
Order Independence in Dynamic Games

Andrés Perea�

Maastricht University

August 21, 2018

Abstract

In this paper we investigate the order independence of iterated reduction procedures in
dynamic games. We distinguish between two types of order independence: with respect to
strategies and with respect to outcomes. The �rst states that the speci�c order of elimination
chosen should not a¤ect the �nal set of strategy combinations, whereas the second states
that it should not a¤ect the �nal set of reachable outcomes in the game. We provide su¢ -
cient conditions for both types of order independence: monotonicity, and monotonicity on
reachable histories, respectively. We then use these su¢ cient conditions to explore the order
independence properties of various reduction procedures in the literature: the extensive-form
rationalizability procedure (Pearce (1984), Battigalli (1997)), the backward dominance pro-
cedure (Perea (2014)) and Battigalli and Siniscalchi�s (1999) procedure for jointly rational
belief systems (Reny (1993)). We �nally exploit these results to prove that every outcome
that is reachable under the extensive-form rationalizability procedure is also reachable under
the backward dominance procedure.

Keywords: Dynamic games, reduction operators, reduction procedures, elimination pro-
cedures, monotonicity, extensive-form rationalizability, backward dominance, jointly rational
belief systems.

JEL Classi�cation: C72, C73

1 Introduction

Game theory is full of reduction procedures that recursively eliminate choices or strategies from
a game. Examples in static games include the iterated elimination of strictly and weakly dom-
inated choices, Pearce�s (1984) de�nition of rationalizable choices in De�nition 1, Bernheim�s
(1984) characterization of rationalizable choices in Proposition 3.2, and the Dekel-Fudenberg
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procedure (Dekel and Fudenberg (1990)) which proceeds by �rst eliminating all weakly domi-
nated choices, and then continues with the iterated elimination of strictly dominated choices. In
dynamic games we can think of the extensive-form rationalizability procedure (Pearce (1984) and
Battigalli (1997)), the iterated conditional dominance procedure (Shimoji and Watson (1998)),
the backward dominance procedure (Perea (2014)), the backwards rationalizability procedure
(Penta (2016)) and Battigalli and Siniscalchi�s (1999) procedure for jointly rational belief systems
(Reny (1993)).

Some of these reduction procedures display the special property that the �nal output does not
depend upon the order or speed by which we eliminate choices or strategies from the game. We
refer to this property as order independence. This property is important both from a conceptual
and computational point of view. It reveals a form of invariance or robustness, which can be
exploited for computational purposes by choosing an order of elimination which is convenient
for the speci�c game at hand. Consider, for instance, the backward dominance procedure for
dynamic games. A computationally e¢ cient order of elimination for this procedure, especially
for large games, turns out to be the backwards order, in which we start by eliminating strategies
at the end of the game, after which we work our way backwards until reaching the beginning of
the game. As the backward dominance procedure is order independent (see Perea (2014)), using
this more convenient order of elimination does not a¤ect the eventual output of the procedure.

In static games the notion of order independence is relatively well-understood, and has
been investigated by Gilboa, Kalai and Zemel (1990), Apt (2004, 2011) and Luo, Qian and Qu
(2016), among others. An important objective of each of these papers is to identify monotonicity
conditions on the reduction operator that imply order independence. The weakest monotonicity
condition among these is Luo, Qian and Qu�s (2016) 1-monotonicity�, which states that if the
set of choice combinations E is possible in some elimination order, and D is obtained from E by
the elimination of some, but not necessarily all, choices that can be eliminated from E; then the
reduction of D must be contained in the reduction of E: Luo, Qian and Qu (2016) show that
every reduction operator that satis�es 1-monotonicity� is guaranteed to be order independent.
Since it can be shown that the iterated elimination of strictly dominated choices and Pearce�s
and Bernheim�s procedures for rationalizability satisfy 1-monotonicity�; it follows that each of
these procedures is order independent.

To the best of our knowledge, order independence in dynamic games has not been investigated
yet on a systematic basis, and the goal of this paper is to �ll that gap. We proceed in four steps.
We start by introducing the general notion of a reduction operator for dynamic games, and show
how the extensive-form rationalizability procedure, the backward dominance procedure, and the
procedure for jointly rational belief systems can be characterized by the iterated application of
a speci�c reduction operator.

Secondly, we present some su¢ cient conditions for order independence. To that purpose,
we distinguish between two types of order independence: order independence with respect to
strategies and order independence with respect to outcomes. The �rst states that the set of
strategy combinations obtained at the end does not depend upon the order or speed by which
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we eliminate strategies from the game, whereas the latter requires the set of induced outcomes
to be independent of the order or speed of elimination. Clearly, order independence with respect
to strategies implies order independence with respect to outcomes, but not vice versa. For both
types of order independence we provide a su¢ cient condition, to which we refer as monotonicity
and monotonicity on reachable histories, respectively. Monotonicity reduces to 1-monotonicity�

if the game at hand is a static game, whereas monotonicity on reachable histories is an analogue
to the condition with the same name in Perea (2018), where the condition is applied to a di¤erent
type of reduction operator. We will say more about these relations below. These su¢ cient
conditions are of great practical value when exploring order independence, since verifying these
conditions is much more elementary than checking for order independence directly.

Thirdly, we use these su¢ cient conditions to verify whether the various reduction procedures
listed above are order independent with respect to strategies or outcomes. More precisely,
we show that the reduction operators underlying the backward dominance procedure and the
procedure for jointly rational belief systems are monotone, whereas the reduction operator for the
extensive-form rationalizability procedure is monotone on reachable histories. As a consequence,
we conclude that the �rst two procedures are order independent with respect to strategies and
the latter is order independent with respect to outcomes. This thus con�rms Perea�s (2014) result
that the backward dominance procedure is order independent with respect to strategies. The
last result, that the extensive-form rationalizability procedure is order independent with respect
to outcomes, can also be found in Perea (2018) and is closely related to Chen and Micali (2013)
who prove that the iterated conditional dominance procedure is order independent with respect
to outcomes. In fact, Shimoji and Watson (1998) have shown that their iterated conditional
dominance procedure characterizes extensive-form rationalizability, and hence our result above
may be seen as a con�rmation of Chen and Micali�s theorem. By means of an example we
show that the extensive-form rationalizability procedure is not order independent with respect
to strategies.

We �nally use the order independence properties of the backward dominance procedure and
the extensive-form rationalizability procedure to derive a general relationship between both pro-
cedures. More precisely, we prove that every outcome induced by extensive-form rationalizable
strategies is also induced by strategies surviving the backward dominance procedure. Since Bat-
tigalli and Siniscalchi (2002) have shown that the epistemic conditions of common strong belief
in rationality (within a complete type structure) characterize extensive-form rationalizability,
and Perea (2014) has proven that the backward dominance strategies can be characterized by
common belief in future rationality, it follows that every outcome that is possible under com-
mon strong belief in rationality is also possible under common belief in future rationality. This
is precisely the content of Theorem 9.4.2 in Perea (2012)1. From a reasoning perspective this
result is rather intriguing, as extensive-form rationalizability is a typical forward induction con-
cept whereas backward dominance displays a natural form of backward induction reasoning. As

1There is, however, a gap in the proof in Perea (2012).
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such, we show that in terms of outcomes, forward induction reasoning is more restrictive than
backward induction reasoning, provided we identify forward and backward induction reasoning
with the two concepts above. This result does not hold in terms of strategies, though.

In dynamic games with perfect information and without relevant ties, it is well-known that
the backward dominance procedure leads to the unique backward induction strategies (see Perea
(2014)), and hence to the unique backward induction outcome. In view of the result above, we
may thus conclude that for such games the extensive-form rationalizability procedure must also
uniquely lead to the backward induction outcome �a remarkable result �rst proven by Battigalli
(1997).

To conclude, let us brie�y compare our approach in this paper to that of static games. A
reduction operator for static games is a relatively simple object, as it assigns to every product
of choice sets �one choice set for every player �a product of reduced choice sets, obtained by
eliminating some (or no) choices for each of the players. In dynamic games the situation becomes
more complex, as for most reduction procedures the set of strategies that can be eliminated at
some history crucially depends upon the available sets of strategies at other histories. To account
for this interdependence, we must explicitly list the set of available strategies at every history
in the game. The domain on which a reduction operator works therefore contains products of
strategy sets that assign to every history in the game a set of strategies for every player that is
active there. To make our analysis easier, we additionally specify at the beginning of the game
a set of strategies for all players, irrespective of whether they are active or not at the beginning.
These strategies intuitively represent the strategies that can eventually be chosen by the players
in the dynamic game. A dynamic game reduction operator can then be de�ned as a mapping
that assigns to every such product of strategy sets a product of reduced strategy sets, obtained
by eliminating some (or no) strategies for each of the players at each of the respective histories.

The condition of monotonicity we introduce, and for which we show that it implies order
independence with respect to strategies, is a rather direct extension of Luo, Qian and Qu�s
(2016) notion of 1-monotonicity� to the case of dynamic games. It states, for a given reduction
operator r; that whenever we take a product of strategy sets E that is possible in an elimination
order of r; and D is obtained from E by eliminating some, but not necessarily all, strategies
that can be eliminated from E according to r; then the reduction of D must be contained in
the reduction of E: In Theorem 4.1 we show that this condition guarantees that the reduction
operator r is order independent with respect to strategies.

In turn, our condition of monotonicity on reachable histories is a rather direct adaptation of
Perea�s (2018) condition of monotonicity on reachable histories to our speci�c setting. Roughly
speaking, it says that the monotonicity condition spelled out above should hold once we restrict
to histories in the game that are reachable under the strategies in D: More precisely, consider
a reduction operator r and a product of strategy sets E: A partial reduction of E is a product
of strategy sets D obtained from E by eliminating some, but not necessarily all, strategies that
can be eliminated from E according to r: Monotonicity on reachable histories then states the
following: If we take a product of strategy sets E that is possible in an elimination order of
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r; and a product of strategy sets D that is behaviorally equivalent, on the histories reachable
under D; to a partial reduction of E; then the reduction of D must be contained in the reduction
of E if we restrict to the histories that are reachable under D: We show in Theorem 5.1 that
every reduction operator that is monotone on reachable histories will be order independent with
respect to outcomes.

The outline of this paper is as follows. In Section 2 we lay out the model of a dynamic game,
the de�nition of conditional beliefs, and the notion of rational choice. In Section 3 we present the
general de�nition of a reduction operator for dynamic games, and show how the extensive-form
rationalizability procedure, the backward dominance procedure and the procedure for jointly
rational belief systems can be characterized by the iterated application of a speci�c reduction
operator. In Section 4 we de�ne order independence with respect to strategies, introduce the
notion of monotonicity, and show that it implies order independence with respect to strate-
gies. We also prove that the reduction operators underlying the backward dominance procedure
and the procedure for jointly rational belief systems are monotone, thereby showing that these
two procedures are order independent with respect to strategies. Similarly, we de�ne in Sec-
tion 5 order independence with respect to outcomes, present the condition of monotonicity on
reachable histories, and show that it implies order independence with respect to outcomes. We
prove, moreover, that the reduction operator characterizing extensive-form rationalizability is
monotone on reachable histories, implying that the extensive-form rationalizability procedure is
order independent with respect to outcomes. In Section 6 we use some of the results above to
show that every outcome that is reachable under extensive-form rationalizability is also reach-
able under the backward dominance procedure. In Section 7 we conclude the paper with some
�nal remarks. All proofs are collected in Section 8.

2 Dynamic Games

In this section we present some basic de�nitions that we will need for the rest of the paper,
including the formal model of a dynamic game, the notion of strategies and conditional belief
vectors, and the de�nition of rational choice in a dynamic game.

2.1 De�nition

In this paper we will focus on �nite dynamic games with observable past choices. Such games
allow for simultaneous moves, but at every stage of the game every active player knows exactly
which choices have been made by the opponents in the past. Formally, a �nite dynamic game
with observable past choices is a tuple

G = (I;H;Z; (Hi)i2I ; (Ci(h))i2I;h2Hi ; (ui)i2I)

where
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(a) I = f1; 2; :::; ng is the �nite set of players;
(b) H is the �nite set of histories, consisting of non-terminal and terminal histories. At

every non-terminal history, one or more players must make a choice, whereas at every terminal
history the game ends. By ; we denote the history that marks the beginning of the game;

(c) Z � H is the set of terminal histories;
(d) Hi � H is the set of non-terminal histories where player i must make a choice. For a

given non-terminal history h; we denote by I(h) := fi 2 I j h 2 Hig the set of active players at
h: We allow I(h) to contain more than one player, that is, we allow for simultaneous moves. At
the same time, we require I(h) to be non-empty for every non-terminal history h;

(e) Ci(h) is the �nite set of choices available to player i at a history h 2 Hi; and
(f) ui : Z ! R is player i�s utility function, assigning to every terminal history z 2 Z some

utility ui(z):

For every non-terminal history h and choice combination (ci)i2I(h) in �i2I(h)Ci(h); we denote
by h0 = (h; (ci)i2I(h)) the (terminal or non-terminal) history that immediately follows this choice
combination at h: In this case, we say that h0 immediately follows h: We say that a history h
follows a non-terminal history h0 if there is a sequence of histories h1; :::; hK such that h1 = h0;
hK = h; and hk+1 immediately follows hk for all k 2 f1; :::;K � 1g: A history h is said to weakly
follow h0 if either h follows h0 or h = h0: In the obvious way, we can then also de�ne what it
means for h to (weakly) precede another history h0:

We view a strategy for player i as a plan of action (Rubinstein (1991)), assigning choices
only to those histories h 2 Hi that are not precluded by previous choices. Formally, consider a
set of non-terminal histories Ĥi � Hi; and a mapping si : Ĥi ! [h2ĤiCi(h) assigning to every
history h 2 Ĥi some available choice si(h) 2 Ci(h): We say that a history h 2 H is reachable
under si if at every history h0 2 Ĥi preceding h; the choice si(h0) is the unique choice that
leads to h: The mapping si : Ĥi ! [h2ĤiCi(h) is called a strategy if Ĥi contains exactly those
histories in Hi that are reachable under si:

By Si we denote the set of strategies for player i: For every history h 2 H and player i; we
denote by Si(h) the set of strategies for player i under which h is reachable. Similarly, for a
given strategy si we denote by Hi(si) the set of histories in Hi that are reachable under si:

2.2 Conditional Belief Vectors

At every history where player i is active, he is assumed to hold a conditional probabilistic belief
about the strategy choices of his opponents. These conditional beliefs provide the basis upon
which he will make his choices in the dynamic game. In particular, he may change �and often
must change �his belief if the game moves from one history to another. Such a collection of
conditional beliefs is called a conditional belief vector.

To formally de�ne it, we need some additional pieces of notation. For a �nite set X; we
denote by �(X) the set of probability distributions on X: For a player i and history h 2 Hi; let
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S�i(h) := �j 6=iSj(h) be the set of opponents�strategy combinations under which h is reachable.
A conditional belief vector for player i is tuple bi = (bi(h))h2Hi where bi(h) 2 �(S�i(h)) for

every h 2 Hi: Here, bi(h) represents the conditional probabilistic belief that i holds at h about
the opponents�strategy choices. We say that the conditional belief vector bi satis�es Bayesian
updating if for every h; h0 2 Hi where h0 follows h and bi(h)(S�i(h0)) > 0; it holds that

bi(h
0)(s�i) =

bi(h)(s�i)

bi(h)(S�i(h0))
for all s�i 2 S�i(h0):

By Bi we denote the set of conditional belief vectors for player i that satisfy Bayesian updating.
For a given conditional belief vector bi; a set E � S�i of opponents�strategy combinations,

and a history h 2 Hi; we say that bi(h) believes E if bi(h)(E) = 1: Moreover, we say that
bi(h) strongly believes E if bi(h)(E) = 1 whenever S�i(h) \ E 6= ;: That is, bi(h) assigns full
probability to E whenever E is logically consistent with the event that h has been reached.
We say that the conditional belief vector bi = (bi(h))h2Hi strongly believes the event E if bi(h)
strongly believes E for every h 2 Hi:

2.3 Rationality

We �nally de�ne what it means for a strategy to be rational, at a given history, for a conditional
belief vector. Before doing so, we must �rst formalize the expected utility generated by a strategy,
at a given history, under a conditional belief vector. For a strategy combination s = (si)i2I we
denote by z(s) the induced terminal history. For a history h 2 Hi; a strategy si 2 Si(h); and a
conditional belief bi(h) 2 �(S�i(h)), we denote by

ui(si; bi(h)) :=
X

s�i2S�i(h)
bi(h)(s�i) � ui(z(si; s�i))

the induced expected utility at h: We say that strategy si is rational at h for the conditional
belief bi(h) if ui(si; bi(h)) � ui(s0i; bi(h)) for all s0i 2 Si(h):

For a given strategy si; conditional belief vector bi = (bi(h))h2Hi and collection G � H of
histories, we say that strategy si is rational at G for bi if si is rational at every h 2 G \Hi(si)
for bi(h): Finally, we say that strategy si is rational for the conditional belief vector bi if si is
rational at H for bi:

3 Reduction Operators

In this section we will de�ne the general notion of a reduction operator for dynamic games.
Subsequently, we show how the extensive-form rationalizability procedure (Pearce (1984), Bat-
tigalli (1997)), the backward dominance procedure (Perea (2014)), and the procedure for jointly
rational belief systems (Battigalli and Siniscalchi (2002), Reny (1993)) can be characterized by
the iterated application of an appropriately de�ned reduction operator.
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3.1 De�nition

Intuitively, a reduction operator is a mapping that eliminates strategies from a dynamic game.
For static games a reduction operator is rather easy to de�ne, as it assigns to every product
of choice sets �one choice set for every player �a product of reduced choice sets, obtained by
eliminating some (or no) choices for each of the players.

The straightforward extension to dynamic games would be to de�ne a reduction operator as
a mapping that assigns to every product of strategy sets �one strategy set for each player �a
product of reduced strategy sets. Although this approach would still work for certain reduction
procedures in dynamic games, like extensive-form rationalizability (see Perea (2018)) or jointly
rational belief systems, is would no longer be su¢ cient for other procedures like the backward
dominance procedure, which cannot easily be characterized by the iterated application of such a
simple reduction operator. The reason is that in the backward dominance procedure, in order to
evaluate whether a strategy can be eliminated at a certain history, one needs to rely on the sets
of remaining strategies at histories that follow. This interdependence cannot easily be captured
by a reduction operator of the simple kind described above, and thus calls for a more complex
type of reduction operator.

A possible resolution to this problem would be to explicitly list, for every history in the
game, a subset of strategies for every player that is active there. This subset of strategies could
be interpreted as the collection of strategies that the player could reasonably choose if that
particular history were to be reached. It turns out that this extended version of a product of
strategy sets will be su¢ cient to easily characterize procedures like backward dominance as well.
This is therefore the approach that we will adopt.

To make our analysis easier, we additionally list a subset of strategies for every player at
the beginning of the game, independent of whether this player is active there or not. These
strategies may be interpreted as the strategies that the player can reasonably choose before the
game starts. This modelling choice is not crucial for our results, but makes the analysis more
tractable.

A reduction operator can then be de�ned as a mapping that assigns to every such extended
product of strategy sets, describing strategy sets at every history of the game, a product of
reduced strategy sets. Formally, this can be de�ned as follows.

For every player i we de�neH�
i := Hi[f;g; including the histories where player i is active and

the beginning of the game. These are the histories at which we will describe a set of strategies
for player i: A product of strategy sets is a Cartesian product

D = �i2I;h2H�
i
Dih with Dih � Si(h) for every i 2 I and h 2 H�

i :

It thus prescribes, for every player i and history h 2 H�
i ; a subset Dih � Si(h) of player i

strategies under which h is reachable. In particular, it prescribes for every player i a set of
strategies Di; � Si at the beginning of the game ;; even if player i is not active at ;: We
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allow the sets of strategies Dih to be empty. By D; := �i2IDi; we denote the set of strategy
combinations obtained at the beginning of the game.

For a given product of strategy sets D = �i2I;h2H�
i
Dih; collection of histories G � H; and

player i; we de�ne the set of strategies

Di(G) := fsi 2 Si j si 2 Dih for all h 2 H�
i (si) \Gg;

where H�
i (si) := Hi(si) [ f;g: That is, Di(G) contains those strategies for player i that are

�contained in�D at all histories in G where these strategies are de�ned.

De�nition 3.1 (Reduction operator) A reduction operator is a mapping r that assigns to
every product of strategy sets D a product of strategy sets r(D) � D contained in it.

For every k � 1; we denote by

rk(D) := (r � ::: � r)| {z }
k times

(D)

the k-fold application of r to the product of strategy sets D; and we set r0(D) := D:
Let S� := �i2I;h2H�

i
Si(h) be the full product of strategy sets, and let R � �i2IS be a set of

strategy combinations for the players. We say that the reduction operator r yields the set R of
strategy combinations if

R = \k�0(rk(S�));:

That is, R is the set of strategy combinations obtained at the beginning of the game if we
iteratively apply the reduction operator r to the full product of strategy sets.

3.2 Extensive-form Rationalizability

The extensive-form rationalizability procedure (Pearce (1984), Battigalli (1997)) iteratively elim-
inates strategies and conditional belief vectors from the game, as follows. Recall that Bi denotes
the set of all conditional belief vectors for player i that satisfy Bayesian updating. We start by
setting Ser;0i := Si and B

er;0
i := Bi for every player i: For every k � 1 and every player i we

recursively de�ne

Ser;ki : = fsi 2 Ser;k�1i j si rational for some bi 2 Ber;k�1i g;
Ber;ki : = fbi 2 Ber;k�1i j bi strongly believes Ser;k�i g;

where Ser;k�i := �j 6=iSer;kj : By Seri := \k�0Ser;ki we denote the set of extensive-form rationalizable
strategies.

Perea (2018) has shown that the extensive-form rationalizable strategies can be characterized
by the iterated application of the strong belief reduction operator. This operator, however, is
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de�ned on a di¤erent class of products of strategy sets than the class we consider here. The
products of strategy sets studied in Perea (2018) have the form D̂ = �i2ID̂i; where D̂i � Si is
a set of strategies for every player i: These products of strategy sets are thus sparser than the
ones we use, since only one set of strategies is de�ned for every player. In contrast, we de�ne
a set of strategies for every player i and every history where player i is active. We refer to the
products of strategy sets considered in Perea (2018) as simple.

For a given simple product of strategy sets D̂; we denote by H(D̂) the set of histories that
are reachable by strategy combinations (si)i2I in D̂: The strong belief reduction operator sb;
as de�ned in Perea (2018), assigns to every simple product of strategy sets D̂ = �i2ID̂i the
reduced simple product of strategy sets sb(D̂) = �i2Isbi(D̂); where

sbi(D̂) := fsi 2 D̂i j si rational at H(D̂) for some bi 2 Bi that strongly believes D̂�ig

for every player i:
Theorem 2.1 in Perea (2018) shows that for every k; the strategies surviving round k of

the extensive-form rationalizability procedure are exactly the strategies obtained by the k-fold
successive application of the strong belief reduction operator. In the statement of this theorem
below, we denote by Ser;k := �i2ISer;ki the set of strategy combinations surviving round k of
the extensive-form rationalizability procedure, and we denote by S := �i2ISi the full simple
product of strategy sets.

Theorem 3.1 (Theorem 2.1 in Perea (2018)) For every k � 0 we have Ser;k = (sb)k(S):

We will now �translate� the strong belief reduction operator into a reduction operator er
that �ts our framework, as follows. For a given product of strategy sets D; we denote by H(D;)
the set of histories that are reachable by strategy combinations (si)i2I in D;: For every product
of strategy sets D = �i2I;h2H�

i
Dih and every player i we set

eri;(D) := fsi 2 Di; j si rational at H(D;) for some bi 2 Bi that strongly believes D�i;g;

and we set
erih(D) := ; for all h 2 Hinf;g:

We de�ne
er(D) := �i2I;h2H�

i
erih(D):

Hence, by construction,
eri;(D) = sbi(D;) (3.1)

for every product of strategy sets D and every player i:
Together with Theorem 3.1 above, it immediately follows that for every k the set Ser;k of

strategy combinations surviving the �rst k rounds of extensive-form rationalizability is obtained
by the k-fold application of the reduction operator er to the full product of strategy sets. Recall
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that S� := �i2I;h2H�
i
Si(h) denotes the full product of strategy sets. By (erk(S�)); we represent

the set of strategy combinations at ; in the product of strategy sets erk(S�): The following result
thus follows immediately from Theorem 3.1 and the de�nition of the reduction operator er:

Theorem 3.2 (Characterization of extensive-form rationalizability) For every k � 0
we have that Ser;k = (erk(S�));: As a consequence, er yields the set �i2ISeri of extensive-form
rationalizable strategy combinations.

In a sense, the theorem above can be viewed as a reformulation of Theorem 2.1 in Perea
(2018) within our speci�c framework of reduction operators.

3.3 Backward Dominance Procedure

Perea (2014) introduces the backward dominance procedure, and shows that it characterizes
precisely those strategies that can rationally be chosen under common belief in future rationality.
That is, these are precisely the strategies that result if players always believe that the opponents
will choose rationally in the future, always believe that the other players always believe that
their opponents will choose rationally in the future, and so on.

The procedure is de�ned in terms of decision problems. Formally, a decision problem at a
non-terminal history h is a tuple

Eh = �i2IEih; where Eih � Si(h) for all i 2 I:

That is, it prescribes for every player (active or non-active at h) a subset of strategies under
which h is reachable. By Sh := �i2ISi(h) we denote the full decision problem at h:

If player i is active at h; then a strategy si 2 Eih is said to be strictly dominated in the
decision problem Eh if there is some randomized strategy �i 2 �(Eih) such that

ui(z(si; s�i)) <
X
s0i2Eih

�i(s
0
i) � ui(z(s0i; s�i)) for all s�i 2 �j 6=iEjh:

In the backward dominance procedure, we iteratively eliminate strategies from decision prob-
lems, as follows. For every non-terminal history h; let Ebd;0h := Sh be the full decision problem at
h: Let Hfut(h) be the set of histories that weakly follow h: For every round k � 1 we recursively
de�ne, for every non-terminal history h; the decision problem at h by

Ebd;kh = �i2IEbd;kih

where for every player i;

Ebd;kih := fsi 2 Ebd;k�1ih j there is no h0 2 Hi(si) \Hfut(h) such that

si is strictly dominated in E
bd;k�1
h0 g:
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By Sbdi := \k�0Ebd;ki; we denote the set of strategies for player i that survive the backward
dominance procedure at ;. We call these strategies the backward dominance strategies.

We will now show that the backward dominance strategies are obtained by the iterated
application of a certain reduction operator bd; de�ned as follows. Remember that for a given
product of strategy sets D = �i2I;h2H�

i
Dih; player i and collection of histories G � H; we

de�ned Di(G) := fsi 2 Si j si 2 Dih for all h 2 H�
i (si) \Gg: For every product of strategy sets

D = �i2I;h2H�
i
Dih; every player i and every history h 2 H�

i ; let

bdih(D) := fsi 2 Dih j si rational at Hfut(h) for some conditional belief vector bi

where bi(h0) believes D�i(Hfut(h0)) for all h0 2 Hi \Hfut(h)g;

where D�i(Hfut(h0)) := �j 6=iDj(Hfut(h0)): We de�ne

bd(D) := �i2I;h2H�
i
bdih(D):

We will show, for every k; that the strategies surviving round k of the backward dominance
procedure are obtained by the k-fold application of the reduction operator bd to the full product
of the strategy sets.

Theorem 3.3 (Characterization of backward dominance) For every k � 0 and every
player i we have that

(a) Ebd;kih = Si(h) \ (bdk(S�))i(Hfut(h)) for every non-terminal history h 2 H; and

(b) Ebd;ki; = (bdk(S�))i;:

As a consequence, bd yields the set �i2ISbdi of backward dominance strategy combinations.

Here, we have by de�nition that

(bdk(S�))i(H
fut(h)) = fsi 2 Si j si 2 (bdk(S�))ih0 for all h0 2 H�

i (si) \Hfut(h)g:

In Perea (2018) it has been shown that extensive-form rationalizability can be characterized
by a simpler type of reduction operator, where we do not specify a set of strategies at every
history, but only de�ne one set of strategies for every player. In contrast, we see no easy way to
characterize the backward dominance procedure by such a simple type of reduction operator.

3.4 Jointly Rational Belief Systems

Reny (1993) de�nes the notion of jointly rational belief systems for a collection G � H of
histories. Intuitively, it captures the idea that players believe at all histories in G that their
opponents choose rationally, that players believe at all histories in G that the other players
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believe at all histories in G that their opponents choose rationally, and so on. Although Reny
restricts to two-player games with perfect information, his concept can naturally be extended
to all dynamic games with observable past choices. Moreover, Reny assumes that players hold
conditional beliefs at all histories, also at those where they are not active. This assumption will
automatically be satis�ed within our model if we let players choose from a singleton choice set
at those histories where in reality they are not active. We can thus safely drop this assumption
by Reny without altering the concept in an essential way.

Consider an arbitrary collection of histories G � H; and consider for every player i a non-
empty set of strategies Di � Si: The product D = �i2IDi is called a jointly rational belief
system for G is for every player i;

Di = fsi 2 Si j si is rational for some conditional belief vector bi
where bi(h) believes D�i for all h 2 Hi \Gg:

If we choose G = f;g and assume that all players are active at the beginning of the game,
then we obtain Ben-Porath�s (1997) notion of common certainty of rationality at the beginning of
the game. In general, however, a jointly rational belief system need not exist for every collection
G of histories. For instance, there are only very few games where we can �nd a jointly rational
belief system for the collection of all histories in the game. We refer the reader to Reny (1992a,
1993) for an extensive discussion of this issue.

Battigalli and Siniscalchi (1999) provide a reduction procedure that, for a given collection G
of histories, yields the largest jointly rational belief system. In their procedure we set SG;0i := Si
for every player i; and for every round k � 1 and player i we de�ne

SG;ki = fsi 2 Si j si is rational for some conditional belief vector bi
where bi(h) believes S

G;k�1
�i for all h 2 Hi \Gg:

Then, the set \k�0(�i2ISG;ki ); provided it is non-empty, is the largest jointly rational belief
system for G: If \k�0(�i2ISG;ki ) is empty, then there is no jointly rational belief system for G:

We will show that the largest jointly rational belief system for G can also be obtained by
the recursive application of the reduction operator rG; to be de�ned below. For every product
of strategy sets D = �i2I;h2H�

i
Dih and every player i; let

rGi;(D) := fsi 2 Di; j si is rational for some conditional belief vector bi
where bi(h) believes D�i; for all h 2 Hi \Gg;

and set
rGih(D) := ; for all h 2 Hinf;g:

We de�ne
rG(D) := �i2I;h2H�

i
rGih(D):
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The following theorem, which shows that the strategies that survive round k of Battigalli
and Siniscalchi�s procedure are precisely the strategies that result from the k-fold successive
application of the reduction operator rG ; follows directly from the de�nitions.

Theorem 3.4 (Characterization of jointly rational belief systems) For every k � 0 and
every player i we have that SG;ki = (rGk(S�))i;: As a consequence, rG yields the largest jointly
rational belief system for G.

Similarly to the case of extensive-form rationalizability, also the reduction operator rG is
of a simple type that does not use the sets of strategies prescribed at histories other than ;:
This operator could therefore be phrased equivalently within Perea�s (2018) simpler framework,
where a reduction operator works on simple products of strategy sets that only prescribe one
set of strategies for every player.

4 Order Independence with Respect to Strategies

In this section we �rst de�ne what it means for a reduction operator to be order independent with
respect to strategies. Intuitively, it states that the �nal set of strategy combinations obtained
at the beginning of the game, by iteratively applying the reduction operator, does not depend
upon the order or speed by which we eliminate strategies. We next introduce the condition
of monotonicity, and show that every monotone reduction operator is order independent with
respect to strategies. We �nally prove that the reduction operators yielding the backward
dominance procedure and the procedure for jointly rational belief systems are monotone, thereby
showing that these two reduction procedures are order independent with respect to strategies.

4.1 De�nition

Informally, we say that a reduction operator r is order independent with respect to strategies if
every possible elimination order for r yields the same set of strategies. By an elimination order
for r we mean a sequence of successive partial reductions, in which at every round we eliminate
some, but not necessarily all, strategies that can be eliminated according to r: More precisely,
if D = �i2I;h2H�

i
Dih and E = �i2I;h2H�

i
Eih are two products of strategy sets, then D is a

partial reduction of E if r(E) � D � E: Hence, D is obtained from E by eliminating some, but
not necessarily all, strategies that can be eliminated according to r: We call D = r(E) the full
reduction of E:

De�nition 4.1 (Elimination order for r) An elimination order for a reduction operator r is
a �nite sequence of products of strategy sets (D0; D1; :::; DK) such that (a) D0 = S�; (b) Dk+1

is a partial reduction of Dk for every k 2 f0; :::;K � 1g; and (c) r(DK) = DK :
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Part (c) makes sure that no further partial reductions are possible after round K: With this
de�nition at hand we can formally de�ne order independence with respect to strategies.

De�nition 4.2 (Order independence with respect to strategies) A reduction operator
r is order independent with respect to strategies if for every two elimination orders (D0; :::; DK)
and (E0; :::; EL) for r we have that DK; = E

L
; :

A special elimination order for r is the �full speed�elimination order

(S�; r(S�); r2(S�); :::; rK(S�));

where rK+1(S�) = rK(S�); consisting of full reductions only. If the reduction operator r is
order independent then every possible elimination order must eventually yield the same set of
strategies as the full speed elimination order, but may possibly take more rounds to arrive there.

4.2 Su¢ cient Condition

For static games, Luo, Qian and Qu (2016) provide a su¢ cient condition for order independence
with respect to strategies, which they call 1-monotonicity�: We will provide a �dynamic games
version� of this condition, called monotonicity, and show that it implies independence with
respect to strategies within our framework. In the formal de�nition below, we say that a product
of strategy sets D is possible in an elimination order for r if there is an elimination order
(D0; :::; DK) for r such that D = Dk for some k 2 f0; :::;Kg:

De�nition 4.3 (Monotonicity) A reduction operator r is monotone if for every two products
of strategy sets D and E; where E is possible in an elimination order for r and D is a partial
reduction of E; we have that r(D) � r(E):

If we apply this notion to a static game, containing only one non-terminal history ;, then this
reduces to 1-monotonicity� as de�ned in Luo, Qian and Qu (2016). In the following theorem
we show that monotonicity is indeed a su¢ cient condition for independence with respect to
strategies.

Theorem 4.1 (Su¢ cient condition for order independence w.r.t. strategies) Every
monotone reduction operator is order independent with respect to strategies.

Since monotonicity is in general easy to verify, this result is very convenient for showing that
certain reduction operators are order independent with respect to strategies.
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4.3 Showing Order Independence with Respect to Strategies

In this section we will prove that the reduction operators bd and rG; characterizing the backward
dominance procedure and jointly rational belief systems, respectively, are order independent
with respect to strategies. To prove this, we rely on Theorem 4.1 and show that both reduction
operators are monotone.

Theorem 4.2 (Monotone reduction operators) The reduction operators bd and rG (for
every G � H) are monotone.

In the proof of this theorem we show, in fact, that both reduction operators satisfy an even
stronger notion of monotonicity. We prove, for both operators r; that r(D) � r(E) for all
products of strategy sets D;E with D � E: Indeed, for proving r(D) � r(E) we do not need
the assumption that E is possible in an elimination order for r; nor that r(E) � D (which is
assumed if D is a partial reduction of E). For static games, this stronger notion of monotonicity
is known as hereditarity (Gilboa, Kalai and Zemel (1990)) or monotonicity (Apt (2011)).

By combining Theorems 4.1 and 4.2 we immediately reach the following conclusion.

Corollary 4.1 (Order independence w.r.t. strategies) The reduction operators bd and rG
(for every G � H) are order independent with respect to strategies.

In view of Theorems 3.3 and 3.4 it thus follows that for determining the strategies that
survive the backward dominance procedure, or the strategies that are part of a jointly rational
belief system for G; it is irrelevant which speci�c order of elimination we use. In particular, we
may safely use the very convenient backwards order of elimination for the backward dominance
procedure, where we start eliminating at the last non-terminal histories and then work our way
backwards until we reach the beginning of the game.

We �nally illustrate, by means of an example, that the reduction operator er; characterizing
the extensive-form rationalizable strategies, is not order independent with respect to strategies,
and hence cannot be monotone. Consider the perfect information game in Figure 1, which is
based on Figure 3 in Reny (1992b). In this game, it may be veri�ed that the �full speed�
elimination order is given by

D0 = S�;

D1 = er(D0) = fa; (b; f)g � fc; (d; g)g � ; � ; � ;;
D2 = er(D1) = fag � f(d; g)g � ; � ; � ;:

Here,
D1 = fa; (b; f)g � fc; (d; g)g � ; � ; � ;

means that

D11; = fa; (b; f)g; D12; = fc; (d; g)g; D12h1 = ;; D11h2 = ; and D
1
2h3 = ;;
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Figure 1: Reny�s game

and similarly for D2:
To see that D1 and D2 are as described above, note that for both players i the set D1i;

contains those strategies in Si that are rational for some conditional belief vector in Bi: Strategy
(b; e) cannot be rational for player 1 at ; since (b; e) yields him at most utility 2 there, whereas
choosing a at ; gives him 3. Strategies a and (b; f); on the other hand, are both rational for
some conditional belief vector in B1: Therefore, D11; = fa; (b; f)g: For player 2, strategy (d; h)
is irrational at h3; whereas strategies c and (d; g) are both rational for some conditional belief
vector in B2: Hence, D12; = fc; (d; g)g:

By de�nition, D2i; contains those strategies inD
1
i; that are rational atH(D

1
;) for some bi 2 Bi

that strongly believes D1�i;: Note that D
1
; = fa; (b; f)g�fc; (d; g)g. Therefore, every conditional

belief vector for player 1 that strongly believes D12; must at ; believe fc; (d; g)g: Consequently,
only strategy a can be rational for such a conditional belief vector, and hence D21; = fag:

Similarly, every conditional belief vector for player 2 that strongly believes D11; must at h1
and h3 believe (b; f): As H(D1;) contains all non-terminal histories, only strategy (d; g) can be
rational at H(D1;) for such a conditional belief vector. Therefore, D

2
2; = f(d; g)g:

It may be veri�ed that er(D2) = D2; and hence the procedure stops at round 2. We thus
conclude that (D0; D1; D2) above is indeed the �full speed�elimination order for er: Moreover,
D2; = fag � f(d; g)g; which are the extensive-form rationalizable strategies in this game.
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An alternative elimination order for er in this game is the �backward induction sequence�
(E0; :::; E4) below, which mimicks the backward induction procedure:

E0 = S�;

E1 = fa; (b; e); (b; f)g � fc; (d; g)g � ; � ; � ;;
E2 = fa; (b; e)g � fc; (d; g)g � ; � ; � ;;
E3 = fa; (b; e)g � fcg � ; � ; � ;;
E4 = fag � fcg � ; � ; � ;:

In a similar way as above, it may be veri�ed that

er(E0) = fa; (b; f)g � fc; (d; g)g � ; � ; � ;;
er(E1) = fag � fc; (d; g)g � ; � ; � ;;
er(E2) = er(E3) = er(E4) = fag � fcg � ; � ;;

which implies that (E0; :::; E4) is indeed an elimination order for er: Hence, E4; = fag � fcg;
which are the backward induction strategies in this game. Since D2; 6= E

4
; ; we conclude that the

reduction operator er is not order independent with respect to strategies.

By Theorem 4.1 it must then be the case that er is not monotone. To see this, consider the
products of strategy sets

D = fag � fc; (d; g)g � ; � ; � ;;

and
E = fa; (b; e)g � fc; (d; g)g � ; � ; � ;:

Since E = E2 in the backward induction elimination order (E0; :::; E4) above, we know that E
is possible in an elimination order for er: It may be veri�ed that

er(D) = fag � fc; (d; g)g � ; � ; � ;;
er(E) = fag � fcg � ; � ; � ;:

We thus conclude that er(E) � D � E; and hence D is a partial reduction of E: However,
er(D) * er(E) which implies that er is not monotone.

5 Order Independence with Respect to Outcomes

In the previous section we have seen that the er reduction operator, which yields the extensive-
form rationalizable strategies, is not order independent with respect to strategies, and hence
cannot be monotone. In this section we will show, however, that this operator is order indepen-
dent with respect to outcomes, meaning that every possible elimination order yields the same
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set of induced outcomes (but not necessarily the same set of strategies). A similar result can be
found in Chen and Micali (2013) who show that the iterated conditional dominance procedure
(Shimoji and Watson (1998)), which also characterizes the extensive-form rationalizable strate-
gies, is order independent with respect to outcomes. Our result can also be seen as an analogue
to Perea (2018) where it is shown that the strong belief reduction operator, which characterizes
the extensive-form rationalizable strategies and which has been discussed in Section 3, is order
independent with respect to outcomes.

In this section we �rst provide a formal de�nition of order independence with respect to
outcomes. We subsequently introduce the condition of monotonicity on reachable histories,
and show that every reduction operator satisfying monotonicity on reachable histories is order
independent with respect to outcomes. We �nally show that the operator er; yielding extensive-
form rationalizability, is monotone on reachable histories, relying heavily on results in Perea
(2018). This implies that the extensive-form rationalizability procedure is order independent
with respect to outcomes.

5.1 De�nition

To formally de�ne order independence with respect to outcomes we need the following notation.
For a given set D̂ � �i2ISi of strategy combinations, recall that we denote by H(D̂) the set
of histories reached by strategy combinations (si)i2I in D̂: Moreover, we denote by Z(D̂) :=
H(D̂)\Z the set of terminal histories (or outcomes) that are reached by strategy combinations
in D̂:

De�nition 5.1 (Order independence with respect to outcomes) A reduction operator r
is order independent with respect to outcomes if for every two elimination orders (D0; :::; DK)
and (E0; :::; EL) for r we have that Z(DK; ) = Z(E

L
; ):

Hence, the outcomes induced by the set of strategy combinations at ; will always be the
same, independent of the speci�c elimination order we choose. If we apply this de�nition to
simple products of strategy sets, as discussed in Section 3, then we obtain the de�nition of order
independence with respect to outcomes as given in Perea (2018).

5.2 Su¢ cient Condition

To formally de�ne monotonicity on reachable histories, we need a new piece of terminology.
Consider a strategy si for player i and a collection of histories G � H: By

sijG := (si(h))h2Hi(si)\G

we denote the restriction of the strategy si to histories in G: Hence, sijG is a partial strategy
that only prescribes a choice at histories that are reachable under si and that are part of G:
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Similary, for a set of strategies Di � Si we denote by

DijG := fsijG j si 2 Dig

the restriction of the set Di to G: Finally, for a product of strategy sets D = �i2I;h2H�
i
Dih we

denote by
DjG := �i2I;h2H�

i
DihjG

the restriction of D to the histories in G:

De�nition 5.2 (Monotonicity on reachable histories) A reduction operator r is monotone
on reachable histories if for every two products of strategy sets D and E where E is possible in
an elimination order for r; and

r(E)jH(D;) � DjH(D;) � EjH(D;)

we have that
r(D)jH(D;) � r(E)jH(D;):

In a sense, we require the monotonicity condition from the previous section only to hold
at those histories that are reachable under D;: Indeed, if we replace H(D;) by H; then we
get exactly the de�nition of monotonicity discussed in the previous section. If we apply this
de�nition to simple products of strategy sets, then we obtain precisely the notion of monotonicity
on reachable histories as de�ned in Perea (2018).

In words, the condition states that if E is possible in an elimination order for r; and D is
behaviorally equivalent, on the histories reachable under D;; to a partial reduction of E; then
the full reduction of D must be contained in the full reduction of E if we restrict to the histories
reachable under D;:

We will now show that monotonicity on reachable histories is a su¢ cient condition for order
independence with respect to outcomes.

Theorem 5.1 (Su¢ cient condition for order independence w.r.t. outcomes) Every re-
duction operator that is monotone on reachable histories is order independent with respect to
outcomes.

This result mimicks Theorem 3.2 in Perea (2018), which shows the same implication for
reduction operators on simple products of strategy sets.
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5.3 Showing Order Independence with Respect to Outcomes

We now prove that the er reduction operator, which yields the extensive-form rationalizable
strategies, is order independent with respect to outcomes. To that purpose we show that the
operator is monotone on reachable histories, which, by Theorem 5.1, is su¢ cient to conclude
that er is independent with respect to outcomes. Our proof relies heavily on Theorem 3.1 in
Perea (2018), which shows that the reduction operator sb on simple products of strategy sets
is monotone on reachable histories � a notion we will de�ne below. Since the operator er is
essentially a copy of sb; we can then easily conclude that er is monotone on reachable histories
as well.

Before we can formally state Theorem 3.1 in Perea (2018), we need some extra de�nitions.
Recall that a simple product of strategy sets is a Cartesian product D̂ = �i2ID̂i; where D̂i � Si
for every player i: A simple reduction operator r̂ is a mapping that assigns to every simple product
of strategy sets D̂ a new simple product of strategy sets r̂(D̂) � D̂: For two simple products of
strategy sets D̂ and Ê we say that D̂ is a partial reduction of Ê if r̂(Ê) � D̂ � Ê: An elimination
order for a simple reduction operator r̂ is a sequence (D̂0; :::; D̂K) where (a) D̂0 = �i2ISi; (b)
D̂k+1 is a partial reduction of D̂k for every k 2 f0; :::;K � 1g; and (c) r̂(D̂K) = D̂K : We say
that a simple product of strategy sets D̂ is possible in an elimination order for r̂ if there is an
elimination order (D̂0; :::; D̂K) for r̂ such that D̂ = D̂k for some k 2 f0; :::;Kg:

Finally, we say that the simple reduction operator r̂ is monotone on reachable histories if for
every two simple products of strategy sets D̂ and Ê where Ê is possible in an elimination order
for r̂ and

r̂(Ê)jH(D̂) � D̂jH(D̂) � ÊjH(D̂);

it holds that
r̂(D̂)jH(D̂) � r̂(Ê)jH(D̂):

Theorem 5.2 (Theorem 3.1 in Perea (2018)) The simple reduction operator sb is monotone
on reachable histories.

On the basis of this result it is now easy to prove that the reduction operator er is motonone
on reachable histories as well.

Theorem 5.3 (Operator er is monotone on reachable histories) The reduction operator
er is monotone on reachable histories.

On the basis of Theorem 5.1 we can immediately conclude that the reduction operator er is
order independent with respect to outcomes.

Corollary 5.1 (Operator er is order independent w.r.t. outcomes) The reduction op-
erator er is order independent with respect to outcomes.
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This result is very similar to Corollary 3.1 in Perea (2018), which shows that the simple
reduction operator sb is order independent with respect to outcomes as well. There is also a
tight connection with Chen and Micali (2013) who show that the iterated conditional dominance
procedure (Shimoji and Watson (1998)), which provides an alternative characterization of the
extensive-form rationalizable strategies, is order independent with respect to outcomes as well.

6 Extensive-Form Rationalizability vs. Backward Dominance

In this section we will prove that every outcome that is reachable by extensive-form rationalizable
strategies is also reachable by backward dominance strategies. That is, in terms of outcomes the
concept of extensive-form rationalizability is at least as restrictive as the backward dominance
procedure. We prove this result in three steps.

In Step 1 we present a special sequence of products of strategy sets (D0; :::; DK), which we
call the backwards elimination order, and show that it is an elimination order for the reduc-
tion operator bd: In Step 2 we extend the backwards elimination order by recursively applying
the er operator to the last set DK ; and show that the extended backwards elimination order
(D0; :::; DK+L) so obtained is an elimination order for the operator er: In Step 3 we use these
�ndings to show that every extensive-form rationalizable outcome is also a backward domi-
nance outcome, as follows. Since the operator bd yields the backward dominance strategies
and is order independent with respect to strategies, it follows from Step 1 that DK; contains
all backward dominance strategies. In particular, Z(DK; ) is the set of backward dominance
outcomes. Moreover, since the operator er yields the extensive-form rationalizable strategies
and is order independent with respect to outcomes, we know from Step 2 that Z(DK+L; ) is the
set of extensive-form rationalizable outcomes. As Z(DK+L; ) � Z(DK; ); it follows that every
extensive-form rationalizable outcome is a backward dominance outcome.

6.1 Backwards Elimination Order

We will de�ne a particular sequence of products of strategy sets, which we call the backwards
elimination order, and prove that it is an elimination order for the reduction operator bd: To
de�ne it, we need some new pieces of notation. Let L be the maximal number of consecutive
non-terminal histories following ; in the game. For every l 2 f0; :::; Lg we denote by H l the set of
non-terminal histories h such that every sequence of consecutive non-terminal histories following
h contains at most l histories. Hence, H0 contains the ultimate non-terminal histories, H1 the
ultimate and penultimate non-terminal histories, and so on. By construction, HL contains all
non-terminal histories in the game.

Take some l 2 f0; :::; Lg: By bd[l] we denote the reduction operator which assigns to every
product of strategy sets D = �i2I;h2H�

i
Dih the product of strategy sets
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bd[l](D) = �i2I;h2H�
i
bd[l]ih(D) where

bd[l]ih(D) := fsi 2 Dih j si rational at Hfut(h) \H l for some conditional belief vector bi

where bi(h0) believes D�i(Hfut(h0)) for all h0 2 Hi \Hfut(h) \H lg;

for all players i and histories h 2 H�
i : Hence, in bd[l] strategies are only restricted at histories in

H l: By construction, we have that bd(D) � bd[l](D) for all products of strategy sets D:
Let M :=

P
i2I;h2H�

i
jSi(h)j: Then, (bd[l])M+1(D) = (bd[l])M (D) for every product of strat-

egy sets D and every l 2 f0; :::; Lg: Set K := (L + 1) �M: For every k 2 f1; :::;Kg let l(k) be
the unique number in f0; :::; Lg such that k = l(k) �M +m for some m 2 f1; :::;Mg:

De�nition 6.1 (Backwards elimination order) The backwards elimination order (D0; :::; DK)
is recursively given by D0 := S�; and

Dk := bd[l(k)](Dk�1)

for every k 2 f1; :::;Kg:

Hence, in the backwards elimination order we �rst restrict strategies at the ultimate non-
terminal histories in the game, then we restrict strategies at the penultimate non-terminal his-
tories in the game, until we reach the beginning of the game. We show that the backwards
elimination order is an elimination order for the reduction operator bd:

Lemma 6.1 (Backwards elimination order is elimination order for bd) The backwards
elimination order (D0; :::; DK) de�ned above is an elimination order for the reduction operator
bd:

As a consequence, the backwards elimination order can always be used in a dynamic game to
derive the backward dominance strategies. In a game with perfect information without relevant
ties, the backwards elimination order reduces to the backward induction procedure. Therefore,
the backward dominance strategies in such games coincide with the backward induction strate-
gies. In general, the backwards elimination order turns out to be very convenient to derive the
backward dominance strategies as it allows one to works backwards in the game, starting at the
ultimate non-terminal histories in the game.

6.2 Extended Backwards Elimination Order

We now extend the backwards elimination order (D0; :::; DK) de�ned above by recursively
applying the er reduction operator to the �nal product of strategy sets DK : As before, let
M :=

P
i2I;h2H�

i
jSi(h)j; implying that erM+1(D) = erM (D) for every product of strategy sets

D:
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De�nition 6.2 (Extended backwards elimination order) The extended backwards elim-
ination order is the sequence (D0; :::; DK+M ) where (D0; :::; DK) is the backwards elimination
order, and DK+m = erm(DK) for every m 2 f1; :::;Mg:

We show that this new sequence of products of strategy sets constitutes an elimination order
for the reduction operator er.

Lemma 6.2 (Extended backwards elimination order is elimination order for er) The
extended backwards elimination order (D0; :::; DK+M ) de�ned above is an elimination order for
the reduction operator er:

With this result we are now fully equipped to prove that every outcome reachable by
extensive-form rationalizable strategies is also reachable by backward dominance strategies.

6.3 Extensive-form Rationalizable vs. Backward Dominance Outcomes

In previous sections we have shown that (a) the extensive-form rationalizable strategies are ob-
tained by the iterative application of the er reduction operator (Theorem 3.2), (b) the backward
dominance strategies are obtained by the iterative application of the bd reduction operator (The-
orem 3.3), (c) the extended backwards elimination order is an elimination order for er (Lemma
6.2), (d) the backwards elimination order is an elimination order for bd (Lemma 6.1), (e) the er
reduction operator is order independent with respect to outcomes (Corollary 5.1), and (f) the
bd reduction operator is order independent with respect to strategies (Corollary 4.1). This will
now enable us to show that every outcome that is reachable by extensive-form rationalizable
strategies is also reachable by backward dominance strategies.

Let M :=
P
i2I;h2H�

i
jSi(h)j; so that erM+1(D) = erM (D) and bdM+1(D) = bdM (D) for

every product of strategy sets D: Let Ser := �i2ISeri be the set of extensive-form rationalizable
strategy combinations. Then, by (a) we have that

Ser = (erM (S�));: (6.1)

Let (D0; :::; DK+M ) be the extended backwards elimination order. Since we know by (c) that
this is an elimination order for er; it follows by (e) and (6.1) that

Z(DK+M; ) = Z((erM (S�));) = Z(S
er): (6.2)

On the other hand, let Sbd := �i2ISbdi be the backward dominance strategy combinations.
Then, we know by (b) that

Sbd = (bdM (S�));: (6.3)

Consider the backwards elimination order (D0; :::; DK): Since we know by (d) that this is an
elimination order for bd; it follows by (f) and (6.3) that

DK; = (bd
M (S�)); = S

bd;
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which implies that
Z(DK; ) = Z(S

bd): (6.4)

As DK+M; � DK; ; we have that Z(D
K+M
; ) � Z(DK; ); and hence it follows from (6.2) and (6.4)

that
Z(Ser) = Z(DK+M; ) � Z(DK; ) = Z(S

bd):

That is, every outcome reachable by an extensive-form rationalizable strategy combination in
Ser is also reachable by a backward dominance strategy combination in Sbd:We thus obtain the
following result.

Theorem 6.1 (EFR vs. backward dominance outcomes) Every outcome that is reach-
able by a combination of extensive-form rationalizable strategies is also reachable by a combi-
nation of backward dominance strategies.

Hence, in terms of reachable outcomes the concept of extensive-form rationalizability is
always at least as restrictive as backward dominance. We believe this result is interesting
from a reasoning perspective, as extensive-form rationalizability is a natural instance of forward
induction reasoning, whereas backward dominance is a typical backward induction concept.
Therefore, the result states that in terms of reachable outcomes, forward induction reasoning is
more restrictive than backward induction reasoning, provided we identify forward and backward
induction reasoning with these two concepts.

This result is not true in terms of strategies, however. To see this, consider the game in
Figure 1. We have seen that the extensive-form rationalizable strategies are a for player 1 and
(d; g) for player 2. The backward dominance strategies, in turn, coincide with the backward
induction strategies in this game, which are a for player 1 and c for player 2. Hence, both
concepts select a unique yet di¤erent strategy for player 2 in this game.

Battigalli and Siniscalchi (2002) have shown that extensive-form rationalizability is epistem-
ically characterized by common strong belief in rationality within a complete type structure.
Analogously, Perea (2014) has shown that the backward dominance strategies are epistemically
characterized by common belief in future rationality. These insights, in combination with Theo-
rem 6.1, imply that every outcome that is reachable under the epistemic conditions of common
strong belief in rationality is also reachable under the epistemic conditions of common belief in
future rationality. This is precisely the content of Theorem 9.4.2 in Perea (2012).

Now, consider a game with perfect information and without relevant ties (as de�ned in Bat-
tigalli (1997)). That is, at every non-terminal history there is only one active player, and for
every player i, every non-terminal history h 2 Hi; every two di¤erent choices ci; c0i 2 Ci(h);
every terminal history z following ci and every terminal history z0 following c0i we have that
ui(z) 6= ui(z

0): Theorem 6.1 in Perea (2014) shows that in every such game, the backward
dominance strategies coincide with the unique backward induction strategies for every player.
Consequently, the unique outcome reachable by a combination of backward dominance strategies
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is the backward induction outcome. By Theorem 6.1 in the present paper we may then con-
clude that the unique outcome reachable by extensive-form rationalizable strategies must be the
backward induction outcome. This result, which is due to Battigalli (1997), is highly remark-
able as extensive-form rationalizability is a forward induction concept for which the underlying
reasoning is fundamentally di¤erent from backward induction reasoning.

Corollary 6.1 (Battigalli�s theorem (1997)) Consider a �nite dynamic game with perfect
information and without relevant ties. Then, the unique outcome reachable by a combination
of extensive-form rationalizable strategies is the backward induction outcome.

Alternative proofs for this result can be found in Battigalli (1997), Heifetz and Perea (2015),
Catonini (2017) and Perea (2018). The result also follows from Chen and Micali (2013) who
show that the iterated conditional dominance procedure (Shimoji and Watson (1998)) is order
independent with respect to outcomes. As Shimoji and Watson (1998) have shown that their
procedure characterizes the extensive-form rationalizable strategies, Battigalli�s theorem follows
from the latter two results in a similar fashion as outlined above.

7 Concluding Remarks

In this paper we have presented a new methodology to systematically explore the issue of or-
der independence in dynamic games. To that purpose we have developed the general notion
of a reduction operator for dynamic games, which enabled us to formally de�ne order inde-
pendence with respect to strategies and outcomes. We subsequently introduced the conditions
of monotonicity and monotonicity on reachable histories, and showed that these imply order
independence with respect to strategies and outcomes, respectively. We have used these tools to
prove the order independence of various reduction procedures in dynamic games, and to explore
the relationship, in terms of outcomes, between the extensive-form rationalizability procedure
and the backward dominance procedure. We are hopeful that the tools developed in this paper
can be used in the future to prove new results for reduction procedures in dynamic games.

8 Proofs

Proof of Theorem 3.3. (a) We show the statement by induction on k: For k = 0; the
statement is trivially true since Ebd;0ih = Si(h) = Si(h) \ (bd0(S�))i(Hfut(h)) for every player i
and every non-terminal history h 2 H:

Take now some k � 1 and assume that Ebd;k�1ih = Si(h) \ (bdk�1(S�))i(Hfut(h)) for every
player i and every non-terminal history h 2 H: Take some player i and some non-terminal
history h 2 H: We show that (i) Ebd;kih � Si(h) \ (bdk(S�))i(Hfut(h)); and
(ii) Si(h) \ (bdk(S�))i(Hfut(h)) � Ebd;kih :
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(i) Take some si 2 Ebd;kih :We show that si 2 Si(h)\(bdk(S�))i(Hfut(h)): Since, by de�nition,
si 2 Si(h); it only remains to show that si 2 (bdk(S�))ih0 for every h0 2 H�

i (si) \Hfut(h):
Take some h0 2 H�

i (si) \ Hfut(h); and consider some h00 2 Hi(si) \ Hfut(h0): Then, h00 2
Hi(si)\Hfut(h): Since si 2 Ebd;kih ; we know from Lemma 8.14.6 in Perea (2012) that there is some
conditional belief bi(h00) 2 �(Ebd;k�1�ih00 ) such that si is rational at h

00 for bi(h00): By the induction

assumption, Ebd;k�1�ih00 = S�i(h00) \ (bdk�1(S�))�i(Hfut(h00)): Hence, si is rational at h00 for some
bi(h

00) that believes (bdk�1(S�))�i(Hfut(h00)): Since this holds for every h00 2 Hi(si) \Hfut(h0);
it follows that si is rational at Hfut(h0) for some conditional belief vector bi where bi(h00) believes
(bdk�1(S�))�i(Hfut(h00)) for every h00 2 Hi \Hfut(h0):

Moreover, since si 2 Ebd;kih we know, by de�nition, that si 2 Ebd;k�1ih : Hence, by the induction
assumption, si 2 (bdk�1(S�))i(Hfut(h)): Since h0 2 H�

i (si) \ Hfut(h); it follows that si 2
(bdk�1(S�))ih0 :

We thus see that si 2 (bdk�1(S�))ih0 and si is rational at Hfut(h0) for some conditional
belief vector bi where bi(h00) believes (bdk�1(S�))�i(Hfut(h00)) for every h00 2 Hi \ Hfut(h0):
Then, by de�nition, si 2 bdih0(bdk�1(S�)): Since this holds for every h0 2 H�

i (si) \Hfut(h); it
follows that si 2 (bdk(S�))i(Hfut(h)): As we have already seen that si 2 Si(h); it follows that
si 2 Si(h) \ (bdk(S�))i(Hfut(h)):

Since this holds for every si 2 Ebd;kih ; we conclude that Ebd;kih � Si(h) \ (bdk(S�))i(Hfut(h)):

(ii) Take some si 2 Si(h) \ (bdk(S�))i(Hfut(h)): Then, in particular,
si 2 Si(h) \ (bdk�1(S�))i(Hfut(h)); and hence by the induction assumption we have that si 2
Ebd;k�1ih : Now, take some h0 2 Hi(si) \Hfut(h): Since si 2 (bdk(S�))i(Hfut(h)); it follows that
si 2 bdih0(bdk�1(S�)): Hence, by de�nition, si is rational at Hfut(h0) for some bi where bi(h00)
believes (bdk�1(S�))�i(Hfut(h00)) for all h00 2 Hi \ Hfut(h0): Since h0 2 Hi(si) \ Hfut(h0); it
follows that si is rational at h0 for some bi(h0) 2 �(S�i(h0) \ (bdk�1(S�))�i(Hfut(h0))): By the
induction assumption, S�i(h0) \ (bdk�1(S�))�i(Hfut(h0)) = Ebd;k�1�ih0 : Hence, si is rational at h0

for some bi(h0) 2 �(Ebd;k�1�ih0 ): By Lemma 3 in Pearce (1984) it then follows that si is not strictly

dominated in Ebd;k�1h0 :

Altogether, we see that si 2 Ebd;k�1ih and that si is not strictly dominated in E
bd;k�1
h0 for

every h0 2 Hi(si) \ Hfut(h): Hence, by de�nition, si 2 Ebd;kih : Since this holds for every si 2
Si(h) \ (bdk(S�))i(Hfut(h)); it follows that Si(h) \ (bdk(S�))i(Hfut(h)) � Ebd;kih : By induction
on k; this completes the proof of (a).

(b) By (a) we know that Ebd;ki; = Si(;) \ (bdk(S�))i(Hfut(;)) � (bdk(S�))i;: Hence, it only
remains to show that (bdk(S�))i; � Ebd;ki; : We prove this by induction on k: For k = 0; the

statement is true because (bd0(S�))i; = Si = E
bd;0
i; :

Take now some k � 1; and assume that (bdk�1(S�))i; � Ebd;k�1i; for every player i: Consider
some player i; and take some si 2 (bdk(S�))i;: Then, si 2 (bdk�1(S�))i; and hence, by the
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induction assumption, si 2 Ebd;k�1i; :

As si 2 (bdk(S�))i; = bdi;(bdk�1(S�)) we know, by de�nition, that si is rational at Hfut(;)
for some conditional belief vector bi where bi(h) believes (bdk�1(S�))�i(Hfut(h)) for every
h 2 Hi \ Hfut(;): Take some h 2 Hi(si) \ Hfut(;): Then, si is rational at h for bi(h) 2
�(S�i(h) \ (bdk�1(S�))�i(Hfut(h))): By (a) we know that S�i(h) \ (bdk�1(S�))�i(Hfut(h)) =

Ebd;k�1�ih : Hence, si is rational at h for bi(h) 2 �(Ebd;k�1�ih ): By Lemma 3 in Pearce (1984) it follows

that si is not strictly dominated in E
bd;k�1
h :

We thus see that si 2 Ebd;k�1i; and that si is not strictly dominated in E
bd;k�1
h for every h 2

Hi(si) \Hfut(;): But then, by de�nition, si 2 Ebd;ki; : Since this holds for every si 2 (bdk(S�))i;;
it follows that (bdk(S�))i; � Ebd;ki; : By induction on k; it follows that (bdk(S�))i; � Ebd;ki;
for every k: Since we have seen above that Ebd;ki; � (bdk(S�))i; for every k; it follows that

Ebd;ki; = (bdk(S�))i; for every k: This completes the proof of (b).

From (b) it follows that

\k�0(bdk(S�)); = \k�0 �i2I (bdk(S�))i; = \k�0 �i2I Ebd;ki; = �i2ISbdi ;

and hence bd yields the set �i2ISbdi of backward dominance strategy combinations. �

Proof of Theorem 4.1. Consider some monotone reduction operator r: Take two products of
strategy sets D and E: We prove the following property for r:

Claim 1. If E is possible in an elimination order for r; and D is a partial reduction of E; then
r(E) is a partial reduction of D:

Proof of Claim 1. Since r is monotone we know that r(D) � r(E): Moreover, as D is a partial
reduction of E it holds that r(E) � D: We thus see that r(D) � r(E) � D; and hence r(E) is
a partial reduction of D: The proof of the claim is thereby complete. �

Now, let M :=
P
i2I;h2H�

i
jSi(h)j: Then, for every product of strategy sets D we necessarily

have that rM+1(D) = rM (D): Indeed, rk+1(D) 6= rk(D) implies that there must be some player
i, history h 2 H�

i and strategy si 2 Si(h) such that si 2 (rk(D))ihn(rk+1(D))ih:
Take some arbitrary elimination order (D0; :::; DK) for r: We show that DK; = (rM (S�));;

which would imply that r is order independent with respect to strategies. To prove this statement
we �rst show the following claim.

Claim 2. Take some k 2 f0; :::;K � 1g and m � 0: Then, rm(Dk+1) is a partial reduction of
rm(Dk) and rm+1(Dk) is a partial reduction of rm(Dk+1):

Proof of Claim 2. We prove the statement by induction on m: We start with m = 0: By
de�nition, r0(Dk+1) = Dk+1 is a partial reduction of r0(Dk) = Dk: Since Dk is possible in an
elimination order for r and Dk+1 is a partial reduction of Dk; it follows by Claim 1 that r(Dk)
is a partial reduction of Dk+1:

28



Consider now some m � 1; and suppose that the statement in Claim 2 is true for m �
1: Note that rm�1(Dk+1) is possible in an elimination order for r; since Dk+1 is part of the
elimination order (D0; :::; DK): Since, by the induction assumption, rm(Dk) is a partial reduction
of rm�1(Dk+1) it follows by Claim 1 that rm(Dk+1) is a partial reduction of rm(Dk):

Note, by a similar argument as above, that also rm(Dk) is possible in an elimination order
for r: Since we have seen that rm(Dk+1) is a partial reduction of rm(Dk), it follows by Claim 1
that rm+1(Dk) is a partial reduction of rm(Dk+1):

By induction on m; the proof of the claim is complete. �
By the claim we know, for every k 2 f0; :::;K � 1g; that rM (Dk+1) is a partial reduction

of rM (Dk); and rM+1(Dk) is a partial reduction of rM (Dk+1): This implies that rM (Dk+1) �
rM (Dk) and rM+1(Dk) � rM (Dk+1): Since rM+1(Dk) = rM (Dk); it follows that rM (Dk) =
rM (Dk+1):

Since this holds for every k 2 f0; :::;K � 1g; we conclude that rM (D0) = rM (DK): As
D0 = S� and r(DK) = DK ; it follows that rM (D0) = rM (S�) and rM (DK) = DK : Therefore,
DK = rM (S�) and hence DK; = (r

M (S�));: This completes the proof. �

Proof of Theorem 4.2. (a) Consider �rst the reduction operator bd: Take two products of
strategy sets D and E such that D � E: We will show that bd(D) � bd(E):

To that purpose, take some player i; some history h 2 H�
i and some strategy si 2 bdih(D):

Then, by de�nition, si 2 Dih and si is rational at Hfut(h) for some conditional belief vector
bi where bi(h0) 2 �(D�i(Hfut(h0))) for all h0 2 Hi \ Hfut(h): Since D � E it follows that
Dih � Eih and D�i(Hfut(h0)) � E�i(Hfut(h0)) for all h0 2 Hi \Hfut(h): Hence, si 2 Eih and
si is rational at Hfut(h) for some conditional belief vector bi where bi(h0) 2 �(E�i(Hfut(h0)))
for all h0 2 Hi \Hfut(h): By de�nition, this means that si 2 bdih(E): Since this holds for every
player i; every history h 2 H�

i and every strategy si 2 bdih(D); it follows that bd(D) � bd(E):
Hence, bd(D) � bd(E) for every two products of strategy sets D and E where D � E: In

particular, this holds whenever E is possible in an elimination order for bd; and D is a partial
reduction of E: Therefore, bd is monotone.

(b) Consider next the reduction operator rG for some �xed but arbitrary collection of
histories G � H: Again, take two products of strategy sets D and E such that D � E: We will
show that rG(D) � rG(E):

Since rGih(D) = ; for every player i and every history h 2 Hinf;g; it immediately follows
that rGih(D) � rGih(E) for all players i and all histories h 2 Hinf;g:

It therefore remains to show that rGi;(D) � rGi;(E) for all players i: Take some player i
and some si 2 rGi;(D): Then, si 2 Di; and si is rational for some conditional belief vector bi
where bi(h) believes D�i; whenever h 2 Hi \ G: Since D � E we have that Di; � Ei; and
D�i; � E�i;: Therefore, si 2 Ei; and si is rational for some conditional belief vector bi where
bi(h) believes E�i; whenever h 2 Hi \G: We thus conclude that si 2 rGi;(E):
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Since this holds for every si 2 rGi;(D); it follows that rGi;(D) � rGi;(E): As we have
already seen that rGih(D) � rGih(E) for all players i and all histories h 2 Hinf;g; it follows
that rG(D) � rG(E):

Hence, rG(D) � rG(E) for all products of strategy setsD and E whereD � E: In particular,
this holds whenever E is possible in an elimination order for rG; and D is a partial reduction
of E: Therefore, rG is monotone. This completes the proof. �

Proof of Theorem 5.1. Consider some reduction operator r that is monotone on reachable
histories. For every two products of strategy sets D and E we say that D is a partial reduction
on reachable histories of E if

r(E)jH(D;) � DjH(D;) � EjH(D;):

We prove the following property of r:

Claim 1. If E is possible in an elimination order for r and D is a partial reduction on reachable
histories of E; then r(E) is a partial reduction on reachable histories of D:

Proof of Claim 1. Since D is a partial reduction on reachable histories of E; we have, by
de�nition, that

r(E)jH(D;) � DjH(D;) � EjH(D;):

As r is monotone on reachable histories, it follows that

r(D)jH(D;) � r(E)jH(D;):

Together with the assumption that r(E)jH(D;) � DjH(D;); we conclude that

r(D)jH(D;) � r(E)jH(D;) � DjH(D;): (8.1)

Since r(E)jH(D;) � DjH(D;) it follows that r(E);jH(D;) � D;jH(D;): By Lemma 6.1 in Perea
(2018) we may then conclude that H(r(E);) � H(D;): Together with (8.1) this yields

r(D)jH(r(E);) � r(E)jH(r(E);) � DjH(r(E););

and hence r(E) is a partial reduction on reachable histories of D: This completes the proof of
Claim 1. �

Let M :=
P
i2I;h2H�

i
jSi(h)j: Then, as we have seen in the proof of Theorem 4.1, for every

product of strategy sets D we necessarily have that rM+1(D) = rM (D):
Take some arbitrary elimination order (D0; :::; DK) for r:We show that Z(DK; ) = Z(r

M (S�););
which would imply that r is order independent with respect to outcomes. To prove this statement
we �rst show the following claim.
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Claim 2. Take some k 2 f0; :::;K � 1g and m � 0: Then, rm(Dk+1) is a partial reduction
on reachable histories of rm(Dk) and rm+1(Dk) is a partial reduction on reachable histories of
rm(Dk+1):

Proof of Claim 2. We prove the statement by induction on m: We start with m = 0: By
de�nition, r0(Dk+1) = Dk+1 is a partial reduction of r0(Dk) = Dk; and hence, in particular,
r0(Dk+1) is a partial reduction on reachable histories of r0(Dk): Since Dk is possible in an
elimination order for r and Dk+1 is a partial reduction on reachable histories of Dk; it follows
by Claim 1 that r(Dk) is a partial reduction on reachable histories of Dk+1:

Consider now some m � 1; and suppose that the statement in Claim 2 is true for m �
1: Note that rm�1(Dk+1) is possible in an elimination order for r; since Dk+1 is part of the
elimination order (D0; :::; DK): Since, by the induction assumption, rm(Dk) is a partial reduction
on reachable histories of rm�1(Dk+1) it follows by Claim 1 that rm(Dk+1) is a partial reduction
on reachable histories of rm(Dk):

Note, by a similar argument as above, that also rm(Dk) is possible in an elimination order
for r: Since we have seen that rm(Dk+1) is a partial reduction on reachable histories of rm(Dk),
it follows by Claim 1 that rm+1(Dk) is a partial reduction on reachable histories of rm(Dk+1):

By induction on m; the proof of the claim is complete. �
By the claim we know, for every k 2 f0; :::;K � 1g; that rM (Dk+1) is a partial reduction

on reachable histories of rM (Dk); and rM+1(Dk) is a partial reduction on reachable histories of
rM (Dk+1): This implies that

rM (Dk+1)jH(rM (Dk+1);)
� rM (Dk)jH(rM (Dk+1);)

and
rM+1(Dk)jH(rM+1(Dk);)

� rM (Dk+1)jH(rM+1(Dk);)
:

Hence, in particular,

rM (Dk+1);jH(rM (Dk+1);)
� rM (Dk);jH(rM (Dk+1);)

and
rM+1(Dk);jH(rM+1(Dk);)

� rM (Dk+1);jH(rM+1(Dk);)
:

By Lemma 6.1 in Perea (2018) it follows thatH(rM (Dk+1);) � H(rM (Dk);) andH(rM+1(Dk);) �
H(rM (Dk+1);): Since rM+1(Dk) = rM (Dk); it follows that H(rM (Dk+1);) = H(rM (Dk);): In
particular, this implies that Z(rM (Dk+1);) = Z(rM (Dk);):

Since this holds for every k 2 f0; :::;K � 1g; we conclude that Z(rM (D0);) = Z(rM (DK);):
As D0 = S� and r(DK) = DK ; it follows that Z(rM (D0);) = Z(rM (S�);) and Z(rM (DK);) =
Z(DK; ): Therefore, Z(D

K
; ) = Z(r

M (S�);): This completes the proof. �
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Proof of Theorem 5.3. Take two products of strategy sets D and E where E is possible in
an elimination order for er and

er(E)jH(D;) � DjH(D;) � EjH(D;):

We will show that
er(D)jH(D;) � er(E)jH(D;):

By de�nition, erih(D) = ; for all players i and all histories h 2 Hinf;g: Therefore, we
trivially have that erih(D)jH(D;) � erih(E)jH(D;) for all players i and all histories h 2 Hinf;g:
It thus remains to show that er;(D)jH(D;) � er;(E)jH(D;).

Since E is possible in an elimination order for er; there is an elimination order (D0; :::; DK)
for er such that E = Dk for some k 2 f0; :::;Kg: We show that (D0;; :::; D

K
; ) is an elimination

order for sb:
By de�nition, D0; = �i2ISi since D

0 = S� = �i2I;h2H�
i
Si(h): Take some k 2 f0; :::;K � 1g:

Since Dk+1 is a partial reduction of Dk with respect to er; we have that er;(Dk) � Dk+1; � Dk; :
Recall from (3.1) that er;(Dk) = sb(Dk;); and hence sb(D

k
;) � Dk+1; � Dk; : This means that

Dk+1; is a partial reduction of Dk; with respect to sb: Finally, by (3.1) we know that sb(D
K
; ) =

er;(D
K) = DK; ; since er(D

K) = DK : We thus conclude that (D0;; :::; D
K
; ) is an elimination

order for sb: Since E = Dk we know, in particular, that E; = Dk; and therefore E; is possible
in an elimination order for sb:

Moreover, since er(E)jH(D;) � DjH(D;) � EjH(D;) we know that er;(E)jH(D;) � D;jH(D;) �
E;jH(D;): By (3.1) it holds that er;(E) = sb(E;); and we therefore conclude that

sb(E;)jH(D;) � D;jH(D;) � E;jH(D;): (8.2)

By Theorem 5.2 we know that sb is monotone on reachable histories. Recall that E; is possible
in an elimination order for sb: It then follows from (8.2) that

sb(D;)jH(D;) � sb(E;)jH(D;):

As sb(D;) = er;(D) and sb(E;) = er;(E) we conclude that

er;(D)jH(D;) � er;(E)jH(D;):

Since we have seen above that erih(D)jH(D;) � erih(E)jH(D;) for all players i and all histories
h 2 Hinf;g; it follows that

er(D)jH(D;) � er(E)jH(D;):

We thus conclude that er is monotone on reachable histories. This completes the proof. �

Proof of Lemma 6.1. By de�nition, D0 = S�:We next show that bd(DK) = DK : That is, we
must show for every player i and every h 2 H�

i that bdih(D
K) = DKih: Take some player i and
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some history h 2 H�
i : Suppose that h 2 H l for some l 2 f0; :::; Lg: Then, by construction, Dkih

does not change anymore when l(k) > l; which occurs precisely when k > l �M +M: Hence

DKih = D
l�M+M
ih = ((bd[l])M (Dl�M ))ih: (8.3)

Moreover, since h 2 H l we have that

bdih(D
K) = bd[l]ih(D

K) = bd[l]ih(D
l�M+M ) = bd[l]ih((bd[l])

M (Dl�M ))

= ((bd[l])M (Dl�M ))ih = D
K
ih:

Here, the �rst equality holds by de�nition of the operator bd[l]; the third equality by construction
of the backwards elimination order, the fourth equality by the fact that (bd[l])M+1(Dl�M ) =
(bd[l])M (Dl�M ); and the last equality by (8.3). Hence, bdih(DK) = DKih: Since this holds for
every player i and every history h 2 H�

i ; we have that bd(D
K) = DK :

We �nally show, for every k 2 f0; :::;K � 1g; that Dk+1 is a partial reduction of Dk: That
is, we must show that bd(Dk) � Dk+1 � Dk: By de�nition we have that Dk+1 � Dk; hence it
only remains to show that bd(Dk) � Dk+1: By construction, Dk+1 = bd[l(k+1)](Dk): Since, by
de�nition, bd(Dk) � bd[l(k + 1)](Dk) it follows that bd(Dk) � Dk+1: Hence, Dk+1 is a partial
reduction of Dk:

Altogether, we see that (D0; :::; DK) is an elimination order for bd; which was to show. �

Proof of Lemma 6.2. By de�nition we have that D0 = S�: Moreover,

er(DK+M ) = er(erM (DK)) = erM+1(DK) = erM (DK) = DK+M :

It thus remains to show that Dk+1 is a partial reduction of Dk (with respect to er) for every
k 2 f0; :::;K+M �1g: By construction, this holds for every k 2 fK; :::;K+M �1g: It therefore
su¢ ces to show that Dk+1 is a partial reduction of Dk for every k 2 f0; :::;K � 1g:

Take some k 2 f0; :::;K � 1g: We will show, for every player i and every history h 2 H�
i ;

that
erih(D

k) � Dk+1ih � Dkih:

By construction we have that Dk+1ih � Dkih: Moreover, by de�nition, it holds that erih(Dk) = ;
whenever h 6= ;: It thus remains to show that eri;(Dk) � Dk+1i; : Since, by de�nition, Dk+1 =
bd[l(k + 1)](Dk); we must show that

eri;(D
k) � bd[l(k + 1)]i;(Dk): (8.4)

Take some strategy si 2 eri;(Dk): That is, si 2 Dki; and si is rational at H(D
k
;) for some

conditional belief vector bi 2 Bi that strongly believes Dk�i;: In order to show that si 2 bd[l(k+
1)]i;(D

k) we must prove that si is rational at H l(k+1) for some conditional belief vector bi where
bi(h) believes Dk�i(H

fut(h)) for all h 2 Hi \H l(k+1): That is, for every h 2 Hi(si) \H l(k+1) we
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must �nd a conditional belief bi(h) that believes Dk�i(H
fut(h)) and such that si is rational for

bi(h) at h: We distinguish two cases: (i) h =2 H l(k)�1; and (ii) h 2 H l(k)�1:
(i) Consider �rst some h 2 (Hi(si) \ H l(k+1))nH l(k)�1: Since h is not in H l(k)�1; we know

that all histories preceding h are not in H l(k): As, by construction of the backwards elimination
order, Dk; only restricts the strategies at histories in H

l(k); it follows that h 2 H(Dk;): Recall
from above that si is rational at H(Dk;) for some conditional belief vector bi 2 Bi that strongly
believes Dk�i;: Since h 2 H(D

k
;) it follows that S�i(h) \D

k
�i; 6= ;; and therefore bi(h) believes

Dk�i; if bi strongly believes D
k
�i;: Hence, at h 2 H(D

k
;) strategy si is rational for a conditional

belief bi(h) that believes Dk�i;:
We now show that Dk�i; � D

k
�i(H

fut(h)): Take some s�i = (sj)j 6=i in Dk�i;: Then, sj 2 D
k
j;

for all j 6= i: Fix a player j 6= i: As Dkj; = bd[l(k)]j;(D
k�1); we conclude that sj is rational

at H l(k) for some conditional belief vector bj where bj(h0) believes Dk�1j (Hfut(h0)) for all h0 2
Hj\H l(k): Take some h0 2 Hfut(h): Then, in particular, sj is rational atHfut(h0)\H l(k) for some
conditional belief vector bj where bj(h00) believes Dk�1j (Hfut(h00)) for all h00 2 Hj \Hfut(h0) \
H l(k): That is, sj 2 Dkj (h0) for all h0 2 H�

j (sj) \Hfut(h); which means that sj 2 Dkj (Hfut(h)):

As this holds for every sj 2 Dkj;; we conclude that D
k
j; � Dkj (H

fut(h)): This is true for every

player j 6= i; and hence Dk�i; � D
k
�i(H

fut(h)); which was to show.
Remember that strategy si is rational at h 2 H(Dk;) for a conditional belief bi(h) that

believes Dk�i;: Since D
k
�i; � D

k
�i(H

fut(h)); we conclude that si is rational at h for a conditional
belief bi(h) that believes Dk�i(H

fut(h)): This holds for every h 2 (Hi(si)\H l(k+1))nH l(k)�1; and
hence for every h 2 (Hi(si) \ H l(k+1))nH l(k)�1 there is a conditional belief bi(h) that believes
Dk�i(H

fut(h)) and such that si is rational for bi(h) at h:
(ii) Consider next some h 2 Hi(si) \ H l(k)�1: Since si 2 Dki; and D

k = bd[l(k)](Dk�1) we
have that si 2 bd[l(k)]i;(Dk�1): Hence, si is rational at H l(k) for some conditional belief vector
bi where bi(h0) believes Dk�1�i (H

fut(h0)) for all h0 2 Hi \H l(k): Since h 2 Hi(si) \H l(k)�1 and
H l(k)�1 � H l(k) we know that h 2 Hi(si) \H l(k); and therefore si is rational at h for the belief
bi(h) that believes Dk�1�i (H

fut(h)):
Let k = l(k) �M +m for some m 2 f1; :::;Mg: Then, k � 1 � l(k) �M = (l(k)� 1) �M +M:

As for every player j and every h0 2 H�
j \ H l(k)�1; the set Dk

0
jh0 does not change anymore for

k0 � (l(k)�1)�M+M; it follows that Dk�1jh0 = D
k
jh0 for every player j and every h

0 2 H�
j \H l(k)�1:

Since h 2 H l(k)�1; it follows that every h0 2 Hfut(h) is in H l(k)�1; and hence Dk�1�i (H
fut(h)) =

Dk�i(H
fut(h)): Recall that si is rational at h for the belief bi(h) that believes Dk�1�i (H

fut(h)):

We thus conclude that si is rational at h for the belief bi(h) that believes Dk�i(H
fut(h)); which

was to show.
By combining (i) and (ii) we see that for every h 2 Hi(si) \ H l(k+1) there is a conditional

belief bi(h) that believes Dk�i(H
fut(h)) and such that si is rational for bi(h) at h: Hence, si is
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rational at H l(k+1) for some conditional belief vector bi where bi(h) believes Dk�i(H
fut(h)) for all

h 2 H l(k+1): Since we have seen above that si 2 Dki;; we conclude that si 2 bd[l(k+1)]i;(D
k): As

this holds for every si 2 eri;(Dk); it follows that eri;(Dk) � bd[l(k + 1)]i;(Dk); and hence (8.4)
is true for every player i. As we have seen above, this implies that Dk+1 is a partial reduction
of Dk (with respect to er). Hence, we conclude that the extended backwards elimination order
(D0; :::; DK+M ) is an elimination order for er: This completes the proof. �
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