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Abstract

In an extensive form game, an assessment is said to satishpéadeviation propertif
for all possible payoffs at the terminal nodes the following holds: if a player at each of his
information sets cannot improve upon his expected payoff by deviating unilaterally at this
information set only, he cannot do so by deviating at any arbitrary collection of information
sets. Hendon et al. (1996. Games Econom. Behav. 12, 274-282) have shown that pre-
consistency of assessments implies the one-deviation property. In this note, it is shown
that an appropriate weakening of pre-consistency, tempeldting consistengys both a
sufficient and necessary condition for the one-deviation property. The result is extended to
the context of rationalizabilityd 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In dynamic one-person and multi-person decision makingpttezdeviation
property (also calledone-shot deviation princip)ereflects the phenomenon that
a stream of “locally optimal” decisions constitutes a “globally optimal” decision
stream. By “locally optimal,” we mean that the decision for an individual at a
particular stage maximizes his expected payoff, taking as given the decisions

E-mail addressperea@eco.uc3m.es.

0899-8256/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
PIl: S0899-8256(02)00005-2



Note / Games and Economic Behavior 40 (2002) 322—-338 323

chosen at all other stages (including his own decisions at other stages). “Globally
optimal” refers to the fact that the decision maker cannot improve upon his
expected payoff by changing his decisions at any arbitrary subset of stages. The
one-deviation property thus reflects a kind a time-consistency, stating that for
optimal decision making it should be sufficient to check the optimality of each
of the decisions on a one-by-one basis.

It is a well-known fact that the one-deviation property holds generally for the
context of one-person decision making; a result which is known aggtimality
principle for dynamic programming. If more than one decision maker is involved,
the fact whether the one-deviation property holds or not depends crucially on the
way decision makers (from now on called players) update their conjectures about
the opponents’ behavior as times passes by. It is the aim of this note to figure out
which conditions on the players’ updating behavior are necessary and sufficient
in order for the one-deviation property to hold.

To this purpose, we focus on two different contexts which have both been
important for the development of rationality concepts for extensive form games.
In the first it is assumed that players, at each of their information sets, hold
conjectures about the opponents’ future behavior that coincide exactly with the
“real” behavior of the opponents. The uncertainty of a player at an information
set about the actual play of the game thus reduces to uncertainty about the
past play, captured formally by the notion béliefsat information sets. The
conjecture about future play is completely determined by a fixed behavior strategy
profile, which prescribes a randomization over actions at each information set.
The above mentioned assumption implies that a player at an information set
always believes that future play will be according to this strategy profile, also
if the event of reaching this information set actuatlgntradictsthis strategy
profile. This assumption is used in the backward induction concept for games with
perfect information and most of the extensive form equilibrium refinements, such
as subgame perfect equilibrium (Selten, 1965), sequential equilibrium (Kreps and
Wilson, 1982), different versions of perfect Bayesian equilibrium and extensive
form perfect equilibrium (Selten, 1975).

In this particular setting, the players’ choices and conjectures about the play by
opponents are represented by a so-cakegbssmena combination of a behavior
strategy profile and a system of beliefs at information sets. Consider an extensive
form structure, that is, a combination of the game tree, the information sets,
the actions and possibly chance moves, together specifying how the game is to
be played. An extensive form structure is extended to an extensive form game
by assigning a vector of payoffs to each of the terminal nodes. Formally, an
assessment for a given extensive form structure is said to satishpérdeviation
propertyif for every extensive form game having this extensive form structure the
following holds: if a player at each of his information sets cannot improve upon
his expected payoff by deviating unilaterally at this information set, while leaving
his behavior at other information sets unchanged, he cannot do so by deviating
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at any arbitrary collection of information sets. The fact that this property should
hold forall extensive form games having this extensive form struatyées that

the one-deviation property puts restrictions on an assessment that solely depend
on the extensive form structure, and not on the particular choice of payoffs at the
terminal nodes.

In games with perfect information it is well-known that every strategy profile,
together with the trivial beliefs at the singleton information sets, satisfies the
one-deviation property. For games with imperfect information ¢basistency
condition on assessments, which is part of Kreps and Wilson’s definition of
sequential equilibrium, turns out to be sufficient for the one-deviation property.
Hendon et al. (1996) show that some weakening of consistency, tepreed
consistencyis enough to imply the one-deviation property. In Theorem 2.2 we
prove that a further weakening, calleddating consistengys both sufficient and
necessary for the one-deviation property to hold. Intuitively, updating consistency
states that playef’s conjecture at information seB about the opponents’
behavior should be induced by his conjecture at informatiomMseheneverB
comes afterd and the conjecture at does not exclude reachi®y Important is
that this condition should hold also if play€s own strategy choicat A prevents
B from being reached.

The second context we focus on leaves more freedom to the players’
conjectures about the opponents’ behavior, since it is now no longer assumed that
players hold correct conjectures about the opponents’ future strategy choices. This
more flexible setting corresponds to rationalizability concepts for extensive form
games, such asxtensive form rationalizabilitfPearce, 1984; see also Battigalli,
1997), subgame perfect rationalizability (Bernheim, 1984) and weak extensive
form rationalizability (Ben-Porath, 1997; Battigalli and Bonanno, 1999), among
others. It also applies to “intermediate” models that place restrictions on the
players’ conjectures that are weaker than in the first context discussed above,
but stronger than in rationalizability. For instance, the concept of self-confirming
equilibrium (Fudenberg and Levine, 1993) requires the players’ conjectures to
coincide with the actual behavior on the equilibrium path, but allows them to
differ from the actual behavior at unreached information sets. In Dekel et al.
(1999, 2000), the concept of self-confirming equilibrium is refined to the case
where conjectures about the opponents’ behavior at unreached information sets
should, in addition, be “rationalizable.” Greenberg (1996) proposes a model in
which the players’ conjectures about the play are assumed to agree at some,
but not necessarily all information sets, and defines a corresponding notion of
stability. Within this context, players may thus have different conjectures about
the play of the game at information sets for which no agreement is required.

As a primitive to model the players’ conjectures about the opponents’ behavior
we use the notion ofipdating systemgcf. Battigalli, 1997), which specifies
for each player and each information set controlled by this player a subjective
randomization on the set of opponents’ strategy profiles that are compatible
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with reaching this information set. In order to avoid the issue whether such

randomizations should be correlated or uncorrelated, we restrict our attention to
the case of two players. There should be no problem, however, in extending the
result to games with more than two players, once it is decided which class of
conjectures (correlated or uncorrelated) is to be used.

For a given extensive form structure, an updating system for a player is said
to satisfy the one-deviation property if for all extensive form games having this
extensive form structure and all strategies for this player the following holds:
if at each of his information sets the player cannot improve upon his expected
payoff by deviating at this information set only, given his conjecture about the
opponent’s behavior and given his decisions at other information sets, then he
cannot improve by deviating at any arbitrary collection of information sets. We
present a condition on updating systems, termpdating consistengywhich
is a weakening of the notion @onsistentupdating systems, used by Battigalli
(1997). The intuition of updating consistency is the same as in the first context:
if the player holds a certain conjecture at an informationdsethen conjectures
at future information sets should be derived from this by Bayesian updating, as
long as reaching these information sets does not contradict the conjectdire at
What distinguishes it from consistent updating systems is that, unlike the latter,
players are allowed to reshuffle conjectures at information sets as long as it does
not affect the expected outcome conditional on reaching this information set. It
thus leaves some more freedom than updating consistency. In Theorem 3.1 it is
shown that updating consistency is both a necessary and sufficient condition for
the one-deviation property.

The note is organized as follows. Section 2 deals with the context in which
players are required to hold correct conjectures about the opponents’ future
behavior. It first provides some notation and definitions, and then presents the
result which characterizes the assessments that satisfy the one-deviation property.
Section 3 procedes identically for the context of updating systems.

2. One-deviation property for assessments
2.1. Notation in extensive form games

An extensive form structur§ specifies a finite set of players, a finite game
tree, a collection of information sets for each player, a set of actions at each
information set and the probabilities of each of the chance moves. lhethe set
of players. For every € I, let H; be the collection of information sets controlled
by playeri, and letH be the collection of all information sets in the game. For
everyh € H; denote byA(h) the set of actions available at We assume that
A(h) contains at least two actions for evérySuppose that two actions available
at different information sets are labelled differently, thatdsp) N A(h')) = @
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if h# K. It is assumed, moreover, th&t satisfiesperfect recall(Kuhn, 1953),
which means that two different paths leading to the same playpéormation set

h contain the same playéractions. Since actions at different information sets
are, by assumption, different, perfect recall implies in particular that two paths
leading to the same playeérinformation seth pass through the same collection
of “preceding” playeri information sets. The set of terminal nodes is denoted
by Z. An extensive form gamis a pairI” = (S, u) whereS is an extensive
form structure and is thepayoff functiorassigning to every terminal nodes Z
avectoru(z) = (u;(z))ie; € R of payoffs.

2.2. Strategies and beliefs

A behavior strategyfor playeri is a vectors; = (oin)nen; that assigns to
every information sek € H; some probability distribution;, on A(h). A vector
o = (0;);e; Of behavior strategies is called a behavior strategy profilbekef
systeris a vector8 = (8y)ney Whereg, is a probability distribution on the set
of nodes ink for all h € H. A pair (o, ) is called amssessmenNote that the
set of assessments in a game depends only on the extensive form structure.

2.3. Sequential rationality

Let o be a behavior strategy profile, a node andZ(x) the collection of
terminal nodes that follow. For everyz € Z(x), let P, (z|x) be the probability
thatz is reached under, conditional on the event that the game has reached
Byu;(c|x)= ZzeZ(x) P, (z]x)u; (z) we denote the expected payoff for player
conditional onx being reached. For a given assessnteng) and an information
seth € H;, letu;(o | h, Bp) =) _,cp Bn(x)ui(o|x) be the expected payoff for
playeri conditional oz being reached, given the beligfs ati. The assessment
(o, B) is calledsequentially rationaif for every playeti and every: € H; it holds
thatu; (o | h, Br) = max,[/ui((o*l.’, o_i) | h, Br). Here, (o], 0_;) is the behavior
strategy profile in which player playso; and the other players act according
to 0. The assessment is calléztally sequentially rationalf for every playeri
and every: € H; it holds thatu; (o | i, Br) = max,, ui((o},,0-4) | h, By). Here,

(o, o—1) isthe behavior strategy profile in which playeplays the local strategy

o}, atinformation set ando is played at all other information sets (including the
other playet information sets). The difference between sequential rationality and
local sequential rationality is thus that the former takes into account all possible
deviations by a player, whereas the latter concentrates on those deviations in
which a player changes his behavior at only one information set.
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2.4. One-deviation property

Let S be an extensive form structure afd 8) an assessment ifi. We say
that (o, B) satisfies thene-deviation propertif for every payoff functionu the
following holds: (o, ) is sequentially rational in the ganfé= (S, u) if and only
if it is locally sequentially rational ir".

2.5. Updating consistency of assessments

In Hendon et al. (1996) it has been shown that the set of so-calied
consistentassessments satisfies the one-deviation property. Their definition of
pre-consistency consists of two parts. The first part, which we wadlating
consistencystates that a player should update his beliefs in some consistent
manner to be specified below. The second part, called Bayesian consistency, is an
equilibrium condition which assures that every player holds a correct conjecture
about the opponents’ past behavior at information sets reached with positive
probability unders. Since Bayesian consistency is not needed in their proof, it
follows that the larger set of updating consistent assessments satisfies the one-
deviation property as well.

Formally, an assessmelit, 8) is called updating consistenif for every
playeri, every two information setg!, h? € H; whereh? comes after!, and
every behavior strategy* for playeri,

Pior.o (x| BY, By1)
Pior.o_n(h2 | hL, BY)

for all x € h2, wheneveriP’((,i*,(,ﬂ,)(h2 | hY, B1) > 0. Here,Pgr o) (x | h, B1)

is the probability that the node is reached, conditional oh! being reached

and given the beliefg,. ath’. By Pr oy (h? [ kY, B =, 2 Por o)V |

hl, ,1) we denote the probability thad# is reached, conditional oh' being
reached and given the beliefs/dt By perfect recall, every path from a node in

k! to a node in:? contains the same playgmctions. Consequently, the ratio in
the definition of updating consistency does not depend on the particular choice
of 0", as long a®(y« o (h” | AL, ) > 0.

The intuition behind updating consistency is the following. Consider two
information setsh! and 722 which are controlled by the same playerand
assume that? comes afterl. Playeri’s conjecture about the opponents’ past
behavior ath?! is reflected by the belief,.. If we assume that players hold
correct conjectures about the opponents’ future behavior, also at information
sets which should actually have been avoidedsbyt follows that playeri at
h! believes that the opponents’ future behavior is determined_y Updating
consistency states that playiés conjecture about the opponents’ past behavior
at h2 should be induced by his conjectures about past and future behavibr at

Bp2(x) =
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whenever the event of reaching is compatible with his conjectures At (i.e.,
whenever there is somg" with P(gi*,,,_[)(hz | h1, B1) > 0). Important is that this

condition should also hold whei]”t,(h2 | 1, B,1) = 0. Hence, even if playei's

own behavior after! precludes the information séf from being reached, his
beliefs ath? should be induced by his conjecture about past and future behavior
athl.

This property is satisfied in concepts such as sequential equilibrium and
extensive form perfect equilibrium. The reason is that in both concepts, the
players’ beliefs are derived from taking a sequence of strictly positive behavior
strategy profiles converging to the original onhélong the sequence, it is clear
that the beliefs of a player at two consecutive information sets are always in
accordance with each other, since all information sets are reached with positive
probability. As may be verified easily, this property remains valid in the limit, and
hence every consistent assessment is updating consistent.

The following result is due to Hendon et al.

Theorem 2.1 (Hendon et al., 1996).et S be an extensive form structure. Then,
every updating consistent assessmeif Batisfies the one-deviation property.

The theorem below shows that updating consistency is not only sufficient, but
also necessary for the one-deviation property.

Theorem 2.2. Let S be an extensive form structure. Then, an assesstep)
in S satisfies the one-deviation property if and only if it is updating consistent.

Proof. Inview of Theorem 2.1, it suffices to show that every assessment which is
not updating consistent fails to satisfy the one-deviation propertyd,¢t) be an
assessment i§ which is not updating consistent. We show that there is a payoff
vectoru for the terminal nodes such that in the extensive form géame (S, u)
the assessmelit, B) is locally sequentially rational but not sequentially rational.
Since(o, B) is not updating consistent, there is some play&wro information
setshl, h? € H; whereh? follows i, and some behavior strategy such that
P(o#.o_)(h? | k%, B1) > O but

Pior.oy " | hY, By1)
Por.o_n(h2 | hY, By1)

ﬂhZ(X*) #*

1 These beliefs play an explicit role in sequential equilibrium, whereas used implicitly in extensive
form perfect equilibrium.
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for some node* € h%. Since both2() andP g+ o_ (- | AL, B,1)/P(or.o_;) (h |
hl, B,1) are probability distributions on the set of node&4twe can choose*
such that

P (o o_py (X | AL, B1)
P(Gi*,dfi)(hz | h17 ﬂhl) ’

The reader may verify that' and/? can always be chosen in such a way that
Eq. (2.1) holds and there is no further playémformation set betweeh! andh?.

By perfectrecall, there is a unique sequehge . ., hg of playeri information
sets with the following properties: (&) follows h;_1 for all k, (2) there is no
playeri information set betweeh,_1 andhy for all k, (3) there is no player
information set beforé1, and (4)hx_1 = h! andhx = h2. We define the player
i payoffs followingh; by induction onk.

We first define the playerpayoffs followingh g = h?. Letag be some action
at hg with o;,2(ax) < 1. Such an action exists since by assumption there are at
least two actions dig. For every terminal node following nodex* (see (2.1))
and actiorug, setu;(z) = 1. For all terminal nodes following actionag but not
following nodex*, setu; (z) = 0. For every terminal nodefollowing /¢ but not
following actionag, setu;(z) = B2(x*).

Now, suppose that < K and that the playerpayoffsu; (z) have been defined
for all terminal nodeg following A1. We define the playerpayoffs following
hy but not followinghy1in the following way. Leta; be the unique action &t
that leads tdi; 1. For every terminal nodefollowing a; but not followinghy1,
setu;(z) = 0. By (ax,0_p,) we denote the strategy profile in which player
chooses actiom; with probability one ath;, and players act according t©
at all other information sets. Le#; ((ax, o—n,) | Ak, Br,) be the expected payoff
induced by(ax, o_p,) at g, given the belief$s;,, and the payoffs followingy,
which have already been defined above. For all terminal noé@bwing A but
not actionay, we setu; (z) = u; ((ak, o—n,) | bk, Bn,)-

Finally, for all terminal nodes not covered by the procedure above, we set
u;(z) = 0. For all players;j # i, we setu ; (z) = O for all terminal nodes.

It can be verified easily that the assessments) is locally sequentially
rational, given the payoff vector. Note that the payoffs are constructed in such
a way that at every information sét, for k =1, ..., K, playeri is indifferent
between actiom; and all other actions available &, given his beliefss;, , and
giveno_y, .

If a playeri information seth does not belong tdhs, ..., Ak}, then, by
construction of the payoffs, for every node  all payoffs followingx are equal,
and hence local sequential rationality follows trivially.

We finally show that(o, 8) is not sequentially rational &' = hgx_1. For
every actioru at k1 we have, by construction of the payoffs following, that
ui((a,0_1) | hY, By) = ui((ax—1,0_1) | ht, By1). Hence,u;(o | hl, 1) =

Br2(x™) < (2.1)
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ui((ag—1,0_;1) | ht, B,1). After choosingax 1 atht, the only feasible payoffs
different from zero are the ones followink?. By definition of the payoffs
following h2 = hg, we have that; ((ax—1.0_,1) | h%, Bj1) equals

P(ak—l,d_hl)(x* ‘ hl’ lghl)‘jih2 (ag)l
+Pag_yo_ ) (B | 1 ) (1= 052(ak)) B (x¥). (2.2)

We may thus conclude that (o | A%, Bp1) is equal to (2.2).

Let o/ be the playei strategy defined as follows: (1) at, it chooses with
probability one the actionx defined above, (2) at information Set it chooses
with probability one the actionx_1 leading tok2, and (3) at all other player
information sets it coincides withy; . It can be verified that; ((6/, o) | ht, Bu1)

equalsP i ;.o ) (x* |11, B).
By Eq. (2.1), there exists a strategy with P(,« ,_(h? | ', 1) > 0. Since

there is no player information set betweeh! andh?, andag _1 is the unique
action that leads from* to k2, it follows thatP(_, » ,,)(h® | %, B,1) > 0. We

know that the ratio in (2.1) does not depend upon the choicg*ofas long as
P(g;,gﬂ.)(# | h, B,1) > 0. Hence,
Pty @ 1h B) P yo 00 1AL Ba)
Poro (W2 [ hL ) Plag_yo 0 (W2 [ hE Bya)’
which implies that

]Py(a](_lyo',hl)(x* | hl’ IBhl) > IBhZ(X*)P((lK,]_,Gihl) (hz | hl, ﬂhl). (23)
Sinceo;,2(ak) < 1, it follows from (2.3) that

1

wi((of,0-0) | B, Bia) =Plag_y.o 0 (x* | B, Bia) > R.2)=ui(o | kY, Ba).

Hence,(o, B) is not sequentially rational att. O

ﬂhZ(X*) <

3. One-deviation property for updating systems

In this section, we turn to the context in which players are no longer assumed
to hold correct conjectures about the opponents’ future behavior. As mentioned in
the introduction, we restrict our attention to the case of two players. For the sake
of convenience, we further assume that there are no chance moves. Before stating
the result, we need some terminology.

3.1. Updating systems

A pure strategy for player is a vectors; = (s; (h))nen;, Wheres; (h) € A(h)
for all » € H;. Let S; be the set of pure strategies for playeEvery playeri
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holds at each of his information sets a conjecture about the opponent’s behavior
that is compatible with the event of reaching this information set. Such vectors
of conjectures are calledpdating systemécf. Battigalli, 1997). Formally, for
everyh € H and both players, let S;(h) = {s; € S; | 3s; € S; such tha(s;, s;)
reached:} be the set of player strategies that are compatible with the event of
reachingh. Here, we always assume tha j. By perfect recall, it holds that

a strategy profilési, s2) reaches: if and only if 51 € S1(h) andsy € Sa2(h). An
updating systerfor playeri is a vectore; = (cin)nen; Wherec;, is a probability
distribution onS; (h) for everyh € H;.

3.2. Sequential rationality

Lets; be a playel strategy and: € H;. By s;|, we denote the strategy that
at everyh’ € H; preceding: chooses the unique action/dtleading tok, and at
all other information sets coincides with By constructions; |, € S; (k). We say
that the strategy; is sequentially rationaith respect to the updating system
if for all & € H; it holds thatu; (s; |5, cin) = max; u; (s)|n, cin)- Here,u; (si|n, cin)
is the expected payoff induced by, andc;;. For everys; € S;, information set
h € H; and actioru € A(h), let (a, s;—,) be the playel strategy that chooses
at h and coincides with; at all other information sets. We say thatis locally
sequentially rationalwith respect to the updating systamif for all i € H; it
holds thatu; (s; |, cin) = MaX,can) i (@, si—p)|n, Cin)-

3.3. One-deviation property

Let S be an extensive form structure andan updating system for player
i in §. We say that; satisfies theone-deviationproperty if for every payoff
function u and every strategy; € §; the following holds:s; is sequentially
rational with respect te; in the gamel” = (S, u) if and only if s; is locally
sequentially rational with respecttpin I'.

3.4. Updating consistency

Let ut, u? € A(S;) be two mixed strategies for playérand let7; C S;.
We say thatu! is equivalentto ;2 on T; if for every s; € T; the probabil-
ity distributions on the terminal nodes induced by, s;) and (u?,s;) are
identical. Letc; be an updating system arid, 1% € H; be such that:? fol-
lows h' and c;,1(S;(h?)) > 0. Here, we use the convention,1(S;(h?)) =
ZSjESj(hZ) cipt(sj). BY ¢;p1,2 we denote the conditional probability distribution

on S; (h?) given by

Cihl(sj)

) = (550
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foralls; € S; (h?). We say that an updating systefris updating consisterif for
every two information sets!, h2 € H; whereh? follows 4t andc;;,1(S; (h?)) > 0
it holds thatc; ;2 is equivalent ta;;1 2 on S; (h?).

The intuition of updating consistency is basically the same as in Section 2: if
playeri’s conjecture at! about the opponent’s behavior is compatible with the
event of reaching?, then his conjecture &£ should be induced by his conjecture
at k', up to “inessential differences.” By the latter we mean that playermhen
updating his conjecture, is allowed to shift weight from one opponent’s strategy
to some other, as long as it does not affect the expected outcome conditional on
h? being reached.

Updating consistency is somewhat weaker than the notiorcooisistent
updating systems, as used by Battigalli (1997). An updating systéscalled
consistentif for all A, h? € H; it holds thatc;,2 is equal toc;,,2 whenever
h? comes after:! andc;;,1(S;(h?)) > 0. Clearly, consistency implies updating
consistency, but the reverse is not true.

In order to illustrate the difference between updating consistency and consis-
tency, consider the example in Fig. 1.

Let 21, h2 be the first and the second information set controlled by player 2,
respectively. Letco = (cy1, cp42) be player 2's updating system given by
Cop1 = %(a,e,g,k) + %(b, e, h, k) andcy,2 = (a, e, g,1). Here, %(a,e,g,k) +
%(b, e, h, k) denotes the probability distribution which assigns equal probability
to the strategieéu, e, g, k) and(b, e, h, k). The updating system is not consistent,
since cyp12 = (a, e, g, k) # cy,2. However, the updating system is updating
consistent sincey,1,2 andcy,2 are equivalent if player 2 chooses frafp(h?),
that is, if player 2 plays.

Beforing stating the theorem, we briefly outline how the setup could be
generalized to games with more than two players. In this case, pfaygrdating
system would be a vector = (¢;»)ne g, assigning to every information sete H;
some probability distributiom;, € A(S—;(h)) on the set of opponents’ strategy
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profilesS_,; (k) leading toh. If we assume that conjectures anecorrelatedthen

cin should be the product of probability distributions on the opponents’ individual
strategy spaces. If conjectures are allowed tedreelatedthenc;, may be any
probability distribution onS_; (k). The remaining concepts can be generalized
in a straightforward fashion to games with more than two players in both the
correlated and the uncorrelated case. (See also Battigalli, 1997).

Theorem 3.1. Let S be an extensive form structure with two players. Then,
an updating system i§ satisfies the one-deviation property if and only if it is
updating consistent.

Proof. (a) We first show that every updating system which is updating consistent
satisfies the one-deviation property. Let the updating systerbe updating
consistent and let the strategybe locally sequentially rational with respectdo

in some gamd™ = (S, u). We show that; is sequentially rational with respect
to¢;. Lets] be an arbitrary pure strategy for playekVe prove that

ui(siln, cin) < ui(siln, cin) (3.1)

at every information set € H;. We procede by induction on the number of player
i information sets that follovit.

If h is not followed by any other information set of playerthen the
above inequality holds by local sequential rationality and the observation that
u; (s!|n, cin) depends only on the action prescribedspwt /2. Now, letk € N and
assume that (3.1) holds for all playeinformation sets that are followed by at
mostk other player information sets. Lek € H; be followed by at most + 1
playeri information sets. Letd*(s/) be the set of playet information sets:’
with the following properties: (1}’ follows 4, (2) s/1, € S;(h’) and (3) there is
no playeri information set betweeh andh’.

Let Sj?(h,si/) be the set of strategies € S;(h) for which (s/|,,s;) does
not reach any)’ € H(s!). For everys; € §; (h)\S?(h, s7), the strategy profile
(s!|n, s;) reaches exactly orfé € H*(s}). Using perfect recall, it may be checked
that (s/|5, s;) reached’ € H*(s)) if and only if s; € S; (k). Moreover, we claim
that the setsS; (k") are disjoint forh’ € H(s/). In order to see this, assume
thats; € S;(h%) N S;(h?) for two differenth, 2 € H(s)). Hence, there exist
sk, s2 such that(s}, s;) reaches:! and (s?, s;) reaches:2. By construction of
the setH*(s)), all paths toh! and h2 pass throughh and contain the action
prescribed by ath. Hence, all paths ta! andh? contain the same sequence of
playeri actions. But this implies tha(‘s,.l, ) and(siz, s;) should lead to the same
information set inH*(s}), which is a contradiction. We may therefore conclude
that everys; € S;(h) either belongs tcs?(h, s;) or belongs to exactly ong; (h")
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with " € H(s]). Consequently,

wilslncin) =Y cinspui(s{ln.5))

s;€8;(h)

Do > cnlspuilsings)
heH}(s!)sjeS;(h")

/
+ Z cin(sj)ui(s;|n, s;j)
5;€89(h,s))

= > (s Y Mui(%lhﬁj)

. . /
WeH¥(s)) s;€8; () cin(S;j ("))
cin(Sj(h'))>0
+ > cin(spuilsiln. s))
5j€89(h,s)
= Z cin(Sj(h"))ui (s} 1n, cinp)

W eH (s))
cin(Sj(h'))>0

+ Z cin(sj)ui(si|n, sj).

5;€89(h,s))

Sincec; is updating consistent, we have thats; |, c;njn) = ui (]|, cipy) for all
h' e H(s}) with ¢;;(S; (k")) > 0. Hence,

ui(siln cin)

Do (S0 uilsiln, cin)
W eH(s))
cin(Sj(h"))>0
+ Z cin(s)ui (s{1ns s;)
s/-eS?(h,s;)

> cin(Si))ui (sl cin)
WeH! (s))
+ Z cin(sj)ui(si|n, s;j)-

5j€89(h,s)

Forallh’ € H(s}) it holds, by definition, that!|, € S; (h"), and hence;|,s = s/,
forall i" € H(s}). Consequently,

wi(si|n, cin) = Z cin(Sj(h))ui(s{\w, cin)

W eH (s))
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+ D cinlspui(s]ln. s)). (3.2)

SjES;-)(h,S;)

Since everyh’ € H(s!) is followed by at mosk playeri information sets, we
know by induction assumption thad; (s/ |, cin) < ui(silp, cip) for all b’ e
H/(s}). This implies that

wilsilnocin) < cin(S;(h)))uisilw, cin)
WeH (s))

+ > cinsui(siln.5j)- (33)

SjES;-)(h,S;)

Let s/ be the player strategy which coincides with; at » and coincides
with s; at all other information sets. It can be checked théi(s)) = H;(s)
and thatS?(h,slf) = S?(h,s;/). Moreover,u; (s; |, cin) = ui(s]' |y, i) for all
W e H(s) andu;(s)|n, s;) = ui(s)'|n, s;) for all s; S?(h,s;/). Together with
(3.3) we obtain that

wilsilnocin) <Y cin(Sj ) ui(s] . cin)
WeH (s]))

+ Z cin(sj)ui(s] 1n, 55)

SjES?(]l,S;/)
”
= u;(s; |n, cin)s

where the last equality follows from substitutisigby s/’ in (3.2). Sinces!’ differs
only ath from s; ands; is locally sequentially rational with respectdg it holds
that u; (s, cin) < ui(siln, cin). This implies thatu; (s!|x, cin) < ui(siln, cin),
which completes the proof of (a).

(b) Next, we prove that every updating system which is not updating consistent
does not satisfy the one-deviation property. kebe an updating system ifi
which is not updating consistent. We show that there is a payoff vecfor
the terminal nodes and a pure strategyfor playeri such thats; is locally
sequentially rational with respect t¢ in the extensive form gamg€ = (S, u)
but not sequentially rational.

Sincec; is not updating consistent, there @k h2 € H; whereh? follows i!
andc;;1(S;(h?)) > 0 such that;,2 is not equivalent ta; 1,2 on S; (). Hence,
there is soma; € S; (k%) such that the probability distributions on the terminal
nodes induced bys;, ¢;j,2) and(Si,Cihlth) are different. Let these probability
distributions be denoted by, . ,) and Pisicn2)- respectively. We thus can
find a terminal node* with

P(Si’cihz)(Z*) < P(Sivc,-hl‘hz)(z*)' (34)
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The above inequality implies thm(%cihl‘hz)(Z*) > 0, and hence; necessarily
chooses all the playéractions on the path tg*. Sinces; € S; (h?) andc;p2 €
A(Sj(hz)), it follows that(Si,Cihllhz) passe$:? with probability one, and hence
z* follows information sef?.

By perfectrecall, there is a unique sequehge . ., hg of playeri information
sets with the following properties: (%) follows h;_1 for all k, (2) there is no
playeri information set betweeh;_1 andhy for all k, (3) there is no player
information set beforé, and (4)hx = h.

For everyk < K, let a; be the unique action at;, which leads tdi;,1, and
letag be the unique action &tgy = h? which leads taz*. Since we know that;
chooses all the playéractions that lead te*, it holds thats; chooses action
athi forallk=1,... K.

Since h! precedesh? = hg, it must hold thath! = hy« for somek* €
{1,..., K —1}. Let by~ be some action different fromy at 41, and letbgx be
some action different fromg ath?. Let s; be the player strategy which chooses
by athl, choosed ath? and coincides with; at all other information sets.

We now define the playérmayoffsu; following i by induction ork. We start
with the playeri payoffs followinghx = h2. Setu; (z*) = 1. For every terminal
nodez following hx but not following actiorug, setu;(z) = IP’(SZMZ,CMZ)(z*). For
every terminal node # z* following actionag, we setu; (z) = 0.

Now, suppose that the playepayoffsu; (z) have been defined for all terminal
nodesz following hi4+1. We define the player payoffs following i, but not
following A 1in the following way. For every terminal nodefollowing action
ay but not followingh 1, setu;(z) = 0. Let (a, Si*—hk) be the playei strategy
that chooses. at 2, and coincides withs* at all other player information
sets. Since all playerpayoffs followinga; have already defined, the expression
u; ((ag, ka—hk)|hk’ cin,) is well-defined. For all terminal nodesfollowing A but
not following actionay, setu; (z) = u; ((ax, slthk)|hk, Cig)-

Finally, for all terminal nodes not covered by the procedure above, we set
u;(z) = 0. For playerj, we setu ;(z) = 0 for all terminal nodes.

It may be verified easily that® is locally sequentially rational with respect
to ¢; in the gamel” = (S, u). The payoffs are constructed in such a way that
at every information seky, with k =1, ..., K, playeri is indifferent between
actiona; and any other action available, given thats played at all other player
i information sets, and given the conjecturg . If 4 is a player information set
that followsh2, we distinguish two cases.

If & lies on the path tg*, then there is a unique actiori at/ that leads ta*.
By construction of the payoffs following actiark at/?, actiona™ ath leads to
payoff 1, if z* is reached, and leads to payoff zero otherwise, and all other actions
ath lead to payoff zero for sure. Sine¢ coincides withs; atz, ands; chooses
a* here, we have thaf' chooses:* ath, which is optimal.
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If & does not lie on the path tg*, then, by construction of the payoffs, all
payoffs following # are equal, and hence local sequential rationality follows
trivially.

If a playeri information set: does not follow/? nor precedé:?, all payoffs
following # are equal, and local sequential rationality follows trivially.

We finally show thas is not sequentially rational. To this purpose, we prove

that u; (si |1, c;p1) > ui(s|p1,c;1). Sinces; choosesh+ at hl, we have, by
definition of the payoffs followingy, that

”i(si*|h1,cih1) = ui((ak*, S;th)|h1, Cihl). (3.5)
Note that(ak*,s;“_hl) chooses all the actiong,, for k =1,..., K — 1, that

lead to information sek?. Hence, by construction of the payoffs, the only
terminal nodes which are feasible fofai-,s? ,,)l;1. ;1) and have payoffs
different from zero, are the ones followirig. Since (a+,s* ,,) € Si(h?), the
probability of ((agx, Sl.*_hl)|hl, Cipt) reachingh? is equal toc;,1(S; (h?)). Recall
that (az~, si’ihl) choosed ath? and that all terminal nodes followingx have
payoff P ,.c,.) (z"). Gathering all these insights leads to the observation that

i ((axe 570 s cin) = Cin (57(h%)) Pl 2.6 (2)-
Sinces; € S; (h%) we have that; |,2 = si. Together with (3.5) it implies that
i (5711, 1) = Cipa (S5 (h%)) P e, ) (2F). (3.6)

On the other hand; chooses all the playeractionsay, fork=1,..., K — 1,
that lead t0:2. Hence, the only terminal nodes feasible fat1, c;;1) and having
payoffs different from zero are the ones following. Recall thats; chooses
akx at h?, and that the only terminal node followingg with non-zero payoff
is z*, with u; (z*) = 1. Henceu; (si |1, ¢;p1) = ui(si, cjp1) = P(Si,cml)(z*). Since
z* follows A2, it holds that only playeyj strategies; € S;(h?) can lead ta*,
and thereforé@, . 1)(z*) = ¢;,1(S; (h?)) P(51.c,51,2) (2)- It follows that

wi (silpty cipn) = cipa (S, (hz))P(si,Cihlmz)(z*). (3.7)

Since, by assumptiora:,ihl(Sj(hz)) > 0, and P(SisC[hZ)(Z*) < P(Si’cfhl‘hZ)(Z*)’ it
follows from (3.6) and (3.7) that; (s;"| 1 ¢;1) < ui(silp1, cjp1). O
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