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Abstract

In an extensive form game, an assessment is said to satisfy theone-deviation propertyif
for all possible payoffs at the terminal nodes the following holds: if a player at each of his
information sets cannot improve upon his expected payoff by deviating unilaterally at this
information set only, he cannot do so by deviating at any arbitrary collection of information
sets. Hendon et al. (1996. Games Econom. Behav. 12, 274–282) have shown that pre-
consistency of assessments implies the one-deviation property. In this note, it is shown
that an appropriate weakening of pre-consistency, termedupdating consistency, is both a
sufficient and necessary condition for the one-deviation property. The result is extended to
the context of rationalizability. 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In dynamic one-person and multi-person decision making, theone-deviation
property(also calledone-shot deviation principle) reflects the phenomenon that
a stream of “locally optimal” decisions constitutes a “globally optimal” decision
stream. By “locally optimal,” we mean that the decision for an individual at a
particular stage maximizes his expected payoff, taking as given the decisions
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chosen at all other stages (including his own decisions at other stages). “Globally
optimal” refers to the fact that the decision maker cannot improve upon his
expected payoff by changing his decisions at any arbitrary subset of stages. The
one-deviation property thus reflects a kind a time-consistency, stating that for
optimal decision making it should be sufficient to check the optimality of each
of the decisions on a one-by-one basis.

It is a well-known fact that the one-deviation property holds generally for the
context of one-person decision making; a result which is known as theoptimality
principle for dynamic programming. If more than one decision maker is involved,
the fact whether the one-deviation property holds or not depends crucially on the
way decision makers (from now on called players) update their conjectures about
the opponents’ behavior as times passes by. It is the aim of this note to figure out
which conditions on the players’ updating behavior are necessary and sufficient
in order for the one-deviation property to hold.

To this purpose, we focus on two different contexts which have both been
important for the development of rationality concepts for extensive form games.
In the first it is assumed that players, at each of their information sets, hold
conjectures about the opponents’ future behavior that coincide exactly with the
“real” behavior of the opponents. The uncertainty of a player at an information
set about the actual play of the game thus reduces to uncertainty about the
past play, captured formally by the notion ofbeliefs at information sets. The
conjecture about future play is completely determined by a fixed behavior strategy
profile, which prescribes a randomization over actions at each information set.
The above mentioned assumption implies that a player at an information set
always believes that future play will be according to this strategy profile, also
if the event of reaching this information set actuallycontradictsthis strategy
profile. This assumption is used in the backward induction concept for games with
perfect information and most of the extensive form equilibrium refinements, such
as subgame perfect equilibrium (Selten, 1965), sequential equilibrium (Kreps and
Wilson, 1982), different versions of perfect Bayesian equilibrium and extensive
form perfect equilibrium (Selten, 1975).

In this particular setting, the players’ choices and conjectures about the play by
opponents are represented by a so-calledassessment: a combination of a behavior
strategy profile and a system of beliefs at information sets. Consider an extensive
form structure, that is, a combination of the game tree, the information sets,
the actions and possibly chance moves, together specifying how the game is to
be played. An extensive form structure is extended to an extensive form game
by assigning a vector of payoffs to each of the terminal nodes. Formally, an
assessment for a given extensive form structure is said to satisfy theone-deviation
propertyif for every extensive form game having this extensive form structure the
following holds: if a player at each of his information sets cannot improve upon
his expected payoff by deviating unilaterally at this information set, while leaving
his behavior at other information sets unchanged, he cannot do so by deviating
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at any arbitrary collection of information sets. The fact that this property should
hold forall extensive form games having this extensive form structureimplies that
the one-deviation property puts restrictions on an assessment that solely depend
on the extensive form structure, and not on the particular choice of payoffs at the
terminal nodes.

In games with perfect information it is well-known that every strategy profile,
together with the trivial beliefs at the singleton information sets, satisfies the
one-deviation property. For games with imperfect information theconsistency
condition on assessments, which is part of Kreps and Wilson’s definition of
sequential equilibrium, turns out to be sufficient for the one-deviation property.
Hendon et al. (1996) show that some weakening of consistency, termedpre-
consistency,is enough to imply the one-deviation property. In Theorem 2.2 we
prove that a further weakening, calledupdating consistency, is both sufficient and
necessary for the one-deviation property to hold. Intuitively, updating consistency
states that playeri ’s conjecture at information setB about the opponents’
behavior should be induced by his conjecture at information setA wheneverB
comes afterA and the conjecture atA does not exclude reachingB. Important is
that this condition should hold also if playeri ’s own strategy choiceatA prevents
B from being reached.

The second context we focus on leaves more freedom to the players’
conjectures about the opponents’ behavior, since it is now no longer assumed that
players hold correct conjectures about the opponents’ future strategy choices. This
more flexible setting corresponds to rationalizability concepts for extensive form
games, such asextensive form rationalizability(Pearce, 1984; see also Battigalli,
1997), subgame perfect rationalizability (Bernheim, 1984) and weak extensive
form rationalizability (Ben-Porath, 1997; Battigalli and Bonanno, 1999), among
others. It also applies to “intermediate” models that place restrictions on the
players’ conjectures that are weaker than in the first context discussed above,
but stronger than in rationalizability. For instance, the concept of self-confirming
equilibrium (Fudenberg and Levine, 1993) requires the players’ conjectures to
coincide with the actual behavior on the equilibrium path, but allows them to
differ from the actual behavior at unreached information sets. In Dekel et al.
(1999, 2000), the concept of self-confirming equilibrium is refined to the case
where conjectures about the opponents’ behavior at unreached information sets
should, in addition, be “rationalizable.” Greenberg (1996) proposes a model in
which the players’ conjectures about the play are assumed to agree at some,
but not necessarily all information sets, and defines a corresponding notion of
stability. Within this context, players may thus have different conjectures about
the play of the game at information sets for which no agreement is required.

As a primitive to model the players’ conjectures about the opponents’ behavior
we use the notion ofupdating systems(cf. Battigalli, 1997), which specifies
for each player and each information set controlled by this player a subjective
randomization on the set of opponents’ strategy profiles that are compatible
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with reaching this information set. In order to avoid the issue whether such
randomizations should be correlated or uncorrelated, we restrict our attention to
the case of two players. There should be no problem, however, in extending the
result to games with more than two players, once it is decided which class of
conjectures (correlated or uncorrelated) is to be used.

For a given extensive form structure, an updating system for a player is said
to satisfy the one-deviation property if for all extensive form games having this
extensive form structure and all strategies for this player the following holds:
if at each of his information sets the player cannot improve upon his expected
payoff by deviating at this information set only, given his conjecture about the
opponent’s behavior and given his decisions at other information sets, then he
cannot improve by deviating at any arbitrary collection of information sets. We
present a condition on updating systems, termedupdating consistency, which
is a weakening of the notion ofconsistentupdating systems, used by Battigalli
(1997). The intuition of updating consistency is the same as in the first context:
if the player holds a certain conjecture at an information setA, then conjectures
at future information sets should be derived from this by Bayesian updating, as
long as reaching these information sets does not contradict the conjecture atA.

What distinguishes it from consistent updating systems is that, unlike the latter,
players are allowed to reshuffle conjectures at information sets as long as it does
not affect the expected outcome conditional on reaching this information set. It
thus leaves some more freedom than updating consistency. In Theorem 3.1 it is
shown that updating consistency is both a necessary and sufficient condition for
the one-deviation property.

The note is organized as follows. Section 2 deals with the context in which
players are required to hold correct conjectures about the opponents’ future
behavior. It first provides some notation and definitions, and then presents the
result which characterizes the assessments that satisfy the one-deviation property.
Section 3 procedes identically for the context of updating systems.

2. One-deviation property for assessments

2.1. Notation in extensive form games

An extensive form structureS specifies a finite set of players, a finite game
tree, a collection of information sets for each player, a set of actions at each
information set and the probabilities of each of the chance moves. LetI be the set
of players. For everyi ∈ I, let Hi be the collection of information sets controlled
by playeri, and letH be the collection of all information sets in the game. For
everyh ∈ Hi denote byA(h) the set of actions available ath. We assume that
A(h) contains at least two actions for everyh. Suppose that two actions available
at different information sets are labelled differently, that is,A(h) ∩ A(h′) = ∅
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if h �= h′. It is assumed, moreover, thatS satisfiesperfect recall(Kuhn, 1953),
which means that two different paths leading to the same playeri information set
h contain the same playeri actions. Since actions at different information sets
are, by assumption, different, perfect recall implies in particular that two paths
leading to the same playeri information seth pass through the same collection
of “preceding” playeri information sets. The set of terminal nodes is denoted
by Z. An extensive form gameis a pairΓ = (S, u) whereS is an extensive
form structure andu is thepayoff functionassigning to every terminal nodez ∈ Z

a vectoru(z) = (ui(z))i∈I ∈ R
I of payoffs.

2.2. Strategies and beliefs

A behavior strategyfor player i is a vectorσi = (σih)h∈Hi that assigns to
every information seth ∈ Hi some probability distributionσih onA(h). A vector
σ = (σi)i∈I of behavior strategies is called a behavior strategy profile. Abelief
systemis a vectorβ = (βh)h∈H whereβh is a probability distribution on the set
of nodes inh for all h ∈ H. A pair (σ,β) is called anassessment. Note that the
set of assessments in a game depends only on the extensive form structure.

2.3. Sequential rationality

Let σ be a behavior strategy profile,x a node andZ(x) the collection of
terminal nodes that followx. For everyz ∈ Z(x), let Pσ (z|x) be the probability
thatz is reached underσ, conditional on the event that the game has reachedx.

By ui(σ | x) = ∑
z∈Z(x) Pσ (z|x)ui(z) we denote the expected payoff for playeri,

conditional onx being reached. For a given assessment(σ,β) and an information
seth ∈ Hi, let ui(σ | h,βh) = ∑

x∈h βh(x)ui(σ |x) be the expected payoff for
playeri conditional onh being reached, given the beliefsβh ath. The assessment
(σ,β) is calledsequentially rationalif for every playeri and everyh ∈ Hi it holds
that ui(σ | h,βh) = maxσ ′

i
ui((σ

′
i , σ−i ) | h,βh). Here,(σ ′

i , σ−i ) is the behavior
strategy profile in which playeri playsσ ′

i and the other players act according
to σ. The assessment is calledlocally sequentially rationalif for every playeri
and everyh ∈ Hi it holds thatui(σ | h,βh) = maxσ ′

ih
ui((σ

′
ih, σ−h) | h,βh). Here,

(σ ′
ih, σ−h) is the behavior strategy profile in which playeri plays the local strategy

σ ′
ih at information seth andσ is played at all other information sets (including the

other playeri information sets). The difference between sequential rationality and
local sequential rationality is thus that the former takes into account all possible
deviations by a player, whereas the latter concentrates on those deviations in
which a player changes his behavior at only one information set.
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2.4. One-deviation property

Let S be an extensive form structure and(σ,β) an assessment inS. We say
that (σ,β) satisfies theone-deviation propertyif for every payoff functionu the
following holds:(σ,β) is sequentially rational in the gameΓ = (S, u) if and only
if it is locally sequentially rational inΓ.

2.5. Updating consistency of assessments

In Hendon et al. (1996) it has been shown that the set of so-calledpre-
consistentassessments satisfies the one-deviation property. Their definition of
pre-consistency consists of two parts. The first part, which we callupdating
consistency, states that a player should update his beliefs in some consistent
manner to be specified below. The second part, called Bayesian consistency, is an
equilibrium condition which assures that every player holds a correct conjecture
about the opponents’ past behavior at information sets reached with positive
probability underσ. Since Bayesian consistency is not needed in their proof, it
follows that the larger set of updating consistent assessments satisfies the one-
deviation property as well.

Formally, an assessment(σ,β) is called updating consistentif for every
player i, every two information setsh1, h2 ∈ Hi whereh2 comes afterh1, and
every behavior strategyσ ∗

i for playeri,

βh2(x)= P(σ ∗
i ,σ−i )(x | h1, βh1)

P(σ ∗
i ,σ−i )(h

2 | h1, β1
h)

for all x ∈ h2, wheneverP(σ ∗
i ,σ−i )(h

2 | h1, βh1) > 0. Here,P(σ ∗
i ,σ−i )(x | h1, βh1)

is the probability that the nodex is reached, conditional onh1 being reached
and given the beliefsβh1 at h1. By P(σ ∗

i ,σ−i )(h
2 | h1, β1

h) = ∑
y∈h2 P(σ ∗

i ,σ−i )(y |
h1, βh1) we denote the probability thath2 is reached, conditional onh1 being
reached and given the beliefs ath1. By perfect recall, every path from a node in
h1 to a node inh2 contains the same playeri actions. Consequently, the ratio in
the definition of updating consistency does not depend on the particular choice
of σ ∗

i , as long asP(σ ∗
i ,σ−i)(h

2 | h1, βh1) > 0.
The intuition behind updating consistency is the following. Consider two

information setsh1 and h2 which are controlled by the same playeri, and
assume thath2 comes afterh1. Playeri ’s conjecture about the opponents’ past
behavior ath1 is reflected by the beliefsβh1. If we assume that players hold
correct conjectures about the opponents’ future behavior, also at information
sets which should actually have been avoided byσ, it follows that playeri at
h1 believes that the opponents’ future behavior is determined byσ−i . Updating
consistency states that playeri ’s conjecture about the opponents’ past behavior
at h2 should be induced by his conjectures about past and future behavior ath1
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whenever the event of reachingh2 is compatible with his conjectures ath1 (i.e.,
whenever there is someσ ∗

i with P(σ ∗
i ,σ−i )(h

2 | h1, βh1) > 0). Important is that this

condition should also hold whenPσ (h
2 | h1, βh1) = 0. Hence, even if playeri ’s

own behavior afterh1 precludes the information seth2 from being reached, his
beliefs ath2 should be induced by his conjecture about past and future behavior
ath1.

This property is satisfied in concepts such as sequential equilibrium and
extensive form perfect equilibrium. The reason is that in both concepts, the
players’ beliefs are derived from taking a sequence of strictly positive behavior
strategy profiles converging to the original one.1 Along the sequence, it is clear
that the beliefs of a player at two consecutive information sets are always in
accordance with each other, since all information sets are reached with positive
probability. As may be verified easily, this property remains valid in the limit, and
hence every consistent assessment is updating consistent.

The following result is due to Hendon et al.

Theorem 2.1 (Hendon et al., 1996).Let S be an extensive form structure. Then,
every updating consistent assessment inS satisfies the one-deviation property.

The theorem below shows that updating consistency is not only sufficient, but
also necessary for the one-deviation property.

Theorem 2.2. Let S be an extensive form structure. Then, an assessment(σ,β)

in S satisfies the one-deviation property if and only if it is updating consistent.

Proof. In view of Theorem 2.1, it suffices to show that every assessment which is
not updating consistent fails to satisfy the one-deviation property. Let(σ,β) be an
assessment inS which is not updating consistent. We show that there is a payoff
vectoru for the terminal nodes such that in the extensive form gameΓ = (S, u)
the assessment(σ,β) is locally sequentially rational but not sequentially rational.

Since(σ,β) is not updating consistent, there is some playeri, two information
setsh1, h2 ∈ Hi whereh2 follows h1, and some behavior strategyσ ∗

i such that
P(σ ∗

i ,σ−i )(h
2 | h1, βh1) > 0 but

βh2(x
∗) �= P(σ ∗

i ,σ−i )(x
∗ | h1, βh1)

P(σ ∗
i ,σ−i )(h

2 | h1, βh1)

1 These beliefs play an explicit role in sequential equilibrium, whereas used implicitly in extensive
form perfect equilibrium.
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for some nodex∗ ∈ h2. Since bothβh2(·) andP(σ ∗
i ,σ−i )(· | h1, βh1)/P(σ ∗

i ,σ−i )(h
2 |

h1, βh1) are probability distributions on the set of nodes ath2, we can choosex∗
such that

βh2(x
∗) <

P(σ ∗
i ,σ−i )(x

∗ | h1, βh1)

P(σ ∗
i ,σ−i)(h

2 | h1, βh1)
. (2.1)

The reader may verify thath1 andh2 can always be chosen in such a way that
Eq. (2.1) holds and there is no further playeri information set betweenh1 andh2.

By perfect recall, there is a unique sequenceh1, . . . , hK of playeri information
sets with the following properties: (1)hk follows hk−1 for all k, (2) there is no
player i information set betweenhk−1 andhk for all k, (3) there is no playeri
information set beforeh1, and (4)hK−1 = h1 andhK = h2. We define the player
i payoffs followinghk by induction onk.

We first define the playeri payoffs followinghK = h2. Let aK be some action
at hK with σih2(aK) < 1. Such an action exists since by assumption there are at
least two actions athK. For every terminal nodez following nodex∗ (see (2.1))
and actionaK, setui(z) = 1. For all terminal nodesz following actionaK but not
following nodex∗, setui(z) = 0. For every terminal nodez following hK but not
following actionaK, setui(z) = βh2(x∗).

Now, suppose thatk <K and that the playeri payoffsui(z) have been defined
for all terminal nodesz following hk+1. We define the playeri payoffs following
hk but not followinghk+1in the following way. Letak be the unique action athk

that leads tohk+1. For every terminal nodez following ak but not followinghk+1,

set ui(z) = 0. By (ak, σ−hk ) we denote the strategy profile in which playeri

chooses actionak with probability one athk, and players act according toσ
at all other information sets. Letui((ak, σ−hk ) | hk,βhk ) be the expected payoff
induced by(ak, σ−hk ) at hk, given the beliefsβhk and the payoffs followingak,
which have already been defined above. For all terminal nodesz following hk but
not actionak, we setui(z) = ui((ak, σ−hk ) | hk,βhk ).

Finally, for all terminal nodes not covered by the procedure above, we set
ui(z) = 0. For all playersj �= i, we setuj (z) = 0 for all terminal nodesz.

It can be verified easily that the assessment(σ,β) is locally sequentially
rational, given the payoff vectoru. Note that the payoffs are constructed in such
a way that at every information sethk, for k = 1, . . . ,K, player i is indifferent
between actionak and all other actions available athk, given his beliefsβhk , and
givenσ−hk .

If a player i information seth does not belong to{h1, . . . , hK }, then, by
construction of the payoffs, for every nodex ∈ h all payoffs followingx are equal,
and hence local sequential rationality follows trivially.

We finally show that(σ,β) is not sequentially rational ath1 = hK−1. For
every actiona at h1 we have, by construction of the payoffs followingh1, that
ui((a, σ−h1) | h1, βh1) = ui((aK−1, σ−h1) | h1, βh1). Hence,ui(σ | h1, βh1) =
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ui((aK−1, σ−h1) | h1, βh1). After choosingaK−1 at h1, the only feasible payoffs
different from zero are the ones followingh2. By definition of the payoffs
following h2 = hK, we have thatui((aK−1, σ−h1) | h1, βh1) equals

P(aK−1,σ−h1)

(
x∗ ∣∣ h1, βh1

)
σih2(aK)1

+ P(aK−1,σ−h1)

(
h2

∣∣ h1, βh1

)(
1− σih2(aK)

)
βh2(x∗). (2.2)

We may thus conclude thatui(σ | h1, βh1) is equal to (2.2).
Let σ ′

i be the playeri strategy defined as follows: (1) ath2, it chooses with
probability one the actionaK defined above, (2) at information seth1 it chooses
with probability one the actionaK−1 leading toh2, and (3) at all other playeri
information sets it coincides withσi . It can be verified thatui((σ

′
i , σ−i ) | h1, βh1)

equalsP(aK−1,σ−h1)(x
∗ | h1, βh1).

By Eq. (2.1), there exists a strategyσ ∗
i with P(σ ∗

i ,σ−i )(h
2 | h1, βh1) > 0. Since

there is no playeri information set betweenh1 andh2, andaK−1 is the unique
action that leads fromh1 to h2, it follows thatP(aK−1,σ−h1)(h

2 | h1, βh1) > 0. We
know that the ratio in (2.1) does not depend upon the choice ofσ ∗

i , as long as
P(σ ∗

i ,σ−i )(h
2 | h1, βh1) > 0. Hence,

βh2(x∗) <
P(σ ∗

i ,σ−i )(x
∗ | h1, βh1)

P(σ ∗
i ,σ−i )(h

2 | h1, βh1)
= P(aK−1,σ−h1)(x

∗ | h1, βh1)

P(aK−1,σ−h1)(h
2 | h1, βh1)

,

which implies that

P(a
K−1,σ−h1)

(
x∗ ∣∣ h1, βh1

)
> βh2(x

∗)P(aK−1,σ−h1)

(
h2

∣∣ h1, βh1

)
. (2.3)

Sinceσih2(aK) < 1, it follows from (2.3) that

ui

(
(σ ′

i , σ−i )
∣∣ h1, βh1

) = P(aK−1,σ−h1)

(
x∗ ∣∣ h1, βh1

)
> (2.2)= ui

(
σ

∣∣ h1, βh1

)
.

Hence,(σ,β) is not sequentially rational ath1. ✷

3. One-deviation property for updating systems

In this section, we turn to the context in which players are no longer assumed
to hold correct conjectures about the opponents’ future behavior. As mentioned in
the introduction, we restrict our attention to the case of two players. For the sake
of convenience, we further assume that there are no chance moves. Before stating
the result, we need some terminology.

3.1. Updating systems

A pure strategy for playeri is a vectorsi = (si (h))h∈Hi , wheresi (h) ∈ A(h)

for all h ∈ Hi. Let Si be the set of pure strategies for playeri. Every playeri
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holds at each of his information sets a conjecture about the opponent’s behavior
that is compatible with the event of reaching this information set. Such vectors
of conjectures are calledupdating systems(cf. Battigalli, 1997). Formally, for
everyh ∈ H and both playersi, let Si(h) = {si ∈ Si | ∃sj ∈ Sj such that(si , sj )
reachesh} be the set of playeri strategies that are compatible with the event of
reachingh. Here, we always assume thati �= j. By perfect recall, it holds that
a strategy profile(s1, s2) reachesh if and only if s1 ∈ S1(h) ands2 ∈ S2(h). An
updating systemfor playeri is a vectorci = (cih)h∈Hi wherecih is a probability
distribution onSj (h) for everyh ∈ Hi.

3.2. Sequential rationality

Let si be a playeri strategy andh ∈ Hi. By si |h we denote the strategy that
at everyh′ ∈ Hi precedingh chooses the unique action ath′ leading toh, and at
all other information sets coincides withsi . By construction,si |h ∈ Si(h). We say
that the strategysi is sequentially rationalwith respect to the updating systemci
if for all h ∈ Hi it holds thatui(si |h, cih) = maxs ′

i
ui(s

′
i |h, cih). Here,ui(si |h, cih)

is the expected payoff induced bysi |h andcih. For everysi ∈ Si, information set
h ∈ Hi and actiona ∈ A(h), let (a, si−h) be the playeri strategy that choosesa
at h and coincides withsi at all other information sets. We say thatsi is locally
sequentially rationalwith respect to the updating systemci if for all h ∈ Hi it
holds thatui(si |h, cih) = maxa∈A(h) ui((a, si−h)|h, cih).

3.3. One-deviation property

Let S be an extensive form structure andci an updating system for player
i in S. We say thatci satisfies theone-deviationproperty if for every payoff
function u and every strategysi ∈ Si the following holds:si is sequentially
rational with respect toci in the gameΓ = (S, u) if and only if si is locally
sequentially rational with respect toci in Γ.

3.4. Updating consistency

Let µ1,µ2 ∈ �(Si) be two mixed strategies for playeri and let Tj ⊆ Sj .

We say thatµ1 is equivalentto µ2 on Tj if for every sj ∈ Tj the probabil-
ity distributions on the terminal nodes induced by(µ1, sj ) and (µ2, sj ) are
identical. Letci be an updating system andh1, h2 ∈ Hi be such thath2 fol-
lows h1 and cih1(Sj (h

2)) > 0. Here, we use the conventioncih1(Sj (h
2)) =∑

sj∈Sj (h2) cih1(sj ). By cih1|h2 we denote the conditional probability distribution

onSj (h
2) given by

cih1|h2(sj ) = cih1(sj )

cih1(Sj (h2))
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for all sj ∈ Sj (h
2). We say that an updating systemci is updating consistentif for

every two information setsh1, h2 ∈ Hi whereh2 followsh1 andcih1(Sj (h
2)) > 0

it holds thatcih2 is equivalent tocih1|h2 onSi(h
2).

The intuition of updating consistency is basically the same as in Section 2: if
playeri ’s conjecture ath1 about the opponent’s behavior is compatible with the
event of reachingh2, then his conjecture ath2 should be induced by his conjecture
at h1, up to “inessential differences.” By the latter we mean that playeri, when
updating his conjecture, is allowed to shift weight from one opponent’s strategy
to some other, as long as it does not affect the expected outcome conditional on
h2 being reached.

Updating consistency is somewhat weaker than the notion ofconsistent
updating systems, as used by Battigalli (1997). An updating systemci is called
consistentif for all h1, h2 ∈ Hi it holds thatcih2 is equal tocih1|h2 whenever
h2 comes afterh1 andcih1(Sj (h

2)) > 0. Clearly, consistency implies updating
consistency, but the reverse is not true.

In order to illustrate the difference between updating consistency and consis-
tency, consider the example in Fig. 1.

Let h1, h2 be the first and the second information set controlled by player 2,
respectively. Letc2 = (c2h1, c2h2) be player 2’s updating system given by
c2h1 = 1

2(a, e, g, k) + 1
2(b, e,h, k) and c2h2 = (a, e, g, l). Here, 1

2(a, e, g, k) +
1
2(b, e,h, k) denotes the probability distribution which assigns equal probability
to the strategies(a, e, g, k) and(b, e,h, k). The updating system is not consistent,
since c2h1|h2 = (a, e, g, k) �= c2h2. However, the updating system is updating
consistent sincec2h1|h2 andc2h2 are equivalent if player 2 chooses fromS2(h

2),

that is, if player 2 playsc.
Beforing stating the theorem, we briefly outline how the setup could be

generalized to games with more than two players. In this case, playeri ’s updating
system would be a vectorci = (cih)h∈Hi assigning to every information seth ∈ Hi

some probability distributioncih ∈ �(S−i (h)) on the set of opponents’ strategy

Fig. 1.
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profilesS−i (h) leading toh. If we assume that conjectures areuncorrelatedthen
cih should be the product of probability distributions on the opponents’ individual
strategy spaces. If conjectures are allowed to becorrelatedthencih may be any
probability distribution onS−i (h). The remaining concepts can be generalized
in a straightforward fashion to games with more than two players in both the
correlated and the uncorrelated case. (See also Battigalli, 1997).

Theorem 3.1. Let S be an extensive form structure with two players. Then,
an updating system inS satisfies the one-deviation property if and only if it is
updating consistent.

Proof. (a) We first show that every updating system which is updating consistent
satisfies the one-deviation property. Let the updating systemci be updating
consistent and let the strategysi be locally sequentially rational with respect toci
in some gameΓ = (S, u). We show thatsi is sequentially rational with respect
to ci . Let s′

i be an arbitrary pure strategy for playeri. We prove that

ui(s
′
i |h, cih) � ui(si |h, cih) (3.1)

at every information seth ∈ Hi. We procede by induction on the number of player
i information sets that followh.

If h is not followed by any other information set of playeri then the
above inequality holds by local sequential rationality and the observation that
ui(s

′
i |h, cih) depends only on the action prescribed bys′

i ath. Now, letk ∈ N and
assume that (3.1) holds for all playeri information sets that are followed by at
mostk other playeri information sets. Leth ∈ Hi be followed by at mostk + 1
player i information sets. LetH ∗

i (s
′
i ) be the set of playeri information setsh′

with the following properties: (1)h′ follows h, (2) s′
i |h ∈ Si(h

′) and (3) there is
no playeri information set betweenh andh′.

Let S0
j (h, s

′
i ) be the set of strategiessj ∈ Sj (h) for which (s′

i |h, sj ) does

not reach anyh′ ∈ H ∗
i (s

′
i ). For everysj ∈ Sj (h)\S0

j (h, s
′
i ), the strategy profile

(s′
i |h, sj ) reaches exactly oneh′ ∈ H ∗

i (s
′
i ). Using perfect recall, it may be checked

that(s′
i |h, sj ) reachesh′ ∈ H ∗

i (s
′
i ) if and only if sj ∈ Sj (h

′). Moreover, we claim
that the setsSj (h′) are disjoint forh′ ∈ H ∗

i (s
′
i ). In order to see this, assume

that sj ∈ Sj (h
1) ∩ Sj (h

2) for two differenth1, h2 ∈ H ∗
i (s

′
i ). Hence, there exist

s1
i , s

2
i such that(s1

i , sj ) reachesh1 and (s2
i , sj ) reachesh2. By construction of

the setH ∗
i (s

′
i ), all paths toh1 and h2 pass throughh and contain the action

prescribed bys′
i ath. Hence, all paths toh1 andh2 contain the same sequence of

playeri actions. But this implies that(s1
i , sj ) and(s2

i , sj ) should lead to the same
information set inH ∗

i (s
′
i ), which is a contradiction. We may therefore conclude

that everysj ∈ Sj (h) either belongs toS0
j (h, s

′
i ) or belongs to exactly oneSj (h′)
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with h′ ∈ H ∗
i (s

′
i ). Consequently,

ui(s
′
i |h, cih) =

∑

sj∈Sj (h)
cih(sj )ui(s

′
i |h, sj )

=
∑

h′∈H ∗
i (s

′
i )

∑

sj∈Sj (h′)
cih(sj )ui(s

′
i |h, sj )

+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj )

=
∑

h′∈H ∗
i (s

′
i)

cih(Sj (h
′))>0

cih
(
Sj (h

′)
) ∑

sj∈Sj (h′)

cih(sj )

cih(Sj (h′))
ui(s

′
i |h, sj )

+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj )

=
∑

h′∈H ∗
i (s

′
i)

cih(Sj (h
′))>0

cih
(
Sj (h

′)
)
ui(s

′
i |h, cih|h′)

+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj ).

Sinceci is updating consistent, we have thatui(s
′
i |h, cih|h′) = ui(s

′
i |h, cih′) for all

h′ ∈ H ∗
i (s

′
i ) with cih(Sj (h

′)) > 0. Hence,

ui(s
′
i |h, cih) =

∑

h′∈H ∗
i (s

′
i)

cih(Sj (h
′))>0

cih
(
Sj (h

′)
)
ui(s

′
i |h, cih′)

+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj )

=
∑

h′∈H ∗
i (s

′
i )

cih
(
Sj (h

′)
)
ui(s

′
i |h, cih′)

+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj ).

For allh′ ∈ H ∗
i (s

′
i ) it holds, by definition, thats′

i |h ∈ Si(h
′), and hences′

i |h′ = s′
i |h

for all h′ ∈ H ∗
i (s

′
i ). Consequently,

ui(s
′
i |h, cih) =

∑

h′∈H ∗
i (s

′
i )

cih
(
Sj (h

′)
)
ui(s

′
i |h′ , cih′)
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+
∑

sj∈S0
j (h,s

′
i )

cih(sj )ui(s
′
i |h, sj ). (3.2)

Since everyh′ ∈ H ∗
i (s

′
i ) is followed by at mostk player i information sets, we

know by induction assumption thatui(s
′
i |h′, cih′) � ui(si |h′ , cih′) for all h′ ∈

H ∗
i (s

′
i ). This implies that

ui(s
′
i |h, cih) �

∑

h′∈H ∗
i (s

′
i)

cih
(
Sj (h

′)
)
ui(si |h′, cih′)

+
∑

sj∈S0
j (h,s

′
i)

cih(sj )ui(s
′
i |h, sj ). (3.3)

Let s′′
i be the playeri strategy which coincides withs′

i at h and coincides
with si at all other information sets. It can be checked thatH ∗

i (s
′
i ) = H ∗

i (s
′′
i )

and thatS0
j (h, s

′
i ) = S0

j (h, s
′′
i ). Moreover,ui(si |h′, cih′) = ui(s

′′
i |h′ , cih′) for all

h′ ∈ H ∗
i (s

′
i ) andui(s

′
i |h, sj ) = ui(s

′′
i |h, sj ) for all sj ∈ S0

j (h, s
′′
i ). Together with

(3.3) we obtain that

ui(s
′
i |h, cih) �

∑

h′∈H ∗
i (s

′′
i )

cih
(
Sj (h

′)
)
ui(s

′′
i |h′ , cih′)

+
∑

sj∈S0
j (h,s

′′
i )

cih(sj )ui(s
′′
i |h, sj )

= ui(s
′′
i |h, cih),

where the last equality follows from substitutings′
i by s′′

i in (3.2). Sinces′′
i differs

only ath from si andsi is locally sequentially rational with respect toci, it holds
that ui(s

′′
i |h, cih) � ui(si |h, cih). This implies thatui(s

′
i |h, cih) � ui(si |h, cih),

which completes the proof of (a).
(b) Next, we prove that every updating system which is not updating consistent

does not satisfy the one-deviation property. Letci be an updating system inS
which is not updating consistent. We show that there is a payoff vectoru for
the terminal nodes and a pure strategys∗

i for player i such thats∗
i is locally

sequentially rational with respect toci in the extensive form gameΓ = (S, u)
but not sequentially rational.

Sinceci is not updating consistent, there areh1, h2 ∈ Hi whereh2 follows h1

andcih1(Sj (h
2)) > 0 such thatcih2 is not equivalent tocih1|h2 onSi(h

2). Hence,
there is somesi ∈ Si(h

2) such that the probability distributions on the terminal
nodes induced by(si , cih2) and (si , cih1|h2) are different. Let these probability
distributions be denoted byP(si,cih2) andP(si,cih1|h2), respectively. We thus can
find a terminal nodez∗ with

P(si,cih2)(z
∗) < P(si,cih1|h2)(z

∗). (3.4)
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The above inequality implies thatP(si,cih1|h2)(z
∗) > 0, and hencesi necessarily

chooses all the playeri actions on the path toz∗. Sincesi ∈ Si(h
2) andcih1|h2 ∈

�(Sj (h
2)), it follows that(si , cih1|h2) passesh2 with probability one, and hence

z∗ follows information seth2.

By perfect recall, there is a unique sequenceh1, . . . , hK of playeri information
sets with the following properties: (1)hk follows hk−1 for all k, (2) there is no
player i information set betweenhk−1 andhk for all k, (3) there is no playeri
information set beforeh1 and (4)hK = h2.

For everyk < K, let ak be the unique action athk which leads tohk+1, and
let aK be the unique action athK = h2 which leads toz∗. Since we know thatsi
chooses all the playeri actions that lead toz∗, it holds thatsi chooses actionak
athk for all k = 1, . . . ,K.

Since h1 precedesh2 = hK, it must hold thath1 = hk∗ for some k∗ ∈
{1, . . . ,K − 1}. Let bk∗ be some action different fromak∗ at h1, and letbK be
some action different fromaK ath2. Let s∗

i be the playeri strategy which chooses
bk∗ ath1, choosesbK ath2 and coincides withsi at all other information sets.

We now define the playeri payoffsui following hk by induction onk. We start
with the playeri payoffs followinghK = h2. Setui(z

∗) = 1. For every terminal
nodez following hK but not following actionaK, setui(z) = P(si |h2,cih2)(z

∗). For
every terminal nodez �= z∗ following actionaK, we setui(z) = 0.

Now, suppose that the playeri payoffsui(z) have been defined for all terminal
nodesz following hk+1. We define the playeri payoffs followinghk but not
following hk+1in the following way. For every terminal nodez following action
ak but not followinghk+1, setui(z) = 0. Let (ak, s∗

i−hk
) be the playeri strategy

that choosesak at hk and coincides withs∗
i at all other playeri information

sets. Since all playeri payoffs followingak have already defined, the expression
ui((ak, s

∗
i−hk

)|hk , cihk ) is well-defined. For all terminal nodesz following hk but
not following actionak, setui(z) = ui((ak, s

∗
i−hk

)|hk , cihk ).

Finally, for all terminal nodes not covered by the procedure above, we set
ui(z) = 0. For playerj, we setuj (z) = 0 for all terminal nodesz.

It may be verified easily thats∗
i is locally sequentially rational with respect

to ci in the gameΓ = (S, u). The payoffs are constructed in such a way that
at every information sethk, with k = 1, . . . ,K, player i is indifferent between
actionak and any other action available, given thats∗

i is played at all other player
i information sets, and given the conjecturecihk . If h is a playeri information set
that followsh2, we distinguish two cases.

If h lies on the path toz∗, then there is a unique actiona∗ ath that leads toz∗.
By construction of the payoffs following actionaK at h2, actiona∗ ath leads to
payoff 1, if z∗ is reached, and leads to payoff zero otherwise, and all other actions
at h lead to payoff zero for sure. Sinces∗

i coincides withsi at h, andsi chooses
a∗ here, we have thats∗

i choosesa∗ ath, which is optimal.
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If h does not lie on the path toz∗, then, by construction of the payoffs, all
payoffs following h are equal, and hence local sequential rationality follows
trivially.

If a playeri information seth does not followh2 nor precedeh2, all payoffs
following h are equal, and local sequential rationality follows trivially.

We finally show thats∗
i is not sequentially rational. To this purpose, we prove

that ui(si |h1, cih1) > ui(s
∗
i |h1,cih1). Since s∗

i choosesbk∗ at h1, we have, by
definition of the payoffs followingbk∗, that

ui(s
∗
i |h1,cih1) = ui

(
(ak∗, s∗

i−h1)|h1, cih1

)
. (3.5)

Note that(ak∗, s∗
i−h1) chooses all the actionsak, for k = 1, . . . ,K − 1, that

lead to information seth2. Hence, by construction of the payoffs, the only
terminal nodes which are feasible for((ak∗, s∗

i−h1)|h1, cih1) and have payoffs

different from zero, are the ones followingh2. Since(ak∗, s∗
i−h1) ∈ Si(h

2), the

probability of ((ak∗, s∗
i−h1)|h1, cih1) reachingh2 is equal tocih1(Sj (h

2)). Recall

that (ak∗, s∗
i−h1) choosesbK at h2 and that all terminal nodes followingbK have

payoffP(si |h2,cih2)(z
∗). Gathering all these insights leads to the observation that

ui

(
(ak∗, s∗

i−h1)|h1, cih1

) = cih1

(
Sj

(
h2))

P(si |h2,cih2)(z
∗).

Sincesi ∈ Si(h
2) we have thatsi |h2 = si . Together with (3.5) it implies that

ui(s
∗
i |h1,cih1) = cih1

(
Sj

(
h2))

P(si,cih2)(z
∗). (3.6)

On the other hand,si chooses all the playeri actionsak, for k = 1, . . . ,K − 1,
that lead toh2. Hence, the only terminal nodes feasible for(si |h1, cih1) and having
payoffs different from zero are the ones followingh2. Recall thatsi chooses
aK at h2, and that the only terminal node followingaK with non-zero payoff
is z∗, with ui(z

∗) = 1. Hence,ui(si |h1, cih1) = ui(si , cih1) = P(si,cih1)(z
∗). Since

z∗ follows h2, it holds that only playerj strategiessj ∈ Sj (h
2) can lead toz∗,

and thereforeP(si,cih1)(z
∗) = cih1(Sj (h

2)) P(si,cih1|h2)(z
∗). It follows that

ui(si |h1, cih1) = cih1

(
Sj

(
h2))

P(si ,cih1|h2)(z
∗). (3.7)

Since, by assumption,cih1(Sj (h
2)) > 0, and P(si,cih2)(z

∗) < P(si,cih1|h2)(z
∗), it

follows from (3.6) and (3.7) thatui(s
∗
i |h1,cih1) < ui(si |h1, cih1). ✷
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