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Abstract. The prevailing approaches to modelling interactive uncertainty with
epistemic models in economics are state-based and type-based. We explicitly for-
mulate two general procedures that transform state models into type models and
vice versa. Both transformation procedures preserve the belief hierarchies as well
as the common prior assumption. By means of counterexamples it is shown that
the two procedures are not inverse to each other. However, if attention is restricted
to maximally reduced epistemic models, then isomorphisms can be constructed
and an inverse relationship emerges.
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1 Introduction

In game theory it is fundamental to model interactive beliefs to capture the players’ rea-
soning about each other. It is assumed in full generality that a player holds beliefs about
his opponents’ choices, about his opponents’ beliefs about their opponents’ choices, about
his opponents’ beliefs about their opponents’ beliefs about their opponents’ choices, etc.
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Such infinite doxastic sequences can be formally expressed by the notion of a belief
hierarchy.

Initially proposed in the context of incomplete information by Harsanyi (1967-68), a
belief hierarchy of a player – in the case of strategic uncertainty (e.g. Böge and Eisele,
1979; Mertens and Zamir, 1985; Brandenburger and Dekel, 1993) – specifies a probability
measure about the basic space of uncertainty i.e. the opponents’ choice combinations
(first-order belief), a probability measure about the opponents’ choice combinations and
the opponents’ first-order beliefs (second-order belief), a probability measure about the
opponents’ choice combinations, the opponents’ first-order beliefs, and the opponents’
second-order beliefs (third-order belief), etc. Thus, a k-order belief fixes a belief about the
basic space of uncertainty and about each of the lower-order beliefs of the opponents. A
player’s belief hierarchy can be seen as the formalization of his entire interactive thinking
about the game. Different patterns of reasoning (e.g. common belief in rationality) can
then be modelled as conditions imposed on a player’s belief hierarchy.

Unfortunately, belief hierarchies are cumbersome objects due to their infinite na-
ture. However, there exist finite encodings of belief hierarchies that render them more
tractable. The standard way to represent belief hierarchies in a compact and convenient
way is due to Harsanyi’s (1967-68) seminal idea of types. Accordingly, a type induces
a probability measure on the opponents’ combinations of choices and types. Any belief
of higher order can then be derived. An alternative implicit description of belief hierar-
chies is based on the idea of states or possible words due to Kripke (1963) and Aumann
(1974). Any belief of higher order can be inferred from a player’s belief at a given possible
world about the worlds in combination with the players’ choices and beliefs at worlds.
The relation between the so-called type-based and state-based approaches to modelling
belief hierarchies have been investigated by Brandenburger and Dekel (1993) as well as
by Tan and Werlang (1992). They essentially show that hypotheses involving common
knowledge are preserved across these two epistemic frameworks.

We compare the type-based and state-based approaches to formalizing interactive
thinking from a broader perspective and provide two general transformation procedures
between type and state models. Belief hierarchies as well as the common prior assumption
are preserved by these procedures. In this sense the two different epistemic approaches
are equivalent. We then explore whether the two procedures constitute operational in-
verses to each other by means of an isomorphism. It turns out that they do not do so
unless attention is restricted to maximally reduced models which exclude the existence of
“superfluous” worlds and types, respectively. This insight emphazises that type and state
models actually exhibit some foundational differences despite their equivalence in terms
of preserving belief hierarchies and the common prior assumption. The underyling con-
ceptual reason lies in the distinct degrees of granularity: while the type-based approach
only respresents the players’ interactive thinking the state-based approach additionally
also fixes their choices.

We proceed as follows. Section 2 lays out the formal framework and notation. In
particular, type-based and state-based approaches to interactive epistemology are pre-
sented. In Section 3 we provide a transformation procedure (Definition 5) to convert state
models into type models. Belief hierarchies (Theorem 1) as well as the common prior as-
sumption (Theorem 2) are preserved. Then, in Section 4 our point of departure are type
models and we propose a second transformation procedure (Definition 6) to turn them
into state models. Again, preservation holds with regards to belief hierarchies (Theorem
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3) as well as the common prior assumption (Theorem 4). While the general conclusions
of Theorems 1 and 3 about the structural conservation of belief hierarchies are likely to
be implicitly known in the game theory community, our purpose is, first, to render these
foundational insights explicit in an accessible way, and second, to provide concrete tools
to switch back and forth between state and type models. Section 5 explores structural
identities within a given epistemic framework. It turns out that the two transformation
procedures are not inverse to each other (Examples 1 and 2). By restricting to maximally
reduced models inverse relationships between the two operations then ensue (Theorems
5 and 6). Finally, some concluding remarks are offered in Section 6.

2 Preliminaries

A game is modelled as a tuple Γ = 〈I, (Ci, Ui)i∈I〉, where I is a finite set of players, Ci
denotes player i’s finite choice set, and Ui : ×j∈ICj → R constitutes player i’s utility
function, which assigns a real number Ui(c) to every choice combination c ∈ ×j∈ICj .
In terms of notation, given a collection {Sn : n ∈ N} of sets and probability measures
pn ∈ ∆(Sn) for all n ∈ N , the set S−n refers to the product set ×m∈N\{n}Sm and the
probability measure p−n refers to the product measure Πm∈N\{n}pm ∈ ∆(S−n) on S−n.
Given a probabily measure p ∈ ∆n∈N (×Sn) on a product set, for the sake of simplicity
any marginal is also denoted by p if the intended usage is clear from the context.

Belief hierarchies can be inductively formalized as sequences of probability measures.
In the context of games, construct for every player i ∈ I a sequence (Xn

i )n∈N of spaces,
where

X1
i := C−i,

X2
i := X1

i ×
(
×j∈I\{i} ∆(X1

j )
)
,

...

Xk
i := Xk−1

i ×
(
×j∈I\{i} ∆(Xk−1

j )
)
,

...

and a belief hierarchy of player i is then defined as a sequence ηi := (ηni )n∈N ∈ ×n∈N
(
∆(Xn

i )
)

of probability measures. For every level k ∈ N, the probability measure ηki ∈ ∆(Xk
i ) is

called i’s k-th order belief. Note that

Xk
i = C−i ×

(
×j∈I\{i} ∆(X1

j )
)
×
(
×j∈I\{i} ∆(X2

j )
)
× . . .×

(
×j∈I\{i} ∆(Xk−1

j )
)

holds for all k ∈ N.
The standard implicit representation of belief hierarchies in terms of types is due to

Harsanyi (1967-68). According to this epistemic approach the game-theoretic framework
– given by Γ – is enriched by a type-based structure.

Definition 1. Let Γ be a game. A type model of Γ is a tuple T Γ = 〈(Ti, bi)i∈I〉, where
for every player i ∈ I,

– Ti is a finite set of types,
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– bi : Ti → ∆(C−i × T−i) is i’s belief function that assigns to every type ti ∈ Ti a
probability measure bi[ti] on the set of opponents’ choice type combinations.

A type ti of some player i naturally induces a belief hierarchy:

η1i [ti](c−i) :=
∑

t−i∈T−i

bi[ti](c−i, t−i)

for all c−i ∈ X1
i , as well as

ηki [ti](c−i, η
1
−i, η

2
−i, . . . , η

k−1
−i ) :=

∑
t−i∈T−i:ηl−i[t−i]=ηl−i for all 1≤l≤k−1

bi[ti](c−i, t−i)

for all (c−i, η
1
−i, η

2
−i, . . . , η

k−1
−i ) ∈ Xk

i and for all k ≥ 2, where the sequence ηi[ti] :=

(ηni [ti])n∈N is called the ti-induced belief hierarchy of player i. The set Hi[T Γ ] := {ηi ∈
×n∈N

(
∆(Xn

i )
)

: there exists ti ∈ Ti such that ηi[ti] = ηi} is called the T Γ -induced set of
belief hierarchies of player i.

An alternative way to represent interactive thinking in games is based on the idea
of possible worlds – sometimes also called states – due to Kripke (1963) and Aumann
(1974). This epistemic approach employs a state-based structure as formal framework
added to Γ .

Definition 2. Let Γ be a game. A state model of Γ is a tuple SΓ = 〈Ω, (Ii, σi, πi)i∈I〉,
where

– Ω is a finite set of all possible worlds,

and for every player i ∈ I,

– Ii ⊆ 2Ω is a possibility partition of Ω,
– σi : Ω → Ci is a Ii-measurable choice function,
– πi ∈ ∆(Ω) is a subjective prior on Ω such that πi

(
Ii(ω)

)
> 0 for every world ω ∈ Ω

with Ii(ω) denoting the cell of Ii containing ω.

Belief hierarchies also naturally emerge in state models. Given some player i, a pos-
sible world ω induces a belief hierarchy as follows:

η1i [ω](c−i) :=
∑

ω′∈Ii(ω):σ−i(ω′)=c−i

πi
(
ω′ | Ii(ω)

)
for all c−i ∈ X1

i , as well as

ηki [ω](c−i, η
1
−i, η

2
−i, . . . , η

k−1
−i )

:=
∑

ω′∈Ii(ω):σ−i(ω′)=c−i,ηl−i[ω′]=ηl−i for all 1≤l≤k−1

πi
(
ω′ | Ii(ω)

)
for all (c−i, η

1
−i, η

2
−i, . . . , η

k−1
−i ) ∈ Xk

i and for all k ≥ 2, where the sequence ηi[ω] :=

(ηni [ω])n∈N is called the ω-induced belief hierarchy of player i. The set Hi[SΓ ] := {ηi ∈
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×n∈N
(
∆(Xn

i )
)

: there exists ω ∈ Ω such that ηi[ω] = ηi} is called the SΓ -induced set of
belief hierarchies of player i

By the Ii-measurability of σi the same choice for player i is assigned throughout an
information cell, i.e. σi(ω

′) = σi(ω) for all ω′ ∈ Ii(ω). Every information cell Pi ∈ Ii
thus induces a choice σi(Pi) ∈ Ci, where σi(Pi) := σi(ω) for all ω ∈ Pi. Moreover, since
the belief hierarchies are constructed on the basis of posterior beliefs, it follows that i’s
belief hierarchies are also constant throughout his information cells, i.e. ηi[ω

′] = ηi[ω]
for all ω′ ∈ Ii(ω).

The common prior assumption constitutes a frequently used premise in game theory.
Accordingly, all beliefs are derived from a single probability measure. The common prior
assumption formalizes the conceptual viewpoint that differences in beliefs are only due
to differences in information.

Within the framework of type models the common prior assumption requires the
probability measure of every type induced by the belief function to be obtained via
Bayesian conditionalization on some common probability measure on all players’ choice
type combinations.

Definition 3. Let Γ be a game and T Γ a type model of Γ . The type model T Γ satisfies
the common prior assumption, if there exists a probability measure ρ ∈ ∆

(
×j∈I (Cj×Tj)

)
such that for every player i ∈ I, and for every type ti ∈ Ti it is the case that ρ(ti) > 0
and

bi[ti](c−i, t−i) =
ρ(ci, c−i, ti, t−i)

ρ(ci, ti)

for all ci ∈ Ci with ρ(ci, ti) > 0, and for all (c−i, t−i) ∈ C−i × T−i. The probability
measure ρ is called common prior.

The preceding formalization of the common prior assumption is equivalent to the con-
junction of Dekel and Siniscalchi’s (2015) Definition 12.13 with their Definition 12.15 as
well as to Bach and Perea’s (2020) Definition 4.

In state models the common prior assumption simply postulates all subjective priors
to coincide.

Definition 4. Let Γ be a game and SΓ a state model of Γ . The state model SΓ satisfies
the common prior assumption, if there exists a probability measure π ∈ ∆(Ω) such that
πi = π for every player i ∈ I. The probability measure π is called common prior.

3 Transformation of State Models into Type Models

The following transformation procedure converts state models into type models.

Definition 5. Let Γ be a game, and SΓ a state model of Γ . The tuple

〈(Ti, bi)i∈I〉

forms the SΓ -generated type model of Γ , where for every player i ∈ I,

– Ti := {tPii : Pi ∈ Ii} is i’s set of types,
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– bi : Ti → ∆(C−i × T−i) is i’s belief function with

bi[t
Pi
i ](c−i, t

P−i
−i ) :=

∑
ω∈Pi:σ−i(ω)=c−i,I−i(ω)=P−i

πi({ω} | Pi),

for all (c−i, t
P−i
−i ) ∈ C−i × T−i and for all tPii ∈ Ti.

In a nutshell, information cells are transformed into types and the types’ beliefs are
then given by the subjective priors conditionalized on the corresponding information
cells. Note that the type model generated by a given state model actually is unique.

It turns out that the transformation procedure laid out in Definition 5 preserves the
induced belief hierarchies of state models.

Theorem 1. Let Γ be a game, SΓ a state model of Γ with SΓ -generated type model
〈(Ti, bi)i∈I〉 of Γ , i ∈ I some player, and ω ∈ Ω some world. Then,

ηi[ω] = ηi[t
Ii(ω)
i ].

Proof. It is shown inductively that ηki [ω] = ηki [t
Ii(ω)
i ] holds for all k ≥ 1. It then directly

follows that ηi[ω] = (ηni [ω])n∈N =
(
ηni [t

Ii(ω)
i ]

)
n∈N = ηi[t

Ii(ω)
i ].

First of all, observe that
η1i [ω](c−i)

=
∑

ω′∈Ii(ω):σ−i(ω′)=c−i

πi
(
ω′ | Ii(ω)

)
=

∑
t
P−i
−i ∈T−i

∑
ω′∈Ii(ω):σ−i(ω′)=c−i,I−i(ω′)=P−i

πi
(
ω′ | Ii(ω)

)
=

∑
t
P−i
−i ∈T−i

bi[t
Ii(ω)
i ](c−i, t

P−i
−i )

= η1i [t
Ii(ω)
i ](c−i)

for all c−i ∈ C−i.
Now, suppose that ηki [ω] = ηki [t

Ii(ω)
i ] holds up to some k > 1. It then follows that

ηk+1
i [ω](c−i, η

1
−i, . . . , η

k
i )

=
∑

ω′∈Ii(ω):σ−i(ω′)=c−i,ηl−i[ω′]=ηl−i for all 1≤l≤k

πi
(
ω′ | Ii(ω)

)
=

∑
t
P−i
−i ∈T−i:ηl−i[t

P−i
−i ]=ηl−i for all 1≤l≤k

∑
ω′∈Ii(ω):σ−i(ω′)=c−i,I−i(ω′)=P−i

πi
(
ω′ | Ii(ω)

)
=

∑
t
P−i
−i ∈T−i:ηl−i[ti]=ηl−i for all 1≤l≤k

bi[t
Ii(ω)
i ](c−i, t

P−i
−i )

= ηk+1
i [t

Ii(ω)
i ](c−i, η

1
−i, . . . , η

k
−i)

for all (c−i, η
1
−i, . . . , η

k
−i) ∈ X

k+1
i . �
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Also, the common prior assumption is maintained from state to type models.

Theorem 2. Let Γ be a game, and SΓ a state model of Γ satisfying the common prior
assumption. Then, the SΓ -generated type model 〈(Ti, bi)i∈I〉 of Γ satisfies the common
prior assumption.

Proof. Define a probability measure ρ ∈ ∆
(
×i∈I (Ci × Ti)

)
in the SΓ -generated type

model 〈(Ti, bi)i∈I〉 such that for all (ci, t
Pi
i )i∈I ∈ ×i∈I(Ci × Ti)

ρ
(
(ci, t

Pi
i )i∈I

)
:=

{
π(∩i∈IPi), if σi(Pi) = ci for all i ∈ I,
0, otherwise.

First of all it is established that ρ(tPii ) > 0 holds for all tPii ∈ Ti and for all i ∈ I.

Let tPii ∈ Ti and observe that ρ(tPii ) =
∑
t
P−i
−i ∈T−i

∑
(cj)j∈I∈×j∈ICj ρ

(
(cj , t

Pj
j )j∈I

)
=∑

P−i∈I−i π(∩j∈IPj) = π(Pi) and since π(Pi) > 0 it thus follows that ρ(tPii ) > 0 holds.

Next it is shown that for all i ∈ I and for all tPii ∈ Ti, the equation

bi[t
Pi
i ](c−i, t

P−i
−i ) =

ρ(ci, c−i, t
Pi
i , t

P−i
−i )

ρ(ci, t
Pi
i )

holds for all ci ∈ Ci with ρ(ci, t
Pi
i ) > 0, and for all (c−i, t

P−i
−i ) ∈ C−i × T−i Note

that ρ(ci, t
Pi
i ) =

∑
t
P−i
−i ∈T−i

∑
c−i∈C−i ρ

(
(cj , t

Pj
j )j∈I

)
=
∑
ω∈Ω:σi(ω)=ci,Ii(ω)=Pi π

(
∩j∈I

Ij(ω)
)

= π(Pi) > 0 holds, if and only if, σi(Pi) = ci. Thus, the following equation

bi[t
Pi
i ](c−i, t

Pi
−i) =

ρ
(
σi(Pi), c−i, t

Pi
i , t

Pi
−i
)

ρ
(
σi(Pi), t

Pi
i

)
has to be validated for all (c−i, t

P−i
−i ) ∈ C−i × T−i and for all tPii ∈ Ti.

Consider some Pi ∈ Ii and distinguish two cases (I) and (II).
Case (I). Suppose that Pi ∩ (∩j∈I\{i}Pj) 6= ∅ and cj = σj(Pj) for all j ∈ I \ {i}.

Then,

bi[t
Pi
i ](c−i, t

P−i
−i ) = bi[t

Pi
i ](σ−i(P−i), t

P−i
−i )

=
∑

ω∈Pi:σ−i(ω)=σ−i(P−i),I−i(ω)=P−i

π(ω | Pi)

=
∑

ω∈Pi:ω∈Pj for all j∈I\{i}

π(ω | Pi)

=
π(∩k∈IPk)

π(Pi)

=
π(∩k∈IPk)∑

P̂j∈Ij for all j∈I\{i}} π
(
Pi ∩ (∩j∈I\{i}P̂j)

)
=

ρ
(
σi(Pi), t

Pi
i , σ−i(P−i), t

P−i
−i
)

∑
P̂−i∈I−i ρ

(
σi(Pi), t

Pi
i , σ−i(P̂−i), t

P̂−i
−i
)
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=
ρ
(
σi(Pi), t

Pi
i , σ−i(P−i), t

P−i
−i
)

∑
(c−i,t

P̂−i
−i )∈C−i×T−i

ρ
(
σi(Pi), t

Pi
i , c−i, t

P̂−i
−i
)

=
ρ
(
σi(Pi), t

Pi
i , c−i, t

P−i
−i
)

ρ
(
σi(Pi), t

Pi
i

)
for all (c−i, t

P−i
−i ) ∈ C−i × T−i.

Case (II). Suppose that Pi ∩ (∩j∈I\{i}Pj) = ∅ or cj 6= σj(Pj) for some j ∈ I \ {i}.
Then, ρ

(
σi(Pi), t

Pi
i , c−i, t

P−i
−i
)

= 0 holds by definition of ρ as well as bi[t
Pi
i ](c−i, t

P−i
−i ) =∑

ω∈Pi:σ−i(ω)=c−i,I−i(ω)=P−i
π({ω}∩Pi)
πi(Pi)

=
∑
ω∈Pi:σ−i(ω)=c−i,I−i(ω)=P−i π({ω} | Pi) = 0. It

directly follows that

bi[t
Pi
i ](c−i, t

P−i
−i ) =

ρ
(
σi(Pi), t

Pi
i , c−i, t

P−i
−i
)

ρ
(
σi(Pi), t

Pi
i

)
for all (c−i, t

P−i
−i ) ∈ C−i × T−i.

Therefore, the SΓ -generated type model 〈(Ti, bi)i∈I〉 satisfies the common prior as-
sumption. �

4 Transformation of Type Models into State Models

Taking type models as input the following transformation procedure defines correspond-
ing state models.

Definition 6. Let Γ be a game, and T Γ be a type model of Γ . The tuple

〈Ω, (Ii, σi, πi)i∈I〉

forms a T Γ -generated state model of Γ , where

– Ω := {ω(ci,ti)i∈I : ci ∈ Ci, ti ∈ Ti for all i ∈ I} is the set of all possible worlds,

and for every player i ∈ I,

– Ii ⊆ 2Ω is i’s possibility partition with

Ii(ω(cj ,tj)j∈I ) := {ω(ci,ti,c
′
−i,t

′
−i) ∈ Ω : c′−i ∈ C−i, t′−i ∈ T−i}

for all ω(cj ,tj)j∈I ∈ Ω,
– σi : Ω → Ci is i’s choice function with

σi(ω
(ci,ti,c−i,t−i)) := ci

for all ω(cj ,tj)j∈I ∈ Ω,
– πi ∈ ∆(Ω) is i’s subjective prior with

πi
(
ω(ci,ti,c−i,t−i) | Ii(ω(ci,ti,c−i,t−i))

)
:= bi[ti](c−i, t−i)

for all ω(ci,ti,c−i,t−i)j∈I ∈ Ω.
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The transformation procedure generates a possible world for every combination of
choices and types of the players. An information cell is associated with a choice type pair
of a player and contains all worlds where the choices and types are varied for the oppo-
nents. The choice functions pick the choices of the players in line with the corresponding
worlds. Finally, the subjective priors are indirectly fixed via their induced posteriors.
The belief of a given player i about a world conditional on his information is defined
as his belief of the corresponding type about the opponents’ choice type combinations
attached to the world. Only varying i’s choices thus results in the same belief. Observe
that for every cell the conditional probabilty measures on the set of possible worlds do
indeed sum up to one and are well-defined.

A state model constructed by the transformation procedure based on the type model
T Γ is generally not unique, as the subjective priors can be varied. The possible multi-
plicity of generated state models ensues because of their richer structure compared to
type models. While type models only specify posterior beliefs, state models fix prior
beliefs and choices on top of (implicit) posterior beliefs. In terms of interactive thinking
this additional information is superfluous, and results in some ambiguity when deducing
a state model from a type model which constitutes a sparser formal representation of
interactive thinking. The ensueing freedom in constructing a T Γ -generated state model
manifests itself in specifying the subjective priors. Only the engendered posterior beliefs
are required to coincide with the corresponding types‘ beliefs in T Γ .

The transformation procedure yields the same induced belief hierarchies in the type
model of departure and its corresponding state models.

Theorem 3. Let Γ be a game, and T Γ a type model of Γ with some T Γ -generated state
model SΓ of Γ , i ∈ I some player, and ti ∈ Ti some type of player i. Then,

ηi[ti] = ηi[ω
(ci,ti,c−i,t−i)]

for all (ci, c−i, t−i) ∈ Ci × C−i × T−i.

Proof. It is shown inductively that ηki [ti] = ηki [ω(ci,ti,c−i,t−i)] holds for all (ci, c−i, t−i) ∈
Ci × C−i × T−i, and for all k ≥ 1. It then directly follows that ηi[ti] = (ηni [ti])n∈N =(
ηni [ω(ci,ti,c−i,t−i)]

)
n∈N = ηi[ω

(ci,ti,c−i,t−i)] for all (ci, c−i, t−i) ∈ Ci × C−i × T−i.
First of all, let (ci, c−i, t−i) ∈ Ci × C−i × T−i and observe that

η1i [ti](c
′
−i)

=
∑

t′−i∈T−i

bi[ti](c
′
−i, t

′
−i)

=
∑

t′−i∈T−i

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(ci,ti,c

′
−i,t

′
−i))

)
=

∑
t′−i∈T−i

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(ci,ti,c−i,t−i))

)
=

∑
ω∈Ii(ω(ci,ti,c−i,t−i)):σ−i(ω)=c′−i

πi
(
ω | Ii(ω(ci,ti,c−i,t−i))

)
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= η1i [ω(ci,ti,c−i,t−i)](c′−i)

holds for all c′−i ∈ C−i.
Now, suppose that ηki [ti] = ηki [ω(ci,ti,c−i,t−i)] holds for all (ci, c−i, t−i) ∈ Ci×C−i×T−i

up to some k > 1. Let (ci, c−i, t−i) ∈ Ci × C−i × T−i and observe that

ηk+1
i [ti](c

′
−i, η

1
−i, . . . , η

k
−i)

=
∑

t′−i∈T−i:ηl−i[t′−i]=ηl−i for all 1≤l≤k

bi[ti](c
′
−i, t

′
−i)

=
∑

t′−i∈T−i:ηl−i[t′−i]=ηl−i for all 1≤l≤k

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(ci,ti,c

′
−i,t

′
−i))

)
=

∑
t′−i∈T−i:ηl−i[t′−i]=ηl−i for all 1≤l≤k

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(ci,ti,c−i,t−i))

)
for all (c′−i, η

1
−i, . . . , η

k
−i) ∈ X

k+1
i .

By the inductive assumption, it is the case ηlj [tj ] = ηlj [ω
(cj ,tj ,c−j ,t−j)] for all j ∈ I\{i},

for all tj ∈ Tj , for all 1 ≤ l ≤ k, and for all cj , c−j , t−j ∈ Cj × C−j × T−j . Therefore,

=
∑

t′−i∈T−i:ηl−i[t′−i]=ηl−i for all 1≤l≤k

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(ci,ti,c−i,t−i))

)

=
∑

ω′∈Ii(ω(ci,ti,c−i,t−i)):ηl−i[ω
′]=ηl−i for all 1≤l≤k,σ−i(ω′)=c′−i

πi
(
ω′ | Ii(ω(ci,ti,c−i,t−i))

)
= ηk+1

i [ω(ci,ti,c−i,t−i)](c′−i, η
1
−i, . . . , η

k
−i)

for all (c′−i, η
1
−i, . . . , η

k
−i) ∈ X

k+1
i . �

The common prior assumption is preserved from type to state models, too.

Theorem 4. Let Γ be a game, and T Γ a type model of Γ satisfying the common prior
assumption. Then, there exists a T Γ -generated state model 〈Ω, (Ii, σi, πi)i∈I〉 of Γ that
satisfies the common prior assumption.

Proof. Define a state model 〈Ω, (Ii, σi, πi)i∈I〉 of Γ with the objects Ω, (Ii, σi)i∈I as in
Definition 6, as well as with a probability measure π ∈ ∆(Ω) such that π(ω(ci,ti)i∈I ) :=
ρ
(
(ci, ti)i∈I

)
for all ω(ci,ti)i∈I ∈ Ω and πi = π for all i ∈ I. By construction 〈Ω, (Ii, σi, πi)i∈I〉

thus satisfies the common prior assumption. Since

πi
(
ω(ci,ti,c

′
−i,t

′
−i) | Ii(ω(cj ,tj)j∈I )

)
=
π(ω(ci,ti,c

′
−i,t

′
−i))

π
(
Ii(ω(cj ,tj)j∈I )

) =
ρ(ci, ti, c

′
−i, t

′
−i)

ρ(ci, ti)
= bi[ti](c

′
−i, t

′
−i)

holds for all (c′−i, t
′
−i) ∈ C−i × T−i, for all ω(cj ,tj)j∈I ∈ Ω and for all i ∈ I, the state

model 〈(Ω, (Ii, πi, σi)i∈I)〉 also forms a T Γ -generated state model of Γ . �
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5 Isomorphism

The transformation procedure in Definition 5 converts state models into type models,
while the one in Definition 6 moulds state moldels from type models. In terms of struc-
tural equivalence of epistemic models the question whether these two transformation
procedures are inverse to each other naturally emerges. We explore the relationship
between the two transformation procedures by means of isomorphism. Intuitively, two
epistemic models are isomorphic if they formalize the same interactive thinking. In our
context two issues need to be addressed. Firstly, it has to be determined whether a type
model is isomorphic to the type model generated via Definition 5 by the state model
which itself is generated via Definition 6 by the type model of departure. Secondly, it
needs to be established whether a state model is isomorphic to the state model generated
via Definition 6 by the type model which itself is generated via Definition 5 by the state
model of departure.

For the epistemic framework of type models the notion of isomorphism can be spelled
out as follows.

Definition 7. Let Γ be a game, and 〈(Ti, bi)i∈I〉 as well as 〈(T̃i, b̃i)i∈I〉 be type models
of Γ . The type models 〈(Ti, bi)i∈I〉 and 〈(T̃i, b̃i)i∈I〉 are isomorphic, if for all i ∈ I there
exists a bijection fi : Ti → T̃i such that

b̃i[fi(ti)]
(
c−i, f−i(t−i)

)
= bi[ti](c−i, t−i)

for all (c−i, t−i) ∈ C−i × T−i and for all ti ∈ Ti.

Intuitively, in two isomorphic type models the same belief hierarchies are present – in
fact only their labels differ – and thus the described interactive thinking is alike. The
bijection in Definition 7 is essentially equivalent to the notion of type isomorphism due
to Heifetz and Samet (1998, Definition 3.2).

Take some type model T Γ = 〈(Ti, bi)i∈I〉 as input and construct a type model ˆT Γ =

〈(T̂i, b̂i)i∈I〉 as output by first applying Definition 6 to T Γ and then Definition 5 to the
T Γ -generated state model. It turns out that the isomorphic relationship does actually
not always hold between such input and output type models. To see this consider the
following example.

Example 1. Let Γ be a game with I = {i, j}, Ci = {a} as well as Cj = {b, c}, and T Γ a
type model of Γ with

– Ti = {ti},
– Tj = {tj},
– bi[ti](b, tj) = 1

2 and bi[ti](c, tj) = 1
2 ,

– bj [tj ](a, ti) = 1.

Then, 〈Ω, (Ii, σi, πi)i∈I〉 with

– Ω = {ω(a,ti,b,tj), ω(a,ti,c,tj)},
– Ii = {Ω},
– Ij =

{
{ω(a,ti,b,tj)}, {ω(a,ti,c,tj)}

}
,

– πi(ω) = πj(ω) = 1
2 for all ω ∈ Ω,
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– σi(ω
(a,ti,b,tj)) = σi(ω

(a,ti,c,tj)) = a,
– σj(ω

(a,ti,b,tj)) = b and σj(ω
(a,ti,c,tj)) = c,

forms a T Γ -induced state model of Γ . The 〈Ω, (Ii, σi, πi)i∈I〉-induced type model of Γ

is given by ˆT Γ = 〈(T̂i, b̂i)i∈I〉 with

– T̂i = {tΩi } and Tj = {t{ω
(a,ti,b,tj)}

j , t
{ω(a,ti,c,tj)}
j },

– b̂i[t
Ω
i ](b, t

{ω(a,ti,b,tj)}
j ) =

∑
ω∈Ω:σj(ω)=b,Ij(ω)={ω(a,ti,b,tj)} πi(ω | {Ω}) = 1

2 and

b̂i[t
Ω
i ](c, t

{ω(a,ti,c,tj)}
j ) =

∑
ω∈Ω:σj(ω)=c,Ij(ω)={ω(a,ti,c,tj)} πi(ω | {Ω}) = 1

2

– b̂j [t
{ω(a,ti,b,tj)}
j ](a, tΩi ) =

∑
ω∈Ω:σi(ω)=a,Ii={Ω} πj(ω | {ω

(a,ti,b,tj)}) = 1,

– b̂j [t
{ω(a,ti,c,tj)}
j ](a, tΩi ) =

∑
ω∈Ω:σi(ω)=a,Ii={Ω} πj(ω | {ω

(a,ti,c,tj)}) = 1.

Since | Tj |<| T̂j |, there does not exist a bijection fj : Tj �→ T̂j and consequently T Γ

and ˆT Γ are not isomorphic. ♣

In the preceding example the input type model only contains one type for player j,
yet there are two cells for him in the generated state model, which in turn imply two
corresponding types in its induced type model. It thus becomes impossible to construct
a bijection between the two type models. However, one of the two types in the output
type model is superfluous in the sense of interactive thinking, as it encodes precisely the
same belief hierarchy as the other type.

To remove any superflous ingredients from type models we now introduce the idea of
reduction.

Definition 8. Let Γ be a game, and 〈(Ti, bi)i∈I〉 as well as 〈(T̃i, b̃i)i∈I〉 type models of
Γ .

(a) The type model is 〈(T̃i, b̃i)i∈I〉 is a reduction of the type model 〈(Ti, bi)i∈I〉 , if for
every player i ∈ I there exists a reduction function ri : Ti → T̃i such that ri is
surjective and

b̃i (ri(ti))
(
(cj , t̃j)j∈I\{i}

)
= bi(ti)

((
{cj} × r−1j (t̃j)

)
j∈I\{i}

)
(1)

for all (cj , t̃j)j∈I\{i} ∈ ×j∈I\{i}(Cj , T̃j) and for all ti ∈ Ti.
(b) The type model 〈(T̃i, b̃i)i∈I〉 is a strict reduction of the type model 〈(Ti, bi)i∈I〉, if
〈(T̃i, b̃i)i∈I〉 is a reduction of 〈(Ti, bi)i∈I〉 and | T̃j |<| Tj | for some j ∈ I.

(c) The type model 〈(T̃i, b̃i)i∈I〉 is a maximal reduction of the type model 〈(Ti, bi)i∈I〉,
if 〈(T̃i, b̃i)i∈I〉 is a reduction of 〈(Ti, bi)i∈I〉 and there exists no strict reduction of
〈(T̃i, b̃i)i∈I〉.

Note that the reduction functions ri for all i ∈ I correspond to surjective type morphisms
of Heifetz and Samet (1998, Definition 3.2).

A couple of preparatory results about reduced type models are established next.

Lemma 1. Let Γ be a game, T Γ a type model of Γ , ˜T Γ a reduction of T Γ with reduction
function rj : Tj → T̃j for every player j ∈ I, and i ∈ I some player. Then, ηi[ti] =
ηi[ri(ti)] for all ti ∈ Ti.
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Proof. It is shown inductively that ηi[ti]
k = ηi[ri(ti)]

k holds for all ti ∈ Ti, for all i ∈ I,
and for all k ≥ 1. It then directly follows that ηi[ti] = (ηni [ti])n∈N = (ηni [ri(ti)])n∈Nηi[ri(ti)]
for all ti ∈ Ti and for all i ∈ I.

Let k = 1 and consider some player i ∈ I, some type ti ∈ Ti of player i, as well as
some opponents’ choice combination c−i ∈ C−i. By definition,

η1i [ti](c−i) =
∑

t−i∈T−i

bi[ti](c−i, t−i).

Moreover, as

b̃i[ri(ti)](c−i, t̃−i) =
∑

t−i∈T−i:r−i(t−i)=t̃−i

bi[ti](c−i, t−i),

it follows that
η1i [ri(ti)](c−i) =

∑
t̃−i∈T̃−i

b̃i[ri(ti)](c−i, t̃−i)

=
∑

t̃−i∈T̃−i

∑
t−i∈T−i:r−i(t−i)=t̃−i

bi[ti](c−i, t−i) =
∑

t−i∈T−i

bi[ti](c−i, t−i) = η1i [ti](c−i).

Let k ≥ 2 and assume that ηi[ti]
l = ηi[ri(ti)]

l holds for all ti ∈ Ti, for all i ∈ I, and
for all l ≤ k − 1. Consider some player i ∈ I, some type ti ∈ Ti of player i, and some
tuple (c−i, η

1
−i, . . . , η

k−1
−i ) ∈ Xk

−i. By definition,

ηki [ti](c−i, η
1
−i, . . . , η

k−1
−i ) =

∑
t−i∈T−i:ηl−i[t−i]=ηl−i for all l≤k−1

bi[ti](c−i, t−i).

Consequently,

ηki [ri(ti)] =
∑

t̃−i∈T̃−i:ηl−i[t̃−i]=ηl−i for all l≤k−1

bi[ri(ti)](c−i, t̃−i)

=
∑

t̃−i∈T̃−i:ηl−i[t̃−i]=ηl−i for all l≤k−1

∑
t−i∈T−i:r−i(t−i)=t̃−i

bi[ti](c−i, t−i)

=
∑

t−i∈T−i:ηl−i[r−i(t−i)]=ηl−i for all l≤k−1

bi[ti](c−i, t−i) =
∑

t−i∈T−i:ηl−i[t−i]=ηl−i for all l≤k−1

bi[ti](c−i, t−i)

= ηki [ti](c−i, η
1
−i, . . . , η

k−1
−i ),

where the fourth equality follows from the inductive hypothesis. �

Thus, type models are structurally equivalent to their reduced counterparts. No essential
information is lost and the same interactive reasoning is represented. Lemma 1 follows
from Heifetz and Samet (1998, Proposition 5.1). Since their formal framework is slightly
different and to keep our paper self-contained, we still provide a direct proof.

Lemma 2. Let Γ be a game, T Γ a type model of Γ such that there exists no strict
reduction of T Γ , and i ∈ I some player. Then, ηi[t

′
i] 6= ηi[t

′′
i ] for all t′i, t

′′
i ∈ Ti such that

t′i 6= t′′i .
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Proof. By contraposition, suppose that there exist t′i, t
′′
i ∈ Ti such that t′i 6= t′′i and

ηi[t
′
i] = ηi[t

′′
i ]. For every player j ∈ I recall the set Hj [T Γ ] := {ηj ∈ ×n∈N∆(Xn

j ) :
There exists tj ∈ Tj such that ηj [tj ] = ηj} of induced belief hierarchies in the type

model T Γ . Construct a type model ˜T Γ = 〈(T̃j , b̃j)j∈I〉 where T̃j := Hj [T Γ ] for every
player j ∈ I and

b̃j [hj ](c−j , h−j) :=
∑

t−j∈T−j :η−j [t−j ]=h−j

bj [tj ](c−j , t−j) (2)

such that ηj [tj ] = hj , for all (c−j , h−j) ∈ C−j × T̃−j , for all hj ∈ T̃j , and for all j ∈ I.
Observe that the belief functions are well-defined, since every two types tj , t

′
j ∈ Tj such

that ηj [tj ] = ηj [t
′
j ] satisfy∑

t−j∈T−j :η−j [t−j ]=h−j

bj [tj ](c−j , t−j) =
∑

t−j∈T−j :η−j [t−j ]=h−j

bj [t
′
j ](c−j , t−j)

for all (c−j , t−j) ∈ C−j × T−j and for all h−j ∈ T̃−j .
For every player j ∈ I define a surjection rj : Tj → T̃j such that

rj(tj) := ηj [tj ] (3)

for all tj ∈ Tj . By (2) and (3) it follows that

b̃j [rj(tj)](c−j , t̃−j) = bj [tj ]
(
{c−j} × r−1−j (t̃−j)

)
for all (c−j , t̃−j) ∈ C−j × T̃−j , for all tj ∈ Tj , and for all j ∈ I. Consequently, ˜T Γ
constitutes a reduction of T Γ . Since ηi[t

′
i] = ηi[t

′′
i ], it is the case that | T̃i |=| Hi[T Γ ] |<|

Ti | for player i. Therefore, ˜T Γ actually is a strict reduction of T Γ . �

Accordingly, any two different types in an epistemic model without strict reduction
possibilities induce distinct belief hierarchies. In this sense, maximally reduced type
models do not carry any superfluous ingredients.

If the input type model and output type model of the successive application of the
two transformation procedures are considered in their maximally reduced form, then an
isomorphism does emerge between the input and output type models.

Theorem 5. Let Γ be a game, T Γ a type model of Γ , and ˆT Γ the type model of Γ gener-
ated by a T Γ -generated state model. Then, every maximal reduction of T Γ is isomorphic

to every maximal reduction of ˆT Γ .

Proof. Let i ∈ I be a player and note that the set T̂i from ˆT Γ can be expressed as

{t̂P
(ci,ti)

i
i : ti ∈ Ti, ci ∈ Ci}, where Ti belongs to T Γ . Construct a correspondence ei :

Ti → T̂i such that

ei(ti) := {t̂P
(ci,ti)

i
i : ci ∈ Ci}

for all ti ∈ Ti. Thus, ei maps i’s types from the initial input model to the respective
types in the output model. Hence, by construction, T̂i = ∪ti∈Tiei(ti). By Theorems 3
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and 1 it follows that every ti ∈ Ti and every t̂i ∈ T̂i such that t̂i ∈ ei(ti) induce the
same belief hierarchy, i.e. ηi[ti] = ηi[t̂i]. Consequently, for every player i ∈ I there exists
a collection of belief hierarchies Hi ⊆ ×n∈N

(
∆(Xn

i )
)

such that

Hi[T Γ ] = Hi[ ˆT Γ ] = Hi. (4)

Let T Γ↓ = 〈(T↓i, b↓i)i∈I〉 be a maximal reduction of T Γ and ˆT Γ↓ = 〈(T̂↓i, b̂↓i)i∈I〉 a

maximal reduction of ˆT Γ . By Lemma 1 and (4) it follows that Hi[T Γ↓ ] = Hi[T Γ ] = Hi as

well as Hi[
ˆT Γ↓ ] = Hi[ ˆT Γ ] = Hi for all i ∈ i. Moreover, Lemma 2 implies that two distinct

types in T Γ↓ induce different belief hierarchies. The same holds for ˆT Γ↓ . Consequently,
for every player i ∈ I and for every belief hierarchy hi ∈ Hi there exists a unique type
ti ∈ T↓i ∈ T↓i and a unique type t̂i ∈ T̂↓i such that ηi[ti] = ηi[t̂i] = hi.

It follows that for every player i ∈ I a bijection fi : T↓i → T̂↓i can be defined such
that

ηi[ti] = ηi[fi(ti)] (5)

for all ti ∈ T↓i. Besides, (5) implies that b̂↓i[fi(ti)]
(
c−i, f(t−i)

)
= b↓i[ti](c−i, t−i) for all

(c−i, t−i) ∈ C−i × T−i and for all ti ∈ T↓i. Therefore, T↓i and T̂↓i are isomorphic. �

A type model can thus be said to be structurally equivalent to its two-fold transformed
counterpart modulo superfluous ingredients.

An notion of isomorphism can also be laid out for the epistemic framework of state
models.

Definition 9. Let Γ be a game, and 〈Ω, (Ii, σi, πi)i∈I〉 as well as 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 state
models of Γ . The state models 〈Ω, (Ii, σi, πi)i∈I〉 and 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 are isomorphic,
if there exists a bijection f : Ω → Ω̃ such that for all ω ∈ Ω and for all i ∈ I it is the
case that

Ĩi
(
f(ω)

)
= {f(ω′) : ω′ ∈ Ii(ω)}, (6)

π̃i

(
{f
(
ω
)
} | Îi

(
f(ω)

))
= πi

(
{ω} | Ii(ω)

)
, (7)

σ̃i
(
f(ω)

)
= σi(ω). (8)

In two isomorphic state models the corresponding worlds induce the same information,
posterior beliefs, and choices for all players. The subjective priors can be distinct yet
the models qualify as isomorphic, because the players’ belief hierarchies i.e. their full
interactive thinking are fixed by the posterior beliefs. A difference in priors is not a
relevant issue, as the posterior beliefs are the relevant doxastic mental configurations
upon which the agents act. In that sense subjective prior beliefs could be viewed as
artifacts of the state-based approach.

Take some state model SΓ = 〈Ω, (Ii, σi, πi)i∈I〉 as input and construct a state model

ŜΓ = 〈Ω̂, (Îi, σ̂i, π̂i)i∈I〉 as output by first applying Definition 5 to SΓ and then Definition
6 to the SΓ -generated type model. By counterexample it is now illustrated that such
input and output state models are not necessarily isomorphic.

Example 2. Let Γ be a game with I = {i, j}, and Ci = {a} as well as Cj = {b} be
choices of i and j, respectively. Consider the state model SΓ of Γ with
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– Ω = {ω1, ω2},
– Ii = Ij = {Ω},
– πi(ω) = πj(ω) = 1

2 for all ω ∈ Ω,
– σi(ω) = a and σj(ω) = b for all ω ∈ Ω.

Then, T Γ = 〈(Ti, bi)i∈I〉 with

– Ti = {tΩi } and Tj = {tΩj },
– bi[t

Ω
i ](b, tΩj ) =

∑
ω∈Ω:σj(ω)=b,Ij(ω)={Ω} πi(ω | {Ω}) = 1,

– bj [t
Ω
j ](a, tΩi ) =

∑
ω∈Ω:σi(ω)=a,Ii(ω)={Ω} πj(ω | {Ω}) = 1,

constitutes the SΓ -generated type model of Γ . However, it directly follows that 〈Ω̂, (Îi, σ̂i, π̂i)i∈I〉
with Ω̂ = {ω(ci,t

Ω
i ,cj ,t

Ω
j )} forms the unique T Γ -generated state model of Γ . Consequently,

there exists no bijection f : Ω → Ω̂. The state models SΓ and ŜΓ are consequently not
isomorphic. ♣

In the preceding example the possible worlds ω1 and ω2 in the input state model SΓ
induce the same choices and beliefs for both players. In terms of interactive thinking
one of them thus is superfluous. These kind of redundancies prevent the isomorphic
relationship between input and output state models to hold in general.

We call a state model SΓ of Γ non-redundant, if for all ω, ω′ ∈ Ω such that ω 6= ω′

it is the case that Ii(ω) 6= Ii(ω′) or σi(ω) 6= σi(ω
′) for some i ∈ I. Intuivitely, any

two distinct worlds in the structure carry some difference for at least one of the players.
Observe that non-redundancy implies that ∩i∈IIi(ω) = {ω} for all ω ∈ Ω. Essentially,
the latter says that if the players’ information is pooled, then all uncertainty is resolved.

To get rid of any superfluous ingredients we also need a notion of reduction for state
models in addition to non-redundancy.

Definition 10. Let Γ be a game, and 〈Ω, (Ii, σi, πi)i∈I〉 as well as 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 be
state models of Γ .

(a) The state model 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 is a reduction of the state model 〈Ω, (Ii, σi, πi)i∈I〉,
if there exists a reduction function r : Ω → Ω̃ such that r is surjective and for all
i ∈ i

Ĩi
(
r(ω)

)
= {r(ω′) : ω′ ∈ Ii(ω)} for all ω ∈ Ω, (9)

σ̃i
(
r(ω)

)
= σi(ω) for all ω ∈ Ω such that πj

(
ω | Ij(ω)

)
> 0 for some j ∈ I \ {i},

(10)

π̃i

(
ω̃ | Ĩi

(
r(ω)

))
= πi

(
r−1(ω̃) | Ii(ω)

)
for all ω ∈ Ω and for all ω̃ ∈ Ω̃. (11)

(b) The state model 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 is a strict reduction of the state model 〈Ω, (Ii, σi, πi)i∈I〉,
if 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 is a reduction of 〈Ω, (Ii, σi, πi)i∈I〉 and | Ω̃ |<| Ω |.

(c) The state model 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 is a maximal reduction of the state model 〈Ω, (Ii, σi, πi)i∈I〉,
if 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉 is a reduction of 〈Ω, (Ii, σi, πi)i∈I〉 and there exists no strict re-
duction of 〈Ω̃, (Ĩi, σ̃i, π̃i)i∈I〉.

Some results about reductions of state models are developed before an isomorphic
relationship between state models and their two-fold transformed counterparts emerges.
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Lemma 3. Let Γ be a game, and SΓ a state model of Γ . If there exists no strict reduction
of SΓ , then SΓ is non-redundant.

Proof. We proceed by contraposition. Suppose that SΓ is redundant. Then there exist
distinct worlds ω′, ω′′ ∈ Ω such that Ii(ω′) = Ii(ω′′) as well as σi(ω

′) = σi(ω
′′) for every

player i ∈ I. Construct a state model S̃Γ of Γ as follows:

– Ω̃ := Ω \ {ω′, ω′′} ∪ {ω∗}

and for every player j ∈ I,

– Ĩj(ω∗) := Ij(ω′) \ {ω′, ω′′} ∪ {ω∗},

– Ĩj(ω) :=

{
Ij(ω), if ω′, ω′′ 6∈ Ij(ω),

Ĩj(ω∗), otherwise,
for all ω ∈ Ω̃ \ {ω∗},

– σ̃j(ω
∗) = σj(ω

′),

– σ̃j(ω) = σj(ω) for all ω ∈ Ω̃ \ {ω∗},
– π̃j(ω

∗) = πj(ω
′) + πj(ω

′′),

– and π̃j(ω) = πj(ω) for all ω ∈ Ω̃ \ {ω∗}.

Define a function r : Ω → Ω̃ by r(ω′) = r(ω′′) = ω∗ and r(ω) = ω for all ω ∈ Ω\{ω′, ω′′}.
Observe that r is surjective and also satisfies conditions (9), (10), and (11). As | Ω̃ |=|
Ω | −1 <| Ω |, the state model S̃Γ constitutes a strict reduction of SΓ . �

Accordingly, maximal reduction in the sense of the impossibility of strict reduction im-
plies non-redundancy.

By considering maximally reduced models, the existence of superfluous worlds such
as in Example 2 is blocked and an isomorphic relationship between input and output
state models ensues.

Theorem 6. Let Γ be a game, SΓ a state model of Γ , and ŜΓ a state model of Γ gener-
ated by the SΓ -generated type model. Then, every maximal reduction of SΓ is isomorphic

to every maximal reduction of ŜΓ .

Proof. Consider a maximal reduction SΓ↓ of SΓ and a maximal reduction ŜΓ↓ of ŜΓ . The

set Ω̂ from ŜΓ↓ is a subset of {ω̂(ci,t
Ii(ω)

i )i∈I : ci ∈ Ci for all i ∈ I, ω ∈ Ω}, which is from

ŜΓ , and where Ω and Ii for all i ∈ I belong to SΓ↓ . It is first shown that for every world

ω̂(ci,t
Ii(ω)

i )i∈I ∈ Ω̂, it is the case that ci = σi(ω), where σi belongs to SΓ↓ , for all i ∈ I.

Towards a contradiction suppose that there exists a world ω̂(ci,t
Ii(ω)

i )i∈I ∈ Ω̂ such that
cj 6= σj(ω) for some player j ∈ I. By definition of the two transformation procedures,

π̂k
(
ω̂(ci,t

Ii(ω)

i )i∈I | Îk(ω̂(ci,t
Ii(ω)

i )i∈I )
)

= bk[t
Ik(ω)
k ](c−k, t

I−k(ω)
−k )

=
∑

ω′∈Ik(ω):σ−k(ω′)=c−k,I−k(ω′)=I−k(ω)

πk
(
{ω′} | Ik(ω)

)
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for all k ∈ I \ {j}. Since cj 6= σj(ω) the Ij-measurability of σj implies that σj(ω
′′) 6= cj

for all ω′′ ∈ Ij(ω). Consequently, there exists no world ω′ ∈ Ik(ω) such that σj(ω
′) = cj

and Ij(ω′) = Ij(ω). It follows that πk
(
ω′ | Ik(ω)

)
= 0 for all ω′ ∈ Ik(ω) such that

σ−k(ω′) = c−k and I−k(ω′) = I−k(ω). Thus, π̂k
(
ω̂(ci,t

Ii(ω)

i )i∈I | Îk(ω̂(ci,t
Ii(ω)

i )i∈I )
)

= 0

for all k ∈ I \ {j}. Next define a state model S̃Γ based on Ω̃ := {ω̂
(
σi(ω),t

Ii(ω)

i

)
i∈I :

ω ∈ Ω} as set of all possible worlds and a surjection r : Ω̂ → Ω̃ with r(ω̂(ci,t
Ii(ω)

i )i∈I ) =

ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I for all ω̂(ci,t

Ii(ω)

i )i∈I ∈ Ω̂ such that for all i ∈ I:

– Ĩi
(
r(ω̂)

)
:= {r(ω̂′) : ω̂′ ∈ Îi(ω̂)} for all r(ω̂) ∈ Ω̃,

– σ̃i(ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I ) := σi(ω) for all ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I ∈ Ω̃,

– π̃i

(
ω̃ | Ĩi

(
r(ω̂)

))
:= π̂i

(
r−1(ω̃) | Îi(ω̂)

)
for all ω̃ ∈ Ω̃ and for all ω̂ ∈ Ω̂ .

Note that whenever π̂j
(
ω̂ | Îj(ω̂)

)
> 0 for some j ∈ I \ {i}, it is the case that ω̂ ∈ Ω̃

hence σ̃i
(
r(ω̂)

)
= σ̂i(ω̂) = σi(ω), and thus equation (10) is satisfied. As | Ω̃ |<| Ω̂ |, the

state model S̃Γ forms a strict reduction of ŜΓ↓ , a contradiction.

Construct a function f : Ω → Ω̂ such that f(ω) := ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I for all ω ∈ Ω.

The function f is surjective, as for every world ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I ∈ Ω̂ the pre-image

f−1
(
ω̂

(
σi(ω),t

Ii(ω)

i

)
i∈I

)
⊇ {ω} contains {ω} and is thus non-empty by the successive

application of the two transformation procedures, i.e. by first applying Definition 5 to

SΓ↓ and then Definition 6 to the SΓ↓ -generated type model to induce ŜΓ↓ . Suppose that

f(ω′) = f(ω′′), i.e. ω̂

(
σi(ω

′),t
Ii(ω

′)
i

)
i∈I = ω̂

(
σi(ω

′′),t
Ii(ω

′′)
i

)
i∈I , for some worlds ω′, ω′′ ∈ Ω.

Then, σi(ω
′) = σi(ω

′′) as well as Ii(ω′) = Ii(ω′′) for all i ∈ I. As SΓ↓ is non-redundant
by Lemma 3, it follows that ω′ = ω′′. Hence, f is injective too and thus bijective.

We now show that the bijection f satisfies equations (6), (7), and (8) of Definition
10. First, observe that

Îi
(
f(ω)

)
= Îi

(
ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I
)

= {ω̂
(
σj(ω

′),t
Ij(ω

′)
j

)
j∈I ∈ Ω̂ : σi(ω

′) = σi(ω), Ii(ω′) = Ii(ω)}

= {f(ω′) : σi(ω
′) = σi(ω), Ii(ω′) = Ii(ω)} = {f(ω′) : ω′ ∈ Ii(ω)}

for all ω ∈ Ω and for all i ∈ I. Therefore, f satisfies equation (6). Second, σ̂i
(
f(ω)

)
=

σ̂i(ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I ) = σi(ω) for all ω ∈ Ω and for all i ∈ I. Hence, f satisfies equation

(7). Third,

π̂i

(
{f(ω)} | Îi

(
f(ω)

))
= π̂i

(
ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I | Îi

(
f(ω)

))
π̂i

(
ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I | Îi

(
ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I
))

= bi[t
Ii(ω)
i ]

(
σ−i(ω), t

Ii(ω)
−i

)
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=
∑

ω′∈Ii(ω):σ−i(ω′)=σ−i(ω),I−i(ω′)=I−i(ω)

πi
(
{ω′} | Ii(ω)

)
=

∑
ω′∈Ω:Ii(ω′)=Ii(ω),σi(ω′)=σi(ω),σ−i(ω′)=σ−i(ω),I−i(ω′)=I−i(ω)

πi
(
{ω′} | Ii(ω)

)
= πi

(
f−1(ω̂

(
σj(ω),t

Ij(ω)

j

)
j∈I ) | Ii(ω)

)
= πi({ω}) | Ii(ω)

)
for all ω ∈ Ω, and for all i ∈ I. Thus, f satisfies equation (8).

Consequently, SΓ↓ and ŜΓ↓ are isomorphic. �

Hence, a state model is structurally equivalent to its two-fold transformed counterpart
modulo superfluous ingredients.

6 Conclusion

Belief hierarchies as well as the common prior assumption are structurally preserved
across the two epistemic frameworks by the two proposed transformation procedures.
With regards to modelling interactive thinking in games the state-based and type-based
approaches can thus be viewed as equivalent. None of the two models thus contains any
relevant structure that the respective other lacks. The two transformation procedures can
be viewed as practical tools to switch back and forth between state-based and type-based
interactive epistemology.

A somewhat more subtle difference between the two epistemic approaches surfaces,
as the transformation procedures fail to constitute inverses. The underlying reason is
attributable to the richer structure of state models compared to type models. While the
latter only specify interactive thinking the former also fixes the players’ choices. Once
superfluous ingredients are wiped out, by restricting attention to maximally reduced
models, the two transformation procedures turn out to be inverse to each other .

While this disparity between the state and type models does not make a difference
with respect to interactive thinking at all, the particular usage could determine which
epistemic approach is more appropriate. If the focus is put on reasoning in games before
decisions are made or the perspective of a particular player is considered, then type
models might be more suitable. In contrast for analyses that are conducted from the
perspective of a modeller the state-based framework may be preferable. After all there
remains a degree of subjectivity whether the specifaction of beliefs only or beliefs and
behaviour is desired in an epistemic framework for games. Besides, the notions of maximal
reduction for state and type models can also serve to simplify a given epistemic structure
while retaining the same interactive thinking in applications.
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