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a b s t r a c t

We consider bargaining problems under the assumption that players are loss averse, i.e., experience
disutility from obtaining an outcome lower than some reference point. We follow the approach of Shalev
(2002) by imposing the self-supporting condition on an outcome: an outcome z in a bargaining problem
is self-supporting under a given bargaining solution, whenever transforming the problem using outcome
z as a reference point, yields a transformed problem in which the solution is z.

We show that n-player bargaining problems have a unique self-supporting outcome under the
Kalai–Smorodinsky solution. For all possible loss aversion coefficients we determine the bargaining
solutions that give exactly these outcomes, and characterize them by the standard axioms of Scale
Invariance, Individual Monotonicity, and Strong Individual Rationality, and a new axiom called
Proportional Concession Invariance (PCI). A bargaining solution satisfies PCI if moving the utopia point
in the direction of the solution outcome does not change this outcome.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the bargaining problem as defined by Nash (1950) two play-
ers try to find agreement on a set of feasible outcomes. Failure to
cooperate results in a disagreement outcome, unfavorable to both.
Nash proposed and axiomatized the well known Nash bargaining
solution. A wide range of other solutions have been formulated
since. One of themost prominent alternatives to the Nash bargain-
ing solution is the Kalai–Smorodinsky solution, defined by Raiffa
(1953) and characterized by Kalai and Smorodinsky (1975).

In economics the risk attitude of an agent tends to play an
important role in how that agent behaves. In the bargaining
literature, much attention has been paid to the influence of risk
attitudes, and in particular risk aversion, on the outcomes assigned
by specific bargaining solutions. Several studies (Kannai, 1977;
Kihlstrom et al., 1981) find that the Nash bargaining solution
favors the less risk averse player. Kihlstrom et al. (1981) find
similar results for the Kalai–Smorodinsky solution. Köbberling
and Peters (2003) also study the effect of risk aversion on the
Kalai–Smorodinsky solution, but distinguish between probabilistic

✩ We thank two referees and an associate editor for their valuable comments.
∗ Corresponding address: Óbuda University, Faculty of Economics, Tavaszmező

15–17, H-1084 Budapest, Hungary. Tel.: +36 666 5208; fax: +36 666 5219.
E-mail addresses: driesen.bram@gmail.com (B. Driesen),

A.Perea@maastrichtuniversity.nl (A. Perea), H.Peters@maastrichtuniversity.nl
(H. Peters).
1 Tel.: +31 43 3883835; fax: +31 43 3884874.

0165-4896/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.mathsocsci.2010.10.003
risk aversion and utility risk aversion. They find that it is an
advantage to have a more utility risk averse opponent, or a less
probabilistically risk averse opponent.

In the present paper we investigate the Kalai–Smorodinsky
solution under a related behavioral phenomenon, called loss
aversion. Loss aversion was first introduced by Kahneman and
Tversky (1979). It is based on the premise that losses with respect
to some reference point weigh heavier than gains, and thus that
a decision maker’s utility function exhibits a relatively sharp
decrease below this reference point.

To introduce this concept in the bargaining problem, we
follow the approach of Shalev (2002). Each player’s preference
is represented by a von Neumann–Morgenstern utility function,
a nonnegative loss aversion coefficient, and a reference point;
if a player’s utility level is below his reference point, then he
experiences an extra disutility equal to the size of his incurred loss,
multiplied by the loss aversion coefficient. This way, incorporating
the players’ loss aversion is equivalent to applying a particular
transformation to the bargaining problem. Reference points are
made endogenous by imposing the self-supporting condition. An
outcome z is said to be self-supporting under a given solution,
whenever transforming the bargaining problem using outcome z
as reference point, yields a problem of which the solution is z. We
may interpret a player’s reference point as the expectation or the
aspiration of the utility payoff which that player may realize given
a certain bargaining solution. The self-supporting condition then
imposes that the bargaining solution assigns to each player exactly
the (initially) aspired utility level, without the need to correct it for
loss aversion.

http://dx.doi.org/10.1016/j.mathsocsci.2010.10.003
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In this paper we show that n-player bargaining problems,
n ≥ 2, have exactly one outcome that is self-supporting under
the Kalai–Smorodinsky solution2. Kalai and Smorodinsky (1975)
defined their solution on two-player bargaining problems. We
consider the set of all n-player bargaining problems defined by
Peters and Tijs (1984), and on this set we define a class of
asymmetric n-person Kalai–Smorodinsky solutions, as follows.
Consider a Pareto optimal outcome and the line segments
connecting that outcome to the disagreement point and to the
utopia point. For any pair of players we may then project these
line segments into the plane. Our solution is defined by the
unique Pareto optimal outcome such that for any two players, the
slopes of these projected line segments satisfy a given proportion
which depends on the loss aversion coefficients. We show that
for each loss aversion profile, there is a single bargaining solution
in our class that yields the associated self-supporting outcome.
This implies uniqueness of a self-supporting outcome under
the Kalai–Smorodinsky solution for n-player bargaining games.
Moreover, the bargaining solutions we define make it easy to find
this outcome.

We next provide a characterization of this class of bargaining
solutions, by the standard axioms of Strong Individual Rationality,
Scale Invariance, and Individual Monotonicity, and a new axiom
called Proportional Concession Invariance: this axiom says that
if players make concessions with respect to their utopia values
in such a way that the new utopia point is on the line segment
connecting the solution outcome and the original utopia point,
then the solution outcome is left unchanged.

The paper proceeds as follows. After some preliminaries in
Section 2 we show in Section 3 how loss aversion is incorporated
into the bargaining problem. Section 4 describes the concept
of monotonic curves and the associated bargaining solutions,
and defines the Kalai–Smorodinsky solution as a special case. In
Section 5 we describe for each loss aversion profile the bargaining
solution that gives exactly the self-supporting outcome under
the Kalai–Smorodinsky solution. Section 6 contains the axiomatic
characterization of this class of bargaining solutions. Section 7
concludes. All proofs are relegated to the Appendix.

2. Preliminaries

The set of players is denoted by N = {1, . . . , n}, with n ≥ 2.
For x, y ∈ RN we write x ≥ y if xi ≥ yi for all i ∈ N , and x > y if
xi > yi for all i ∈ N . The relations ‘≤’ and ‘<’ are defined similarly.
We define RN

+
= {z ∈ RN

| z ≥ 0} and RN
++

= {z ∈ RN
| z > 0}.

For x, y ∈ RN we denote by xy the vector (x1y1, . . . , xnyn), and for
S ⊆ RN we define xS = {xy ∈ RN

| y ∈ S}. Similarly, we denote
(x1 + y1, . . . , xn + yn) as x + y, and the set {x + z | z ∈ S} as
x + S. The vector in RN that has the i-th coordinate equal to 1 and
all other coordinates equal to 0 is denoted ei. The vector eM ,M ⊆ N
andM ≠ ∅, has all coordinates i ∈ M equal to 1, and all coordinates
i ∉ M equal to 0. For x ∈ RN

++
, we denote


1
x1

, . . . , 1
xn


as x−1. A

set S ⊆ RN is comprehensive if x ∈ S and x ≥ y imply y ∈ S, for all
x, y ∈ RN .

A bargaining problem for N is a pair (S, d) where
• S ⊆ RN is non-empty, closed, convex, and comprehensive,
• d ∈ S,
• there exists a z ∈ S such that z > d, and
• Sd := {z ∈ S | z ≥ d} is bounded.

The assumption of comprehensiveness can be interpreted as free
disposal of utility in the sense that any player can choose a lower

2 This was already noticed by Shalev (2002), without proof, for the case of two-
player bargaining problems.
Fig. 1. The thick curve is (part of) the graph of the transformation wi . In this
diagram, λi = 0.5 and zi < ri .

utility payoff without this leading to an infeasible outcome. Players
seek agreement on an outcome z in S, yielding utility zi to player i.
In case no agreement is reached the disagreement outcome d results.

The set of all bargaining problems is denoted by BN . For (S, d) ∈

BN and each i ∈ N , we define

ui(S, d) = max{zi | z ∈ Sd}.

This represents thehighest possible utility payoff player i can attain
in the bargaining problem (S, d), given that no player j ∈ N, j ≠

i, obtains a utility payoff lower than dj. The vector u(S, d) =

(u1(S, d), . . . , un(S, d)) is called the utopia point of (S, d). For all
(S, d) ∈ BN we define the Pareto set of S as

P(S) = {z ∈ S | for all x ∈ RN , if x ≥ z and x ≠ z, then x ∉ S}.

A bargaining solution or in short, a solution, is a map ϕ : BN
→ RN

that assigns to each bargaining problem (S, d) ∈ BN a single point
ϕ(S, d) ∈ S.

3. Bargaining with loss aversion

Shalev (2000, 2002) introduced a transformation that models
loss aversion of players. Each player i ∈ N has a non-negative loss
aversion coefficient λi and a reference point ri. We denote the vector
(λ1, . . . , λn) ∈ RN

+
by λ. Similarly, r = (r1, . . . , rn) ∈ RN . Each

player i evaluates a utility payoff zi ∈ R by the transformation wi,
defined as

wi(zi, λi, ri) =


zi if zi ≥ ri
zi − λi(ri − zi) if zi < ri.

Thus, a player i who incurs a loss, that is, obtains a utility payoff zi
below his reference point ri, experiences a disutility that is equal
to his loss ri − zi, multiplied by the loss aversion coefficient λi.
Payoffs above the reference point are left unchanged. See Fig. 1 for
an illustration, and see Remark 3.3 at the end of this section for a
short further discussion of this model of loss aversion.

For utility outcomes z ∈ RN we write

w(z, λ, r) = (w1(z1, λ1, r1), . . . , wn(zn, λn, rn)).

For sets T ⊆ RN we write w(T , λ, r) = {w(z, λ, r) | z ∈ T }.
Henceforth, the transformationw : RN

×RN
+
×RN

→ RN is referred
to as the Shalev transformation.

For bargaining problems (S, d) ∈ BN we write

w((S, d), λ, r) = (w(S, λ, r), w(d, λ, r)).

The following lemma shows that the set BN is closed under the
Shalev transformation.

Lemma 3.1. Let (S, d) ∈ BN , λ ∈ RN
+
, and r ∈ RN . Then w((S, d),

λ, r) ∈ BN .
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Consider a bargaining problem (S, d) ∈ BN and a bargaining
solution ϕ. If the players agree on ϕ as the solution to be used, but
they are also loss averse in varying degrees λi (i ∈ N), then they
should agree on a point z ∈ RN which results from applying ϕ to
the Shalev-transformed problemwith z determining the reference
points of the players. This gives rise to the following definition. For
given λ and (S, d), a point z ∈ S is a self-supporting outcome under
ϕ if
z = ϕ(w((S, d), λ, z)).
Hence, with a self-supporting outcome under ϕ determining the
reference points of the players, they reach an agreement according
to ϕ in the bargaining problem in which their loss aversion has
been incorporated. Put somewhat differently, the players expect
to obtain utility payoffs as described by the solution ϕ, and so
these expectations determine their reference points: each player
experiences anything lower as a loss. Thus, the final agreement is
in general not given by ϕ(S, d) — since ϕ(S, d) is not necessarily
equal to ϕ(w((S, d), λ, ϕ(S, d))) — but by the outcome z in S such
that ϕ(w((S, d), λ, z)) = z.

Remark 3.2. The notion of a self-supporting outcome was intro-
duced in Shalev (2002). It is analogous to Shalev’s (2000) notion of
loss aversion equilibrium. A pair of (mixed) strategies in a bimatrix
game is a loss aversion equilibrium if the following holds: there is a
pair (z1, z2) of payoffs such that, in the Shalev-transformed bima-
trix game with z1 and z2 as reference outcomes, this pair of strate-
gies is a Nash equilibrium resulting in (z1, z2) as (expected) pay-
offs. The role of the bargaining solution ϕ is, thus, played by the
solution concept of Nash equilibrium. The notion of loss aversion
equilibrium is, in turn, analogous to the notion of personal equilib-
rium inKöszegi andRabin (2006); the latter notion is the individual
decision making version of loss aversion equilibrium.

For a fixed loss aversion profile λ and bargaining problem
(S, d), we define the set of all self-supporting outcomes under the
bargaining solution ϕ as
Selfϕ((S, d), λ) = {z ∈ S | z = ϕ(w((S, d), λ, z))}.
Clearly, Selfϕ : BN

× RN
+

→ RN is a correspondence that assigns
to each bargaining problem (S, d) ∈ BN and loss aversion profile
λ ≥ 0 a (possibly empty) subset of S.

For two-player bargaining games (S, d), Shalev (2002) char-
acterized the set of self-supporting outcomes under the Nash
bargaining solution. Specifically, he showed that it is a closed,
connected subset of the Pareto set P(S).

In this paper, starting in the next section, we focus on the
Kalai–Smorodinsky solution.We conclude the present sectionwith
a remark on a preference foundation for the Shalev loss aversion
transformation.

Remark 3.3. A preference foundation for the loss aversion model
proposed by Shalev (2000, 2002) is provided in Peters (2010). As
a matter of fact, it is a quite common approach in theories of
loss aversion to multiply utility losses by a constant loss aversion
coefficient and subtract this from a basic utility function. See,
for instance, Köbberling and Wakker (2005) and the references
therein. Shalev extends this approach by assuming, conveniently,
that the same loss aversion coefficient is used for different
reference outcomes. Thus, the loss aversion coefficient is constant
in two different respects: for losses compared to a fixed
reference outcome, and across different reference outcomes. In
the preference model of Peters (2010) an agent’s preference is a
triadic relation (as for instance in Sugden, 2003), involving triples
consisting of two outcomes and a reference outcome. The imposed
axioms make sure that the decision maker is an expected utility
maximizer where the expected utility function is determined by a
basic utility function and a reference point. For instance, the set of
outcomes can be the real line and all finite lotteries on it, a case
that may underly the bargaining model in this paper.
4. The Kalai–Smorodinsky solution

Raiffa (1953) and Kalai and Smorodinsky (1975) defined and
characterized the Kalai–Smorodinsky solution (KS) for bargaining
problems in B{1,2}. Roth (1979) observed that the n-player
extension of the KS solution is not Pareto optimal on all bargaining
problems in BN , i.e., does not assign an element of P(S) to each
(S, d) ∈ BN . Therefore, Peters and Tijs (1984) introduced a subclass
of bargaining problems in BN for which this problem does not
occur. Consider the following condition on a problem (S, d) ∈ BN :

For all x ∈ S, x ≥ d, i ∈ N:

x ∉ P(S) and xi < ui(S, d) ⇒ ∃ ε > 0 with x + εei ∈ S. (1)

This condition says that if a feasible outcome x is not Pareto
optimal, then for any player i who receives less than his utopia
payoff it is possible to increase his utility while all other players
j still receive xj. Let IN ⊆ BN consist of all bargaining problems
satisfying (1). The class of bargaining problems (S, 0) ∈ IN is
denoted by IN0 ; for bargaining problems in IN0 we henceforth omit
the disagreement point, i.e., we denote (S, 0) ∈ IN0 by S.

Peters and Tijs (1984) defined the n-player extension of the KS
solution bymaking use of monotonic curves. Amonotonic curve for
N is a map

ϑ : [1, n] →


x ∈ Rn

+
| xi ≤ 1 for all i ∈ N, and 1 ≤

−
i∈N

xi


such that for all 1 ≤ s ≤ t ≤ n we have ϑ(s) ≤ ϑ(t) and∑

i∈N ϑi(s) = s. The set of all monotonic curves for N is denoted
by ΘN .

Lemma 4.1 (Peters and Tijs, 1984). For each ϑ ∈ ΘN and S ∈ IN0
with u(S) = eN , the set

P(S) ∩ {ϑ(t) | t ∈ [1, n]}

contains exactly one point.

Letϑ be somemonotonic curve inΘN . In view of Lemma 4.1we
can define ρϑ

: IN → RN , the solution associated with ϑ . Let S ∈ IN0 ;
if u(S) = eN , then
ρϑ (S)


:= P(S) ∩ {ϑ(t) | t ∈ [1, n]},

and if u(S) = u, then ρϑ (S) := uρϑ (u−1S). For (S, d) ∈ IN ,
we define ρϑ (S, d) = d + ρϑ (S − d). The class of all solutions
associated with a monotonic curve in ΘN is referred to as the class
of individually monotonic bargaining solutions. The KS solution is an
element of this class, namely the solution ρϑ̂ , where ϑ̂(t) =

teN
n for

all t ∈ [1, n]. Observe that ϑ̂ defines a straight line in RN , which
for bargaining games S ∈ IN0 with u(S) = eN , coincides with the
line connecting the disagreement point 0 and the utopia point eN .
For general bargaining problems (S, d) ∈ IN , the KS solution is
the intersection of the Pareto set P(S) and the straight line that
connects the disagreement point d and the utopia point u(S, d).We
also write KS instead of ρϑ̂ .

5. The solution class DN

In this section we show that self-supporting outcomes under
the KS solution are well-defined, and that each game in IN has
exactly one such outcome. Peters and Tijs (1984) show that I{1,2} =

B{1,2}, which implies that our result generalizes Shalev’s (2002)
remark about the uniqueness of a self-supporting outcome under
the KS solution for two-player bargaining problems. Furthermore,
we introduce a class DN of bargaining solutions on IN , such that



B. Driesen et al. / Mathematical Social Sciences 61 (2011) 58–64 61
for any λ ∈ RN
+
there is a unique ϕ ∈ DN such that ϕ(S, d) is the

unique self-supporting outcome of the problem (S, d) under the KS
solution.3

From Lemma 3.1 and the fact that the Shalev transformation
preserves the ordering of payoffs, we obtain that (S, d) ∈ IN
implies w((S, d), λ, r) ∈ IN for all λ ∈ RN

+
and r ∈ RN . Therefore,

SelfKS((S, d), λ), the set of self-supporting outcomes under the KS
solution, is well-defined.

We now introduce the class DN of bargaining solutions. Let
N̄ = N \ {n}, and define the correspondence Dk

: IN → RN for
all k ∈ RN̄

++
and (S, d) ∈ IN by

Dk(S, d) = {z ∈ P(S) | z ≥ d and for all i ∈ N̄:(un(S, d) − zn)
× (zi − di) = ki(ui(S, d) − zi)(zn − dn)}. (2)

It is not hard to verify that Dk
≠ Dk′ whenever k, k′

∈ RN̄
++

with

k ≠ k′. Thenwe defineDN
=


Dk

| k ∈ RN̄
++


. For k ∈ RN̄

++
, define

Gk
= {z ∈ RN

+
| (1 − zn)zi = ki(1 − zi)zn for all i ∈ N̄},

and for t ∈ [1, n], we define

ϑk(t) =


z ∈ Gk

|

n−
i=1

zi = t


. (3)

In Lemma A.1 in the Appendix, we show that each ϑk is a
monotonic curve in ΘN .

Theorem 5.1. Dk(S, d) = {ρϑk
(S, d)} for all k ∈ RN̄

++
and (S, d)

∈ IN .

It follows from Theorem 5.1 that the setDN
:=


Dk

| k ∈ RN̄
++


is a subset of the class of individually monotonic bargaining
solutions. The following theorem shows that the solutions in DN

provide exactly the outcomes that are self-supporting under the
Kalai–Smorodinsky solution.

Theorem 5.2. For all (S, d) ∈ IN we have

Self KS((S, d), λ) = Dk(S, d)

where k =


1+λn
1+λ1

, . . . , 1+λn
1+λn−1


.

We henceforth write Dk(S, d) = z if Dk(S, d) = {z} and, thus,
regard Dk as a bargaining solution rather than a correspondence.
From Theorem 5.2 it follows that for each loss aversion profile
λ ∈ RN

+
, we may look at SelfKS( . , λ) as an asymmetric

n-player Kalai–Smorodinsky solution where the asymmetry is
fully determined by the players’ degrees of loss aversion. In the
following section we provide an axiomatic characterization of
these solutions.

6. An axiomatic characterization of DN

From Theorem 5.1 it follows that DN is a subclass of
the individual monotonic bargaining solutions, defined and
characterized by Peters and Tijs (1984). Of their axioms we retain
Scale Invariance and Individual Monotonicity.
(SI) ϕ : BN

→ RN satisfies Scale Invariance if t(ϕ(S, d)) =

ϕ(t(S), t(d)), where t : RN
→ RN is a linear transformation

t(x) := α + βx, with α ∈ RN , β ∈ RN
++

, and t(S) := α + βS
for S ⊆ RN .

(IM)ϕ : BN
→ RN satisfies Individual Monotonicity if ϕi(S, d) ≤

ϕi(T , d) for all (S, d), (T , d) ∈ BN and i ∈ N with S ⊆ T and
uj(S) = uj(T ) for all j ∈ N \ {i}.

3 Unless of course S = {x ∈ RN
| x ≤ u(S, d)}, in which case all Pareto optimal

solutions assign u(S, d).
The axiom SI is consistent with the premise that players’
preferences are representable by von Neumann–Morgenstern
utility functions: this assumption is still valid under loss aversion,
cf. Remark 3.3. Kalai and Smorodinsky (1975) introduced IM
as an alternative to Nash’s (1950) Independence of Irrelevant
Alternatives (IIA). A third well known axiom we impose is the
following.

(SIR) ϕ : BN
→ RN satisfies Strong Individual Rationality if

ϕ(S, d) > d for all (S, d) ∈ BN .

We next introduce a new axiom called Proportional Concession
Invariance (PCI). One can regard a solution outcome ϕ(S, d) as
expressing the concessions that players make with respect to the
utopia pointu(S, d). The PCI axiomsays that ifwe replaceu(S, d)by
a point û on the line segment connecting ϕ(S, d) and u(S, d), and
shrink the bargaining set accordingly, then the solution outcome
should not change. Put differently, if the players’ utopia values are
reduced in such a way that their concessions with respect to the
original solution outcome changeproportionally, then this solution
outcome is left unchanged. Formally,

(PCI) ϕ : BN
→ RN satisfies Proportional Concession Invariance

if for each bargaining problem (S, d) ∈ BN with solution
ϕ(S, d), and each bargaining problem (Ŝ, d) with

Ŝ := {z ∈ S | z ≤ û},

where û = αϕ(S, d) + (1 − α)u(S, d) for some α ∈ [0, 1],
we have ϕ(Ŝ, d) = ϕ(S, d).

See Fig. 2 for an illustration of PCI. This property can also be seen
as a very weak form of IIA, and is therefore satisfied by the Nash
bargaining solution and its asymmetric variants. Furthermore, PCI
is the counterpart to Disagreement Point Convexity (DPC), one of
the axioms used by Peters and van Damme (1991) to characterize
the class of asymmetric Nash bargaining solutions. This property
requires that the solution outcome ϕ(S, d) remains unchanged if
we replace d by a point d̂ on the line segment connecting the
disagreement point d and the solution outcome ϕ(S, d).

The characterization result is as follows.

Theorem 6.1. Let ϕ : IN → RN be a bargaining solution. Then
ϕ ∈ DN if and only if it satisfies SIR, SI, IM, and PCI.

Note that Theorem 6.1 does not use Pareto optimality. In the
Appendix, we use an argument similar as in Roth (1977) to show
that Pareto optimality is implied by our axioms.4

7. Concluding remarks

We have established that bargaining problems with loss averse
players have exactly one self-supporting outcome under the
Kalai–Smorodinsky solution. Moreover, we have determined the
asymmetric n-player versions of the KS solution which directly
capture the asymmetry resulting from the players’ degrees of loss
aversion. We summarize this in the following corollary.

Corollary 7.1. Let λ ∈ RN
+

be the profile of loss aversion. For every
(S, d) ∈ IN , an outcome z ∈ S is self-supporting under the KS solution
if and only if z = Dk(S, d), where ki :=

1+λn
1+λi

for all i ∈ N̄ .

We have characterized the class DN of all bargaining solutions
Dk by Strong Individual Rationality, Scale Invariance, Individual
Monotonicity, and Proportional Concession Invariance. While the

4 Although formally not required, the class IN of bargaining problems is not only
closed under taking loss aversion transformations but also does not shrink: for zero
loss aversion coefficients the loss aversion transformation is just identity.
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Fig. 2. A visual illustration of PCI in two-player bargaining problems.
first three properties are standard in the axiomatic bargaining
literature, the last one is new.

A careful comparison between the axiomatic characterizations
of KS and DN reveals that the correction needed to account
for players’ loss aversion is equivalent to relaxing the axiom of
Symmetry, and imposing that the solution remains unchanged
when playersmake concessionswith respect to their utopia values
in a proportion that is determined, uniquely, by the loss aversion
coefficients.

As a final remark, it is not hard to see that it is advantageous
for the opponents of a player i if i becomes more loss averse,
i.e., if λi increases while the λj, j ≠ i, stay the same. This can be
deduced fromCorollary 7.1 and inspection of themonotonic curves
underlying the solutions Dk.

Appendix. Proofs

A.1. Proof of Lemma 3.1

Let (S, d) ∈ BN , λ ∈ RN
+
, and r ∈ RN . Since the

Shalev transformation is continuous, one-to-one, and preserves
the ordering of payoffs, it follows that
• w(S, λ, r) is non-empty, closed, and comprehensive,
• w(d, λ, r) ∈ w(S, λ, r),
• there are z ∈ w(S, λ, r) with z > w(d, λ, r), and
• w(Sd, λ, r) is bounded.

It is left to show thatw(S, λ, r) is convex. Let x, y ∈ S and t ∈ [0, 1].
By convexity of S, we have tx + (1 − t)y ∈ S. By the fact that w is
concave in the first coordinate, it follows that

w(tx + (1 − t)y, λ, r) ≥ tw(x, λ, r) + (1 − t)w(y, λ, r).

By comprehensiveness of w(S, λ, r) this implies

tw(x, λ, r) + (1 − t)w(y, λ, r) ∈ w(S, λ, r).

This implies convexity of w(S, λ, r). �

A.2. Proof of Theorem 5.1

We start with a lemma.

Lemma A.1. Let k ∈ RN̄
++

. Then the correspondence ϑk(t), t ∈

[1, n], is a monotonic curve.

Proof. Let s̄ ∈ [1, n].We show that there is a unique point z∗
∈ RN

+

such thatϑk(s̄) = z∗. That is, we show that the systemof equations

(1 − zn)zi = ki(1 − zi)zn for all i ∈ N̄ (4)
n−

j=1

zj = s̄, (5)

has exactly one solution z∗ in RN
+
. Suppose the system has a

solution z ∈ RN
+
, and suppose zn > 1. Then for each i ∈ N̄ we

either have zi > 1 or zi < 0, which by z ∈ RN
+
implies zi > 1 for all

i ∈ N . Since this is a violation of (5), we must have zn ≤ 1. Since
(1 − ki)−1
∉ [0, 1] for all i ∈ N̄ , we can write

zi =
kizn

1 − zn(1 − ki)
for all i ∈ N̄.

Then for all i ∈ N̄, zi is strictly increasing in zn on the domain [0, 1].
The observations that
n−

j=1

zj = 0 ≤ s̄ for zn = 0, and

n−
j=1

zj = n ≥ s̄ for zn = 1,

together with the continuity of
∑n

j=1 zj in zn then imply that there
is exactly one z∗

∈ RN
+
that solves the system of Eqs. (4) and (5).

It follows that the correspondence ϑk is single-valued. Moreover,
for all 1 ≤ s ≤ t ≤ n we have 0 < ϑk(s) ≤ ϑk(t) ≤ eN and∑

i∈N ϑk
i (s) = s. It follows that ϑk is a monotonic curve. �

To prove Theorem 5.1, we show that each map Dk
∈ DN is the

bargaining solution associated with the monotonic curve ϑk as
defined in (3).
Proof of Theorem 5.1. Consider a normalized bargaining problem
T ∈ IN0 , i.e., u(T ) = eN . Let k ∈ RN̄

++
and observe that by (2)we have

Dk(T ) = P(T ) ∩ Gk.

By convexity of T we have P(T ) ⊆ {z ∈ RN
+

|
∑

j∈N zj ≥ 1},
implying

Dk(T ) = P(T ) ∩ {ϑk(t) | t ∈ [1, n]},

where ϑk is defined by (3). It follows thatDk(T ) =


ρϑk

(T )

. From

this it is easily established that

Dk(S, d) = {ρϑk
(S, d)}

for all (S, d) ∈ IN . �

A.3. Proof of Theorem 5.2

We start with the following lemma.

Lemma A.2. Let (S, d) ∈ IN . Then Dk(S, d) = KS(S, d) if and only if
k = eN̄ .

Proof. It is easy to show that for any t ∈ [1, n), we have ϑk(t) =

ϑ̂(t) if and only if k = eN̄ . The result then follows fromTheorem5.1
and the definition of KS. �

Proof of Theorem 5.2. Let (S, d) ∈ IN and λ ∈ RN
+
, and write

u = u(S, d). By Lemma A.2 and the fact that KS(S, d) ≥ d, we
have

KS(w((S, d), λ, z)) = {x ∈ P(w(S, λ, z)) | for all i ∈ N̄:
(un − xn)(xi − (1 + λi)di + λizi)
= (ui − xi)(xn − (1 + λn)dn + λnzn)}.
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Observe that z ∈ SelfKS((S, d), λ) if and only if z =

KS(w((S, d), λ, z)). That is, z ∈ SelfKS((S, d), λ) iff

(i) z ∈ P(w(S, λ, z)), and
(ii) (un−zn)(zi−(1+λi)di+λizi) = (ui−zi)(zn−(1+λn)dn+λnzn)

for all i ∈ N̄ .

From z = w(z, λ, z), P(w(S, λ, z)) = w(P(S), λ, z), and the
fact that the Shalev transformation is one-to-one, it follows that
z ∈ P(w(S, λ, z)) is equivalent to z ∈ P(S).

Define k = (k1, . . . , kn−1) where ki :=
1+λn
1+λi

for all i ∈ N̄ . Then
the statement in (ii) is equivalent to

(un − zn)(zi − di) = ki(ui − zi)(zn − dn) for all i ∈ N̄.

It follows that z ∈ SelfKS((S, d), λ) is equivalent to

z ∈ {x ∈ P(S) | (un − xn)(xi − di)
= ki(ui − xi)(xn − dn) for all i ∈ N̄}.

Hence, SelfKS((S, d), λ) = Dk(S, d). �

A.4. Proof of Theorem 6.1

The axiom of Pareto Optimality is useful for the proof.

(PO) ϕ : BN
→ RN satisfies Pareto Optimality if ϕ(S, d) ∈ P(S) for

all (S, d) ∈ BN .

From Peters and Tijs (1984) we obtain the following lemma.

Lemma A.3 (Peters and Tijs, 1984). Let ϕ : IN → RN be a bargaining
solution. Thenϕ satisfies PO, SI, and IM, if and only if ϕ = ρϑ for some
ϑ ∈ ΘN .

This we use to establish the following result.

Proposition A.4. Let ϕ : IN → RN be a bargaining solution in DN .
Then ϕ satisfies SIR, SI, IM, and PCI.

Proof. Since ϕ ∈ DN we have ϕ = Dk for some k ∈ RN̄
++

. By
Theorem5.1,wehaveϕ = ρϑ whereϑ ∈ ΘN , which by LemmaA.3
implies that ϕ satisfies SI and IM.

Consider a bargaining problem (S, d) ∈ IN , and write z =

ϕ(S, d). By definition, z ≥ d. To see that ϕ satisfies SIR, suppose
there is an i ∈ N such that zi = di. Observe that z ∈ P(S) and

(un(S, d) − zn)(zj − dj) = kj(uj(S, d) − zj)(zn − dn) for all j ∈ N̄.

If i = n, then zj = dj for all j ∈ N̄ , implying z = d. Let i ∈ N̄ ,
and observe that zi = di implies zn = dn, and thus z = d. Since
d ∉ P(S), we arrive at a contradiction. It follows that z > d.

To see that ϕ satisfies PCI, consider the problem (Ŝ, d) ∈ IN
where

Ŝ := {x ∈ S | x ≤ û},

with û = αz + (1 − α)u(S, d) for some α ∈ (0, 1). Then û − z =

(1 − α)(u(S, d) − z), implying that

(ûn − zn)(zi − di) = ki(ûi − zi)(zn − dn) for all i ∈ N̄. (6)

Since z ∈ Ŝ and z ∈ P(S), we have z ∈ P(Ŝ). This and (6) together
imply Dk(Ŝ, d) = z. Hence, ϕ satisfies PCI. �

For the converse implication we need two additional lemmas.

Lemma A.5. Let (S, d) ∈ IN , and z ∈ S \ P(S). Then for the function
f : [0, 1] → RN defined as

f (α) := (1 − α)z + αu(S, d),

there is exactly one α∗
∈ [0, 1] such that f (α∗) ∈ P(S).
Proof. By compactness of S we have that

α∗
:= max{α | f (α) ∈ S}

is well defined. We now show that f (α∗) ∈ P(S). Suppose f (α∗) ∉

P(S). By condition (1), it follows that for each i ∈ N with zi <
ui(S, d), there is an εi > 0 such that f (α∗) + εiei ∈ S. Then by
convexity of S there is an ε > 0, such that

f (α∗) + ε(u(S, d) − z) ∈ S.

But then there is a β > α∗ with f (β) ∈ S. This is a contradiction.
To show uniqueness, let α1, α2 ∈ [0, 1] with α1 ≠ α2, and

suppose f (α1), f (α2) ∈ P(S). Without loss of generality, assume
α2 > α1. Then since u(S, d) ≥ z and u(S, d) ≠ z, we have
f (α2) ≥ f (α1) and f (α2) ≠ f (α1). Since f (α1) ∈ P(S), this implies
f (α2) ∉ S, a contradiction. �

Lemma A.6. Let ϕ : IN → RN be a solution satisfying SIR, SI, and
PCI. Then ϕ satisfies PO.

Proof. Let ϕ : IN → RN be a bargaining solution satisfying SIR,
SI, and PCI. By SI it is sufficient to restrict attention to bargaining
problems in IN0 . Let S ∈ IN0 . By SIR we have ϕ(S) > 0. Now assume
ϕ(S) ∉ P(S). By Lemma A.5, there is a single z∗

∈ P(S), such that

z∗
= (1 − α)ϕ(S) + αu(S) for some α ∈ (0, 1].

Define Ŝ := {x ∈ S | x ≤ z∗
}, and observe that by PCI we have

ϕ(Ŝ) = ϕ(S).

Similarly, for the set T := {x ∈ S | x ≤ ϕ(S)}wehaveϕ(T ) = ϕ(S).
Now observe that Ŝ = [z∗(ϕ(S))−1

]T . Then by SI we have

ϕ(Ŝ) = z∗(ϕ(S))−1ϕ(T ) = z∗(ϕ(S))−1ϕ(S) = z∗.

This contradicts ϕ(Ŝ) = ϕ(S). �

Proposition A.7. Let ϕ : IN → RN be a bargaining solution
satisfying SIR, SI, IM, and PCI. Then ϕ ∈ DN .

Proof. Since ϕ satisfies SIR, SI, and PCI, it follows from Lemma A.6
that ϕ satisfies PO. Then by Lemma A.3 it follows that ϕ = ρϑ∗

for
some monotonic curve ϑ∗

∈ ΘN .
Consider the problem

H := conv

{ei | i ∈ N} ∪ {0}


,

(where ‘conv’ denotes the convex hull) and observe that H ∈ IN0 .
If there is an i ∈ N with ϕi(H) = 1, then ϕj(H) = 0 for all j ≠ i,
which is a violation SIR. Hence, 0 < ϕ(H) < eN . It follows that
k = (k1, . . . , kn−1), where

ki =
1 − ϕn(H)

1 − ϕi(H)
·

ϕi(H)

ϕn(H)
, (7)

is well defined and k ∈ RN̄
++

.
In what follows, we show that

ϑ∗(t) = ϑk(t) (8)

for all 1 ≤ t ≤ n. We do this in three steps. Let t̄ ∈ [1, n]. Then

1. we construct a specific problem S ∈ IN0 ,
2. we show that ϕ(S) = ϑk(t̄), and
3. we show that ϕ(S) = ϑ∗(t̄).

By (8) we have ρϑk
= ρϑ∗

, which together with ϕ = ρϑ∗

and
Dk

= ρϑk
establishes ϕ = Dk.

Step 1: Define the function g : [0, 1] → [1, n] by

g(α) =

−
i∈N

ϕi(H)

αϕi(H) + (1 − α)
. (9)
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From the fact that g is strictly increasing5and continuous, and the
fact that g(0) = 1 and g(1) = n, it follows that for each t ∈ [1, n]
there is a unique α ∈ [0, 1] such that g(α) = t .

Let β := ᾱϕ(H) + (1 − ᾱ)eN , where ᾱ is such that g(ᾱ) = t̄ .
Then define the problem S ∈ IN0 by

S = {β−1z | z ∈ H and z ≤ β}.

Since ϕ satisfies SI and PCI, we have

ϕ(S) = β−1ϕ(H). (10)

It follows from (10) and (9), and the fact that g(ᾱ) = t̄ that∑
i∈N ϕi(S) = t̄ .

Step 2: Rewriting (7) yields

(1 − ϕn(H))ϕi(H) = ki(1 − ϕi(H))ϕn(H) for all i ∈ N̄ .

From the definition of β we have β −ϕ(H) = (1− ᾱ)(eN −ϕ(H)).
Thus,

(βn − ϕn(H))ϕi(H) = ki(βi − ϕi(H))ϕn(H) for all i ∈ N̄ .

For each i ∈ N̄ , we can multiply both sides of the equation by 1
βnβi

.
By (10) this yields

(1 − ϕn(S))ϕi(S) = ki(1 − ϕi(S))ϕn(S) for all i ∈ N̄ .

It follows that ϕ(S) ∈ Gk. Since
∑

i∈N ϕi(S) = t̄ , we have

ϕ(S) = ϑk(t̄). (11)

Step 3: Since ϕ = ρϑ∗

, and S ∈ IN0 with u(S) = eN , we have

{ϕ(S)} = P(S) ∩ {ϑ∗(t) | t ∈ [1, n]},

which implies ϕ(S) = ϑ∗(t∗) for some t∗ ∈ [1, n]. From the
definition of monotonic curves we obtain

t∗ =

−
i∈N

ϑ∗

i (t∗) =

−
i∈N

ϕi(S) = t̄.

5 This follows from ϕ(H) ≠ 0 and ϕ(H) ≠ eN .
Hence,

ϕ(S) = ϑ∗(t̄). (12)

Combining (11) and (12) yields the desired result. �

Theorem 6.1 now follows from Propositions A.4 and A.7.
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