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Abstract
In this paper we focus on stochastic games with finitely many states and actions. For
this setting we study the epistemic concept of common belief in future rationality,
which is based on the condition that players always believe that their opponents will
choose rationally in the future.We distinguish two different versions of the concept—
one for the discounted case with a fixed discount factor δ, and one for the case of
uniform optimality, where optimality is required for all discount factors close enough
to 1” . We show that both versions of common belief in future rationality are always
possible in every stochastic game, and always allow for stationary optimal strategies.
That is, for both versions we can always find belief hierarchies that express common
belief in future rationality, and that have stationary optimal strategies. We also provide
an epistemic characterization of subgame perfect equilibrium for two-player stochastic
games, showing that it is equivalent to mutual belief in future rationality together with
some “correct beliefs assumption”.
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1 Introduction

The literature on stochastic games ismassive, and has concentratedmostly on the ques-
tion whether Nash equilibria, subgame perfect equilibria, or other types of equilibria
exist in such games. To the best of our knowledge, this paper is the first to analyze
stochastic games from an epistemic point of view.

A distinctive feature of an equilibrium approach to games is the assumption that
every player believes that the opponents are correct about his beliefs (see Branden-
burger and Dekel 1987, 1989; Tan and Werlang 1988; Aumann and Brandenburger
1995; Asheim 2006; Perea 2007). The main idea of this paper is to analyze stochas-
tic games without imposing the correct beliefs assumption, while at the same time
preserving the spirit of subgame perfection. This leads to a concept called common
belief in future rationality—an extension of the corresponding concept by Perea (2014)
which has been defined for dynamic games of finite duration. Very similar concepts
have been introduced in Baltag et al. (2009) and Penta (2015).

Common belief in future rationality states that, after every history, the players
continue to believe that their opponents will choose rationally in the future, that they
believe that their opponents believe that their opponents will choose rationally in
the future, and so on, ad infinitum. The crucial feature that common belief in future
rationality has in common with subgame perfect equilibria is that the players uphold
the belief that the opponents will be rational in the future, even if this belief has
been violated in the past. What distinguishes common belief in future rationality from
subgame perfect equilibrium is that the former allows the players to have erroneous
beliefs about their opponents, while the latter incorporates the condition of correct
beliefs in the sense that we make precise.

We introduce our solution concept using the language of epistemic models with
types, following Harsanyi (1967, 1968a, b). An epistemic model specifies, for each
player, the set of possible types, and for each type and each history of the game, a
probability distribution over the opponents’ strategy-type combinations. An epistemic
model succinctly describes the entire belief hierarchy after each history of the game.
This model is essentially the same as the epistemicmodels used by Ben-Porath (1997),
Battigalli and Siniscalchi (1999, 2002) and Perea (2012, 2014) to encode conditional
belief hierarchies in finite dynamic games.

For a given discount factor δ, we say that a player believes in the opponents’
future δ-rationality if he always believes that his opponents maximize their expected
utility, given the discount factor δ, now and in the future. More precisely, a type in
the epistemic model believes in the opponents’ future δ-rationality if, at every history,
it assigns probability 1 to the set of opponents’ strategy-type combinations where
the strategy maximizes the type’s expected utility, given the discount factor δ, at the
present and every future history.

A player is said to believe in the opponents’ future uniform rationality if he always
believes that his opponents maximize their expected utility, for all discount factors
large enough, now and in the future. Formally, we say that the type believes in the
opponents’ future uniform rationality if it assigns probability 1 to the set of opponents’
strategy-type combinations where the strategymaximizes the type’s expected utility—
for all discount factors larger than some threshold—at the present and every future
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history. Common belief in future δ -rationality requires that the type not only believes
in the opponents’ future δ-rationality, but also believes, throughout the game, that
his opponents always believe in their opponents’ future δ -rationality, and so on, ad
infinitum. Similarly, we can define common belief in future uniform rationality.

In this paper we show that common belief in future rationality is always possible in
a stochastic game with finitely many states, and always allows for stationary optimal
strategies. More precisely, we prove in Theorem 5.1 that for every discount factor
δ < 1, we can always construct an epistemicmodel in which all types express common
belief in future δ-rationality, and have stationary optimal strategies. A similar result
holds for the uniform optimality case—see Theorem 5.2.

The fact that stationary optimal strategies exist for common belief in future ratio-
nality is important both from a conceptual and an applied point of view. Conceptually,
stationary strategies are very attractive since they are memory-less. Indeed, in a sta-
tionary strategy a player need not keep track of the choices made by his opponents
or himself in the past, but need only look at the current state, and base his decision
solely on the state he is at. Also from an applied perspective stationarity is an impor-
tant virtue, as it makes the strategies much easier to describe and compute in concrete
applications.

A second objective of this paper is to relate common belief in future rationality in
stochastic games to the well-known concept of subgame perfect equilibrium (Selten
1965). In Theorems 6.1 and 6.2 we provide an epistemic characterization of subgame
perfect equilibrium for two-player stochastic games. We show that a behavioral strat-
egy profile (σ1, σ2) is a subgame perfect equilibrium, if and only if, it is induced by a
pair of types (t1, t2) where type t1 (a) always believes that the opponent’s type is t2,
(b) believes in the opponent’s future rationality, and similarly for type t2. We refer to
condition (a) as the correct beliefs condition, and to condition (b) as mutual belief in
future rationality. Indeed, condition (a) for types t1 and t2 implies that type t1 always
believes that player 2 always believes that 1’s type is t1 and no other, and hence that
player 2 is correct about 1’s beliefs. Similarly for player 2.

It is exactly this correct beliefs condition that separates subgame perfect equilib-
rium from common belief in future rationality, at least for the case of two players.
The reason is that the correct beliefs condition, together with mutual belief in future
rationality, implies common belief in future rationality. Hence, our characterization
theorem shows, in particular, that subgame perfect equilibrium is a refinement of
common belief in future rationality. Our characterization result is analogous to the
epistemic characterizations of Nash equilibrium as presented in Brandenburger and
Dekel (1987, 1989), Tan and Werlang (1988), Aumann and Brandenburger (1995),
Asheim (2006) and Perea (2007).

The equilibrium counterpart of common belief in future uniform rationality is the
concept we term uniform subgame perfect equilibrium. A uniform subgame per-
fect equilibrium is a strategy profile that is a subgame perfect equilibrium under a
discounted evaluation for all sufficiently high values of the discount factor. It is well-
known that uniform subgame perfect equilibria may fail to exist in some stochastic
games. Indeed, every uniform subgame perfect equilibrium is also a subgame perfect
equilibrium under the limiting average reward. It is well-known that subgame per-
fect equilibria, and in fact even Nash equilibria, may fail to exist in stochastic games
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under the limiting average reward criterion. This is for instance the case in the famous
Big Match game (Gillette 1957), a game we discuss in detail in this paper. Our exis-
tence results in Theorems 5.1 and 5.2, which guarantee that common belief in future
rationality is always possible in a stochastic game—even for the uniform optimality
case—do not rely on any form of equilibrium existence. Instead, we explicitly con-
struct an epistemic model where each type exhibits common belief in future (δ- or
uniform) rationality.

The paper is structured as follows. In Sect. 2 we provide a preliminary discussion of
the concept of common belief in future rationality, and its relation to subgame perfect
equilibrium, by means of the famous Big Match game (Gillette 1957). In Sect. 3 we
give a formal definition of stochastic games. In Sect. 4 we introduce epistemic models
and define the concept of common belief in future rationality. In Sect. 5 we prove that
common belief in future δ- (and uniform) rationality is always possible in a stochastic
game, and always allows for stationary optimal strategies. In Sect. 6 we present our
epistemic characterizations of subgame perfect equilibrium. All proofs are collected
in Sect. 7.

2 The BigMatch

Before presenting our formal model and definitions, we will illustrate the concept of
common belief in future rationality, and its relation to subgame perfect equilibrium,
by means of the well-known Big Match game by Gillette (1957). This game has
originally been considered under the limiting average reward criterion, and has no
Nash equilibrium, and hence no subgame perfect equilibrium, under this criterion.

In dynamic games of finite duration, subgame perfect equilibrium can be viewed
as the equilibrium analogue to common belief in future rationality. Similarly, within
stochastic games, uniform subgame perfect equilibrium is the equilibrium counterpart
to common belief in future uniform rationality. Uniform subgame perfect equilibrium
is defined as a strategy profile that is a subgame perfect equilibrium for all sufficiently
high values of the discount factor. As uniform optimality implies optimality under the
limiting average reward criterion, each uniform subgame perfect equilibrium is also a
subgame perfect equilibrium under the limiting average reward criterion. Hence, the
BigMatch does not admit a uniform subgame perfect equilibrium either. Nevertheless,
wewill show that in this gamewe can construct belief hierarchies that express common
belief in future rationality with respect to the uniform optimality criterion.

The Big Match, introduced by Gillette (1957), has become a real classic in the
literature on stochastic games. It is a two-player zero-sum game with three states, two
of which are absorbing. Here, by “absorbing” we mean that if the game reaches this
state, it will never leave this state thereafter. In state 1 each player has only one action,
and the instantaneous utilities are (1,−1). From state 1 the transition to state 1 occurs
with probability 1, so state 1 is absorbing. In state 2 each player has only one action,
and the instantaneous utilities are (0, 0). From state 2 the transition to state 2 occurs
with probability 1, so also state 2 is absorbing. In state 0 player 1 can playC (continue)
or S (stop), while player 2 can play L (left) or R (right), the instantaneous utilities
being given by the table in Fig. 1. After actions (C, L) or (C, R), the transition to state
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Fig. 1 The Big Match L R

C (0, 0) (1,−1)
S (1,−1)∗ (0, 0)∗

0 occurs, after (S, L) transition to state 1 occurs, while after (S, R) transition to state
2 occurs. So, the ∗ in the table above represents a situation where the game enters an
absorbing state.

It is well-known that for the limiting average reward case—and hence also for the
uniform optimality case—there is no subgame perfect equilibrium, nor a Nash equilib-
rium, in this game. An important reason for this is the fact that the best-response corre-
spondence is not upper-hemicontinuous in the opponent’smixed strategy. For instance,
R is the unique optimal choice for player 2, under the uniform optimality criterion,
whenever he believes that player 1 chooses a mixed stationary strategy that assigns
positive probability to both C and S. This even holds when player 1 chooses S with
a very low probability. Indeed, under the uniform optimality criterion player 2 exclu-
sively focuses on the long run, and therefore must make sure that he makes the “right
choice” whenever the game enters an absorbing state. However, if he believes that
player 1 will always choose C with probability 1, then only L is optimal for player 2.

Blackwell and Ferguson (1968) have shown, however, how to construct an ε- (sub-
game perfect) equilibrium for the limiting average reward case for every ε > 0.

Consider now the belief hierarchy for player 1 in which

(a) player 1 always believes that player 2will always choose L at state 0 in the future,
(b) player 1 always believes that player 2 always believes that player 1 will always

choose C at state 0 in the future,
(c) player 1 always believes that player 2 always believes that player 1 always

believes that player 2 will always choose R at state 0 in the future,
(d) player 1 always believes that player 2 always believes that player 1 always

believes that player 2 always believes that player 1 will choose S at state 0
in the future,

(e) player 1 always believes that player 2 always believes that player 1 always
believes that player 2 always believes that player 1 always believes that player 2
will always choose L at state 0 in the future,
and so on.

Then, it can be verified that player 1 always believes that player 2 will choose
rationally in the future, that player 1 always believes that player 2 always believes that
player 1will always choose rationally in the future, and so on. Here, rationality is taken
with respect to the uniform optimality criterion. That is, the belief hierarchy above
expresses common belief in future rationality with respect to the uniform optimality
criterion. In a similarway,we can construct a belief hierarchy for player 2 that expresses
common belief in future rationality with respect to the uniform optimality criterion.

Note, however, that in player 1’s belief hierarchy above, player 1 believes that player
2 is wrong about his actual beliefs: on the one hand, player 1 believes that player 2
will always choose L in the future, but at the same time player 1 believes that player
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2 believes that player 1 believes that player 2 will always choose R in the future. This
is something that can never happen in a subgame perfect equilibrium: there, players
are always assumed to believe that the opponent is correct about the actual beliefs
they hold. We will see in Sect. 6 of this paper that this correct beliefs assumption
is exactly what separates the concept of common belief in future rationality from
subgame perfect equilibrium.

The belief hierarchy for player 1 constructed above is special, as it allows for a sta-
tionary optimal strategy for player 1, in which he always chooses S at state 0, nomatter
what happened in the past. The reason for this is that the belief hierarchy constructed
above is also essentially “stationary” , since player 1 always believes at state 0 that
player 2 will be implementing the same stationary strategy, no matter what happened
in the past. Moreover, this “stationary” belief hierarchy expressing common belief in
future rationality has been constructed on the basis of a cycle of stationary strategies,
connected by “best-response properties” . Such a cycle of stationary strategies can
always be built as long as there are finitely many states in the game, since then the
number of stationary strategies is finite. This fact is heavily exploited in the proofs of
our existence theorems for common belief in future rationality, where we show that
such best-response cycles of stationary strategies are always possible, and always lead
to “stationary” belief hierarchies that express common belief in future rationality and
that allow for stationary optimal strategies.

Note also that for constructing the belief hierarchies above it does notmatterwhether
the best-response correspondence is upper-hemicontinuous or not. Indeed, in the con-
struction we only make use of “pure” belief hierarchies that always assign probability
1 to one opponent’s pure stationary strategy. This suffices for creating belief hier-
archies that express common belief in future rationality with respect to the uniform
optimality criterion. Theorem 5.2 and its proof show that this is true not only for
the Big Match, but for every stochastic game with finitely many states and actions.
This, in part, explains why common belief in future rationality with respect to the
uniform optimality criterion is always possible in every stochastic game with finitely
many states and actions, although the best-response correspondence is not always
upper-hemicontinuous in such games.

3 Stochastic games

A finite stochastic game � consists of the following ingredients: (1) a finite set of
players I , (2) a finite, non-empty set of states X , (3) for every state x and player
i ∈ I , there is a finite, non-empty set of actions Ai (x), (4) for every state x and
every profile of actions a in ×i∈I Ai (x), there is an instantaneous utility ui (x, a) for
every player i, and (5) a transition probability p(y|x, a) ∈ [0, 1] for every two states
x, y ∈ X and every action profile a in ×i∈I Ai (x). Here, the transition probabilities
should be such that

∑

y∈X
p(y|x, a) = 1
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for every x ∈ X and every action profile a in ×i∈I Ai (x).
At every state x, we write A(x) := ×i∈I Ai (x). A history of length k is a sequence

h = ((x1, a1), . . . , (xk−1, ak−1), xk), where (1) xm ∈ X for all m ∈ {1, . . . , k}, (2)
am ∈ A(xm) for allm ∈ {1, . . . , k−1}, and where (3) for every periodm ∈ {2, . . . , k}
the state xm can be reached with positive probability given that at period m − 1 state
xm−1 and action profile am−1 ∈ A(xm−1) have been realized. By x(h) := xk we
denote the last state that occurs in history h. Let Hk denote the set of all possible
histories of length k. Let H := ∪k∈NHk be the set of all (finite) histories.

A strategy for player i is a function si that assigns to every history h ∈ H some
action si (h) ∈ Ai (x(h)). By Si we denote the set of all strategies for player i . Note
that the set Si of strategies is typically uncountably infinite. We say that the strategy si
is stationary if si (h) = si (h′) for all h, h′ ∈ H with x(h) = x(h′). So, the prescribed
action only depends on the state, and not on the specific history. A stationary strategy
can thus be summarized as si = (si (x))x∈X .

During the game, players always observe what their opponents have done in the
past, but face uncertainty about what the opponents will do now and in the future,
and also about what these opponents would have done at histories that are no longer
possible. That is, after every history h all players know that their opponents have
chosen a combination of strategies that could have resulted in this particular history h.

To model this precisely, consider a history hk = ((x1, a1), . . . , (xk−1, ak−1), xk) of
length k. For every m ∈ {1, . . . , k − 1} let hm := ((x1, a1), . . . , (xm−1, am−1), xm))

be the induced history of length m. For every player i, we denote by Si (h) the set of
strategies si ∈ Si such that si (hm) = ami for everym ∈ {1, . . . , k−1}. Here, ami is the
action of player i in the action profile am ∈ A(xm). Hence, Si (h) contains precisely
those strategies for player i that are compatible with the history h.

So, after every history h, every player i knows that each of his opponents j is
implementing a strategy from S j (h), without knowing precisely which one. This
uncertainty can be modelled by conditional belief vectors. Formally, a conditional
belief vector bi for player i specifies for every history h ∈ H some probability distri-
bution bi (h) ∈ �(S−i (h)). Here, S−i (h) := × j �=i S j (h) denotes the set of opponents’
strategy combinations that are compatible with the history h, and �(S−i (h)) is the set
of probability distributions on S−i (h).

To define the space �(S−i (h)) formally we must first specify a σ -algebra �−i (h)

on S−i (h), since S−i (h) is typically an uncountably infinite set. Let h ∈ Hk be a
history of length k. For a given player j, strategy s j ∈ S j (h), and m ≥ k, let [s j ]m
be the set of strategies that coincide with s j at all histories of length at most m. As
m ≥ k, every strategy in [s j ]m must in particular coincide with s j at all histories that
precede h, and hence every strategy in [s j ]m will be in S j (h) as well. Let � j (h) be
the σ -algebra on S j (h) generated by the sets [s j ]m, with s j ∈ S j (h) and m ≥ k.1

By �−i (h) we denote the product σ -algebra generated by the σ -algebras � j (h) with
j �= i . Hence, �−i (h) is a σ -algebra on S−i (h), and this is precisely the σ -algebra
we will use. So, when we say �(S−i (h)) we mean the set of probability distributions
on S−i (h) with respect to this specific σ -algebra �−i (h).

1 This is arguably the most natural σ -algebra on the set of strategies.
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Suppose that the game has reached history h ∈ Hk . Consider for every player i
some strategy si ∈ Si (h)which is compatiblewith the history h.Let s = (si )i∈I .Then,
for every m ≥ k, and every history h′ ∈ Hm, we denote by p(h′|h, s) the probability
that history h′ ∈ Hm will be realized, conditional on the event that the game has
reached history h ∈ Hk and the players choose according to s. The corresponding
expected utility for player i at period m ≥ k would be given by

Um
i (h, s) :=

∑

h′∈Hm

p(h′|h, s) ui (x(h
′), s(h′)),

where s(h′) ∈ A(x(h′)) is the combination of actions chosen by the players at state
x(h′) after history h′, if they choose according to the strategy profile s. The expected
discounted utility for player i would be

U δ
i (h, s) :=

∑

m≥k

δmUm
i (h, s).

Suppose now that player i, after history h, holds the conditional belief bi (h) ∈
�(S−i (h)). Then, the expected discounted utility of choosing strategy si ∈ Si (h) after
history h, under the belief bi (h), is given by

U δ
i (h, si , bi (h)) :=

∫

S−i (h)

U δ
i (h, (si , s−i )) dbi (h).

The strategy si is δ-optimal under the conditional belief vector bi if

U δ
i (h, si , bi (h)) ≥ U δ

i

(
h, s′

i , bi (h)
)

for every history h ∈ H and every strategy s′
i ∈ Si (h).

The strategy si is said to be uniformly optimal under bi if there is some δ̄ ∈ (0, 1)
such that si is δ-optimal under bi for every δ ∈ [δ̄, 1). Note that every strategy si
which is uniformly optimal under the conditional belief vector bi ,will also be optimal
under bi with respect to the limiting average reward criterion—an optimality criterion
which is widely used in the literature on stochastic games. This result follows from
Theorem 2.8.3 in Filar and Vrieze (1997).

A finite Markov decision problem can be identified with a finite stochastic game
with only one player, say player i . In that case, the conditional belief vectors for
player i become redundant, but δ-optimal strategies and uniformly optimal strategies
for player i can be defined in the same way as above.

The following classical results state that for every finite Markov decision problem,
we can always find a stationary strategy that is optimal—both for the δ-discounted
and the uniform optimality case.

Theorem 3.1 (Optimal strategies in Markov decision problems) Consider a finite
Markov decision problem.

(a) For every δ ∈ (0, 1), there is a δ-optimal strategy which is stationary.
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(b) There is a uniformly optimal strategy which is stationary.

Part (a) follows from Shapley (1953) and has later been shown in Howard (1960),
but Blackwell (1962) provides a simpler proof. The proof for part (b) can be found in
Blackwell (1962).

4 Common belief in future rationality

In this section we define the central notion in this paper—common belief in future
rationality. In words, the concept states that a player always believes, after every
history, that his opponents will choose rationally in the future, that his opponents
always believe that their opponents will choose rationally in the future, and so on.
Before we define this concept formally, we first introduce epistemic models with
types à la (Harsanyi 1967, 1968a, b) as a possible way to encode belief hierarchies.

4.1 Epistemic model

We do not only wish to model the beliefs of players about the opponents’ strategy
choices, but also the beliefs about the opponents’ beliefs about the other players’
strategy choices, and so on. One way to do so is by means of an epistemic model with
types à la (Harsanyi 1967, 1968a, b).

Definition 4.1 (Epistemic model) Consider a finite stochastic game �. A finite epis-
temic model for � is a tuple M = (Ti , βi )i∈I
(a) Ti is a finite set of types for player i, and
(b) βi is a mapping that assigns to every type ti ∈ Ti , and every history h ∈ H ,

some conditional belief βi (ti , h) ∈ �(S−i (h) × T−i ).

Moreover, these conditional beliefs (βi (ti , h))h∈H are assumed to satisfy Bayesian
updating, that is, for every history h, and every history h′ following h with
βi (ti , h)(S−i (h′) × T−i ) > 0, we have that

βi (ti , h
′)(E−i × {t−i }) = βi (ti , h)(E−i × {t−i })

βi (ti , h)(S−i (h′) × T−i )

for every set E−i ∈ �−i (h′) and every t−i ∈ T−i .

Here, the σ -algebra on S−i (h) × T−i that we use is the product σ -algebra gen-
erated by the σ -algebra �−i (h) on S−i (h), and the discrete σ -algebra on the finite
set T−i , containing all subsets. Moreover, �−i (h′) is the σ -algebra on S−i (h′). The
probability distribution βi (ti , h) encodes the belief that type ti holds, after history
h, about the opponents’ strategies and the opponents’ conditional beliefs. In partic-
ular, by taking the marginal of βi (ti , h) on S−i (h), we obtain the first-order belief
bi (ti , h) ∈ �(S−i (h)) of type ti about the opponents’ strategies. As βi (ti , h) also
specifies a belief about the opponents’ types, and every opponent’s type holds con-
ditional beliefs about his opponents’ strategies, we can also derive, for every type ti
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and history h, the second-order belief that type ti holds, after history h, about the
opponents’ conditional first-order beliefs.

By continuing in this fashion, we can derive for every type ti in the epistemic
model his first-order beliefs, second-order beliefs, third-order beliefs, and so on. That
is, we can derive for every type ti a complete belief hierarchy. The epistemic model
just represents a very easy and compact way to encode such belief hierarchies. The
epistemic model above is very similar to models used in Ben-Porath (1997), Battigalli
and Siniscalchi (1999, 2002) and Perea (2012, 2014) for finite dynamic games. Note
that we automatically assume Bayesian updating whenever we talk about types in an
epistemic model.

The reader may wonder why we restrict to finitely many types in the epistemic
model. The reason is purely pragmatic: it is easier to work with finitely many types,
since we do not need additional topological or measure-theoretic machinery. At the
same time, our analysis and results in this paper would not change if we would allow
for infinitely many types. For instance, in order to prove the existence of common
belief in future rationality in both the discounted and the uniform case, it is sufficient
to build one epistemic model in which all types express common belief in future
rationality, and we show that we can always build an epistemic model with finitely
many types that has this property.

4.2 Belief in future rationality

Consider a type ti , and let bi (ti ) be the induced first-order belief vector. That is, bi (ti )
specifies for every history h the first-order belief bi (ti , h) ∈ �(S−i (h)) that ti holds
about the opponents’ strategies. Note that bi (ti ) is a conditional belief vector as defined
in the previous section. We say that strategy si is δ-optimal for type ti at history h if
si is δ-optimal at h for the conditional belief bi (ti , h). More precisely, si is δ-optimal
for type ti at history h if

U δ
i (h, si , bi (ti , h)) ≥ U δ

i

(
h, s′

i , bi (ti , h)
)

for every s′
i ∈ Si (h).2 We say that si is δ-optimal for type ti if si is δ-optimal for type

ti at every history h with si ∈ Si (h).

We say that type ti believes in his opponents’ future δ -rationality if at every stage
of the game, type ti assigns probability 1 to the set of those opponents’ strategy-type
pairs where the opponent’s strategy is δ-optimal for the opponent’s type at all future
stages. To formally define this, let

(Si × Ti )
h,δ-opt := {(si , ti ) ∈ Si × Ti | si is δ-optimal for ti at every h′ that weakly follows h}.

Here, we say that h′ weakly follows h if h′ follows h, or h′ = h. Moreover, let
(S−i × T−i )

h,δ-opt := × j �=i (S j × Tj )
h,δ-opt be the set of opponents’ strategy-type

2 Note that δ-optimality could equivalently be defined by requiring the above inequality to hold for every
s′i ∈ Si , instead of for every s′i ∈ Si (h).
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combinations where the strategies are δ-optimal for the types at all stages weakly
following h.

Similar definitions can be given for the case of uniform optimality. We define

(Si × Ti )
h,u-opt := {

(si , ti ) ∈ Si × Ti | there is some δ̄ ∈ (0, 1) such that for all δ ∈ [δ̄, 1),
si is δ-optimal for ti at every h′ that weakly follows h

}
,

and let (S−i × T−i )
h,u-opt := × j �=i (S j × Tj )

h,u-opt.

Definition 4.2 (Belief in future rationality) Consider a finite epistemic model M =
(Ti , βi )i∈I , and a type ti ∈ Ti .

(a) Type ti believes in the opponents’ future δ-rationality if for every history h
we have that βi (ti , h)(S−i × T−i )

h,δ-opt = 1.
(b) Type ti believes in the opponents’ future uniform rationality if for every

history h we have that βi (ti , h)(S−i × T−i )
h,u-opt = 1.

With this definition at hand, we can now define “common belief in future δ-
rationality” , which means that players do not only believe in their opponents’ future
δ -rationality, but also always believe that the other players believe in their opponents’
future δ-rationality, and so on. We do so by recursively defining, for every player i,
smaller and smaller sets of types T 1

i , T 2
i , T 3

i , . . .

Definition 4.3 (Common belief in future rationality) Consider a finite epistemic model
M = (Ti , βi )i∈I , and some δ ∈ (0, 1). Let

T 1
i := {ti ∈ Ti | ti believes in the opponents’ future δ-rationality}

for every player i . For every m ≥ 2, recursively define

Tm
i :=

{
ti ∈ Tm−1

i | βi (ti , h)
(
S−i × Tm−1

−i

)
= 1 for all h ∈ H

}
.

A type ti expresses common belief in future δ-rationality if ti ∈ Tm
i for all m.

That is, T 2
i contains those types that believe in the opponents’ future δ-rationality,

and which only deem possible opponents’ types that believe in their opponents’ future
δ-rationality. Similarly for T 3

i , T 4
i , and so on. This definition is based on the notion

of “common belief in future rationality” as presented in Perea (2014), which has been
designed for dynamic games of finite duration. Baltag et al. (2009) and Penta (2015)
present concepts that are very similar to “common belief in future rationality” . In the
same way, we can define “common belief in future uniform rationality” for stochastic
games.

5 Existence result

In this section wewill show that “common belief in future δ-rationality” and “common
belief in future uniform rationality” are possible in every finite stochastic game, and
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that they always allow for stationary optimal strategies. The proof will be constructive,
as we will explicitly construct an epistemic model in which all types express common
belief in future δ- (or uniform) rationality, allowing for stationary optimal strategies.

5.1 Common belief in future rationality is always possible

We first show the following important result, for which we need some new notation.
For a given strategy si and history h, let Si [si , h] be the set of strategies in Si (h) that
coincide with si on histories that weakly follow h. Similarly, for a given combination
of strategies s−i ∈ S−i and history h, we denote by S−i [s−i , h] := × j �=i S j [s j , h] the
set of opponents’ strategy combinations in S−i (h) that coincide with s−i on histories
that weakly follow h.

Lemma 5.1 (Stationary strategies are optimal under stationary beliefs) Consider a
finite stochastic game �. Let s−i be a profile of stationary strategies for i’s opponents.
Let bi be a conditional belief vector that assigns, at every history h, probability 1 to
S−i [s−i , h].

Then,

(a) for every δ ∈ (0, 1) there is a stationary strategy for player i that is δ-optimal
under bi , and

(b) there is a stationary strategy for player i that is uniformly optimal under bi .

That is, if we always assign full probability to the same stationary continuation strategy
for each of our opponents, then there will be a stationary strategy for us that is optimal
after every history.

We are now in a position to prove that common belief in future δ-rationality is
always possible in every finite stochastic game, and that it always allows for stationary
δ-optimal strategies for every player.

Theorem 5.1 (Common belief in future δ-rationality is always possible) Consider a
finite stochastic game �, and some δ ∈ (0, 1). Then, there is a finite epistemic model
M = (Ti , βi )i∈I for � such that

(a) every type in M expresses common belief in future δ -rationality, and
(b) every type in M has a stationary δ-optimal strategy.

The proof for this theorem is constructive. We show how, on the basis of Lemma 5.1,
part (a), we can construct special belief hierarchies that express common belief in
future δ-rationality, and assign at every history probability 1 to the same stationary
continuation strategies of the opponents. By Lemma 5.1, part (a), such belief hierar-
chies allow for stationary δ-optimal strategies. For this construction we heavily rely
on the fact that the number of (pure) stationary strategies is finite for every player.

Similarly, we can prove that common belief in future uniform rationality is always
possible as well, and allows for stationary uniformly optimal strategies.

Theorem 5.2 (Common belief in future uniform rationality is always possible) Con-
sider a finite stochastic game�.Then, there is a finite epistemicmodel M = (Ti , βi )i∈I
for � such that
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(a) every type in M expresses common belief in future uniform rationality, and
(b) every type in M has a stationary uniformly optimal strategy.

The proof for this theorem is almost identical to the proof of Theorem 5.1. The
only difference is that we must use part (b), instead of part (a), in Lemma 5.1. For that
reason, this proof is omitted.

In particular, it follows from the two theorems above that stationary optimal
strategies are always possible under common belief in future rationality, both in the
discounted and the uniform case. As explained before, this is relevant from a concep-
tual and applied point of view, since stationary strategies are cognitively attractive,
easy to describe and rather simple to compute in concrete applications.

Suppose that, instead of restricting to finitely many types, we would start from a
terminal epistemic model (Friedenberg 2010) in which all possible belief hierarchies
are present. Then, Theorems 5.1 and 5.2 would imply that within this terminal epis-
temic model we can always find belief-closed submodels with finitely many types in
which every type expresses common belief in future rationality. Hence, the message
of these two theorems would not change if we would consider such terminal epistemic
models with infinitely many types.

5.2 Big Match revisited

We will now illustrate the existence result by means of the Big Match game we
discussed in Sect. 2. For this game, it has been shown that subgame perfect equilibria
fail to exist if we use the uniform optimality criterion. Nevertheless, our Theorem 5.2
guarantees that common belief in future uniform rationality is possible for this game.
In fact, we will explicitly construct epistemic models where all types express common
belief in future uniform rationality.

Recall the Big Match from Fig. 1. With a slight abuse of notation we write C to
denote player 1’s stationary strategy in which he always plays action C in state 0, and
similarly for S, L , and R. Now consider the chain of stationary strategy pairs:

(S, R) → (C, R) → (C, L) → (S, L) → (S, R).

In this chain, each stationary strategy is δ-optimal, for every δ ∈ (0, 1), under the
belief that the opponent will play the preceding strategy in the chain at the present and
future histories in the game. For instance, “(S, R) → (C, R) ” indicates that for player
1 it is optimal to play C if he believes that player 2 will play R now and in the future,
and for player 2 it is optimal to play R if he believes that player 1 will play S now.
Similarly for the other arrows in the chain. In particular, each of these strategies is
uniformly optimal as well for these beliefs. This chain leads to the following epistemic
model with types

T1 =
{
tC1 , t S1

}
, T2 =

{
t L2 , t R2

}

and beliefs
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b1(t
S
1 , h) = (L, t L2 )

b1(t
C
1 , h) = (R, t R2 )

b2(t
L
2 , h) = (C, tC1 )

b2(t
R
2 , h) = (S, t S1 ).

Here, b1(t S1 , h) = (L, t L2 ) means that type t S1 , after every possible history h, assigns
probability 1 to player 2 choosing the stationary strategy L in the remainder of the
game, and to player 2 having type t L2 . Similarly for the other types.

Note that type t R2 always believes that player 1 will choose S in the current stage,
even though it is evident that player 1 has always chosen C in the past. This degree
of stubbornness is typical for backward induction concepts such as common belief
in future rationality or subgame perfect equilibrium. Think, for instance, of Rosen-
thal’s (1981) centipede game, where in a subgame perfect equilibrium a player always
believes that his opponent will opt out in the next round, whereas it is evident that the
opponent has not opted out at any point in the past.

It may be verified that every type in the epistemic model above believes in the
opponent’s future δ- (and uniform) rationality. As a consequence, every type expresses
common belief in future δ- (and uniform) rationality. Moreover, every type admits a
stationary δ- (and uniformly) optimal strategy.

Note that the type t S1 for player 1 induces exactly the belief hierarchy we have
described verbally in Sect. 2.

6 Relation to subgame perfect equilibrium

In the literature on stochastic games, the concepts which are most commonly used
are Nash equilibrium (Nash 1950, 1951) and subgame perfect equilibrium (Selten
1965). In this section we will explore the precise relation between (common) belief in
future rationality on the one hand, and subgame perfect equilibrium on the other hand.
We will show that in two-person stochastic games, subgame perfect equilibrium can
be characterized by mutual belief in future rationality, together with some “correct
beliefs condition”. Since these two conditions together imply common belief in future
rationality, it follows that subgame perfect equilibrium can be viewed as a refinement
of common belief in future rationality.

In Sect. 5 we have seen that common belief in future rationality is always possible
in every finite stochastic game, even if we use the uniform optimality criterion. Hence,
the reason that subgame perfect equilibrium fails to exist in some of these games
is that mutual belief in future rationality is logically inconsistent with the “correct
beliefs condition” in those games. In this section we first explain what we mean by
the correct beliefs condition and mutual belief in future rationality. Subsequently, we
show how types that meet the correct beliefs condition naturally induce behavioral
strategies. We use all this to finally state our epistemic characterization of subgame
perfect equilibrium in two-player stochastic games.
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6.1 Correct beliefs condition

Intuitively, the correct beliefs condition states that player 1 always believes that player
2 is always correct about his beliefs, and that player 2 always believes that player 1 is
always correct about his beliefs. Since the players’ conditional belief hierarchies can
be encoded by means of types in an epistemic model, it can formally be defined as
follows.

Definition 6.1 (Correct beliefs condition) Consider a finite epistemic model M =
(Ti , βi )i∈I for a two-player stochastic game. A pair of types (t1, t2) ∈ T1×T2 satisfies
the correct beliefs condition if β1(t1, h)(S2 × {t2}) = 1 and β2(t2, h)(S1 × {t1}) = 1
for all h ∈ H .

That is, type t1 always believes that player 2 always assigns probability 1 to his true
type t1, and hence believes that player 2 is always correct about each of his conditional
beliefs. Similarly for player 2.

Mutual belief in future rationality simply means that both types t1 and t2 believe in
the opponent’s future rationality.

Definition 6.2 (Mutual belief in future rationality) Consider a finite epistemic model
M = (Ti , βi )i∈I for a two-player stochastic game. A pair of types (t1, t2) expresses
mutual belief in future δ-rationality if both t1 and t2 believe in the opponent’s future
δ-rationality.

Mutual belief in future uniform rationality can be defined in a similar fashion.
Note that, if (t1, t2) satisfies the correct beliefs condition, then mutual belief in future
rationality implies common belief in future rationality.Wewill see, later in this section,
that subgame perfect equilibrium can be characterized by the correct beliefs condition
in combination with mutual belief in future rationality.

6.2 From types to behavioral strategies

The concepts ofmutual belief in future rationality and subgame perfect equilibrium are
definedwithin two different languages: The first concept is definedwithin an epistemic
model with types, whereas the latter is defined by the use of behavioral strategies. How
can we then formally relate these two concepts? We will see that, under the correct
beliefs condition, a type within an epistemic model will naturally induce a behavioral
strategy for the opponent.

Formally, a behavioral strategy for player i is a function σi that assigns to every
history h some probability distribution σi (h) ∈ �(Ai (x(h))) on the set of actions
available at state x(h). Now, consider an epistemic model M = (Ti , βi )i∈I , and a pair
of types (t1, t2) ∈ T1 × T2. Fix a player i and his opponent j �= i . For every history
h and every action a j ∈ A j (x(h)) for opponent j at h, let S j (h, a j ) denote the set of
strategies s j ∈ S j (h) with s j (h) = a j . We define the behavioral strategy σ

ti
j induced

by type ti for opponent j by

σ
ti
j (h)(a j ) := βi (ti , h)(S j (h, a j ) × Tj )
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for every history h and every action a j ∈ A j (x(h)).Hence, σ ti
j (h)(a j ) is the probabil-

ity that type ti assigns, after history h, to the event that player j will choose action a j

after h. In this way, type ti naturally induces a behavioral strategy σ
ti
j for his opponent

j,where σ
ti
j represents ti ’s conditional beliefs about j’s future behavior. Hence, every

pair of types (t1, t2) induces a pair of behavioral strategies (σ1, σ2) where σ1 = σ
t2
1

and σ2 = σ
t1
2 .

With this definition at hand it is now clear what it means for a pair of types (t1, t2)
to induce a subgame perfect equilibrium, since a subgame perfect equilibrium is just
a behavioral strategy pair satisfying some special conditions. In order to define a
subgame perfect equilibrium formally, we need some additional notation first. Take
some behavioral strategy pair (σi , σ j ), and some history h.Wedenote byU δ

i (h, σi , σ j )

the δ-discounted expected utility for player i, if the game would start after history h,
and if the players choose according to (σi , σ j ) in the subgame that starts after history
h.

Definition 6.3 (Subgame perfect equilibrium)
(a) A behavioral strategy pair (σ1, σ2) is a δ-subgame perfect equilibrium if after

every history h, and for both players i, we have that U δ
i (h, σi , σ j ) ≥ U δ

i (h, σ ′
i , σ j )

for every behavioral strategy σ ′
i .

(b) A behavioral strategy pair (σ1, σ2) is a uniform subgame perfect equilibrium
if there is some δ̄ ∈ (0, 1) such that for every δ ∈ [δ̄, 1), for every history h, and
for both players i, we have that U δ

i (h, σi , σ j ) ≥ U δ
i (h, σ ′

i , σ j ) for every behavioral
strategy σ ′

i .

Hence, a δ-subgame perfect equilibrium constitutes a δ-Nash equilibrium in each
of the subgames. A behavioral strategy pair is thus a uniform subgame perfect equi-
librium if it is a subgame perfect equilibrium under a discounted evaluation for all
sufficiently high values of the discount factor. The concept of uniform ε-equilibrium
(e.g. Jaśkiewicz and Nowak 2017) features prominently in the literature on stochastic
games. While uniform subgame perfect equilibrium is not logically related to the uni-
form ε-equilibrium, it is somewhat similar in spirit. Both concepts entail a requirement
of robustness of the solution within a small range of the parameters of the game.

6.3 Epistemic characterization of subgame perfect equilibrium

We are now ready to state our epistemic characterization of δ -subgame perfect equi-
librium in two-player stochastic games.

Theorem 6.1 (Characterization of δ-subgame perfect equilibrium) Consider a finite
two-player stochastic game �, and a behavioral strategy pair (σ1, σ2) in �. Then,
(σ1, σ2) is a δ-subgame perfect equilibrium, if and only if, there is a finite epistemic
model M = (Ti , βi )i∈I and a pair of types (t1, t2) ∈ T1 × T2 that

(1) satisfies the correct beliefs condition,
(2) expresses mutual belief in future δ-rationality, and
(3) induces (σ1, σ2).
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In a similar way we can prove the following characterization of uniform subgame
perfect equilibrium.

Theorem 6.2 (Characterization of uniform subgame perfect equilibrium) Consider a
finite two-player stochastic game �, and a behavioral strategy pair (σ1, σ2) in �.

Then, (σ1, σ2) is a uniform subgame perfect equilibrium, if and only if, there is a finite
epistemic model M = (Ti , βi )i∈I and a pair of types (t1, t2) ∈ T1 × T2 that

(1) satisfies the correct beliefs condition,
(2) expresses mutual belief in future uniform rationality, and
(3) induces (σ1, σ2).

The proof is almost identical to the proof of Theorem 6.1, and is therefore omitted.
Note that the two theorems above would not change if wewould allow for epistemic

models with infinitely many types. For instance, if we would start from a terminal
epistemic model in which all belief hierarchies are present, then the two theorems
above state that (σ1, σ2) is a subgame perfect equilibrium exactly when we can find a
pair of types within that model which satisfies conditions (1)–(3).

The epistemic conditions above are rather similar to those used in Aumann and
Brandenburger (1995) to characterize Nash equilibrium in two-player games. Indeed,
in their Theorem A they show that in such games, Nash equilibrium can be character-
ized by mutual knowledge of the players’ first-order beliefs and mutual knowledge of
the players’ rationality. In our setting, mutual knowledge of rationality corresponds to
mutual belief in future rationality,whereasmutual knowledge of the players’ first-order
beliefs is implied by the correct beliefs condition.

7 Proofs

Proof of Lemma 5.1 We construct the following Markov decision problem MDP for
player i . The set of states X in MDP is simply the set of states in the stochastic
game �, and for every state x the set of actions A(x) in MDP is simply the set of
actions Ai (x) for player i in �. For every state x and action a ∈ A(x), let the utility
u(x, a) in MDP be the utility that player i would obtain in � if the game reaches x,
player i chooses a at x, and the opponents choose according to s−i at x . Note that
s−i is a profile of stationary strategies, and hence the behavior induced by s−i at x is
independent of the history. So, u(x, a) is well-defined. Finally, we define the transition
probabilities q(y|x, a) in MDP . For every two states x, y and every action a ∈ A(x),
let q(y|x, a) be the probability that state y will be reached in � next period if the
game is at x, player i chooses a at x, and i’s opponents choose according to s−i at x .
Again, q(y|x, a) is well-defined since, by stationarity of s−i , the behavior of s−i at x
is independent of the history. This completes the construction of MDP.

We will now prove part (a) of the theorem. Take some δ ∈ (0, 1). By part (a) in
Theorem 3.1, we know that player i has a δ-optimal strategy ŝi in MDP which is
stationary. So, we can write ŝi = (ŝi (x))x∈X . Now, let si be the stationary strategy for
player i in the game � which prescribes, after every history h, the action ŝi (x(h)).

Then, it may easily be verified that the stationary strategy si is δ-optimal for player i
in �, given the conditional belief vector bi .

123



198 A. Perea, A. Predtetchinski

Part (b) of the theorem can be shown in a similar way, by relying on part (b) in
Theorem 3.1. 	

Proof of Theorem 5.1 We start by recursively defining profiles of stationary strategies,
as follows. Let s1 = (s1i )i∈I be an arbitrary profile of stationary strategies for the
players. Let bi [s1−i ] be a conditional belief vector for player i that assigns, after every
history h, probability 1 to some strategy combination s∗−i [h] in S−i [s1−i , h].Moreover,
these strategy combinations s∗−i [h] can be chosen in such a way that s∗−i [h] = s∗−i [h′]
whenever h follows h′ and s∗−i [h′] ∈ S−i (h). In that way, we guarantee that bi [s1−i ]
satisfies Bayesian updating.

We know from Lemma 5.1 that for every player i there is a stationary strategy s2i
which is δ-optimal, given the conditional belief vector bi [s1−i ]. Let s2 := (s2i )i∈I be
the new profile of stationary strategies thus obtained. By recursively applying this step,
we obtain an infinite sequence s1, s2, s3, .. of profiles of stationary strategies.

As there are only finitely many states in �, and finitely many actions at every state,
there are also only finitely many stationary strategies for the players in the game.
Hence, there are also only finitely many profiles of stationary strategies. Therefore,
the infinite sequence s1, s2, s3, . . . must go through a cycle

sm → sm+1 → sm+2 → · · · → sm+R → sm+R+1

where sm+R+1 = sm .Wewill now transform this cycle into an epistemic model where
all types express common belief in future δ-rationality.

For every player i, we define the set of types

Ti =
{
tmi , tm+1

i , . . . , tm+R
i

}
,

where tm+r
i is a type that, after every history h, holds belief bi [sm+r−1

−i ](h) about
the opponents’ strategies, and assigns probability 1 to the event that every opponent
j is of type tm+r−1

j . If r = 0, then type tmi , after every history h, holds belief

bi [sm+R
−i ](h) about the opponents’ strategies, and assigns probability 1 to the event

that every opponent j is of type tm+R
j .This completes the construction of the epistemic

model M .

Then, every type tm+r
i holds the conditional belief vector bi [sm+r−1

−i ] about the
opponents’ strategies. By construction, the stationary strategy sm+r

i is δ-optimal under
the conditional belief vector bi [sm+r−1

−i ], and hence sm+r
i is δ -optimal for the type

tm+r
i , for every type tm+r

i in the model.
By construction, every type tm+r

i assigns, after every history h, and for every
opponent j, probability 1 to the set of opponents’ strategy-type pairs S j [sm+r−1

j , h]×
{tm+r−1

j }.As every strategy s′
j ∈ S j [sm+r−1

j , h] coincides with sm+r−1
j at all histories

weakly following h, and strategy sm+r−1
j is δ-optimal for type tm+r−1

j at all histories

weakly following h, it follows that every strategy s′
j ∈ S j [sm+r−1

j , h] is δ-optimal for

type tm+r−1
j at all histories weakly following h. That is,
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S j [sm+r−1
j , h] × {tm+r−1

j } ⊆ (S j × Tj )
h,δ-opt for all histories h.

Since βi (t
m+r
i , h)(S−i [sm+r−1

−i , h] × {tm+r−1
−i }) = 1 for all histories h, it follows that

βi (t
m+r
i , h)(S−i × T−i )

h,δ-opt = 1 for all histories h. This means, however, that tm+r
i

believes in the opponents’ future δ-rationality.
As this holds for every type tm+r

i in the model M, we conclude that all types in M
believe in the opponents’ future δ -rationality. Hence, as a consequence, all types in
M express common belief in future δ-rationality.

Note, finally, that for every type tm+r
i in M there is a stationary δ-optimal strategy

sm+r
i . This completes the proof. 	

Proof of Theorem 6.1 (a) Take first a δ-subgame perfect equilibrium (σ1, σ2). We will
construct an epistemic model M = (Ti , βi )i∈I with a unique type t1 for player 1 and
a unique type t2 for player 2, and show that (t1, t2) satisfies conditions (1)–(3) in the
statement of the theorem.

Let T1 = {t1} and T2 = {t2}. Fix a player i . We transform σ j into a conditional
belief vector b

σ j
i for player i about j’s strategy choice, as follows. Consider a history

h = ((x1, a1), . . . , (xk−1, ak−1), xk) of length k, and for every m ≤ k − 1 let hm =
((x1, a1), . . . , (xm−1, am−1), xm) be the induced history of length m. Let σ h

j be a
modified behavioral strategy such that

(i) σ h
j (h

m)(amj ) = 1 for every m ≤ k − 1, and

(ii) σ h
j (h

′) = σ j (h′) for all other histories h′.

Hence,σ h
j assigns probability 1 to all the player j actions leading to h, and coincides

with σ j otherwise.
Remember that, for every strategy s j ∈ S j (h) and everym ≥ k,we denote by [s j ]m

the set of strategies in S j (h) that coincide with s j on histories up to length m. The
σ -algebra � j (h) we use is generated by these sets [s j ]m, with s j ∈ S j (h) and m ≥ k.
Let H≤m be the finite set of histories of length at mostm. Then, let b

σ j
i (h) ∈ �(S j (h))

be the unique probability distribution on S j (h) such that

b
σ j
i (h)([s j ]m) :=

∏

h′∈H≤m

σ h
j (h

′)(s j (h′)) (1)

for every strategy s j ∈ S j (h) and everym ≥ k.Note that b
σ j
i (h) is indeed a probability

distribution on S j (h) as, by construction,σ h
j assigns probability 1 to all player j actions

leading to h. In this way, the behavioral strategy σ j induces a conditional belief vector
b

σ j
i = (b

σ j
i (h))h∈H for player i about j’s strategy choices. Moreover, the conditional

belief b
σ j
i (h) ∈ �(S j (h)) has the property that the induced belief about j’s future

behavior is given by σ j .

For both players i, we define the conditional beliefs βi (ti , h) ∈ �(S j (h) × Tj )

about the opponent’s strategy-type pairs as follows. At every history h of length k, let
βi (ti , h) ∈ �(S j (h) × Tj ) be the unique probability distribution such that

βi (ti , h)([s j ]m × {t j }) := b
σ j
i (h)([s j ]m) (2)
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for every strategy s j ∈ S j (h) and allm ≥ k. So, type ti believes, after every history h,
that player j is of type t j , and that player j will choose according to σ j in the game that
lies ahead. This completes the construction of the epistemic model M = (Ti , βi )i∈I .

We show that the pair of types (t1, t2) satisfies the conditions (1)–(3) above.

(1) By construction, (t1, t2) satisfies the correct beliefs condition.
(2) Choose a player i, with opponent j . We show that type ti believes in j’s future

δ-rationality. Consider an arbitrary history h. We must show that βi (ti , h)(S j ×
Tj )

h,δ-opt = 1.
Since (σi , σ j ) is a subgame perfect equilibrium, we have at every history h′
weakly following h that

U δ
j (h

′, σ j , σi ) ≥ U δ
j (h

′, σ ′
j , σi )

for every behavioral strategy σ ′
j . This implies that

U δ
j (h

′, σ j , σi ) ≥ U δ
j (h

′, s′
j , σi )

for all s′
j ∈ S j (h′). By (1), this is equivalent to stating that

U δ
j

(
h′, bσ j

i (h′), bσi
j (h′)

)
≥ U δ

j

(
h′, s′

j , b
σi
j (h′)

)
(3)

for every history h′ weakly following h, and every s′
j ∈ S j (h′). Let

Soptj (h′) :=
{
s j ∈ S j | U δ

j (h
′, s j , bσi

j (h′)) ≥ U δ
j (h

′, s′j , b
σi
j (h′)) for all s′j ∈ S j (h

′)
}

,

and let

Sh,opt
j := {s j ∈ S j (h) | s j ∈ Soptj (h′) for every history h′ weakly following h}.

Then, by (3) it follows that b
σ j
i (h)(Sh,opt

j ) = 1.

Since the conditional belief of type t j at h′ about i’s strategy is given by bσi
j (h′), it

follows that Sh,opt
j contains exactly those strategies s j ∈ S j (h) that are δ-optimal

for type t j at all histories weakly following h. Moreover, the conditional belief
that type ti has at h about j’s strategy is given by b

σ j
i (h), for which we have seen

that b
σ j
i (h)(Sh,opt

j ) = 1. By combining these two insights, we obtain that

βi (ti , h)(S j × Tj )
h,δ-opt = βi (ti , h)

(
Sh,opt
j × {t j }

)
= b

σ j
i (h)

(
Sh,opt
j

)
= 1.

As this holds for every history h, we conclude that ti believes in j ’s future δ-
rationality. Since player i was chosen arbitrarily, the pair (t1, t2) expressesmutual
belief in future δ -rationality.
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(3) Consider a player i with opponent j . We show that σ ti
j = σ j . Take some history

h = ((x1, a1), . . . , (xk−1, ak−1), xk) of length k, and some action a j ∈ A j (xk).
Let

[S j (h, a j )]k := {[s j ]k | s j ∈ S j (h, a j )}

be the finite collection of equivalence classes that partitions S j (h, a j ). Then,

σ
ti
j (h)(a j ) = βi (ti , h)(S j (h, a j ) × Tj )

= b
σ j
i (h)(S j (h, a j ))

=
∑

[s j ]k∈[S j (h,a j )]k
b

σ j
i (h)([s j ]k)

=
∑

[s j ]k∈[S j (h,a j )]k

∏

h′∈H≤k

σ h
j (h

′)(s j (h′))

= σ h
j (h)(a j )

= σ j (h)(a j ),

which implies that σ ti
j = σ j . Here, the first equality follows from the definition

of σ
ti
j . The second equality follows from (2). The third equality follows from the

observation that [S j (h, a j )]k constitutes a finite partition of the set S j (h, a), and
that each member of [S j (h, a j )]k is in the σ -algebra � j (h). The fourth equality
follows from ( 1). The fifth equality follows from two observations: First, that
s j ∈ S j (h, a j ), if and only if, s j (hm) = amj for all m ≤ k − 1 and s j (h) = a j ,

where hm = ((x1, a1), . . . , (xm−1, am−1), xm) for all m ≤ k − 1. The second
observation is that σ h

j (h
m)(amj ) = 1 for all m ≤ k − 1. The sixth equality

follows from the fact that σ h
j coincides with σ j on histories that weakly follow

h. In particular, this implies that σ h
j (h) = σ j (h).

Since σ
ti
j = σ j for both players i and j, we conclude that (t1, t2) induces the

behavioral strategy pair (σ1, σ2).

Summarizing, we have shown that the pair of types (t1, t2) satisfies the conditions
(1)–(3).
(b) Assume next that there is a finite epistemic model M = (Ti , βi )i∈I , and a pair of
types (t1, t2) ∈ T1 × T2 that satisfies the conditions (1)–(3). We show that (σ1, σ2)

must be a δ-subgame perfect equilibrium.
Take a player i and a history h. We must show that

U δ
i (h, σi , σ j ) ≥ U δ

i (h, σ ′
i , σ j ) (4)

for every behavioral strategy σ ′
i . By (1) this is equivalent to showing that

U δ
i

(
h, bσi

j (h), b
σ j
i (h)

)
≥ U δ

i

(
h, s′

i , b
σ j
i (h)

)
(5)
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for all s′
i ∈ Si (h). Let

Sopti (h) :=
{
si ∈ Si (h) | U δ

i (h, si , b
σ j
i (h)) ≥ U δ

i (h, s′
i , b

σ j
i (h)) for all s′

i ∈ Si (h)
}

.

Then, (5) is equivalent to showing that

bσi
j (h)

(
Sopti (h)

)
= 1. (6)

As σ
ti
j = σ j and ti satisfies Bayesian updating, it follows that the conditional belief

of type ti at h about j’s continuation strategy is given by b
σ j
i (h). But then,

Sopti (h) = {si ∈ Si (h) | si is δ-optimal for ti at history h}.

As (t1, t2) expresses mutual belief in future δ-rationality, it must be that t j believes in
i’s future δ-rationality. In particular,

β j (t j , h)(Si × Ti )
h,δ-opt = 1.

As t j assigns probability 1 to ti , and every strategy si which is δ-optimal for ti at all
histories weakly following h must be in Sopti (h), it follows that

β j (t j , h)
(
Sopti (h) × {ti }

)
= 1. (7)

Since σ
t j
i = σi and t j satisfies Bayesian updating, it follows that the conditional

belief of type t j at h about i’s continuation strategy is given by bσi
j (h). So, ( 7) implies

that

bσi
j (h)

(
Sopti (h)

)
= 1,

which establishes (6). This, as we have seen, implies (4), stating that

U δ
i (h, σi , σ j ) ≥ U δ

i

(
h, σ ′

i , σ j
)

for every behavioral strategy σ ′
i .

Since this holds for both players i and every history h, it follows that (σi , σ j ) is a
δ-subgame perfect equilibrium. This therefore completes the proof of this theorem. 	


Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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