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Abstract

In this paper, we study two-person bargaining problems represented by a space of alternatives, a

status quo point, and the agents’ preference relations on the alternatives. The notion of a family of

increasing sets is introduced, which reflects a particular way of gradually expanding the set of

alternatives. For any given family of increasing sets, we present a solution which is Pareto optimal

and monotonic with respect to this family, that is, it makes each agent weakly better off if the set of

alternatives is expanded within this family. The solution may be viewed as an expression of equal-

opportunity equivalence as defined in Thomson [Soc. Choice Welf. 11 (1994) 137–156]. It is shown

to be the unique solution that, in addition to Pareto optimality and the monotonicity property

mentioned above, satisfies a uniqueness axiom and unchanged contour independence. A

noncooperative bargaining procedure is provided for which the unique backward induction outcome

coincides with the solution.
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1. Introduction

This paper deals with two-party disputes, in which both parties hold preferences over a

set of alternatives and attempt to reach an agreement on one of them. If the agents fail in

reaching an agreement, they fall back to some fixed status quo point. In the remainder, we

refer to such situations as bargaining problems. In the axiomatic bargaining literature, there

exist two different approaches to this class of problems. Within the first approach, which is

sometimes called the welfarist approach, the agents’ preferences are represented by utility

functions, thus transforming the original bargaining problem into a bargaining problem in

utility space, consisting of a set of feasible utility pairs and a status quo utility pair. Axioms

and solutions are then formulated entirely within the context of bargaining problems in

utility space. Within the second approach, which we refer to as the nonwelfarist approach,

the axioms and solutions are defined directly in terms of the original bargaining problem,

that is, in terms of the space of alternatives and the agents’ preferences.

In this paper, we focus on the combination of two axioms which have played a

prominent role in both the welfarist and nonwelfarist approach to bargaining: Pareto

optimality and monotonicity. The Pareto optimality axiom is applied in the strong sense,

meaning that there should be no other alternative which is weakly preferred by both

agents, and strictly preferred by at least one of them. Monotonicity reflects the

requirement that none of the agents should be worse off by expanding the opportunities

for both agents. The various monotonicity concepts proposed in the literature differ with

respect to the possible ways of expansion taken into consideration. The strongest possible

version of monotonicity states that no agent should be worse off by increasing the set of

possible outcomes in any possible way. Within the domain of bargaining problems in

utility space, this property corresponds to strong monotonicity (see, for instance, Kalai,

1977), requiring a solution to be monotonic with respect to every possible expansion of

the set of feasible utilities. As it is well-known, strong monotonicity is incompatible with

(strong) Pareto optimality. Similar negative results also hold within the nonwelfarist

setting. In an abstract sense, each bargaining problem in utility space is mathematically

equivalent to a nonwelfarist bargaining problem in which the set of alternatives is the set

of feasible utility pairs, and the agents’ preferences coincide with the first and second

coordinate of the utility pairs, respectively. As such, strong monotonicity and (strong)

Pareto optimality are also incompatible on the space of nonwelfarist bargaining problems.

Moulin and Thomson (1988) show in Theorem 2 of their paper that within the context of

exchange economies, for any small but positive e, there is no allocation rule which is

(strongly) Pareto optimal, resource monotonic and gives each agent at least the utility he

would get by receiving an e-share of the aggregate endowment. Here, resource

monotonicity means that each agent should be weakly better off by increasing the

aggregate endowment in an arbitrary fashion.

When insisting on (strong) Pareto optimality and some version of monotonicity, one is

thus forced to restrict the possible ways of expansion with respect to which monotonicity

is required. For bargaining problems in utility space, several weaker monotonicity

concepts have been proposed in this spirit, such as individual monotonicity (Kalai and

Smorodinsky, 1975) and global individual monotonicity (Kalai and Rosenthal, 1978). See

Thomson and Myerson (1980) for alternative monotonicity properties in utility space.
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Well-known monotonicity properties in specific nonwelfarist contexts are, for instance,

resource monotonicity for problems of fair division (see, among others, Moulin and

Thomson (1988)), technological monotonicity for problems of fair division with

production (Chen and Maskin, 1999), and cost-monotonicity for economies with one

public good and one private good (Moulin, 1987). In Chun and Thomson (1988), it is

analyzed to what extent certain bargaining solutions in utility space, such as the Nash

bargaining solution, the Kalai–Smorodinsky solution, the egalitarian solution and the

Perles–Maschler solution, satisfy or violate several monotonicity properties when applied

to problems of fair division. Each of the above mentioned monotonicity concepts reflects

the requirement that no agent should be worse off if the set of feasible alternatives is

increased in some particular way(s).

In order to judge whether a given monotonicity property is reasonable, one is in fact led

to answer the following question: Which are the possible directions of expanding the

agents’ opportunities for which it seems reasonable to require that both agents benefit from

an expansion in this direction? Intuitively, it seems that both agents should benefit from an

expansion only if this expansion is in some sense bfairQ, that is, if it increases the agents’
possibilities in some symmetric way. Whereas such qualitative judgements about the

bfairnessQ of different directions of expansion may be appropriate in specific economic

contexts, they seem highly problematic in abstract formulations of a bargaining problem,

like the one adopted in this paper, in which a priori, no direction of expansion may be

considered more appropriate than another.

Rather than dealing with this delicate issue of the breasonablenessQ of a given

expansion direction, our focus is shifted towards the following problem: for any particular

way of expanding the set of alternatives, is it possible to find a bargaining solution which

is both Pareto optimal and monotonic with respect to this way of expansion? Choosing a

particular way of expanding the set of alternatives is formalized by the notion of a family

of increasing sets F : a correspondence of continuously increasing, nested sets of

alternatives. A solution is then called F�monotonic if increasing the set of alternatives

within the family F, while leaving the preferences unchanged, is always weakly better for

both agents. For any given family of increasing sets F , we present a solution which is both

Pareto optimal and F�monotonic. The solution proceeds as follows. For a given set of

alternatives A in F , select those Pareto optimal outcomes in A which, for both agents, is

equivalent to their best choice in some breducedQ set of alternatives B in F , where B

should be the same choice set for both agents. Hence, the solution in A generates the same

utilities as a hypothetical situation in which both agents could choose freely from the same

reduced set B.

The solution is closely related to the concept of equal-opportunity equivalence defined

by Thomson (1994), which combines the ideas of equal opportunities and egalitarian-

equivalence in the context of economies with private and public goods. In such

environments, an allocation is said to be equal-opportunity equivalent relative to a family

of choice sets if there exists some reference set of this family such that each agent is

indifferent between the allocation and his best alternative in this reference set. Here, this

reference set must be the same for all agents. The solution proposed in this paper thus

chooses those Pareto optimal alternatives which are equal-opportunity equivalent with

respect to the given family of increasing sets F .
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In accordance with the Nash program, we provide an axiomatic characterization of the

solution and a mechanism which implements it. The two key axioms in the character-

ization of the solution are F�monotonicity, which has already been discussed above, and

unchanged contour independence. The latter axiom is due to Maniquet (2002) and states

that an alternative selected by the solution should remain a solution outcome whenever the

agents revise their preferences without changing the upper contour set, lower contour set

and indifference set with respect to this alternative. Together with Pareto optimality and a

uniqueness property, the two axioms above characterize the solution. The mechanism

proposed is a fairly simple sequential move procedure consisting of only two rounds. In

contrast to similar mechanisms proposed by Moulin (1984) and Crawford (1979), the role

of first mover is given exogenously to one of the players.

The solution we propose has close connections to various existing solutions in the

literature. It is shown, for instance, that the solution coincides with the Kalai–Rosenthal

solution (Kalai and Rosenthal, 1978) for bargaining problems in utility space after

choosing a suitable utility representation of the preferences. It may therefore be interpreted

as a nonwelfarist extension of the Kalai–Rosenthal solution, stated in terms of physical

outcomes and preferences, instead of utilities. A similar approach can be found, for

instance, in Rubinstein et al. (1992), who present nonwelfarist extensions of the Nash

bargaining solution and the Kalai–Smorodinsky solution. See also Binmore (1987) and

Roemer (1986, 1988), among others, for an approach in which bargaining problems are

stated directly in terms of physical outcomes and preferences.

By choosing an appropriate family of increasing sets, the solution generates Pareto

efficient egalitarian equivalent allocations (Pazner and Schmeidler, 1978) for pure

exchange economies with equal initial endowments. For public good economies with

two agents, one public good and one private good, the solution coincides with the

egalitarian equivalent cost-sharing method (Moulin, 1987) for a specific choice of the

family of increasing sets.

The outline of the paper is as follows. In Section 2, we present the solution and discuss

some of its properties. Section 3 provides some applications of the solution to specific

economic environments such as exchange economies, public good economies, location

problems and resource allocation problems. Sections 4 and 5 deal with the mechanism and

the axiomatic characterization, respectively. In Sections 6, we conclude with some brief

remarks.
2. Solution and properties

In this section, we introduce a particular class of bargaining solutions and study some of

its properties. Before doing so, we formally define the domain of bargaining problems on

which the solution operates.

2.1. Bargaining problems

We focus on two-person bargaining problems in which the set of possible outcomes, or

alternatives, is given by a nonempty, compact, connected subset A of some Euclidean
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space Rn. In case the agents do not manage to reach an agreement, they fall back to some

status quo point e in A. Both agents hold preference relations v1, v2 on A which are

assumed to be representable by continuous utility functions u1, u2 on A. By di, we denote

the strict preference relation induced by vi, whereas ~i is the induced indifference

relation. To every bargaining problem described above may thus be assigned a bargaining

problem in utility space (S, d) where S={(u1(a), u2(a))|aaA}p R
2 is the set of feasible

utilities and d=(u1(e), u2(e)) is the utility pair induced by the status quo point. Because A

is connected and compact, and u1, u2 are continuous, the set S of feasible utilities is

connected and compact as well. An alternative aaA is called Pareto optimal if there is no

aVaA such that aVvi a for both agents i, and aVdj a for at least one agent j. Similarly, a

utility pair (x, y)aS is said to be Pareto optimal if there is no (xV, yV)aS with xVNx, y Vzy

or xVzx, yVNy. As a technical assumption, we impose that the set of Pareto optimal utility

pairs in S is a connected set in R
2. We refer to this condition as the Pareto connectedness

condition, and it is needed to guarantee the existence of the class of solutions to be

introduced below. It also plays an important role in the axiomatic characterization and the

implementation by a mechanism in Sections 4 and 5. Sufficient conditions for the Pareto

connectedness condition to be satisfied are, for instance, that the set S of feasible utilities is

convex, as is the usual assumption in bargaining theory, or that the set of Pareto optimal

alternatives is connected within A. Note also that Pareto connectedness is purely a

condition on the preferences v1, v2, and not on the specific utility representation of the

preferences. It may be verified, namely, that Pareto connectedness is equivalent to the

following restriction on the preferences: for every two Pareto optimal alternatives a, baA

and every caA with ad1cd1b and a�2c�2b, there are Pareto optimal alternatives d1, d2
such that d1~1c and d2~2c. The discussion above is summarized by the following

definition.

Definition 1. A two-person bargaining problem is a quadruple B=(A, e, v1, v2) where

(1) A is the set of alternatives, given by a nonempty, connected compact subset of some

Euclidean space R
n, (2) eaA is the status quo point, (3) v1 and v2 are the agents’

preference relations on A, representable by continuous utility functions u1, u2 on A and (4)

B satisfies the Pareto connectedness condition.

Note that a bargaining problem in our setting is in some sense nonstandard, for there

may not exist an alternative in A that Pareto dominates the status quo point e. In fact,

the existence of a status quo point is not essential for our analysis, but we decided to

include it in our model as to stay close to the classical formulation of bargaining

problems.

2.2. Families of increasing sets

As we have mentioned in the Introduction, a key issue in this paper is the concept of

monotonicity of bargaining solutions. Intuitively, monotonicity states that, if the set of

alternatives is enlarged in some specific way, then both agents should benefit from it. In

order to formally define monotonicity in our setup, we should be explicit about the

particular way in which the set of alternatives may be increased. To this purpose, we

introduce the notion of a family of increasing sets.
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Definition 2. A family of increasing sets is a family F ¼ A tð Þjta 0;l½ Þf g of nonempty,

connected compact subsets A(t) of some Euclidean space R
n such that (1) A(0)={e} for

some eaR
n, (2) A(t)pA(tV) whenever tVtV, and (3) the correspondence A(d ) mapping each

ta[0, l) to the set A(t) is continuous with respect to the Hausdorff topology.

The family F is thus a collection of continuously nested sets starting with a single

alternative {e}, and may be viewed as a possible way of enlarging the set of alternatives in

a specific economic environment. For instance, F may be a family of division problems

varying in the total amount that may be distributed among the agents. The family F could

also be a collection of location problems for a public good, differing in the size of the area

of feasible locations.

The idea of considering families of bargaining problems with gradually increasing

outcome spaces may also be found in O’Neill et al. (2004). The difference with our

approach is that O’Neill et al. apply the idea to bargaining problems in utility space,

considering monotonically increasing sets of feasible utilities rather than increasing sets of

alternatives. Their motivation for this approach is that agents usually follow a gradual

process in order to reach an agreement. They propose a solution, called the ordinal

solution, which assigns an outcome not only to the big problem, but to any nested problem

belonging to some fixed sequence of problems.

2.3. A solution

Consider a family F ¼ A tð Þjta 0;l½ Þf g of increasing sets. We propose a correspond-

ence uF that assigns a solution to every bargaining problem for which the set of

alternatives belongs to F . For the definition of uF , and for other purposes in this paper as

well, it turns out to be convenient to introduce a universal space of alternatives, and to

define the agents’ preferences on this universal space. Formally, let

AF ¼ [
ta 0;l½ Þ

A tð Þ

be the universal space of alternatives induced by the family F of increasing sets. Hence,

AF is a potentially unbounded set containing all alternatives that are present in the family

F . By BF, we denote the collection of quadruples B=(A, e, v1, v2) such that (1) A

belongs to F , (2) {e}=A(0), (3)v1 andv2 are preference relations on the universal space

of alternatives AF , representable by continuous utility functions, and (4) B satisfies the

Pareto connectedness condition. Intuitively, BF is the set of bargaining problems

corresponding to F . The only difference with Definition 1 is that preferences in BF are

not only defined on the set A of alternatives to which the particular bargaining problem

under consideration is restricted but also on the larger, universal space of alternatives AF .
A bargaining problem in BF is thus given by three parameters: the set AaF , and the

agents’ preference relations on AF .
Now, let B*pBF be some nonempty subdomain of bargaining problems. A solution on

B* is a correspondence u that assigns to every bargaining problem B=(A, e, v1, v2) in

B* a nonempty set of alternatives in A. Because every set AVaF is nonempty and compact,

and the preferences v1, v2 on AF are representable by continuous utility functions, each
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set AVaF contains a maximal element for every agent. For every AVaF, let bi(AV) be a

maximal element for agent i in the set AVwith respect to the preference relation vi . We

now define the solution uF on B* in the following way.

Definition 3. The solution uF assigns to every bargaining problem B=(A, e, v1, v2) in

B* the set of alternatives

uFðBÞ¼ aaAja Pareto optimal and aAVaF; AVpA such that afibi AVð Þ for both if g:

Hence, in the solution uF (B) both agents are indifferent between the solution outcome

and their best alternative in some reduced set AVaF , where AVis the same for both agents.

The solution uF may be seen as an application of the equal-opportunity equivalence

concept formulated in Thomson (1994), which combines the ideas of equal opportunities

and egalitarian-equivalence in the context of economies with private and public goods. In

such environments, an allocation aaA is said to be equal-opportunity equivalent relative

to a family F of choice sets if there exists some set AVaF such that every agent i is

indifferent between the allocation a and his best choice in AV. Important in the equal-

opportunity equivalence notion is that all agents compare the allocation a to the same

choice set AV.
A question that remains is which families F may be viewed appropriate. It seems

difficult, if not impossible, to provide a general answer to this question, since the

appropriateness of a given family heavily depends on the specific economic environment

under consideration. In Section 3, for instance, we choose for each example some specific

family F which we believe is natural in that particular context. We should stress, however,

that the basic properties of the solution uF , as well as the axiomatic characterization and

the mechanism that implements it, do not depend upon the specific choice of F .

2.4. Properties of the solution

We explore now some basic properties that the solution uF satisfies. First, we briefly

state these properties. We say that a solution u on B* is Pareto optimal if for every

bargaining problem B in B*, it holds that every aau(B) is Pareto optimal. The solution u is

called individually rational if for every B and every aau(B), it holds that a vie for every

agent i. We say that u is nonempty if for every B the set u(B) is nonempty. The solution u
is said to be essentially unique if for every bargaining problem B, the following holds:

(1) for every a, bau(B), we have that a~ib for both agents i, and

(2) if aau(B) and b ~i a for both agents i, then bau(B).

Condition (1) is called essentially single-valuedness in Moulin and Thomson (1988),

whereas condition (2) coincides with the requirement that a solution be a full

correspondence, as stated in Roemer (1988).

Lemma 1. Let F be a family of increasing sets, and let B*pBF be some nonempty

subdomain of bargaining problems. Then, the solution uF is nonempty, essentially unique,

Pareto optimal and individually rational.
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Proof. Let B=(A(t), e,v1,v2) be a bargaining problem in BF. Choose an arbitrary utility

representation u1, u2 of the agents’ preferences. Let (S, d) be the induced bargaining

problem in utility space. Denote utility pairs in S by (x, y). Let X and Y be the maximum

utility for agents 1 and 2 in S, respectively. Let Y (X)=max{ y|(X, y)aS} and

X(Y)=max{x|(x, Y)aS}. Then, P1=(X(Y), Y) is the Pareto optimal point with the highest

utility for agent 2, and P2=(X, Y(X)) is the Pareto optimal point with the highest utility for

agent 1. See Fig. 1.

Because (S, d) satisfies the Pareto connectedness condition, the set of Pareto optimal

points in S is a strictly decreasing, connected curve which starts at P1 and ends at P2.

Denote the set of Pareto optimal utility pairs by PO(S). Let d=(u1(e), u2(e)) be the status

quo utility pair, and Q=(X, Y), the pair of utopia utilities. Define the set of utility pairs

S* ¼ x; yð ÞaR
2ju1 eð ÞVxVX ; u2 eð ÞVyVY

��
. Then, S* is a rectangle with corner points d,

C, Q and D. See Fig. 1.

For every ra[0, t], let Ui(r): =ui(bi(A(r)) be agent i’s maximal utility in the reduced set

of alternatives A(r). Because the utility function ui is continuous and the family of sets

{A(r)|ra[0, t]} is compact valued and continuously increasing, it follows that the function

Ui is continuous and weakly increasing in r. Because A(0)={e}, we have that Ui(0)=ui(e),

and Ui(t)=X or Y, depending on whether i=1 or i=2. Consider now the function U : 0; t½ �
YR

2 given by U(r):=(U1(r), U2(r)) for all ra[0, t]. Then, the function U is continuous,

weakly increasing in both components, U(0)=d, U(t)=Q and U(r)aS* for all ra[0, t].

Because PO(S) is a curve which goes from P1 to P2, P1 is on or above the curve U(r)

and P2 is on or below the curve U(r), we have that U(r) intersects PO(S) in some point.

Hence, there is some r*a[0, t] such that U(r*)=(U1(r*), U2(r*))aPO(S). We thus have a

Pareto optimal alternative a*aA such that ui(a*)=ui(bi(A(r*)) for both i, and hence,

a*auF Bð Þ. The solution uF is thus nonempty.

Essential uniqueness follows from the observation that the weakly increasing curve U(r)

intersects the strictly decreasing curve PO(S) in exactly one point. Pareto optimality holds

by definition. Individual rationality follows from the observation that the curve U(r) starts

at the status quo point d and is weakly increasing. Because the utility pair at the solution uF
Fig. 1. Existence of solution uF.
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is exactly the intersection point between the curve U(r) and the curve PO(S), it follows that

the utilities at the solution are as least as high as at the status quo point. 5

Note that the proof above could have been performed completely within the space of

alternatives, without making use of a particular utility representation. However, the

advantage of working within the space of utilities is that geometrical arguments may be

used, which facilitates the analysis.

As we have pointed out in the introduction, the aim of this paper is to combine Pareto

optimality with some appropriate form of monotonicity. We are now ready to define a

notion of monotonicity, based upon the family F of increasing sets, and prove that it is

satisfied by the solution uF .

Definition 4. Let B*pBF be a nonempty subdomain of bargaining problems. A solution u
on B* is calledF�monotonic if for every bargaining problem B1 ¼ A tð Þ; e;v1;v2ÞaB*ð ,

every rVt such that B2 ¼ A rð Þ; e;v1;v2ÞaB*ð , every a1au(B1) and every a2au(B2), it

holds that a1via
2 for both agents i.

The F�monotonicity property simply states that enlarging the set of alternatives within

the family F should be beneficial for both agents. We may now prove that the solution uF

satisfies the F�monotonicity property.

Lemma 2. Let F be a family of increasing sets and B*pBF be some nonempty

subdomain of bargaining problems. Then, the solution uF is F�monotonic.

Proof. Let B1 ¼ A t1Þ; e;v1;v2ð Þ; B2 ¼ A t2Þ; e;v1;v2ð ÞaB*ðð where t1Vt2. Let a1*
auF B1Þð and a2*auF B2Þð . We show that a2*via

1* for both i. By definition of the

solution uF , there are r1Vt1, r2Vt2 such that a1*~i bi(A(r
1)) for both i and a2*~ibi(A(r

2))

for both i. Suppose, now, that a2*�i a
1* for some agent i. Because a1*~ibi(A(r

1)) and

a2*~ibi(A(r
2)), it follows that r2br1. For the other agent j, we have that a1*~jbj(A(r

1)) and

a2*~jbj(A(r
2)). Because r2br1, it follows that a2*Uja

1*. However, this contradicts the

fact that a2* is Pareto optimal in B2. Hence, a2*vi a1* for both i, which implies

F�monotonicity. 5

We conclude this section by showing that the Pareto connectedness condition is indeed

a necessary condition to guarantee the existence of the solution uF for all possible families

of increasing sets.

Example 1. Consider a location problem B in which agents 1 and 2 have to decide upon

the location of a public good, somewhere on the interval A=[�3, 3]. Let the agents’

preferences on the set of alternatives be represented by the utility functions u1, u2 where

u1 að Þ ¼ max 1� jaþ 2j; 0f g; u2 að Þ ¼ max 1� ja� 2j; 0f g:

Hence, agent 1 has a single peak at location �2, and is indifferent between locations in

[�1, 3], whereas agent 2 has a single peak at location 2, and is indifferent between

locations in [�3, 1]. The set of Pareto optimal locations is {�2, 2}. The set of induced

Pareto optimal utility pairs is thus PO(S)={(1, 0), (0, 1)} which is clearly not connected.

Hence, this bargaining problem does not satisfy the Pareto connectedness condition.
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Consider the family of increasing sets F ¼ � t; t½ �jta 0;l½ �f g. We show that the

solution uF Bð Þ is empty. Suppose that a*auF Bð Þ. Then, because uF is Pareto optimal, it

follows that a*a{�2, 2}. Assume without loss of generality that a*=�2. By definition of

uF , there is some r*a[0, 3] such that a* is equivalent, for both agents, to their best choice

in A(r*)=[�r*, r*]. Because a* is agent 1’s unique maximum, it follows that a*aA(r*),

and hence, r*z2. However, agent 2’s best choice in A(r*) is the location 2, which is not

equivalent for agent 2 to a*. Hence, a*=�2 cannot be in uF Bð Þ. Similarly, the location 2

cannot be in uF Bð Þ, which implies that uF Bð Þ is empty.

Note that it is possible to construct an alternative family of increasing sets FV for which
the solution uFV Bð Þ is nonempty. Consider, for instance, the (asymmetric) family

FV ¼ � t=2; 2½ �jta 0;l½ �f g. It is easy to check that uFV Bð Þ ¼ 2f g.
3. Applications

Before providing a mechanism which implements the solution uF and an axiomatic

characterization, we wish to illustrate how the solution uF works in different economic

environments. In this section, we apply the solution uF to pure exchange economies, cost-

sharing problems, location problems and resource allocation problems. For each

environment, we define a family F of increasing sets which, in this particular setting,

seems to reflect a fair way of enlarging the agents’ opportunities. Hence, in each of these

examples F�monotonicity may be viewed a desirable property for a solution.

Example 2 (Pure exchange economies). Consider a pure exchange economy with two

agents and n goods. Suppose that the agents have fixed initial endowments e1; e2aR
n
þ. Let

A ¼ x1; x2ÞaR
n2
þ jx1 þ x2Ve1 þ e2

� ��
be the set of feasible allocations. By xj

i , we denote

the endowment of good j held by agent i, whereas ej
i denotes the corresponding initial

endowment. For every t a[0, 1], let

ÃA tð Þ ¼ x̃x1; x̃x2
�
aR

n2
þ jx̃x1 þ x̃x2Vt e1 þ e2

�
g

���
be the reduced economy in which only a fraction t of the aggregate endowment is being

distributed. By

A tð Þ ¼ x1; x2
� �

aR
n2
þ ja x̃x1; x̃x2

� �
aÃA tð Þs:t: x1; x2

� �
¼ 1� tð Þ e1; e2

� �
þ x̃x1; x̃x2
� ���

we denote the reduced exchange economy in which agents 1 and 2 have initial

endowments e1 and e2, but in which only a fraction t of the aggregate endowment can be

exchanged among them. By construction, A(0)={(e1, e2)} represents the situation where

no trade is possible, and A(1)=A. We have thus defined the family of increasing sets

F ¼ A tð Þjta 0; 1½ �ð gf 1. Hence, F�monotonicity in this setting means that increasing the

tradable fraction of the aggregate endowment, while using the same fraction for all goods,

should be weakly better for both agents.
1Formally, a family F should prescribe a set A(t) for every t a [0,l). Here, we simply set A(t)=A(1) for every

tz1.
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Let B*pBF be the domain of all exchange economies B=(A(t), (e1, e2), v1, v2)

where A tð ÞaF , the initial endowments (e1, e2) are fixed, the preference relations on A are

strictly monotonic in all goods, and B satisfies the Pareto connectedness condition. An

illustration of the solution uF for an exchange economy with two goods and strictly

convex preferences is given in Fig. 2.

It can be shown, moreover, that this particular solution uF always generates Pareto

efficient egalitarian-equivalent allocations, as defined in Pazner and Schmeidler (1978), if

t=1 and both agents have equal initial endowments e1=e2. Here, egalitarian equivalence

states that there should exist a reference bundle (the same for both agents) such that each

agent is indifferent between the solution outcome and this reference bundle. In order to

show this result, assume the exchange economy is given by some problem

B ¼ A 1ð Þ; e1; e2Þ;v1;v2ð ÞaBF�
, that the aggregate endowment of all goods is

normalized to 1, without loss of generality, and that the initial endowment (e1, e2)

divides the aggregate endowment equally among the agents, that is, e1=e2=(1/2)1, where 1

denotes the individual bundle containing one unit of all goods. By assumption, both agents

have continuous preferences which are monotonic in each good. The solution uF (B)
selects a Pareto optimal allocation (x1, x2) and (implicitly) an r*a[0, 1] such that each

agent i is indifferent between xi and his best allocation in the reduced economy A(r*).

Now, agent i’s best choice from A(r*) is the bundle (1�r*)ei+r*1=(1+r*) (1/2) 1. Hence,

both agents are indifferent between the allocation selected by uF and the egalitarian

reference bundle (1+r*)(1/2) 1. Because the solution uF Bð Þ is Pareto optimal, the selected

allocation is a Pareto efficient egalitarian-equivalent allocation. The reference bundle,

moreover, is a multiple of the equal division bundle (1/2) 1, which ensures that the

allocation is envy-free (see Pazner and Schmeidler, 1978).2
2In fact, Pazner and Schmeidler show that choosing the reference bundle equal to a multiple of the equal division

bundle is the only way to generate envy-free Pareto efficient egalitarian equivalent allocations in all two-agent

economies with convex preferences. Pazner and Schmeidler use the term fair allocations instead of envy-free

allocations.
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Example 3 (Cost sharing in public good economies). Consider an economy with one

public good, one private good and two agents. The public good is produced at a

nonnegative level x, using the private good offered by both agents as input. Let yi be the

amount of the private good contributed by agent i. We do not allow for negative

contributions. The production technology is given by a function f( y) where y=y1+y2, and a

production capacity ta[0, T] which means that at most t units can be produced. Here, f is a

continuous, nondecreasing function with f(0)=0 and lim supyYl f( y)/ybl. Suppose that

the production capacity is given by t, and that the agents’ initial endowments of the private

good are given by Y1 and Y2. The set of alternatives in this public good economy is thus

given by

A tð Þ ¼ x; y1; y2ð Þj0VyiVYi for both i and 0VxVmin t; f y1 þ y2ð Þgf g:f

Suppose that f(Yi)zT for both i, that is, the initial endowment of each agent is sufficient to

make the maximum production level feasible.

Consider the family of increasing sets F ¼ A tð Þjta 0; T½ �gf parametrized by the

production capacity t. Let B* be the domain of all public good economies B=(A(t), e, v1,

v2) where (1) A tð ÞaF , (2) the status quo point e is (0, 0, 0), (3) the preference relations

on AF ¼ A Tð Þ are representable by continuous utility functions ui: A(T)YR where ui(x,

y1, y2) only depends on x and yi, is nondecreasing in x and decreasing in yi and (4) B

satisfies the Pareto connectedness condition. In this particular setting, F�monotonicity

means that increasing the production capacity t makes both agents weakly better off. By

construction, uF Bð Þ chooses those Pareto optimal production-contribution schemes (x, y1,

y2) in A(t) for which there is some production capacity r*Vt such that both agents are

indifferent between (x, yi) and their best choice in A(r*). Obviously, agent 1’s best choice

in A(r*) is (r*, 0, f �1(r*)), whereas agent 2’s best choice in A(r*) is (r*, f�1(r*), 0). Note

that f �1(r*) is feasible for both agents because by assumption f(Yi)zTzr*. As such,

uF Bð Þ selects those Pareto optimal (x, y1, y2) such that there exists some production level

r* for which ui(x, yi)=ui(r*, 0) for both i. Hence, both agents are indifferent between the

proposed production-contribution scheme and consuming the public good at production

level r* for free. However, this implies that uF Bð Þ coincides with the egalitarian-

equivalent cost sharing method proposed by Moulin (1987), and the value r*

corresponding to the solution uF Bð Þ is exactly the egalitarian-equivalent production level

defined in the same paper. For this equivalence to hold, it is crucial that we do not allow

for negative contributions. Moulin (1987), on the other hand, allows for negative

contributions in his model, but uses the No Private Transfers axiom stating that the

solution should exclude negative contributions.

Example 4 (Location problems). Suppose two agents should decide where to locate a

public facility. Let eaR
2 be the location where the facility will be built if agents are not

able to reach an agreement. Suppose that the facility has to be located within a radius t

from e. So, the set A(t) of possible locations is equal to xaR
2jd x; eð ÞVt

��
, where d is the

Euclidean distance. Consider the family of increasing sets F ¼ A tð Þjta 0;l½ Þð gf
parametrized by the radius t within which the facility has to be built. Let B* be the

domain of all location problems B=(A(t), e, v1, v2) where (1) A tð ÞaF , (2) the status

quo location e is fixed, (3) for both preference relations vi there is a most preferred
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location piaR
2 such that xvi y whenever d(x, pi)Vd( y, pi), and (4) B satisfies the Pareto

connectedness condition. In order to provide some intuition for the solution uF in this

particular class of problems, let us explicitly determine the selected location for a given

location problem B=(A(t), e, v1,v2)aB*. Let a and b be two feasible locations in A(t)

denoting the peaks for agents 1 and 2, respectively, and assume that v1, v2 are strictly

decreasing in the distance with respect to the peak. For each rVt, consider the best

locations for both agents in A(r), denoted by b1(r) and b2(r). The indifference curve for

agent i passing through bi(r) contains exactly the points that have the same distance with

respect to the peak as bi(r). Because the solution is Pareto optimal, it selects the unique r*

for which the intersection point between these indifference curves hits the line connecting

the two peaks (the set of Pareto optimal locations). The agreed upon location is exactly this

intersection point. Fig. 3 illustrates the solution, denoted by the point s.

There is an interesting geometrical characterization of the solution uF in this particular

location problem.3 Consider the triangle abe in Fig. 3, connecting the two peaks and the

status quo point. We know, from Fig. 3, that

d a; b1 rð ÞÞ ¼ d a; sð Þ;ð

d b; b2 rð ÞÞ ¼ d b; sð Þ andð

d e; b1 rð ÞÞ ¼ d e; b2 rð ÞÞ:ðð

But then, the points s, b1(r) and b2(r) must lie on the inscribed circle of the triangle abe,

which is the dashed circle in Fig. 3. In particular, the solution uF Bð Þ is the point on the

inscribed circle hitting the line connecting the two peaks.
3We thank Hans Peters for pointing out this characterization to us.
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Example 5 (Resource allocation problems). Consider two scientists involved in a research

project, which is financed by the government. Money can be used either for buying new

equipment, or for recruiting new staff. Suppose that the total amount of money is t. Let e

and s be the amounts of money dedicated to buy equipment and to recruit staff,

respectively. So, the set of feasible alternatives is A tð Þ ¼ e; sð ÞaR
2
þjeþ sVt

��
. Suppose

that the scientists can spend the money only if they reach an agreement on how to use the

research funds. Therefore the status quo point is (0, 0). Consider the family of increasing

sets F ¼ A tð Þjta 0;l½ Þð gf , parametrized by the total amount of money available. Let B*
be the domain of all resource allocation problems B=(A(t), (0, 0), v1, v2) where (1)

A(t)aF , (2) v1, v2 are weakly increasing in e and s, and (3) B satisfies Pareto

connectedness. Here, F�monotonicity means that both agents should be weakly better off

if more money is available. In order to provide a graphic intuition of the solution uF Bð Þ in
this context, we consider a resource allocation problem B=(A(t), (0, 0), v1, v2), where

agents have convex preferences, which are strictly monotonic in both goods. For a given

rVt, consider the optimal distribution of money for the two scientists, b1(r) and b2(r),

respectively. The solution selects that r* for which the intersection point between the

indifference curves passing through b1(r*) and b2(r*) hits the line distributing the total

amount t of money. See Fig. 4 for an illustration.
4. Mechanism

In this section, we provide a sequential move mechanism with perfect information for

which the unique backward induction outcome coincides with the solution uF . It may be

verified that the solution uF is not Maskin monotonic, and hence cannot be implemented

in Nash equilibrium by a one-shot mechanism. A mechanism with several rounds is

therefore necessary. In order to prove our result, we need to impose some regularity

conditions on the bargaining problem at hand.
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Definition 5. Let F ¼ A tð Þjta 0;l½ Þgðf be a family of increasing sets. A bargaining

problem B ¼ A tð Þ; e;v1;v2ÞaBF�
is called regular with respect to F if

(1) for every r1, r2a[0, t] with r1br2, it holds that bi(A(r
1))�ibi(A(r

2)) for both i and

(2) there is no alternative aaA(t) with a~ibi(A(t)) for both i.

Condition (1) states that increasing the set of alternatives within A(t) along the family

F strictly increases the utility of the best alternative for both agents. Condition (2) states

that the best alternatives for both agents in A(t) differ, thus guaranteeing that there is some

conflict of interests. Consider a family of increasing sets F ¼ A tð Þjta 0;l½ Þð gf , and some

set of alternatives A(t) in F . Let the mechanism m(F , t) be defined as follows.

Round 1. Agent 1 chooses some number ra[0, t].

Round 2. Agent 2, after observing r, has two options. He can either choose an alternative

a1 from A(r), after which the mechanism stops and the final outcome is a1. On

the other hand, he can add a single alternative a2aA(t) to A(r) and allow agent

1 to choose the final alternative a3 from {a2}[A(r). In the latter case, the final

outcome is a3.

Hence, in Round 1 agent 1, by choosing an r, decides upon the size of the shrunken pie

from which agent 2 may choose, whereas in Round 2, agent 2 may decide to enlarge the

shrunken pie by adding an alternative, thereby allowing agent 1 to choose from this larger

pie at the end. The mechanism may thus be viewed as a combination of a divide-and-

choose and an augment-and-choose procedure, and is similar in spirit to mechanisms

proposed by Crawford (1979) and Moulin (1984). However, in contrast to the latter two

mechanisms, the first mover in our mechanism is determined exogenously, and not by

means of an auction. In Rubinstein’s mechanism (Rubinstein, 1982), on the other hand, the

role of first mover is assigned exogenously, but a major difference with the mechanism

presented here is that in the Rubinstein procedure the amount with which the pie shrinks is

exogenously determined by the discount factor, whereas in our mechanism, this amount is

chosen by one of the agents.

Theorem 1. Let F ¼ A tð Þjta 0;l½ Þð gf be a family of increasing sets, and let B ¼
A tð Þ; e;v1;v2ÞauF�

be a regular bargaining problem with respect to F . Then, the set

of backward induction outcomes of the mechanism m(F , t) coincides with uF Bð Þ.

The proof of this theorem is given in the Appendix. Note, finally, that, since we are

dealing with a regular bargaining problem, we may transform the curve U(r) in Fig. 1 into

a straight line by applying some appropriate monotone transformation of the agents’ utility

functions. However, by definition, the image of the solution uF Bð Þ in this particular utility
space coincides with the Kalai–Rosenthal solution (Kalai and Rosenthal, 1978). We have

thus shown the following result.

Lemma 3. Let F ¼ A tð Þjta 0;l½ Þð gf be a family of increasing sets, and B=(A(t), e, v1,

v2) a bargaining problem in BF which is regular with respect to F . Then, there exists a

utility representation (u1, u2) of the preferences such that for the induced bargaining
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problem in utility space (S, d) it holds that uKR S; dð Þ ¼ u1 að Þ; u2 að Þð ÞjaauF Bð Þ
��
,

where uKR denotes the Kalai–Rosenthal solution.

5. Axiomatic characterization

In this section, we provide an axiomatic characterization of the solution uF . The
solution is characterized by four axioms, Pareto optimality, essential uniqueness,

F�monotonicity, and a new property, unchanged contour independence, that may be

found in Maniquet (2002). The latter axiom states that a solution outcome should remain

a solution outcome if agents revise their preferences while preserving the indifference

set, upper contour set and lower contour set with respect to the solution outcome. The

axiom is logically weaker than Maskin monotonicity (Maskin, 1977), since the latter

property requires a solution to be invariant also against preference transformations that

change the upper and lower contour set with respect to the solution outcome. Formally,

the axiom is defined as follows. Let B*pBF be some nonempty subdomain of bargaining

problems.

Definition 6. A solution u on B* is said to satisfy unchanged contour independence if for

every bargaining problem B1 ¼ A; e;v1;v2ÞaB*ð , every a*aB(B1) and every bargaining

problem B2 ¼ A; e;v1V;v2VÞaB*ð with

avia4 if and only if aviVa4�; aUia4 if and only if a UiVa4�½½

we have that a*au(B2).

In order for the characterization to hold for a given domain of bargaining problems we

have to guarantee that Pareto connectedness is preserved under the admissible preference

transformations, and that benoughQ preference transformations are being admitted. We call

this property F -completeness. In order to introduce the notion of F�completeness of the

subdomain B*, we need the following definitions. We say that viV is a lower truncation of

the preference relation vi if there is some alternative a*a AF such that (1) aviVbviV a*

if and only if avibvia* and (2) aUia* implies a~iVa*. We say that viV is an upper

truncation of the preference relation vi if there is some alternative a*aAF such that (1)

a*viVaviVb if and only if a*viavib and (2) avia* implies a~iVa*. We call viV a

truncation of vi if it is either a lower or an upper truncation of vi.

Definition 7. We say that the domain B* is F�complete if the following conditions are

satisfied:

(1) if (A(t), e, v1, v2)aB*, rVt and (A(r), e, v1, v2) satisfies Pareto connectedness,

then (A(r), e, v1, v2)aB*,
(2) if (A(t), e,v1,v2)aB*,v1V,v2V are truncations ofv1,v2 and (A(t), e,v1V,v2V)

satisfies Pareto connectedness, then (A(t), e, v1V, v2V)aB*.

Now we are ready to state the characterization result.
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Theorem 2. Let F be a family of increasing sets and B*pBF an F�complete domain

of bargaining problems. Then, uF is the only bargaining solution on B* that satisfies

Pareto optimality, essential uniqueness, F�monotonicity and unchanged contour

independence.

The proof for this result can be found in the Appendix. At this stage, we wish to

point out that the F�completeness condition is only needed for the result that the solution

uF is the unique solution on B* that satisfies the four axioms above. The other results

in this paper, such as the implementation result, the properties listed in Section 2, the

fact that the solution satisfies the four axioms above, and the applications to specific

economic environments discussed in Section 3, do not depend upon this domain

richness condition. Consider, for instance, our Example 2 on exchange economies.

When preferences are restricted to be strictly monotonic, the domain will no longer be

F�complete, but in spite of this the solution uF exists, satisfies all the four axioms

above, and there is a mechanism that implements it for any possible preference profile

in this domain. Note, finally, that in the mechanism, the agents’ preference relations

are fixed, and hence no preference transformations are needed for the implementation

result.
6. Final remarks

In this paper, we have restricted our attention to the case of two agents. A natural

question which arises is whether it is possible to extend our analysis to the case of more

than two agents. An easy but important first observation is that without putting

additional restrictions on the space of bargaining problems, the solution uF , as defined

in Section 2, may become empty for more than two agents. Consider, for instance, the

family F ¼ A tð Þjta 0;l½ Þð gf of increasing sets of feasible locations as described in

Example 4. Suppose that B is a location problem with three agents in which the set of

feasible locations is A(t), each agent has quadratic single-peaked preferences, and the

peaks of the agents, say respectively a, b and c, lie on the same line. Assume that b is

the middle point of the segment [a, c] and that the status quo point e is somewhere

below point b, with points a and c having the same distance from e.4 The set of Pareto

optimal locations is the line segment [a, c]. As such, the set of Pareto optimal utility

triples is a connected set for any utility representation of the agents’ preferences, which

assures that the problem under consideration satisfies the Pareto connectedness

condition applied to three agents. However, it may be easily verified by the reader

that there is no Pareto optimal location l and number r such that l~ibi(A(r)) for all

agents i. Consequently, the solution uF applied to this location problem is empty. More

details on a possible extension of our analysis to the case of more than two agents can

be found in an earlier version of this paper, which may be received from the authors

upon request.
4That is, d(a, b)=d(b, c) and d(a, e)=d(c, e), with d(e, b)p0.
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Appendix A

Proof of Theorem 1. Let B=(A(t), e, v1, v2) be a bargaining problem in BF and let

u=(u1, u2) be an arbitrary utility representation of (v1, v2). Let (S, d) be the induced

bargaining problem in utility space. We perform the proof within the space (S, d). The

following notation is adopted. If we write, for instance, that an agent chooses an alternative

(x, y)aS, we mean that he chooses an alternative aaAwith u1(a)=x and u2(a)=y. By X we

denote the highest possible utility for agent 1 in S, whereas Y denotes the maximum utility

for agent 2. For every utility x for agent 1, let Y (x)=max{ y|(x, y)aS} be the maximal

utility for agent 2 if agent 1’s utility is x. In the same way, we define X( y). Let P1=(X(Y),

Y) be the Pareto optimal point with the highest utility for agent 2, and let P2=(X, Y (X)) be

the Pareto optimal point with the highest utility for agent 1. Because (S, d) satisfies the

Pareto connectedness condition, we know that the Pareto optimal set PO(S) is a strictly

decreasing, connected curve from P1 to P. Or, equivalently, the utility Y(x) is strictly

decreasing if xzX(Y). For every r, the set S(r)={(u1(a), u2(a))|aaA(r)} is the set of

feasible utilities induced by A(r). Let X(r) be the highest possible utility for agent 1 in

S(r). Note that X(r)=u1(b1(A(r))). Similarly, we define Y(r). Let r*=max{ra[0, t]| (X(r), Y

(r))aS}. Then, the utility pair induced by uF Bð Þ is (X(r*), Y(r*)).
We must show that uF Bð Þ coincides with the backward induction outcomes of the

mechanism m(F , t). Because the proof is performed within utility space, we show that the

unique utility pair induced by backward induction is (X(r*), Y(r*)). To this purpose, we

explicitly solve the game m(F , t) by backward induction.

Round 2. Suppose that agent 1 has chosen some ra[0, t]. We distinguish four cases.

Case 1. Suppose that X(r)bX(Y). In this case, agent 2 can add the new alternative

P1=(X(Y), Y) to S(r). Agent 1 will then certainly choose P1 because by choosing from

S(r), agent 1 can at most get utility X(r)bX(Y). As such, agent 2 can guarantee utility Y,

which is the highest utility that agent 2 can possibly achieve. The final outcome in this

case is thus some (x, Y)aS with xVX(Y).

Case 2. Suppose that X(r)zX(Y) and that Y(X(r))NY(r). By choosing some alternative (x1,

y1)aS(r), agent 2 may achieve a maximum utility of Y (r). If agent 2 adds a new

alternative (x2, y2)aS to S(r) then agent 1 will choose (x2, y2) if x2NX(r). Because Y

(X(r))NY(r), there is some (x2, y2)aS with x2NX(r) and y2NY(r) which agent 1 will always

choose. By adding this alternative (x2, y2), agent 2 can thus guarantee a utility y2NY(r).

Therefore, the optimal decision for agent 2 in this case is to always add a new alternative.

The optimal new alternative (x2, y2) which agent 2 can add is one in which y2=Y(X(r)).

This follows from the fact that agent 1 can guarantee utility X(r) by choosing his best

alternative from S(r), and from the fact that Y(X(r)) is strictly decreasing in r if
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X(r)zX(Y). Because X(r)zX(Y) there is exactly one utility pair (x2, y2) with y2=Y(X(r))

and x2zX(r), namely (x2, y2)=(X(r), Y(X(r))). The unique backward induction outcome in

this case is thus (X(r), Y(X(r))).

Case 3. Suppose that X(r)zX(Y) and that Y (X(r))=Y (r). By choosing an alternative from

S(r) agent 2 can get utility Y (r). If agent 2 would want to add a new alternative (x2, y2),

agent 2 would choose (x2, y2)=(X(r), Y(X(r)) which agent 1 would then accept (see Case

2). Because Y(X(r))=Y(r), agent 2 is indifferent between choosing from S(r) or adding a

new alternative. In both cases, agent 2’s utility is Y (r). The final outcome in this case is

thus some (x, Y(r))aS with xVX(Y(r)).

Case 4. Suppose that X(r)zX(Y) and that Y(X(r))bY(r). By choosing an alternative from

S(r), agent 2 achieves Y(r). If agent 2 adds a new alternative, agent 1 can guarantee X(r)

by choosing from S(r). Because Y(X(r))bY(r) and X(r)zX(Y), there is no (x, y)aS with

xzX(r) and yzY(r). Hence, agent 2 strictly prefers to choose from S(r), and the final

outcome is thus some (x, Y(r)) with xVX(Y(r)).

Round 1. From the analysis of Round 2, we know the following: (1) by choosing some r

with X(r)bX(Y), agent 1 gets at most X(Y), (2) by choosing some r with X(r)zX(Y) and

Y(X(r))NY(r), agent 1 gets exactly X(r), (3) by choosing some r with X(r)zX(Y) and

Y(X(r))VY(r), agent 1 gets at most X(Y(r)). We show the following claim.

Claim 1. In every backward induction outcome, agent 1 gets at most X(r*).

Proof of claim 1. Recall that r*=max{ra[0, t]|(X(r), Y(r))aS}. It may be verified easily

that r*=max{ra[0, t]|Y(X(r))zY(r)}. Hence, the values of r corresponding to (2) satisfy

rVr*. From (2), we may thus conclude that (2V) by choosing some r with X(r)zX(Y) and

Y(X(r))NY(r), agent 1 gets exactly X(r)VX(r*). Now, let r be such that X(r)zX(Y) and

Y(X(r))VY(r). Then, it may be verified that X(Y(r))VX(r*). From (3) we may thus conclude

that (3V) by choosing some r with X(r)zX(Y) and Y(X(r))VY(r), agent 1 gets at most

X(r*). Because X(r*)zX(Y), we may conclude from (1), (2V) and (3V) that agent 1 can get at
most X(r*) in any backward induction outcome. This completes the proof of this

claim. 5

Claim 2. In every backward induction outcome, agent 1 gets at least X(r*).

Proof of claim 2. Recall that PO(S) is a strictly decreasing, connected curve from P1 to P2

and that (X(r*), Y (r*))aPO(S). It follows that X(Y)VX(r*)VX and Y (X)VY(r*)VY. By
assumption, the bargaining problem B is regular with respect to F . We may therefore

conclude that the utopia point (X, Y) is not in S and that X(r) and Y(r) are strictly

increasing in r. Since (X, Y)=(X(t), Y(t))gS it follows that r*bt and hence Y (r*)bY(t)=Y.

Hence, there is some rbr* with X(r)NX(Y) and Y(X(r))NY(r). Choose some eN0. Then, we

can find some rbr* with X(r)zX(r*)�ezX(Y) and Y(X(r))NY(r). By choosing this r, we

know from (2) that agent 1 gets exactly X(r)zX(r*)�e. Because this holds for every eN0,

agent 1 should get at least X(r*) in every backward induction outcome. This completes the

proof of this claim. 5

From Claim 1 and Claim 2, it follows that in every backward induction outcome (if one

exists) agent 1 should get exactly X(r*).
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Claim 3. In every backward induction outcome, agent 2 should get exactly Y (r*).

Proof of claim 3. We distinguish three cases.

Case 1. Suppose that X(r)bX(Y). From case 1 in round 2, we know that agent 2 gets YzY

(r*).

Case 2. Suppose that X(r)zX(Y) and Y(X(r))NY(r). This implies that rbr*.

From Case 2 in round 2, we know that agent 2 gets Y(X(r))zY (r*) since rbr* and

X(r)zX(Y).

Case 3. Suppose that X(r)zX(Y) and Y(X(r))VY(r). This implies that Y(r)zY(r*). From

Cases 3 and 4 in round 2, we know that agent 2 gets Y(r)zY(r*). 5

We may thus conclude that in every backward induction outcome, agent 2 gets at least

Y(r*). Because we already know that agent 1 gets exactly X(r*), we have on the other

hand that agent 2 should get at most Y(X(r*))=Y(r*). Hence, agent 2 should get exactly

Y(r*) in every backward induction outcome. This completes the proof of this claim.

From Claims 1, 2 and 3, it follows that there is at most one backward induction

outcome in utility space, namely (X(r*), Y(r*)). It remains to prove that the mechanism

has a backward induction strategy profile, which would then yield necessarily the utilities

(X(r*), Y(r*)). Consider the following strategy profile. At round 1, agent 1 chooses r*. At

round 2, agent 2 adds the alternative (x2, y2)=(X(r), Y(X(r)) to S(r) if rVr*, and agent 2

chooses a best alternative from S(r) if rNr*. At round 2, if agent 1 is to choose from

S(r)v{(x2, y2)}, agent 1 chooses (x2, y2) if x2zX(r), and chooses a best alternative from

S(r) otherwise. It can easily be checked that this strategy profile satisfies backward

induction. Because this strategy profile yields the outcome (X(r*), Y(X(r*)))=(X(r*),

Y(r*)), it follows that (X(r*), Y(r*)) is the unique backward induction outcome of the

mechanism m(F , t) in utility space.

Note that the backward induction strategy profile constructed above in the space of

utilities can be reproduced in the space of alternatives. Because every alternative a with

(u1(a), u2(a))=(X(r*), Y (r*)) can be obtained as a backward induction outcome in this

way, it follows that the set of backward induction outcomes in the space of alternatives is

given by {aaA|u1(a)=X(r*) and u2(a)=Y(r*)}=uF (B). This completes the proof of this

theorem. 5

Proof of Theorem 2. First, we show that uF satisfies the four axioms. From Section 2, we

know that uF is Pareto optimal, essentially unique and F–monotonic. We finally prove

unchanged contour independence. Let B1=(A, e, v1, v2)aB*, let a*auF (B1) and let

B2=(A, e, v1V, v2V)aB* with

avia4 if and only if aviVa4½ �; aUia4 if and only if aUiVa4½ �

for both agents i. We show that a*auF (B2). Because AaF , there is some t with A=A(t).

Because a*auF (B1), there is some ra[0, t] with a*~ibi(A(r)|vi) for both i. Here, we

write bi(A(r)|vi) in order to indicate that this a maximal element with respect to vi, and

not with respect to viV . By assumption, a*~ib implies a*~iVb, so a*~iVbi(A(r)|vi) for
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both i. By definition, bi(A(r)|vi)vib for all baA(r), so a*vi b for all baA(r). Because

a*vib implies a*viVb, it follows that a*viVb for all baA(r). Together with

a*~iVbi(A(r)|vi), we obtain that bi(A(r)|vi)viVb for all baA(r). We know therefore

that bi(A(r)|vi)~iVbi(A(r)|viV) for both i. Because a*~iVbi(A(r)|vi) for both i, we have

that a*~iVbi(A(r)|viV) for both i.

We show now that a* is Pareto optimal in B2. Suppose not. Then, there is some baA

with a*UiVb for both i and a*�iVb for some i. By assumption on the preferences, it

follows that a*Uib for both i and a*�ib for some i, which is a contradiction since a* is

Pareto optimal in B1. Hence, a*~iVbi(A(r)|viV) for both i and a* is Pareto optimal in B2.

This means that a*auF (B2). So, uF satisfies unchanged contour independence.

Now, suppose that B is a solution on B* satisfying Pareto optimality, essential

uniqueness, F–monotonicity and unchanged contour independence. We show that B=uF .
Let B=(A(t), e,v1,v2)aB* with set of alternatives A(t)aF , and let a*auF (B). Since
both uF and B are essentially unique, it suffices to show that a*au(B). Suppose not.

Then, because u(B) is essentially unique and nonempty, there is some b*au(B) such that

a*kib* for at least one agent i. Because uF and u are Pareto optimal, we know that both

a* and b* are Pareto optimal in B. Given that a*kib* for some agent i, it follows that

a*dib* for some agent i, and a*�jb* for the other agent j. Assume, without loss of

generality, that a*d1b* and a*�2b*. By definition of the solution uF , there is some ra[0,

t] such that a* ~i bi(A(r)) for both agents i. Hence, b*�1b1(A(r)) and b*d2b2(A(r)).

Let u1, u2 be an arbitrary utility representation for the preferences v1, v2. By

assumption, the induced bargaining problem in utility space (S, d) satisfies the Pareto

connectedness condition. Since a*, b* are Pareto optimal with a*d1b* and a*�2b*, we

then know that there is some Pareto optimal alternative caA(t) with a*d1cd1b* and

a*�2c�2b*. Hence, b1(A(r))d1cd1b* and b2(A(r))�2c�2b*.

We now define continuous utility functions u1V, u2V on AF by

u1Vað Þ ¼ u1 að Þ; if u1 að ÞVu1 cð Þ
u1 cð Þ; if u1 að ÞNu1 cð Þ ;

�

u2Vað Þ ¼ u2 að Þ; if u2 að Þzu2 cð Þ
u2 cð Þ; if u2 að Þbu2 cð Þ :

�

Let v1V, v2V be the preferences induced by u1V, u2V. Let the bargaining problem BV be
given by BV=(A(t), e, v1V, v2V). Let (SV, dV) be the induced bargaining problem in utility

space. We show that (SV, dV) satisfies the Pareto connectedness condition. Let NWc={(x,

y)aR
2|xVu1(c) and yzu2(c)} be the set of utility pairs to the North-West of (u1(c), u2(c)).

It may be verified easily that SV=S\NWc, where S is the set of feasible utilities in the

original bargaining problem B. See Fig. 5 for an illustration of this fact.

Moreover, because (u1(c), u2(c)) is a Pareto optimal utility pair in S, it follows that the

set of Pareto optimal utility pairs in SVis given by PO(SV)=PO(S)\NWc, where PO(S) is the

set of Pareto optimal utility pairs in S. See Fig. 5 for an illustration. By assumption, the set

PO(S) is connected. Hence, the set PO(SV)=PO(S)\NWc is also connected, which means

that (SV, dV) satisfies the Pareto connectedness condition. Becausev1V,v2V are truncations
of v1, v2, it follows, by condition (2) of F�completeness of B*, that BVaB*.



Fig. 5. (SV, dV) satisfies Pareto connectedness condition.
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Consider now the reduced bargaining problem BW=(A(r), e, v1V, v2V), where r is as

defined above. Because cd2 b2(A(r)) it follows that a�2 c for all aaA(r). By construction

of u2V, u2V(a)=u2(c) for all aaA(r). Therefore, agent 2’s utility in BW is equal to u2(c) for all
alternatives inA(r), and hence is constant on A(r). Because c�1 b1(A(r)) it follows that there

is some aaA(r) with u1(a)Nu1(c). By construction of u1V, it follows that in the bargaining

problem BW agent 1’s maximum utility in A(r) is u1(c). Hence, the bargaining problem BW
has a unique Pareto optimal utility pair, namely (u1(c), u2(c)). In particular, the set of Pareto

optimal utility pairs in BW is connected, and hence BW satisfies the Pareto connectedness

condition. Because BVaB*, it follows, by condition (1) of F�completeness, that BWaB*.
Let aWau(BW). Since B is Pareto optimal, aW should be Pareto optimal in BW and

hence, (u1V(aW), u2V(aW))=(u1(c), u2(c)). We thus have that u1V(aW)=u1(c)=u1V(c), and

hence, aW~1Vc.
Now, let aVau(BV). Because BW is a reduction of BV within the family F, it follows by

F�monotonicity that aVv1VaW~1Vc. By assumption, cd1b*. By construction of u1V, it
follows that cd1Vb*. We may thus conclude that aVd1Vb*.

By construction of the utility functions u1V, u2V, it may be verified that for both agents i

the lower contour set, upper contour set and indifference set with respect to b* are the

same in BV as in B. Because b*au(B) and u satisfies unchanged contour independence, it

follows that b*au(BV). Above we have seen that every aVau(BV) satisfies aVd1Vb*, and
therefore, b* cannot be in u(BV), which is clearly a contradiction. We may thus conclude

that a*au(B), which implies that u(B)=uF (B). 5
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