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Abstract

In this paper we introduce a novel framework for modeling the players’ reasoning in a dynamic

game: at each history each active player reasons about her opponents’ rationality at certain

histories only. As a result we obtain a generalized solution concept, called local common strong

belief in rationality, and we characterize the strategy profiles that can be rationally played under

our concept by means of a simple elimination procedure. Finally, we show that standard models

of reasoning can be embedded as special cases on our framework. In particular, the forward

induction concept of common strong belief in rationality (Battigalli and Siniscalchi, 2002) is a

special case of our model with the players reasoning about all histories, whereas the backward

induction concept of common belief in future rationality (Perea, 2014) is a special case of our

model with the players reasoning about future histories only.
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1. Introduction

The two standard families of solution concepts for dynamic games are forward induction (FI) and

backward induction (BI). The main difference between the two is that while FI solution concepts

explicitly or implicitly assume that players use information from past observations to assess the

opponents’ rationality in the future, BI concepts on the other hand typically postulate that players

believe at every history that their opponents will play rationally from that point onwards irrespective

of how they have behaved so far.1 Well-known examples of FI include extensive-form rationalizabil-

ity (Pearce, 1984) and extensive-from best response sets (Battigalli and Friedenberg, 2012). On

the other hand, BI contains concepts like subgame perfect equilibrium (Selten, 1965), sequential

equilibrium (Kreps and Wilson, 1982), backward dominance procedure (Perea, 2014) and backward

rationalizability (Penta, 2009).2

With the recent surge of the epistemic approach to game theory, most of the aforementioned

concepts have been characterized in terms of conditions on the players’ beliefs about the opponents’

rationality. In particular, epistemic game theory provides a framework to formally incorporate belief

hierarchies in our game-theoretic analysis,3 and consequently it allows us to express conditions such

as belief in the opponents’ rationality. However, note that specifically in dynamic games, the inter-

pretation of “belief in the opponents’ rationality” is not as straightforward as it is in static games.

The reason is precisely the dynamic nature of the game, i.e., the fact that players may move more

than once throughout the game. To see this consider a game with Ann and Bob moving alternatingly,

and assume that Bob observes Ann having chosen a strictly dominated action in the previous period.

Then, can we say that Bob believes in Ann’s rationality? The answer to this question actually de-

pends on the notion of “belief in the opponents’ rationality” that we employ. The two main notions

of belief in the opponents’ rationality in the literature are strong belief in rationality (Battigalli and

Siniscalchi, 2002) and belief in future rationality (Perea, 2014).

We say that Bob strongly believes in Ann’s rationality at some history h whenever the following

holds: if Bob is able to rationalize Ann’s moves at all histories leading to h then he believes that Ann

will behave rationally from h onwards. In other words, strong belief in rationality postulates that

players look into their opponents’ past behavior in order to assess whether their opponents will act

rationally in future. This already suggests that strong belief in rationality may be the appropriate

1We should make clear that the standard backward induction procedure is merely a solution concept within the

family of BI concepts, and it is formally defined only for extensive-form games with perfect information and without

relevant ties.
2For an overview of this literature we refer to the textbook by Perea (2012).
3In a dynamic game, a (conditional) belief hierarchy describes what each player at each history believes about what

each opponent at each history will do, and also what each player at each history believes about what each opponent at

each history believes about what each opponent at each history will do, and so on (Battigalli and Siniscalchi, 1999).
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tool for characterizing FI solution concepts, which as we have already mentioned incorporate the idea

that players use information from observed behavior to form beliefs about their opponents’ future

rationality. Indeed, this is the case, e.g., extensive-form rationalizability is epistemically characterized

by rationality and common strong belief in rationality (Battigalli and Siniscalchi, 2002).4

We say that Bob believes in Ann’s future rationality at some history h whenever he believes

that Ann will behave rationally from h onwards irrespective of how she has behaved at the histories

leading to h. That is, belief in the opponents’ future rationality postulates that players disregard

their opponents’ past behavior when they assess whether their opponents will act rationally in the

future. This suggests that belief in the opponents’ future rationality is perhaps the appropriate

condition for characterizing BI solution concepts, which as we have previously mentioned incorporate

the idea that players do not look into the past. It turns out that this is indeed the case, e.g., both

backward rationalizability and the backward dominance procedure are epistemically characterized

by rationality and common belief in future rationality (Perea, 2014).

From the previous preliminary analysis, it already becomes clear that the main difference between

FI and BI is the extent to which players reason about past histories. This already suggests that

the two may be embedded as special cases of a generalized parametric solution concept, which is

what we do in this paper. The main idea is that each player i reasons at each history h only

about an exogenously specified set of histories, henceforth denoted by Fi(h).5 We call this type

of reasoning local strong belief in rationality. Formally, we say that Bob locally strongly believes

in Ann’s rationality at h whenever the following holds: if Bob is able to rationalize at h Ann’s

moves at every history in FBob(h) then he believes that Ann is indeed rational at every history in

FBob(h). The exact specification of Fi determines whether local strong belief in rationality is a FI

or a BI concept or perhaps none of these. This unification into in a generalized framework allows

us to deeply understand the fundamental similarities/differences between FI and BI reasoning. In

fact, there are already several results relating FI and BI in terms of predicted outcomes (Battigalli,

1997; Chen and Micali, 2013; Heifetz and Perea, 2014), but still the intuitive relationship of the two

remains quite unclear. In this sense, this paper constitutes the first systematic attempt to close this

conceptual gap. Last but not least, this framework would also allow us to study other interesting

special cases that have not appeared in the literature so far, such as for instances cases where the

players reason only about some particular focal histories.

The first general result in the paper provides a simple iterative procedure that induces the strate-

4In the formal statement of the result, Battigalli and Siniscalchi (2002) require a complete type space model. In

fact, without the completeness assumption rationality and common strong belief in rationality lead to another FI

concept, namely to an extensive-form best response set (Battigalli and Friedenberg, 2012).
5In fact, we introduce a function Fi mapping each history h where player i is active to a collection of histories

where at least one of the opponents is active.
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gies that can be rationally played by each player at each history under our solution concept for an

arbitrary specification of Fi. The procedure bears several similarities with the iterated conditional

dominance procedure which yields the strategies that can be rationally played under common strong

belief in rationality (Shimoji and Watson, 1998), as well as with the backward dominance procedure

which yields the strategies that can be rationally played under common belief in future rationality

(Perea, 2014). Our procedure simultaneously eliminates strategies and conditional beliefs for each

history at each step, thus inducing not only the predictions of our concepts, but also the outcome of

the reasoning of each player at each history.

Finally, as we have already mentioned above, we formally prove that some standard FI and BI

solution concepts are indeed special cases of our generalized solution concept. In particular, we show

that whenever Fi(h) contains all histories – including the past ones – local common strong belief in

rationality coincides with the standard common strong belief in rationality. Likewise, we formally

prove that the strategies that can be rationally played under common belief in future rationality are

exactly those that can be rationally played under local common strong belief in rationality whenever

Fi(h) contains only the future histories.

The paper is structured as follows: In Section 2 we present some standard preliminary notions

used throughout the paper. In Section 3 we introduce our solution concept as well as our iterative

procedure, and we present our main characterization result. Section 4 discusses different special cases

of local reasoning. All the proofs are relegated to the Appendices.

2. Preliminaries

2.1. Dynamic games with observable actions

We consider dynamic games with observable actions and simultaneous moves, i.e., dynamic games

with the property that at every instance, all players observe the moves that have been undertaken so

far. Our results can be extended to arbitrary dynamic games with perfect recall, however. Formally,

our framework is described by the following components:

Players. Let I denote the finite set of players, with typical elements i and j. Throughout the

paper, we often consider examples with the set of players being I = {Ann (a), Bob (b)}.

Histories. For each i ∈ I, let Hi denote the histories where player i moves. We permit more than

one player to move at the same history, i.e., Hi ∩Hj may be non-empty. For instance, in Fig. 1 we

have Ha = {h0, h2} and Hb = {h1, h2}, and we write h1(b) and h2(a, b) to signify that “only Bob

moves at h1” and that “both Ann and Bob move at h2” respectively. Let H :=
⋃

i∈N Hi be the set
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of all non-terminal histories, and H−i :=
⋃

j 6=iHj be the set of non-terminal histories where at least

one player other than i moves.

Moreover, let Pr(h) denote the set of histories that weakly precede h, i.e., the past histories as

well as h itself. Likewise, let Fut(h) denote the set of histories that weakly follow h, i.e., the future

histories as well as h itself. Then, we also define Pr−i(h) := Pr(h)∩H−i and Fut−i(h) := Fut(h)∩H−i.
Finally, Z denotes the set of terminal histories, i.e., the histories where no player moves.

Moves and strategies. The finite set of moves (else called actions) from which player i chooses

one at some history h ∈ Hi is denoted by Ai(h). Player i’s strategy space is denoted by Si with

typical element si, e.g., in Fig. 1 we have Sa = {L,RA,RB} and Sb = {L,RC,RD}. Notice that

we define strategies as plans of actions, and not as elements of
�

h∈Hi
Ai(h). That is, for instance,

once Ann has decided to choose L at h0, she does not need to specify what she would play if h2 was

reached, since she knows that h2 will not be reached. In either case our analysis would still hold under

the alternative definition of a strategy that often appears in the literature (cf., Rubinstein, 1991). As

usual, S :=
�

i∈I Si denotes the set of strategy profiles with typical element s, and S−i :=
�

j 6=i Sj

denotes the strategy profiles of all players other than i with typical element s−i.

We define player i’s set of conditional strategies at some history h as the set of strategies that

are consistent with h being reached, and we denote it by Si(h). Then, S−i(h) denotes the profiles

s−i ∈ S−i that are consistent with h being reached. For each si ∈ Si we define Hi(si) := {h ∈ Hi :

si ∈ Si(h)}, and likewise we let H(si) := {h ∈ H : si ∈ Si(h)} and H−i(si) := {h ∈ H−i : si ∈ Si(h)}.
For instance, in Fig. 1 we have Sa(h2) = {RA,RB} and Hb(L) = {h1}. Observe that Si(h) and

Hi(si) are always non-empty.

There exists a function z : S → Z, mapping each strategy profile s ∈ S to a unique terminal

history. Finally, each strategy profile induces a path of play, which contains the set of histories that

are reached if s is played. Formally, this path contains the non-terminal histories H(s) :=
⋂

i∈I H(si)

and the terminal history z(s).

Utilities. Player i has preferences over the terminal histories, represented by a mapping vi : Z → R.

Recall that each strategy profile s leads to a unique terminal history z(s). Thus, we obtain the utility

function ui : S → R, given by ui(s) := vi
(
z(s)

)
, that represents i’s preferences over S.6 For instance,

in Fig. 1 the strategy profile (RA,L) induces the terminal history that yields a utility of 3 to each

player.

6As usual, we assume that i has vNM preferences over ∆(Z), and consequently also over ∆(S). Thus, ui can be

seen as the vNM representation of these preferences.
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Figure 1: Generalized BoS with outside options.

2.2. Conditional beliefs

Using the standard framework of Battigalli and Siniscalchi (1999, 2002), we model conditional beliefs

with an (S-based) type structure,
(
(Ti)i∈I , (λi)i∈I

)
, where Ti is player i’s set of types and λi : Ti×Hi →

∆(S−i × T−i) is a Borel function, associating each type ti ∈ Ti at each history h ∈ Hi with a Borel

probability measure λhi (ti) ∈ ∆
(
S−i(h) × T−i

)
, where T−i :=

�
j 6=i Tj.

7 Henceforth, we refer to the

measure λhi (ti) as ti’s conditional beliefs (or simply beliefs) at a history h. Obviously, this model

generalizes the usual type structures à la Harsanyi (1967-68) by replacing simple single-dimensional

with a collection of (conditional) beliefs, one for each history.

Example 1. Recall the game in Fig. 1, and consider the S-based type structure (Ta, Tb, λa, λb), with

the type spaces being Ta = {ta, t′a} and Tb = {tb, t′b}, and the corresponding conditional beliefs of

each type being the ones shown below:

λh0
a (ta) =

(
0.40⊗ (L, tb) ; 0.20⊗ (L, t′b) ; 0.10⊗ (RC, tb) ; 0.30⊗ (RD, t′b)

)
λh2
a (ta) =

(
0.25⊗ (RC, tb) ; 0.75⊗ (RD, t′b)

)
λh0
a (t′a) =

(
0.10⊗ (L, tb) ; 0.40⊗ (L, t′b) ; 0.25⊗ (RC, tb) ; 0.25⊗ (RC, t′b)

)
λh2
a (t′a) =

(
1⊗ (RC, tb)

)
λh1
b (tb) =

(
0.50⊗ (RA, ta) ; 0.50⊗ (RA, t′a)

)
λh2
b (tb) =

(
1⊗ (RA, t′a)

)
λh1
b (t′b) =

(
0.25⊗ (RA, ta) ; 0.25⊗ (RA, t′a) ; 0.50⊗ (RB, t′a)

)
λh2
b (t′b) =

(
0.50⊗ (RA, ta) ; 0.50⊗ (RA, t′a)

)
7The assumption that “upon reaching a history h ∈ Hi every type ti assigns probability 1 to S−i(h) × T−i”

corresponds to the standard Condition 1 in (Battigalli and Siniscalchi, 2002, Def. 1). Note that in their paper they

further restrict beliefs to satisfy Bayesian updating whenever possible (see Condition 3), thus implicitly assuming that

the collection of conditional beliefs forms a conditional probability system, as originally defined by Rênyi (1955).
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For instance, if Ann is of type ta, then at h0 she puts probability 0.4 to the event that “Bob will play

L and is of type tb”. When she finds herself at h2, she assigns to the same event probability 0. /

A type structure
(
(Ti)i∈I , (λi)i∈I

)
induces a conditional belief hierarchy for every ti ∈ Ti. In

particular, ti holds a conditional belief at each h ∈ Hi about the opponents’ strategies (first order

conditional beliefs), a conditional belief at each h ∈ Hi about the opponents’ strategies and first

order conditional beliefs (second order conditional beliefs), and so on. Throughout the paper, we

denote ti’s first order conditional belief at h by

bhi (ti) := margS−i
λhi (ti).

In the previous example, ta’s first order conditional beliefs at h2 put probability 0.25 to RC and

probability 0.75 to RD.

A type structure
(
(Ti)i∈I , (λi)i∈I

)
is said to be complete if for every player i ∈ I the function λi

is surjective, i.e., for every collection of conditional beliefs (µh
i )h∈Hi

there is some type ti such that

λhi (ti) = µh
i for all h ∈ Hi. Battigalli and Siniscalchi (1999) showed the existence of a complete

type structure under Bayesian updating. Their result can be easily generalized to type structures

without Bayesian updating. Throughout the paper, unless explicitly stated otherwise, we work with

complete type structures.8 Finite type structures that we often consider in our examples can be seen

as belief-closed subspaces of a complete type structure.

At some h ∈ Hi a type ti of player i is said to believe in some event E ⊆ S−i × T−i whenever

λhi (ti)(E) = 1. Then, the types of i that believe in E at h are those in

Bh
i (E) :=

{
ti ∈ Ti : λhi (ti)(E) = 1

}
.

For instance, as we have already mentioned, it is trivially the case that ti ∈ Bh
i

(
S−i(h)× T−i

)
for all

ti ∈ Ti. Moreover, we say that a type believes in E whenever it belongs to

Bi(E) :=
⋂
h∈Hi

Bh
i (E).

At some h ∈ Hi a type ti of player i is said to strongly believe in some event E ⊆ S−i × T−i

whenever the following condition holds: if E does not contradict history h, then ti believes in E at

h, i.e., formally

SBh
i (E) :=

{
ti ∈ Ti : if (S−i(h)× T−i) ∩ E 6= ∅ then ti ∈ Bh

i (E)
}
. (1)

8Recently, Friedenberg (2010) showed that for standard belief hierarchies a complete type structure that satisfies

certain mild topological conditions induces all belief hierarchies, i.e., for every belief hierarchy of each player there

exists a type associated with this hierarchy. Moreover, she conjectured – without formally proving it – that the

same applies to conditional belief hierarchies that satisfy Bayesian updating. Finally, notice that her result is directly

extended to conditional beliefs without Bayesian updating.
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Of course, it is straightforward to verify that every ti strongly believes in S−i(h) × T−i at h ∈ Hi.

Finally, we say that player i strongly believes an event, whenever she strongly believes it at every

h ∈ Hi, i.e., formally

SBi(E) :=
⋂
h∈Hi

SBh
i (E).

2.3. Subjective expected utility and rationality

For an arbitrary conditional belief βh
i ∈ ∆

(
S−i(h)

)
and a strategy si ∈ Si(h), we define i’s (subjective)

expected utility at h ∈ Hi in the usual way, i.e., Uh
i (si, β

h
i ) :=

∑
s−i∈S−i

βh
i (s−i) · ui(si, s−i). Then,

we define the expected utility of a strategy type pair (si, ti) ∈ Si(h)× Ti at a history h ∈ Hi by

Uh
i (si, ti) := Uh

i

(
si, b

h
i (ti)

)
. (2)

In our Example 1 for instance, Ann’s expected utility at h2 from playing RA, if she is of type ta, is

equal to Uh2
a (RA, ta) = 1.25.

Player’s rationality at a history. The event that a player is rational at some history h ∈ Hi is

given by

Rh
i :=

{
(si, ti) ∈ Si(h)× Ti : Uh

i (si, ti) ≥ Uh
i (s′i, ti) for all s′i ∈ Si(h)

}
. (3)

If it is indeed the case that (si, ti) ∈ Rh
i , we say that the strategy si is optimal/rational given (the

first order beliefs induced by) ti at h. The idea is that, upon reaching a history h ∈ Hi, player i

chooses a strategy – among the ones that are still available at h – which maximizes her subjective

expected utility. Note that rationality is not an absolute concept. That is, whether a strategy is

rational or not depends on the history that we have in mind, as well as on the conditional beliefs held

by the player at that history. For instance, in Example 1, we have Rh0
a = {(L, ta), (L, t′a), (RA, t′a)}

and Rh2
a = {(RA, ta), (RA, t′a)}. Observe that RA is rational at h0 given the first order beliefs bh0

a (t′a),

but not given bh0
a (ta). Throughout the paper, for notation simplicity we adopt the convention that

Rh
i = Si(h)× Ti if h /∈ Hi.

Opponents’ rationality at a history. Now, let

Rh
−i :=

¡

j 6=i

{
(sj, tj) ∈ Sj(h)× Tj : if h ∈ Hj then (sj, tj) ∈ Rh

j

}
=
¡

j 6=i

Rh
j . (4)

denote the event that every player other than i – who is active at h – is rational at h.9 In other

words, Rh
−i expresses the idea that upon reaching h, all of i’s active opponents at h choose a strategy

9In order to obtain Rh
−i =

�

j 6=i R
h
j we make use of the convention that Rh

j = Sj(h)× Tj for all j 6= with h /∈ Hj .
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– among their respective ones – which maximizes their subjective expected utility. In our previous

example, for instance, on the one hand we have Rh1
−b = Sa(h1) × Ta, because Ann is not active at

h1, and therefore by our convention Rh1
a = Sa(h1) × Ta. On the other hand, it is the case that

Rh2
−b = Rh2

a = {(RA, ta), (RA, t′a)}. This is because Ann is active at h2, and therefore Rh2
a is given by

Eq. (3).

Player’s rationality in a set of histories. Now, consider an arbitrary collection G ⊆ H of

histories. Then, a strategy-type combination (si, ti) is rational in G whenever it is rational at all

histories which (i) are consistent with si, and (ii) belong to G. Formally, the event

RG
i :=

{
(si, ti) ∈ Si × Ti : (si, ti) ∈ Rh

i for all h ∈ Hi(si) ∩G
}

(5)

contains the strategy-type pairs that are rational in G. In our previous example, for instance, if we

let G = {h2} we get R
{h2}
a = {(L, ta), (L, t′a), (RA, ta), (RA, t′a)}. Notice that in general R

{h}
i may

differ from Rh
i , e.g., in our working example Rh2

a = {(RA, ta), (RA, t′a)} 6= R
{h2}
a . The reason is that,

by construction, Rh
i ⊆ Si(h)×Ti while R

{h}
i ⊆ Si×Ti, i.e., Rh

i considers only strategies that reach h,

whereas R
{h}
i also allows for strategies that are not consistent with h. Because of this, RG

i does not

necessarily coincide with
⋂

h∈GR
h
i . Finally, note that the standard notion of rationality corresponds

to the event Ri := RHi
i , i.e., a strategy-type combination (si, ti) is rational whenever it is rational all

histories h ∈ Hi(si) given the respective conditional first order belief bhi (ti).

Opponents’ rationality in a set of histories. Now, let

RG
−i :=

¡

j 6=i

{
(sj, tj) ∈ Sj × Tj : (sj, tj) ∈ Rh

j for all h ∈ Hj(sj) ∩G
}

=
¡

j 6=i

RG
j (6)

contain i’s opponents’ strategy-type combinations that are rational in G. Then, the usual event of

every player other than i being rational corresponds to R−i := R
H−i

−i .

3. Local reasoning about the opponents’ rationality

In this section, we define a solution concept which incorporates the idea that players reason at each

history about their opponents’ rationality at certain histories only. This is an epistemic concept,

implying that it is defined by means of a sequence of restrictions on the players’ types, and therefore

it gives the set of types (for each player) that are consistent with the particular form of reasoning

that we postulate. Then, we provide a simple procedure which yields the strategies that can be

rationally played given the types that satisfy the restrictions imposed by the concept.
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Note that strictly speaking our concept is a family of concepts, each one corresponding to a

different specification of the histories that each players reasons about at each history. In this respect,

as we formally show in the next section, several well-known existing solution concepts – such as

extensive-form rationalizability or common belief in future rationality, for instance – can be embedded

in our framework, i.e., we prove that they correspond to particular specifications of the histories that

the players reason about.

Let us begin by defining our notion of “a player reasoning locally about the opponents’ rationality

at some histories only”. Formally, fix some G ⊆ H−i and an arbitrary history h ∈ Hi. Then, let

SBh
i

(
RG
−i
)

=
{
ti ∈ Ti : if (S−i(h)× T−i) ∩RG

−i 6= ∅ then ti ∈ Bh
i

(
RG
−i
) }

(7)

denote the event that i strongly believes at h in the event that the opponents are rational at every

h′ ∈ G. The underlying idea is that, upon finding herself at history h, player i tries to rationalize the

opponents’ moves at every history in G. If them being rational at every h′ ∈ G does not contradict

reaching h, then i will believe at h that they are indeed rational at every history h′ ∈ G. This type

of local reasoning will be henceforth called local strong belief in rationality at h.

So far, we have described how player i reasons – while being at h ∈ Hi – about the opponents’

rationality in an arbitrary G ⊆ H−i. Now, we specify the histories that i reasons about while being

at each h ∈ Hi. Formally, consider the collection of mappings

F :=
{
Fi : Hi → 2H−i

∣∣ i ∈ I } (8)

with Fi(h) containing the set of histories that player i reasons about while being at h ∈ Hi. For

instance, if Fi(h) = H−i for all h ∈ Hi then player i reasons about all histories, past, present and

future ones. On the other hand, if Fi(h) = Fut−i(h) for all h ∈ Hi then i reasons only about the

present and future histories but not about the past ones. We further discuss special cases of F
structures later in the paper.

Obviously, our local reasoning depends on the choice of F . Thus, we introduce the notion of local

strong belief in rationality with respect to F at h, or simply F -strong belief in rationality at h. In

particular, the types that F -strongly believe at h in the opponents’ rationality are those in

SBh
i

(
R

Fi(h)
−i

)
=
{
ti ∈ Ti : if (S−i(h)× T−i) ∩RFi(h)

−i 6= ∅ then ti ∈ Bh
i

(
R

Fi(h)
−i

) }
. (9)

Let us illustrate this notion by means of an example.

Example 1 (cont). Recall the game in Fig. 1 together with the type structure in Ex. 1, and

assume that Fb(h1) = {h0, h2} and Fb(h2) = {h2}. As we have already noted above, it is the case

that R
Fb(h1)
−b = R

{h0,h2}
a = {(L, ta), (L, t′a), (RA, t′a)}, thus implying that SBh1

b

(
R

Fb(h1)
−b

)
= {tb}. The

reason why t′b does not F -strongly believe at h1 in Ann’s rationality, is that R
Fb(h1)
−b is consistent
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with reaching h1, and yet it does not receive probability 1 by λh1
b (t′b). Likewise, it is the case that

R
Fb(h2)
−b = R

{h2}
a = {(L, ta), (L, t′a), (RA, ta), (RA, t′a)}, and therefore SBh2

b

(
R

Fb(h2)
−b

)
= {tb, t′b}. Indeed,

both λh2
b (tb) and λh2

b (t′b) put probability 1 to R
Fb(h2)
−b . /

In the previous example, while being at h1, Bob rules out the possibility of Ann’s strategy being

RB, because this would contradict her rationality at h0 which belongs to Fb(h1). On the other hand,

while being at h2, Bob does not rule out the possibility of Ann having chosen RB, because h2 is the

only history in Fb(h2), and RB does not contradict Ann’s rationality at h2.

Below, we iterate this idea to obtain our solution concept of F -common strong belief in rationality.

3.1. Local common strong belief in rationality

Take an arbitrary history h ∈ Hi and an arbitrary collection F = {Fi : Hi → 2H−i | i ∈ I}. Then,

we define the following sequences of subsets of Ti:

TF ,1i (h) := SBh
i

(
R

Fi(h)
−i

)
TF ,2i (h) := TF ,1i (h) ∩ SBh

i

(
R

Fi(h)
−i ∩

(
S−i × TF ,1−i

(
Fi(h)

)))
...

TF ,ki (h) := TF ,k−1i (h) ∩ SBh
i

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i

(
Fi(h)

)))
...

where, for each k > 1,

TF ,k−1−i
(
(Fi(h)

)
:=
¡

j 6=i

{
tj ∈ Tj : tj ∈ TF ,k−1j (h′) for all h′ ∈ Fi(h) ∩Hj

}
=
¡

j 6=i

( ⋂
h′∈Fi(h)∩Hj

TF ,k−1j (h′)
)
.

Obviously, TF ,1i (h) contains i’s types that strongly believe at h that the opponents are rational

at every h′ ∈ Fi(h). Throughout the paper, we refer to the types in TF ,1i (h) as those satisfying 1-fold

F-strong belief in rationality at h.

Now, TF ,2i (h) contains those types in TF ,1i (h) that strongly believe at h that every opponent j 6= i

(i) is rational at every h′ ∈ Hj ∩ Fi(h), and (ii) strongly believes at every h′ ∈ Hj ∩ Fi(h) that every

opponent k 6= j is rational at every h′′ ∈ Hk ∩ Fj(h
′). The event described in (i) corresponds to

R
Fi(h)
−i , while the event described in (ii) corresponds to

S−i × TF ,1−i
(
Fi(h)

)
=
¡

j 6=i

{
(sj, tj) ∈ Sj × Tj : tj ∈ SBh

j

(
R

Fj(h
′)

−j
)

for all h′ ∈ Fi(h) ∩Hj

}

11



in the second equation of the sequence above. The reason for explicitly requiring every type in

TF ,2i (h) to belong to TF ,1i (h) is that the strong belief operator is not monotonic, thus implying that

SBh
i (E ∩F ) is not necessarily equal to SBh

i (E)∩ SBh
i (F ).10 Therefore SBh

i

(
R

Fi(h)
−i

)
does not follow

directly from SBh
i

(
R

Fi(h)
−i ∩

(
S−i × TF ,1−i

(
Fi(h)

)))
. Throughout the paper, we refer to the types in

TF ,2i (h) as those satisfying up to 2-fold F-strong belief in rationality at h. The reason we add the

term “up to” is that, by construction, TF ,2i (h) ⊆ TF ,1i (h), as we have already discussed above.

Continuing inductively we define the set of types that satisfy up to k-fold F-strong belief in

rationality at h. Those are the types in TF ,ki (h). Then, the types that satisfy F-common strong

belief in rationality at h are those in

TFi (h) :=
∞⋂
k=1

TF ,ki (h). (10)

The types that satisfy F-common strong belief in rationality (F-CSBR) are those in

TFi :=
⋂
h∈Hi

TFi (h). (11)

Observe that in order to obtain the types that satisfy F -CSBR, we need to take two intersections.

In particular, first we find, for each h ∈ Hi, the types that that satisfy the (infinitely many) restric-

tions that F -CSBR imposes at h (see Eq. (10)), and then we select those types that satisfy all these

restrictions at every h ∈ Hi (see Eq. (11)). The reason for doing so is that TF ,k−1−i
(
(Fi(h)

)
differs

for every h ∈ Hi. This is because player i may reason about different histories at each h ∈ Hi, i.e.,

it may be the case that Fi(h) 6= Fi(h
′) for two histories h, h′ ∈ Hi. This is in contrast to the usual

(global) definition of common strong belief in rationality à la Battigalli and Siniscalchi (2002).11

Finally, we say that a strategy si ∈ Si can be rationally played under F-common strong belief in

rationality (F-RCSBR) whenever si ∈ ProjSi

(
Ri ∩ (Si × TFi )

)
.

3.2. Local iterated conditional dominance procedure

In this section we introduce a (finite) procedure which, for every player i ∈ I and every history

h ∈ Hi, iteratively eliminates (at each round), strategies from Si(h) and first order conditional

beliefs from ∆
(
S−i(h)

)
. Formally, it is a simultaneous generalization of the iterated conditional

dominance procedure (ICDP), originally introduced by Shimoji and Watson (1998), and the backward

dominance procedure, originally defined Perea (2014).12 Before, formally defining our procedure, let

10It is well known that the conjunction property implies monotonicity. Therefore, violations of monotonicity –

which the strong belief operator exhibits – lead to violations of the conjunction property. We refer to Battigalli and

Siniscalchi (2002) for a detailed discussion on this issue.
11Later in the paper, we explicitly discuss the relationship between F-CSBR and CSBR, as defined by Battigalli

and Siniscalchi (2002).
12Later in the paper, we discuss the relationship of our procedure with ICDP.
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us first introduce the notion of a decision problem, which will play a central role throughout this

section. In particular, our procedure will be defined as a sequence of decision problems for each

player i ∈ I and each history h ∈ Hi.

Decision problem. A decision problem for player i ∈ I at a history h ∈ Hi is a tuple
(
Bi(h), Di(h)

)
,

with Bi(h) ⊆ S−i(h) and Di(h) ⊆ Si(h). Intuitively, Bi(h) can be seen as the subset of the oppo-

nents’ strategies that i could deem possible at h. At this point, we should already make clear that

the link between Bi(h) and what i could deem possible at h is only an informal one. The actual

relationship between the two will become apparent later on in the paper. Thus, for the time being,

Bi(h) and Di(h) will be merely treated as auxiliary tools, without a concrete meaning.

A strategy si ∈ Di(h) is said to be rational in the decision problem
(
Bi(h), Di(h)

)
whenever there

exists a probability measure βh
i ∈ ∆

(
Bi(h)

)
such that Uh

i (si, β
h
i ) ≥ Uh

i (s′i, β
h
i ) for all s′i ∈ Di(h).

Thus, we draw a link between two different notions of rationality, i.e., between rationality of a

strategy-type combination in a complete type structure on the one hand, and rationality of a strategy

in a decision problem on the other hand.

Now, for an arbitrary collection F , our procedure will be defined by means of a (weakly) decreasing

sequence
(
BF ,ki (h), DF ,ki (h)

)
k≥0 of decision problems for each i ∈ I and each h ∈ Hi. That is, at

each step of our procedure, we will simultaneously eliminate strategies from Si(h) and strategy

combinations from S−i(h).

Initial step of the procedure. For k = 0, we define

BF ,0i (h) := S−i(h)

DF ,0i (h) := Si(h).

Obviously, this initial step does not depend on F .

Inductive step of the procedure. Now, fix some k > 0 and suppose that for each j ∈ I

and each h′ ∈ Hj we have undertaken the (k − 1)-th step of our procedure, thus having obtained(
BF ,k−1j (h′), DF ,k−1j (h′)

)
. Then, for an arbitrary h ∈ Hi, define

(
BF ,kj (h), DF ,kj (h)

)
by

BF ,ki (h) :=

C
F ,k−1
i (h) if CF ,k−1i (h) 6= ∅

BF ,k−1i (h) if CF ,k−1i (h) = ∅
(12)

DF ,ki (h) :=
{
si ∈ DF ,k−1i (h) : si is rational in

(
BF ,ki (h), DF ,k−1i (h)

) }
, (13)

where

CF ,k−1i (h) :=
¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ DF ,k−1j (h′) for all h′ ∈ Hj(sj) ∩ Fi(h)

}
. (14)
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The underlying idea behind our procedure is as follows: First, for each h ∈ Hi, we compute

CF ,k−1i (h) which contains all strategy combinations of i’s opponents which (i) are consistent with

reaching h, and (ii) have not been eliminated from DF ,k−1j (h′) at any h′ ∈ Fi(h) and for any player

j who is active at h′. Notice that in principle CF ,k−1i (h) might be empty. To see this, consider for

instance the game in Fig. 1 with Fb(h1) = {h0, h2}, and assume that DF ,k−1a (h0) = {L}. Then,

clearly it is the case that Sa(h1) ∩DF ,k−1a (h0) = ∅, thus implying that CF ,k−1b (h1) = ∅.
Having defined CF ,k−1i (h), we can now proceed to the k-th step of our procedure, by first defining

BF ,ki (h). In particular, a strategy combination s−i = (sj)j 6=i is eliminated from BF ,k−1i (h) if and

only if (i) there exists some history h′ ∈ Fi(h) ∩ Hj(sj) such that sj has been eliminated from

DF ,k−1j (h′), and also (ii) there exists another strategy s′−i = (s′j)j 6=i ∈ BF ,k−1i (h) such that for every

h′ ∈ Fi(h)∩Hj(sj) it is the case that s′j ∈ D
F ,k−1
j (h′), i.e., not all strategy combinations are eliminated

from BF ,k−1i (h).

Now, once we have obtained BF ,k−1i (h), we can define the decision problem
(
BF ,ki (h), DF ,k−1i (h)

)
,

and we eliminate from DF ,ki (h) the strategies that are not rational in this decision problem. As we

have already mentioned above, it follows from Pearce (1984, Lem. 3) that a strategy is eliminated

from DF ,k−1i (h) if and only if it is strictly dominated within this decision problem.

This elimination procedure is called local iterated conditional dominance procedure with respect

to F , or simply F-iterated conditional dominance procedure (F-ICDP). Obviously, since we con-

sider only finite dynamic games, F -ICDP converges after finitely many steps. That it, there exists

some K ≥ 0 such that for each k ≥ K, for every i ∈ I and every h ∈ Hi, it is the case that(
BF ,ki (h), DF ,ki (h)

)
=
(
BF ,Ki (h), DF ,Ki (h)

)
. Then, we write

(
BFi (h), DFi (h)

)
=
(
BF ,Ki (h), DF ,Ki (h)

)
.

We say that a strategy si survives the F-iterated conditional dominance procedure if it is the case

that si ∈ DFi (h) for all h ∈ Hi(si).

Below, we illustrate the F -ICDP with an example.

Example 2. Recall the example of Fig. 1, and assume that F = {Fa, Fb} is such that Ann rea-

sons about all histories, whereas Bob reasons only about present and future histories, i.e., formally,

Fa(h0) = Fa(h2) = {h1, h2} and Fb(h1) = Fb(h2) = {h2}. Let us now depict each decision problem(
BF ,ki (h), DF ,ki (h)

)
with a normal form game. The steps of the F -ICDP are represented by the lines

that cross out the corresponding strategies. Eliminations from BF ,ki (h) are represented by dashed

lines, whereas eliminations from DF ,ki (h) are represented by continuous lines. The corresponding

number next to each line refers to the step during which the respective strategy was eliminated.

In particular, at the first step (k = 1), no strategy is eliminated from BF ,1i (h) for any i ∈ I and

any h ∈ Hi. Then, RB is eliminated from DF ,0a (h0) because it is strictly dominated by L at h0, and

likewise RC eliminated from DF ,0b (h1) because it is strictly dominated by L at h1. Hence, we obtain

DF ,1a (h0) = {L,RA} and DF ,1b (h1) = {L,RD}. Furthermore, no strategy is eliminated at h2, i.e., it
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L
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a (h0)
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h2
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RB
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3,3

3,3

5,1

0,0

0,0

1,5

(k = 3)

(k = 3)(k = 1)
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b (h1)
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5,1

0,0

0,0

1,5

(k = 3)

(k = 3)

DF,k
b (h2)

BF,k
b (h2)

h2

is the case that DF ,1a (h2) = {RA,RB} and DF ,1b (h2) = {RC,RD}.
At the second step (k = 2), Bob’s strategy RC is eliminated both from BF ,1a (h0) and from

BF ,1a (h2). This is because h1 belongs to both Fa(h0) and Fa(h2). Thus, we obtain BF ,2a (h0) = {L,RD}
and BF ,2a (h2) = {RD}. On the other hand, RB is not eliminated from either BF ,1b (h1) or BF ,1b (h2),

because h0 does not belong to Fb(h1) or to Fb(h2). Then, RA is eliminated from DF ,1a (h0) because it

is strictly dominated by L at h0, and likewise it is also eliminated from DF ,1a (h2) because it is strictly

dominated by RB at h2.

Similarly we continue until the fourth step when the procedure stops. The only strategy profile

that survives F -ICDP is (L,RD). Indeed, observe that L ∈ DFa (h0), where {h0} = Ha(L). Likewise,

observe that RD ∈ DFb (h1) ∩DFb (h2), where {h1, h2} = Hb(RD).

At this point, we should also point out that the procedure yields, not only the strategy profiles

that survive, but also the conditional beliefs at each history, e.g., according to the procedure, the

only belief that Bob can have at h1 is to put probability 1 to Ann playing according to the strategy

RB. Below, we further elaborate on the fact that the procedure simultaneously induces strategies

and conditional beliefs for each player at each history. /

Interpretation. Let us begin by stressing that at each step of our procedure we perform two types

of elimination, viz., for each player i ∈ I and each h ∈ Hi, first we eliminate opponents’ strategy
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combinations from BF ,ki (h), and then we eliminate strategies from DF ,ki (h). Note that these two

types of elimination are conceptually very different. Let us for the time being focus on BF ,ki (h).

Eliminating a strategy combination s−i ∈ S−i(h) from BF ,ki (h) can be thought as eliminating

all of i’s first order conditional beliefs at h that put positive probability to s−i. Consequently, this

elimination can be thought as a restriction imposed on i’s types, viz., eliminating s−i from BF ,ki (h)

essentially means that we are ruling out all types ti with the property that margS−i
λhi (ti)({s−i}) > 0.

But then recall that this is exactly what F -CSBR does, i.e., it recursively imposes restrictions on i’s

types. In the next section we show that there is indeed a very tight relationship between eliminating

opponents’ strategies from BF ,ki (h) and eliminating own types from TF ,k−1i (h). Thus, it becomes

clear why earlier in this section we stated that the strategy combinations in BF ,ki (h) can be thought

as those that i could deem possible at h after k rounds of reasoning.

3.3. Characterization results

As we have already mentioned in the previous section, there is a very tight relationship between the

process of eliminating own types from TF ,k−1i (h) and the process of eliminating opponents’ strategy

profiles from BF ,ki (h). The following result makes this relationship formal.

Theorem 1. Consider a complete type structure
(
(Ti)i∈I , (λi)i∈I

)
and fix an arbitrary F . Then, for

every player i ∈ I, every history h ∈ Hi and every k > 0, the following hold:

(i) If ti ∈ TF ,k−1i (h) then there exists some βh
i ∈ ∆

(
BF ,ki (h)

)
with bhi (ti) = βh

i .

(ii) If βh
i ∈ ∆

(
BF ,ki (h)

)
then there exists some ti ∈ TF ,k−1i (h) with bhi (ti) = βh

i .

For instance, in the context of Ex. 2 the previous result implies that, for every type ta ∈ TF ,1a (h0)

it is the case that bh0
a (ta) puts probability 0 to RC. This is because BF ,2a (h0) = {L,RD}. Still, we

should stress that part (ii) in the theorem above does not say that every ti with bhi (ti) ∈ ∆
(
BF ,ki (h)

)
belongs to TF ,k−1i (h). To see this, consider a type ti which at h puts probability 1 to a strategy-

type combination (s−i, t−i) ∈ BF ,ki (h) ×
(
TF ,k−2−i (h′) \ TF ,k−1−i (h′)

)
where h′ ∈ Fi(h), implying that

bhi (ti) ∈ ∆
(
BF ,ki (h)

)
and also ti /∈ TF ,k−1i (h). Notice that such a type exists whenever the type

structure is complete.

Then, it is rather straightforward to characterize the strategies that can be rationally played

under F -common strong belief in rationality, by means of the F -iterated conditional dominance

procedure.

Theorem 2. Consider a complete type structure
(
(Ti)i∈I , (λi)i∈I

)
and fix an arbitrary F . Then, for

an arbitrary player i ∈ I, it is the case that si ∈ ProjSi

(
Ri ∩ (Si × TFi )

)
if and only if si ∈ DFi (h)

for all h ∈ Hi(si).
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The previous result formally states that a strategy can be rationally played under F -CSBR if

and only it survives the F -ICDP. For instance, in the context of Ex. 2, the only strategy profile that

can be rationally played under F -CSBR is (L,RD), as this is the only strategy profile surviving the

F -ICDP.

4. Special cases of local reasoning

In this section we present some special cases of F . As we have already mentioned earlier in the

paper, in some of these cases, F -CSBR coincides with existing solution concepts, such as common

strong belief in rationality (Battigalli and Siniscalchi, 2002) or common belief in future rationality

(Perea, 2014). Yet, note that our framework is flexible enough to accommodate any F .

4.1. Reasoning about all histories: Forward induction

The general idea behind forward induction reasoning is that players observe their opponents’ past

behavior and use this information in order to form beliefs about their opponents’ future behavior.13

The most prominent forward induction solution concept is extensive-form rationalizability (EFR),

originally introduced by Pearce (1984), subsequently simplified by Battigalli (1997) and later epis-

temically characterized by Battigalli and Siniscalchi (2002) by means of rationality and common

strong belief in rationality (in a complete type structure). The main idea is that players try to

rationalize the opponents’ strategies whenever this is possible. That is, upon reaching an arbitrary

h ∈ Hi, player i is assumed to believe that her opponents are rational at all histories, as long as their

rationality is not contradicted by the fact that history h has been reached. Thus, EFR implicitly

postulates that player i at h reasons about the opponents’ rationality at all histories.

Let us first formally recall the concept of up to k-fold strong belief in rationality, as it was

originally defined by Battigalli and Siniscalchi (2002). Consider the following sequences of subsets

of Ti:

SB1
i := SBi(R−i)

SB2
i := SB1

i ∩ SBi

(
R−i ∩ (S−i × SB1

−i)
)

...

SBk
i := SBk−1

i ∩ SBi

(
R−i ∩ (S−i × SBk−1

−i )
)

...

13FI is not a solution concept. Rather it is a general principle which is present in different concepts that have appeared

in the literature (e.g., Pearce, 1984; Battigalli and Siniscalchi, 2002; Stalnaker, 1998; Battigalli and Friedenberg, 2012;

Govindan and Wilson, 2009; Cho, 1987; Cho and Kreps, 1987; McLennan, 1985; Hillas, 1994).
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with SBk−1
−i :=

�
j 6=i SB

k−1
j for each k > 1. Moreover, let

CSBi :=
∞⋂
k=1

SBk
i (15)

be the set of types that satisfy common strong belief in rationality (CSBR). Finally, we say that a

strategy si can be rationally played under CSBR whenever si ∈ ProjSi

(
Ri ∩ (Si × CSBi)

)
.

Let us now assume that Fi(h) = H−i for all h ∈ hi and all i ∈ I. Then, we ask whether there is a

formal relationship between common strong belief in rationality on the one hand, and our F -common

strong belief in rationality on the other. As it turns out the two notions are equivalent, as shown

below.

Proposition 1. Consider an arbitrary type structure
(
(Ti)i∈I , (λi)i∈I

)
. Moreover, let F be such that

Fi(h) = H−i for all i ∈ I and all h ∈ Hi. Then, for every player i ∈ I and every k > 0, it is the case

that SBk
i =

⋂
h∈Hi

TF ,ki (h).

Two immediate conclusions follow directly from the previous result. First, a type satisfies common

strong belief in rationality if and only it satisfies F -common strong belief in rationality, i.e., CSBi =

TFi . Second, a strategy can be rationally played under common strong belief in rationality if and

only if it can be rationally played under F -common strong belief in rationality. This is formally

stated in the following corollary. The proof trivially follows from the definition of rationality.

Corollary 1. Consider an arbitrary type structure
(
(Ti)i∈I , (λi)i∈I

)
. Moreover, let F be such that

Fi(h) = H−i for all i ∈ I and all h ∈ Hi. Then, for every player i ∈ I, it is the case that

ProjSi

(
Ri ∩ (Si × CSBi)

)
= ProjSi

(
Ri ∩ (Si × TFi )

)
.

Another direct consequence of the previous result – combined with Theorem 2 of the previous

section and the characterization result of Shimoji and Watson (1998) – is that, in a complete type

structure, a strategy survives k steps of our F -iterated conditional dominance procedure if and only

if it survives k steps of Shimoji and Watson’s iterated conditional dominance procedure (ICDP). In

this sense, ICDP is a special case of F -ICDP.

Now, notice that in Proposition 1 we do not impose any restriction on the type structure, and in

particular we do not focus exclusively on complete type structures. In fact, it is known that whenever

we restrict attention to complete type structures, Rationality and CSBR epistemically characterize

the strategies that are predicted by Extensive Form Rationalizability (EFR) (Pearce, 1984). On the

other hand, if we allow for an arbitrary type structure, Rationality and CSBR yields an Extensive

Form Best Response Set (EFBRS) (Battigalli and Friedenberg, 2012). The fact that Proposition 1

does not restrict the type structure implies that Rationality and F -CSBR also yield an EFBRS.
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4.2. Reasoning about future histories: Backward induction

Contrary to forward induction, the general idea behind backward induction reasoning is that players

ignore their opponents’ realized past behavior when they form beliefs about their opponents’ future

behavior.14

The two concepts that in our view capture this idea – and nothing more – for arbitrary dynamic

games are the backward dominance procedure (BDP) (Perea, 2014) and backward rationalizability

(BR) (Penta, 2009).15 Note that these two concepts differ only in that BR postulates Bayesian updat-

ing, whereas BDP does not. Both these two concepts are epistemically characterized by rationality

and common belief in future rationality in a complete type structure (Perea, 2014).16 Throughout

the paper, we will mostly focus our discussion on BDP. Nonetheless, our analysis is also valid in the

case of BR.

The idea behind BDP is that players maintain the belief that their opponents will continue being

rational irrespective of the moves they have observed so far. That is, upon reaching a history h ∈ Hi

player i is assumed to believe that her opponents will behave rationally from that point onwards,

even if reaching this history contradicts the opponents’ rationality. Thus, BDP implicitly postulates

that player i at h reasons only about the opponents’ rationality at the current history and in the

future.

First, we define the event that player i believes in the opponents’ future rationality by

FBi(R−i) :=
⋂
h∈Hi

Bh
i

(
R

Fut(h)
−i

)
. (16)

Then, we consider the following sequence of subsets of Ti:

FB1
i := FBi(R−i)

FB2
i := FB1

i ∩Bi(S−i × FB1
−i)

...

FBk
i := FBk−1

i ∩Bi(S−i × FBk−1
−i )

...

14Once again, BI is not a solution concept but rather a general principle embodied in different concepts in the

literature (e.g., Selten, 1965; Kreps and Wilson, 1982; Perea, 2014; Baltag et al., 2009; Penta, 2009).
15Concepts like subgame perfect equilibrium (Selten, 1965) or sequential equilibrium (Kreps and Wilson, 1982)

impose additional equilibrium conditions, whereas the standard backward induction procedure is well-defined only for

perfect information extensive-form games without relevant ties.
16Formally speaking, Perea (2014) does not fix a type structure. Instead he looks across different (finite) type

structures. This approach is essentially equivalent to ours, as every finite type structure can be embedded into the

complete type structure that we use here via a type morphism that preserves the conditional belief hierarchies.
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where FBk−1
−i :=

�
j 6=i FB

k−1
j for each k > 1. We say that FBk

i contains the types that satisfy up to

k-fold belief in future rationality.17 Now, let

CFBi :=
∞⋂
k=1

FBk
i (17)

contain the types that satisfy common belief in future rationality (CBFR). We say that a strategy si

can be rationally played under CBFR whenever si ∈ ProjSi

(
Ri ∩ (Si × CFBi)

)
.

The previous idea is formally captured by the assumption that Fi(h) = Fut−i(h) for all h ∈ Hi

and all i ∈ I. Then, it is natural to investigate the formal relationship between belief in future

rationality on the one hand and F -strong belief in rationality on the other. First, let us point out

that whenever F is such that Fi(h) = Fut−i(h), it is by definition the case that F -strong belief is

directly reduced to standard belief. Thus, it is not surprising that the two notions are equivalent

in terms of the strategy profiles the predict. Still, this is not necessarily the case for the types they

induce. Let us first illustrate with an example a case where CBFR does not coincide with F -CSBR.

Example 3. Consider the following dynamic game between Ann and Bob.

h0(a)

h1(b)
RL

L R(1,0)

(1,1) (1,0)

Now, consider the type structure (Ta, Tb, λa, λb) with the type spaces being Ta = {ta, t′a} and Tb = {tb}
and the corresponding conditional beliefs being given by

λh0
a (ta) =

(
1⊗ (R, tb)

)
λh0
a (t′a) =

(
1⊗ (L, tb)

)
λh1
b (tb) =

(
1⊗ (R, ta)

)
First notice that the only type of Ann that is consistent with up to 1-fold belief in future rationality

is t′a, viz., formally, FR1
a = {t′a}. This is because, Bob’s unique rational strategy at h1 is to choose

L. This implies that tb does not satisfy up to 2-fold belief in future rationality. Indeed, observe that

λh1
b (tb)(Sa×FR1

a) = λh1
b (tb)(Sa×{t′a}) = 0. In fact, it is the case that FR2

b = ∅, i.e., there is no type

of Bob satisfying up to 2-fold belief in future rationality.

17Notice that in the previous definition we have the set Bi(S−i × FBk−1
−i ) rather than Bi

(
R−i ∩ (S−i × FBk−1

−i
)
.

This is in contrast to the respective definition of “up to k-fold strong belief in rationality”. This is because – unlike

strong belief – Bi is a monotonic operator (Battigalli and Siniscalchi, 2002).
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Now, suppose that Fi(h) = Fut−i(h) for each h ∈ Hi and each i ∈ I, i.e., Fa(h0) = {h1} and

Fb(h1) = ∅. Then, observe that again the only type of Ann satisfying 1-fold F -strong belief in

rationality at h0 is t′a, viz., TF ,1a (h0) = {t′a}. But, then tb does satisfy up to 2-fold F -strong belief in

rationality at h1. This is because Fb(h1) = ∅, and therefore TF ,kb (h1) = Tb for all k > 0. /

The reason for the previously illustrated divergence between FB2
b and

⋂
h∈Hb

TF ,2b (h) is that in

order for a type tb to satisfy up to 2-fold belief in future rationality, it must attach at h1 probability

1 to Sa×FB1
a. But then, FB1

a contains Ann’s types that require Ann to believe at h0 that Bob will

be rational from that point onwards. In other words, tb must believe at h1 that Ann believed at the

earlier history h0 that Bob would be rational at all histories following h0. On the other hand, in

order for a type tb to satisfy up to 2-fold F -strong belief in rationality, it must believe at h1 that Ann

will believe at all histories following h1 that Bob will be rational at all future histories. However, in

the previous example there is no history following h1, and hence no requirement is being imposed.

In this respect our concept of F -CSBR with Fi(h) = Fut−i(h) is a truly backward induction concept

as it completely disregards the past. In particular, it postulates that players ignore not only the

opponents’ past behavior, but also the opponents’ reasoning at past histories.

Still, even though F -CSBR and CBFR differ in the conditional beliefs that they induce, they

coincide in the predictions they make. In particular, as we show below, given a complete type

structure, a strategy can be rationally played under F -CSBR if and only if it can be rationally

played under CBFR.

Proposition 2. Consider a complete type structure
(
(Ti)i∈I , (λi)i∈I

)
. Moreover, let F be such that

Fi(h) = Fut−i(h) for all i ∈ I and all h ∈ Hi. Then, for every player i ∈ I, it is the case that

ProjSi

(
Ri ∩ (Si × CFBi)

)
= ProjSi

(
Ri ∩ (Si × TFi )

)
.

The proof of the result follows almost directly from Lemma B1 in Appendix B, which formally

proves that BDP and F -ICDP are essentially equivalent.

Finally, notice that while F -CSBR and CBFR yield the same predicted strategies in a complete

type structure, this is not necessarily the case for an arbitrary type structure. To see this recall

Example 3. In particular, observe that, given the type structure that we assume, Rationality and

CBFR yields an empty set of predictions, whereas Rationality and F -CSBR induces a non-empty

prediction, viz., ProjSb

(
Rb ∩ (Sb × TFb )

)
= {L}, while ProjSb

(
Rb ∩ (Sb × CFBb)

)
= ∅.

A. Proofs of Section 3

We first introduce some additional notation and prove some intermediate results that we will use

throughout the proof of our main theorem.
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Lemma A1 (Optimality principle). Fix an arbitrary player i ∈ I, an arbitrary history h ∈ Hi, an

arbitrary F and some k > 0. Then, a strategy si ∈ Si(h) is rational in
(
BF ,ki (h), Si(h)

)
if and only

if it is rational in
(
BF ,ki (h), DF ,k−1i (h)

)
.

Proof . Necessity is straightforward, i.e., if si is rational in
(
BF ,ki (h), Si(h)

)
, then it is obviously the

case that si ∈ DF ,k−1i (h) and moreover it is rational in the decision problem
(
BF ,ki (h), DF ,k−1i (h)

)
.

Now, let us now prove sufficiency. Take an arbitrary si ∈ DF ,k−1i (h) and assume that it is rational

in
(
BF ,ki (h), DF ,k−1i (h)

)
. Then, by definition, there exists some βh

i ∈ ∆
(
BF ,ki (h)

)
such that

Uh
i (si, β

h
i ) ≥ Uh

i (s′i, β
h
i ) (A.1)

for all s′i ∈ D
F ,k−1
i (h). Now, assume – contrary to what we want to show – that si is not rational in(

BF ,ki (h), Si(h)
)
, and take an arbitrary rational strategy s′′i given βh

i . Thus, it is the case that

Uh
i (s′′i , β

h
i ) > Uh

i (si, β
h
i ). (A.2)

Notice that the last inequality is strict, because otherwise si would have been a rational strategy in(
BF ,ki (h), Si(h)

)
. Moreover, from the previous step it follows that s′′i ∈ D

F ,k−1
i (h). But then, this

contradicts the fact that si is rational in
(
BF ,ki (h), DF ,k−1i (h)

)
, thus implying that si must necessarily

be rational in
(
BF ,ki (h), Si(h)

)
.

Now, let TF ,ki :=
⋂

h∈Hi
TF ,ki (h). Then, fix an arbitrary G ∈ H := 2H \ {∅}, and define

DF ,ki (G) := {si ∈ Si : si ∈ DF ,ki (h) for all h ∈ Hi(si) ∩G} (A.3)

RF ,ki (G) := {si ∈ Si : there is ti ∈ TF ,ki such that (si, ti) ∈ Rh
i for all h ∈ Hi(si) ∩G}

= ProjSi

(
RG

i ∩
(
Si × TF ,ki

))
. (A.4)

Then, we define the set of i’s strategies that survive F -ICDP at all histories in G by

DFi (G) :=
∞⋂
k=1

DF ,ki (G).

Likewise, we define the set of i’s strategies that are rational given some type that satisfies F -CSBR

at all histories in G by

RFi (G) :=
∞⋂
k=1

RF ,ki (G).

Construction of conditional beliefs. Fix an arbitrary G ∈ H and an arbitrary si ∈ DF ,1i (G).

Then, it follows directly from Pearce (1984, Lem. 3) that for every h ∈ Hi(si) ∩ G there exists at

least one conditional belief βh
si,G
∈ ∆

(
S−i(h)

)
such that

Uh
i (si, β

h
si,G

) ≥ Uh
i (s′i, β

h
si,G

) (A.5)

for all s′i ∈ Si(h). Now, consider the following two cases:
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• Suppose there exists some k ∈ N such that si ∈ DF ,ki (G) \ DF ,k+1
i (G). Then, it follows by

definition that si is rational in
(
BF ,ki (h), DF ,k−1i (h)

)
. Hence, it follows from the optimality

principle (Lemma A1) that we can choose some βh
si,G
∈ ∆

(
BF ,ki (h)

)
satisfying Eq. (A.5).

• Suppose that si ∈ DF ,ki (G) for all k ∈ N. Then, it follows by definition that si is rational in(
BF ,ki (h), DF ,k−1i (h)

)
for every k ∈ N. Thus we can choose some βh

si,G
∈ ∆

(
BFi (h)

)
satisfying

Eq. (A.5).

In either of the two cases, complete the collection of conditional beliefs
(
βh
si,G

)
h∈Hi

by considering

arbitrary conditional beliefs βh′
si,G
∈ ∆

(
S−i(h

′)
)

for every h′ ∈ Hi \
(
Hi(si) ∩G

)
.

Construction of types. For each player i ∈ I, define the finite set Θi := {θsi,G | (si, G) ∈ Si×H},
and let Θ−i :=

�
j 6=i Θj. Now, define the mapping ghi : Θi → ∆

(
S−i(h) × Θ−i

)
for each h ∈ Hi as

follows: For each si ∈ D1
i (G), let

ghi (θsi,G)(s−i, θ−i) :=

βh
si,G

(s−i) if θj = θsj ,Fi(h) for all j 6= i

0 otherwise.
(A.6)

On the other hand, if si /∈ DF ,1i (G), let ghi (θsi,G)(s−i, θ−i) be an arbitrary probability measure over

S−i(h)×Θ−i. Now, observe that
(
(Θi)i∈I , (gi)i∈I

)
is a finite type structure, implying that each θi ∈ Θi

is associated with a hierarchy of conditional beliefs.

Recall that we have assumed
(
(Ti)i∈I , (λi)i∈I

)
to be a complete type structure. Then, it follows

from Friedenberg (2010) that for every hierarchy of conditional beliefs there is a type inducing this

hierarchy (see Footnote 8). Thus, there is a function ξi : Θi → Ti mapping each θsi,G to the (unique)

type tsi,G := ξi(θsi,G) that induces the same hierarchy in
(
(Ti)i∈I , (λi)i∈I

)
. Moreover, notice that

by construction it is the case that λhi (tsi,G)(s−i, t−i) = ghi (θsi,G)
(
s−i, ξ

−1
i (t−i)

)
. Furthermore, by

construction it is the case that (si, tsi,G) ∈ RG
i whenever si ∈ DF ,1i (G).

Before we move on, for notation simplicity, let us adopt the convention that TF ,0i (h) := Ti.

Lemma A2. For every player i ∈ I, every G ∈ H and every k > 0, the following hold:

(i) If ti ∈ TF ,k−1i (h) then bhi (ti) ∈ ∆
(
BF ,ki (h)

)
.

(ii) If si ∈ DF ,ki (G) then tsi,G ∈ T
F ,k−1
i (h) for all h ∈ Hi(si) ∩G.

(iii) RF ,k−1i (G) = DF ,ki (G).

Proof. We prove the result by induction on k.
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Initial step. First, it is rather trivial to prove the result for k = 1. Indeed, observe that by

construction it is the case that BF ,1i (h) = BF ,0i (h) = S−i(h), and therefore ∆
(
BF ,1i (h)

)
= ∆

(
S−i(h)

)
,

thus implying that bhi (ti) ∈ ∆
(
BF ,1i (h)

)
for all ti ∈ Ti, which proves (i). Moreover, recall from our

convention that TF ,0i (h) = Ti, thus implying that tsi,G ∈ T
F ,0
i (h) for all h ∈ Hi(si) ∩G, irrespective

of whether si ∈ DF ,1i or not, which proves (ii). Finally, notice that

RF ,0i (G) = {si ∈ Si : there is ti ∈ TF ,0i (h) such that (si, ti) ∈ Rh
i for all h ∈ Hi(si) ∩G}

= {si ∈ Si : there is ti ∈ Ti such that (si, ti) ∈ RG
i }

= DF ,1i (G)

which proves (iii).

Inductive step. We assume that the result holds for an arbitrary k > 0. We will refer to this as

our “induction assumption (IA)”. Then, we are going to prove it for k + 1.

Proof of (i): Fix some h ∈ Hi, and assume that ti ∈ TF ,ki (h). Then, by definition it is the case that

ti ∈ SBh
i

(
R

Fi(h)
−i ∩ (S−i × TF ,k−1−i (Fi(h)))

)
.

Then, we consider the following two cases:

(a) Let R
Fi(h)
−i ∩ (S−i × TF ,k−1−i (Fi(h))) 6= ∅.

By the definition of strong belief (at h) it is the case that λhi (ti)
(
R

Fi(h)
−i ∩(S−i×TF ,k−1−i (h))

)
= 1.

Now, recall by Eq. (A.4) that

RF ,k−1−i (Fi(h)) = ProjS−i

(
R

Fi(h)
−i ∩ (S−i × TF ,k−1−i (Fi(h)))

)
,

and therefore it follows that bhi (ti)
(
RF ,k−1−i (Fi(h))

)
= 1. Now observe that

RF ,k−1−i
(
Fi(h)

)
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ RF ,k−1j

(
Fi(h)

) }
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ DF ,kj

(
Fi(h)

) } (
by the IA

)
=
¡

j 6=i

{
sj ∈ Sj : sj ∈ DF ,kj (h′) for all h′ ∈ Hj ∩ Fi(h)

}
. (A.7)

Thus, it is the case that

CF ,ki (h) =
¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ DF ,kj (h′) for all h′ ∈ Hj ∩ Fi(h)

}
= S−i(h) ∩RF ,k−1−i

(
Fi(h)

)
. (A.8)

24



Now, there are two possibilities. According to the first possibility we have CF ,ki (h) 6= ∅, in

which case we obtain

BF ,k+1
i (h) = CF ,ki (h)

= S−i(h) ∩RF ,k−1−i
(
Fi(h)

)
.

Then, by combining bhi (ti)
(
RF ,k−1−i (Fi(h))

)
= 1 with bhi (ti)

(
S−i(h)

)
= 1, it is straightforward

to obtain bhi (ti)
(
BF ,k+1

i (h)
)

= 1. According to the second possibility we have CF ,ki (h) = ∅,
in which case we obtain BF ,k+1

i (h) = BF ,ki (h). But then, since ti ∈ TF ,ki (h) ⊆ TF ,k−1i (h), it

follows from the IA that bhi (ti)
(
BF ,k+1

i (h)
)

= bhi (ti)
(
BF ,ki (h)

)
= 1, which completes this part of

the proof.

(b) Let R
Fi(h)
−i ∩

(
S−i × TF ,k−1−i (Fi(h))

)
= ∅.

Then, it follows by definition that

RF ,k−1−i
(
Fi(h)

)
∩ S−i(h) ⊆ RF ,k−1−i

(
Fi(h)

)
= ProjS−i

(
R

Fi(h)
−i ∩ (S−i × T k−1

−i (Fi(h)))
)

= ∅ (A.9)

Now, using the same reasoning as in Eq. (A.7), combined with Eq. (A.9), we obtain

RF ,k−1−i (Fi(h)) ∩ S−i(h) =
¡

j 6=i

{
sj ∈ Sj(h) : sj ∈ DF ,kj (h′) for all h′ ∈ Hj ∩ Fi(h)

}
= ∅.

Moreover, using the same argument as in Eq. (A.8), we obtain

CF ,ki (h) = S−i(h) ∩RF ,k−1−i
(
Fi(h)

)
.

Thus, combining the previous two equations, we conclude that CF ,ki (h) = ∅. Hence, BF ,k+1
i (h) =

BF ,ki (h). Finally, since ti ∈ TF ,ki (h) ⊆ TF ,k−1i (h), it follows from the IA that bhi (ti)
(
BF ,k+1

i (h)
)

=

bhi (ti)
(
BF ,ki (h)

)
= 1, which completes the proof of part (i).

Proof of (ii): Take an si ∈ DF ,k+1
i (G), and consider some h ∈ Hi(si) ∩ G. Since DF ,k+1

i (G) ⊆
DF ,ki (G), it follows by the IA that tsi,G ∈ T

F ,k−1
i (h). Hence, it suffices to prove that

tsi,G ∈ SBh
i

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i (h)

))
. (A.10)

The latter amounts to proving that(
R

Fi(h)
−i ∩

(
S−i(h)× TF ,k−1−i (h)

)
6= ∅
)
⇒

(
λhi (tsi,G)

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i (h)

))
= 1
)
. (A.11)
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First, notice that tsi,G ∈ SBh
i

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i (h)

))
is trivially satisfied whenever R

Fi(h)
−i ∩(

S−i(h)×TF ,k−1−i (h)
)

= ∅. Hence, we will focus on the case where R
Fi(h)
−i ∩

(
S−i(h)×TF ,k−1−i (h)

)
6= ∅.

For every j 6= i, there exists some (s∗j , t
∗
j) ∈ Sj(h) × Tj such that (1) (s∗j , t

∗
j) ∈ Rh′

j for all h′ ∈
Hj(s

∗
j) ∩ Fi(h), and (2) t∗j ∈ T

F ,k−1
j (h′) for all h′ ∈ Hj ∩ Fi(h).

Now, we are going to prove that s∗j ∈ D
F ,k
j (h′) for every h′ ∈ Hj(s

∗
j) ∩ Fi(h). To do so, take an

arbitrary tk−1j ∈ TF ,k−1j , and define the type t∗∗j by

λh
′

j (t∗∗j ) :=

λh
′

j (t∗j) for each h′ ∈ Hj(s
∗
j) ∩ Fi(h),

λh
′

j (tk−1j ) for each h′ ∈ Hj \
(
Hj(s

∗
j) ∩ Fi(h)

)
.

Notice that since
(
(Ti)i∈I , (λi)i∈I

)
is a complete type structure, such a type exists. Observe that by

construction it is the case that (s∗j , t
∗∗
j ) ∈ RFi(h)

j , and moreover t∗∗j ∈ T
F ,k−1
j . Therefore, we obtain

s∗j ∈ R
F ,k−1
j

(
Fi(h)

)
∩ Sj(h)

= DF ,kj

(
Fi(h)

)
∩ Sj(h)

(
by the IA

)
=
{
sj ∈ Sj(h) : sj ∈ DF ,kj (h′) for all h′ ∈ Hj(sj) ∩ Fi(h)

}
6= ∅.

The latter implies directly by definition that CF ,ki (h) 6= ∅. Hence, it is – also by definition – the

case that

BF ,k+1
i (h) = CF ,ki (h). (A.12)

Now, notice that by construction λhi (tsi,G) put positive probability only to strategy-type pairs (sj, tj)

such that tj = tsj ,Fi(h). Moreover, since si ∈ DF ,k+1
i (G) and tsi,G ∈ T

F ,k−1
i (h) it follows from Part

(i) of our result – which we have already proven above – that bhi (tsi,G) ∈ ∆
(
BF ,ki (h)

)
. Therefore, it

follows from Eq. (A.12) that margSj×Tj
λhi (tsi,G) puts positive probability only to strategy-type pairs

(sj, tj) ∈ Sj(h)×Tj such that tj = tsj ,Fi(h) and sj ∈ DF ,kj (h′) for all h′ ∈ Hj(sj)∩Fi(h). Hence, from

the IA it follows that margSj×Tj
λhi (tsi,G) assigns probability 1 to

R
Fi(h)
j ∩

{
(sj, tj) ∈ Sj × Tj : tj ∈ TF ,k−1j (h′) for all h′ ∈ Hj ∩ Fi(h)

}
for every j 6= i. Therefore, by definition, tsi,G ∈ T

F ,k
i (h), which completes the proof of part (ii).

Proof of (iii): First, we prove that RF ,k−1i (G) ⊆ DF ,ki (G): Take an arbitrary si ∈ RF ,k−1i (G). By

definition there exists a type in ti ∈ TF ,k−1i such that (si, ti) ∈ RG
i . Now, by part (i) of the result

– that we have already proven above – it follows that bhi (ti)
(
BF ,ki (h)

)
= 1 for all h ∈ Hi(si) ∩ G,

implying that at all histories h ∈ Hi(si) ∩ G, the strategy si is rational in the decision problem(
BF ,ki (h), DF ,k−1i (h)

)
. Thus, we conclude that si ∈ DF ,ki (h) for all h ∈ Hi(si)∩G. The latter directly

implies that si ∈ DF ,ki (G) which completes this part of the proof.
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Second, we prove that DF ,ki (G) ⊆ RF ,k−1i (G): Take an arbitrary si ∈ DF ,ki (G). Then, by part (ii)

that we have already proven above, it follows that tsi,G ∈ T
F ,k−1
i (h) for all h ∈ G ∩Hi(si). Now, fix

an arbitrary type tk−1i ∈ TF ,k−1i , and define the type t∗si,G ∈ Ti by

λhi (t∗si,G) :=

λhi (tsi,G) for each h ∈ Hi(si) ∩G,

λhi (tk−1i ) for each h ∈ Hi \
(
Hi(si) ∩G

)
.

Notice that since
(
(Ti)i∈I , (λi)i∈I

)
is a complete type structure, such a type exists. Then, by con-

struction it is the case that t∗si,G ∈ TF ,k−1i , and therefore it follows that (si, t
∗
si,G

) ∈ Rh
i for all

h ∈ G ∩Hi(si). Hence, we conclude that si ∈ RF ,k−1i (G), which completes the proof.

Proof of Theorem 1. Take an arbitrary i ∈ I and some h ∈ Hi.

Proof of (i): It follows directly from Lemma A2.i.

Proof of (ii): Fix an arbitrary βh
i ∈ ∆

(
BF ,ki (h)

)
, and let s∗i ∈ D

F ,k
i (h) be such that

Uh
i (s∗i , β

h
i ) ≥ Uh

i (si, β
h
i ) (A.13)

for all si ∈ DF ,k−1i (h). In fact, notice that Eq. (A.13) holds, not only for every si ∈ DF ,k−1i (h), but

for every si ∈ Si(h) (see Lemma A1). Now, we define βh
s∗i ,{h}

:= βh
i , and construct the type ths∗i ,{h}

like we did above. Then, by Lemma A2.ii, it is the case that ts∗i ,{h} ∈ T
F ,k−1
i (h), which – together

with the fact that βh
s∗i ,{h}

:= bhi (ts∗i ,{h}) – completes the proof.

Proof of Theorem 2. Observe that by construction

RFi (H) = ProjSi

(
Ri ∩ (Si × TFi )

)
DFi (H) = {si ∈ Si : si ∈ DFi (h) for all h ∈ Hi(si)},

and recall by Lemma A2.iii that RFi (H) = DFi (H), which completes the proof.

B. Proofs of Section 4

Proof of Proposition 1. We proceed by induction on k. First, note that SB1
i =

⋂
h∈Hi

TF ,1i (h).

Then, assume that for every i ∈ I it is the case that SBk−1
i =

⋂
h∈Hi

TF ,k−1i (h). Now, observe that

for every i ∈ I and h ∈ Hi, it is the case that

TF ,k−1−i
(
Fi(h)

)
=
¡

j 6=i

{
tj ∈ Tj : tj ∈ TF ,k−1j (h′) for all h′ ∈ Hj}

=
¡

j 6=i

( ⋂
h′∈Hj

TF ,k−1j (h′)
)

=
¡

j 6=i

SBk−1
j

= SBk−1
−i .
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Hence, it is the case that

SBk
i = SBk−1

i ∩ SBi

(
R−i ∩ (S−i × SBk−1

−i )
)

=
( ⋂
h∈Hi

TF ,k−1i (h)
)
∩
( ⋂
h∈Hi

SBh
i

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i

(
Fi(h)

))))
=

⋂
h∈Hi

(
TF ,k−1i (h) ∩ SBh

i

(
R

Fi(h)
−i ∩

(
S−i × TF ,k−1−i

(
Fi(h)

))))
=

⋂
h∈Hi

TF ,ki (h)

which completes the proof.

In order to prove Proposition 2, we first recall the formal definition of the backward dominance

procedure (BDP), originally introduced by Perea (2014).

Backward dominance procedure. For an arbitrary i ∈ I and an arbitrary h ∈ H, consider the

following sequence of subsets of Si(h):

Q1
i (h) := Si(h)

Q2
i (h) := {si ∈ Q1

i (h) : si is rational in
(
Q1
−i(h

′), Q1
i (h
′)
)

at all h′ ∈ Hi(si) ∩ Fut(h)}
...

Qk
i (h) := {si ∈ Qk−1

i (h) : si is rational in
(
Qk−1
−i (h′), Qk−1

i (h′)
)

at all h′ ∈ Hi(si) ∩ Fut(h)}
...

for each k > 0, where Qk
−i(h) =

�
j 6=iQ

k
j (h). We say that a strategy si survives k steps of the

procedure at h ∈ Hi whenever si ∈ Qk
i (h). The idea is that a strategy survives k steps of the

procedure at some h ∈ Hi whenever it is not strictly dominated in the corresponding normal form

game – that has survived so far – at every history following h where i is active. Then, we define

Qi(h) :=
∞⋂
k=1

Qk
i (h), (B.1)

and we say that a strategy survives the procedure whenever it is the case that si ∈ Qi(h) for all

h ∈ Hi(si).

Now, let us prove an intermediate lemma that we will use in the proof of Proposition 2.

Lemma B1. Let F be such that Fi(h) = Fut−i(h) for every i ∈ I and every h ∈ Hi. Then, for every

i ∈ I, every h ∈ Hi and every k > 1 the following hold:

(i) Qk
−i(h) = BF ,ki (h).

(ii) Qk+1
i (h) = {si ∈ Si(h) : si ∈ DF ,ki (h′) for all h′ ∈ Fut(h) ∩Hi(si)}.
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Proof. We proceed to prove the result by induction on k. The result trivially holds for k = 1. We

assume it holds for k − 1 and we will prove it for k. We begin with part (i). Fix an arbitrary i ∈ I
and an arbitrary h ∈ Hi, and observe that

BF ,ki (h) = CF ,k−1i (h)

=
¡

j 6=i

{sj ∈ Sj(h) : sj ∈ DF ,k−1j (h′) for all h′ ∈ Hj(sj) ∩ Fut(h)}

=
¡

j 6=i

Qk
j (h)

(
by the IA

)
= Qk

−i(h),

which completes the inductive step of the proof for part (i).

Now, we move the inductive step for part (ii). Again, fix an arbitrary i ∈ I and an arbitrary

h ∈ Hi, and take an arbitrary si ∈ Qk+1
i (h). Then, by definition, si is rational in

(
Qk
−i(h

′), Qk
i (h′)

)
for every h′ ∈ Fut(h)∩Hi(si), and by part (i) of the present result, si is rational in

(
BF ,ki (h′), Qk

i (h′)
)

for every h′ ∈ Fut(h) ∩Hi(si). Now, notice that for every s′i ∈ Si(h
′),

a strategy s′i is rational in
(
BF ,ki (h′), Qk

i (h′)
)
⇔ a strategy s′i is rational in

(
BF ,ki (h′), Si(h

′)
)

⇔ a strategy s′i is rational in
(
BF ,ki (h′), DF ,k−1i (h′)

)
.

The first equivalence follows from Perea (2012, Lem. 8.14.6), while the second one follows from

Lemma A1. Hence, si is rational in
(
BF ,ki (h′), DF ,k−1i (h′)

)
for every h′ ∈ Fut(h) ∩ Hi(si), thus

implying that si ∈ DF ,ki (h′) for every h′ ∈ Fut(h) ∩Hi(si). Therefore,

Qk+1
i (h) ⊆ {si ∈ Si(h) : si ∈ DF ,ki (h′) for all h′ ∈ Fut(h) ∩Hi(si)}. (B.2)

Now, in order to prove the inverse weak inequality, take some si ∈ DF ,ki (h′) for every h′ ∈ Fut(h) ∩
Hi(si). This implies that si is rational in

(
Qk
−i(h

′), DF ,k−1i (h′)
)

for every h′ ∈ Fut(h)∩Hi(si), and by

the previous sequence of equivalences, si is rational in
(
Qk
−i(h

′), Qk
i (h′)

)
for every h′ ∈ Fut(h)∩Hi(si).

Then, by definition, si ∈ Qk+1
i (h), thus proving that

Qk+1
i (h) ⊇ {si ∈ Si(h) : si ∈ DF ,ki (h′) for all h′ ∈ Fut(h) ∩Hi(si)}. (B.3)

Then, inequalities (B.2) and (B.3) complete this part of the proof.

Proof of Proposition 2. It follows from Perea (2014, Thm. 5.4) that a strategy can be rationally

played under CBFR (in a complete type structure) if and only if it survives the BDP, i.e., formally,

si ∈ Qi(h) for all h ∈ Hi(si) if and only if si ∈ ProjSi

(
Ri ∩ (Si × CFBi)

)
. Moreover, from our

Theorem 2, a strategy si can be rationally played under F -CSBR (in a complete type structure)

if and only if it survives the F -ICDP, i.e., formally, si ∈ DFi (h) for all h ∈ Hi(si) if and only if
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si ∈ ProjSi

(
Ri ∩ (Si × TFi )

)
. Thus, it suffice to prove that a strategy survives BDP if and only if it

survives F -ICDP.

First, consider an arbitrary strategy si surviving the BDP. Then, it must be the case that si ∈
Qk

i (h) for every k > 0 and every h ∈ Hi(si). Thus, by Lemma B1, the latter is true if and only if

si ∈ {s′i ∈ Si(h) : s′i ∈ DF ,ki (h′) for all h′ ∈ Fut(h) ∩ Hi(si)} for all k > 0 and for all h ∈ Hi(si).

Obviously, the latter is equivalent to si ∈ DF ,ki (h) for every k > 0 and every h ∈ Hi(si), which by

definition means that si survives the F -ICDP, thus completing the proof.
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