threshold prescribed by
~r2 is never higher than the threshold prescribed by r2, it is clear
that r2 also rejects y1, . . . , ym�1 up to period m � 1. But then, at per-
iod m, the strategy r2 also accepts ym in view of (3). Thus, Uz(s1, -
r2) = ym indeed.

Therefore, Uzðs1; ~r2Þ ¼ ym ¼ Uzðs1;r2Þ, which implies

w2ð~r2Þ ¼ Uðs1; ~r2Þ ¼ Uðs1;r2ÞP w2ðr2Þ;

completing the proof of property (1). h

Corollary 5. Let a = (a1, . . . ,an�1) be a Markov threshold strategy for
player 2. Then, there exists a Markov threshold strategy
b = (b1, . . . , bn�1) for player 2 such that bk P bk+1 for all
k 2 {1, . . . ,n � 2} and for which w2(b) P w2(a). Consequently, a best
strategy amongst the Markov threshold strategies for player 2 consists
of a non-increasing sequence of thresholds.4

The above corollary can also be shown in a more direct way.
First, one can prove the following statement about transpositions
of neighboring thresholds. Let a = (a1, . . . ,an�1) be a Markov thresh-
old strategy for which ak < ak+1 holds for some k 2 {1, . . . ,n � 2}. Let
b = (b1, . . .,bn�1) denote the Markov threshold strategy obtained by
bk = ak+1 and bk+1 = ak, while bm = am for all m 2 {1, . . . ,k � 1,
k + 2, . . . ,n � 1}. Then, it can be shown that w2(b) P w2(a). Given
this result, the corollary above follows by the well known theorem
in algebra that any permutation can be written as a product of
transpositions of two neighboring elements.

Theorem 6 (Stationary threshold strategies are not optimal). When
n P 3, player 2 has a threshold strategy which is strictly better than all
stationary threshold strategies.

Proof. Let n P 3. In view of Theorem 3, it suffices to construct a
threshold strategy for player 2 which is strictly better than the sta-
tionary threshold strategy a ¼ 1

n

� � 1
n�1. Let b 2 (0,a) be arbitrary. Let

r2
b be the threshold strategy for player 2 which prescribes thresh-

old a at every period, except in the following case: at period n � 1
(which is the last period when player 2 has a choice), if all n � 2
previously rejected amounts are in the interval [b,a), then use
threshold b at period n � 1.

Now we show that r2
b is strictly better than strategy a for player

2, if b is sufficiently close to threshold a. Let (z1, . . . ,zn) denote the
realizations of the amounts. We distinguish the following cases:

Case 1: Less than n � 2 amounts in z1, . . . , zn are in the interval
[b,a). In this case, r2

b is the same as a.
Case 2: Precisely n � 2 amounts in z1 , . . . , zn are in the interval
[b,a). In this case, r2

b can only prescribe threshold b at period
n � 1 if player 1 offers precisely these n � 2 amounts in [b,a) at
periods up to n � 2. But then, for periods n � 1 and n, there is
no amount left in [b,a). Hence, in this case, r2

b is equally good as a.
Case 3: Precisely n � 1 amounts in z1 , . . . , zn are in the interval
[b,a). Let z denote the minimum of these n � 1 amounts in
[b,a) and let w denote the amount outside [b,a). We show that,
with best play by player 1, strategy r2

b yields outcome z and a
yields outcome w.
Case 3i: w < b. In this case, with best play by player 1, strategy r2

b

yields outcome z. Indeed, if player 1 offers all amounts in [b,a)
except z at periods up to n � 2 and offers z at period n � 1, strat-
egy r2

b will accept z as z P b. On the other hand, w cannot be the
outcome for the following reason. Player 2 would only accept

wat the last period, as w < b. Thus, to achieve w, player 1 would
have to offer the n � 1 amounts in [b,a) at periods up to n � 1.
But then, r2

b accepts the amount at period n � 1. The strategy
a, on the other hand, yields w as outcome, because player 1
can reserve w for the last period, when it has to be accepted.
Case 3ii: w P a. In this case, with best play by player 1, strategy
r2

b yields outcome z. Indeed, if player 1 offers all amounts in
[b,a) except z at periods up to n � 2 and offers z at period
n � 1, strategy r2

b will accept z as z P b. The strategy a, on the
other hand, yields w, as a rejects all other amounts.
Case 4: All n amounts in z1, . . . , zn are in the interval [b,a). In this
case, with best play by player 1, strategy r2

b yields min{z1, . . . ,zn}
as outcome, since player 1 can offer the minimal amount at per-
iod n � 1. The strategy a also yields min{z1, . . . , zn} as outcome,
because player 1 can reserve the minimal amount for the last
period, when it has to be accepted. Hence, in this case, r2

b is
equally good as a.
In conclusion, r2

b is equally good as a in all cases except for case
3. On condition that case 3 occurs, we obtain the following.
Recall that, with best play by player 1, strategy r2

b yields out-
come z and strategy a yields outcome w. Let Ez(b) denote the
conditional expected value of z and let Ew(b) denote the condi-
tional expected value of w in case 3. In order to show that strat-
egy r2

b is strictly better than strategy a, for b sufficiently close to
a, we need to show that

lim
b"a

EzðbÞ > lim
b"a

EwðbÞ:

Since z 2 [b,a) in case 3, we have

lim
b"a

EzðbÞ ¼ a:

We calculate limb"aEw(b) in the following way. Subcase 3i appears
with conditional probability

pb ¼
b

bþ ð1� aÞ ;

and the conditional expectation of w is b
2. Subcase 3ii appears with

conditional probability 1 � pb, and the conditional expectation of
wis

aþ 1
2

:

Hence,

EwðbÞ ¼ pb �
b
2
þ ð1� pbÞ �

aþ 1
2

:

By taking the limit, we obtain

lim
b"a

EwðbÞ ¼
a2

2
þ 1� a2

2
¼ 1

2
:

In conclusion,

lim
b"a

EzðbÞ ¼ a >
1
2
¼ lim

b"a
EwðbÞ;

which completes the proof. h

Theorem 7 (Markov threshold strategies are not optimal). When
n P 3, player 2 has a threshold strategy which is strictly better than
all Markov threshold strategies.

Proof. Let n P 3. Take a best Markov threshold strategy
a = (a1, . . . ,an�1) for player 2. We construct a threshold strategy
r2 for player 2 which is strictly better than a. In view of Corollary
5 and Theorem 6, we may assume that a1P. . .P ak > ak+1

P� � �Pan�1. It can easily be verified that a1 = 1 or an�1 = 0 can never
yield a best strategy amongst all Markov threshold strategies, and
hence we assume that a1 < 1 and an�1 > 0.

4 It can be shown, also by the argument after the corollary, that all best Markov
threshold strategies have non-increasing thresholds.
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Consider the threshold strategy r2 for player 2 which prescribes
the same thresholds as a except in the following case: at period
k + 1, if the rejected amount at period k was in the interval [0,ak+1),
then use threshold ak at period k + 1. We show that, with best play
by player 1, the strategy r2 is strictly better than a for player 2.

Step 1: We show that, for every vector of realizations
z = (z1, . . . ,zn), the strategy r2 is at least as good as a for player 2.
Let z = (z1, . . . ,zn) be a vector of realizations. Let r1 denote a pure
best reply for player 1 to r2, and suppose that r1 offers these
amounts in the order (y1, . . . ,yn). Let s1 be the strategy for player
1 which also uses the order (y1 , . . . ,yn), except in the following
case: if yk < ak+1 and yk+1 2 [ak+1,ak), then use the order

ðy1; . . . ; yk�1; ykþ1; yk; ykþ2; . . . ; ynÞ:

We show that Uz(r1,r2) = Uz(s1,a), which will imply that
w2(r2) P w2(a). We may assume that all y1 < a1, . . . , yk�1 < ak�1

(i.e. they are all rejected) and that yk < ak+1, otherwise (r1,r2) and
(s1,a) lead to the same outcome. We distinguish the following
cases:

Case 1: If yk+1 P ak. In this case, Uz(r1,r2) = Uz(s1,a) = yk+1.
Case 2: If yk+1 2 [ak+1,ak). In this case, r2 will use threshold ak

at period k + 1. Thus, both (r1,r2) and (s1,a) lead to rejec-
tions at periods k and k + 1, and hence Uz(r1,r2) = Uz(s1,a).
Case 3. If yk+1 < ak+1. Also in this case, both (r1,r2) and (s1,a)
lead to rejections at periods k and k + 1, and hence
Uz(r1,r2) = Uz(s1,a).

Step 2: We show that there exists a set W of realization vectors
such that W has a positive probability and that, for every reali-
zation vector in W, the strategy r2 is strictly better than a for
player 2.

Let W denote the set of realization vectors in which exactly k
amounts are in the interval [0,an�1), exactly 1 amount is in the
interval [ak+1,ak), and exactly n � k � 1 amounts are in the inter-
val [a1,1]. Of course, W has a positive probability, since a1 < 1
and an�1 > 0. Take an arbitrary realization vector in W. Notice
that, against a, it is a best reply for player 1 to offer the k
amounts in [0,an�1) at periods up to k, which all get rejected,
and then at period k + 1 to offer the amount in [ak+1,ak), which
is accepted. This does not work against r2, since in this case,
r2 uses threshold ak at period k + 1. It is easy to see that r2 leads
to an outcome in [a1,1], regardless player 1’s strategy. h

Two important questions arise:

Question (1): Which are the best threshold strategies for player
2?
Question (2): Does player 2 have better strategies than thresh-
old strategies?

Question (1) is already challenging for n = 3. The best threshold
strategy for player 2 that we could find is the following. Let
a 2 (0,1) and b 2 (0,a) be arbitrary. Let r2

ab be the threshold strat-
egy for player 2 which prescribes threshold a at period 1, and pre-
scribes threshold a at period 2 if the rejected amount was in
interval [0,b) and threshold b at period 2 if the rejected amount
was in interval [b,a). (This is very similar to strategy r2

b in the proof
of Theorem 6, with the only difference being that a here is also a
variable.) Let a* and b* denote optimal values for a and b. According
to a numerical approximation by the program package Mathemat-
ica, a* � 0.5838 and b* � 0.4975. The strategy r2

a�b� guarantees
w2 r2

a�b�
� �

� 0:6354 (the best stationary threshold strategy found
in Theorem 3 yields 0.6349, which is just ‘‘slightly” less). We did
not manage to find an improvement on r2

a�b� for player 2. It seems
natural to try to find an improvement by splitting [0,a) into more

than 2 subintervals. Thus, instead of a and b only, now player 2 can
choose a, b, c, d 2 (0,1), with d 6 c 6 b 6 a, and a map a :
{a,b,c,d} ? {a,b,c,d}. Then, player 2 will use the following thresh-
old strategy: At period 1, use threshold a. If the offered amount y1

is rejected, then the new threshold at period 2 will depend on
which of the subintervals [0,d), [d,c), [c,b), [b,a) contains y1. More
precisely, if y1 is contained in subinterval [u,w), then the new
threshold is a(w). With the help of the program package Mathem-
atica, with a numerical precision of 10�10, we found the surprising
conclusion that r2

a�b� is still a best amongst these strategies, i.e. one
of the optimal choices is a = a*, b = c = d = b* and a(a) = b, a(b) = a.
We do not see now how one could improve upon r2

a�b� . It is not
even really clear to us why r2

a�b� is so effective, although the proof
of Theorem 6 provides some ideas.

We do not know the answer to Question (2). We only know that
an optimal threshold strategy exists for player 2 in G2, cf. Section 4.

7. Concluding remarks

7.1. Are Markov threshold strategies really better for player 2 than
stationary threshold strategies?

Notice that corollary 5 does not exclude the possibility that the
best Markov threshold strategy is the stationary threshold strategy
which we derived in Section 5. In fact, we conjecture that this holds
true for all n. For n = 1 and n = 2, this is trivial, since player 2 uses at
most one threshold. For n = 3, we verified this conjecture in the fol-
lowing way. For an arbitrary Markov threshold strategy r2 = (a1,a2)
for player 2 with non-increasing thresholds a1 P a2, we determined
a best response for player 1, and calculated the corresponding ex-
pected outcome, as a function of a1 and a2. Then, we checked that
this expected outcome is indeed maximal when a1 ¼ a2 ¼ 1

3

� �1
2. For

n = 4 and n = 5, the program package Mathematica confirms this
conjecture (with a numerical precision of 10�5). For a general n, it
is difficult to prove this conjecture. First of all, the proof we used
for n = 3 produces huge polynomials when n is large. It seems more
natural to try a proof based on induction. Perhaps, the best candi-
date is to try to show the following statement: if a = (a1,a2, . . . ,an�1)
is a Markov threshold strategy for player 2 with thresholds

a1 P � � �P ak > akþ1 ¼ � � � ¼ an�1;

then there is a strictly better Markov threshold strategy of the form
~a ¼ ða1; . . . ; ak; b; . . . ; bÞ with an appropriate threshold b 2 [ak+1,ak].

7.2. Effective strategies for player 1

In this section, we focus on player 1. The main difference is that
here we have to deal with more complex strategies, as player 1 can
base his decisions on the realization vector. In general for n P 3,
we have not been able to find a 0-min–max strategy for player 1.
Nevertheless, we provide some insight, and present effective strat-
egies for player 1 with a simple structure (although just offering
amount zk at period k for every k, as in Section 3, is already quite
effective, especially for large n).

Recall that, for any n P 3, the max–min value of the game be-
longs to the interval w2 a�n

� �
; ~vn

	 

, where w2 a�n

� �
and ~vn are deter-

mined in Sections 5 and 3, respectively. We reiterate the
approximations:

n 2 3 4 5 10 20 50 100

~vn �0.63 �0.70 � 0.74 �0.78 �0.86 �0.92 � 0.96 �0.98

w2 a�n
� � �0.58 �0.63 �0.67 �0.70 �0.79 � 0.86 �0.92 �0.95
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As pointed out in (2),

max
nP2

~vn � w2 a�n
� �� �

6 0:08;

which means that the strategy for player 1 in which he offers every
realization zk at period k, is already 0.08-min–max. Nevertheless,
player 1 can do better than ~vn. Below we provide some possible
improvements.

7.2.1. Improvement 1
Based on the results for n = 2 in Section 4, there is one simple

improvement for player 1 for all n P 3. Let n1
n be the strategy for

player 1 which, for any realization vector z = (z1, . . . ,zn), prescribes
the following: At any period k 6 n � 2, offer zk to player 2. At the
last two periods, i.e. at periods n � 1 and n, play the strategy found
in Section 4 with the two remaining amounts zn�1 and zn. Now we
determine un :¼ w1 n1

n

� �
. We have u2 ¼ v2 ¼ 7

12 according to
Theorem 2. We proceed by calculating u3. Just as in the proof of
Theorem 1, player 2 should accept the offered amount y at period
1 if y P v2 ¼ 7

12, and reject it otherwise. Thus, player 2 accepts y
with probability 1 � v2 and with conditional expected amount
1
2 ðv2 þ 1Þ, and rejects with probability v2. Therefore,

u3 ¼ ð1� v2Þ �
1
2
ðv2 þ 1Þ þ v2 � v2 ¼

1
2
þ 1

2
ðv2Þ2:

Using this argument inductively, we obtain for all n P 3 that

un ¼
1
2
þ 1

2
ðun�1Þ2:

We obtained a similar recursion for ~vn in Theorem 1. As
~v2 ¼ 5

8 >
7

12 ¼ u2, we may conclude ~vn > un for all n P 2. The follow-
ing table provides an approximation of un for some values of n:

n 2 3 4 5 10 20 50 100

w1 n1
n

� �
¼ un

�0.58�0.67�0.72�0.76� 0.86�0.92�0.96�0.98

Note that

max
nP2

w1 n1
n

� �
� w2 a�n

� �� �
6 0:07; ð4Þ

which means that n1
n is 0.07-min–max for player 1.

7.2.2. Improvement 2
Recall from Section 4 that, for n = 2, it was optimal for player 1

to choose the amount closer to 1
2. We now try to generalize this

strategy for n = 3. Take some w 2 1
2 ;1
	 


. Let r1
w be the strategy for

player 1 which, for realizations z1, z2, z3, prescribes the following:
At period 1, player 1 should offer the amount closest to w. If this
amount is rejected, then at period 2, player 1 should offer the
amount amongst the two remaining amounts which is closer to w.

Suppose that, against r1
w, player 2 uses a pure threshold strat-

egy r2
w. (One can show, based on the discussion below, that player

2 has a best reply in threshold strategies.) Let aw denote the thresh-
old prescribed by r2

w at period 1. If r2
w rejects amount y1 2 [0,aw) at

period 1, it is relatively easy to determine the best threshold for
period 2. Let y2 and y3 denote the amounts chosen by r1

w for peri-
ods 2 and 3. We distinguish the following cases.

Case 1: If y2 P w. In this case, since y3 is not closer to w than y2,
we have either y3 2 [y2,1] or y3 2 [0,2w � y2]. This gives a con-
ditional expectation of y3 equal to

d3 ¼
ð1� y2Þ � y2þ1

2 þ ð2w� y2Þ � 2w�y2
2

ð1� y2Þ þ ð2w� y2Þ
:

As w P 1
2, we have 1 � y2 6 2w � y2. Moreover, y2 P w implies that

y2 þ 1
2

P
2w� y2

2
:

Hence,

d3 6
1
2

y2 þ 1
2
þ 2w� y2

2

� �
¼ 1

4
ð2wþ 1Þ 6 w 6 y2:

This means that player 2 should accept y2.
Case 2: If y2 < w. In this case, since y3 is not closer to w than y2,

we have either y3 2 [0,y2] or y3 2 [2w � y2,1] (with the
latter interval being empty when 2w � y2 > 1).

Case 2.1: If 2w � y2 > 1. In this case, y3 2 [0,y2] and player 2
should accept y2.
Case 2.2: If 2w � y2 6 1. In this case, the conditional expectation
of y3 is equal to

d3 ¼
y2 � y2

2 þ ð1� 2wþ y2Þ � 2w�y2þ1
2

y2 þ ð1� 2wþ y2Þ
: ð5Þ

Here, player 2 should accept y2 exactly when y2 P d3, which is a
quadratic inequality.

By backwards induction, it would be possible to calculate the
best threshold aw for period 1. We have found the following, with
the help of a simulation with the program package Mathematica:

1. Regarding r1
w: The best value of w for player 1 is about w = 0.59.

2. Regarding r2
w: Against r1

0:59, the best value of threshold a0.59 is
about a0.59 = 0.59. (This implies for case 2.2, in view of (5), that
player 2 should accept y2 exactly when y2 6 0.21 or y2 P 0.47,
approximately.)

3. Regarding the expected outcome: we have w1 r1
0:59

� �
�

Uðr1
0:59;r2

0:59Þ � 0:639.
This numerical simulation indicates that the strategy r1

0:59 is very
effective, as v3 P w2 a�3

� �
� 0:6349 (or even v3 P w2 r2

a�b�
� �

�
0:6354 where r2

a�b� is the strategy given at the end of Section 6).

This also yields a possible improvement for player 1 for all
n P 4, just as above. Let s1

n be the strategy for player 1 which, for
any realization vector z = (z1, . . . ,zn), prescribes the following: At
any period k 6 n � 3, offer amount zk to player 2. At the last three
periods, play the strategy r1

0:59 with amounts zn�2, zn�1 and zn. With
a similar calculation as before we find the following approximate
values of w1 s1

n

� �
for different values of n:

n 3 4 5 10 20 50 100

w1ðs1
nÞ �0.64 �0.70 �0.75 �0.85 �0.92 �0.96 �0.98

with

max
nP2

w1 s1
n

� �
� w2 a�n

� �� �
6 0:065:

We do not know whether, for n > 3, a strategy similar to r1
w would

be effective for player 1.

7.3. The value vn and optimal strategies

Except for n = 2 in Section 4, we are not sure whether the value
and optimal strategies exist. Nevertheless, we know that v2 ¼ 7

12
and that the min–max and max–min values are strictly increasing
in n and converge to 1 as n tends to infinity. For an estimation of
these values, we may use the interval In ¼ w2 a�n

� �
;w1 n1

n

� �	 

. The

length of In is at most 0.07, in view of (4 ), and converges to 0 as
n tends to infinity. Consequently, the stationary threshold strategy
a�n is 0.07-max–min for player 2 and the strategy n1

n is also
0.07-min–max for player 1. Note that, at the end of Sections 6

80 J. Flesch, A. Perea / European Journal of Operational Research 209 (2011) 73–82



Author's personal copy

and 7.2, we provided possible improvements on these strategies
(i.e. r2

a�b� for n = 3 and s1
n for n P 3), which also yield in turn a bet-

ter estimate for the min–max and max–min values. We remark
that, when n =1 (i.e. the case of countably infinite random vari-
ables), the value equals v1 = 1 and any strategy of player 1 is opti-
mal, whereas player 2 has only near-optimal strategies.
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Appendix A

Lemma 8. Let W1, . . . , Wm denote independent random variables, each
of which having a uniform distribution on some interval [c,d]. Then

E minfW1; . . . ;Wmgð Þ ¼ m � c þ d
mþ 1

and

E maxfW1; . . . ;Wmgð Þ ¼ c þm � d
mþ 1

:

Proof. Let W* = min{W1, . . . ,Wm}. We will show for the interval
[c,d] = [0,1] that

EðW�Þ ¼ 1
mþ 1

:

Since max{W1, . . . ,Wm} = 1 �min{1 �W1, . . . ,1 �Wm}, we obtain
part 2 for interval [0,1]. It is easy to check, by using the linearity
of the expectation, that the results hold for a general interval [c,d]
as well.

So, take [c,d] = [0,1]. Let W denote a random variable having a
uniform distribution on interval [0,1]. Then, its density fW(t) is
given by fW(t) = 1 for t 2 [0,1] and fW(t) = 0 otherwise. Also, its
cumulative distribution FW ðtÞ ¼ PðW 6 tÞ is given by FW(t) = 0 if
t < 0, and FW(t) = t if t 2 [0,1] and FW(t) = 1if t > 1.

As for W*, we clearly have FW� ðtÞ ¼ 0 if t < 0 and FW� ðtÞ ¼ 1 if
t > 1, whereas for t 2 [0,1]

FW� ðtÞ ¼ PðW�
6 tÞ ¼ 1� PðW� > tÞ

¼ 1� P fWi > t8i 2 f1; . . . ;mggð Þ ¼ 1� ðPðW > tÞÞm

¼ 1� ð1� FW ðtÞÞm ¼ 1� ð1� tÞm:

Hence, fW� ðtÞ ¼ 0 if t < 0 or t > 1, while for t 2 [0,1]

fW� ðtÞ ¼ d
dt

FW� ðtÞ ¼ m � ð1� tÞm�1
:

So,

EðW�Þ ¼
Z 1

�1
t � fW� ðtÞdt ¼

Z 1

0
t �m � ð1� tÞm�1dt

¼ m �
Z 1

0
ð1� uÞ � um�1du ¼ m � 1

m
um � 1

mþ 1
umþ1

� �u¼1

u¼0

¼ m � 1
m
� 1

mþ 1

� �
¼ 1

mþ 1
;

where we used the substitution u = 1 � t. h

Lemma 9. limn!1
1
n

� � 1
n�1 ¼ 1.

Proof. By using the rule of L’Hospital, we have

lim
n!1

lnðnÞ
n� 1

¼ lim
n!1

1
n
¼ 0:

Hence,

lim
n!1

1
n

� � 1
n�1

¼ lim
n!1

n�
1

n�1 ¼ lim
n!1

eln n�
1

n�1
� �

¼ lim
n!1

e�
1

n�1�lnðnÞ ¼ e0 ¼ 1: �

Lemma 10. For every a 2 R� f0;1g and every n 2 N it holds that

anþ1

nþ 1
þ
Xn�1

k¼0

n

k

� �
� ak � ð1� aÞn�k � ðn� kÞ � aþ 1

n� kþ 1
¼ 1

nþ 1
þ a� an:

ð6Þ

Proof. Let Dn be equal to the lefthandside of (6). Then,

Dn ¼
anþ1

nþ 1
þ
Xn�1

k¼0

n!

k! � ðn� kþ 1Þ! � a
k � ð1� aÞn�k � ððn� kþ 1Þ � a

þ ð1� aÞÞ

¼ anþ1

nþ 1
þ
Xnþ1

k¼0

n!

k! � ðn� kþ 1Þ! � a
k � ð1� aÞn�k � ððn� kþ 1Þ � a

þ ð1� aÞÞ � an � anþ1

nþ 1

¼
Xnþ1

k¼0

n!

k! � ðn� kþ 1Þ! � a
k � ð1� aÞn�k � ððn� kþ 1Þ � aþ ð1� aÞÞ

� an

¼
Xnþ1

k¼0

n! � ðnþ 1� kÞ
k! � ðnþ 1� kÞ! � a

kþ1 � ð1� aÞn�k þ
Xnþ1

k¼0

n!

k! � ðn� kþ 1Þ! � a
k

� ð1� aÞnþ1�k � an:

Notice that

Xnþ1

k¼0

n! � ðnþ 1� kÞ
k! � ðnþ 1� kÞ! � a

kþ1 � ð1� aÞn�k

¼ a �
Xn

k¼0

n!

k! � ðn� kÞ! � a
k � ð1� aÞn�k ¼ a � ðaþ ð1� aÞÞn ¼ a

and

Xnþ1

k¼0

n!

k! � ðn� kþ 1Þ! � a
k � ð1� aÞnþ1�k

¼ 1
nþ 1

Xnþ1

k¼0

ðnþ 1Þ!
k! � ðnþ 1� kÞ! � a

k � ð1� aÞnþ1�k

¼ 1
nþ 1

ðaþ ð1� aÞÞnþ1 ¼ 1
nþ 1

:

Thus,

Dn ¼ aþ 1
nþ 1

� an;

completing the proof. h
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