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Abstract

We consider discounted repeated games in which players can voluntarily purchase information about the opponents’ actions at
past stages. Information about a stage can be bought at a fixed but arbitrary cost. Opponents cannot observe the information pur-
chase by a player. For our main result, we make the usual assumption that the dimension of the set FIR of feasible and individually
rational payoff vectors is equal to the number of players. We show that, if there are at least three players and each player has at
least four actions, then every payoff vector in the interior of the set FIR can be achieved by a Nash equilibrium of the discounted
repeated game if the discount factor is sufficiently close to 1. Therefore, nearly efficient payoffs can be achieved even if the cost of
monitoring is high. We show that the same result holds if there are at least four players and at least three actions for each player.
Finally, we indicate how the construction can be extended to sequential equilibrium.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The Folk Theorem in repeated games states that, if players can perfectly and costlessly observe the opponents’ past
actions, and evaluate payoff streams by means of the limiting average criterion, then every feasible and individually
rational payoff vector of the stage game can be obtained by a Nash equilibrium in the repeated game (see Aumann
and Shapley, 1994). Fudenberg and Maskin (1986) extended this result to the discounted case under the condition that
the dimension of the set FIR of feasible and individually rational payoff vectors is equal to the number of players
(for later reference, we call this the full dimensionality condition1). The proofs heavily rely on the assumption that
information about the opponents’ behavior can be obtained costlessly. Recently, there has been a growing interest in
models of discounted repeated games in which such information is no longer costless. See, for instance, Ben-Porath
and Kahneman (2003), Miyagawa et al. (2004) and Kandori and Obara (2004). These papers all study models in which
players can voluntarily monitor the actions of a group of opponents at the current stage. They differ, however, on many
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1 This condition, which has been widely used, merely rules out degenerate cases.
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assumptions regarding the number of players, the quality of monitoring, the information that players receive if they
do not monitor, the availability of costless public messages, and other aspects.

Our paper comes closest to Ben-Porath and Kahneman (2003) in terms of the model, the results and the construction
used to prove the result, but also bears some resemblance with Miyagawa et al. (2004). For this reason, we will
compare our construction with Ben-Porath and Kahneman and Miyagawa et al. throughout this paper.

In our paper, we analyze infinitely repeated games with discounting in which purchasing information about op-
ponents’ actions is voluntary but costly. More precisely, at the beginning of every stage a player can choose a subset
of past stages at which he wants to buy information. For each stage he wishes to buy, he must pay a fixed amount
c > 0, and will observe the actions of every opponent at that stage. The net discounted payoff for a player is given by
his usual expected discounted payoff, minus the expected discounted cost of buying information. Our main result is
to show that, if full dimensionality holds, the number of players is at least three, and each of them has at least four
actions, then every payoff vector in the interior of FIR can be supported (in terms of net expected discounted payoffs)
by a Nash equilibrium, given that the discount factor is sufficiently close to 1. Besides, we show that the same result
holds if there are at least four players and at least three actions for each player. We also indicate how the result can be
extended to sequential equilibrium.

Our model differs from Ben-Porath and Kahneman (2003) and Miyagawa et al. (2004) on the following aspects:
(1) In our setting, a player can also purchase information about previous stages, whereas in Ben-Porath and Kah-
neman and Miyagawa et al. a player can only buy information about the present stage; (2) If a player decides to
buy information in our model, he observes the actions of all opponents, whereas in Ben-Porath and Kahneman and
Miyagawa et al. a player can choose the group of opponents which he would like to monitor; (3) In our model and in
Miyagawa et al. public announcements are not available, whereas Ben-Porath and Kahneman assumes costless public
announcements; (4) In our model and in Ben-Porath and Kahneman, a player does not receive any information about
the opponents’ actions unless he buys information. In Miyagawa et al., even if a player does not buy information he
receives a costless stochastic signal depending on the action profile chosen at the current stage; (5) In our construction
we do not use any public randomization device, in contrast with Miyagawa et al. In Ben-Porath and Kahneman, such a
device is only used to simplify the construction. In conclusion, we would like to emphasize that we assume no external
devices (for public announcements or randomization), in contrast with other models. This makes the communication
and coordination of the players more troublesome in our context.

All the models above can be applied to several economic environments of interest. Possible applications include
repeated partnership models (see, for instance, Radner, 1986 and Radner et al., 1986) or models of collusion between
firms (for instance Green and Porter, 1984).

We shall now provide a motivation for the construction of our Nash equilibria in the repeated game. Take an
arbitrary payoff vector in the interior of FIR. If it cannot be supported by a convex combination of Nash equilibria
of the stage game, then at certain stages players must play action profiles where at least one of them would have
an incentive to deviate in terms of stage payoffs. It is therefore essential that this player will be monitored with
positive probability at such stages. However, in order to give an opponent an incentive to purchase information about
these stages, he must have some uncertainty about the players’ actions there. This may be achieved by the following
delicate construction: Choose a large number n, and a sequence of 2n pure action profiles such that the corresponding
discounted payoff is close to the desired payoff vector. During a block U of 2n stages, players are to follow these action
profiles. However, at the beginning of U each player chooses a stage at which he will “switch” from the prescribed
action, according to a cleverly chosen probability distribution putting a positive probability on each of these 2n stages.
We will come back to this probability distribution towards the end of this introduction.

Since every stage in U is chosen with positive probability as a possible switching stage, we must guarantee that
each of these switching stage choices leads to the same expected payoff for every player. As to achieve this we build
in a compensation mechanism by making the future target payoff dependent on the switching stages chosen and the
realized actions at these switching stages. For this, we let the players report their switching stage after block U ,
thereby enabling the opponents to discover all switching stages and the corresponding switching actions. This means
that all realized actions in U will eventually be known to all players. Recall, however, that public announcements are
not available in our setting, which makes the exchange of information more troublesome. Players must use regular
actions to report their switching stages, which can be discovered by the opponents by purchasing information. We
construct after block U a block I with n stages in which players report their switching stage in binary code. For each
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player, two actions are used to code digit “1,” and two other actions are used to code digit “0” (recall that we assume
at least four actions for every player). This way players are able to randomize while sending information.

In order to give the players an incentive to buy all stages in I , and subsequently to buy the reported switching
stages, we construct a block C, with only one stage, after I in which every player must make a report based on the
observed actions at the switching stages. By construction, we make sure that if a player decides not to buy information
when he is supposed to do so, then he will report incorrectly with a positive probability, which would then be detected
by his opponents. Finally, there is a block D, with only one stage, after C in which players can report whether they
have detected a deviation from the prescribed strategy profile. If a deviation is reported, all players can discover the
deviator by purchasing past stages, and this deviator will be punished for the remainder of the game.

After block D, a new cycle of blocks U,I,C and D will follow, and so on. For the new block U , a new target
payoff vector is chosen based on the observed actions in the previous cycle of blocks. In the new block C, players
must report the actions they observed in the previous blocks C and D. This is done in order to give the players an
incentive to purchase information about the blocks C and D.

The outline of this paper is as follows: In Section 2 we present the model. In Section 3 we present our main result,
and give a detailed outline of the proof. In Section 4 we give the formal proof for our main result. In Section 5 we give
the construction for sequential equilibrium. Finally, in Section 6 we discuss possible extensions of the main result,
and give some concluding remarks.

2. Model

We consider repeated games in which the same stage game is repeated infinitely often, and players evaluate payoff
streams by means of the same2 discount factor. At every stage, a player has the opportunity to purchase information
about the past actions chosen by his opponents. If he decides to buy information, he has to pay a fixed price3 for
every past stage at which he wants the opponents’ behavior to be revealed. At a given stage, a player may purchase
information about as many past stages as he likes.

Formally, the stage game is a simultaneous-move game Γ s = ((Ai)i∈I , (vi)i∈I ), where I = {1, . . . ,m} is the
finite set of players, Ai is the finite set of pure actions for player i, and vi :×j∈IAj → R is player i’s payoff
function. At every stage t ∈ {1,2,3, . . .} of the repeated game, player i first chooses a (possibly empty) collection
Kt

i (1) ⊆ {1,2, . . . , t − 1} of past stages about which he wants to buy information. Subsequently, he observes the op-
ponents’ actions that were chosen at stages in Kt

i (1), and depending on this information he may decide to purchase
another collection Kt

i (2) of past stages not already included in Kt
i (1), and so on, until he does not desire any further

information.4 Let K̄t
i be the collection of all stages about which player i buys information at stage t . For each stage

he buys, player i must pay a fixed amount c > 0, resulting in a total cost of ct
i = c|K̄t

i |. After collecting all this in-
formation, player i chooses a pure action at

i ∈ Ai . If every player does so at stage t , this results in an action profile
at = (at

j )j∈I which yields every player i a payoff vt
i = vi(a

t ). The infinite sequence ((v1
i , c

1
i ), (v

2
i , c

2
i ), . . .) of payoffs

and costs for player i is evaluated by means of the δ-discounted payoff

uδ
i = (1 − δ)

∞∑
t=1

δt−1(vt
i − ct

i

)
,

where δ ∈ (0,1) is the common discount factor.
We assume that every player (1) knows the stage game, the price c for information and the common discount

factor, (2) observes his own action,5 but does not observe the opponents’ actions at a given stage t unless he buys

2 Our results would still hold if different players would have different discount factors.
3 We assume that these costs are the same for all players. However, this is not essential for our results.
4 Alternatively, we could also assume that players can only buy one collection of past stages at a given stage. There is only one place in our

construction where this is relevant, namely in block Ck to be defined below. When we discuss this block Ck , we will indicate how this block can
be modified if only one collection of past stages can be purchased.

5 In this paper we focus on the case where a player receives no information about the opponents’ actions, unless he buys information. If one
assumes that players can costlessly and perfectly observe their own payoffs, then one has to investigate which actions reveal which other actions.
However, our techniques could still be applied to those situations where the payoff does not completely reveal the opponents’ actions. We remark
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information about stage t , (3) is unaware of the information purchase by his opponents at a given stage t , even if he
buys information about stage t , and (4) has perfect recall.

A behavior strategy σi for player i specifies, for every stage and every possible collection of past actions6 that may
have been observed until then, (1) an information purchase as described above, and, based on this new information,
(2) a probability distribution over pure actions. A collection σ = (σi)i∈I is called a behavior strategy profile, and
induces for every player i an expected δ-discounted payoff uδ

i (σ ).
A behavior strategy profile σ = (σi)i∈I is a Nash equilibrium for discount factor δ ∈ (0,1) if uδ

i (σ ) = maxσ ′
i
uδ

i (σ
′
i ,

σ−i ). Here, σ−i is a short way to write (σj )j �=i . Let Eδ ⊆ R
I denote the set of δ-discounted payoff vectors that

correspond to Nash equilibria for the discount factor δ.
Let A = ×i∈IAi be the set of pure action profiles in the stage game Γ s . By F = conv{(vi(a))i∈I |a ∈ A} ⊆ R

I we
denote the set of feasible payoffs in the stage game, where “conv” stands for “convex hull.” Let

di = min
α−i∈×j �=i�(Aj )

max
ai∈Ai

vi(ai, α−i )

be the min-max payoff for player i in the stage game. Here, �(Aj ) denotes the set of probability distributions on Aj

and vi(ai, α−i ) is the expected payoff for player i induced by ai and α−i . By

FIR = {
(vi)i∈I ∈ F | vi � di for every i}

we denote the set of feasible and individually rational payoff vectors in the stage game.

3. Main result and detailed outline of proof

3.1. Main result

Take a stage game with a full dimensional FIR, and assume that there are at least three players and that each player
has at least four actions. Our main result is to show that every payoff vector in the interior of FIR is induced by some
equilibrium in the δ-discounted repeated game if δ is sufficiently close to 1. In Section 5 we will discuss possible
generalizations of this result, including a construction for sequential equilibrium.

Theorem 3.1. Let Γ s be a stage game with a full dimensional FIR. Assume that there are at least three players and at
least four actions for each player. Then, for every u ∈ int(FIR) there is some δ(u) ∈ (0,1) such that u ∈ Eδ for every
δ ∈ (δ(u),1).

Without entering into too much detail here, we would like to clarify the assumptions we make in our theorem. The
reason we assume at least four actions for every player is to enable the players to communicate through randomizations
over actions. We need at least three players since in our construction it is essential that each player’s actions are
monitored by at least two opponents as to make deviations detectable (see DM2 in Section 3.3).7

Before presenting the formal proof in the following section, we illustrate the main idea by means of an example.
Consider the following three-player stage game:

a2 b2

a1 1,1,1 0,0,0
b1 0,0,0 0,0,3

a3

a2 b2

a1 0,0,0 3,0,0
b1 0,3,0 2,2,2

b3

Here, player 1 chooses the row, player 2 chooses the column and player 3 chooses the matrix. Assume that every
player i has two additional actions āi , b̄i which are simply duplicates of ai and bi (that is, āi induces the same payoffs

that in generic games observing your own payoffs would imply full monitoring, in which case the main theorem would hold without any need to
buy additional information (see Fudenberg and Maskin, 1986).

6 One could also assume that behavior strategies take into account when information purchase took place. For our purposes it makes no difference.
7 Also Ben-Porath and Kahneman (2003) treat the case of two players as a special one.
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as ai against any pair of actions by the opponents, and similarly for b̄i ). Notice that di = 0 for all players i, and that
dim(FIR) = 3. Hence, the conditions of our theorem are met.

Take a payoff vector u in the interior of FIR. We show how to construct an equilibrium for large enough δ which
induces u.

3.2. The strategy profile

The first step is to divide the set of stages into “master-blocks” M1,M2, . . . of length 2n + n + 2 (where n is yet to
be determined). Master-block M1 is designed in such a way that the realized payoff-vector in M1 is close to u. Since in
M1 the strategy profile does not always prescribe a fixed action, one cannot guarantee that the realized payoff-vector
is exactly equal to u. Master-block M2 is identical to M1. By construction, at the end of M2 the players will find out
the realized payoffs in block M1. Before the start of M3, a new target-payoff-vector u3 has to be determined as to
compensate for the “contaminating” payoffs in M1. In general, before the start of each master-block Mk we determine
a target-payoff-vector uk based on the difference between uk−2 and the realized payoffs in Mk−2. An important step
in our construction will be to make sure that the target-payoff-vector uk sufficiently stays away from the boundary
of FIR. The reason for not allowing uk to be close to the boundary of FIR is that players must be able to randomize at
certain stages in the construction.

Each master-block Mk consists of four sub-blocks, the “utility-block” Uk (of length 2n), the “information-
exchange-block” Ik (of length n), the “control-block” Ck (of length 1), and the “deviation-report-block” Dk (of
length 1). Table 1 summarizes the players’ behavior in these four sub-blocks.

Utility-block Uk: This block makes sure that the total discounted payoff-vector converges to u, as desired. In order
to achieve this, the relative length of Uk within the master-block Mk is chosen close to 1 (by choosing n large enough).

Information purchase: During block Uk no player buys any information yet.
Actions: The prescribed actions here are pure actions in {ai, bi}, and are chosen in such a way that the induced

discounted payoff-vector is close to the target-payoff-vector uk . However, every player i chooses a stage in this
utility-block in which he “switches” from the prescribed action to randomizing equally between the two duplicate
actions āi and b̄i . This switching-stage is chosen according to the following probability distribution: the last stage in
Uk is chosen with probability 2n/(2n + c), whereas the other stages are chosen with probability c/(2n − 1)(2n + c).
Hence, the last stage is chosen with a much larger probability than the other stages in Uk .8

Table 1
Summary of player i’s behavior as long as no player has reported a deviation

Actions Information purchase

Uk

(2n stages)
∗ choose switching-stage tik ∈ Uk as follows:

last stage in Uk with probability 2n/(2n + c)

all other stages in Uk with equal probability

none

∗ at all stages except tik play prescribed pure action
∗ at stage tik switch to 1

2 āi + 1
2 b̄i

Ik report switching-stage tik in binary code none
(n stages)

Ck

(1 stage)
∗ play 1

2 ai + 1
2 bi if the sum of the number of a’s and

the number of ā’s at tjk (∀j),Ck−1, Dk−1 is even

∗ Ik
∗ tjk for all j �= i

∗ Ck−1
∗ Dk−1

∗ play 1
2 āi + 1

2 b̄i otherwise

Dk

(1 stage)
∗ if player i detects a deviation then report

this by playing 1
2 āi + 1

2 b̄i

none

∗ play 1
2 ai + 1

2 bi otherwise

8 In Ben-Porath and Kahneman (2003), a similar block is used to generate a discounted payoff close to the target payoff. A difference is that in
Ben-Porath and Kahneman, every player randomly chooses two switching stages, according to the uniform distribution. Also, in Ben-Porath and
Kahneman every player monitors exactly one opponent at a randomly chosen stage. In Ben-Porath and Kahneman, namely, buying information
about opponents’ actions cannot be delayed. The monitoring assignment in Ben-Porath and Kahneman is quite delicate.
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Information-exchange-block Ik: The purpose of Ik is to enable the players to find out the realization of the
switches at Uk .

Information purchase: During block Ik no player buys any information yet.
Actions: Each player must report in binary code the stage in Uk at which he switched. Here, randomization

1
2ai + 1

2bi represents 0 and randomization 1
2 āi + 1

2 b̄i represents 1 for every player i. More precisely, if player i

in Uk has switched at stage tik , which corresponds to the t̃ik-th stage within Uk , then he must play the sequence of
randomizations in Ik that corresponds to t̃ik − 1 in binary code. Note that n stages are sufficient for reporting the
binary code, since Uk consists of 2n stages.9

Control-block Ck: The idea behind Ck is that players check whether opponents have played the “right” actions,
and have bought information whenever they were supposed to.

Information purchase: At the beginning, every player i buys information about all stages in Ik , which enables him
to identify the stages in Uk at which his opponents have switched. Additionally, player i buys information about these
stages in Uk . More precisely, if player i learns that opponent j1 has reported the switching stage tj1k , and opponent
j2 has reported tj2k , he buys stages tj1k and tj2k in Uk . If the two reported switching stages coincide, he only buys this
stage once. (Note that each player i knows the actions that were played at his own switching stage tik . Namely, if tik
coincides with an opponent’s switching stage, then he must buy that stage. If, on the other hand, player i is the only
player who switched at tik , then he knows what his opponents were supposed to play there.) Subsequently, player i

buys information about the previous control-block Ck−1 and the previous deviation-report-block Dk−1 (if k � 2).
Actions: Two different scenarios may occur here. (a) If no player reported a deviation at Dk−1 (we will describe

later how deviations can be reported): If among all actions at stages tjk (j = 1,2,3), Ck−1 and Dk−1 the sum of
the number of a’s and the number of ā’s is even, then player i equally randomizes between ai and bi . Otherwise,
player i equally randomizes between āi and b̄i . The purpose of these randomizations is to enforce opponents to
buy information about this stage later. If all players follow the prescribed strategies, then the randomizations at Ck

chosen by the different players should match. (b) If a player has reported a deviation at Dk−1: In this case player i

buys information about all previous stages and will find out who has deviated from the prescribed strategy (possibly
the player who wrongly reported at Dk−1 that somebody deviated). From master-block Mk+1 on, the deviator will
be punished by his opponents. For instance, player 1 can be punished by his opponents if player 2 chooses b2 and
player 3 chooses a3, giving player 1 a payoff of 0.10,11

Deviation-report-block Dk: The purpose of this block is to enable the players to report observed deviations.
Information purchase: Players buy no information.
Actions: If player i concludes, on the basis of his information about past stages, that some opponent has deviated

from the prescribed strategy, then he equally randomizes between āi and b̄i ; otherwise, player i equally randomizes
between ai and bi .12

In Miyagawa et al. (2004), the length of Uk is not fixed, but determined stochastically, with the expected length being long enough. At each
period in Uk , players switch with a small probability, implying that the number of switches in Uk is determined stochastically. Their construction
is such that every player is indifferent between playing the target action and playing the switching action. Either no player monitors, or all players
monitor all opponents.

9 In Ben-Porath and Kahneman (2003), information-exchange is simpler as it can be done through public announcements. They let every player
announce both switching stages, together with his switching actions, and his observations during monitoring.

In Miyagawa et al. (2004), this block is not used.
10 Note that in this construction, the stages tjk for j �= i can only be bought after buying block Ik . If players could only buy one collection of

past stages at every stage, block Ck could be modified as follows: Add one additional stage to Ck . At the first stage, player i plays 1
2 ai + 1

2 bi and
purchases all stages in Ik,Ck−1 and Dk−1. At the second stage, the player buys the stages tjk for all j �= i, and plays as specified in Table 1.
11 In Ben-Porath and Kahneman (2003), this block is not needed. By costlessly listening to the public announcements, players will immediately
have sufficient information regarding past actions and possible deviations.

In our case, if a player reports a deviation, the players will find out who has deviated by buying all previous stages. In Ben-Porath and Kahneman
(2003), the task of finding out who deviated is more complex. In general, only the deviator and the player who monitored him at the corresponding
block will know who deviated. In Ben-Porath and Kahneman, both of these players will be punished during a certain number of stages.

In Miyagawa et al. (2004), a player has to state whether a given opponent has switched or not at a given previous stage. Communication is
based on actions, and not on public announcements.
12 In Ben-Porath and Kahneman (2003), this type of communication is not needed due to the use of public announcements.

In Miyagawa et al. (2004), a player checks the report of the reporting player in Ck , and approves or disapproves his answer by playing actions
in Dk .
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Recall that, before turning to the next master-block Mk+1, a new target-payoff-vector uk+1 will be constructed as
to compensate for “contaminating” payoffs in Mk−1. By construction, such contaminating payoffs can only take place
in the sub-blocks Ik−1 (n stages), Ck−1 (1 stage) and Dk−1 (1 stage), as well as in the switching-stages in Uk−1 (at
most 3 stages). Hence, in total we have at least 2n − 3 stages with “correct” payoffs (all in Uk−1), and at most n + 5
stages with “wrong” payoffs in master-block Mk−1. As such, we can always choose δ and n large enough such that
(a) any sequence of “wrong” payoffs can be compensated by a target payoff vector uk+1 which lies in the interior of
FIR, and (b) punishment of deviations remains effective despite the fact that it will only start at the end of the next
master-block.

3.3. How deviations can be detected

Suppose that we are in master-block Mk , and that at previous deviation-report-blocks D1, . . . ,Dk−2 no player has
reported a deviation. Then, deviations in Mk by player i can be detected in Mk or Mk+1 by player j using one of the
following detection mechanisms:

DM1. If player j in Ck buys information about the stage t̃ik reported in Ik by player i, and notices that player i did
not switch at that stage.

DM2. If player j in Ck buys information about the stage t̃j ′k �= t̃ik reported in Ik by player j ′, and notices that
player i did not play the prescribed action at that stage. (Note that we need at least three players for this to work.)

DM3. If player j in Ck+1 buys information about Ck and notices that player i has reported differently at Ck than
himself. Here, by “differently” we mean that player i has chosen a duplicate action while player j has not, or vice
versa.

DM4. If player j in Ck+1 buys information about Dk , notices that player i has reported a deviation at Dk , buys all
previous stages, and finds out that player i incorrectly reported a deviation.

3.4. Why it is not profitable to deviate

We shall now explain why in the strategy profile above it is not profitable for any player i to deviate at any stage
by choosing a different action and/or a different information purchase. We show for any deviation in Mk, which
without punishment could be profitable, that such deviation will be detected, either in Mk or in Mk+1, with a positive
probability which does not depend on δ. Therefore, every such deviation, when detected, will be reported in Dk or
Dk+1. Hence, punishment of such deviations, when detected, will start no later than at Mk+3. Therefore, by choosing
δ sufficiently close to 1, the punishments will be severe enough to render such deviations unprofitable.

Assume that player i is the only player to deviate from the strategy profile described above. We distinguish the
following four exhaustive and mutually exclusive cases.

Case 1. Assume that player i’s first deviation is at Uk . There are three possibilities:
Case 1.1. Assume that the first deviation is to choose a different probability distribution over possible switching-

stages. In fact, it does not matter how player i chooses the probability distribution over possible switching-stages, since
the modification of the target-payoff at the master-block Mk+2 makes player i indifferent between any switching-stage
that can be chosen.

Case 1.2. Assume that the first deviation is to choose a different probability distribution over actions. (a) If player i

does not switch at all at Uk , this will eventually be detected with probability 1 by DM1, since at Ik player i must report
a switching-stage. (b) If player i switches in Uk , but chooses a different probability distribution over the switching-
actions at the switching-stage, then this is not profitable by the target-payoff modification at the master block Mk+2.
(c) If player i switches in Uk but chooses a different action at a non-switching stage, then either this stage or the
switching-stage will not be reported at Ik . Let t̂ik denote this stage. Then, with probability at least c/(2n − 1)(2n + c)

this stage t̂ik coincides with the switching stage tj ′k of some third player j ′ and will therefore be bought by player j

at Ck . Therefore, player i will be “caught” with probability at least c/(2n − 1)(2n + c) by DM2.
Case 1.3. Assume that the first deviation is to buy information at some stage in Uk . The only useful insights that

player i can obtain by buying information about past stages is to learn whether his opponents have already switched
at Uk . If he learns that both opponents have already switched, he could deviate at all future non-switching-stages in
Uk without running the risk of being detected by his opponents, since only reported switching-stages will be bought
(at Ck). Suppose that player i at stage t2 in Uk is still not certain whether opponent j has switched in Uk , and buys
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some stage t1 < t2 in Uk . Hence, he has a cost of (1 − δ)δt2−1c. Moreover, as player i is uncertain about whether
player j switched at t1 or will switch at the last stage in Uk , the conditional probability that player j has switched at
stage t1 is at most

c/(2n − 1)(2n + c)

c/(2n − 1)(2n + c) + 2n/(2n + c)
= c

c + 2n(2n − 1)
.

(Note that the probability of switching at stage t1 in Uk is initially equal to c/(2n − 1)(2n + c), while the last stage
is chosen with probability 2n/(2n + c).) If player j indeed switched at t1, then player i does not have to buy this
switching stage anymore at Ck , and in the best-case scenario player i would moreover know that all opponents have
switched before stage t2, in which case he could safely deviate at the remaining stages in Uk . So, the total gain would
be at most

(1 − δ)

(
δzk+2n+n−1c +

zk+2n−1∑
t=t2

δt−1 · 1

)
,

where zk denotes the first stage in Uk . (Notice that (1 − δ)δzk+2n+n−1c is the cost which player i would have to incur
if he would buy stage t1 at Ck . Note also that the highest possible gain at each stage is at most 1, as can be seen from
the payoff matrices.) Therefore, the expected total gain from buying stage t1 at stage t2 is at most

c

c + 2n(2n − 1)
· (1 − δ)

(
δzk+2n+n−1c +

zk+2n−1∑
t=t2

δt−1 · 1

)
.

Since

c

c + 2n(2n − 1)
· (1 − δ)

(
δzk+2n+n−1c +

zk+2n−1∑
t=t2

δt−1 · 1

)

� c

c + 2n(2n − 1)
· (1 − δ)δt2−1(c + 2n

)
� (1 − δ)δt2−1c

such deviation can never be profitable in expectation, as (1 − δ)δt2−1c is the discounted cost of buying information at
stage t2 about stage t1.

Case 2. Assume that player i’s first deviation is at Ik . This implies that player i has switched exactly once, at stage
tik , in Uk . If player i chooses a different probability distribution over the prescribed actions, it would not be profitable
by the target-payoff modification at the master block Mk+2. If player i reports a stage which is different from tik , this
will be detected by DM1. Therefore, any information that player i would buy at Ik cannot be used in Ik since it is in
player i’s best interest to report stage tik here. Hence, buying such information is best delayed until the beginning of
block Ck .

Case 3. Assume that player i’s first deviation is at Ck . First of all, choosing a different probability distribution
over the prescribed actions is not profitable by the target-payoff modification at the master block Mk+2. If he deviates
by choosing a non-prescribed action, then, by definition, it will be detected by DM3. Finally, if player i buys less
information at Ck , then, with probability 1/2, player i will be wrong about the parity of the sum of the number of a’s
and the number of ā’s at the reported switching stages and blocks Ck−1,Dk−1. Hence, with probability 1/2 he reports
differently than player j at Ck . Consequently, with probability 1/2 he chooses a non-prescribed action which will be
detected by DM3.

Case 4. Assume that player i’s first deviation is at Dk . Since we assume that player i is the only player who
deviates, player i is supposed to play 1

2ai + 1
2bi here. First of all, it does not matter how player i chooses the probability

distribution over ai and bi , since the modification of the target-payoff at master-block Mk+2 makes player i indifferent
between them. If player i chooses a duplicate action, thereby wrongly reporting a deviation, this will be detected in
Ck+1 by DM4. Obviously, buying information at Dk is useless.
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4. Formal proof of main result

4.1. Outline

Consider a repeated game satisfying full dimensionality. Suppose there are m � 3 players and every player has at
least four actions. Take an arbitrary payoff vector u ∈ int(FIR). Our goal is to find a lower bound δ(u) ∈ (0,1) for
the discount factor, and for every δ ∈ (δ(u),1) to construct a Nash equilibrium of the repeated game with expected
δ-discounted payoff vector equal to u. For a fixed u the outline of the construction is as follows:

In Section 4.2 we first show how to choose δ(u). Take an arbitrary discount factor δ ∈ (δ(u),1). In Section 4.3 we
construct a strategy profile. In Section 4.4 we show that it has expected δ-discounted payoff u. In Section 4.5, finally,
we prove that it is an equilibrium in the δ-discounted repeated game. This will complete the proof of Theorem 3.1.

4.2. Choice of δ(u)

Recall that we assume that the dimension of FIR is equal to m. Therefore, there exists some α > 0 such that
B4α(u) ⊆ FIR, where B4α(u) denotes the open ball with center u and radius 4α with respect to the maximum norm.

Let R := {(vi(a))i∈I | a ∈ ×i∈IAi} be the set of stage-payoff vectors induced by pure action profiles. Hence, the
set of feasible payoff vectors is the convex hull of R. Let r∗ := 2 maxr∈R ‖r‖, where ‖ · ‖ denotes the maximum norm.
Therefore, the maximum variation in payoff at a certain stage can never exceed r∗. Given α, choose a large enough N

of the form N = 2n + n + 2, with n ∈ N, such that the following two properties hold:
(1) Every payoff-vector r ∈ FIR can be approximated sufficiently closely by the average payoff of a sequence of N

pure action profiles. Formally, for every r ∈ FIR there exists a sequence r1, r2, . . . , rN in R such that∥∥∥∥r − r1 + r2 + · · · + rN

N

∥∥∥∥ � α

12
.

(2) Variations in stage-payoffs during at most log2 N + m + 2 stages within a block of N consecutive stages have
little influence on the average payoff. Formally,

�log2 N� + m + 2

N
r∗ � α

12
,

where �x� denotes the lowest integer above or equal to x.
Subsequently, we choose δ(u) ∈ (0,1) close enough to 1 such that for every δ ∈ (δ(u),1) the following properties

hold:
(3) For every sequence r1, r2, . . . , rN in R, it holds that the δ-discounted sum is close enough to the average.

Formally,∥∥∥∥
∑N

t=1 δt−1rt∑N
t=1 δt−1

− r1 + r2 + · · · + rN

N

∥∥∥∥ � α

12
.

(4) The δ-discounted influence of variations during at most log2 N + m+ 2 stages within a block of N consecutive
stages is close enough to the average influence. Formally,∣∣∣∣

∑�log2 N�+m+2
t=1 δt−1∑N

t=1 δt−1
r∗ − �log2 N� + m + 2

N
r∗

∣∣∣∣ � α

12
.

(5) Even after two blocks of N stages, the payoffs are not discounted “too much.” Formally,

δ2N >
1

3
.

(6) The maximum variation in δ-discounted payoff during three blocks of N stages is limited. Formally,

3N∑
t=1

δt−1r∗ � c

N(N + c)

∞∑
t=3N+1

δt−1α.
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4.3. Strategy profile

For a given u, let N = 2n + n + 2 and δ(u) be chosen as specified above. Take an arbitrary δ ∈ (δ(u),1). By
properties (1) and (3) above, one can construct for every r ∈ FIR a sequence ξ(r) := (ξ1(r), ξ2(r), . . . , ξN (r)) in R

with ∥∥∥∥
∑N

t=1 δt−1ξt (r)∑N
t=1 δt−1

− r

∥∥∥∥ � α

6
.

In fact, we only need ξt (r) for t � 2n, but we include N stages for technical reasons. For every r ∈ FIR, define

ϕ(r) :=
∑N

t=1 δt−1ξt (r)∑N
t=1 δt−1

.

Similarly to our example in Section 3, we build a sequence of blocks (U1, I1,C1,D1,U2, . . .) where each utility
block Uk has 2n stages, each information-exchange-block Ik has n stages, each control block Ck has 1 stage and each
deviation-report block Dk has 1 stage. Hence, every master-block Mk (consisting of Uk, Ik,Ck and Dk) has length N .
The purpose of each of these blocks is the same as in the example. We define a strategy profile as follows:

In block U1, the target-payoff vector u1 is chosen equal to u. At the beginning of U1, every player i randomly
chooses a switching-stage ti1 according to the probability distribution specified in Table 1. At all stages t of U1,
player i chooses the pure action corresponding to ξt (u1), except for the switching stage ti1 at which he randomizes
equally between the two non-prescribed actions with lowest indices, say āi and b̄i .

For the blocks I1,C1 and D1, we may take for each player i these two actions āi and b̄i together with two other
actions, say ai and bi , for communication. The behavior of the players in these blocks is then identical to Table 1.

In block U2 the target-payoff vector u2 is still equal to u, and the behavior of the players in master-block M2 is the
same as in M1.

If all players follow the prescribed strategy, every player knows after C2 the realized actions and payoffs in M1. Let
(rt )t∈M1 denote the sequence of realized13 payoff vectors in M1. Given these realized payoffs, choose the target-payoff
vector u3 for U3 such that∑

t∈M1

δt−1(rt − u1) +
∑
t∈M3

δt−1u3 =
∑
t∈M3

δt−1u.

This way, u3 compensates for the difference between the target payoff u1 and the realized payoff in block M1. The
equation above gives

u3 =
∑

t∈M1
δt−1(u1 − rt ) + ∑

t∈M3
δt−1u∑

t∈M3
δt−1

.

At the t th stage of U3, every player i chooses the pure action corresponding to ξt (u3), except when t is i’s switching
stage. The remainder of block M3 is the same as in M1 and M2.

In general, for every k � 3, let (rt )t∈Mk−2 denote the sequence of realized payoff vectors in Mk−2. We choose the
target-payoff vector uk for Uk such that∑

t∈Mk−2

δt−1(rt − uk−2) +
∑
t∈Mk

δt−1uk =
∑
t∈Mk

δt−1u, (4.1)

and hence

uk =
∑

t∈Mk−2
δt−1(uk−2 − rt ) + ∑

t∈Mk
δt−1u∑

t∈Mk
δt−1

.

The remainder of block Mk is as usual.
In order to show that these strategies are well-defined, we prove that uk ∈ int(FIR) for all k. To this purpose, we

shall show that ‖uk − u‖ < α for all k, implying that uk ∈ Bα(u) ⊆ int(FIR) for all k.

13 More precisely, each player has a belief about the payoffs in U1. If no player deviates, then all these beliefs will coincide with rt .
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For k = 1 and k = 2, the statement holds trivially since u1 = u2 = u. By equation (4.1), we have for every k � 3
that

‖uk − u‖ =
∥∥∥∥
∑

t∈Mk−2
δt−1(uk−2 − rt )∑
t∈Mk

δt−1

∥∥∥∥
= 1

δ2N

∥∥∥∥
∑

t∈Mk−2
δt−1(uk−2 − rt )∑

t∈Mk−2
δt−1

∥∥∥∥
= 1

δ2N

∥∥∥∥uk−2 −
∑

t∈Mk−2
δt−1rt∑

t∈Mk−2
δt−1

∥∥∥∥
� 1

δ2N

(∥∥uk−2 − ϕ(uk−2)
∥∥ +

∥∥∥∥ϕ(uk−2) −
∑

t∈Mk−2
δt−1rt∑

t∈Mk−2
δt−1

∥∥∥∥
)

. (4.2)

By definition of ϕ(uk−2),∥∥ϕ(uk−2) − uk−2
∥∥ � α

6
. (4.3)

Again, by definition of ϕ(uk−2),∥∥∥∥ϕ(uk−2) −
∑

t∈Mk−2
δt−1rt∑

t∈Mk−2
δt−1

∥∥∥∥ =
∥∥∥∥δ(k−3)N

∑N
t=1 δt−1ξt (uk−2)

δ(k−3)N
∑N

t=1 δt−1
−

∑
t∈Mk−2

δt−1rt∑
t∈Mk−2

δt−1

∥∥∥∥
=

∥∥∥∥
∑

t∈Mk−2
δt−1(ξt (uk−2) − rt )∑
t∈Mk−2

δt−1

∥∥∥∥
�

∑m+n+2
t=1 δt−1r∗∑N

t=1 δt−1
,

since, by construction, there are at most m + n + 2 stages in Mk−2 where the realized payoff rt is different from the
target payoff ξt (uk−2). Since m + n + 2 � log2 N + m + 2, we have by properties (2) and (4) that∑m+n+2

t=1 δt−1r∗∑N
t=1 δt−1

�
∑�log2 N�+m+2

t=1 δt−1r∗∑N
t=1 δt−1

� α

6
,

and hence∥∥∥∥ϕ(uk−2) −
∑

t∈Mk−2
δt−1rt∑

t∈Mk−2
δt−1

∥∥∥∥ � α

6
. (4.4)

By inequalities (4.2), (4.3) and (4.4) it follows that

‖uk − u‖ � 1

δ2N

(
α

6
+ α

6

)
< α,

where the last inequality follows from property (5). We thus have shown that uk ∈ Bα(u) ⊆ int(FIR) for all k, and
therefore the strategy profile is well-defined.

4.4. Expected δ-discounted payoff is equal to u

Take a discount factor δ ∈ (δ(u),1) and consider the corresponding strategy profile as defined in Section 4.3. From
(4.1) it follows that

∞∑
k=1,k odd

∑
t∈M

δt−1rt =
∞∑

k=3,k odd

∑
t∈M

δt−1rt
k k−2
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=
∞∑

k=3,k odd

( ∑
t∈Mk−2

δt−1uk−2 −
∑
t∈Mk

δt−1uk +
∑
t∈Mk

δt−1u

)

=
∑
t∈M1

δt−1u1 +
∞∑

k=3,k odd

∑
t∈Mk

δt−1u

=
∞∑

k=1,k odd

∑
t∈Mk

δt−1u.

Similarly, one can show that

∞∑
k=2,k even

∑
t∈Mk

δt−1rt =
∞∑

k=2,k even

∑
t∈Mk

δt−1u.

Together, we obtain

∞∑
k=1

∑
t∈Mk

δt−1rt =
∞∑

k=1

∑
t∈Mk

δt−1u,

and hence

(1 − δ)

∞∑
t=1

δt−1rt = u,

which means that, with probability 1, the total δ-discounted realized payoff is exactly u. This implies in particular that
the expected δ-discounted payoff is equal to u, as desired.

4.5. The strategy-profile is an equilibrium in the δ-discounted repeated game

Consider, again, a discount-factor δ ∈ (δ(u),1) and the corresponding strategy profile. Suppose that player i would
deviate for the first time at master-block Mk , and that no other player has deviated before. In Section 3.3 we have
described how player i’s opponents can detect such a deviation by means of the detection mechanisms DM1 until
DM4. Moreover, in Section 3.4 we have shown that any deviation that could possibly lead to an improvement will be
detected with probability at least c/(2n − 1)(2n + c). By construction, if the deviation is detected, it will be reported
no later than in Dk+1, and hence will be noticed by the other players no later than in Ck+2. Therefore, punishment
will start no later than in Mk+3. These arguments are also valid for the general strategy profile we consider here. We
will now show that punishments are severe enough to render any deviation unprofitable.

By deviating in block Mk , the maximum δ-discounted gain that player i can achieve in blocks Mk,Mk+1 and Mk+2
is ∑

t∈Mk∪Mk+1∪Mk+2

δt−1r∗.

If the deviation will be detected, his loss in any master-block Ml (l � k + 3) will be at least∑
t∈Ml

δt−1α.

For if player i did not deviate, the target-payoff vector ul would, by construction, be in Bα(u). On the other hand, α

was chosen such that B2a(u) ⊆ FIR, which implies that i’s punishment payoff is not even in B2a(u). Therefore, the
distance between i’s punishment payoff and i’s payoff in ul is at least α. Since i’s deviation will be detected at least
with probability c/(2n − 1)(2n + c), player i’s expected gain from deviating at Mk will be at most∑

t∈M ∪M ∪M

δt−1r∗ − c

(2n − 1)(2n + c)

∑ ∑
t∈M

δt−1α
k k+1 k+2 l�k+3 l
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= δ(k−1)N

(
3N∑
t=1

δt−1r∗ − c

(2n − 1)(2n + c)

∞∑
t=3N+1

δt−1α

)

� δ(k−1)N

(
3N∑
t=1

δt−1r∗ − c

N(N + c)

∞∑
t=3N+1

δt−1α

)

� 0,

where the last inequality follows from property (6). Hence, no deviation is profitable, which completes the proof.

5. Sequential equilibrium

In this section we prove that our main result does not only hold for Nash equilibrium, but also for sequential
equilibrium. A strategy profile is called a sequential equilibrium if for every player i and every possible history for
player i, his continuation strategy is optimal against the opponents’ expected continuation strategies. Below we will
construct, for every payoff-vector u in int(FIR) and every discount factor δ close enough to 1, a sequential equilibrium
σ that induces the payoff-vector u. Moreover, the total cost for buying information in σ will be close to 0 (in fact,
tends to 0 if δ approaches 1).

Note that the strategy profile as constructed in Section 3 will in general not be a sequential equilibrium. The
problem arises after a player detects a deviation. In that case, the continuation strategy of a player will in general
not be optimal against the opponents’ expected continuation strategies. Often, it would not be in a player’s interest to
report a deviation, because according to the strategy profile he would have to buy all previous stages in this case, and
punish the deviating player afterwards. These two activities would in general hurt the player.

In order to overcome these problems, we now make sure that it becomes optimal for a player to report an opponent’s
deviation whenever he detects one. To this purpose, we make the following adjustments when a player reports a
deviation:

1. Players do not have to buy previous stages to find out the true identity of the deviator, because the deviator will
be named by one of the players, say player j , who reported a deviation. A target-payoff modification will assure that
player j is indifferent between any opponent he can name, so he is trustworthy.14

2. Punishments now take place during finitely many stages only. When necessary, the reporting player is compen-
sated (or charged) for possible losses (or gains) caused by the punishments by means of a target-payoff modification.

5.1. Outline of the plan of action

A plan of action is a description of a player’s behavior as long as he has not deviated himself from this plan. We
will now describe the plan of action τi for every player i. Later, in Section 5.4, we will extend the plan of action τi

to a complete strategy σi , which also describes what player i will do in case he has deviated from τi . In the previous
sections it was sufficient to describe a plan of action for every player since the concept of Nash equilibrium, in contrast
with sequential equilibrium, does not require a player i to choose optimally after he has deviated himself from τi .

Just as in Section 3 play is divided into different master-blocks, in this case regular master-blocks and punishment
master-blocks. Regular master-blocks Mk are defined similarly to Section 3, except for some slight modifications
that occur after a punishment. These changes will be described in Section 5.3. Punishment master-blocks P [j ] will
be really new, and are meant to punish a player during a finite number of stages. Section 5.2 provides a detailed
description of P [j ]. Here, j denotes the player who can name a deviator. The transition between these blocks proceeds
according to the following inductive scheme:

Play starts with a regular master-block M1.
After regular master-block Mk , the new master-block is determined as follows:
Let P [j ′] be the last punishment master-block before Mk . If no punishment has yet taken place, let j ′ be player 1.

14 He may not be trustworthy if he is the only deviator, because in this case he cannot name an opponent who deviated.
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∗ If no player other than j ′ reported a deviation in Dk−1 (which is bought at Mk), we enter a regular master-block
Mk+1.15

∗ Otherwise, we first enter a punishment master-block P [j ], after which we go to a regular master-block Mk+1.
The reporting player j in P [j ] is determined as follows: Let j1 and j2 be the players with the lowest respectively
highest index not equal to j ′ who reported a deviation in Dk−1 (possibly j1 = j2). If the sum of the number of a’s and
ā’s at Dk−1 is even, then the reporting player j will be j1. If the sum is odd, then j will be j2.16

5.2. Plan of action for the punishment master-block

As we discussed above, the major difference with Section 3 lies in the construction of the punishments. In a
punishment master-block, following a regular master-block Mk and initiated by a reported deviation in Dk−1, there
is a special role for a player j who can name a deviating player. The corresponding punishment master-block will be
called P [j ]. The play in this phase will consist of four blocks, R∗[j ],C∗,P ∗ and C∗∗. Table 2 provides a summary
of the players’ behavior in P [j ].

1. Block R∗[j ]: The purpose of this block is to enable player j to name a player j∗ as the deviator. Player j must
choose randomly amongst the players whose deviations he has detected (including players who deviated at Dk−1, that
is, players who should have reported a deviation in Dk−1 but omitted to do so, and players who falsely reported a
deviation at Dk−1).17

This block has length �log2 m�, where m is the number of players.
Information purchase: During block R∗[j ] no player buys any information.
Actions: Player j will name in binary code the identity of a player as the deviator. Recall that we use randomization

1
2aj + 1

2bj for digit 0 and 1
2 āj + 1

2 b̄j for digit 1. Hence, �log2 m� stages are sufficient for reporting such binary code.
All other players i choose 1

2ai + 1
2bi .

2. Block C∗: The purpose of this block is to guarantee that all players buy all stages in R∗[j ], so that all players
will know the player j∗ that has been reported by player j as the deviator. This block consists of 1 stage.

Information purchase: Each player buys all stages in R∗[j ]. Now all players will know j∗ (if player j reported a
number that does not correspond to a player, then let j∗ = j ).

Table 2
Plans of action in punishment master-block P [j ]

Actions Information purchase

R∗[j ]
(�log2 m� stages)

∗ Player j reports identity of deviator j∗ in binary code
∗ Every non-reporting player i plays 1

2 ai + 1
2 bi

none

C∗
(1 stage)

∗ Every player i plays 1
2 ai + 1

2 bi if the sum of the
number of a’s and ā’s at R∗[j ] is even

R∗[j ]

∗ Plays 1
2 āi + 1

2 b̄i otherwise

P ∗
(finitely many stages)

∗ All punishing players i �= j∗ play min-max action
against j∗ (with small perturbation)

none

∗ Punished player j∗ plays best reply against
opponents’ actions at every stage

C∗∗
(1 stage)

∗ Every player i plays 1
2 ai + 1

2 bi if the sum of the
number of a’s and ā’s at P ∗ is even

P ∗

∗ Plays 1
2 āi + 1

2 b̄i otherwise

15 By ignoring a possible report by j ′ alone, we avoid the situation where j ′ would have to keep on reporting deviations, which would imply that
he could no longer be compensated for carrying out so many punishments. By our construction, the next player who can report the deviator must
be different from j ′ , so that after the punishment we can apply a different kind of target-payoff modification for j ′. This then enables us to position
the new target-payoff for j ′ such that he could be compensated next time.
16 This lottery between j1 and j2 makes sure that it cannot happen that a player deviates in Uk−1 while knowing that, with probability 1, he will
be able to name somebody else as the deviator, and thereby avoiding being punished. Even though j1 = j2 is possible, you can never know this in
advance.
17 Note that in a plan of action τj player j cannot be a deviator himself.
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Actions: Every player i plays 1
2ai + 1

2bi if the sum of the number of a’s and the number of ā’s at R∗[j ] is even,
and plays 1

2 āi + 1
2 b̄i otherwise.

3. Punishment-block P ∗: The purpose of this block is to sufficiently punish player j∗. The length of this block
can be chosen dependent of the length of a regular master-block, but independent of δ (given δ is large enough).

Information purchase: No player buys any information.
Actions: Let α−j∗ be the mixed action profile for j∗’s opponents such that

dj∗ = max
aj∗∈Aj∗

vj∗(aj∗ , α−j∗).

Hence, α−j∗ is the min-max mixed action-profile against j∗. At every stage in P ∗, every punishing player i �= j∗
plays with high probability his mixed action αi in α−j∗ and with low probability any other action in Ai . As such,
every action in Ai will be played with positive probability at every stage in P ∗. The probability of playing αi must
be chosen (1) high enough so that player j∗’s expected payoff at every stage does not exceed dj∗ by much, and (2)
low enough so that at P ∗ there will be sufficient uncertainty about the actions, and therefore it will be in the players’
interest to buy every stage of P ∗ at the following block C∗∗.18 The punished player j∗ plays at every stage a best
reply against the mixed action-profile of his opponents.

4. Block C∗∗: The purpose of this block is to guarantee that all players buy all stages in P ∗. This is important for
the target-payoff modification later on. This block consists of 1 stage.

Information purchase: Each player buys all stages in P ∗.
Actions: Every player i plays 1

2ai + 1
2bi if the sum of the number of a’s and the number of ā’s at P ∗ is even, and

plays 1
2 āi + 1

2 b̄i otherwise.

5.3. Plan of action for a regular master-block after a punishment master-block

As we know from Section 5.1, after a punishment master-block P [j ], following a regular master-block Mk and
initiated by a reported deviation in Dk−1, we go back to a regular master-block Mk+1. This regular master-block is
defined as in Section 3, with the only exceptions that now (1) at Ck+1 players will also buy information about the
blocks C∗ and C∗∗ in P [j ], and the report at Ck+1, should also depend on the observed actions at these two blocks,
and (2) the target-payoff has to be constructed in a different way.

The idea behind the target-payoff modification is as follows. We will choose the new target-payoff vector such that
it lies in B2α(u) ⊆ int(FIR). Each player’s target-payoff should take the realized actions at R∗[j ] and P ∗ into account,
so that each player is indifferent between the actions at R∗[j ] and P ∗ on which he was supposed to randomize.19 Also,
the reporting player j in R∗[j ] should be made indifferent between all players he can report, as far as the payoffs is
R∗[j ] are concerned. Further, the target-payoff for the player who was punished, say player j∗, is chosen in such a
way that punishment remains effective. For all players except j and j∗ the target-payoff is chosen such that, if they
become the reporting player next time, they can be compensated (this means that the target-payoff should stay away
from the boundary of FIR). Moreover, their target-payoff should be independent of j and j∗. For the target-payoff of
player j we distinguish two cases.

Case 1. Assume that player j was the only player, except for possibly j ′, who reported a deviation at Dk−1 (recall
that P [j ′] was the last punishment-master-block; if no punishment has yet taken place then j ′ = 1). In this case, the
target-payoff for player j is modified as to compensate (or charge) him for possible losses (or gains) in payoffs during
R∗[j ] and P ∗.

Case 2. Assume that there is a player other than j and j ′ who reported a deviation at Dk−1. In this case, the
target-payoff for player j is modified just as for the other players, except j∗.

18 This idea is rather standard.
19 Note that the actions at the other two blocks C∗ and C∗∗ will be bought at Ck+1, and the target-payoff modification at the following regular
master-block Mk+2 will take these actions into account.
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5.4. Construction of the strategy profile

The previous three subsections together describe a plan of action τi for player i, but not a complete strategy yet.
The remaining problem is that we did not describe what player i should do in case he has not acted consistently with
τi in the past. We will now completely define player i’s strategy σi .

We distinguish the following cases:
Case 1. Assume that during hi player i has bought less or more information than prescribed by τi . Then, player i

should calculate, for every opponent j , the expected continuation strategy under the assumption that j has bought
exactly the information as prescribed by τj (meaning that j is not in Case 1, but in Case 2 below). Moreover, player i

should play a best response against these expected continuation strategies.
Case 2. Assume that during hi player i has bought exactly the information as prescribed by τi .
In this case, player i knows exactly all switching stages by his opponents, and therefore knows the stages that other

players were supposed to buy.
Suppose the game is in a certain master-block, and that hi is the corresponding history for player i. We say that a

block is reported in hi if in hi the players had the opportunity to report any deviation in this block. More precisely,
let Dk be the last deviation-report-block in hi . Then, all blocks before Dk , except Ck , are reported in hi .

Case 2.1. Assume that in all non-reported blocks player i has acted consistently with τi .20 Then his behavior σi(hi)

at the current stage is given by τi .
Case 2.2. Assume that player i has played inconsistently with τi in some non-reported block.21

Case 2.2.1. Assume that play is at Ck in regular master-block Mk , or at C∗,P ∗ or C∗∗ in punishment master-block
P [j ]. Then, player i continues with the master-block according to τi (as if he had not deviated).

Case 2.2.2. Assume that play is at R∗[j ] in punishment master-block P [j ], following a regular master-block Mk ,
and initiated by a reported deviation in Dk−1. If i �= j , then player i continues according to τi (as if he had not
deviated). If i = j (so i is the reporting player) then let I ∗ be the set of opponents whom player i can still report given
his previous actions at R∗[j ]. If I ∗ is empty, then player i plays an arbitrary action (he cannot avoid getting detected
anyhow). Otherwise, player i randomly chooses an opponent in I ∗ and plays the corresponding action.

Case 2.2.3. Assume that play is at Dk in a regular master-block Mk . If player i believes that his deviation has been
detected by an opponent other than j ′22 (recall that P [j ′] was the last punishment-master-block; if no punishment
has yet taken place, then j ′ = 1), or has detected a deviation by an opponent, he reports a deviation at this stage.
Otherwise, he does not report a deviation.

Case 2.2.4. Assume that play is at Uk or Ik in a regular master-block Mk . Conditionally on player i behaving
according to τi from Ck on (as if he had not deviated), he can calculate by backward induction an optimal substrategy
for the remaining stages until Ck . Player i will act according to this optimal substrategy.

5.5. Strategy profile is a sequential equilibrium

It should be clear that the strategy profile constructed above induces the desired discounted expected payoff u, as
it coincides with the strategy profile in Section 3 as long as no deviation has taken place. We will now show that the
strategy profile constructed above constitutes a sequential equilibrium. That is, for every history hi ∈ Hi , we must
show that player i’s continuation strategy σi[hi] is optimal against the opponents’ expected continuation strategies.
Suppose that player i considers a deviation after hi . We will show that such a deviation cannot be profitable. We
distinguish six cases here:

20 Note that the construction of τi directly extends to this situation.
21 The idea in this case is to let player i return to τi as soon as he can do so without running additional risk of getting caught. In the remaining
part of Case 2.2, we describe player i’s optimal substrategy until he can return to τi . Obviously, the existence of such an optimal substrategy on
finitely many stages is guaranteed. In fact, we do more than necessary since we would only need to show that such a substrategy allows player i

to report in Dk a deviation he detected (see Case 2.2.3). Note that it was essential in our construction that each player takes part in the detection
process—this is why we needed at least three players.
22 Recall that player i knows exactly all switching stages by his opponents, and therefore knows the stages that other players were supposed to
buy. This implies that player i knows who is supposed to have detected his deviation.
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Case A. Assume that player i considers a deviation in Case 1 of Section 5.4. In this case, a possible belief for
player i is to believe that every opponent j has bought exactly the information as prescribed in τj . Hence, player i is
supposed to act optimally given this belief, and can therefore not profitably deviate after hi .

Case B. Assume that player i considers a deviation in Case 2.1.
Case B.1. Assume that player i considers a deviation in a regular master-block Mk .
Case B.1.1. Assume that the deviation is planned for block Uk, Ik or Ck . Then player i believes that this deviation

will be detected by the opponents in exactly the same way as in Section 3. The eventual punishment will make sure
that such deviation is unprofitable.23

Case B.1.2. Assume that the deviation is planned for block Dk . Recall that j ′ is the last player who reported a
deviation before Mk which actually led to a punishment; if no such report has been made before Mk , then j ′ is chosen
equal to player 1. If i = j ′ then, by construction, i has no influence whether or not a punishment will follow, and the
target-payoff modification will assure that i is indifferent between any action he can take. So, we will assume in the
following subcases that i �= j ′.

Let Ĩ be the set of opponents of player i, except j ′, who, according to player i, should report a deviation in Dk .
Case B.1.2.1. Assume that Ĩ is empty. By reporting a deviation, player i believes that he will be the only reporting

player, except j ′, and will therefore believe that he will be compensated by the target-payoff modification (cf. Sec-
tion 5.3, Case 1). This would give him the same expected discounted payoff as he would get by not reporting. Player i

is therefore indifferent between reporting and not reporting.
Case B.1.2.2. Assume that Ĩ is not empty. We distinguish two cases.
Case B.1.2.2.1. Assume that Ĩ contains only one player, say j . Then, player i knows that there has been a deviation.

If player i deviates by not reporting this deviation, then he believes that j will be the only player other than j ′ who
reports a deviation in Dk , and that he will name, with a positive probability, player i as the deviator in R∗[j ]. Hence,
player i will be punished, with positive probability, by not reporting this deviation.

Case B.1.2.2.2. Assume that Ĩ contains more than one player. Then, it does not make a difference whether player i

reports a deviation or not due to the target-payoff modification (cf. Section 5.3, Case 2).
Case B.2. Assume that player i considers a deviation in a punishment master-block P [j ], following master-block

Mk and initiated by a reported deviation in Dk−1.
Case B.2.1: Assume that the deviation is planned for block R∗[j ]. If player i chooses a different probability

distribution over the prescribed actions, it would not be profitable by the target-payoff modification (even if player i

is the reporting player, that is, if i = j ). Obviously, buying information at R∗[j ] is useless.
Case B.2.2: Assume that the deviation is planned for block C∗. The proof is basically identical to a regular block Ck .
Case B.2.3: Assume that the deviation is planned for punishment-block P ∗. It is clear that buying information

is useless. If i = j∗ (the player who is being punished) then such deviation cannot be profitable, since player i is
supposed to play a best reply against the opponents’ mixed actions. If i is one of the punishers, then the target-payoff
modification makes him indifferent between any action he could choose. Hence, no deviation can be profitable.

Case B.2.4: Assume that the deviation is planned for block C∗∗. The proof is basically identical to a regular
block Ck .

Case C. Assume that player i considers a deviation in Case 2.2.1. So, player i considers a deviation in block Ck of
a regular master-block Mk , or in block C∗,P ∗ or C∗∗ of a punishment master-block P [j ]. By construction, all stages
of these blocks are bought by all players, and taken into account at the target-payoff modification, and deviations are
punished.

Case D. Assume that player i considers a deviation in Case 2.2.2. So, player i considers a deviation in block R∗[j ]
in a punishment master-block P [j ]. By construction, all stages in R∗[j ] are bought later at C∗. If i �= j , then by the
target-payoff modification, the actions chosen by player i have no influence on his expected discounted payoff. If
i = j , then punishments make sure that it is optimal for player i to report an opponent (if this is still possible). By
the target-payoff modification, player i will be indifferent between any opponent he can name. Hence, no deviation is
profitable.

Case E. Assume that player i considers a deviation in Case 2.2.3. So, player i considers a deviation in block Dk

of a regular master-block. If i = j ′ (recall that P [j ′] was the last punishment-master-block; if no punishment has yet

23 Player i does not know in advance which opponent would detect his deviation. Therefore, with a positive probability, it would be an opponent
different from j ′ , which would result in a punishment.
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taken place, then j ′ = 1) then he cannot become the player who names the deviator. Hence, due to the target-payoff
modification, he has no reason to deviate from the prescribed behavior in Case 2.2.3. We may therefore assume from
now on that i �= j ′.

Let Ĩ be the set of opponents of player i, except j ′, who, according to player i, should report a deviation in Dk .
We distinguish the following cases:

Case E.1. Assume that Ĩ is empty. By reporting a deviation, player i would believe that he will be the only
reporting player except player j ′ possibly, and will therefore believe that he will be compensated by the target-payoff
modification (see Section 5.3, Case 1). This would give him the same expected discounted payoff as he would get by
not reporting. Player i is therefore indifferent between reporting and not reporting a deviation.

Case E.2. Assume that Ĩ contains only one opponent, say j . Then, i believes that a deviation has been detected,
and believes that j knows that i is aware of this deviation. Consequently, player i is supposed to report a deviation
according to the strategy profile. We distinguish two cases:

Case E.2.1. Assume that i believes that his deviation has been detected by a player other than j ′. Then, j must be
the player who detected the deviation by player i. So, player j would name, with positive probability, player i as the
deviator. Hence, player i’s only chance to escape from punishment is to report a deviation himself (and name another
player as the deviator).

Case E.2.2. Assume that i believes that his deviation has not been detected by a player other than j ′. If player i

deviates by not reporting at Dk , then he believes that j will be the only player other than j ′ who reports a deviation
in Dk , and that he will name, with a positive probability, player i as the deviator in R∗[j ]. Hence, player i will be
punished, with positive probability, by not reporting this deviation.

Case E.3. Assume that Ĩ contains more than one opponent. Then, it does not make a difference whether player i

reports a deviation or not due to the target-payoff modification (cf. Section 5.3, Case 2).
Case F. Assume that player i considers a deviation in Case 2.2.4. So, player i considers a deviation at Uk or Ik in

a regular master-block Mk . If player i would play according to τi from Ck on, then, by construction, no deviation can
be profitable. If player i would not play according to τi from Ck on, such deviation would fall under a previous case.

If there would be at least four players, then an additional idea would be the following: If a deviation is reported,
then all players who reported a deviation are asked to report a deviator, and the player who has been named at least
twice will be punished. The difference is that with four players or more, according to the plan of action, there will
always be at least three players who observe a deviation. Hence, even if one of the reporting players would deviate by
reporting differently, there would still be at least two players who report correctly.

6. Extensions and concluding remarks

6.1. At least three players, at least two players with at least four actions, other players with at least three actions

In this case, our construction can easily be generalized as follows: In Uk , the players follow the prescribed actions,
except for the switching stages at which they randomize equally between two non-prescribed actions. In Ik,Ck and
Dk , the two players with at least four actions play according to Table 1. The players with less than four actions use
only one action for each of the two possible reports. Since with this construction every player is uncertain at Ik,Ck

and Dk about the actions of at least one opponent, every player is forced to buy information as in Table 1. Our main
theorem would therefore still hold in this case.

6.2. Three players, three actions

If we have three players, the extension of our result to three actions is problematic for the following reasons: First
of all, the construction as summarized in Table 1 cannot be generalized for three actions. The main problem lies in
control-block Ck , where players have to send a report based on the observed actions. For four actions it was possible
to construct two different probabilistic reports, each one randomizing over two actions, with disjoint supports. It is
essential that both reports randomize over at least two actions since otherwise players will not have an incentive to
buy this stage. We also need that the two supports are disjoint. For if there would be an action a contained in both
supports, then the player could always play a without purchasing information about past stages while being sure that
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this will not be detected by his opponents. Clearly, having two disjoint supports of two actions is not possible with
only three actions.

For three actions, say a, b and c, one could attempt to overcome this problem by constructing three, instead of
two, different codes for reporting at Ck . A first code with support {a, b}, a second with support {b, c} and a third with
support {a, c}. In this way, each code still uses a randomization, and there is no action contained in all three supports.
The report to be sent by player i in Ck would still depend on the actions observed by purchasing information about
block Ik , and the switching stages tjk for all players j . However, if there is a switching stage tjk which is only chosen
by one player j �= i, then player i need not purchase tjk in Ck . The reason is as follows: Since player j has only two
possible switching actions, player i can reduce, without buying tjk , the possible reports to two. As these two reports
have a common action, player i could safely play this action without buying information about tjk . So, this would not
work.

The problem above occurred since players only had two possible switching actions. One could attempt to over-
come this problem by letting the players randomize equally over all three actions at the switching stages. By this
construction, player i would have an incentive to buy all switching stages, since he can no longer reduce the possible
reports to two without buying all opponents’ switching stages. However, with probability 1/3 the switching action
of player i coincides with the action prescribed by the target-payoff-vector at that stage. This leads to the following
problem in block Ik : Suppose player i has chosen a switching action at stage tik different from the action prescribed
by the target-payoff-vector, and by switching he received a higher payoff. Then, player i could profitably deviate in Ik

in the following way: Player i could buy information about the first stage in Ik at the beginning of the second stage
in Ik . With a positive probability, each opponent of player i chose a code different from player i’s. Hence, with a
positive probability, player i may conclude that both opponents have chosen a switching stage different from tik . In
this case, player i may safely report a switching stage t̃ik �= tik in Ik , since tik will not be bought by the other players
and the prescribed action at t̃ik is also a possible switching action. By doing so, the gain in payoff at tik would not be
compensated by the new target-payoff-vector. If the cost c of buying the first stage in Ik is small enough compared to
the gain at stage tik , then such deviation would be profitable.

6.3. At least four players, three actions

For at least four players and three actions, say a, b and c, the construction in our main theorem could be adapted
as follows: Block Uk remains essentially the same, by letting every player choose a switching stage according to the
same probability distribution as in Table 1, at which he randomizes between the two non-prescribed actions. In Ik

the situation changes a bit, since digit 1 now corresponds to action a and digit 0 corresponds to action b. Hence,
the digits no longer correspond to randomizations over two actions, as before. This is necessary since we only have
three actions, and hence we cannot construct two randomizations with disjoint supports. In fact, we could also have
used this approach for our construction in the main body of the paper. In Ck , every player i still buys the same
information as in Table 1, except for the fact that he no longer buys Dk−1 (as this block will disappear in the new
construction), and player i no longer buys the switching stage of player i + 1 (if player i is the last player, he does
not buy player 1’s switching stage). Subsequently, player i either plays a with probability 1 or b with probability 1,
based on the observed actions at the switching stages tjk (j �= i + 1) and block Ck−1. Block Dk no longer exists.
If a player detects a deviation, then he will buy all previous stages, finds out the first deviator, and will always play
a non-prescribed action at all further stages, until he notices that all opponents (expect the first deviator) also do so.
From that moment on, the first deviator will be punished.

We need four players here in order to guarantee that a deviation at a non-switching stage in Uk will be detected with
positive probability. Consider, namely, player i who deviates at a non-switching stage. Then, with positive probability
this stage will coincide with player (i − 1)’s switching stage, which will be bought by player i + 1 (since we have at
least four players). Therefore, i’s deviation will be detected with positive probability by player i + 1.

Notice that by this construction no player is certain about the report to be sent by the opponents in Ck , since
he does not buy all switching stages. Therefore, every player has an incentive to buy Ck at Ck+1, even though no
randomization takes place in Ck . Moreover, every player i should report correctly at Ck since any player j �= i will
know after Ck+1 which report should have been sent by player i at Ck . Namely, player j has observed all switching
stages except the one of player j + 1. When at Ck+1 player j observes the report sent by players j ′ /∈ {i, j} at Ck , then
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he can deduce the actions played at the switching stage of player j + 1. Therefore, player j will know the report that
should have been sent by player i at Ck .

6.4. Concluding remarks

1. We wish to mention that the case of two players and two actions for each player is even more complicated. It
is unclear, for instance, whether in the two-player prisoners’ dilemma one can obtain equilibrium payoffs close to the
cooperative outcome. We have the feeling that this is not possible. In any case, one would need a drastically different
construction than the one we presented, even if it were possible.

2. In our model, it is crucial that players can buy information about all past stages, and that players always receive
information about the actions of all opponents when purchasing a stage. The analysis would be significantly different if
players could only buy information about the present stage, or could request information from subgroups of opponents.

Acknowledgments

We thank an associate editor and two referees for their helpful suggestions.

References

Aumann, R.J., Shapley, L.S., 1994. Long-term competition—A game-theoretic analysis. In: Megiddo, N. (Ed.), Essays in Game Theory. New York,
Springer-Verlag, pp. 1–15.

Ben-Porath, E., Kahneman, M., 2003. Communication in repeated games with costly monitoring. Games Econ. Behav. 44, 227–250.
Fudenberg, D., Maskin, E., 1986. Folk theorems for repeated games with discounting and incomplete information. Econometrica 54, 533–554.
Green, E., Porter, R., 1984. Noncooperative collusion under imperfect price information. Econometrica 52, 87–100.
Kandori, M., Obara I., 2004. Endogenous monitoring. Unpublished manuscript, University of Tokyo and UCLA.
Miyagawa, E., Miyahara, Y., Sekiguchi, T., 2004. The Folk theorem for repeated games with observation costs. Discussion Paper Series 23, Kobe

University.
Radner, R., 1986. Repeated partnership games with imperfect monitoring and no discounting. Rev. Econ. Stud. 53, 43–58.
Radner, R., Myerson, R., Maskin, E., 1986. An example of a repeated partnership game with discounting and with uniformly inefficient equilibria.

Rev. Econ. Stud. 53, 59–70.


	Repeated games with voluntary information purchase
	Introduction
	Model
	Main result and detailed outline of proof
	Main result
	The strategy profile
	How deviations can be detected
	Why it is not profitable to deviate

	Formal proof of main result
	Outline
	Choice of delta(u)
	Strategy profile
	Expected delta-discounted payoff is equal to u
	The strategy-profile is an equilibrium in the delta-discounted repeated game

	Sequential equilibrium
	Outline of the plan of action
	Plan of action for the punishment master-block
	Plan of action for a regular master-block after a punishment master-block
	Construction of the strategy profile
	Strategy profile is a sequential equilibrium

	Extensions and concluding remarks
	At least three players, at least two players with at least four actions, other players with at least three actions
	Three players, three actions
	At least four players, three actions
	Concluding remarks

	Acknowledgments
	References


